Powered by Deep Web Technologies
Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Zelenay wins Electrochemical Society's Research Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Society's Research Award Electrochemical Society's Research Award Zelenay wins Electrochemical Society's Research Award The award includes a monetary prize and membership in the Electrochemical Society's Energy Technology Division. December 11, 2012 Piotr Zelenay Piotr Zelenay The award recognizes Zelenay's "outstanding and original contributions to the science and technology of energy-related research areas that include scientific and technological aspects of fossil fuels and alternative energy sources, energy management and environmental consequences of energy utilization." Piotr Zelenay of LANL's Sensors and Electrochemical Devices group has won the 2012 Research Award presented by the Energy Technology Division of The Electrochemical Society. The award recognizes Zelenay's "outstanding

2

Publication Trends in American Meteorological Society Technical Journals  

Science Conference Proceedings (OSTI)

Some statistical measures of growth of American Meteorological Society technical journals have been compiled. A general upward trend in total number of articles, pages, and an increase (nearly doubling during the past 20 years) in the average ...

Richard H. Johnson; Wayne H. Schubert

1989-05-01T23:59:59.000Z

3

Journal  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Society Reductive Degradation of Organic Compounds Using Microbial Nanotechnology Ashley Johnson, a,d Giorvanni Merilis, a,e Jason Hastings, b, M. Elizabeth...

4

Argonne Chemical Sciences & Engineering - Publications - Electrochemical  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage Basic Research S.-H. Kang and M. M. Thackeray, "Stabilization of xLi2MnO3·(1-x)LiMO2 Electrode Surfaces (M=Mn, Ni, Co) with Mildly Acidic, Fluorinated Solutions," Journal of the Electrochemical Society, 155, A269 (2008) C. S. Johnson, N. Li, C. Lefief, J. T. Vaughey and M. M. Thackeray, "Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3*(1-x)LiMn0.333Ni0.333Co0.333O2 (0Journal of the Electrochemical Society 155, A448 (2008)

5

B452 Journal of The Electrochemical Society, 0013-4651/2007 ...  

an electrolyzer, although fuel cell and electrolyzer functions are car- ... tive electrode measurements were performed in a mixture of hydro-gen, ...

6

A192 Journal of The Electrochemical Society, 0013-4651/2009 ...  

with an increased cell polarization and limited capacity below 4.5 V ... The solution was then concentrated on a hot plate until auto ignition ...

7

3672 Journal of The Electrochemical Society, 146 (10) 3672-3678 (1999) S0013-4651(98)11-007-8 CCC: $7.00 The Electrochemical Society, Inc.  

E-Print Network (OSTI)

in CANDU reactors. Zr alloys corrode in the heavy water that is con- tained by the pressure tubes and pickup. As a result, the Zircaloy-2 pressure tubes in CANDU reac- tors have been replaced with Zr-2.5% Nb of the tubes in CANDU reactors.2 All the high-D-content tubes had nitro- gen gas in the annuli that resulted

8

Journal of The Electrochemical Society, 147 (6) 2303-2311 (2000) 2303 S0013-4651(00)02-051-6 CCC: $7.00 The Electrochemical Society, Inc.  

E-Print Network (OSTI)

silicon atoms were assumed to be identical to those for the analogous reaction of disilane. Cyclic species

Swihart, Mark T.

9

2910 Journal of The Electrochemical Society, 147 (8) 2910-2922 (2000) S0013-4651(00)02-015-2 CCC: $7.00 The Electrochemical Society, Inc.  

E-Print Network (OSTI)

optimize the battery system in a cost-effective manner. In general, a battery thermal model is formulated distribution and temporal evolution of temperature inside a battery. It is known that temperature variations inside a battery may greatly affect its performance, life, and reliability. Battery physi- cochemical

Wang, Chao-Yang

10

Journal of the Korean Physical Society, Vol. 59, No. 2, August 2011, pp. 983986 Modelling a Resonance Dependent Angular Distribution via DBRC in Monte  

E-Print Network (OSTI)

for Neutron Physics and Reactor Technology, 76021 Karlsruhe, Germany Y. Danon, M. Rapp and D. Barry RensselaerJournal of the Korean Physical Society, Vol. 59, No. 2, August 2011, pp. 983986 Modelling Institute (RPI). The main advantage of this facility is the ability to move the neutron production source

Danon, Yaron

11

Journal of the Korean Physical Society, Vol. 59, No. 2, August 2011, pp. 17451748 Molybdenum and Zirconium Neutron Total Cross Section Measurements in  

E-Print Network (OSTI)

Journal of the Korean Physical Society, Vol. 59, No. 2, August 2011, pp. 17451748 Molybdenum and Zirconium Neutron Total Cross Section Measurements in the Energy Range of 0.5 to 20 MeV M. J. Rapp, Y. Danon April 2010) Neutron transmission measurements were made on natural molybdenum and zirconium samples

Danon, Yaron

12

809New Zealand Journal of Geology & Geophysics, 2004, Vol. 47: 809821 00288306/04/47040809 The Royal Society of New Zealand 2004  

E-Print Network (OSTI)

809New Zealand Journal of Geology & Geophysics, 2004, Vol. 47: 809­821 0028­8306/04/4704­0809 © The Royal Society of New Zealand 2004 Stable isotope values in modern bryozoan carbonate from New Zealand Department of Geology Dickinson College P.O. Box 1773 Carlisle, PA 17013, USA WILLIAM P. PATTERSON Department

Patterson, William P.

13

SC e-journals by Publisher  

Office of Scientific and Technical Information (OSTI)

journals Search by Publisher journals Search by Publisher American Association for Cancer Research American Association for the Advancement of Science American Association of Physics Teachers American Ceramic Society American Chemical Society American Geophysical Union American Institute of Chemical Engineers (AIChE) American Institute of Physics American Meteorological Society American Physical Society American Society for Biochemistry and Molecular Biology (ASBMB) American Society for Microbiology American Society of Agronomy American Society of Limnology and Oceanography (ASLO) American Society of Plant Biologists, The Annual Reviews Association for Computing Machinery AVS Science and Technology Society Biology Reports Limited BioMed Central Biophysical Society, The Canadian Society of Petroleum Geologists

14

SC e-journals, Nuclear  

Office of Scientific and Technical Information (OSTI)

Nuclear Nuclear Annals of Nuclear Energy Annual Review of Nuclear and Particle Science Atomic Data & Nuclear Data Tables Atomic Energy BMC Medical Physics - OAJ Cancer Prevention Journals Portal Cancer Prevention Research Cancer Reviews Online Dose Response Energy & Environmental Science Energy Policy EURASIP Journal on Advances in Signal Processing - OAJ EURASIP Journal on Bioinformatics and Systems Biology - OAJ EURASIP Journal on Embedded Systems (2006 forward) - OAJ Fuel Fusion Engineering and Design Fusion Nuclear Society Health Physics IETE Journal of Research - OAJ International Journal of Cancer International Journal of Low Radiation International Journal of Microwave Science and Technology - OAJ International Journal of Radiation Biology Journal of Cancer Eqidemiology - OAJ

15

Journal of the Geological Society, London, Vol. 161, 2004, pp. 133145. Printed in Great Britain. Fossil-wood carbon-isotope stratigraphy of the non-marine Wealden Group  

E-Print Network (OSTI)

Journal of the Geological Society, London, Vol. 161, 2004, pp. 133­145. Printed in Great Britain. 133 Fossil-wood carbon-isotope stratigraphy of the non-marine Wealden Group (Lower Cretaceous-wood carbon-isotope data are presented for the Wessex Formation, a non-marine unit within the Lower Cretaceous

Hesselbo, Stephen P.

16

Electrochemical cell  

DOE Patents (OSTI)

An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm{sup 3}; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6{times}10{sup 4}cm{sup 2}/g of Ni. 6 figs.

Redey, L.I.; Vissers, D.R.; Prakash, J.

1996-07-16T23:59:59.000Z

17

Electrochemical cell  

DOE Patents (OSTI)

An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

Redey, Laszlo I. (Downers Grove, IL); Vissers, Donald R. (Naperville, IL); Prakash, Jai (Downers Grove, IL)

1994-01-01T23:59:59.000Z

18

Electrochemical cell  

DOE Patents (OSTI)

An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

Redey, Laszlo I. (6851 Carpenter St., Downers Grove, IL 60516); Vissers, Donald R. (611 Clover Ct., Naperville, IL 60540); Prakash, Jai (2205 Arbor Cir. 8, Downers Grove, IL 60515)

1996-01-01T23:59:59.000Z

19

Electrochemical device  

DOE Patents (OSTI)

A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

Grimes, Patrick G. (Westfield, NJ); Einstein, Harry (Springfield, NJ); Bellows, Richard J. (Westfield, NJ)

1988-01-12T23:59:59.000Z

20

Electrochemical construction  

DOE Patents (OSTI)

An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

Einstein, Harry (Springfield, NJ); Grimes, Patrick G. (Westfield, NJ)

1983-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electrochemical cell  

DOE Patents (OSTI)

An electrochemical cell having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a .beta." alumina electrolyte and NaAlCl.sub.4 or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose.

Redey, Laszlo I. (Downers Grove, IL); Vissers, Donald R. (Naperville, IL); Prakash, Jai (Downers Grove, IL)

1994-01-01T23:59:59.000Z

22

Electrochemical cell  

DOE Patents (OSTI)

An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90[degree] in either direction while maintaining the working and counter electrodes submerged in the electrolyte. 5 figs.

Nagy, Z.; Yonco, R.M.; You, H.; Melendres, C.A.

1992-08-25T23:59:59.000Z

23

Electrochemical cell  

DOE Patents (OSTI)

This invention is comprised of an electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 900 in either direction while maintaining the working-and counter electrodes submerged in the electrolyte.

Nagy, Z.; Yonco, R.M.; You, Hoydoo; Melendres, C.A.

1991-04-23T23:59:59.000Z

24

Spectroscopic ellipsometry of electrochemical precipitation and oxidation  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopic ellipsometry of electrochemical precipitation and oxidation Spectroscopic ellipsometry of electrochemical precipitation and oxidation of nickel hydroxide films Title Spectroscopic ellipsometry of electrochemical precipitation and oxidation of nickel hydroxide films Publication Type Journal Article Year of Publication 1998 Authors Kong, Fanping, Robert Kostecki, Frank R. McLarnon, and Rolf H. Muller Journal Thin Solid Films Volume 313-314 Pagination 775-780 Keywords effective medium approximation, electrochemical precipitation, inhomogeneous films, nickel hydroxide, spectroscopic ellipsometry Abstract In situ spectroscopic ellipsometry was used to investigate the electrochemical precipitation of nickel hydroxide films. By use of optical models for inhomogeneous films it was found that a specific precipitation current density produced the most compact and homogeneous film structures. The density of nickel hydroxide films was derived to be 1.25-1.50 g/cm3. The redox behavior of precipitated nickel hydroxide films was studied with an effective-medium optical model. Incomplete conversion to nickel oxyhydroxide and a reduction in film thickness were found during the oxidation cycle.

25

Electrochemical cell  

Science Conference Proceedings (OSTI)

An electrochemical cell is disclosed that has a lithium anode, a thionyl chloride depolarizer and a sulphur dioxide passivation control agent which further includes having the pressure relieved to substantially reduce the internal pressure of the cell. The internal cell pressure is relieved by venting for sufficient time at an elevated temperature to reduce the internal cell pressure to less than five psi at room temperature, preferably by a plurality of venting cycles and a temperature ranging from room temperature to the elevated temperature. Normally, the elevated temperature ranges from at least 100/sup 0/ to greater than 150/sup 0/ F.

Chua, D.L.; Garoutte, K.F.; Levy, L.L.

1982-11-23T23:59:59.000Z

26

Electrochemical cell  

DOE Patents (OSTI)

An electrochemical cell is described having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a [beta] alumina electrolyte and NaAlCl[sub 4] or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose. 6 figs.

Redey, L.I.; Vissers, D.R.; Prakash, J.

1994-08-23T23:59:59.000Z

27

Wide electrochemical window solvents for use in electrochemical ...  

Wide electrochemical window solvents for use in electrochemical devices and electrolyte solutions incorporating such solvents United States Patent

28

Microfluidic electrochemical reactors  

DOE Patents (OSTI)

A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

Nuzzo, Ralph G. (Champaign, IL); Mitrovski, Svetlana M. (Urbana, IL)

2011-03-22T23:59:59.000Z

29

SC e-journals  

Office of Scientific and Technical Information (OSTI)

SC e-journals SC e-journals Home Browse ABOUT/FAQ HELP Desktop access to journals of interest to the Office of Science Search Options Web of Science® Search citations for a wide range of peer-reviewed journals, includes cited reference searching and author identification tools. Web of Knowledge Journal Citation Reports Publisher Search Options* Many publishers provide search capabilities, including: American Chemical Society American Physical Society National Academy of Sciences *(results may include non-subscribed titles) Spotlight Neutron Diffraction Observations of Interstitial Protons in Dense Ice ORNL neutrons paint an altogether new picture of ice ORNL neutrons paint an altogether new picture of ice Image: Oak Ridge National Laboratory Neutron diffraction observations of interstitial protons in dense ice

30

SC e-journals, Science (General/Popular)  

Office of Scientific and Technical Information (OSTI)

Science (General/Popular) Science (General/Popular) Aestimatio: Critical Reviews in the History of Science - OAJ Air, Soil and Water Research - OAJ Analyst Astronomy and Astrophysics Review, The Australian Journal of Emerging Technologies and Society - OAJ Bioelectromagnetics Biotechnology & Bioengineering Cancer Prevention Journals Portal Cancer Prevention Research Cancer Reviews Online Catalysis Today College of the Bahamas Research Journal - OAJ Columbia Undergraduate Science Journal - OAJ Continuum Mechanics and Thermodynamics Economist, De Electricity Journal, The Endeavour Eurasia Journal of Mathematics, Science & Technology Education - OAJ EURASIP Journal on Wireless Communications and Networking - OAJ European Food Research and Technology A European Physical Journal C Fibreculture Journal - OAJ

31

Electrochemical methane sensor  

DOE Patents (OSTI)

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, S.; Otagawa, T.; Stetter, J.R.

1984-08-27T23:59:59.000Z

32

Characterizing electrocatalytic surfaces: Electrochemical and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing electrocatalytic surfaces: Electrochemical and NMR studies of methanol and carbon monoxide on PtC Title Characterizing electrocatalytic surfaces: Electrochemical...

33

Planar electrochemical device assembly  

DOE Patents (OSTI)

A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

Jacobson; Craig P. (Lafayette, CA), Visco; Steven J. (Berkeley, CA), De Jonghe; Lutgard C. (Lafayette, CA)

2010-11-09T23:59:59.000Z

34

Planar electrochemical device assembly  

DOE Patents (OSTI)

A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

2007-06-19T23:59:59.000Z

35

Electrochemical thermodynamic measurement system  

DOE Patents (OSTI)

The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

Reynier, Yvan (Meylan, FR); Yazami, Rachid (Los Angeles, CA); Fultz, Brent T. (Pasadena, CA)

2009-09-29T23:59:59.000Z

36

Handbook of Electrochemical Nanotechnology  

SciTech Connect

This 2-volume handbook provides an overview of recent advances in the field of electrochemical nanotechnology. It will be of great interst to graduate students, scientists, and engineering professionals whose research is at the interface of electrochemistry and nanotechnology.

Lin, Yuehe; Nalwa, H. S.

2009-02-12T23:59:59.000Z

37

Solid state electrochemical composite  

SciTech Connect

Provided is a composite electrochemical device fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems including oxygen generation system.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2009-06-30T23:59:59.000Z

38

Morphological, rheological and electrochemical studies of Poly(ethylene  

NLE Websites -- All DOE Office Websites (Extended Search)

Morphological, rheological and electrochemical studies of Poly(ethylene Morphological, rheological and electrochemical studies of Poly(ethylene oxide) electrolytes containing fumed silica nanoparticles Title Morphological, rheological and electrochemical studies of Poly(ethylene oxide) electrolytes containing fumed silica nanoparticles Publication Type Journal Article Year of Publication 2004 Authors Xie, Jiangbing, Robert G. Duan, Yong Bong Han, and John B. Kerr Journal Solid State Ionics Volume 175 Pagination 755-758 Keywords composite polymer electrolytes, nanoparticles, poly(ethylene oxide), rheology Abstract In this paper, the rheology and crystallization of composite Poly(ethylene oxide) (PEO) electrolytes were studied by dynamic mechanical analysis, DSC and polarized light microscopy. The effects of fumed silica nanoparticles on the conductivities of the polymer electrolytes at temperatures above and below their melting points were measured and related to their rheology and crystallization behavior, respectively. The electrolyte/electrode interfacial properties and cycling performances of the composite polymer electrolytes in Li/Li cells are also discussed. The measured electrochemical properties were found to depend heavily on the operational environments and sample processing history.

39

SC e-journals, Open Access Journals by Publisher  

Office of Scientific and Technical Information (OSTI)

Open Access Journals by Publisher Open Access Journals by Publisher ABM, ABC, ABPol, SBCC, SBCr, SBMM, SBPMat AcademicDirect Academy & Industry Research Collaboration Center (AIRCC) Albert Einstein Institute Alexandru Ioan Cuza University Publishing House American Physical Society Ashdin Publishing Asian Network for Scientific Information Association for Development through Science and Education Atlantis Press Australian Centre of Emerging Technologies and Society Beilstein-Institut BioChem Press BioMed Central Brazilian Society of Chemical Engineering Brazilian Society of Mechanical Sciences Brazilian Society of Plant Breeding Canadian Center of Science and Education College of the Bahamas, The Columbia University Libraries Copernicus GmbH CSA Editura Universităţii din Oradea EduRad Publishing

40

Society Awards  

Science Conference Proceedings (OSTI)

Awards for long-term service to the Society. Society Awards Awards Program achievement aocs application award Awards baldwin distinguished division memorial nomination poster program recognizing research service A. Richard Baldwin Award aocs awar

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Published: August 17, 2011 r 2011 American Chemical Society 15635 dx.doi.org/10.1021/ja205274g |J. Am. Chem. Soc. 2011, 133, 1563515643  

E-Print Network (OSTI)

. Chem. Soc. 2011, 133, 15635­15643 Journal of the American Chemical Society ARTICLE kinetic studies: N, 15635­15643 Journal of the American Chemical Society ARTICLE Partitioning Kinetic MeasurementsPublished: August 17, 2011 r 2011 American Chemical Society 15635 dx.doi.org/10.1021/ja205274g |J

Daniel, Susan

42

EMSL: Publications - Journal Covers  

NLE Websites -- All DOE Office Websites (Extended Search)

Journal Cover Gallery Journal Cover Gallery Here are a few of the scientific journal covers that feature outstanding research done at EMSL. Where available, additional information is hyperlinked from the date above the cover. 2013 April 2013 [Enlarge Image] Microscopy and Microanalysis January 2013 [Enlarge Image] Molecular BioSystems January 2013 [Enlarge Image] Molecular BioSystems 2012 May 2012 [Enlarge Image] Chemical Science March 7 2012 [Enlarge Image] Physical Chemistry Chemical Physics February 28 2012 [Enlarge Image] Physical Chemistry Chemical Physics February 21 2012 [Enlarge Image] Physical Chemistry Chemical Physics 2011 December 15, 2011 [Enlarge Image] Analytical Chemistry September 14, 2011 [Enlarge Image] The Journal of American Chemical Society July 20, 2011 [Enlarge Image]

43

Electrochemical Thermodynamic Measurement System - Energy ...  

The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy ...

44

Available Technologies: Electrochemical Environmental Cell ...  

Electrochemical Environmental Cell with Vertical, Aligned Electrodes for TEM IB-3330. ... Energy storage device / battery research and development;

45

Electrochemical micro sensor  

DOE Patents (OSTI)

A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.

Setter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

1989-09-12T23:59:59.000Z

46

Electrochemical Membrane Incinerator  

DOE Patents (OSTI)

Electrochemical incineration of benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 {micro}g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called ''supporting electrolyte'' was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

Johnson, Dennis C.; Houk, Linda L.; Feng, Jianren

1998-12-08T23:59:59.000Z

47

Electrochemical membrane incinerator  

DOE Patents (OSTI)

Electrochemical incineration of p-benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 .mu.g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called "supporting electrolyte" was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

Johnson, Dennis C. (Ames, IA); Houk, Linda L. (Ames, IA); Feng, Jianren (Ames, IA)

2001-03-20T23:59:59.000Z

48

Electrochemical Energy Storage for the Grid | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrochemical Energy Storage for the Grid Electrochemical Energy Storage for the Grid Electrochemical Energy Storage for the Grid Electrochemical Energy Storage for the Grid More...

49

Remote electrochemical sensor  

DOE Patents (OSTI)

An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

Wang, Joseph (Las Cruces, NM); Olsen, Khris (Richland, WA); Larson, David (Las Cruces, NM)

1997-01-01T23:59:59.000Z

50

Electrochemical Energy Storage and Conversion  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Design and Discovery of Novel Energy Materials: Stephan Lany1; 1NREL ... determine and characterise the state of an electrochemical system,...

51

Electrochemical Apparatus with Disposable and Modifiable Parts  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts The invention also includes electrochemical apparatus that can interface with optical instrumentation. If the working electrode is transparent, light from an optical fiber may be directed through the working electrode and into a cuvette. July 3, 2013 Electrochemical Apparatus with Disposable and Modifiable Parts Available for thumbnail of Feynman Center (505) 665-9090 Email Electrochemical Apparatus with Disposable and Modifiable Parts Applications: Electrochemical experiments in solution Electrochemical experiments on surfaces Bulk electrolysis experiments Fuel cells Corrosion studies Academic Labs Teaching and research Benefits: Incorporates disposable, commercially available cuvettes

52

Electrochemical Characterization Laboratory (Fact Sheet), NREL...  

NLE Websites -- All DOE Office Websites (Extended Search)

The research focus at the Electrochemical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) is evaluating the electrochemical properties of novel...

53

Asymptotic analysis of extreme electrochemical transport  

E-Print Network (OSTI)

In the study of electrochemical transport processes, experimental exploration currently outpaces theoretical understanding of new phenomena. Classical electrochemical transport theory is not equipped to explain the behavior ...

Chu, Kevin Taylor

2005-01-01T23:59:59.000Z

54

Lipids Journal  

Science Conference Proceedings (OSTI)

Lipids is a peer-reviewed scientific journal containing original research articles, methods papers and review articles. Lipids Journal Publications aocs articles book books cdrom cdroms detergents echapters fats inform international journal journa

55

Find Journals  

NLE Websites -- All DOE Office Websites (Extended Search)

Journals Journals Find Journals The public can search our journal collection via the Library Catalog. Questions? 667-5809 Email e-Journals Search electronic journals by title: Go Starts with Contains Exact For Advanced Search, Subject search, and more, use the Find e-Journals search tool. Looking for articles? Try our Articles/Databases page. Print Journals Search for print journals in the Library Catalog: Journal in Catalog Click on the JOURNAL link under "Location/Call number" to see what years/volumes the Library owns. Journals are shelved alphabetically on the lower level (downstairs map). Want an article scanned? Use our Request Form. PDF Troubleshooting See Adobe Reader's Support page General steps If possible, download PDF file and open in your PDF viewer software

56

Electrochemical thinning of silicon  

DOE Patents (OSTI)

Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

Medernach, J.W.

1994-01-11T23:59:59.000Z

57

Remote electrochemical sensor  

DOE Patents (OSTI)

An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

Wang, J.; Olsen, K.; Larson, D.

1997-10-14T23:59:59.000Z

58

Electrochemical Capacitors for Utility Applications  

Science Conference Proceedings (OSTI)

Electrochemical capacitors have over 100 times the energy density of conventional electrolytic capacitors, while retaining the high-power, high-life-cycle properties of conventional capacitors. This report presents a summary of the technical trends, commercialization status, and feasibility of electrochemical capacitor (ECC) technology in utility applications.

2005-08-31T23:59:59.000Z

59

Electrochemical photovoltaic cells and electrodes  

DOE Patents (OSTI)

Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

Skotheim, Terje A. (East Patchogue, NY)

1984-01-01T23:59:59.000Z

60

Electrochemical Characterization Laboratory (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Electrochemical Characterization Laboratory at the Energy Systems Integration Facility. The research focus at the Electrochemical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) is evaluating the electrochemical properties of novel materials synthesized by various techniques and understanding and delineating the reaction mechanisms to provide practical solutions to PEMFCs commercialization issues of cost, performance and durability. It is also involved in the development of new tools and techniques for electrochemical characterization. The laboratory concentrates on the development and characterization of new materials for PEMFCs such as electrocatalysts, catalyst supports in terms of electrochemical activity, electrochemical surface area and corrosion/durability. The impact of impurities and/or contaminants on the catalyst activity is also under study. Experiments that can be performed include: (1) Determination and benchmarking of novel electrocatalyst activity; (2) Determination of electrochemical surface area; (3) Determination of electrocatalyst and support corrosion resistance and durability; (4) Synthesis and characterization of novel electrocatalyst; (5) Determination of fundamental electrochemical parameters; and (6) Estimation of electrocatalyst utilization.

Not Available

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Electrochemical sensor for monitoring electrochemical potentials of fuel cell components  

DOE Patents (OSTI)

An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

Kunz, Harold R. (Vernon, CT); Breault, Richard D. (Coventry, CT)

1993-01-01T23:59:59.000Z

62

Process for electrochemically gasifying coal  

DOE Patents (OSTI)

A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

Botts, T.E.; Powell, J.R.

1985-10-25T23:59:59.000Z

63

Renewable-reagent electrochemical sensor  

DOE Patents (OSTI)

A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery. The probe comprises an integrated membrane-sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s).

Wang, Joseph (Las Cruces, NM); Olsen, Khris B. (Richland, WA)

1999-01-01T23:59:59.000Z

64

Renewable-reagent electrochemical sensor  

DOE Patents (OSTI)

A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery is described. The probe comprises an integrated membrane sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s). 19 figs.

Wang, J.; Olsen, K.B.

1999-08-24T23:59:59.000Z

65

Electrochemical Hydrogen Compression (EHC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Hydrogen Compression (EHC) Pinakin Patel and Ludwig Lipp Presentation at DOE Hydrogen Compression, Storage and Dispensing Workshop at ANL Argonne, IL March 20, 2013 2 * Experience with all fuel cells - MCFC, SOFC, PEM, PAFC, etc. * Excellent progress in commercialization of MCFC technology (>300 MW installed + backlog, >50 MW per year production rate, 11 MW single site unit in Korea, >1.5 billion kWh produced) * Unique internal reforming technology for high efficiency fuel cells FCE Overview $- $2,000 $4,000 $6,000 $8,000 $10,000 2003 2007 2011 mid-term Product cost per kW 3 H 2 Peak and Back- up Power Fuel Cell Cars DFC ® Power Plant (Electricity + Hydrogen) Solid State Hydrogen Separator (EHS) Solid State Hydrogen

66

Electrochemical catalyst recovery method  

DOE Patents (OSTI)

A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

Silva, L.J.; Bray, L.A.

1995-05-30T23:59:59.000Z

67

Electrochemical catalyst recovery method  

DOE Patents (OSTI)

A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

Silva, Laura J. (Richland, WA); Bray, Lane A. (Richland, WA)

1995-01-01T23:59:59.000Z

68

Nuclear Weapons Journal Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Weapons Journal Archive Nuclear Weapons Journal The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue...

69

Supported liquid membrane electrochemical separators  

DOE Patents (OSTI)

Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

Pemsler, J. Paul (Lexington, MA); Dempsey, Michael D. (Revere, MA)

1986-01-01T23:59:59.000Z

70

SC e-journals, Earth Sciences  

Office of Scientific and Technical Information (OSTI)

Earth Sciences Earth Sciences Acta hydrochimica et hydrobiologica Advances in Geosciences - OAJ Aerobiologia Agricultural & Forest Meteorology Agronomy Journal American Journal of Science, The Annual Review of Earth and Planetary Sciences Applied and Environmental Soil Science - OAJ Applied Geochemistry Applied Radiation and Isotopes Aquatic Geochemistry Atmospheric Chemistry and Physics - OAJ Atmospheric Environment BioEnergy Research Biogeochemistry Biogeosciences - OAJ Biology and Fertility of Soils Boundary-Layer Meteorology Bulletin of Canadian Petroleum Geology, The Bulletin of Engineering Geology and the Environment Bulletin of Environmental Contamination and Toxicology Bulletin of the American Meteorological Society Bulletin of the Ecological Society of America Bulletin of Volcanology

71

Ant Societies  

NLE Websites -- All DOE Office Websites (Extended Search)

Societies Societies Nature Bulletin No. 518-A February 23, 1974 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation ANT SOCIETIES That first small crater-like ring of soil granules heaped up around a crack in the sidewalk is a sign of spring. Hesitate there a moment -- children always do -- and you'll see several Little Black Ants hurrying in and out, bringing up particles of earth from below as they enlarge their underground home. At another time you may see columns of them in an ant safari with two-way traffic as they cross a lawn or invade a kitchen to forage for food. All ants live in colonies. Ants are called social insects because within each colony there is a division of labor with males, females and one or more castes of workers each performing certain tasks for the benefit of the whole group. A single colony may vary in size from a few dozen individuals up to millions. Some naturalists suppose that ants are more numerous than any other type of land animal others think that plant lice outnumber them.

72

Electrochemical polishing of notches  

DOE Patents (OSTI)

An apparatus and method are disclosed for the selective electrochemical polishing of a lateral tip of a deep longitudinal notch in a work piece used to test crack initiation properties of materials. A DC power source is connected to the work piece and to an electrode disposed laterally along the distal end of an insulated body which is inserted in the longitudinal notch. The electrode and distal end of the body are disposed along the tip of the notch, but are spaced from the notch so as to provide a lateral passage for an electrolyte. The electrolyte is circulated through the passage so that the electrolyte only contacts the work piece adjacent the passage. Conveniently, the electrolyte is circulated by use of an inlet tube and an outlet tube provided at opposite ends of the passage. These tubes are preferably detachably located adjacent the ends of the passage and suitable seals are provided. A holding device including arms to which the tubes are attached is conveniently used to rapidly and easily locate the test specimen with the passage aligned with the tubes. The electrode is preferably a wire which is located in grooves along the distal end of the insulated body and up one side of the body or a plastic sheath insulated thin metal strip. 4 figs.

Kephart, A.R.; Alberts, A.H.

1989-02-21T23:59:59.000Z

73

Tungsten Oxide and Heteropoly Acid Based System for Ultra-High...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the Oxygen Reduction Reaction", K. Mason, M. Kuo, K. Horning, K. Neyerlin, and A. Herring, Journal of the Electrochemical Society (Submitted June 2012). 5. "Durability...

74

Electrochem Inc | Open Energy Information  

Open Energy Info (EERE)

Electrochem Inc Electrochem Inc Jump to: navigation, search Name Electrochem Inc Address 400 W. Cummings Park Place Woburn, Massachusetts Zip 01801 Sector Hydrogen Product Fuel cell hardware and testing equipment Website http://fuelcell.com/ Coordinates 42.4964246°, -71.1263367° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4964246,"lon":-71.1263367,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

75

Results from Combined NMR and Electrochemical Impedance ...  

Science Conference Proceedings (OSTI)

Presentation Title, Oxygen-vacancy Transport in Heavily Doped Cubic Zirconia: Results from Combined NMR and Electrochemical Impedance Spectroscopies.

76

Argonne Chemical Sciences & Engineering -Electrochemical Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Battery Testing * Members * Contact * Publications * Overview * EADL EES Home Electrochemical...

77

Battery Materials and Electrochemical Processes I - Programmaster ...  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Mesoscale Computational Materials Science of Energy Materials: Battery Materials and Electrochemical Processes I Sponsored by: TMS...

78

Electrochemical Shock of Lithium Battery Materials - Programmaster ...  

Science Conference Proceedings (OSTI)

Symposium, Mesoscale Computational Materials Science of Energy Materials. Presentation Title, Electrochemical Shock of Lithium Battery Materials. Author(s)...

79

Argonne Chemical Sciences & Engineering - People - Electrochemical...  

NLE Websites -- All DOE Office Websites (Extended Search)

News & Highlights Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Conversion Electrochemical...

80

Sheet electrode for electrochemical systems  

DOE Patents (OSTI)

An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

Tsien, Hsue C. (Chatham Township, Morris County, NJ); Newby, Kenneth R. (Berkeley Heights, NJ); Grimes, Patrick G. (Westfield, NJ); Bellows, Richard J. (Westfield, NJ)

1983-04-12T23:59:59.000Z

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Separator material for electrochemical cells  

DOE Patents (OSTI)

An electrochemical cell characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

Cieslak, Wendy R. (1166 Laurel Loop NE., Albuquerque, NM 87122); Storz, Leonard J. (2215 Ambassador NE., Albuquerque, NM 87112)

1991-01-01T23:59:59.000Z

82

Separator material for electrochemical cells  

DOE Patents (OSTI)

An electrochemical cell is characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

Cieslak, W.R.; Storz, L.J.

1991-03-26T23:59:59.000Z

83

Separator material for electrochemical cells  

DOE Patents (OSTI)

An electrochemical cell characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant. 1 tab.

Cieslak, W.R.; Storz, L.J.

1989-06-12T23:59:59.000Z

84

Electrochemical oxygen pumps. Final CRADA report.  

SciTech Connect

All tasks of the Work Plan of ISTC Project 2277p have been completed, thus: (1) techniques of chemical synthesis were developed for more than ten recipes of electrolyte based on cerium oxide doped with 20 mole% of gadolinium (CeGd)O{sub 2}, doped by more than 10 oxide systems including 6 recipes in addition to the Work Plan; (2) electric conductivity and mechanical strength of CeGd specimens with additions of oxide systems were performed, two candidate materials for the electrolyte of electrochemical oxygen pump (pure CeGd and CeGd doped by 0.2 wt% of a transition metal) were chosen; (3) extended studies of mechanical strength of candidate material specimens were performed at room temperature and at 400, 600, 800 C; (4) fixtures for determination of mechanical strength of tubes by external pressure above 40 atmospheres at temperature up to 700 C were developed and fabricated; and (5) technology of slip casting of tubes from pure (Ce,Gd)O{sub 2} and of (Ce,Gd)O{sub 2} doped by 0.2 wt% of a transition metal, withstanding external pressure of minimum 40 atmospheres at temperature up to 700 C was developed, a batch of tubes was sent for testing to Argonne National Laboratory; (6) technology of making nanopowder from pure (Ce,Gd)O{sub 2} was developed based on chemical synthesis and laser ablation techniques, a batch of nanopowder with the weight 1 kg was sent for testing to Argonne National Laboratory; (7) a business plan for establishing a company for making powders of materials for electrochemical oxygen pump was developed; and (8) major results obtained within the Project were reported at international conferences and published in the Russian journal Electrochemistry. In accordance with the Work Plan a business trip of the following project participants was scheduled for April 22-29, 2006, to Tonawanda, NY, USA: Manager Victor Borisov; Leader of technology development Gennady Studenikin; Leader of business planning Elena Zadorozhnaya; Leader of production Vasily Lepalovsky; and Translator Vladimir Litvinov. During this trip project participants were to discuss with the project Technical Monitor J.D. Carter and representative of Praxair Inc. J. Chen the results of project activities (prospects of transition metal-doped material application in oxygen pumps), as well as the prospects of cooperation with Praxair at the meeting with the company management in the following fields: (1) Deposition of thin films of oxide materials of complex composition on support by magnetron and ion sputtering, research of coatings properties; (2) Development of block-type structure technology (made of porous and dense ceramics) for oxygen pump. The block-type structure is promising because when the size of electrolyte block is 2 x 2 inches and assembly height is 10 inches (5 blocks connected together) the area of active surface is ca. 290 square inches (in case of 8 slots), that roughly corresponds to one tube with diameter 1 inch and height 100 inches. So performance of the system made of such blocks may be by a factor of two or three higher than that of tube-based system. However one month before the visit, J. Chen notified us of internal changes at Praxair and the cancellation of the visit to Tonawanda, NY. During consultations with the project Technical Monitor J.D. Carter and Senior Project Manager A. Taylor a decision was made to extend the project term by 2 quarters to prepare proposals for follow-on activities during this extension (development of block-type structures made of dense and porous oxide ceramics for electrochemical oxygen pumps) using the funds that were not used for the trip to the US.

Carter, J. D. Noble, J.

2009-10-01T23:59:59.000Z

85

Resource Letter PSEn-1: Physics and Society: Energy Department of Physics, University of Arkansas, Fayetteville, AR 72701, email  

E-Print Network (OSTI)

energy sources: fossil, nuclear, biomass, geothermal, hydro, solar, ocean, and wind. Chapters 16-21 coverResource Letter PSEn-1: Physics and Society: Energy Art Hobson Department of Physics, University to the physics-related literature about energy-and-society. Journal articles, books, and websites are cited

Hobson, Art

86

Electrochemical synthesis of multisegmented nanowires  

Science Conference Proceedings (OSTI)

Electrochemical deposition has emerged as a promising route for nanostructure fabrication in recent years due to the many inherent advantages it possesses. This study focuses on the synthesis of high-aspect-ratio multisegmented Au/Ni nanowires using template-directed sequential electrochemical deposition techniques. By selectively removing the Ni segments in the nanowires, high-yield of pure gold nanorods of predetermined lengths was obtained. Alternatively, the sacrificial Ni segments in the nanowires can be galvanically displaced with Bi and Te to form barbells structures with Bi{sub x}Te{sub y} nanotubes attached to neighbouring gold segments. Detailed studies on the nanostructures obtained were carried out using various microscopy, diffraction and probebased techniques for structural, morphological and chemical characterizations.

Kok, Kuan-Ying; Ng, Inn-Khuan; Saidin, Nur Ubaidah [Malaysian Nuclear Agency, Bangi, 43000 Kajang (Malaysia)

2012-11-27T23:59:59.000Z

87

Solid state electrochemical current source  

DOE Patents (OSTI)

A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

Potanin, Alexander Arkadyevich (Sarov, RU); Vedeneev, Nikolai Ivanovich (Sarov, RU)

2002-04-30T23:59:59.000Z

88

Cathode composition for electrochemical cell  

DOE Patents (OSTI)

A high-temperature, secondary electrochemical cell includes a negative electrode containing an alkali metal such as lithium, an electrolyte of molten salt containing ions of that alkali metal and a positive electrode containing a mixture of metallic sulfides. The positive electrode composition is contained within a porous structure that permits permeation of molten electrolyte and includes a mixture of about 5% to 30% by weight Cu.sub.2 S in FeS.

Steunenberg, Robert K. (Naperville, IL); Martin, Allan E. (Woodridge, IL); Tomczuk, Zygmunt (Palos Hills, IL)

1976-01-01T23:59:59.000Z

89

Compacted carbon for electrochemical cells  

DOE Patents (OSTI)

This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (i) an x-ray density of at least 2.00 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 47%; and (b) graphite having the following properties: (i) an x-ray density of at least 2.20 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counterelectrode.

Greinke, Ronald Alfred (Medina, OH); Lewis, Irwin Charles (Strongsville, OH)

1997-01-01T23:59:59.000Z

90

Compacted carbon for electrochemical cells  

DOE Patents (OSTI)

This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

Greinke, R.A.; Lewis, I.C.

1997-10-14T23:59:59.000Z

91

SC e-journals Sitemap  

Office of Scientific and Technical Information (OSTI)

Sitemap Home Page Open Access Journals (OAJ) Web of Science Science Accelerator Browse Journals Alphabetically Journals by Publisher Journals by Subject Search Search by...

92

Shock-activated electrochemical power supplies  

DOE Patents (OSTI)

A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active.

Benedick, William B. (Albuquerque, NM); Graham, Robert A. (Los Lunas, NM); Morosin, Bruno (Albuquerque, NM)

1988-01-01T23:59:59.000Z

93

Shock-activated electrochemical power supplies  

DOE Patents (OSTI)

A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolyte rendering the electrolyte electrochemically active. 2 figs.

Benedick, W.B.; Graham, R.A.; Morosin, B.

1987-04-20T23:59:59.000Z

94

Electrochemical modeling of lithium polymer batteries.  

SciTech Connect

An electrochemical model for lithium polymer cells was developed and a parameter set for the model was measured using a series of laboratory experiments. Examples are supplied to demonstrate the capabilities of the electrochemical model to obtain the concentration, current, and potential distributions in lithium polymer cells under complex cycling protocols. The modeling results are used to identify processes that limit cell performance and for optimizing cell design. Extension of the electrochemical model to examine two-dimensional studies is also described.

Dees, D. W.; Battaglia, V. S.; Belanger, A.; Chemical Engineering; Inst. de recherche d' Hydro-Quebec

2002-08-22T23:59:59.000Z

95

Shock-activated electrochemical power supplies  

DOE Patents (OSTI)

A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active. 2 figs.

Benedick, W.B.; Graham, R.A.; Morosin, B.

1988-11-08T23:59:59.000Z

96

Nanomaterial-Based Electrochemical Biosensors and Bioassays  

Science Conference Proceedings (OSTI)

This book chapter summarizes the recent advance in nanomaterials for electrochemical biosensors and bioassays. Biofunctionalization of nanomaterials for biosensors fabrication and their biomedical applications are discussed.

Liu, Guodong; Mao, Xun; Gurung, Anant; Baloda, Meenu; Lin, Yuehe; He, Yuqing

2010-08-31T23:59:59.000Z

97

Fundamentals of Electrochemical Deposition, Second Edition - TMS  

Science Conference Proceedings (OSTI)

Jul 25, 2007 ... Fundamentals of Electrochemical Deposition, 2nd Edition by Milan Paunovic and Mordechay Schlesinger provides a ... This is not a handbook.

98

Electrochemical Behavior of CIGS Electrodeposition for the ...  

Science Conference Proceedings (OSTI)

Presentation Title, Electrochemical Behavior of CIGS Electrodeposition for the Application of Photovoltaic Cell. Author(s), Hyunju Lee, Jae-Ho Lee, Yangdo Kim.

99

Electrochemical Arsenic Remediation for Rural Bangladesh  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Arsenic Remediation for Rural Bangladesh NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be updated until...

100

Electrochemical device and process of making  

DOE Patents (OSTI)

A process of making an electrochemical device comprising providing a trilayer structure comprising an electrode/electrolyte/electrode and simultaneously sintering the trilayer structure.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

2004-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Wide Electrochemical Window Solvents - Energy Innovation Portal  

Biomass and Biofuels; ... This solvent has such a wide electrochemical window and such powerful solvating properties that it is an excellent target solvent ...

102

Electrochemical process for the preparation of nitrogen ...  

Electrochemical process for the preparation of nitrogen fertilizers United States Patent. Patent Number: 8,152,988: Issued: April 10, 2012: Official Filing:

103

NREL: Awards and Honors - Scientific and Technical Society Honors and  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific and Technical Society Honors and Awards Scientific and Technical Society Honors and Awards American Association for the Advancement of Science 2011 Fellow - Stanley Bull 2003 Fellow - Dr. Art Nozik 2000 Fellow - Dr. Michael Seibert 1995 Fellow - Helena Chum 1991 Fellow - Robert Thresher American Chemical Society - Fuels & Energy Division 2010 Glenn Award for Best Paper - Casey McAlpin, Teresa Alleman, and Robert McCormick 2006 Special Festschrift Journal of Physical Chemistry B Publication - Arthur J. Nozik 2000 Glenn Award - Maria Ghirardi and Dr. Michael Seibert American Chemical Society - Northeastern Section 2011 Gustavus John Esselen Award - Dr. Arthur J. Nozik 2005 Fellow - Helena Chum American National Standards Institute (ANSI) 2011 Finegan Standards Leadership Medal - Richard DeBlasio

104

JOURNAL OF SEDIMENTARY RESEARCH, VOL. 70, NO. 1, JANUARY, 2000, P. 227239 Copyright 2000, SEPM (Society for Sedimentary Geology) 1073-130X/00/070-227/$03.00  

E-Print Network (OSTI)

(Society for Sedimentary Geology) 1073-130X/00/070-227/$03.00 ANKERITE CEMENTATION IN DEEPLY BURIED.K. e-mail: j.hendry@qub.ac.uk 2 Department of Geology and Geophysics, University of Edinburgh, Grant Institute, West Mains Road, Edinburgh EH9 3JW, Scotland, U.K. 3 Isotope Geosciences Unit, Scottish

Haszeldine, Stuart

105

Carbon microstructures for electrochemical studies  

DOE Green Energy (OSTI)

Thin layers of photoresist were spin coated onto silicon wafers, and then carbonized to form smooth carbon films by heating in nitrogen for 1 hour at temperatures between 600 to 1100 C. Well-defined carbon microstructures on Si wafers that are being considered for electrodes in a microbattery concept were obtained by additional processing steps involving patterning and lithography of the photoresist prior to carbonization. The status of the fabrication of carbon microelectrodes obtained by pyrolysis of photoresist, characterization of the carbons by surface-sensitive techniques and electrochemical analysis by cyclic voltammetry of the I{sup -}/I{sub 3}{sup -} redox reaction is described.

Kostecki, Robert; Song, Xiang Yun; Kinoshita, Kim

2001-06-22T23:59:59.000Z

106

Nanoelectrode array for electrochemical analysis  

DOE Patents (OSTI)

A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

Yelton, William G. (Sandia Park, NM); Siegal, Michael P. (Albuquerque, NM)

2009-12-01T23:59:59.000Z

107

Buffered Electrochemical Polishing of Niobium  

SciTech Connect

The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop'. In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature ({approx} 120 C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. As part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.

Gianluigi Ciovati, Hui Tian, Sean Corcoran

2011-03-01T23:59:59.000Z

108

Solid oxide electrochemical reactor science.  

DOE Green Energy (OSTI)

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

2010-09-01T23:59:59.000Z

109

JOURNAL OF BACTERIOLOGY, Jan.  

NLE Websites -- All DOE Office Websites (Extended Search)

Jan. Jan. 2009, p. 20-22 Vol. 191, No. 1 0021-9193/09/$08.00ϩ0 doi:10.1128/JB.01491-08 Copyright © 2009, American Society for Microbiology. All Rights Reserved. GUEST COMMENTARY It Is Computation Time for Bacteriology! ᰔ Igor B. Zhulin* Computer Science & Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37886, and Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996 Biology is an experimental science. In contrast to other nat- ural sciences, physics, and chemistry, it has a very minor com- putational component. In order to support this statement with some data, I looked up 100 papers in the area of molecular and cellular biology published in 2008 in the journal Science and found that only 3 of them were purely computational. Another 15 were experimental papers with a significant computational component that was employed

110

Process for electrochemically gasifying coal using electromagnetism  

DOE Patents (OSTI)

A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

Botts, Thomas E. (Markham, VA); Powell, James R. (Shoreham, NY)

1987-01-01T23:59:59.000Z

111

Electrolyte for an electrochemical cell  

DOE Patents (OSTI)

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN)

1997-01-01T23:59:59.000Z

112

Cathode for an electrochemical cell  

SciTech Connect

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

2001-01-01T23:59:59.000Z

113

Electrolyte for an electrochemical cell  

DOE Patents (OSTI)

Described is a thin-film battery, especially a thin-film microbattery, and a method for making the same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.

Bates, J.B.; Dudney, N.J.

1997-01-28T23:59:59.000Z

114

Mediated electrochemical hazardous waste destruction  

SciTech Connect

There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing electrochemical processes that convert the toxic organic components of mixed waste to water, carbon dioxide, an innocuous anions such as chloride. Aggressive oxidizer ions such as Ag{sup 2+} or Ce{sup +4} are produced at an anode. These can attack the organic molecules directly. They can also attack water which yields hydroxyl free radicals that in turn attack the organic molecules. The condensed (i.e., solid and/or liquid) effluent streams contain the inorganic radionuclide forms. These may be treated with existing technology and prepared for final disposal. Kinetics and the extent of destruction of some toxic organics have been measured. Depending on how the process is operated, coulombic efficiency can be nearly 100%. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient-temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag (2) has been used as a mediator in this process. Fe(6) and Co(3) are attractive alternatives to Ag(2) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is a toxic heavy metal. Quantitative data has been obtained for the complete oxidation of ethylene glycol by Fe(6) and Co(3). Though ethylene glycol is a nonhalogenated organic, this data has enabled us to make direct comparisons of activities of Fe(6) and Co(3) with Ag(2). Very good quantitative data for the oxidation of ethylene glycol by Ag(2) had already been collected. 4 refs., 6 figs.

Hickman, R.G.; Farmer, J.C.; Wang, F.T.

1991-08-01T23:59:59.000Z

115

American Chemical Society  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. American Chemical Society (ACS). Purpose: Air and water mediate chemistry on Earth. ... Related Project(s): ACS. Details: ...

2011-08-29T23:59:59.000Z

116

Materials and Society Community  

Science Conference Proceedings (OSTI)

According to Apelian, another advantage for TMS in taking on the Materials and Society challenge is the diversity of its members and the array of viewpoints...

117

TMS: Society Bylaws  

Science Conference Proceedings (OSTI)

... alliances among minerals, metals and materials societies and organizations in order to strengthen the technological basis of the profession and our members.

118

Research Society Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Society (MRS). Hoagland is cited for "outstanding contributions in fracture mechanics and atomistic modeling of dislocation mechanisms of deformation and fracture of...

119

Materials and Society  

Science Conference Proceedings (OSTI)

Energy security, resource sustainability, environmental issues, and aging infrastructure are just a few of the challenges facing 21st century society, and many of...

120

Cyber-Terrorism and Ethical Journalism: A Need for Rationalism  

Science Conference Proceedings (OSTI)

Terrorism has been a constant threat in traditional and contemporary societies. Recently, it has been converged with new media technology and cyberspace, resulting in the modern tactic, cyber-terrorism, which has become most effective in achieving terrorist ... Keywords: Computer Security, Cyber-Terrorism, Decision-Making, Ethics, Game Theory, Journalism, Rationality

Mahmoud Eid

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

System and method for networking electrochemical devices  

DOE Patents (OSTI)

An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. The improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

Williams, Mark C. (Morgantown, WV); Wimer, John G. (Morgantown, WV); Archer, David H. (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

122

Rechargeable thin-film electrochemical generator  

DOE Patents (OSTI)

An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

2000-09-15T23:59:59.000Z

123

Low-temperature thermally regenerative electrochemical system  

DOE Patents (OSTI)

A thermally regenerative electrochemical system is described including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the ocmplexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

Loutfy, R.O.; Brown, A.P.; Yao, N.P.

1982-04-21T23:59:59.000Z

124

Experimental electrochemical capacitor test results  

DOE Green Energy (OSTI)

Various electrochemical capacitors (ultracapacitors) are being developed for hybrid vehicles as candidate power assist devices for the fast response engine. The primary functions of the ultracapacitor are to level the dynamic power loads on the primary propulsion device and recover available energy from regenerative breaking during off-peak power periods. Ultracapacitors show promise toward being able to accept high regenerative pulses while exhibiting very high cycle life. This paper will present test data from selected US Department of Energy (DOE) supported ultracapacitor projects designed to meet the fast response engine requirements. Devices containing carbon, conducting polymers, and metal oxide electrode materials in combination with aqueous or organic electrolytes are being supported by the DOE. This paper will present and discuss testing data obtained from recent prototype capacitors supplied by Maxwell Energy Products, Inc., SAFT America, Inc., Federal Fabrics-Fibers and the University of Wisconsin-Madison. Constant-current, constant-power, leakage-current, and self-discharge testing of these various capacitors have been conducted. All devices were cycled between the rated charged voltage and zero volts for the constant-current tests and between the rated charged voltage and half that value for the constant-power tests.

Wright, R.B.; Murphy, T.C.; Kramer, W.E. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Satula, R.A.; Rogers, S.A. [Dept. of Energy, Washington, DC (United States)

1997-11-01T23:59:59.000Z

125

Electrochemical oxidation of organic materials  

DOE Patents (OSTI)

This invention is a method and apparatus for the direct oxidation of organic materials, especially organic wastes, in an electrochemical cell. It fulfills the need for a simple, cost-effective way for generators of small quantities of waste to deal with that waste. It does not use an electron transfer agent, which may be a source of additional hazardous waste. The anode is made of carbon felt; the cathode is platinum; and the electrolyte is a strong oxidizer, preferably nitric acid. The potential difference is 2 to 3 volts; the current density is 0.15 to 0.25 A/cm{sup 2}. The porous barrier is a medium grade alumina frit or an ion exchange membrane. The organic materials are fed to the anode compartment; the resulting oxygen bubbling circumvents the need for stirring or circulating the waste. Many different types of waste (e.g. rubber gloves, TBP, process solutions, etc.) can be fed to the anode compartment without the need to process or store it. 3 figs. (DLC)

Almon, A.C.

1991-01-01T23:59:59.000Z

126

Chinese Renewable Energy Society CRES formerly Chinese Solar Energy Society  

Open Energy Info (EERE)

CRES formerly Chinese Solar Energy Society CRES formerly Chinese Solar Energy Society Jump to: navigation, search Name Chinese Renewable Energy Society (CRES) (formerly Chinese Solar Energy Society) Place Beijing, Beijing Municipality, China Sector Renewable Energy, Solar Product National academic association in renewable energy industry, formerly China Solar Energy society. References Chinese Renewable Energy Society (CRES) (formerly Chinese Solar Energy Society)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Chinese Renewable Energy Society (CRES) (formerly Chinese Solar Energy Society) is a company located in Beijing, Beijing Municipality, China . References ↑ "Chinese Renewable Energy Society (CRES) (formerly Chinese

127

SC e-journals, Bioinformatics  

Office of Scientific and Technical Information (OSTI)

Bioinformatics Bioinformatics ACS Synthetic Biology Annual Review of Biochemistry Annual Review of Biophysics Annual Review of Genetics Annual Review of Genomics and Human Genetics Biochemistry BioEssays Bioinspiration & Biomimetics Biophysical Journal Biosensors and Bioelectronics Biotechnology Advances Cell Current Opinion in Structural Biology DNA Repair Engineering in Life Sciences Extremophiles Febs Letters Functional & Integrative Genomics Information Visualization Journal of Bioscience and Bioengineering Journal of Biotechnology Journal of Cellular Biochemistry Journal of Human Genetics Journal of Mathematical Biology Journal of Molecular Biology Journal of Molecular Evolution Journal of Molecular Histology Journal of Molecular Modeling Journal of Proteomics & Bioinformatics - OAJ

128

Graphene to Graphane: Novel Electrochemical Conversion  

E-Print Network (OSTI)

A novel electrochemical means to generate atomic hydrogen, simplifying the synthesis and controllability of graphane formation on graphene is presented. High quality, vacuum grown epitaxial graphene (EG) was used as starting material for graphane conversion. A home-built electrochemical cell with Pt wire and exposed graphene as the anode and cathode, respectively, was used to attract H+ ions to react with the exposed graphene. Cyclic voltammetry of the cell revealed the potential of the conversion reaction as well as oxidation and reduction peaks, suggesting the possibility of electrochemically reversible hydrogenation. A sharp increase in D peak in the Raman spectra of EG, increase of D/G ratio, introduction of a peak at ~2930 cm-1 and respective peak shifts as well as a sharp increase in resistance showed the successful hydrogenation of EG. This conversion was distinguished from lattice damage by thermal reversal back to graphene at 1000{\\deg}C.

Daniels, Kevin M; Zhang, R; Chowdhury, I; Obe, A; Weidner, J; Williams, C; Sudarshan, T S; Chandrashekhar, MVS

2010-01-01T23:59:59.000Z

129

Giner Electrochemicals Inc | Open Energy Information  

Open Energy Info (EERE)

Giner Electrochemicals Inc Giner Electrochemicals Inc Jump to: navigation, search Name Giner Electrochemicals Inc Place Newton, Massachusetts Zip 2466 Product Specializes in the development of fuel cell technologies and products. Coordinates 43.996685°, -87.803724° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.996685,"lon":-87.803724,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

MIT- Electrochemical Energy Laboratory | Open Energy Information  

Open Energy Info (EERE)

MIT- Electrochemical Energy Laboratory MIT- Electrochemical Energy Laboratory Jump to: navigation, search Name MIT- Electrochemical Energy Laboratory Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Region Greater Boston Area Coordinates 42.359089°, -71.093412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.359089,"lon":-71.093412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Argonne Chemical Sciences & Engineering - Facilities - Electrochemical  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Analysis and Diagnostics Laboratory Electrochemical Analysis and Diagnostics Laboratory Panagiotis Prezas Argonne researcher Panagiotis Prezas prepares lithium-ion cells for evaluation. At the EADL, researchers can test everything from a quarter-sized coin cell to an 800-kilogram automotive battery pack. The Electrochemical Analysis and Diagnostics Laboratory (EADL) provides battery and fuel cell developers with reliable, independent, and unbiased performance evaluations of their cells, modules, and battery packs. These evaluations have been performed for the U.S. Department of Energy (DOE), government and industry consortia, and industrial developers to provide insight into the factors that limit the performance and life of advanced battery systems. Such evaluations help battery developers and DOE

132

Electrochemical Energy Storage Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Electrochemical Energy Storage Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to

133

Electrochemical deposition of high purity silicon from molten fluoride ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium , Solar Cell Silicon. Presentation Title, Electrochemical deposition of high purity...

134

Lithium based electrochemical cell systems having a degassing agent  

SciTech Connect

A lithium based electrochemical cell system includes a positive electrode; a negative electrode; an electrolyte; and a degassing agent.

Hyung, Yoo-Eup (Naperville, IL); Vissers, Donald R. (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2012-05-01T23:59:59.000Z

135

A27: Electrochemical Study of Ag Ionization in Molten Lead ...  

Science Conference Proceedings (OSTI)

The concentration of Ag+ in the molten glass significantly increased with ... Electrochemical Deposition of High Purity Silicon in Molten Salts.

136

Electrochemical detector integrated on microfabricated capillary electrophoresis chips  

DOE Patents (OSTI)

A microfabricated capillary electrophoresis chip which includes an integral thin film electrochemical detector for detecting molecules separated in the capillary.

Mathies, Richard A. (Moraga, CA); Glazer, Alexander N. (Orinda, CA); Lao, Kaiqin (San Francisco, CA); Woolley, Adam T. (Albany, CA)

1999-01-01T23:59:59.000Z

137

Electrochemical detector integrated on microfabricated capilliary electrophoresis chips  

DOE Patents (OSTI)

A microfabricated capillary electrophoresis chip which includes an integral thin film electrochemical detector for detecting molecules separated in the capillary.

Mathies, Richard A. (Moraga, CA); Glazer, Alexander N. (Orinda, CA); Woolley, Adam T. (Albany, CA); Lao, Kaigin (San Francisco, CA)

2000-01-01T23:59:59.000Z

138

Heteroatom incorporated coke for electrochemical cell electrode  

DOE Patents (OSTI)

This invention relates to an electrode for a coke/alkali metal electrochemical cell comprising: (a) calcined coke particles: (i) that contain at least 0.5 weight percent of nitrogen heteroatoms and at least 1.0 weight percent sulfur heteroatoms, and (ii) that have an average particle size from 2 microns to 40 microns with essentially no particles being greater than 50 microns. (b) a binder This invention also relates to a coke/alkali metal electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrically conductive salt, and (c) a counterelectrode.

Lewis, Irwin Charles (Strongsville, OH); Greinke, Ronald Alfred (Medina, OH)

1997-01-01T23:59:59.000Z

139

Heteroatom incorporated coke for electrochemical cell electrode  

DOE Patents (OSTI)

This invention relates to an electrode for a coke/alkali metal electrochemical cell comprising: (a) calcined coke particles: (1) that contain at least 0.5 weight percent of nitrogen heteroatoms and at least 1.0 weight percent sulfur heteroatoms, and (2) that have an average particle size from 2 microns to 40 microns with essentially no particles being greater than 50 microns and (b) a binder. This invention also relates to a coke/alkali metal electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrically conductive salt, and (c) a counterelectrode. 5 figs.

Lewis, I.C.; Greinke, R.A.

1997-06-17T23:59:59.000Z

140

Energy and American Society : a Reference Handbook  

E-Print Network (OSTI)

American Society: A Reference Handbook By E. Willard MillerSOCIETY: A REFERENCE HANDBOOK (Contemporary World IssuesSOCIETY: A REFERENCE HANDBOOK is an important reference work

Li, Haipeng

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Argonne Chemical Sciences & Engineering -Electrochemical Energy Storage -  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Research Basic Research * Members * Contact * Publications * Overview * CEES EES Home Electrochemical Energy Storage - Basic Research Electrochemical Energy Storage Chemistry co-op student Sara Busking loads a lithium-ion battery cell in a pouch into a test oven to evaluate its electrochemical performance. EES conducts basic research to support its applied electrochemical energy storage R&D initiatives. EES also leads an Energy Frontier Research Center (EFRC), recently awarded by DOE's Office of Science, with partners at Northwestern University and the University of Illinois (Urbana Champaign). The EFRC, the Center for Electrical Energy Storage: Tailored Interfaces (CEES), focuses on understanding electrochemical phenomena at electrode/electrolyte interfaces

142

Separator-spacer for electrochemical systems  

DOE Patents (OSTI)

An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

Grimes, Patrick G. (Westfield, NJ); Einstein, Harry (Springfield, NJ); Newby, Kenneth R. (Berkeley Heights, NJ); Bellows, Richard J. (Westfield, NJ)

1983-08-02T23:59:59.000Z

143

Method of constructing an improved electrochemical cell  

DOE Patents (OSTI)

An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

Grimes, Patrick G. (Westfield, NJ); Einstein, Harry (Springfield, NJ)

1984-10-09T23:59:59.000Z

144

Gas recombination assembly for electrochemical cells  

DOE Patents (OSTI)

An assembly for recombining gases generated in electrochemical cells wherein a catalyst strip is enveloped within a hydrophobic, gas-porous film which, in turn, is encased between gas-porous, metallic layers. The sandwich construction of metallic layers and film is formed into a spiral with a tab for connection to the cell.

Levy, Isaac (New Fairfield, CT); Charkey, Allen (Brookfield, CT)

1989-01-01T23:59:59.000Z

145

Titanium Carbide Bipolar Plate for Electrochemical Devices  

DOE Patents (OSTI)

Titanium carbide comprises a corrosion resistant, electrically conductive, non-porous bipolar plate for use in an electrochemical device. The process involves blending titanium carbide powder with a suitable binder material, and molding the mixture, at an elevated temperature and pressure.

LaConti, Anthony B.; Griffith, Arthur E.; Cropley, Cecelia C.; Kosek, John A.

1998-05-08T23:59:59.000Z

146

Improved magnesium/manganese dioxide electrochemical cell  

SciTech Connect

A magnesium/manganese dioxide electrochemical cell, stored following partial usage, is improved by increasing the cathode moisture content at the time of making the cell to reduce the self-discharge and increase the operating capacity after the cell has been stored following partial usage.

Jarvis, L.P.; Brundage, M.T.; Atwater, T.B.

1988-11-10T23:59:59.000Z

147

American Physical Society and Los Alamos National Laboratory jointly  

NLE Websites -- All DOE Office Websites (Extended Search)

Ben-Naim Senior editor, physical review e Ben-Naim Senior editor, physical review e American Physical Society and Los Alamos National Laboratory jointly announce Eli Ben-Naim as senior editor, physical review e Ben-Naim has been at Los Alamos since 1996. August 16, 2012 Eli Ben-Naim Eli Ben-Naim Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email RIDGE, NY and LOS ALAMOS, New Mexico, August 16, 2012-The American Physical Society (APS) and Los Alamos National Laboratory (LANL) are pleased to jointly announce that Eli Ben-Naim of LANL has been appointed Senior Editor of Physical Review E, the position of leadership for the preeminent international journal in statistical, nonlinear, and soft matter physics. Ben-Naim succeeds Gary Grest, who has been Senior Editor of PRE since 2002. "The search committee was challenged to determine a short list

148

SC e-journals by Publisher  

Office of Scientific and Technical Information (OSTI)

Spotlight Archive Spotlight Archive December 2012 Measuring Table-Top Accelerators' State-of-the-Art Beams Image credit: Lawrence Berkeley National Laboratory Measuring Table-Top Accelerators' State-of-the-Art Beams Long-range Persistenceof FemtosecondModulations onblur=Laser-Plasma-Accelerated ElectronBeams, Journal of the Physical Review Letters, Oct 24, 2012 July 2012 More Efficient Organic Solar Cells Image credit: Argonne National Laboratory More Efficient Organic Solar Cells Effects of Additives on the Morphology of Solution Phase Aggregates Formed by Active Layer Components of High-Efficiency Organic Solar Cells, Journal of the American Chemical Society, Nov 29, 2011 February 2012 New Territory for Materials Scientists Image credit: ORNL New Territory for Materials Scientists

149

AOCS Journals; JAOCS, JSD and Lipids  

Science Conference Proceedings (OSTI)

Subscription rates JAOCS, JSD and Lipids AOCS Journals; JAOCS, JSD and Lipids Journals aocs articles detergents fats jaocs journal journals jsd magazine methods oils papers published scientific subscribe subscription surfactants Journals aocs art

150

Application of ion implantation to electrochemical studies  

DOE Green Energy (OSTI)

The application of ion implantation to electrochemical studies is illustrated with a study of electrocatalysis of the chlorine evolution reaction at RuO{sub 2}, IrO{sub 2}, TiO{sub 2} mixed oxide anodes in chloride solutions. Electrode/solution interfaces of well defined catalyst composition are generated in a reproducible manner by implantation of Ru (or Ir) into Ti followed by in situ oxidation of the near surface titanium alloys. Ion implantation enables the tailoring on an atomic scale of an electrochemical interface. Analysis by Rutherford backscattering adds the ability of quantitative mechanistic study in terms of actual ion concentration at the interface. In addition, ion implantation, as a processing technique, creates new materials with improved properties which may have future practical use in catalytic materials.

Vallet, C.E.; White, C.W.

1990-01-01T23:59:59.000Z

151

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From  

NLE Websites -- All DOE Office Websites (Extended Search)

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Interfacial Studies to Practical Applications Speaker(s): Robert Kostecki Date: January 11, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney The constantly growing power requirements of portable electronic devices and the need for high-power batteries for electric vehicles have created a strong demand for new batteries or substantial improvements of existing ones. Fundamental problems associated with complex interfacial processes in batteries must be resolved to enhance battery performance and lifetime. An overview of the principles of electrode-electrolyte interfacial studies, experimental methods, recent results, and potential applications will be presented. Advanced instrumental techniques and

152

Electrochemically controlled charging circuit for storage batteries  

DOE Patents (OSTI)

An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

Onstott, E.I.

1980-06-24T23:59:59.000Z

153

ELECTROCHEMICAL DECONTAMINATION AND RECOVERY OF URANIUM VALUES  

DOE Patents (OSTI)

An electrochemical process is described for separating uranium from fission products. The method comprises subjecting the mass of uranium to anodic dissolution in an electrolytic cell containing aqueous alkali bicarbonate solution as its electrolyte, thereby promoting a settling from the solution of a solid sludge from about the electrodes and separating the resulting electrolyte solution containing the anodically dissolved uranium from the sludge which contains the rare earth fission products.

McLaren, J.A.; Goode, J.H.

1958-05-13T23:59:59.000Z

154

Electrochemical sensor/detector system and method  

DOE Patents (OSTI)

An electrochemical detection system is described comprising in combination: (a) a multielement, microelectrode array detector containing means for acquiring a plurality of signals; (b) electronic means for receiving said signals and converting said signals into a readout or display providing information with respect to the nature and concentration of elements present in a solution being tested. Also described is the means of making the above described microelectrode detector.

Glass, R.S.; Perone, S.P.; Ciarlo, D.R.; Kimmons, J.F.

1992-12-31T23:59:59.000Z

155

Evaluation of SAFT America, Inc. electrochemical capacitors  

DOE Green Energy (OSTI)

The electrochemical capacitor devices described in this report were deliverables from Lawrence Berkeley National Laboratory (LBNL), Contract No. 4606510 with SAFT America, Inc., as part of LBNL`s exploratory research program. Dr. Kimio Kinoshita is the Program Manager at LBNL. The contract was in support of the US Department of Energy`s (DOE) exploratory electrochemical energy storage program which includes development projects for a wide variety of advanced high-energy/high-power energy storage systems for electric and hybrid vehicle programs. The DOE is currently developing various electrochemical capacitors as candidate power assist devices for the Partnership for a New Generation of Vehicles (PNGV) fast-response engine requirements. The LBNL contract with SAFT America, Inc., was intended to evaluate various activated carbon-based electrode formulations and develop an electrical model of the double-layer capacitor. The goal is to design and deliver prototypes meeting the DOE requirement of > 1,000 W/kg, 16 Wh/kg. Deliverables were sent to the INEEL EST laboratory for independent testing and evaluation. The following report describes performance testing on ten devices received September 2, 1996. Due to the initial performance of these early devices, life-cycle testing was not conducted. Additional devices, with improved performance, are expected to be tested. Future results will be reported in a follow-on report.

Wright, R.B.; Murphy, T.C.

1997-12-01T23:59:59.000Z

156

Sealed joint structure for electrochemical device  

DOE Patents (OSTI)

Several members make up a joint in a high-temperature electrochemical device, wherein the various members perform different functions. The joint is useful for joining multiple cells (generally tubular modules) of an electrochemical device to produce a multi-cell segment-in-series stack for a solid oxide fuel cell, for instance. The joint includes sections that bond the joining members to each other; one or more seal sections that provide gas-tightness, and sections providing electrical connection and/or electrical insulation between the various joining members. A suitable joint configuration for an electrochemical device has a metal joint housing, a first porous electrode, a second porous electrode, separated from the first porous electrode by a solid electrolyte, and an insulating member disposed between the metal joint housing and the electrolyte and second electrode. One or more brazes structurally and electrically connects the first electrode to the metal joint housing and forms a gas tight seal between the first electrode and the second electrode.

Tucker, Michael C; Jacobson, Craig P; De Jonghe, Lutgard C; Visco, Steven J

2013-05-21T23:59:59.000Z

157

Method of determining methane and electrochemical sensor therefor  

DOE Patents (OSTI)

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about about 1.4 volts versus R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, Solomon (Hinsdale, IL); Otagawa, Takaaki (Westmont, IL); Stetter, Joseph R. (Naperville, IL)

1986-01-01T23:59:59.000Z

158

Research Society Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

Hoagland selected as a new Materials Hoagland selected as a new Materials Research Society Fellow July 9, 2013 Richard G. Hoagland of the Laboratory's Materials Science in Radiation and Dynamic Extremes group has been honored with the rank of Fellow by the Materials Research Society (MRS). Hoagland is cited for "outstanding contributions in fracture mechanics and atomistic modeling of dislocation mechanisms of deformation and fracture of metals, ceramics and nanolayered composites." Achievements Hoagland received a doctorate from The Ohio State University. He worked at Battelle Columbus until moving to academia (Vanderbilt, Ohio State, and Washington State University). He has been a professor emeritus at Washington State University since 1999. Hoagland spent a year as the prestigious Bernd T. Matthias Scholar in Los

159

Electrochemical Performance of LiFeMnPO4  

Science Conference Proceedings (OSTI)

Symposium, Energy Storage: Materials, Systems, and Applications. Presentation Title, Electrochemical Performance of LiFeMnPO4: A Comparison of Synthesis...

160

Electrochemical Behavior of Calcium-Bismuth Alloys in Molten Salt ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The electrochemical properties of calcium-bismuth alloys were investigated to ... Behavior of Silicon Electrodepositing in Fluoride Molten Salts.

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Variable temperature electrochemical strain microscopy of Sm-doped ceria  

Science Conference Proceedings (OSTI)

Variable temperature electrochemical strain microscopy has been used to study the electrochemical activity of Sm-doped ceria as a function of temperature and bias. The electrochemical strain microscopy hysteresis loops have been collected across the surface at different temperatures and the relative activity at different temperatures has been compared. The relaxation behavior of the signal at different temperatures has been also evaluated to relate kinetic process during bias induced electrochemical reactions with temperature and two different kinetic regimes have been identified. The strongly non-monotonic dependence of relaxation behavior on temperature is interpreted as evidence for water-mediated mechanisms.

Jesse, Stephen [ORNL; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine; Kalinin, Sergei V [ORNL; Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Yang, Nan [ORNL; Doria, Sandra [ORNL; Tebano, Antonello [ORNL

2013-01-01T23:59:59.000Z

162

The Electrochemical Behavior of Electro-Deoxidation Process of ...  

Science Conference Proceedings (OSTI)

Presentation Title, The Electrochemical Behavior of Electro-Deoxidation Process of Ilmenite Concentrate in Molten Salt. Author(s), Xuyang Liu, Meilong Hu,...

163

Real Space Mapping of Oxygen Vacancy Diffusion and Electrochemical ...  

The electrochemical energy storage and conversion systems based on solid-gas and solid-liquid ... high energy and power density materials necessitates understanding ...

164

Real Space Mapping of Oxygen Vacancy Diffusion and Electrochemical ...  

Electrochemical energy storage and conversion systems based on solidgas ... energy and power-density materials necessitates understanding the nanoscale

165

ELECTROCHEMICAL CORROSION STUDY FOR TANK 241-AY-102 SLUDGE  

SciTech Connect

The report describes the analyses performed on core samples from the sludge region of the waste in Tank 241-AY-102 to determine the electrochemical corrosion potential.

DUNCAN JB

2002-09-24T23:59:59.000Z

166

Vincent Battaglia  

NLE Websites -- All DOE Office Websites (Extended Search)

Polymer Binder-Enabled Cycling of Pure Tin Nanoparticle Composite Anode Electrodes for a Lithium-Ion Battery." Journal of the Electrochemical Society 160, no. 6 (2013): A849-A855....

167

ARM - Journal Articles 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

govPublicationsJournal Articles 2013 govPublicationsJournal Articles 2013 Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Journal Search [ Advanced Search ] Publication Years 2013 149 2012 163 2011 185 2010 197 2009 213 2008 174 2007 150 2006 213 2005 139 2004 141 2003 187 2002 205 2001 207 2000 232 1999 136 1998 172 1997 103 1996 84 1995 124 1994 65 1993 51 1992 47 1991 25 1990 12 1986 1 Journal Articles : 2013 Author Article Title Journal Funded By Kafle Micropulse lidar-derived aerosol optical depth climatology at ARM sites worldwide (Citation) Journal of Geophysical Research - Atmospheres ARM

168

Characterization and Modeling of Electrochemical Energy Conversion Systems by Impedance Techniques.  

E-Print Network (OSTI)

??This thesis introduces (i) amendments to basic electrochemical measurement techniques in the time and frequency domain suitable for electrochemical energy conversion systems like fuel cells (more)

Klotz, Dino

2012-01-01T23:59:59.000Z

169

American Journal  

NLE Websites -- All DOE Office Websites (Extended Search)

American American Journal of Science JUNE 2007 GENERALIZATION OF GAS HYDRATE DISTRIBUTION AND SATURATION IN MARINE SEDIMENTS BY SCALING OF THERMODYNAMIC AND TRANSPORT PROCESSES GAURAV BHATNAGAR*, WALTER G. CHAPMAN*, GERALD R. DICKENS**, BRANDON DUGAN**, and GEORGE J. HIRASAKI* † ABSTRACT. Gas hydrates dominated by methane naturally occur in deep marine sediment along continental margins. These compounds form in pore space between the seafloor and a sub-bottom depth where appropriate stability conditions prevail. However, the amount and distribution of gas hydrate within this zone, and free gas below, can vary significantly at different locations. To understand this variability, we develop a one-dimensional numerical model that simulates the accumulation of gas hydrates in marine sediments due to upward and downward fluxes of methane over time. The model contains rigorous

170

Nonferrous Metals Society of China  

Science Conference Proceedings (OSTI)

The Nonferrous Metals Society of China (NFSoc) is a technological organization of scientists and technologists engaged in the nonferrous metals industry.

171

Electrochemical mercerization, souring, and bleaching of textiles  

DOE Patents (OSTI)

Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode. 5 figs.

Cooper, J.F.

1995-10-10T23:59:59.000Z

172

Electrochemical cell assembled in discharged state  

DOE Patents (OSTI)

A secondary, electrochemical cell is assembled in a completely discharged state within a sealed containment. As assembled, the cell includes a positive electrode separated from a negative electrode by a molten salt electrolyte. The positive electrode is contained within a porous structure, permitting passage of molten electrolyte, and includes one or more layers of a metallic mesh, e.g. iron, impregnated with an intimate mixture of lithium sulfide and the electrolyte. The negative electrode is a porous plaque of aluminum metal. Prior to using the cell, an electrical charge forms lithium-aluminum alloy within the negative electrode and metal sulfide within the positive electrode.

Yao, Neng-Ping (Hinsdale, IL); Walsh, William J. (Naperville, IL)

1976-01-01T23:59:59.000Z

173

Morphology in electrochemically grown conducting polymer films  

DOE Patents (OSTI)

A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol. 2 figs.

Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

1992-04-28T23:59:59.000Z

174

Magnesium/manganese dioxide electrochemical cell  

SciTech Connect

This patent describes an improvement in a magnesium/manganese dioxide electrochemical cell that has been stored following partial usage and including an alloy of magnesium as the anode, a moist cathode mix of carbon black, manganese dioxide, magnesium hydroxide, barium chromate and lithium chromate as the cathode, and 3.5 to 4.0 normal magnesium perchlorate as the electrolyte. The improvement involves increasing the moisture content of the cathode mix from 34 to 38 percent at the time of making the cell to reduce the self discharge and increase the operating capacity after the cell has been stored following partial usage.

Jarvis, L.P.; Brundage, M.T.; Atwater, T.B.

1989-09-26T23:59:59.000Z

175

Electrochemical cell with high conductivity glass electrolyte  

DOE Patents (OSTI)

A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material. 6 figs.

Nelson, P.A.; Bloom, I.D.; Roche, M.F.

1987-04-21T23:59:59.000Z

176

Electrochemical cell with high conductivity glass electrolyte  

DOE Patents (OSTI)

A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with an ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

Nelson, P.A.; Bloom, I.D.; Roche, M.F.

1986-04-17T23:59:59.000Z

177

W-36: Electrochemical Capacitance of Polyaniline, Evaluated in ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Electrochemical capacitors (EC) are novel energy storage devices ... in the supercapacitors due to its high capacitive characteristics, low cost and ease ... In this work we present a comparative study of charge storage in acid and ... W-101: Synthesis and Electrochemical Performance of LiMnBO3 as a Novel...

178

Gerald S. Frankel1 Electrochemical Techniques in Corrosion: Status,  

E-Print Network (OSTI)

of electrochemical methods. Interested readers are referred to other works. Instead, the focus tank holding liquid radio- active waste at the Hanford Site 30 . A probe made from a thick. For a system such as Fe in sulfuric acid, all of the electrochemical techniques work quite well

179

Separation system with a sheath-flow supported electrochemical detector  

DOE Patents (OSTI)

An electrochemical detector including side channels associated with a separation channel of a sample component separation apparatus is provided. The side channels of the detector, in one configuration, provide a sheath-flow for an analyte exiting the separation channel which directs the analyte to the electrically developed electrochemical detector.

Mathies, Richard A. (Moraga, CA); Emrich, Charles A. (Berkeley, CA); Singhal, Pankaj (Pasadena, CA); Ertl, Peter (Styria, AT)

2008-10-21T23:59:59.000Z

180

2007 The Authors Journal compilation 2007 The Royal Entomological Society  

E-Print Network (OSTI)

conditioner has less capacity (3 tons vs. 4 tons). Also, in addition to the effects of refrigerant charge (refrigerant charge and evaporator airflow), and alternative operating strategies (thermostat setback versus consumption, and power demand. The effects of refrigerant charge, evaporator air flow), oversizing (relative

Preisser, Evan

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

f April 1999 JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY  

E-Print Network (OSTI)

of the aerial ycllowjacket, I)olicfutvespulo arenuria (Fab.), has bcen taken south of the speciesRiver, crossing it only north of Missouri. A 1986-1988 survey of the social Hymcnoptera of Mis- souri (J. H. Hunt a single Missouri specimcn of the aerial yellowjacket, I)olichrn:espuluorenaria (Fab.). collccted

Hunt, James H.

182

The Journal of The Minerals, Metals & Materials Society (TMS)  

E-Print Network (OSTI)

" (Report NUREG/CR-4667 Vol. 23 ANL-97/10, Argonne National Laboratory, 1996). 5. "Standard Specification

Motta, Arthur T.

183

American Physical Society  

E-Print Network (OSTI)

Founded in 1899, the American Physical Society (APS) is the largest organization of professional physicists in the United States. Its 46,000 members are drawn from universities, industry and national laboratories. The APS is one of the premier publishers of international physics research, maintaining print and on-line publications, as well as electronically searchable archives dating back to 1893. For more than forty years, APS has also devoted resources and expertise to a number of public policy areas, including education, energy, innovation and competitiveness, national

Cherry Murray; Curtis Callan; Leo Kadanoff; Judy Franz; Executive Officer; Joseph Serene; Gene Sprouse; How America; Can Look

2010-01-01T23:59:59.000Z

184

Development of an electrochemical hydrogen separator  

DOE Green Energy (OSTI)

The EHS is an electrochemical hydrogen separator based on the uniquely reversible nature of hydrogen oxidation-reduction reactions in electrochemical systems. The principle and the hardware concept are shown in Figure 1. Hydrogen from the mixed gas stream is oxidized to H{sup +} ions, transported through a cation transport electrolyte membrane (matrix) under an applied electric field and discharged in a pure hydrogen state on the cathode. The cation transfer electrolyte membrane provides a barrier between the feed and product gases. The EHS design is an offshoot of phosphoric acid fuel cell development. Although any proton transfer electrolyte can be used, the phosphoric acid based system offers a unique advantage because its operating temperature of {approximately}200{degree}C makes it tolerant to trace CO and also closely matches the water-shift reactor exit gas temperature ({approximately}250{degree}C). Hydrogen-containing streams in coal gasification systems have large carbon monoxide contents. For efficient hydrogen recovery, most of the CO must be converted to hydrogen by the low temperature water-shift reaction (Figure 2). Advanced coal gasification and gas separation technologies offer an important pathway to the clean utilization of coal resources.

Abens, S.; Fruchtman, J.; Kush, A.

1993-09-01T23:59:59.000Z

185

ARM - Journal Articles 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Journal Search [ Advanced Search ] Publication Years 2013 149 2012 163 2011 185 2010 197 2009 213 2008 174 2007 150 2006 213 2005 139 2004 141 2003 187 2002 205 2001 207 2000 232 1999 136 1998 172 1997 103 1996 84 1995 124 1994 65 1993 51 1992 47 1991 25 1990 12 1986 1 Journal Articles : 2006 Author Article Title Journal Funded By Kogan Large-eddy simulation of air parcels in stratocumulus clouds: Time scales and spatial variability (Citation) Journal of the Atmospheric Sciences ARM Duchon Broadband albedo observations in the Southern Great Plains (Citation) Journal of Applied Meteorology and Climatology ARM

186

Recent Refereed Journal Articles  

NLE Websites -- All DOE Office Websites (Extended Search)

Recent Journal Articles Recent Journal Articles Recent Refereed Journal Articles Print Monday, 16 August 2010 17:38 General Information Refereed journal articles before 2010 will be posted in an archive. Articles may also be searched by beamline, author, journal, or year. View Journal Covers showcasing ALS science. All staff and users are reminded that when submitting any article based on work conducted in whole or in part at the ALS, must include the following acknowledgment statement: The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Report Publications, Awards, Talks here . 2010 Refereed Publications Al-Khatatbeh, Y., Y. Lee, and B. Kiefer, "Phase relations and hardness trends of ZrO2 phases at high pressure ," Phys. Rev. B 81(21), 214102 (2010). 12.2.2

187

About The Iron and Steel Society  

Science Conference Proceedings (OSTI)

The IRON & STEEL SOCIETY (ISS) is a professional and technical society that provides opportunities for networking among iron and steel industry professionals...

188

Lienert named American Welding Society Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

Calendar Video Newsroom News Stories November Lienert Named American Welding Society Fellow Lienert named American Welding Society Fellow Lienert was inducted...

189

Lienert named American Welding Society Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1 - Lienert named American Welding Society Fellow November 29, 2012 Thomas J. Lienert of the Lab's Metallurgy group was inducted into the American Welding Society's 2012 Class of...

190

ARM - Journal Articles 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

of sources and formation processes of atmospheric sulfate by sulfur isotope and scanning electron microscope measurements (Citation) Journal of Geophysical Research - Atmospheres...

191

ARM - Journal Articles 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

mode (Citation) Journal of Atmospheric and Oceanic Technology ARM Xia Validation of Noah-simulated soil temperature in the North American Land Data Assimilation System Phase 2...

192

ARM - Journal Articles 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

(Citation) The Open Atmospheric Science Journal ARM Turner Validating mixed-phase cloud optical depth retrieved from infrared observations with high spectral resolution...

193

ARM - Journal Articles 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Populations (Citation) Journal of Applied Meteorology ARM Zamora The Accuracy of Solar Irradiance Calculations Used in Mesoscale Numerical Weather Prediction (Citation)...

194

Standard guide for online monitoring of corrosion in plant equipment (electrical and electrochemical methods)  

E-Print Network (OSTI)

Standard guide for online monitoring of corrosion in plant equipment (electrical and electrochemical methods)

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

195

Journal of Electronic Materials Home Page  

Science Conference Proceedings (OSTI)

Applied Physics A: Materials Science and Processing; Applied Physics B: Lasers and Optics; International Journal of Fracture; International Journal of...

196

Selectively-etched nanochannel electrophoretic and electrochemical devices  

DOE Patents (OSTI)

Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

Surh, Michael P. (Livermore, CA); Wilson, William D. (Pleasanton, CA); Barbee, Jr., Troy W. (Palo Alto, CA); Lane, Stephen M. (Oakland, CA)

2006-06-27T23:59:59.000Z

197

Argonne Chemical Sciences & Engineering -Electrochemical Energy Storage -  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering * Members * Contact * Publications * Overview EES Home Electrochemical Energy Storage - Engineering Electrochemical Energy Storage Argonne researcher Panagiotis Prezas examines a lithium-ion battery cell at the Battery Test Facility. Capabilities In support of and as part of the applied research and development (R&D) area, the Argonne's Electrochemical Energy Storage department (EES) has established and employs a variety of engineering R&D capabilities. These capabilities include electrode modeling, engineering, & fabrication; electrode/electrolyte interface modeling; cell modeling & engineering; cell, module, and battery design modeling; and cell, module, and battery cost modeling. Additionally, EES is developing new capabilities in the

198

Thermal regeneration of an electrochemical concentration cell  

DOE Patents (OSTI)

A system and method are described for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

Krumpelt, M.; Bates, J.K.

1980-05-09T23:59:59.000Z

199

Electrochemical cell having cyclindircal electrode elements  

DOE Patents (OSTI)

A secondary, high temperature electrochemical cell especially adapted for lithium alloy negative electrodes, transition metal chalcogenide positive electrodes and alkali metal halide or alkaline earth metal halide electrolyte is disclosed. The cell is held within an elongated cylindrical container in which one of the active materials is filled around the outside surfaces of a pluraity of perforate tubular current collectors along the length of the container. Each of the current collector tubes contain a concentric atubular layer of electrically insulative ceramic as an interelectrode separator. The active material of opposite polarity in elongated pin shape is positioned longitudinally within the separator layer. A second electrically conductive tube with perforate walls can be swagged or otherwise bonded to the outer surface of the pin as a current cllector and the electrically insulative ceramic layer can be coated or otherwise layered onto the outer surface of this second current collector. Alternatively, the central pin electrode can include an axial core as a current collector.

Nelson, P.A.; Shimotake, H.

1981-03-05T23:59:59.000Z

200

Electrochemical cell having cylindrical electrode elements  

DOE Patents (OSTI)

A secondary, high temperature electrochemical cell especially adapted for lithium alloy negative electrodes, transition metal chalcogenide positive electrodes and alkali metal halide or alkaline earth metal halide electrolyte is disclosed. The cell is held within an elongated cylindrical container in which one of the active materials is filled around the outside surfaces of a plurality of perforate tubular current collectors along the length of the container. Each of the current collector tubes contain a concentric tubular layer of electrically insulative ceramic as an interelectrode separator. The active material of opposite polarity in elongated pin shape is positioned longitudinally within the separator layer. A second electrically conductive tube with perforate walls can be swagged or otherwise bonded to the outer surface of the pin as a current collector and the electrically insulative ceramic layer can be coated or otherwise layered onto the outer surface of this second current collector. Alternatively, the central pin electrode can include an axial core as a current collector.

Nelson, Paul A. (Wheaton, IL); Shimotake, Hiroshi (Hinsdale, IL)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Electrochemical Approaches to PV Busbar Application  

DOE Green Energy (OSTI)

Busbars are an integral component of any thin-film photovoltaic module and must be easy and quick to apply by PV manufacturers, as well as provide long-term reliability in deployed modules. Potential reliability issues include loss of adhesion and delamination, chemical instability under current collection conditions (electromigration or corrosion), compatibility of material and application method with subsequent encapsulation steps. Several new and novel busbar materials and application methods have been explored, including adhering metal busbars with various one- and two-part conductive epoxies or conductive adhesive films, ultrasonic bonding of metal busbar strips, and bonding of busbar strips using low-temperature solders. The most promising approach to date has been the direct application of metal busbars via various electrochemical techniques, which offers a variety of distinct advantages.

Pankow, J. W.

2005-01-01T23:59:59.000Z

202

Method for making an electrochemical cell  

DOE Patents (OSTI)

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN)

1996-01-01T23:59:59.000Z

203

Composite electrode for use in electrochemical cells  

DOE Patents (OSTI)

A porous composite electrode for use in electrochemical cells. The electrode has a first face and a second face defining a relatively thin section therebetween. The electrode is comprised of an ion conducting material, an electron conducting material, and an electrocatalyst. The volume concentration of the ion conducting material is greatest at the first face and is decreased across the section, while the volume concentration of the electron conducting material is greatest at the second face and decreases across the section of the electrode. Substantially all of the electrocatalyst is positioned within the electrode section in a relatively narrow zone where the rate of electron transport of the electrode is approximately equal to the rate of ion transport of the electrode. 4 figs., 1 tab.

Vanderborgh, N.E.; Huff, J.R.; Leddy, J.

1987-10-16T23:59:59.000Z

204

Electrochemical cell and method of assembly  

DOE Patents (OSTI)

A method of preparing an electrochemical cell is disclosed which permits the assembly to be accomplished in air. The cell includes a metal sulfide as the positive electrode reactant, lithium alloy as the negative electrode reactant and an alkali metal, molten salt electrolyte. Positive electrode reactant is introduced as Li.sub.2 FeS.sub.2, a single-phase compound produced by the reaction of Li.sub.2 S and FeS. The use of this compound permits introduction of lithium in an oxidized form. Additional lithium can be introduced in the negative electrode structure enclosed within an aluminum foil envelope between layers of porous aluminum. Molten salt electrolyte is added after assembly and evacuation of the cell by including an interelectrode separator that has been prewet with an organic solution of KCl.

Shimotake, Hiroshi (Hinsdale, IL); Voss, Ernst C. H. (Liederbach, DE); Bartholme, Louis G. (Joliet, IL)

1979-01-01T23:59:59.000Z

205

Cogeneration with Thermionics and Electrochemical Cells  

E-Print Network (OSTI)

Thermionic energy converters convert high-temperature heat into high-current low-voltage direct current, rejecting heat at a temperature that is high enough to generate process steam. Electrochemical cells are high-current low-voltage devices, which are ideally suited for coupling to the output of the thermionic converters. A test is under way in which an array of thermionic converters is coupled to a industrial heater. The array will be tested to yield thermionic performance data. These data will be used in the design of a thermionic cogeneration system specifically applied to the chlorine caustic soda industry. A full-scale cogeneration installation of this type is expected to produce about 12 kilowatts of direct current power for each million Btu fired.

Miskolczy, G.; Goodale, D.; Huffman, F.; Morgan, D.

1984-01-01T23:59:59.000Z

206

Composite electrode for use in electrochemical cells  

DOE Patents (OSTI)

A porous composite electrode for use in electrochemical cells. The electrode has a first face and a second face defining a relatively thin section therebetween. The electrode is comprised of an ion conducting material, an electron conducting material, and an electrocatalyst. The volume concentration of the ion conducting material is greatest at the first face and is decreased across the section, while the volume concentration of the electron conducting material is greatest at the second face and decreases across the section of the electrode. Substantially all of the electrocatalyst is positioned within the electrode section in a relatively narrow zone where the rate of electron transport of the electrode is approximately equal to the rate of ion transport of the electrode.

Vanderborgh, Nicholas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM); Leddy, Johna (Flushing, NY)

1989-01-01T23:59:59.000Z

207

Method for making an electrochemical cell  

DOE Patents (OSTI)

Described is a thin-film battery, especially a thin-film microbattery, and a method for making the same, having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.

Bates, J.B.; Dudney, N.J.

1996-10-22T23:59:59.000Z

208

Electrochemical removal of material from metallic work  

DOE Patents (OSTI)

Deburring, polishing, surface forming and the like are carried out by electrochemical machining with conformable electrode means including an electrically conducting and an insulating web. The surface of the work to be processed is covered by a deformable electrically insulating web or cloth which is perforated and conforms with the work. The web is covered by a deformable perforated electrically conducting screen electrode which also conforms with, and is insulated from, the work by the insulating web. An electrolyte is conducted through the electrode and insulating web and along the work through a perforated elastic member which engages the electrode under pressure pressing the electrode and web against the work. High current under low voltage is conducted betwen the electrode and work through the insulator, removing material from the work. Under the pressure of the elastic member, the electrode and insulator continue to conform with the work and the spacing between the electrode and work is maintained constant.

Csakvary, Tibor (Wilkens Township, Allegheny County, PA); Fromson, Robert E. (Wilkens Township, Allegheny County, PA)

1980-05-13T23:59:59.000Z

209

Geological Society of America Special Paper 388  

E-Print Network (OSTI)

to turbulent fluid flow and heat transfer; turbulent external forced convection; turbulent internal forced. AIChE Journal 4. International Journal of Heat and Fluid Flow 5. Heat and Mass Transfer 6. AIAA Journal exam will be determined later. 1 #12;MECH572-Winter 2008 REFERENCE BOOKS 1. Handbook of Heat Transfer

210

Development of an Electrochemical Separator and Compressor  

DOE Green Energy (OSTI)

Global conversion to sustainable energy is likely to result in a hydrogen-based economy that supports U.S. energy security objectives while simultaneously avoiding harmful carbon emissions. A key hurdle to successful implementation of a hydrogen economy is the low-cost generation, storage, and distribution of hydrogen. One of the most difficult requirements of this transformation is achieving economical, high density hydrogen storage in passenger vehicles. Transportation applications may require compression and storage of high purity hydrogen up to 12,000 psi. Hydrogen production choices range from centralized low-pressure generation of relatively impure gas in large quantities from steam-methane reformer plants to distributed generation of hydrogen under moderate pressure using water electrolysis. The Electrochemical Hydrogen Separator + Compressor (EHS+C) technology separates hydrogen from impurities and then compresses it to high pressure without any moving parts. The Phase I effort resulted in the construction and demonstration of a laboratory-scale hardware that can separate and compress hydrogen from reformate streams. The completion of Phase I has demonstrated at the laboratory scale the efficient separation and compression of hydrogen in a cost effective manner. This was achieved by optimizing the design of the Electrochemical Hydrogen Compression (EHC) cell hardware and verified by parametric testing in single cell hardware. A broad range of commercial applications exist for reclamation of hydrogen. One use this technology would be in combination with commercial fuel cells resulting in a source of clean power, heat, and compressed hydrogen. Other applications include the reclamation of hydrogen from power plants and other industrial equipment where it is used for cooling, recovery of process hydrogen from heat treating processes, and semiconductor fabrication lines. Hydrogen can also be recovered from reformate streams and cryogenic boil-offs using this technology.

Trent Molter

2011-04-28T23:59:59.000Z

211

ELECTROCHEMICALLY-MODULATED SEPARATIONS FOR SAFEGUARDS MEASUREMENTS  

Science Conference Proceedings (OSTI)

A critical objective of materials accountability in safeguards is the accurate and timely analysis of fuel reprocessing streams to detect both abrupt and prolonged diversions of nuclear materials. For this reason both on-line nondestructive (NDA) and destructive analysis (DA) approaches are sought-after. Current methods for DA involve grab sampling and laboratory based column extractions that are costly, hazardous, and time consuming. While direct on-line gamma measurements of Pu are desirable, they are not possible due to contributions from other actinides and fission products. Researchers at Pacific Northwest National Laboratory are currently investigating electrochemically-modulated separation (EMS) as a straightforward, cost-effective technology for selective separation of Pu or U from aqueous reprocessing streams. The EMS selectivity is electrochemically controlled and results from the sorption of Pu4+ and U4+ redox states onto the anodized target electrode, allowing for selective accumulation of U or Pu from nitric acid streams to be turned on or off. It is envisioned that this technology can be utilized to isolate Pu for both NDA and DA analysis. For the NDA approach, rapid Pu analysis by gamma-ray spectroscopy could be performed after chemical clean-up of activation and fission products by EMS. Likewise, in the DA approach, EMS could be used to retain and concentrate the Pu in nanogram quantities on the electrode surface to be transported to the lab for analysis using high precision mass spectrometry. Due to the challenges associated with complex matrices, a systematic investigation of the redox-dependent accumulation of Pu using EMS was necessary, and results will be presented. Approaches to mitigate interelement effects using large surface area cells will also be discussed. The EMS chemistry and spectroscopy for Pu isolation and measurement will be presented, proof-of-principle measurements will be described, and the application of this approach for materials accountability will be discussed.

Green, Michael A.; Arrigo, Leah M.; Liezers, Martin; Orton, Christopher R.; Douglas, Matthew; Peper, Shane M.; Schwantes, Jon M.; Hazelton, Sandra G.; Duckworth, Douglas C.

2010-08-11T23:59:59.000Z

212

Electrochemical studies of perovskite mixed conductors  

DOE Green Energy (OSTI)

Research into the growth of high-quality single crystal thin films of high transition temperature {Tc} superconductors have stimulated interest in other perovskite metal oxides with a variety of physical properties. Thin films of perovskite materials are among the major focal research areas for optical, sensor, electronic, and superconducting applications. Two lanthanum-based oxygen/electronic conducting perovskite oxides of particular interest for high temperature fuel cell electrodes and interconnects and for other electrochemical applications such as oxygen separation devices are La{sub 1{minus}x}Sr{sub x}MnO{sub 3{minus}y} and La{sub 1{minus}x}Sr{sub x}CoO{sub 3{minus}y}. The La-based perovskites are valuable for these technologies because they reduce interfacial resistances by eliminating the need for a three phase contact area (gas, metal electrode, electrolyte). In addition, these oxides may also serve a valuable role as novel catalysts or catalytic supports; however, little is known about what catalytic properties they may possess. Fundamental study of the electrochemical, diffusional oxygen transport, and surface catalytic properties of these materials can be greatly simplified if the complications associated with the presence of grain boundaries and multiple crystallite orientations can be avoided. Therefore, single crystals of these La-based perovskites become highly desirable. In this work, the authors report the structural and electrical properties of highly oriented thin films of La{sub 0.84}Sr{sub 0.16}MnO{sub 3} and La{sub 0.8}Sr{sub 0.2}CoO{sub 3} grown on single crystal Y-ZrO{sub 2} substrates. An addition, the authors have demonstrated growing, in situ, epitaxial multilayer perovskite/fluorite/perovskite configurations for fundamental fuel cell modeling.

Brosha, E.L.; Chung, B.W.; Garzon, F.H. [Los Alamos National Lab., NM (United States). Electronic and Electrochemical Materials and Devices Group

1994-12-01T23:59:59.000Z

213

Geochemical Society and the Mineralogical Society of America  

NLE Websites -- All DOE Office Websites (Extended Search)

Society and the Mineralogical Society of America Society and the Mineralogical Society of America Reviews in Mineralogy and Geochemistry (2006) Volume 63 Neutron Scattering in Earth Sciences Hans-Rudolf Wenk (Editor) (Click text for link. * Means no presentation available.) Short Course Presentations Chapter 1: Introduction to Neutron Properties and Applications. By John B. Parise *Chapter 2: Neutron Production, Neutron Facilities and Neutron Instrumentation. By Sven C. Vogel and Hans-Georg Priesmeyer Chapter 3: Single-Crystal Neutron Diffraction: Present and Future Applications. By Nancy L. Ross and Christina Hoffman Chapter 4: Neutron Rietveld Refinement. By Robert B. Von Dreele Chapter 5: Application of Neutron Powder-Diffraction to Mineral Structures. By Karsten Knorr and Wulf Depmeier

214

The Journals Acoustical Physics  

E-Print Network (OSTI)

of Atmospheric and Oceanic Technology Journal of Atmospheric and Solar-Terrestrial Physics Journal of Atmospheric Measurement Science and Technology Monthly Weather Review Natural Hazards Review Natural History Nature Nature Water Resources Research Weather Forecasting More Information For more information, contact: Yvonne

Colorado at Boulder, University of

215

ARM - Journal Articles 2004  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Journal Search [ Advanced Search ] Publication Years 2013 149 2012 163 2011 185 2010 197 2009 213 2008 174 2007 150 2006 213 2005 139 2004 141 2003 187 2002 205 2001 207 2000 232 1999 136 1998 172 1997 103 1996 84 1995 124 1994 65 1993 51 1992 47 1991 25 1990 12 1986 1 Journal Articles : 2004 Author Article Title Journal Funded By Jakob Use of cloud radar observations for model evaluation: A probabilistic approach (Citation) Journal of Geophysical Research ARM Schultz Snowbands during the cold-air outbreak of 23 January 2003. (Citation) Monthly Weather Review ARM

216

ARM - Journal Articles 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Journal Search [ Advanced Search ] Publication Years 2013 149 2012 163 2011 185 2010 197 2009 213 2008 174 2007 150 2006 213 2005 139 2004 141 2003 187 2002 205 2001 207 2000 232 1999 136 1998 172 1997 103 1996 84 1995 124 1994 65 1993 51 1992 47 1991 25 1990 12 1986 1 Journal Articles : 2007 Author Article Title Journal Funded By McFarlane Optical properties of shallow tropical cumuli derived from ARM ground-based remote sensing (Citation) Geophysical Research Letters ARM Mattioli Analysis of Radiosonde and ground-based remotely sensed PWV data from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment (Citation) Journal of Atmospheric and Oceanic Technology ARM

217

ARM - Journal Articles 2003  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Journal Search [ Advanced Search ] Publication Years 2013 149 2012 163 2011 185 2010 197 2009 213 2008 174 2007 150 2006 213 2005 139 2004 141 2003 187 2002 205 2001 207 2000 232 1999 136 1998 172 1997 103 1996 84 1995 124 1994 65 1993 51 1992 47 1991 25 1990 12 1986 1 Journal Articles : 2003 Author Article Title Journal Funded By Dong Arctic stratus cloud properties and radiative forcing at the ARM NSA site (Citation) J. Climate ARM Zurovac-Jevtic Development and test of a cirrus parameterization scheme using NCAR CCM3 (Citation) Journal of the Atmospheric Sciences ARM

218

Electrochemical development of hydrogen silsesquioxane by applying an electrical potential  

E-Print Network (OSTI)

We present a new method for developing hydrogen silsesquioxane (HSQ) by using electrical potentials and deionized water. Nested-L test structures with a pitch as small as 9 nm were developed using this electrochemical ...

Strobel, Sebastian

219

High Temperature Corrosion and Electrochemical Behavior of Weld ...  

Science Conference Proceedings (OSTI)

Cathodic Behavior of Silicon (?) in BaF2-CaF2 SiO2 Melts ... Electrochemical Impedance Spectroscopy of Uranium Chloride in Molten LiCl-KCl Eutectic.

220

Development of a morphing helicopter blade with electrochemical actuators  

E-Print Network (OSTI)

The use of the expansion of electrochemical cells, upon ion intercalation, for the development of a morphing helicopter blade is explored. Using commercially available lithium-ion batteries as demostrators of the technology, ...

Tubilla Kuri, Fernando

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

An improved system and method for networking electrochemical devices  

DOE Patents (OSTI)

An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices are disclosed, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. Improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

Williams, M.C.; Wimer, J.G.; Archer, D.H.

1993-12-31T23:59:59.000Z

222

Argonne Chemical Sciences & Engineering - Electrochemical Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage * Basic Research * Applied R&D * Engineering * Battery Testing Electrochemical Energy Storage The Energy Storage Theme The electrochemical Energy Storage (EES) Theme is internationally recognized as a world-class center for lithium battery R&D. It effectively integrates basic research, applied R&D, engineering, and battery testing, as shown in the diagram below. ees chart Its current focus is on developing improved materials and cell chemistries that will enable lithium-ion (Li-Ion) batteries for commercial light-duty vehicle applications, e.g. hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), and electric vehicle (EV) applications. Basic Research EES recently won a new Office of Science Energy Frontier Research Center (EFRC) denoted the "Center for Electrical Energy Storage: Tailored Interfaces." This new EFRC will focus on the science of stabilizing electrode/electrolyte interfaces in lithium batteries to achieve longer life and enhanced abuse tolerance.

223

Surface electrochemical control for fine coal and pyrite separation  

SciTech Connect

The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report contains three sections, Transpassive Oxidation of Pyrite,'' Flotation and Electrochemical Pretreatment,'' and Flotation Kinetics of Coal and Coal Pyrite.''

Hu, Weibai; Huang, Qinping; Li, Jun; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tingke; Wadsworth, M.E.

1991-01-01T23:59:59.000Z

224

Thermal conductor for high-energy electrochemical cells  

DOE Patents (OSTI)

A thermal conductor for use with an electrochemical energy storage device is disclosed. The thermal conductor is attached to one or both of the anode and cathode contacts of an electrochemical cell. A resilient portion of the conductor varies in height or position to maintain contact between the conductor and an adjacent wall structure of a containment vessel in response to relative movement between the conductor and the wall structure. The thermal conductor conducts current into and out of the electrochemical cell and conducts thermal energy between the electrochemical cell and thermally conductive and electrically resistive material disposed between the conductor and the wall structure. The thermal conductor may be fabricated to include a resilient portion having one of a substantially C-shaped, double C-shaped, Z-shaped, V-shaped, O-shaped, S-shaped, or finger-shaped cross-section. An elastomeric spring element may be configured so as to be captured by the resilient conductor for purposes of enhancing the functionality of the thermal conductor. The spring element may include a protrusion that provides electrical insulation between the spring conductor and a spring conductor of an adjacently disposed electrochemical cell in the presence of relative movement between the cells and the wall structure. The thermal conductor may also be fabricated from a sheet of electrically conductive material and affixed to the contacts of a number of electrochemical cells.

Hoffman, Joseph A. (Minneapolis, MN); Domroese, Michael K. (South St. Paul, MN); Lindeman, David D. (Hudson, WI); Radewald, Vern E. (Austin, TX); Rouillard, Roger (Beloeil, CA); Trice, Jennifer L. (Eagan, MN)

2000-01-01T23:59:59.000Z

225

J u l y , 1 9 9 7 A S H R A E J o u r n a l 19 The following article was published in ASHRAE Journal, July1997. Copyright 1997 American Society of Heating, Refrigerating and Air-Conditioning Engineers,  

E-Print Network (OSTI)

J u l y , 1 9 9 7 A S H R A E J o u r n a l 19 The following article was published in ASHRAE/or distributed electronically or in paper form without permission of ASHRAE. A S H RAE JOURNAL Most traditional By Gary S. Settles, Ph.D. Member ASHRAE he patterns of airflow are central to almost everything associated

Settles, Gary S.

226

Tribo-electrochemical Characterization of Tantalum during Electrochemical-Mechanical Polishing (ECMP)  

E-Print Network (OSTI)

Electrochemical Mechanical Polishing (ECMP) has become increasingly important due to the continuous decrease of the device size in integrated circuit (IC) fabrication. Tantalum (Ta) is a promising material as a substitute for copper in ICs. This dissertation studies the tribology and electrochemistry of Ta ECMP. The present research uses experimental combined analysis approaches. A specially designed experimental setup assembling a tribometer and a potentiostat was used to carry out Ta ECMP. The friction force and electrochemical reactions were measured simultaneously. Using this setup, we found the factors which affected the frictional behaviors of Ta during ECMP. The technique of single frequency electrochemical impedance spectroscopy (EIS) was employed to investigate the material removal mechanisms in Ta ECMP. The results presented the competing mechanisms of removal and formation of a surface oxide layer of Ta. In order to further the investigation in a nanoscale, the atomic force microscope (AFM) was used to measure the material removal rate. The Preston equation for the Ta ECMP was established. A new methodology was developed to study the oxidation state and process of Ta during ECMP. Through comparing the material removal rate measured by using the AFM and the calculated one via the Faradays law, the distribution of the Ta suboxides and pentoxide, as well as the oxidation process, was revealed. The oxidation process was strongly dependent of the applied anodic potential, thickness of the oxide layer, mechanical forces, and surface orientation. A polymer environmental cell was designed and produced. Using this cell and AFM, it was found that the material removal in the nanometer scale was a function of the surface orientations. This research is beneficial for optimization of the Ta ECMP process. This dissertation includes six chapters. After Introduction and Motivation and Objectives, the material, setup, and testing conditions are discussed in Chapter III. Chapter IV discusses the tribology and material removal mechanisms in Ta ECMP, while Chapter V the oxidation of Ta during ECMP, followed by Conclusions and Future Work.

Gao, Feng

2010-12-01T23:59:59.000Z

227

Zoological Journal of the Linnean Society, 2007, 149, 339370. With 7 figures 2007 The Linnean Society of London, Zoological Journal of the Linnean Society, 2007, 149, 339370 339  

E-Print Network (OSTI)

, but are in very poor condition (P.J.B., pers. observ.). A complete listing of documented localities variables recorded were standard (Appendix 3), except for those relating to the limbs. Although many studies

Bergmann, Philip J.

228

Biological Journal of the Linnean Society, 2004, 82, 219235. With 5 figures 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82, 219235 219  

E-Print Network (OSTI)

-eastern India. C, all characters, including the position of major internal organs, and tooth counts (excluding the position of major internal organs, and tooth counts. Clade C (=T. stejnegeri s.s.) Clade B (=T. gumprechti Laboratory, TN, USA. http://www.esd.ornl.gov/projects/qen/ adams1.html. Allard MW, Carpenter JM. 1996

Thorpe, Roger Stephen

229

Electrochemical processing of nitrate waste solutions  

SciTech Connect

The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F[sup [minus

Genders, D.; Weinberg, N.; Hartsough, D. (Electrosynthesis Co., Inc., Cheektowaga, NY (United States))

1992-10-07T23:59:59.000Z

230

Method of doping interconnections for electrochemical cells  

DOE Patents (OSTI)

A dense, electronically conductive interconnection layer 26 is bonded on a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) forming a layer of oxide particles of at least one of the metals Ca, Sr, Co, Ba or Mg on a part 24 of a first surface of the air electrode 16, (B) heating the electrode structure, (C) applying a halide vapor containing at least lanthanum halide and chromium halide to the first surface and applying a source of oxygen to a second opposite surface of the air electrode so that they contact at said first surface, to cause a reaction of the oxygen and halide and cause a dense lanthanum-chromium oxide structure to grow, from the first electrode surface, between and around the oxide particles, where the metal oxide particles get incoporated into the lanthanum-chromium oxide structure as it grows thicker with time, and the metal ions in the oxide particles diffuse into the bulk of the lanthamum-chromium oxide structure, to provide a dense, top, interconnection layer 26 on top of the air electrode 16. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.

Pal, Uday B. (Monroeville, PA); Singhal, Subhash C. (Murrysville, PA); Moon, David M. (Pittsburgh, PA); Folser, George R. (Lower Burrell, PA)

1990-01-01T23:59:59.000Z

231

Nonaqueous Electrolyte Development for Electrochemical Capacitors  

DOE Green Energy (OSTI)

The objectives of this project were to demonstrate and develop new nonaqueous electrolytes that enable the development of high power (in excess of 2 kW/kg) and high energy (in excess of 8 Wh/kg) capacitors. Electrochemical capacitors are attractive to use because of their long cycle life and inherent high-power (or fast charge/discharge) capabilities. To realize the inherent high-power nature of the capacitor, the resistance of the capacitor needs to be low. The main focus of this project is on the ionic part of capacitor resistance, which is largely determined by the electrolyte, especially the electrolyte's conductivity. To achieve the objectives of this project, two approaches were used. The first was to search for the proper solvent mixtures within the commercially available quaternary ammonium salts such as tetraethyl ammonium tetrafluoroborate (Et4NBF4) or tetraethyl ammonium hexafluorophosphate (Et4NPF6). The second approach was to use the commonly available solvent system s but develop new salts. Substantial advances were made in quaternary ammonium salts and solvent systems were identified that can withstand high voltage operations. However, improvement in the salt alone is not sufficient. Improvements in the low-temperature stability of a capacitor rely not only on the salts but also on the solvents. Likewise, the high-temperature stability of the capacitor will depend not only on the salts but also on the solvents and carbon electrode materials.

K. Xu; S. P. Ding; T. R. Jow

1999-09-01T23:59:59.000Z

232

Steel refining with an electrochemical cell  

DOE Patents (OSTI)

Apparatus is described for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom. 2 figs.

Blander, M.; Cook, G.M.

1988-05-17T23:59:59.000Z

233

Joint with application in electrochemical devices  

DOE Patents (OSTI)

A joint for use in electrochemical devices, such as solid oxide fuel cells (SOFCs), oxygen separators, and hydrogen separators, that will maintain a hermetic seal at operating temperatures of greater than 600.degree. C., despite repeated thermal cycling excess of 600.degree. C. in a hostile operating environment where one side of the joint is continuously exposed to an oxidizing atmosphere and the other side is continuously exposed to a wet reducing gas. The joint is formed of a metal part, a ceramic part, and a flexible gasket. The flexible gasket is metal, but is thinner and more flexible than the metal part. As the joint is heated and cooled, the flexible gasket is configured to flex in response to changes in the relative size of the metal part and the ceramic part brought about by differences in the coefficient of thermal expansion of the metal part and the ceramic part, such that substantially all of the tension created by the differences in the expansion and contraction of the ceramic and metal parts is absorbed and dissipated by flexing the flexible gasket.

Weil, K Scott [Richland, WA; Hardy, John S [Richland, WA

2010-09-14T23:59:59.000Z

234

Electrochemical cell having improved pressure vent  

DOE Patents (OSTI)

The electrochemical cell of the instant invention includes a case having a gas outlet, one or more positive electrodes positioned within the case, one or more negative electrodes positioned within the case electrode separators positioned between the positive and negative electrodes, electrolyte positioned within the case, and a pressure vent for releasing internal pressure occurring in the case to the surrounding atmosphere. The pressure vent is affixed to the case covering the gas outlet, the pressure vent includes a vent housing having a hollow interior area in gaseous communication with the surrounding atmosphere and the interior of the case via the gas outlet, a pressure release piston positioned within the hollow interior area, the pressure release piston sized to surround the gas outlet and having a seal groove configured to encapsulate all but one surface of a seal mounted within the seal groove, leaving the non-encapsulated surface of the seal exposed, and a compression spring positioned to urge the pressure release piston to compress the seal in the seal groove and block the gas outlet in the case.

Dean, Kevin (Pontiac, MI); Holland, Arthur (Troy, MI); Fillmore, Donn (Waterford, MI)

1993-01-01T23:59:59.000Z

235

SC e-journals by Publisher  

Office of Scientific and Technical Information (OSTI)

by Publisher by Publisher American Association for Cancer Research American Association for the Advancement of Science American Association of Physics Teachers American Ceramic Society American Chemical Society American Geophysical Union American Institute of Chemical Engineers (AIChE) American Institute of Physics American Meteorological Society American Nuclear Society American Physical Society American Society for Biochemistry and Molecular Biology (ASBMB) American Society for Microbiology American Society of Agronomy American Society of Limnology and Oceanography (ASLO) American Society of Plant Biologists, The Annual Reviews Association for Computing Machinery AVS Science and Technology Society Biology Reports Limited BioMed Central Biophysical Society, The Canadian Society of Petroleum Geologists

236

Low Dose Radiation Program: Links - Research Societies with Radiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Societies with Radiation Concerns Academy of Radiology Research American Association of Physicists in Medicine American Nuclear Society American Roentgen Ray Society American...

237

Chinese Renewable Energy Society CRES formerly Chinese Solar...  

Open Energy Info (EERE)

Chinese Renewable Energy Society CRES formerly Chinese Solar Energy Society Jump to: navigation, search Name Chinese Renewable Energy Society (CRES) (formerly Chinese Solar Energy...

238

MetTrans Journal Home  

Science Conference Proceedings (OSTI)

Metallurgical and Materials Transactions Home Page ... MET. TRANS. HOME Journal descriptions and information [MORE]; SUBMIT A PAPER Review author...

239

Journal Of Research Past Papers  

Science Conference Proceedings (OSTI)

... Journal of Research of the National Bureau of Standards, Section B: Mathematics and Mathematical Physics, 1959-1967. ...

2013-03-27T23:59:59.000Z

240

ARM - Journal Articles 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

09 09 Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Journal Search [ Advanced Search ] Publication Years 2013 149 2012 163 2011 185 2010 197 2009 213 2008 174 2007 150 2006 213 2005 139 2004 141 2003 187 2002 205 2001 207 2000 232 1999 136 1998 172 1997 103 1996 84 1995 124 1994 65 1993 51 1992 47 1991 25 1990 12 1986 1 Journal Articles : 2009 Author Article Title Journal Funded By de Gouw Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study (Citation) Atmospheric Chemistry and Physics ARM

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ARM - Journal Articles 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Journal Search [ Advanced Search ] Publication Years 2013 149 2012 163 2011 185 2010 197 2009 213 2008 174 2007 150 2006 213 2005 139 2004 141 2003 187 2002 205 2001 207 2000 232 1999 136 1998 172 1997 103 1996 84 1995 124 1994 65 1993 51 1992 47 1991 25 1990 12 1986 1 Journal Articles : 2002 Author Article Title Journal Funded By Smith A Simple Model of Cirrus Horizontal Inhomogeneity and Cloud Fraction (Citation) Quart. J. Roy. Meteor. Soc. ARM Jensen Radiative impacts of anvil outflow during the Maritime Continent Thunderstorm Experiment (Citation) J. of Appl. Meteor. ARM

242

Journal of Research  

Science Conference Proceedings (OSTI)

Page 1. Journal of Research n ~~ .f>4nC f 4 4Th ede a>x ?v'2S';1,- ~~~ volume 90 Number 6 November-December Special ...

2003-09-23T23:59:59.000Z

243

2011 Signature Journal  

Science Conference Proceedings (OSTI)

Signature Journal is an annual newsletter product of the EPRI PQ Knowledge program (PS1D). This issue includes the following articles: Proactive Power Quality: The SCE&G Model Lightning Arrester Application and Performance Assessment High School Football Lighting

2011-12-30T23:59:59.000Z

244

ARM - Journal Articles 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Journal Search [ Advanced Search ] Publication Years 2013 149 2012 163 2011 185 2010 197 2009 213 2008 174 2007 150 2006 213 2005 139 2004 141 2003 187 2002 205 2001 207 2000 232 1999 136 1998 172 1997 103 1996 84 1995 124 1994 65 1993 51 1992 47 1991 25 1990 12 1986 1 Journal Articles : 2011 Author Article Title Journal Funded By Torn Seasonal and inter-annual variability in δ13C of net ecosystem carbon exchanges from 2002-2009 in the U.S. Southern Great Plains (Citation) Tellus ARM Lin Parameterization of riming intensity and its impact on ice fall speed using ARM data (Citation) Monthly Weather Review ARM

245

American Physical Society Honors Decker  

NLE Websites -- All DOE Office Websites (Extended Search)

APS Lights the Way to 2012 Chemistry Nobel APS Lights the Way to 2012 Chemistry Nobel APS X-rays Reveal Picasso's Secret DCS and APS Sign MOU The APS and the 2012 Argonne Energy Showcase Argonne Acoustic Levitation Video Goes Viral APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed American Physical Society Honors Decker NOVEMBER 19, 2012 Bookmark and Share Glenn Decker Senior Scientist Glenn Decker (APS) has been named a fellow of the American Physical Society, an honor limited to no more than one-half of one percent of the society's membership of more than 50,000. Decker's fellowship recognizes his "outstanding contributions to the design, commissioning, and enhancement of synchrotron light sources, and for innovative developments in the field of particle beam diagnostics. In

246

Technology Base Research Project for electrochemical energy storage  

DOE Green Energy (OSTI)

The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

Kinoshita, Kim (ed.)

1991-06-01T23:59:59.000Z

247

Application of photothermal deflection spectroscopy to electrochemical interfaces  

DOE Green Energy (OSTI)

This dissertation discusses the theory and practice of Photothermal Deflection Spectroscopy (PDS, which is also known as probe beam deflection spectroscopy, PBDS, probe deflection technique, and mirage effect spectroscopy) with respect to electrochemical systems. Much of the discussion is also relevant to non-electrochemical systems. PDS can measure the optical absorption spectrum of interfaces and concentration gradients in the electrolyte adjacent to the electrode. These measurements can be made on a wide variety of electrode surfaces and can be performed under dynamic conditions. The first three chapters discuss the theory of the phenomena that can be detected by PDS, and the equipment used in a PDS system. A secondary gradient technique'' is proposed, which places the probe beam on the back of an electrode. The results of a numerical model yield a method for determining the offset of the probe beam from the electrode surface based on the frequency response of the PDS signal. The origin and control of noise in the PDS signal are discussed. A majority of the signal noise appears to be acoustic in origin. The electrochemical oxidation of platinum is used to demonstrate that PDS has sub-monolayer sensitivity necessary to study interfacial chemistry. The results allow us to propose a two-reaction oxidation mechanism: the platinum is electrochemically oxidized to form platinum dihydroxide and dehydrated by a non-electrochemical second-order reaction. The final chapter discusses the relation of PDS to similar and competing techniques, and considers possibilities for the future of the technique.

Rudnicki, J.D.; McLarnon, F.R.; Cairns, E.J.

1992-03-01T23:59:59.000Z

248

Application of photothermal deflection spectroscopy to electrochemical interfaces  

DOE Green Energy (OSTI)

This dissertation discusses the theory and practice of Photothermal Deflection Spectroscopy (PDS, which is also known as probe beam deflection spectroscopy, PBDS, probe deflection technique, and mirage effect spectroscopy) with respect to electrochemical systems. Much of the discussion is also relevant to non-electrochemical systems. PDS can measure the optical absorption spectrum of interfaces and concentration gradients in the electrolyte adjacent to the electrode. These measurements can be made on a wide variety of electrode surfaces and can be performed under dynamic conditions. The first three chapters discuss the theory of the phenomena that can be detected by PDS, and the equipment used in a PDS system. A ``secondary gradient technique`` is proposed, which places the probe beam on the back of an electrode. The results of a numerical model yield a method for determining the offset of the probe beam from the electrode surface based on the frequency response of the PDS signal. The origin and control of noise in the PDS signal are discussed. A majority of the signal noise appears to be acoustic in origin. The electrochemical oxidation of platinum is used to demonstrate that PDS has sub-monolayer sensitivity necessary to study interfacial chemistry. The results allow us to propose a two-reaction oxidation mechanism: the platinum is electrochemically oxidized to form platinum dihydroxide and dehydrated by a non-electrochemical second-order reaction. The final chapter discusses the relation of PDS to similar and competing techniques, and considers possibilities for the future of the technique.

Rudnicki, J.D.; McLarnon, F.R.; Cairns, E.J.

1992-03-01T23:59:59.000Z

249

Technology Base Research Project for electrochemical energy storage  

SciTech Connect

The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

Kinoshita, Kim (ed.)

1991-06-01T23:59:59.000Z

250

First-Principles Prediction of the Equilibrium Shape of Nanoparticles Under Realistic Electrochemical Conditions  

E-Print Network (OSTI)

A first-principles model of the electrochemical double layer is applied to study surface energies and surface coverage under realistic electrochemical conditions and to determine the equilibrium shape of metal nanoparticles ...

Bonnet, Nicephore

251

Net primary energy balance of a solar-driven photo-electrochemical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Net primary energy balance of a solar-driven photo-electrochemical water-splitting device Title Net primary energy balance of a solar-driven photo-electrochemical water-splitting...

252

Design of an electrochemical cell making syngas (CO+H-2) from...  

NLE Websites -- All DOE Office Websites (Extended Search)

Design of an electrochemical cell making syngas (CO+H-2) from C02 and H20 reduction at room temperature Title Design of an electrochemical cell making syngas (CO+H-2) from C02 and...

253

Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices  

SciTech Connect

A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

Gering, Kevin L

2013-08-27T23:59:59.000Z

254

Equipment specifications for an electrochemical fuel reprocessing plant  

Science Conference Proceedings (OSTI)

Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

Hemphill, Kevin P [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

255

J. Electrochem. Soc., Vol. 144, No. 3, March 1997 The Electrochemical Society, Inc. Schaefer and M. Keppeler for critically reading the  

E-Print Network (OSTI)

, Washington, DC (1985). 8. R. Kohli, Thermochim. Acta, 65, 285 (1983). Electrowinning of Nonnoble Metals-dependent parameters with time. Simulated data of concentration and coulombic efficiency as a func- tion of time

Weidner, John W.

256

1084 J. Electrochem. So&, Vol. 142, No. 4, April 1995 9 The Electrochemical Society, Inc. 27. W. Vielstich, R A. Christensen, S. A. Weeks, and A.  

E-Print Network (OSTI)

. Vamos, S. Surampudi, H. Frank, G. K. Surya Prakash, M. C. Smart, R. Knieler, G. A. Olah, J. Kosek, and C

Weidner, John W.

257

Nitrogen-doped Graphene and Its Electrochemical Applications  

SciTech Connect

Nitrogen-doped graphene (N-graphene) is obtained by exposing graphene to nitrogen plasma. N-graphene exhibits much higher electrocatalytic activity toward oxygen reduction and H2O2 reduction than graphene, and much higher durability and selectivity than the widely-used expensive Pt. The excellent electrochemical performance of N-graphene is attributed to nitrogen functional groups and the specific properties of graphene. This indicates that N-graphene is promising for applications in electrochemical energy devices (fuel cells, metal-air batteries) and biosensors.

Shao, Yuyan; Zhang, Sheng; Engelhard, Mark H.; Li, Guosheng; Shao, Guocheng; Wang, Yong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

2010-06-04T23:59:59.000Z

258

Wick-and-pool electrodes for electrochemical cell  

DOE Patents (OSTI)

An electrode system includes a reservoir of liquid-metal reactant, and a wick extending from a submersed location within the reservoir into the molten electrolyte of an electrochemical cell structure. The wick is flooded with the liquid metal and thereby serves as one electrode within the cell. This electrode system has application in high-temperature batteries employing molten alkali metals or their alloys as active material within an electrode submersed within a molten salt electrolyte. It also can be used in electrochemical cells where the purification, separation or electrowinning of liquid metals is accomplished.

Roche, Michael F. (Downers Grove, IL); Faist, Suzan M. (Haddonfield, NJ); Eberhart, James G. (Naperville, IL); Ross, Laurids E. (Naperville, IL)

1980-01-01T23:59:59.000Z

259

Electrochemical cell utilizing molten alkali metal electrode-reactant  

DOE Patents (OSTI)

An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

Virkar, Anil V. (Sandy, UT); Miller, Gerald R. (Salt Lake City, UT)

1983-11-04T23:59:59.000Z

260

Wick-and-pool electrodes for electrochemical cell  

DOE Patents (OSTI)

An electrode system includes a reservoir of liquid-metal reactant, and a wick extending from a submersed location within the reservoir into the molten electrolyte of an electrochemical cell structure. The wick is flooded with the liquid metal and thereby serves as one electrode within the cell. This electrode system has application in high-temperature batteries employing molten alkali metals or their alloys as active material within an electrode submersed within a molten salt electrolyte. It also can be used in electrochemical cells where the purification, separation or electrowinning of liquid metals is accomplished.

Roche, Michael F. (Downers Grove, IL); Faist, Suzan M. (Norwood, NJ); Eberhart, James G. (Naperville, IL); Ross, Laurids E. (Naperville, IL)

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electrochemical cell for in-situ x-ray characterization  

DOE Green Energy (OSTI)

An electrochemical cell suitable for in-situ XRD analysis is presented. Qualitative information such as phase formation and phase stability can be easily monitored using the in-situ cell design. Quantitative information such as lattice parameters and kinetic behavior is also straightforward. Analysis of the LiMn&sub2;O&sub4; spinel using this cell design shows that the lattice undergoes two major structural shrinkages at approx. 4.0 V and approx. 4.07 V during charging. These shrinkages correlate well with the two electrochemical waves observed and indicate the likelihood of two separate redox processes which charging and discharging.

Doughty, D.H.; Ingersoll, D.; Rodriguez, M.A.

1998-08-04T23:59:59.000Z

262

Electrochemical process and production of novel complex hydrides  

SciTech Connect

A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

Zidan, Ragaiy

2013-06-25T23:59:59.000Z

263

ARM - Journal Articles 2013 - 2014  

NLE Websites -- All DOE Office Websites (Extended Search)

govPublicationsJournal Articles 2013 - 2014 govPublicationsJournal Articles 2013 - 2014 Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Journal Search [ Advanced Search ] Publication Years 2013 149 2012 163 2011 185 2010 197 2009 213 2008 174 2007 150 2006 213 2005 139 2004 141 2003 187 2002 205 2001 207 2000 232 1999 136 1998 172 1997 103 1996 84 1995 124 1994 65 1993 51 1992 47 1991 25 1990 12 1986 1 Journal Articles : 2013 - 2014 Author Article Title Journal Funded By Kafle Micropulse lidar-derived aerosol optical depth climatology at ARM sites worldwide (Citation) Journal of Geophysical Research - Atmospheres ARM

264

Electrochemical NOx Sensor for Monitoring Diesel Emissions  

Science Conference Proceedings (OSTI)

Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies ( 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

Woo, L Y; Glass, R S

2008-11-14T23:59:59.000Z

265

Electrochemical arsenic remediation for rural Bangladesh  

Science Conference Proceedings (OSTI)

Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water collected from three regions to below the WHO limit of 10 mu g=L. Prototype fabrication and field testing are currently underway.

Addy, Susan Amrose

2009-01-01T23:59:59.000Z

266

Journal of Power Sources 134 (2004) 3340 Electrochemical and flow characterization of a  

E-Print Network (OSTI)

. Kosek, C. Cropley, and A. LaConti, in Proceedings of the 32nd Intersociety Energy Conversion Engineering

267

Green Money Journal | Open Energy Information  

Open Energy Info (EERE)

Green Money Journal Jump to: navigation, search Name Green Money Journal Place Santa Fe, New Mexico Zip 87504 Sector Renewable Energy Product Online magazine covering the financial...

268

SC e-journals, Renewable Energy  

Office of Scientific and Technical Information (OSTI)

Renewable Energy Agricultural & Forest Meteorology Biomass & Bioenergy BioEnergy Research Electricity Journal, The Journal of Renewable and Sustainable Energy Process Biochemistry...

269

Surface electrochemical control for fine coal and pyrite separation  

SciTech Connect

Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Bodily, D.M.; Wadsworth, M.E.

1990-01-01T23:59:59.000Z

270

Surface electrochemical control for the fine coal and pyrite separation  

SciTech Connect

Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

Hu, Weibai; Huang, Qinping; Zhu, Ximeng; Li, Jun; Bodily, D.M.; Liang, Jun; Zhong, Tingke; Wadsworth, M.E.

1992-01-01T23:59:59.000Z

271

The evaluation of Federal Fabrics-Fibers electrochemical capacitors  

DOE Green Energy (OSTI)

The electrochemical capacitor devices described in this report were deliverables from the US Department of Energy-Idaho Operations Office (DOE-ID) as part of the US Department of Energy`s (DOE) High Power Energy Storage Program. The Idaho National Engineering and Environmental Laboratory (INEEL) has the responsibility for technical management, testing, and evaluation of high-power batteries and electrochemical capacitors under this Program. The DOE is currently developing various electrochemical capacitors as candidate power assist devices for the Partnership for a New Generation of Vehicles (PNGV) fast response engine requirement. This contract with Federal Fabrics-Fibers was intended to evaluate the use of their novel Z-axis carbon fiber materials as candidate electrodes for electrochemical capacitors. Deliverables were sent to the INEEL`s Energy Storage Technologies (EST) Laboratory for independent testing and evaluation. This report describes performance testing on four selected devices delivered over a 2-year period. Due to the highly experimental nature of the packages, life cycle testing was not conducted.

Wright, R.B.; Murphy, T.C.

1997-09-01T23:59:59.000Z

272

Research & Development Opportunities in Electrosynthesis and Electrochemical Manufacturing Processes  

Science Conference Proceedings (OSTI)

This scoping study is a follow-up to the Electrochemical Synthesis Workshop cosponsored by EPRI and the National Science Foundation (NSF) to identify areas of research and development (R&D) that fit EPRI's charter. Participants identified several R&D opportunities. This report discusses some of those opportunities.

1997-12-31T23:59:59.000Z

273

Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells  

DOE Patents (OSTI)

An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

Borglum, Brian P. (Edgewood, PA); Bessette, Norman F. (N. Huntingdon, PA)

2000-01-01T23:59:59.000Z

274

Microstructure Change of SOFC Anode Caused by Electrochemical Redox Cycles  

E-Print Network (OSTI)

Power Systems. All Rights Reserved. 2 Contents Manufacturing development dependencies SOFC elements Reserved. 6 SOFC Elements: Independent of Construction Need to create and join the electrochemical Rights Reserved. 7 SOFC Stack Elements Fuel cell ­ Electrolyte, cathode, anode Interconnects ­ Deliver

Tokyo, University of

275

Oxide modified air electrode surface for high temperature electrochemical cells  

DOE Patents (OSTI)

An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, Allegheny County, PA)

1992-01-01T23:59:59.000Z

276

Electrochemical measurements on lightweight composite nickel-graphite battery electrodes  

SciTech Connect

Graphite mat fibers and nickel metal composite electrodes are superior to sintered carbonyl-nickel powder electrodes in nickel-cadmium cells. The composite electrode functions as a thin electrode and can be utilized in nickel-cadmium, nickel-iron, nickel-zinc, and nickel-hydrogen electrochemical systems. 4 refs.

Sutula, R.A.; Crowe, C.R.

1980-12-01T23:59:59.000Z

277

Mediated electrochemical oxidation of organic wastes without electrode separators  

DOE Patents (OSTI)

An electrochemical cell/electrolyte/mediator combination is described for the efficient destruction of organic contaminants using metal salt mediators in a sulfuric acid electrolyte, wherein the electrodes and mediator are chosen such that hydrogen gas is produced at the cathode and no cell membrane is required. 3 figs.

Farmer, J.C.; Wang, F.T.; Hickman, R.G.; Lewis, P.R.

1996-05-14T23:59:59.000Z

278

Diagnosis of PEMFC Stack Failures via Electrochemical Impedance Spectroscopy.  

E-Print Network (OSTI)

Membrane fuel cells (dehydration and flooding) were investigated using electrochemical impedance. A four-cell stack capable of delivering individually conditioned reactants to each cell was designed set of measurements covering these ranges. The failure modes were simulated on individual cells within

Victoria, University of

279

Novel Electrochemical CO2 Removal Technology For Combustion of Fossil-Fuels  

Science Conference Proceedings (OSTI)

Electrochemical gas separation concepts are often neglected when discussing options to manage CO2 emissions. Electrochemical approaches are selective and do not require periodic regeneration. This paper will review prior work on electrochemical CO2 separation and compare the parasitic energy penalties of this approach to more conventional approaches of capturing CO2 from flue gas streams. A new concept to reduce the electrochemical parasitic energy penalties will be introduced and a preliminary analysis of the concept will be discussed. Relative to a conventional monoethanolamine (MEA) solvent approach, electrochemical CO2 capture does require less energy on a per-mole-of-CO2 basis. However, there are trade-offs since an electrochemical pumping approach requires electrical energy, instead of lower grade thermal energy. Although there are several issues with electrochemical CO2 capture, efforts to reduce parasitic losses of CO2 separation may need to consider such novel alternatives.

Douglas L. Straub; Maria Salazar-Villalpando

2008-07-14T23:59:59.000Z

280

Electrochemical NOx Sensor for Monitoring Diesel Emissions  

SciTech Connect

Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies (< 1 Hz) as the sensing signal and attribute the measured response to interfacial phenomena. Work by our group has also investigated using phase angle as the sensing signal at somewhat higher frequencies (10 Hz). The higher frequency measurements would potentially allow for reduced sampling times during sensor operation. Another potential advantage of impedance-metric NO{sub x} sensing is the similarity in response to NO and NO{sub 2} (i.e., total-NO{sub x} sensing). Potentiometric NO{sub x} sensors typically show higher sensitivity to NO2 than NO, and responses that are opposite in sign. However, NO is more stable than NO{sub 2} at temperatures > 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

Woo, L Y; Glass, R S

2008-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Journal of Energy & Environmental Research  

NLE Websites -- All DOE Office Websites (Extended Search)

anced Resources International, Inc. Hugh D. Guthrie U.S. Depa rtment of Energy, National Energy Technology Laboratory Journal Papers-Modeling 87 Engineering Feasibility of CO 2...

282

SC e-journals, Medicine  

Office of Scientific and Technical Information (OSTI)

Medicine Medicine ACM Transactions on Applied Perception (TAP) ACS Synthetic Biology Acta Biotheoretica Acta Neurochirurgica Acta Neuropathologica Administration and Policy in Mental Health American Journal of Hematology American Journal of Industrial Medicine American Journal of Infection Control American Journal of Medical Genetics Amino Acids Anatomical Record, The Angiogenesis Annals of Biomedical Engineering Annals of Hematology Annual Review of Biomedical Engineering Annual Review of Cell and Developmental Biology Annual Review of Clinical Psychology Annual Review of Genetics Annual Review of Immunology Annual Review of Medicine Annual Review of Microbiology Annual Review of Neuroscience Annual Review of Nutrition Annual Review of Pathology: Mechanisms of Disease Annual Review of Pharmacology and Toxicology

283

Signature Journal 2008  

Science Conference Proceedings (OSTI)

Signature Journal is EPRI's premier power quality publication with each electronic issue focusing on a specific industry or power quality challenge. This issue includes the following articles: Serving the "Silicon Dragon" in Taiwan Flywheel Installation and Demonstration Using Transfer Coefficients for Flicker Planning Studies at Southern Company Signature is a newsletter product of the EPRI PQ Knowledge program (PS1D).

2009-01-09T23:59:59.000Z

284

EPRI PQ Signature Journal  

Science Conference Proceedings (OSTI)

Signature Journal is an annual newsletter product of the EPRI PQ Knowledge program (PS1D). This issue includes the following articles: Implementing Permanent Site Monitors for Power Quality Open-Delta and Open-Wye Utility Supplies to Adjustable-Speed Drives and Inverter-Based Technologies IEEE P1668: A New Voltage-Sag Characterization and Testing Standard

2009-08-24T23:59:59.000Z

285

Hobart named American Chemical Society Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

Hobart named ACS Fellow Hobart named American Chemical Society Fellow The ACS Fellows program began in 2008 to recognize and honor members for outstanding achievements in and...

286

Gable named Geological Society of America Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

member of a large team that received a Laboratory Distinguished Performance Award for the Yucca Mountain Project. About the Geological Society of America Established in 1888, The...

287

SLAC National Accelerator Laboratory - Accelerators and Society  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and Society PHOTO: An accelerator at SLAC. SLAC has been developing, running and studying the basic physics of particle accelerators for half a century. Thousands of...

288

SC e-journals About/FAQ  

Office of Scientific and Technical Information (OSTI)

About/FAQ SC e-journals provides the Office of Science (SC) management and staff electronic access to key peer-reviewed scientific journals. Currently, over 1,600 journals may be accessed via the SC e-journals website. Available titles have been identified by SC Programs as being of specific interest or are made available via Departmental consortium arrangements when possible. The journal collection includes titles of broad interest to the Department as well as subject-specific titles. Journal subscriptions are generally renewed and the SC e-journals collection updated on an annual basis. SC e-journals is developed and maintained by the Office of Scientific and Technical Information. Q. Who can access SC e-journals? A. SC e-journals is an Office of Science service. Copyrighted

289

Argonne Chemical Sciences & Engineering - People - Electrochemical Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Analysis and Diagnostics Laboratory Electrochemical Analysis and Diagnostics Laboratory Ira Bloom, Inorganic Chemist and Manager/Group Leader phone 630/252-4516, fax: 630/252-4176, e-mail: ira.bloom@anl.gov Ph.D., Inorganic Chemistry, University of Chicago Battery and fuel cell evaluation and testing Javier Bareño, Assistant Materials Scientist (630) 252-5856, fax: 630/972-4528, e-mail: bareno@anl.gov John K. Basco, Engineering Specialist Sr. phone: 630/252-7627, fax: 630/252-4418, e-mail: jkbasco@anl.gov Testing and evaluation of advanced battery systems Testing and evaluation of advanced hydrogen fuel cell systems Panos D. Prezas, Engineering Specialist phone: 630/252-3360, fax: 630/972-4422, e-mail: Prezas@anl.gov BS, Electrical Engineering, Illinois Institute of Technology Battery and fuel cell analysis for HEV/PHEV applications

290

Continuous-feed electrochemical cell with nonpacking particulate electrode  

DOE Patents (OSTI)

An electrochemical cell providing full consumption of electrochemically active particles in a nonpacking, electrolyte-permeable bed has a tapered cell cavity bounded by two nonparallel surfaces separated by a distance that promotes bridging of particles across the cavity. The gap/particle size ratio is maintained as the particles are consumed, decrease in size, and travel from the point of entry to the narrower end of the cell. A cell of this configuration supports a bed of low packing density maintained in a dynamic steady state by alternate formation and collapse of particle bridges across the gap and associated voids over the entire active area of the cell. The cell design can be applied to refuelable zinc/air cells and zinc/ferrocyanide storage batteries.

Cooper, John F. (Oakland, CA)

1995-01-01T23:59:59.000Z

291

Nanodisperse transition metal electrodes (NTME) for electrochemical cells  

DOE Patents (OSTI)

Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.

Striebel, Kathryn A. (Oakland, CA); Wen, Shi-Jie (Sunnyvale, CA)

2000-01-01T23:59:59.000Z

292

Structures And Fabrication Techniques For Solid State Electrochemical Devices  

DOE Patents (OSTI)

Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2005-12-27T23:59:59.000Z

293

Structures and fabrication techniques for solid state electrochemical devices  

DOE Patents (OSTI)

Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2003-08-12T23:59:59.000Z

294

Molecular-scale measurements of electric fields at electrochemical interfaces.  

Science Conference Proceedings (OSTI)

Spatially resolved measurements of electric fields at electrochemical interfaces would be a critical step toward further understanding and modeling the detailed structure of electric double layers. The goal of this project was to perform proof-of-principle experiments to demonstrate the use of field-sensitive dyes for optical measurements of fields in electrochemical systems. A confocal microscope was developed that provides sensitive detection of the lifetime and high resolution spectra of excited fluorescence for dyes tethered to electrically conductive surfaces. Excited state lifetimes for the dyes were measured and found to be relatively unquenched when linked to indium tin oxide, but strongly quenched on gold surfaces. However, our fluorescence detection is sufficiently sensitive to measure spectra of submonolayer dye coatings even when the fluorescence was strongly quenched. Further work to create dye labeled interfaces on flat, uniform and durable substrates is necessary to make electric field measurements at interfaces using field sensitive dyes.

Hayden, Carl C.; Farrow, Roger L.

2011-01-01T23:59:59.000Z

295

Nanodisperse transition metal electrodes (NTME) for electrochemical cells  

DOE Patents (OSTI)

Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.

Striebel, Kathryn A.; Wen, Shi-Jie

1998-12-01T23:59:59.000Z

296

Electrochemical behavior of carbon aerogels derived from different precursors  

DOE Green Energy (OSTI)

The ability to tailor the structure and properties of porous carbons has led to their increased use as electrodes in energy storage devices. Our research focuses on the synthesis and characterization of carbon aerogels for use in electrochemical double layer capacitors. Carbon aerogels are formed from the sol-gel polymerization of (1) resorcinol-formaldehyde or (2) phenolic-furfural, followed by supercritical drying from carbon dioxide, and subsequent pyrolysis in an inert atmosphere. These materials can be produced as monoliths, composites, thin films, powders, or microspheres. In all cases, the areogels have an open-cell structure with an ultrafine pore size (<100 nm), high surface area (400-1 100 m{sup 2}/g), and a solid matrix composed of interconnected particles, fibers, or platelets with characteristic dimensions of 10 nm. This paper examines the effects of the carbon precursor and processing conditions on electrochemical performance in aqueous and organic electrolytes.

Pekala, R.W.; Alviso, C.T.; Nielson, J.K.; Tran, T.D. [Lawrence Livermore National Lab., CA (United States); Reynolds, G.M.; Dresshaus, M.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics

1995-04-01T23:59:59.000Z

297

Argonne Chemical Sciences & Engineering -Electrochemical Energy Storage -  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied R&D Applied R&D * Members * Contact * Publications * Overview EES Home Electrochemical Energy Storage - Applied R&D Lithium-ion Battery Research Argonne National Laboratory's battery research aims to lower the cost and increase the lifetime and safety of high-power lithium-ion batteries for transportation and other applications. Argonne's Electrochemical Energy Storage (EES) Department leads the applied battery R&D program for the U.S. Department of Energy's (DOE's) Vehicle Technologies Program in the Office of Energy Efficiency and Renewable Energy (EERE). This $10 million/year program involves five other DOE laboratories. The program is currently focused on overcoming barriers for lithium-ion (Li-ion) batteries for use in plug-in hybrid electric vehicles (PHEVs),

298

NETL: Electrochemical Membranes for Carbon Dioxide Capture and Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Membranes for Carbon Dioxide Capture and Power Generation Electrochemical Membranes for Carbon Dioxide Capture and Power Generation Project No.: DE-FE0007634 FuelCell Energy, Inc. has developed a novel system concept for the separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane. The proposed membrane has its genesis from the company's patented Direct FuelCell® (DFC®) technology. The prominent feature of the DFC membrane is its capability to produce power while capturing CO2 from the flue gas from a pulverized coal (PC) plant. The DFC membrane does not require flue gas compression as it operates on the principles of electrochemistry, resulting in net efficiency gains. The membrane utilizes a fuel (different from the plant flue gas, such as coal-derived syngas, natural gas, or a renewable resource) as the driver for the combined carbon capture and electric power generation. The electrochemical membrane consists of ceramic-based layers filled with carbonate salts, separating CO2 from the flue gas. Because of the electrode's high reaction rates, the membrane does not require a high CO2 concentration in its feed gas. The planar geometry of the membrane offers ease of scalability to large sizes suitable for deployment in PC plants, which is an important attribute in membrane design. The membrane has been tested at the laboratory scale, verifying the feasibility of the technology for CO2 separation from simulated flue gases of PC plants as well as combined cycle power plants and other industrial facilities. Fuel Cell Energy, Inc. is advancing the technology to a maturity level suitable for adaption by industry for pilot-scale demonstration and subsequent commercial deployment.

299

Surface electrochemical control for fine coal and pyrite separation  

SciTech Connect

This technical progress report, prepared in accordance with the reporting requirements of DOE Project No. DE-AC22-89PC89758, covers the work performed from April 1, 1991 to June 30, 1991. The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. 6 refs., 20 figs.

Hu, Weibai; Huang, Qinping; Riley, A.; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tinghe; Wadsworth, M.E.

1991-01-01T23:59:59.000Z

300

Structures and fabrication techniques for solid state electrochemical devices  

SciTech Connect

Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2008-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Structures and fabrication techniques for solid state electrochemical devices  

DOE Patents (OSTI)

Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

2012-10-09T23:59:59.000Z

302

Calcium alloy as active material in secondary electrochemical cell  

DOE Patents (OSTI)

Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.

Roche, Michael F. (Lombard, IL); Preto, Sandra K. (Stickney, IL); Martin, Allan E. (Woodridge, IL)

1976-01-01T23:59:59.000Z

303

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents (OSTI)

The invention comprises of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb.sub.x Ta.sub.y Ce.sub.1-x-y O.sub.2 where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell (10), characterized by a first electrode (12); an electrically conductive interlayer (14) of niobium and/or tantalum doped cerium oxide deposited over at least a first portion (R) of the first electrode; an interconnect (16) deposited over the interlayer; a solid electrolyte (18) deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode (20) deposited over the solid electrolyte. The interlayer (14) is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode (12), an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer (18) is a dense yttria stabilized zirconium oxide, the interconnect layer (16) is a dense, doped lanthanum chromite, and the second electrode (20), a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell (10) can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy.

Singh, Prabhakar (Export, PA); Vasilow, Theodore R. (Manor, PA); Richards, Von L. (Angola, IN)

1996-01-01T23:59:59.000Z

304

Anode for a secondary, high-temperature electrochemical cell  

DOE Patents (OSTI)

A high-temperature, secondary electrochemical cell includes an anode containing lithium, an electrolyte containing lithium ions and a cathode containing a chalcogen material such as sulfur or a metallic sulfide. The anode includes a porous substrate formed of, for instance, a compacted mass of entangled metallic fibers providing interstitial crevices for receiving molten lithium metal. The surfaces of the interstitial crevices are provided with a coating of cobalt metal to enhance the retention of the molten lithium metal within the substrate.

Vissers, Donald R. (Naperville, IL); Tani, Benjamin S. (Chicago, IL)

1976-01-01T23:59:59.000Z

305

Electrochemical power-producing cell. [Li/Se  

DOE Patents (OSTI)

An electrochemical power-producing cell including a molten lithium metal anode, a molten selenium metal cathode, a paste electrolyte separating the anode from the cathode, an anode current collector, and a single layer of niobium expanded metal formed in corrugated shape as cathode current collector is described. In addition, means are provided for sealing the anode and the cathode from loss of lithium and selenium, respectively, and an insulator is provided between the anode housing and the paste electrolyte disk.

Cairns, E.J.; Chilenskas, A.A.; Steunenberg, R.K.; Shimotake, H.

1972-05-30T23:59:59.000Z

306

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents (OSTI)

The invention is comprised of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb{sub x}Ta{sub y}Ce{sub 1{minus}x{minus}y}O{sub 2} where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same is also described. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell, characterized by a first electrode; an electrically conductive interlayer of niobium and/or tantalum doped cerium oxide deposited over at least a first portion of the first electrode; an interconnect deposited over the interlayer; a solid electrolyte deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode deposited over the solid electrolyte. The interlayer is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode, an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer is a dense yttria stabilized zirconium oxide, the interconnect layer is a dense, doped lanthanum chromite, and the second electrode, a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy. 5 figs.

Singh, P.; Vasilow, T.R.; Richards, V.L.

1996-05-14T23:59:59.000Z

307

Systems, methods and computer readable media for estimating capacity loss in rechargeable electrochemical cells  

DOE Patents (OSTI)

A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples charge characteristics of the electrochemical cell. The computing system periodically determines cell information from the charge characteristics of the electrochemical cell. The computing system also periodically adds a first degradation characteristic from the cell information to a first sigmoid expression, periodically adds a second degradation characteristic from the cell information to a second sigmoid expression and combines the first sigmoid expression and the second sigmoid expression to develop or augment a multiple sigmoid model (MSM) of the electrochemical cell. The MSM may be used to estimate a capacity loss of the electrochemical cell at a desired point in time and analyze other characteristics of the electrochemical cell. The first and second degradation characteristics may be loss of active host sites and loss of free lithium for Li-ion cells.

Gering, Kevin L.

2013-06-18T23:59:59.000Z

308

Electrochemical Promotion of the Ammonia Synthesis with Electrically Promoted Catalyst Pellets  

Science Conference Proceedings (OSTI)

During the last decade, a new application of solid-electrolyte electrochemistry called non-Faradaic electrochemical modification of catalytic activity (NEMCA), or electrochemical promotion of catalysis, has emerged. The catalytic activity of the gas-exposed electrode surface of metal electrodes in solid electrolyte cells is altered dramatically and reversibly upon polarizing the metal-solid electrolyte interface. Electrochemical promotion of ammonia decomposition was studied in an attempt to identify con...

2001-09-10T23:59:59.000Z

309

Electrochemical Performance of Graphene as Effected by Electrode Porosity and Graphene Functionalization  

SciTech Connect

Graphene-based electrodes have recently gained popularity due to their superior electrochemical properties. However, the exact mechanisms of electrochemical activity are not yet understood. Here, we present data from NADH oxidation and ferri/ferrocyanide redox probe experiments to demonstrate that both (i) the porosity of the graphene electrodes, as effected by the packing morphology, and (ii) the functional group and the lattice defect concentration play a significant role on their electrochemical performance.

Punckt, Christian; Pope, Michael A.; Liu, Jun; Lin, Yuehe; Aksay, Ilhan A.

2010-12-01T23:59:59.000Z

310

Techniques for Battery Health Conscious Power Management via Electrochemical Modeling and Optimal Control.  

E-Print Network (OSTI)

??This dissertation combines electrochemical battery models and optimal control theory to study power management in energy storage/conversion systems. This topic is motivated by the need (more)

Moura, Scott J.

2011-01-01T23:59:59.000Z

311

Metallic and bimetallic catalysts for electrochemical reduction of problematic aqueous anions.  

E-Print Network (OSTI)

??Metallic and bimetallic systems are investigated voltammetrically as possible catalysts for the electrochemical reduction of nitrate. Iindium and palladium are the most thoroughly examined metals (more)

Mahle, Thomas

2012-01-01T23:59:59.000Z

312

Electrochemical modeling of lithium-ion positive electrodes during hybrid pulse power characterization tests.  

DOE Green Energy (OSTI)

An electrochemical model was developed to examine hybrid pulsed power characterization (HPPC) tests on the positive electrode of lithium-ion cells. By utilizing the same fundamental equations as in previous electrochemical impedance spectroscopy studies, this investigation serves as an extension of the earlier work and a comparison of the two techniques. The electrochemical model was used to examine performance characteristics and limitations for the positive electrode during HPPC tests. Parametric studies using the electrochemical model and focusing on the positive electrode thickness were employed to examine methods of slowing electrode aging and improving performance.

Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.; Chemical Sciences and Engineering Division; Illinois Inst. of Tech.

2008-01-01T23:59:59.000Z

313

Electrochemical kinetics of thin film vanadium pentoxide cathodes for lithium batteries  

E-Print Network (OSTI)

Electrochemical experiments were performed to investigate the processing-property-performance relations of thin film vanadium pentoxide cathodes used in lithium batteries. Variations in microstructures were achieved via ...

Mui, Simon C., 1976-

2005-01-01T23:59:59.000Z

314

American Indian Science and Engineering Society Annual and National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Indian Science and Engineering Society Annual and National Conference American Indian Science and Engineering Society Annual and National Conference November 7, 2011 -...

315

Lab captures five Society for Technical Communication awards  

NLE Websites -- All DOE Office Websites (Extended Search)

captures five Society for Technical Communication awards Lab captures five Society for Technical Communication awards Reducing Global Threats through Innovative Science and...

316

Society of American Indian Government Employees Annual National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Society of American Indian Government Employees Annual National Training Program Society of American Indian Government Employees Annual National Training Program June 3, 2012...

317

Y-12 Employees' Society | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Employees & Retirees Y-12 Employees' Society Y-12 Employees' Society The annual holiday party for employees and their families is a favorite activity for the Y-12 Employees...

318

American Indian Science and Engineering Society National Conference...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Indian Science and Engineering Society National Conference American Indian Science and Engineering Society National Conference October 30, 2013 8:00AM MDT to November 2,...

319

EPRI Journal, Spring 2013  

Science Conference Proceedings (OSTI)

The EPRI Journal is the flagship publication of the Electric Power Research Institute. The Spring 2013 issue (3002000916) includes a cover story on customer resilience, as well as features on CoSeq sequestration resin for accelerating cleanup of nuclear power plant coolant, TERESA and fine particles in the real world, mitigating the effects of cycling on environmental control equipment, and opportunities presented by a smarter grid and its growing data streams.

2013-05-13T23:59:59.000Z

320

Synthesis and Electrochemical Properties of Monoclinic LiMnBO[subscript 3] as a Li Intercalation Material  

E-Print Network (OSTI)

We investigated the structural stability and electrochemical properties of LiMnBO3 in the hexagonal and monoclinic form with ab initio computations and, for the first time, report electrochemical data on monoclinic ...

Kim, Jae Chul

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Synthesis and Electrochemical Properties of Monoclinic LiMnBO[subscript 3] as a Li Intercalation Material  

E-Print Network (OSTI)

We investigated the structural stability and electrochemical properties of LiMnBO[subscript 3] in the hexagonal and monoclinic form with ab initio computations and, for the first time, report electrochemical data on ...

Kim, Jae Chul

322

Water at an electrochemical interface - a simulation study  

SciTech Connect

The results of molecular dynamics simulations of the properties of water in an aqueous ionic solution close to an interface with a model metallic electrode are described. In the simulations the electrode behaves as an ideally polarizable hydrophilic metal, supporting image charge interactions with charged species, and it is maintained at a constant electrical potential with respect to the solution so that the model is a textbook representation of an electrochemical interface through which no current is passing. We show how water is strongly attracted to and ordered at the electrode surface. This ordering is different to the structure that might be imagined from continuum models of electrode interfaces. Further, this ordering significantly affects the probability of ions reaching the surface. We describe the concomitant motion and configurations of the water and ions as functions of the electrode potential, and we analyze the length scales over which ionic atmospheres fluctuate. The statistics of these fluctuations depend upon surface structure and ionic strength. The fluctuations are large, sufficiently so that the mean ionic atmosphere is a poor descriptor of the aqueous environment near a metal surface. The importance of this finding for a description of electrochemical reactions is examined by calculating, directly from the simulation, Marcus free energy profiles for transfer of charge between the electrode and a redox species in the solution and comparing the results with the predictions of continuum theories. Significant departures from the electrochemical textbook descriptions of the phenomenon are found and their physical origins are characterized from the atomistic perspective of the simulations.

Willard, Adam; Reed, Stewart; Madden, Paul; Chandler, David

2008-08-22T23:59:59.000Z

323

Improved morphology in electrochemically grown conducting polymer films  

DOE Patents (OSTI)

A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol.

Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

1990-12-31T23:59:59.000Z

324

Integrated seal for high-temperature electrochemical device  

DOE Patents (OSTI)

The present invention provides electrochemical device structures having integrated seals, and methods of fabricating them. According to various embodiments the structures include a thin, supported electrolyte film with the electrolyte sealed to the support. The perimeter of the support is self-sealed during fabrication. The perimeter can then be independently sealed to a manifold or other device, e.g., via an external seal. According to various embodiments, the external seal does not contact the electrolyte, thereby eliminating the restrictions on the sealing method and materials imposed by sealing against the electrolyte.

Tucker, Michael C; Jacobson, Craig P

2013-07-16T23:59:59.000Z

325

Method of low temperature operation of an electrochemical cell array  

DOE Patents (OSTI)

A method is described for operating an electrochemical cell generator apparatus containing a generator chamber containing an array of cells having interior and exterior electrodes with solid electrolyte between the electrodes, where a hot gas contacts the outside of the cells and the generating chamber normally operates at over 850 C, where N[sub 2] gas is fed to contact the interior electrode of the cells in any case when the generating chamber temperature drops for whatever reason to within the range of from 550 C to 800 C, to eliminate cracking within the cells. 2 figures.

Singh, P.; Ruka, R.J.; Bratton, R.J.

1994-04-26T23:59:59.000Z

326

Sandia National Laboratories Electrochemical Storage System Abuse Test Procedure Manual  

DOE Green Energy (OSTI)

The series of tests described in this report are intended to simulate actual use and abuse conditions and internally initiated failures that may be experienced in electrochemical storage systems (ECSS). These tests were derived from Failure Mode and Effect Analysis, user input, and historical abuse testing. The tests are to provide a common framework for various ECSS technologies. The primary purpose of testing is to gather response information to external/internal inputs. Some tests and/or measurements may not be required for some ECSS technologies and designs if it is demonstrated that a test is not applicable, and the measurements yield no useful information.

Unkelhaeuser, Terry; Smallwood David

1999-07-01T23:59:59.000Z

327

Electrochemical investigation of the gallium nitride-aqueous electrolyte interface  

SciTech Connect

GaN (E{sub g} = {approximately}3.4 eV) was photoelectrochemically characterized and the energetic position of its bandedges determined with respect to SHE. Electrochemical impedance spectroscopy was employed to analyze the interface, determine the space charge layer capacitance, and, subsequently obtain the flatband potential of GaN in different aqueous electrolytes. The flatband potential of GaN varied at an approximately Nernstian rate in aqueous buffer electrolytes of different pHs indicating acid-base equilibria at the interface.

Kocha, S.S.; Peterson, M.W.; Arent, D.J.; Turner, J.A. [National Renewable Energy Lab., Golden, CO (United States). Photoconversion Branch; Redwing, J.M.; Tischler, M.A. [Advanced Technology Materials, Inc., Danbury, CT (United States)

1995-12-01T23:59:59.000Z

328

Electrochemical cell with high discharge/charge rate capability  

DOE Patents (OSTI)

A fully charged positive electrode composition for an electrochemical cell includes FeS/sub 2/ and NiS/sub 2/ in about equal molar amounts along with about 2 to 20 mole % of the reaction product Li/sub 2/S. Through selection of appropriate electrolyte compositions, high power output or low operating temperatures can be obtained. The cell includes a substantially constant electrode impedance through most of its charge and discharge range. Exceptionally high discharge rates and overcharge protection are obtainable through use of the inventive electrode composition.

Redey, L.

1986-07-28T23:59:59.000Z

329

Non-pulsed electrochemical impregnation of flexible metallic battery plaques  

SciTech Connect

A method of loading active battery material into porous, flexible, metallic battery plaques, comprises the following steps: precipitating nickel hydroxide active material within the plaque, by making the plaque cathodic, at a high current density, in an electro-precipitation cell also containing a consumable nickel anode and a solution comprising nickel nitrate, having a pH of between 2.0 and 2.8; electrochemically oxidizing the precipitate in caustic formation solution; and repeating the electro-precipitation step at a low current density.

Maskalick, Nicholas J. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

330

Corner heating in rectangular solid oxide electrochemical cell generators  

DOE Patents (OSTI)

Disclosed is an improvement in a solid oxide electrochemical cell generator 1 having a rectangular design with four sides that meet at corners, and containing multiplicity of electrically connected fuel cells 11, where a fuel gas is passed over one side of said cells and an oxygen containing gas is passed into said cells, and said fuel is burned to form heat, electricity, and an exhaust gas. The improvement comprises passing the exhaust gases over the multiplicity of cells 11 in such a way that more of the heat in said exhaust gases flows at the corners of the generator, such as through channels 19.

Reichner, Philip (Plum Boro, PA)

1989-01-01T23:59:59.000Z

331

Method of low temperature operation of an electrochemical cell array  

DOE Patents (OSTI)

In the method of operating an electrochemical cell generator apparatus containing a generator chamber (20) containing an array of cells (12) having interior and exterior electrodes with solid electrolyte between the electrodes, where a hot gas (F) contacts the outside of the cells (12) and the generating chamber normally operates at over 850.degree. C., where N.sub.2 gas is fed to contact the interior electrode of the cells (12) in any case when the generating chamber (20) temperature drops for whatever reason to within the range of from 550.degree. C. to 800.degree. C., to eliminate cracking within the cells (12).

Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, PA); Bratton, Raymond J. (Delmont, PA)

1994-01-01T23:59:59.000Z

332

Electrochemical devices utilizing molten alkali metal electrode-reactant  

DOE Patents (OSTI)

Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

1985-07-10T23:59:59.000Z

333

Current status of environmental, health, and safety issues of electrochemical capacitors for advanced vehicle applications  

DOE Green Energy (OSTI)

Electrochemical capacitors are a candidate for traction power assists in hybrid electric vehicles (HEVs). Other advanced automotive applications, while not the primary focus of current development efforts, are also possible. These include load leveling high-energy batteries, power conditioning electronics, electrically hated catalysts, electric power steering, and engine starter power. Higher power and longer cycle life are expected for electrochemical capacitors than for batteries. Evaluation of environmental, health, and safety (EH and S) issues of electrochemical capacitors is an essential part of the development and commercialization of electrochemical capacitors for advanced vehicles. This report provides an initial EH and S assessment. This report presents electrochemical capacitor electrochemistry, materials selection, intrinsic material hazards, mitigation of those hazards, environmental requirements, pollution control options, and shipping requirements. Most of the information available for this assessment pertains to commercial devices intended for application outside the advanced vehicle market and to experiment or prototype devices. Electrochemical capacitors for power assists in HEVs are not produced commercially now. Therefore, materials for advanced vehicle electrochemical capacitors may change, and so would the corresponding EH and S issues. Although changes are possible, this report describes issues for likely electrochemical capacitor designs.

Vimmerstedt, L.J.; Hammel, C.J.

1997-04-01T23:59:59.000Z

334

Electrochemical energy storage device based on carbon dioxide as electroactive species  

DOE Patents (OSTI)

An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

2013-03-05T23:59:59.000Z

335

Systems, methods and computer-readable media to model kinetic performance of rechargeable electrochemical devices  

DOE Patents (OSTI)

A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics. The computing system also analyzes the cell information of the electrochemical cell with a Butler-Volmer (BV) expression modified to determine exchange current density of the electrochemical cell by including kinetic performance information related to pulse-time dependence, electrode surface availability, or a combination thereof. A set of sigmoid-based expressions may be included with the modified-BV expression to determine kinetic performance as a function of pulse time. The determined exchange current density may be used with the modified-BV expression, with or without the sigmoid expressions, to analyze other characteristics of the electrochemical cell. Model parameters can be defined in terms of cell aging, making the overall kinetics model amenable to predictive estimates of cell kinetic performance along the aging timeline.

Gering, Kevin L.

2013-01-01T23:59:59.000Z

336

Scientific Societies, E-print Network -- Energy, science, and technology  

Office of Scientific and Technical Information (OSTI)

Scientific Societies Scientific Societies The Scientific Societies Page provides access to websites of scientific societies and professional associations whose focus is in the natural sciences as well as other related disciplines of interest to the Department of Energy research and development programs, projects, and initiatives. Chinese Dutch English French German Italian Japanese Nordic Russian Spanish/Portuguese Other View list of all societies. Choose desired language(s) and/or discipline(s) and select "Display Societies" button. Display Societies Languages All Languages English Japanese Chinese Nordic Dutch Russian French Spanish-Portuguese German Italian Other Disciplines All Subjects Biology and Medicine Biotechnology Chemistry Computer Technologies and Information Sciences

337

Browse Societies by Language -- E-print Network Societies by Language:  

Office of Scientific and Technical Information (OSTI)

Russian Russian The following scientific society websites represent research and development interests that are within the E-print Network scope. They communicate primarily in Russian or related languages. Some may have minimal English content on the linking pages. Some of these societies may also provide electronic publications and/or information concerning scientific literature published in Russian or related languages. The intent of this compilation is to provide an easy entry point into these scientific communities to encourage the formation of personal contacts among researchers pursuing similar interests. You are currently viewing the page that provides access to Russian language societies. If you wish to view societies in another language, please select

338

Browse Societies by Language -- E-print Network Societies by Language:  

Office of Scientific and Technical Information (OSTI)

Japanese Japanese The following scientific society websites represent research and development interests that are within the E-print Network scope. They communicate primarily in Japanese. Some may have minimal English content on the linking pages. In addition, some of these societies may also provide electronic publications and/or information concerning scientific literature published in Japanese. The intent of this compilation is to provide an easy entry point into these scientific communities to encourage the formation of personal contacts among researchers pursuing similar interests. You are currently viewing the page that provides access to Japanese language societies. If you wish to view societies in another language, please select from the following options.

339

Albert Macrander named American Physical Society Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

Michael Borland named American Physical Society Fellow Michael Borland named American Physical Society Fellow Grad student is officially a GEMS NIU physicist Susan Mini lands NSF grant for APS beamline upgrades Argonne's Campuzano Honored by Hispanic Engineering Bugs in the News APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed Albert Macrander named American Physical Society Fellow DECEMBER 10, 2007 Bookmark and Share Albert Macrander Albert Macrander of the Argonne X-ray Science Division (XSD) has been elected a Fellow of the American Physical Society. The Fellowship citation is for "advancement of x-ray science, x-ray optics, and x-ray measurements on crystals and for his leadership as Editor of the Review of Scientific Instruments."

340

Bulletin of the Seismological Society of America  

E-Print Network (OSTI)

Bulletin of the Seismological Society of America Vol. 69 October 1979 No. 5 GENERALIZED RAY MODELS recorded by many close stations, a more detailed inspection of source processes is required. Present

Greer, Julia R.

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Brookhaven Essay Contest Science and Society  

Energy.gov (U.S. Department of Energy (DOE))

The Science and Society Essay Contest aims to challenge high school students to question and deliberate the purposes and social implications of scientific research. All high school students (9th...

342

Professional Societies: Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Division > Professional About the Division > Professional Societies Director's Welcome Organization Achievements Awards Patents Professional Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Professional Societies Bookmark and Share Employees of the Nuclear Engineering Division are actively involved in many Professional Societies. Some of these are listed below. In addition, some NE employees have received the distinction of being named

343

Taylor Elected to Royal Society of London  

NLE Websites -- All DOE Office Websites (Extended Search)

28 May 1997 28 May 1997 Taylor Elected to Royal Society of London Richard Taylor, physics professor at the Stanford Linear Accelerator Center and 1990 Nobel Prize winner, was recently elected a Fellow of the Royal Society of London, an independent scientific academy founded in 1660 by Christopher Wren, Robert Boyle and Robert Moray. Each year forty new Fellows are elected by merit, not field, and membership is limited to those who are citizens of the Great Britain or the British Commonwealth. Up to six foreign members may also be elected each year. The Society began with the aim of promoting public understanding of science and that aim continues with a broad range of services such as meetings, exhibits and scientific exchanges. The Society motto "Nullius in Verba"

344

New Journal of Physics Publishes Quantum Papers  

Science Conference Proceedings (OSTI)

... NIST Quantum Cryptography Highlighted in New Journal of Physics. Recent research has shown that the security of a key ...

2010-10-05T23:59:59.000Z

345

BNL Biology Department - Journal club  

NLE Websites -- All DOE Office Websites (Extended Search)

Seminars Journal Club September 2012 Not Scheduled February 2013 4 11 18 25 Zhijie Sun Inga Hebbelmann Holiday XiaohongYu October 2012 1 8 15 22 29 Not Scheduled Not Scheduled...

346

On the impact of Gold Open Access journals  

Science Conference Proceedings (OSTI)

Gold Open Access (=Open Access publishing) is for many the preferred route to achieve unrestricted and immediate access to research output. However, true Gold Open Access journals are still outnumbered by traditional journals. Moreover availability of ... Keywords: Directory of Open Access journals (DOAJ), Gold Open Access, Impact analysis, Impact evolution, Journal citation reports (JCR), Journal impact factor, Open Access publishing, SJR, SNIP, Ulrichsweb

Christian Gumpenberger; Mara-Antonia Ovalle-Perandones; Juan Gorraiz

2013-07-01T23:59:59.000Z

347

2004 IEEE Communications Society and Information Theory Society Joint Paper Award  

Science Conference Proceedings (OSTI)

The IEEE Communications Society and Information Theory Society Joint Paper Award for 2004 was presented to G. Caire and S. Shamai for their paper "On the achievable throughput of a multiantenna Gaussian broadcast channel" (ibid., vol. 49, pp. 1691-1706, ...

2005-01-01T23:59:59.000Z

348

Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries  

SciTech Connect

Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

2011-09-14T23:59:59.000Z

349

Electrochemically adsorbed Pb on Ag (111) studied with grazing- incidence x-ray scattering  

SciTech Connect

Grazing-incidence x-ray scattering studies of the evolution of electrochemically deposited layers of lead on silver (111) as a function of applied electrochemical potential are presented. Measurements were made with the adsorbed layers in contact with solution in a specially designed sample cell. The observed lead structures are a function of the applied potential and range from an incommensurate monolayer, resulting from underpotential deposition, to randomly oriented polycrystalline bulk lead, resulting from lower deposition potentials. These early experiments demonstrate the ability of in situ x-ray diffraction measurements to determine structures associated with electrochemical deposition. 6 refs., 4 figs.

Kortright, J.B.; Ross, P.N.; Melroy, O.R.; Toney, M.F.; Borges, G.L.; Samant, M.G.

1989-04-01T23:59:59.000Z

350

Argonne Chemical Sciences & Engineering - People - Electrochemical Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Development Technology Development Khalil Amine, Argonne Distinguished Fellow, Senior Materials Scientist, Group Leader phone: 630/252-3838, fax: 630/972-4451, e-mail: amine@anl.gov Ph.D. (Material Science, with high honor): University of Bordeaux 1, France Fluorine chemistry, carbon chemistry, intercalation chemistry, fuel cell polymer chemistry, and advanced electrochemical devices and battery materials Ali Abouimrane, Materials Scientist phone: 630/252-3729, e-mail: abouimrane@anl.gov Ph.D., Physical Chemistry, Hassan II University, Morocco Works on the synthesis, characterization and optimization of electrode and electrolyte materials for high energy/power lithium and sodium batteries to be utilized in PHEV, EV and smart grid applications Ilias Belharouak, Chemist/Materials Scientist

351

DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION  

SciTech Connect

The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

Barry L. Burks

2002-12-01T23:59:59.000Z

352

Electrochemical Evaluation of Pyrite Films Prepared by Plasma Spraying  

DOE Green Energy (OSTI)

Thermally activated batteries use electrodes that are typically fabricated by cold pressing of powder. In the LiSi/FeS2 system, natural (mineral) pyrite is used for the cathode. In an effort to increase the energy density and specific energy of these batteries, flame and plasma spraying to form thin films of pyrite cathodes were evaluated. The films were deposited on a 304 stainless steel substrate (current collector) and were characterized by scanning electron microscopy and x-ray dlfllaction. The films were electrochemically tested in single cells at 5000C and the petiormance compared to that of standard cells made with cold-pressed powders. The best results were obtained with material deposited by de-arc plasma spraying with a proprietq additive to suppress thermal decomposion of the pyrite.

Guidotti, R.A.; Reinhardt, F.W.

1998-10-30T23:59:59.000Z

353

Electrochemical Experiments Used to Study Li-ion Batteries  

DOE Green Energy (OSTI)

This is the third of three talks on nanostructures for Li-ion batteries. The talks provide an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standard experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.

Mukaibo, Hitomi (University of Florida, Martin Research Group)

2010-06-04T23:59:59.000Z

354

Battery paste compositions and electrochemical cells for use therewith  

DOE Patents (OSTI)

An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition are disclosed. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinyl sulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness. 2 figs.

Olson, J.B.

1999-02-16T23:59:59.000Z

355

Automatic electrochemical ambient air monitor for chloride and chlorine  

DOE Patents (OSTI)

An electrochemical monitoring system has been provided for determining chloride and chlorine in air at levels of from about 10-1000 parts per billion. The chloride is determined by oxidation to chlorine followed by reduction to chloride in a closed system. Chlorine is determined by direct reduction at a platinum electrode in 6 M H.sub.2 SO.sub.4 electrolyte. A fully automated system is utilized to (1) acquire and store a value corresponding to electrolyte-containing impurities, (2) subtract this value from that obtained in the presence of air, (3) generate coulometrically a standard sample of chlorine mixed with air sample, and determine it as chlorine and/or chloride, and (4) calculate, display, and store for permanent record the ratio of the signal obtained from the air sample and that obtained with the standard.

Mueller, Theodore R. (Oak Ridge, TN)

1976-07-13T23:59:59.000Z

356

Battery paste compositions and electrochemical cells for use therewith  

DOE Patents (OSTI)

An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinylsulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness.

Olson, John B. (Boulder, CO)

1999-02-16T23:59:59.000Z

357

Battery paste compositions and electrochemical cells for use therewith  

DOE Patents (OSTI)

An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinylsulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness.

Olson, John B. (Boulder, CO)

1999-12-07T23:59:59.000Z

358

Method of making an electrolyte for an electrochemical cell  

SciTech Connect

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN)

1996-01-01T23:59:59.000Z

359

Characterization of electrochemical systems and batteries: Materials and systems  

SciTech Connect

Materials are a pacing problem in battery development. The battery environment, particularly in rechargeable batteries, places great demands on materials. Characterization of battery materials is difficult because of their complex nature. In many cases meaningful characterization requires iii situ methods. Fortunately, several new electrochemical and spectroscopic techniques for in situ characterization studies have recently become available, and reports of new techniques have become more frequent. The opportunity now exists to utilize advanced instrumentation to define detailed features, participating chemical species and interfacial structure of battery materials with a precision heretofore not possible. This overview gives key references to these techniques and discusses the application of x-ray absorption spectroscopy to the study of battery materials.

McBreen, J.

1992-01-01T23:59:59.000Z

360

Characterization of electrochemical systems and batteries: Materials and systems  

SciTech Connect

Materials are a pacing problem in battery development. The battery environment, particularly in rechargeable batteries, places great demands on materials. Characterization of battery materials is difficult because of their complex nature. In many cases meaningful characterization requires iii situ methods. Fortunately, several new electrochemical and spectroscopic techniques for in situ characterization studies have recently become available, and reports of new techniques have become more frequent. The opportunity now exists to utilize advanced instrumentation to define detailed features, participating chemical species and interfacial structure of battery materials with a precision heretofore not possible. This overview gives key references to these techniques and discusses the application of x-ray absorption spectroscopy to the study of battery materials.

McBreen, J.

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

1989-01-01T23:59:59.000Z

362

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Riley, B.; Szreders, B.E.

1988-04-26T23:59:59.000Z

363

Method of preparing an electrochemical cell in uncharged state  

DOE Patents (OSTI)

A secondary electrochemical cell is assembled in an uncharged state for the preparation of a lithium alloy-transition metal sulfide cell. The negative electrode includes a material such as aluminum or silicon for alloying with lithium as the cell is charged. The positive electrode is prepared by blending particulate lithium sulfide, transition metal powder and electrolytic salt in solid phase. The mixture is simultaneously heated to a temperature in excess of the melting point of the electrolyte and pressed onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within the cell. During the first charge cycle lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode.

Shimotake, Hiroshi (Hinsdale, IL); Bartholme, Louis G. (Joliet, IL); Arntzen, John D. (Naperville, IL)

1977-02-01T23:59:59.000Z

364

Electrochemical method of producing nano-scaled graphene platelets  

DOE Patents (OSTI)

A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NO.sub.x and SO.sub.x, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

Zhamu, Aruna; Jang, Joan; Jang, Bor Z.

2013-09-03T23:59:59.000Z

365

Method of making an electrolyte for an electrochemical cell  

DOE Patents (OSTI)

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.

Bates, J.B.; Dudney, N.J.

1996-04-30T23:59:59.000Z

366

Electrochemical Deposition of Iron Nanoneedles on Titanium Oxide Nanotubes  

Science Conference Proceedings (OSTI)

Iron as a catalyst has wide applications for hydrogen generation from ammonia, photodecomposition of organics, and carbon nanotube growth. Tuning the size and shape of iron is meaningful for improving the catalysis efficiency. It is the objective of this work to prepare nanostructured iron with high surface area via electrochemical deposition. Iron nanoneedles were successfully electrodeposited on Ti supported TiO2 nanotube arrays in a chlorine-based electrolyte containing 0.15 M FeCl2 {center_dot} 4H2O and 2.0 M HCl. Transmission electron microscopic analysis reveals that the average length of the nanoneedles is about 200 nm and the thickness is about 10 nm. It has been found that a high overpotential at the cathode made of Ti/TiO2 nanotube arrays is necessary for the formation of the nanoneedles. Cyclic voltammetry test indicates that the electrodeposition of iron nanoneedles is a concentration-limited process.

Gan Y. X.; Zhang L.; Gan B.J.

2011-10-01T23:59:59.000Z

367

Electrochemical method of producing eutectic uranium alloy and apparatus  

DOE Patents (OSTI)

An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

Horton, James A. (Livermore, CA); Hayden, H. Wayne (Oakridge, TN)

1995-01-01T23:59:59.000Z

368

Electrochemical processing of nitrate waste solutions. Phase 2, Final report  

SciTech Connect

The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F{sup {minus}} ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions.

Genders, D.; Weinberg, N.; Hartsough, D. [Electrosynthesis Co., Inc., Cheektowaga, NY (US)

1992-10-07T23:59:59.000Z

369

JV Task-121 Electrochemical Synthesis of Nitrogen Fertilizers  

DOE Green Energy (OSTI)

An electrolytic renewable nitrogen fertilizer process that utilizes wind-generated electricity, N{sub 2} extracted from air, and syngas produced via the gasification of biomass to produce nitrogen fertilizer ammonia was developed at the University of North Dakota Energy & Environmental Research Center. This novel process provides an important way to directly utilize biosyngas generated mainly via the biomass gasification in place of the high-purity hydrogen which is required for Haber Bosch-based production of the fertilizer for the production of the widely used nitrogen fertilizers. Our preliminary economic projection shows that the economic competitiveness of the electrochemical nitrogen fertilizer process strongly depends upon the cost of hydrogen gas and the cost of electricity. It is therefore expected the cost of nitrogen fertilizer production could be considerably decreased owing to the direct use of cost-effective 'hydrogen-equivalent' biosyngas compared to the high-purity hydrogen. The technical feasibility of the electrolytic process has been proven via studying ammonia production using humidified carbon monoxide as the hydrogen-equivalent vs. the high-purity hydrogen. Process optimization efforts have been focused on the development of catalysts for ammonia formation, electrolytic membrane systems, and membrane-electrode assemblies. The status of the electrochemical ammonia process is characterized by a current efficiency of 43% using humidified carbon monoxide as a feedstock to the anode chamber and a current efficiency of 56% using high-purity hydrogen as the anode gas feedstock. Further optimization of the electrolytic process for higher current efficiency and decreased energy consumption is ongoing at the EERC.

Junhua Jiang; Ted Aulich

2008-11-30T23:59:59.000Z

370

JV Task-121 Electrochemical Synthesis of Nitrogen Fertilizers  

SciTech Connect

An electrolytic renewable nitrogen fertilizer process that utilizes wind-generated electricity, N{sub 2} extracted from air, and syngas produced via the gasification of biomass to produce nitrogen fertilizer ammonia was developed at the University of North Dakota Energy & Environmental Research Center. This novel process provides an important way to directly utilize biosyngas generated mainly via the biomass gasification in place of the high-purity hydrogen which is required for Haber Bosch-based production of the fertilizer for the production of the widely used nitrogen fertilizers. Our preliminary economic projection shows that the economic competitiveness of the electrochemical nitrogen fertilizer process strongly depends upon the cost of hydrogen gas and the cost of electricity. It is therefore expected the cost of nitrogen fertilizer production could be considerably decreased owing to the direct use of cost-effective 'hydrogen-equivalent' biosyngas compared to the high-purity hydrogen. The technical feasibility of the electrolytic process has been proven via studying ammonia production using humidified carbon monoxide as the hydrogen-equivalent vs. the high-purity hydrogen. Process optimization efforts have been focused on the development of catalysts for ammonia formation, electrolytic membrane systems, and membrane-electrode assemblies. The status of the electrochemical ammonia process is characterized by a current efficiency of 43% using humidified carbon monoxide as a feedstock to the anode chamber and a current efficiency of 56% using high-purity hydrogen as the anode gas feedstock. Further optimization of the electrolytic process for higher current efficiency and decreased energy consumption is ongoing at the EERC.

Junhua Jiang; Ted Aulich

2008-11-30T23:59:59.000Z

371

Synergistic Effect of Fullerene-Capped Gold Nanoparticles on Graphene Electrochemical Supercapacitors  

E-Print Network (OSTI)

Based Materials as Supercapacitor Electrodes, Journal ofwhich was used to con- struct supercapacitor electrodes. Thegraphene sheets for supercapacitor electrodes. 2. Experiment

Yong, Virginia; Hahn, H. Thomas

2013-01-01T23:59:59.000Z

372

Chinese Journal of Polymer Science Vol. 29, No. 1, (2011), 117123 Chinese Journal of Polymer Science Chinese Chemical Society  

E-Print Network (OSTI)

communication and is used to control the intensity of light within an optical system. It is operated at 1) region (e.g. 10002000 nm), particularly that can attenuate 1310 nm or 1550 nm light, have received) for telecommunications[46] . ECVOA is a key component in advanced wavelength division multiplexed networks in fiber-optic

Wan, Xin-hua

373

American Nuclear Society recognizes Roger W. Tilbrook  

NLE Websites -- All DOE Office Websites (Extended Search)

American Nuclear Society recognizes Roger W. Tilbrook Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share American Nuclear Society recognizes Roger W. Tilbrook Roger W. Tilbrook, Argonne National Laboratory Nuclear Engineer Roger W. Tilbrook has been recognized for his decades of dedicated service to the American Nuclear Society.

374

Colorado Renewable Energy Society | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Society Renewable Energy Society Name Colorado Renewable Energy Society Address PO Box 933 Place Golden, Colorado Zip 80402 Region Rockies Area Notes Works for the sensible adoption of cost-effective energy efficiency and renewable energy technologies by Colorado businesses and consumers. Website http://www.cres-energy.org/ Coordinates 39.7559°, -105.2207° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7559,"lon":-105.2207,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Texas Solar Energy Society | Open Energy Information  

Open Energy Info (EERE)

Texas Solar Energy Society Texas Solar Energy Society Name Texas Solar Energy Society Address P. O. Box 1447 Place Austin, Texas Zip 78767 Region Texas Area Website http://www.txses.org/solar/ Notes Non-profit organization with a long history of solar and renewable energy outreach and education Coordinates 30.2667°, -97.7428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2667,"lon":-97.7428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Amana Society Service Co | Open Energy Information  

Open Energy Info (EERE)

Amana Society Service Co Amana Society Service Co Jump to: navigation, search Name Amana Society Service Co Place Iowa Utility Id 471 Utility Location Yes Ownership I NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1250/kWh Commercial: $0.1200/kWh Industrial: $0.0859/kWh The following table contains monthly sales and revenue data for Amana

377

NERSC Journal Cover Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

NatureCoverLarge.png NatureCoverLarge.png High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding September 30, 2004 | Author(s): C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary & W. P. Leemans | Source: Nature | Category: Fusion Energy | URL: http://dx.doi.org/10.1038/nature02900 Download Image: NatureCoverLarge.png | png | 2.7 MB 30 September 2004, Vol. 431, pp. 541-544 PhysTodayCoverLarge.png Integrated Simulation of Fusion Plasmas February 1, 2005 | Author(s): Donald B. Batchelor | Source: Physics Today | Category: Fusion Energy | URL: http://ptonline.aip.org/journals/doc/PHTOAD-ft/vol_58/iss_2/35_1.shtml Download Image: PhysTodayCoverLarge.png | png | 329 KB February 2005, Vol. 58 (2), pp. 35-40

378

NERSC Journal Cover Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

CEN-Cover.png CEN-Cover.png Graphene Moves Toward Applications November 21, 2011 | Author(s): Donghai Mei, et al. | Category: Chemistry | URL: http://dx.doi.org/10.1021/nl203332e Download Image: CEN-Cover.png | png | 986 KB Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. See also http://pubs.acs.org/NanoLett (2011) 11, 5071-5078 SotirisCoverJPCBLarge.jpg Computational Investigation of the First Solvation Shell Structure of Interfacial and Bulk Aqueous Chloride and Iodide Ions November 14, 2008 | Author(s): Collin D. Wick, and Sotiris S. Xantheas | Source: The Journal of Physical Chemistry B | Category: Chemistry | URL: http://dx.doi.org/10.1021/jp806782r Download Image: SotirisCoverJPCBLarge.jpg | jpg | 1.1 MB 2009, Vol. 113 (13), pp. 4141-4146 ACSCatalysis2013Mei.png

379

INPA Journal Club  

NLE Websites -- All DOE Office Websites (Extended Search)

Location and Directions Location and Directions The Institute is located in the Building 50 complex. The Administrative office is in Building 50, room 5005 and the Institute Common Room (meeting area, seminar room, lounge, etc.) is in room 50-5026. Most of the scientists associated with INPA are located in the Building 50 complex near the Common Room. The Institute may be reached by: Email: inpa.lbl.gov Telephone (510) 486-5074, (510) 486-4384 Fascimile (510) 486-6738 Post: MS 50R5008 Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 The Administrative Office is staffed by Cathy Thompson, Anytra Henderson and Tami Blackwell Directions for INPA Journal Club Speakers To LBNL by Car: Route I-80 to LBNL Leave the freeway at the University Avenue exit Take University Ave. east to Oxford Street (over a mile).

380

journal Environmental Health Perspectives  

NLE Websites -- All DOE Office Websites (Extended Search)

Pollutant exposures from unvented gas cooking burners A simulation Pollutant exposures from unvented gas cooking burners A simulation based assessment for Southern California journal Environmental Health Perspectives year month abstract p Background Residential natural gas cooking burners NGCBs can emit substantial quantities of pollutants and they are typically used without venting p p Objective Quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes p p Methods A mass balance model was applied to estimate time dependent pollutant concentrations throughout homes and the exposure concentrations experienced by individual occupants The model was applied to estimate nitrogen dioxide NO2 carbon monoxide CO and formaldehyde HCHO concentrations for one week each in summer and winter for a representative sample

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

journal Solid State Ionics  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural and transport properties of Nafion in hydrobromic Structural and transport properties of Nafion in hydrobromic acid solutions journal Solid State Ionics year month abstract p Proton exchange membranes are key solid state ion carriers in many relevant energy technologies including flow batteries fuel cells and solar fuel generators In many of these systems the membranes are in contact with electrolyte solutions In this paper we focus on the impact of different HBr a flow battery and exemplary acid electrolyte external concentrations on the conductivity of Nafion a perfluorosulfonic acid membrane that is commonly used in many energy related applications The peak and then decrease in conductivity is correlated with measured changes in the water and HBr content within the membrane In addition small angle x ray scattering is used to probe the nanostructure to

382

A multiscale study of atomic interactions in the electrochemical double layer applied to electrocatalysis  

E-Print Network (OSTI)

This work is an integrated study of chemical and electrostatic interactions in the electrochemical double layer, and their significance for accurate prediction of reaction kinetics in electrocatalysis. First, a kinetic ...

Bonnet, Nicphore

2011-01-01T23:59:59.000Z

383

Material protection, control and accounting cooperation at the Urals Electrochemical Integrated Plant (UEIP), Novouralsk, Russia  

Science Conference Proceedings (OSTI)

The Urals Electrochemical Integrated Plant is one of the Russian Ministry of Atomic Energy`s nuclear material production sites participating in the US Department of Energy`s Material Protection, Control and Accounting (MPC&A) Program. The Urals Electrochemical Integrated Plant is Russia`s largest uranium enrichment facility and blends tons of high-enriched uranium into low enriched uranium each year as part of the US high-enriched uranium purchase. The Electrochemical Integrated Plant and six participating national laboratories are cooperating to implement a series of enhancements to the nuclear material protection, control, and accountability systems at the site This paper outlines the overall objectives of the MPC&A program at Urals Electrochemical Integrated Plant and the work completed as of the date of the presentation.

McAllister, S., LLNL

1998-07-15T23:59:59.000Z

384

Electrochemical Windows of Sulfone-Based Electrolytes for High-Voltage Li-Ion Batteries  

Science Conference Proceedings (OSTI)

Further development of high-voltage lithium-ion batteries requires electrolytes with electrochemical windows greater than 5 V. Sulfone-based electrolytes are promising for such a purpose. Here we compute the electrochemical windows for experimentally tested sulfone electrolytes by different levels of theory in combination with various solvation models. The MP2 method combined with the polarizable continuum model is shown to be the most accurate method to predict oxidation potentials of sulfone-based electrolytes with mean deviation less than 0.29 V. Mulliken charge analysis shows that the oxidation happens on the sulfone group for ethylmethyl sulfone and tetramethylene sulfone, and on the ether group for ether functionalized sulfones. Large electrochemical windows of sulfone-based electrolytes are mainly contributed by the sulfone group in the molecules which helps lower the HOMO level. This study can help understand the voltage limits imposed by the sulfone-based electrolytes and aid in designing new electrolytes with greater electrochemical windows.

Shao, Nan [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL; Jiang, Deen [ORNL

2011-01-01T23:59:59.000Z

385

Electrochemical Synthesis of AB5-type RE-Ni Based Alloys Via FFC ...  

Science Conference Proceedings (OSTI)

Cathodic Behavior of Silicon (?) in BaF2-CaF2 SiO2 Melts ... Electrochemical Impedance Spectroscopy of Uranium Chloride in Molten LiCl-KCl Eutectic.

386

On the Preparation of Mg2Ni Alloy by a New Electrochemical Method  

Science Conference Proceedings (OSTI)

Cathodic Behavior of Silicon (?) in BaF2-CaF2 SiO2 Melts ... Electrochemical Impedance Spectroscopy of Uranium Chloride in Molten LiCl-KCl Eutectic.

387

Electrochemical Preparation of Ti2AlC in Molten Chloride Bath  

Science Conference Proceedings (OSTI)

Cathodic Behavior of Silicon (?) in BaF2-CaF2 SiO2 Melts ... Electrochemical Impedance Spectroscopy of Uranium Chloride in Molten LiCl-KCl Eutectic.

388

Methanol electrochemical conversion to formaldehyde over bulk metal and supported catalysts.  

E-Print Network (OSTI)

??The electrochemical oxidation of 1.0 M CH3OH in 0.1 M H2SO4 over different types of platinum-ruthenium (PtRu) materials was investigated. Focus was on the determination (more)

Islam, Mohsina

2006-01-01T23:59:59.000Z

389

Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries  

E-Print Network (OSTI)

Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium** Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA Lithium cells that use organic electrolytes. The equilibrium reaction potential of lithium titanium phosphate

Cui, Yi

390

Modeling integrated photovoltaic-electrochemical devices using steady-state equivalent circuits  

E-Print Network (OSTI)

We describe a framework for efficiently coupling the power output of a series-connected string of single-band-gap solar cells to an electrochemical process that produces storable fuels. We identify the fundamental efficiency ...

Winkler, Mark Thomas

391

Electrochemical in-situ reaction cell for X-ray scattering, diffraction and spectroscopy  

DOE Green Energy (OSTI)

An electrochemical in-situ reaction cell for hard X-ray experiments with battery electrodes is described. Applications include the small angle scattering, diffraction, and near-edge spectroscopy of lithium manganese oxide electrodes.

Braun, Artur; Granlund, Eric; Cairns, Elton J.

2003-01-27T23:59:59.000Z

392

Method for transferring thermal energy and electrical current in thin-film electrochemical cells  

DOE Patents (OSTI)

An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

2003-05-27T23:59:59.000Z

393

Electrochemical Behavior of Disposable Electrodes Prepared by Ion Beam Based Surface Modification for Biomolecular Recognition  

SciTech Connect

Many important technological advances have been made in the development of technologies to monitor interactions and recognition events of biomolecules in solution and on solid substrates. The development of advanced biosensors could impact significantly the areas of genomics, proteomics, biomedical diagnostics and drug discovery. In the literature, there have recently appeared an impressive number of intensive designs for electrochemical monitoring of biomolecular recognition. Herein, the influence of ion implanted disposable graphite electrodes on biomolecular recognition and their electrochemical behaviour was investigated.

Erdem, A.; Karadeniz, H.; Caliskan, A. [Analytical Chemistry Department, Ege University, Faculty of Pharmacy, Bornova, Izmir 35100 (Turkey); Urkac, E. Sokullu; Oztarhan, A. [Bioengineering Department, Ege University, Bornova, Izmir 35100 (Turkey); Oks, E.; Nikolayev, A. [High Current Electronics, Institute, Tomsk (Russian Federation)

2009-03-10T23:59:59.000Z

394

Artifact-mediated society and social intelligence design  

Science Conference Proceedings (OSTI)

Human society is increasingly dependent on artifacts. The progress of artificial intelligence accelerates this tendency. In spite of strong concern about heavy dependence on artifacts, it appears an inevitable consequence of the knowledge society. In ...

Toyoaki Nishida

2009-01-01T23:59:59.000Z

395

Royal Agricultural and Horticultural Society of South Australia | Open  

Open Energy Info (EERE)

and Horticultural Society of South Australia and Horticultural Society of South Australia Jump to: navigation, search Name Royal Agricultural and Horticultural Society of South Australia Place South Australia, Australia Zip SA 5034 Sector Buildings, Solar Product South-Australia-based agricultural and horticultural society. The society is installing 1MW solar power systems on six separate buildings. References Royal Agricultural and Horticultural Society of South Australia[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Royal Agricultural and Horticultural Society of South Australia is a company located in South Australia, Australia . References ↑ "Royal Agricultural and Horticultural Society of South

396

Resource Letter PSNAC-1: Physics and society: Nuclear arms control  

Science Conference Proceedings (OSTI)

This Resource Letter provides a guide to the literature on nuclear arms control for the nonspecialist. Journal articles and books are cited for the following topics: nuclear weapons

Alexander Glaser; Zia Mian

2008-01-01T23:59:59.000Z

397

Exploratory Technology Research Program for electrochemical energy storage. Annual report fr 1994  

DOE Green Energy (OSTI)

The US Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The ETR Program is divided into three major program elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each program element are summarized according to the appropriate battery system or electrochemical research area.

Kinoshita, K. [ed.

1995-09-01T23:59:59.000Z

398

SC e-journals, Engineering  

Office of Scientific and Technical Information (OSTI)

Engineering Engineering ACM Transactions on Design Automation of Electronic Systems (TODAES) ACM Transactions on Embedded Computing Systems (TECS) ACS Nano Acta Mechanica Acta Mechanica Sinica Adsorption Advanced Engineering Materials Advanced Powder Technology Advanced Robotics Advances in Computational Mathematics Advances In Engineering Software Advances in Materials Science and Engineering - OAJ Advances in Mathematical Engineering - OAJ Advances in Optics and Photonics AlChE Journal Algorithmica American Journal of Engineering and Applied Sciences - OAJ Analog Integrated Circuits and Signal Processing Annals of Nuclear Energy Annual Review of Fluid Mechanics Annual Review of Materials Research Applicable Algebra in Engineering, Communication and Computing Applied Composite Materials

399

Browse Societies by Language -- E-print Network Societies by Language:  

Office of Scientific and Technical Information (OSTI)

English English The following scientific society websites represent research and development interests that are within the E-print Network scope. They communicate primarily in English. In addition, some of these societies may also provide electronic publications and/or information concerning scientific literature published in English. The intent of this compilation is to provide an easy entry point into these scientific communities to encourage the formation of personal contacts among researchers pursuing similar interests. You are currently viewing the page that provides access to English language societies. If you wish to view societies in another language, please select from the following options. Chinese Dutch French German Italian Japanese Nordic Russian Spanish and Portuguese

400

Browse Societies by Language -- E-print Network Societies by Language:  

Office of Scientific and Technical Information (OSTI)

Spanish and Portuguese Spanish and Portuguese The following scientific society websites represent research and development interests that are within the E-print Network scope. They communicate primarily in Spanish, Portuguese, or Catalan. Some may have minimal English content on the linking pages. In addition, some of these societies may also provide electronic publications and/or information concerning scientific literature published in Spanish, Portuguese, or Catalan. The intent of this compilation is to provide an easy entry point into these scientific communities to encourage the formation of personal contacts among researchers pursuing similar interests. You are currently viewing the page that provides access to Spanish and Portuguese language societies. If you wish to view societies in another

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Browse Societies by Language -- E-print Network Societies by Language:  

Office of Scientific and Technical Information (OSTI)

Chinese Chinese The following scientific society websites represent research and development interests that are within the E-print Network scope. They communicate primarily in Chinese. Some may have minimal English content on the linking pages. In addition, some of these societies may also provide electronic publications and/or information concerning scientific literature published in Chinese. The intent of this compilation is to provide an easy entry point into these scientific communities to encourage the formation of personal contacts among researchers pursuing similar interests. You are currently viewing the page that provides access to Chinese language societies. If you wish to view societies in another language, please select from the following options. Dutch

402

Browse Societies by Language -- E-print Network Societies by Language:  

Office of Scientific and Technical Information (OSTI)

Other Other The following scientific society websites represent research and development interests that are within the E-print Network scope, but are in a language not found on one of the other lists of Scientific Societies. These sites may have some minimal English content on the linking pages. In addition, some of these societies may also provide electronic publications and/or information concerning scientific literature published in alternative languages. The intent of this compilation is to provide an easy entry point into these scientific communities to encourage the formation of personal contacts among researchers pursuing similar interests. You are currently viewing the page that provides access to societies in languages other than one of the primary languages. If you wish to view

403

Browse Societies by Language -- E-print Network Societies by Language:  

Office of Scientific and Technical Information (OSTI)

French French The following scientific society websites represent research and development interests that are within the E-print Network scope. They communicate in French. Some may have minimal English content on the linking pages. In addition, some of these societies may also provide electronic publications and/or information concerning scientific literature published in French. The intent of this compilation is to provide an easy entry point into these scientific communities to encourage the formation of personal contacts among researchers pursuing similar interests. You are currently viewing the page that provides access to French language societies. If you wish to view societies in another language, please select from the following options. Chinese Dutch English

404

Browse Societies by Language -- E-print Network Societies by Language:  

Office of Scientific and Technical Information (OSTI)

Dutch Dutch The following scientific society websites represent research and development interests that are within the E-print Network scope. They communicate primarily in Dutch. Some may have English content on the linking pages. In addition, some of these societies may also provide electronic publications and/or information concerning scientific literature published in Dutch. The intent of this compilation is to provide an easy entry point into these scientific communities to encourage the formation of personal contacts among researchers pursuing similar interests. You are currently viewing the page that provides access to Dutch language societies. If you wish to view societies in another language, please select from the following options. Chinese English French

405

Browse Societies by Language -- E-print Network Societies by Language:  

Office of Scientific and Technical Information (OSTI)

Nordic Nordic The following scientific society websites represent research and development interests that are within the E-print Network scope. They communicate primarily in one of the Nordic languages. Some may have minimal English content on the linking pages. Some of these societies may also provide electronic publications and/or information concerning scientific literature published in Nordic languages. The intent of this compilation is to provide an easy entry point into these communities in the Nordic region and to encourage the formation of personal contacts among researchers pursuing similar interests. You are currently viewing the page that provides access to Nordic language societies. If you wish to view societies in another language, please select from the following options.

406

Browse Societies by Language -- E-print Network Societies by Language:  

Office of Scientific and Technical Information (OSTI)

German German The following scientific society websites represent research and development interests that are within the E-print Network scope. They communicate primarily in German. Some may have English content on the linking pages. In addition, some of these societies may also provide electronic publications and/or information concerning scientific literature published in German. The intent of this compilation is to provide an easy entry point into these scientific communities to encourage the formation of personal contacts among researchers pursuing similar interests. You are currently viewing the page that provides access to German language societies. If you wish to view societies in another language, please select from the following options. Chinese Dutch English

407

Browse Societies by Language -- E-print Network Societies by Language:  

Office of Scientific and Technical Information (OSTI)

Italian Italian The following scientific society websites represent research and development interests that are within the E-print Network scope. They communicate primarily in Italian. Some may have minimal English content on the linking pages. In addition, some of these societies may also provide electronic publications and/or information concerning scientific literature published in Italian. The intent of this compilation is to provide an easy entry point into these scientific communities to encourage the formation of personal contacts among researchers pursuing similar interests. You are currently viewing the page that provides access to Italian language societies. If you wish to view societies in another language, please select from the following options. Chinese

408

Energy, the Environment, and Society Spring 2013  

E-Print Network (OSTI)

1 Energy, the Environment, and Society Spring 2013 MW 3-4:30pm, L1118 ES&T Prof. Kim Cobb Email for a sustainable energy future involves balancing a series of oftentimes competing goals. On the one hand, continued population growth, combined with increased energy consumption by citizens in ever

Weber, Rodney

409

NEWS FROM THE ROYAL SOCIETY SPRING 2009  

E-Print Network (OSTI)

of separated plutonium stockpiled in the UK ­ currently the highest in the world. With support from our Plutonium Working Group, the Society has submitted detailed comment to the Nuclear Decommissioning Authority of a geological repository for radioactive waste. A late decision to incorporate plutonium disposal at such a site

Rambaut, Andrew

410

Medical research: assessing the benefits to society  

E-Print Network (OSTI)

May 2006 Medical research: assessing the benefits to society A report by the UK Evaluation Forum, supported by the Academy of Medical Sciences, Medical Research Council and Wellcome Trust. #12;The independent Academy of Medical Sciences promotes advances in medical science and campaigns to ensure

Maizels, Rick

411

The Use of Electrochemical Techniques to Characterize Wet Steam Environments  

SciTech Connect

The composition of a steam phase in equilibrium with a water phase at high temperature is remarkably affected by the varying capabilities of the water phase constituents to partition into the steam. Ionic impurities (sodium, chloride, sulfate, etc.) tend to remain in the water phase, while weakly ionic or gaseous species (oxygen) partition into the steam. Analysis of the water phase can provide misleading results concerning the steam phase composition or environment. This paper describes efforts that were made to use novel electrochemical probes and sampling techniques to directly characterize a wet steam phase environment in equilibrium with high temperature water. Probes were designed to make electrochemical measurements in the thin film of water existing on exposed surfaces in steam over a water phase. Some of these probes were referenced against a conventional high temperature electrode located in the water phase. Others used two different materials (typically tungsten and platinum) to make measurements without a true reference electrode. The novel probes were also deployed in a steam space removed from the water phase. It was necessary to construct a reservoir and an external, air-cooled condenser to automatically keep the reservoir full of condensed steam. Conventional reference and working electrodes were placed in the water phase of the reservoir and the novel probes protruded into the vapor space above it. Finally, water phase probes (both reference and working electrodes) were added to the hot condensed steam in the external condenser. Since the condensing action collapsed the volatiles back into the water phase, these electrodes proved to be extremely sensitive at detecting oxygen, which is one of the species of highest concern in high temperature power systems. Although the novel steam phase probes provided encouraging initial results, the tendency for tungsten to completely corrode away in the steam phase limited their usefulness. However, the conventional water phase electrodes, installed both in the reservoir and in the external condensing coil, provided useful data showing the adverse impact of oxygen and carbon dioxide on the REDOX potential and high temperature pH, respectively.

Bruce W. Bussert; John A. Crowley; Kenneth J. Kimball; Brian J. Lashway

2003-04-30T23:59:59.000Z

412

Alternative Electrochemical Salt Waste Forms, Summary of FY2010 Results  

SciTech Connect

In FY2009, PNNL performed scoping studies to qualify two waste form candidates, tellurite (TeO2-based) glasses and halide minerals, for the electrochemical waste stream for further investigation. Both candidates showed promise with acceptable PCT release rates and effective incorporation of the 10% fission product waste stream. Both candidates received reprisal for FY2010 and were further investigated. At the beginning of FY2010, an in-depth literature review kicked off the tellurite glasses study. The review was aimed at ascertaining the state-of-the-art for chemical durability testing and mixed chloride incorporation for tellurite glasses. The literature review led the authors to 4 unique binary and 1 unique ternary systems for further investigation which include TeO2 plus the following: PbO, Al2O3-B2O3, WO3, P2O5, and ZnO. Each system was studied with and without a mixed chloride simulated electrochemical waste stream and the literature review provided the starting points for the baseline compositions as well as starting points for melting temperature, compatible crucible types, etc. The most promising glasses in each system were scaled up in production and were analyzed with the Product Consistency Test, a chemical durability test. Baseline and PCT glasses were analyzed to determine their state, i.e., amorphous, crystalline, phase separated, had undissolved material within the bulk, etc. Conclusions were made as well as the proposed direction for FY2011 plans. Sodalite was successfully synthesized by the sol-gel method. The vast majority of the dried sol-gel consisted of sodalite with small amounts of alumino-silicates and unreacted salt. Upon firing the powders made by sol-gel, the primary phase observed was sodalite with the addition of varying amounts of nepheline, carnegieite, lithium silicate, and lanthanide oxide. The amount of sodalite, nepheline, and carnegieite as well as the bulk density of the fired pellets varied with firing temperature, sol-gel process chemistry, and the amount of glass sintering aid added to the batch. As the firing temperature was increased from 850 C to 950 C, chloride volatility increased, the fraction of sodalite decreased, and the fractions nepheline and carnegieite increased. This indicates that the sodalite structure is not stable and begins to convert to nepheline and carnegieite under these conditions at 950 C. Density has opposite relationship with relation to firing temperature. The addition of a NBS-1, a glass sintering aid, had a positive effect on bulk density and increased the stability of the sodalite structure in a minimal way.

Riley, Brian J.; Rieck, Bennett T.; Crum, Jarrod V.; Matyas, Josef; McCloy, John S.; Sundaram, S. K.; Vienna, John D.

2010-08-01T23:59:59.000Z

413

Transition from supercapacitor to battery behavior in electrochemical energy storage  

Science Conference Proceedings (OSTI)

In this paper the storage of electrochemical energy in battery, supercapacitor, and double-layer capacitor devices is considered. A comparison of the mechanisms and performance of such systems enables their essential features to be recognized and distinguished, and the conditions for transition between supercapacitor and battery behavior to be characterized. Supercapacitor systems based on two-dimensional underpotential deposition reactions are highly reversible and their behavior arises from the pseudocapaccitance associated with potential-dependence of two-dimensional coverage of electroactive adatoms on an electrode substrate surface. Such capacitance can be 10-100 times the double-layer capacitance of the same electrode area. An essential fundamental difference from battery behavior arises because, in such systems, the chemical and associated electrode potentials are a continuous function of degree of charge, unlike the thermodynamic behavior of single-phase battery reactants. Quai-two-dimensional systems, such as hyperextended hydrous RuP{sub 2}, also exhibit large pseudocapacitance which, in this case, is associated with a sequence of redox redox processes that are highly reversible.

Conway, B.E. (Ottawa Univ., ON (Canada). Dept. of Chemistry)

1991-06-01T23:59:59.000Z

414

Electrochemical Decontamination of Painted and Heavily Corroded Metals  

SciTech Connect

The radioactive metal wastes that are generated from nuclear fuel plants and radiochemical laboratories are mainly contaminated by the surface deposition of radioactive isotopes. There are presently several techniques used in removing surface contamination involving physical and chemical processes. However, there has been very little research done in the area of soiled, heavily oxidized, and painted metals. Researchers at Los Alamos National Laboratory have been developing electrochemical procedures for the decontamination of bare and painted metal objects. These methods have been found to be effective on highly corroded as well as relatively new metals. This study has been successful in decontaminating projectiles and shrapnel excavated during environmental restoration projects after 40+ years of exposure to the elements. Heavily corroded augers used in sampling activities throughout the area were also successfully decontaminated. This process has demonstrated its effectiveness and offers several advantages over the present metal decontamination practices of media blasting and chemical solvents. These advantages include the addition of no toxic or hazardous chemicals, low operating temperature and pressure, and easily scaleable equipment. It is in their future plans to use this process in the decontamination of gloveboxes destined for disposal as TRU waste.

Marczak, S.; Anderson, J.; Dziewinski, J.

1998-09-08T23:59:59.000Z

415

Air electrode material for high temperature electrochemical cells  

DOE Patents (OSTI)

Disclosed is a solid solution with a perovskite-like crystal structure having the general formula La.sub.1-x-w (M.sub.L).sub.x (Ce).sub.w (M.sub.S1).sub.1-y (M.sub.S2).sub.y O.sub.3 where M.sub.L is Ca, Sr, Ba, or mixtures thereof, M.sub.S1 is Mn, Cr, or mixtures thereof and M.sub.S2 is Ni, Fe, Co, Ti, Al, In, Sn, Mg, Y, Nb, Ta, or mixtures thereof, w is about 0.05 to about 0.25, x+w is about 0.1 to about 0.7, and y is 0 to about 0.5. In the formula, M.sub.L is preferably Ca, w is preferably 0.1 to 0.2, x+w is preferably 0.4 to 0.7, and y is preferably 0. The solid solution can be used in an electrochemical cell where it more closely matches the thermal expansion characteristics of the support tube and electrolyte of the cell.

Ruka, Roswell J. (Churchill Boro, PA)

1985-01-01T23:59:59.000Z

416

Status of the DOE Battery and Electrochemical Technology Program V  

SciTech Connect

The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

Roberts, R.

1985-06-01T23:59:59.000Z

417

Night storage and backup generation with electrochemical engines  

DOE Green Energy (OSTI)

Li/I/sub 2/ electrochemical engines both store and generate electric power. These dual capabilities complement solar photovoltaic generation in critical areas: Photovoltaics need backup storage at least for nights and, if possible, for two or three days' needs. Such storage must be relatively cheap and compact--aqueous batteries would have trouble filling these requirements. Likewise, photovoltaics need backup generation based on combustion of fossil fuels for periods of bad weather--solar residences or communities will probably have to supply their own backup generation because central generating stations cannot be expected to keep large amounts of equipment on standby for solar users. Li/I/sub 2/ engine designs are described which could be developed to fill these needs of solar users, i.e., storing electricity generated by photovoltaics and generating additional electricity from fossil fuels as needed. Calculations based on laboratory performance indicate that the devices could be simple to manufacture, economically competitive, and efficient both in storage and generation. These engines also could directly use solar energy from focused and tracking solar collectors, or they could indirectly use solar energy through the combustion of biomass materials.

Elliott, G.R.B.; Vanderborgh, N.E.

1978-01-01T23:59:59.000Z

418

Electrochemical polishing of hydrogen sulfide from coal synthesis gas  

DOE Green Energy (OSTI)

An advanced process has been developed for the separation of H{sub 2}S from coal gasification product streams through an electrochemical membrane. This technology is developed for use in coal gasification facilities providing fuel for cogeneration coal fired electrical power facilities and Molten Carbonate Fuel Cell electrical power facilities. H{sub 2}S is removed from the syn-gas by reduction to the sulfide ion and H at the cathode. The sulfide ion migrates to the anode through a molten salt electrolyte suspended in an inert ceramic matrix. Once at the anode it is oxidized to elemental sulfur and swept away for condensation in an inert gas stream. The syn-gas is enriched with the H{sub 2}. Order-of-magnitude reductions in H{sub 2}S have been repeatably recorded (100 ppm to 10 ppm H{sub 2}S) on a single pass through the cell. This process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. Since there are no absorbents used, there is no absorption/regeneration step as with conventional technology. Elemental sulfur is produced as a by-product directly, so there is no need for a Claus process for sulfur recovery. This makes the process economically attractive since it is much less equipment intensive than conventional technology.

Gleason, E.F.; Winnick, J.

1995-11-01T23:59:59.000Z

419

An electrochemical approach to predicting corrosion performance of container materials  

SciTech Connect

As part of the effort in determining the suitability of the Yucca Mountain site in Southern Nevada for emplacement of high-level nuclear waste in a repository, possible failure modes of candidate waste package container metallic materials are being investigated. Localized forms of corrosion such as pitting attack on the metal surface or attack in creviced areas are particularly pernicious failure modes that may shorten the container lifetime. The pitting potential of nickel-rich Alloy 825 are measured in chloride-containing solutions at different temperatures and adjusted to different pH values. The pitting potentials were determined by potentiodynamic polarization of Alloy 825 test specimens from the corrosion potential until a sharp increase in the electrochemical current indicated a breakdown of the protective passive film on the metal surface. Results show that Alloy 825 is susceptible to pitting attack in aggressive electrolytes containing more than 10,000 ppm chloride at 90{degree}C and acicified to a pH value less than 2.5. 5 refs., 3 figs., 1 tab.

McCright, R.D.; Farmer, J.C.; Fleming, D.L.

1991-04-01T23:59:59.000Z

420

Carbon Nanotubes as Binder in Electrochemical Supercapacitor Malinda Caudle, Iowa State University Georgia Tech SURF 2011 Fellow  

E-Print Network (OSTI)

Carbon Nanotubes as Binder in Electrochemical Supercapacitor Malinda Caudle, Iowa State University. Introduction The development of supercapacitors would allow the electronics market to produce portable power

Li, Mo

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

JOM: The Member Journal of TMS  

Science Conference Proceedings (OSTI)

The JOM Technical Emphasis Calendar establishes the topics that the journal will cover in the upcoming months. If you are interested in submitting a paper for...

422

Journal of Research Board of Editors  

Science Conference Proceedings (OSTI)

Journal of Research of NIST. Board of Editors. Robert A. Dragoset, Chief Editor. Jeffrey W. Bullard, Materials and Construction Research Division, EL ...

2013-07-31T23:59:59.000Z

423

Journal of Electronic Materials Home Page  

Science Conference Proceedings (OSTI)

JEM Home Page. The Journal of Electronic Materials reports on the science and technology of electronic materials while examining new applications for...

424

DOE Solar Decathlon: 2007 Daily Journals  

NLE Websites -- All DOE Office Websites (Extended Search)

Decathlon Director, Richard King, and his wife, Melissa. Richard King, Solar Decathlon organizer, keeps a daily journal during the 2007 Solar Decathlon. Solar Decathlon 2007 Daily...

425

SC e-journals by Subject -- Astronomy  

Office of Scientific and Technical Information (OSTI)

Astronomy Astronomy Advances in Geosciences - OAJ Advances in Astronomy - OAJ Annalen der Physik Annual Review of Astronomy and Astrophysics Astronomy and Astrophysics Review, The Astrophysics Astrophysics and Space Science Astrophysics and Space Sciences Transactions (ASTRA) - OAJ Atmospheric Chemistry and Physics - OAJ Atmospheric Environment Boundary-Layer Meteorology Celestial Mechanics and Dynamical Astronomy Chaos Communicating Astronomy with the Public Journal - OAJ Contributions to Plasma Physics Cosmic Research Crystal Research and Technology Earth & Planetary Science Letters Earth, Moon, and Planets European Journal of Physics European Physical Journal C Experimental Astronomy Fortschritte der Physik Geochimica Et Cosmochimica Acta Global Biogeochemical Cycles Journal of Cosmology and Astroparticle Physics

426

Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy  

DOE Green Energy (OSTI)

Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capability for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.

Kalinin, S.V. (Center for Nanophase Materials Sciences, ORNL)

2010-10-19T23:59:59.000Z

427

Journal of the Korean Ceramic Society Vol. 44, No. 12, pp. 683~689, 2007.  

E-Print Network (OSTI)

spectroscopy, Solide oxide fuel cell 1. (SOFC, solid oxide fuel cell),1) , 2) . , . SOFC , Zr4+ Ce4+ (oxgyen vacancy) . 2ZrO2 A2O3 (1) 2CeO2 B2O3 (2 . SOFC SiO2 .10) , , Si . . 2. Fig. 2

Lee, Jong-Heun

428

Journal of the Society for Simulation in Healthcare Generating Classes of 3D Virtual  

E-Print Network (OSTI)

models is the exposure to radiation for CT and the cost of 3D imaging for MRI, the main limitation acquisition process to capture information about the internal anatomy of a living patient. While scale models (e.g. lungs) within a 3 mm Root Mean Square (RMS) error with respect to the internal

Hamza-Lup, Felix G.

429

Journal of Energy Engineering, American Society of Civil Engineers, Sept. 2007 Abstract: Application of individual distributed  

E-Print Network (OSTI)

the quality of power from the grid falls below certain standards. Utilization of waste heat from the sources to the grid or can operate in island, providing UPS services. The system will disconnect from the utility maintaining high level of service) without harming the transmission grid's integrity. Intentional islanding

430

Idaho State Historical Society | Open Energy Information  

Open Energy Info (EERE)

Name Idaho State Historical Society Name Idaho State Historical Society Address 2205 Old Penitentiary Road Place Boise, Idaho Zip 83712 Phone number 208-334-2774 Website http://history.idaho.gov/ Coordinates 43.6012441°, -116.1660202° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6012441,"lon":-116.1660202,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

American Solar Energy Society | Open Energy Information  

Open Energy Info (EERE)

Logo: American Solar Energy Society Name American Solar Energy Society Address 2400 Central Ave Place Boulder, Colorado Zip 80301 Region Rockies Area Website http://www.ases.org/ Notes Nonprofit organization dedicated to increasing the use of solar energy, energy efficiency, and other sustainable technologies in the U.S Coordinates 40.023354°, -105.217421° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.023354,"lon":-105.217421,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Materials and society -- Impacts and responsibilities  

Science Conference Proceedings (OSTI)

The needs of today`s advanced societies have moved well beyond the requirements for food and shelter, etc., and now are focused on such concerns as international peace and domestic security, affordable health care, the swift and secure transmission of information, the conservation of resources, and a clean environment. Progress in materials science and engineering is impacting each of these concerns. This paper will present some examples of how this is occurring, and then comment on ethical dilemmas that can arise as a consequence of technological advances. The need for engineers to participate more fully in the development of public policies that help resolve such dilemmas, and so promote the benefits of advancing technology to society, will be discussed.

Westwood, A.R.C.

1995-11-01T23:59:59.000Z

433

Michael Borland named American Physical Society Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

Grad student is officially a GEMS Grad student is officially a GEMS NIU physicist Susan Mini lands NSF grant for APS beamline upgrades Argonne's Campuzano Honored by Hispanic Engineering Bugs in the News An R&D-100 Award for a New Mammography System APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed Michael Borland named American Physical Society Fellow DECEMBER 4, 2007 Bookmark and Share Michael Borland Michael Borland of the Argonne Accelerator Systems Division has been elected a Fellow of the American Physical Society. The honor recognizes his "outstanding contributions to fourth-generation light sources, particularly for development and support of the program ELEGANT, the first integrated accelerator code to realistically model coherent synchrotron radiation

434

Combined electrochemical/surface science investigations of Pt/Cr alloy electrodes  

DOE Green Energy (OSTI)

Chromium addition improves the performance of carbon-supported Pt electrodes for oxygen reduction in phosphoric acid fuel cells. To clarify the role of chromium and its chemical nature at the electrode surface, we have performed a combined electrochemical/surface science investigation of a series of bulk Pt/sub x/Cr/sub (1-x)/ alloys (0 less than or equal to x less than or equal to 1). In this paper we report the surface characterization of the starting electrodes by XPS, electrochemical results from cyclic voltammetry in 85% phosphoric acid, and post-electrochemical surface characterization. For Cr contents less than 40%, the electrodes were quite stable up to +1.6 V vs DHE. The surface Cr was largely oxidized to Cr/sup +3/ for surfaces at open circuit ad those exposed at potentials < +1.4 V. For intermediate Cr levels, Cr was leached from the surface region by +1.5 V, leaving a porous Pt electrode with increased electrochemical hydrogen adsorption capacity. For Pt/sub 0.2//Cr/sub 0.8/, treatments at +1.4 V and above led to the appearance of Pt/sup 4 +/ and Cr/sup 6 +/ species, apparently stabilized in a porous phosphate overlayer up to 50 A thick. The Pt electrochemical hydrogen adsorption capacity was simultaneously increased by a factor of 15. 18 refs., 4 figs.

Daube, K.A.; Paffett, M.T.; Gottesfeld, S.; Campbell, C.T.

1985-01-01T23:59:59.000Z

435

Electrochemical photovoltaic cells. Project 65039 quarterly technical progress report, April 15-July 31, 1980  

DOE Green Energy (OSTI)

Liquid-junction photoelectrochemical cells can be used either for the direct conversion of solar energy to electricity or to generate stored chemical species available for later electrochemical discharge. The objectives of this program are to identify experimental approaches for electrochemical photovoltaic cells that not only show promise of high power-conversion efficiencies but also have the potential to achieve long life and the capacity for energy storage. The work is organized as follows: (1) selection of high-efficiency semiconductor photoelectrode/electrolyte systems, (2) development of long-life electrochemical photovoltaic cells, (3) all solid-state electrochemical photovoltaic cell with in situ storage, and (4) demonstration of laboratory-size photoelectrochemical cell with redox storage. This program is directed toward identifying a suitable match between the proposed semiconductor and the redox species present in aqueous, nonaqueous, and solid electrolytes for achieving the necessary performance and semiconductor stability requirements. Emphasis is on aqueous electrolyte-based systems where fast kinetics are favored. The proposed systems will be compatible with convenient storage of the electroactive species generated and its later electrochemical discharge in a redox cell. Progress is reported.

Ang, P. G.P.; Sammells, A. F.

1980-09-01T23:59:59.000Z

436

Electrochemical photovoltaic cells. Quarterly technical progress report, August 1-October 31, 1980  

DOE Green Energy (OSTI)

Liquid-junction photoelectrochemical cells can be used either for the direct conversion of solar energy to electricity or to generate stored chemical species available for later electrochemical discharge. The objective of this program is to identify experimental approaches for electrochemical photovoltaic cells that not only show promise of high power-conversion efficiencies but also have the potential to achieve long life and the capacity for energy storage. The work is organized as follows: (1) selection of high-efficiency semiconductor photoelectrode/electrolyte systems; (2) development of long-life electrochemical photovoltaic cells; (3) development of an all solid-state electrochemical photovoltaic cell with in-situ storage; and (4) demonstration of laboratory-size photoelectrochemical cell with redox storage. This program is directed toward identifying a suitable match between the proposed semiconductor and the redox species present in aqueous, nonaqueous, and solid electrolytes for achieving the necessary performance and semiconductor stability requirements. Emphasis is on aqueous electrolyte-based systems where fast kinetics are favored. The proposed systems will be compatible with convenient storage of the electroactive species generated and their later electrochemical discharge in a redox cell.

Ang, P. G.P.; Sammells, A. F.

1980-12-01T23:59:59.000Z

437

Review of thermally regenerative electrochemical systems. Volume I. Synopsis and executive summary  

SciTech Connect

Thermally regenerative electrochemical systems (TRES) are closed systems that convert heat into electricity in an electrochemical heat engine that is Carnot cycle limited in efficiency. Past and present work on such systems is reviewed. Two broad classes of TRES are based on the types of energy inputs required for regeneration: thermal alone and coupled thermal and electrolytic. The thermal regeneration alone encompasses electrochemical systems (galvanic or fuel cells) in which one or more products are formed. The regeneration can be performed in single or multiple steps. The compounds include metal hydrides, halides, oxides, chalcogenides, and alloys or bimetallic systems. The coupled thermal and electrolytic regeneration encompasses electrochemical systems (galvanic or fuel cells) regenerated by electrolysis at a different temperature or different pressure. Examples include metal halides and water. Thermogalvanic or nonisothermal cells are included in this category. Also included are electrochemical engines in which the working electroactive fluid is isothermally expanded through an electrolyte. TRES cover temperature ranges from about 20/sup 0/C to 1000/sup 0/C. Engines with power outputs of 0.1 mW/cm/sup 2/ to 1 W/cm/sup 2/ have been demonstrated. Recommendations are made of areas of research in science and engineering that would have long-range benefit to a TRES program.

Chum, H. L.; Osteryoung, R. A.

1980-08-01T23:59:59.000Z

438

Advanced materials and electrochemical processes in high-temperature solid electrolytes  

DOE Green Energy (OSTI)

Fuel cells for the direct conversion of fossil fuels to electric energy necessitates the use of high-temperature solid electrodes. This study has included: (1) determination of electrical transport, thermal and electrical properties to illucidate the effects of microstructure, phase equilibria, oxygen partial pressure, additives, synthesis and fabrication on these properties; (2) investigation of synthesis and fabrication of advanced oxide materials, such as La{sub 0.9}Sn{sub 0.1}MnO{sub 3}; and (3) application of new analytical techniques using complex impedance coupled with conventional electrochemical methods to study the electrochemical processes and behavior of materials for solid oxide fuel cells and other high-temperature electrolyte electrochemical process. 15 refs., 10 figs., 2 tabs. (BM)

Bates, J.L.; Chick, L.A.; Youngblood, G.E.; Weber, W.J.

1990-10-01T23:59:59.000Z

439

Development of electrochemical photovoltaic cells. Third technical progress report, November 1, 1979-January 31, 1980  

DOE Green Energy (OSTI)

The development of stable, efficient, electrochemical photovoltaic cells based on silicon and gallium arsenide in non-aqueous electrolyte systems is being investigated. The effect of surface condition of silicon electrodes on electrochemical and physical characteristics has been studied. An electrode-supporting electrolyte interaction in acetonitrile has been identified which leads to etching of the surface. Improved performance can result, which has practical significance. Gallium arsenide electrodes have been electrochemically characterized in cells containing propylene carbonate with a ferrocene/ferricenium redox additive. Degradation of the ferricenium salt under illumination has been investigated. Other redox couples studied to date have not given promising results. Long-term stability experiments have been deferred while a better understanding of electrode behavior is being obtained.

Byker, H.J.; Schwerzel, R.E.; Wood, V.E.; Austin, A.E.; Brooman, E.W.

1980-03-07T23:59:59.000Z

440

Nanostructures and Lithium Electrochemical Reactivity of Lithium Titanites and Titanium Oxides: A Review  

SciTech Connect

Being inherently safe and chemically compatible with the electrolyte, titanium oxidebased materials, including both Li-titanites and various TiO2-polymorphs, are considered alternatives to carbonaceous anodes in Li-ion batteries. Given the commercial success of the spinel lithium titanites, TiO2-polymorphs, in particular in nanostructured forms, have been fabricated and investigated for the applications. Nanostructuring leads to increased reaction areas, shortened Li+ diffusion and potentially enhanced solubility/capacity. Integration with an electron conductive second phase into the TiO2-based nanostructures eases the electron transport, resulting in further improved lithium electrochemical activity and the overall electrochemical performance. This paper reviews structural characteristics and Li-electrochemical reactivity, along with synthetic approaches, of nanostructures and nano-composites based on lithium titanites and TiO2-polymorphs that include rutile, anatase, bronze and brookite.

Yang, Zhenguo; Choi, Daiwon; Kerisit, Sebastien N.; Rosso, Kevin M.; Wang, Donghai; Zhang, Jiguang; Graff, Gordon L.; Liu, J.

2009-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Copyright 2012 -Copyright Information, Privacy Statement, and Terms of Use American Society of Agronomy | Crop Science Society of America | Soil Science Society of America  

E-Print Network (OSTI)

of Agronomy | Crop Science Society of America | Soil Science Society of America 5585 Guilford Road | Madison-Tool Approach in Advancing the Frontiers of Soil Biogeochemistry. See more from this Division: S11 Soils & Environmental Quality See more from this Session: Future Frontiers in Soil Science Monday, October 22, 2012: 1

Sparks, Donald L.

442

Copyright 2012 -Copyright Information, Privacy Statement, and Terms of Use American Society of Agronomy | Crop Science Society of America | Soil Science Society of America  

E-Print Network (OSTI)

of Agronomy | Crop Science Society of America | Soil Science Society of America 5585 Guilford Road | Madison in Soils: Miscible Displacement and Modeling. See more from this Division: S01 Soil Physics See more from this Session: Soil Physics and Hydrology Posters: II Wednesday, October 24, 2012 Duke Energy Convention Center

Sparks, Donald L.

443

Surface electrochemical control for fine coal and pyrite separation. Technical progress report, October 1, 1991--December 31, 1991  

SciTech Connect

The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report contains three sections, ``Transpassive Oxidation of Pyrite,`` ``Flotation and Electrochemical Pretreatment,`` and ``Flotation Kinetics of Coal and Coal Pyrite.``

Hu, Weibai; Huang, Qinping; Li, Jun; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tingke; Wadsworth, M.E.

1991-12-31T23:59:59.000Z

444

Aluminum bulk micromachining through an anodic oxide mask by electrochemical etching in an acetic acid/perchloric acid solution  

Science Conference Proceedings (OSTI)

A well-defined microstructure with microchannels and a microchamber was fabricated on an aluminum plate by four steps of a new aluminum bulk micromachining process: anodizing, laser irradiation, electrochemical etching, and ultrasonication. An aluminum ... Keywords: Aluminum, Anodizing, Bulk micromachining, Electrochemical etching, Laser irradiation

Tatsuya Kikuchi, Yuhta Wachi, Masatoshi Sakairi, Ryosuke O. Suzuki

2013-11-01T23:59:59.000Z

445

Anodic dissolution characteristics and electrochemical migration lifetimes of Sn solder in NaCl and Na2SO4 solutions  

Science Conference Proceedings (OSTI)

In situ water drop tests and anodic polarization tests of pure Sn solder were carried out in deaerated 0.001% NaCl and Na"2SO"4 solutions to determine the correlation between anodic dissolution characteristics and the electrochemical migration lifetime. ... Keywords: Anodic dissolution, Electrochemical migration, Life time, Na2SO4, NaCl, Sn solder

Ja-Young Jung; Shin-Bok Lee; Young-Chang Joo; Ho-Young Lee; Young-Bae Park

2008-07-01T23:59:59.000Z

446

Exploratory technology research program for electrochemical energy storage. Annual report for 1995  

DOE Green Energy (OSTI)

The US DOE Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV`s)and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life- cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced battery R&D which includes the Exploratory Technology Research (ETR) program managed by the Lawrence Berkeley National Laboratory. The role of the ETR program is to perform supporting research on the advanced battery systems under development by the USABC and the Sandia Laboratories (SNL) Electric Vehicle Advanced Battery Systems (EVABS) program, and to evaluate new systems with potentially superior performance, durability and/of cost characteristics. The specific goal of the ETR program is to identify the most promising electrochemical technologies and development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR program in CY 1995. This is a continuing program, and reports for prior years have been published; they are listed in this report.The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of fuel cell technology for transportation applications.

Kinoshita, Kim [ed.

1996-06-01T23:59:59.000Z

447

Exploratory technology research program for electrochemical energy storage, annual report for 1997  

SciTech Connect

The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Battery R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.

Kinoshita, K. [ed.

1998-06-01T23:59:59.000Z

448

Surface working of 304L stainless steel: Impact on microstructure, electrochemical behavior and SCC resistance  

SciTech Connect

The effect of surface working operations on the microstructure, electrochemical behavior and stress corrosion cracking resistance of 304L stainless steel (SS) was investigated in this study. The material was subjected to (a) solution annealing (b) machining and (c) grinding operations. Microstructural characterization was done using stereo microscopy and electron back scattered diffraction (EBSD) technique. The electrochemical nature of the surfaces in machined, ground and solution annealed condition were studied using potentiodynamic polarization and scanning electrochemical microscopy (SECM) in borate buffer solution. The stress corrosion cracking resistance of 304L SS in different conditions was studied by exposing the samples to boiling MgCl{sub 2} environment. Results revealed that the heavy plastic deformation and residual stresses present near the surface due to machining and grinding operations make 304L SS electrochemically more active and susceptible to stress corrosion cracking. Ground sample showed highest magnitude of current density in the passive potential range followed by machined and solution annealed 304L SS. Micro-electrochemical studies established that surface working promotes localized corrosion along the surface asperities which could lead to crack initiation. - Highlights: Black-Right-Pointing-Pointer Machining/grinding produce extensive grain fragmentation near the surface of 304L SS. Black-Right-Pointing-Pointer Machining/grinding result in martensitic transformation near the surface of 304L SS. Black-Right-Pointing-Pointer Machining/grinding drastically reduce the SCC resistance of 304L SS in chloride. Black-Right-Pointing-Pointer Machining/grinding make the surface of 304L SS electrochemically much more active. Black-Right-Pointing-Pointer SECM study reveal that preferential dissolution takes place along surface asperities.

Acharyya, S.G., E-mail: swati364@gmail.com [Materials Science Division, Bhabha Atomic Research Center, Mumbai (India); Khandelwal, A. [Visvesvaraya National Institute of Technology, Nagpur (India)] [Visvesvaraya National Institute of Technology, Nagpur (India); Kain, V. [Materials Science Division, Bhabha Atomic Research Center, Mumbai (India)] [Materials Science Division, Bhabha Atomic Research Center, Mumbai (India); Kumar, A.; Samajdar, I. [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai (India)] [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai (India)

2012-10-15T23:59:59.000Z

449

NIES Low-Carbon Society Scenarios 2050 | Open Energy Information  

Open Energy Info (EERE)

NIES Low-Carbon Society Scenarios 2050 NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name NIES Low-Carbon Society Scenarios 2050 Agency/Company /Organization National Institute for Environmental Studies Topics Background analysis, Low emission development planning Website http://2050.nies.go.jp/LCS/ind Program Start 2009 Country Bangladesh, China, India, Indonesia, Japan, Malaysia, Thailand, Vietnam UN Region Eastern Asia References 2050 Low-Carbon Society Scenarios (LCSs)[1] National and Local Scenarios National and local scenarios available from the activity webpage: http://2050.nies.go.jp/LCS/index.html References ↑ "2050 Low-Carbon Society Scenarios (LCSs)" Retrieved from "http://en.openei.org/w/index.php?title=NIES_Low-Carbon_Society_Scenarios_2050&oldid=553682"

450

Electrochemical Grafting of Naphthylmethyl Radicals to Epitaxial Graphene: A Versatile Platform to Reversibly Engineer the Band Structure and Transport Properties of Graphene  

E-Print Network (OSTI)

The Kolbe electrochemical oxidation strategy has been utilized to achieve an efficient quasireversible electrochemical grafting of the alpha-naphthylmethyl functional group to graphene. The method facilitates reversible bandgap engineering in graphene and preparation of electrochemically erasable organic dielectric films. The picture shows Raman D-band maps of both systems.

Sarkar, Santanu; Haddon, Robert C

2013-01-01T23:59:59.000Z

451

Synthesis of Ru/multiwalled carbon nanotubes by microemulsion for electrochemical supercapacitor  

Science Conference Proceedings (OSTI)

An efficient way to decorate multiwalled carbon nanotubes with Ru had been developed. In this method, Ru nanoparticles were prepared by water-in-oil reverse microemulsion, and the produced Ru anchored on MWCNTs. Transmission electron microscopy (TEM) result showed that RuO{sub 2} nanoparticles had the uniform size distribution after electrochemical oxidation. Energy dispersive X-rays (EDX) spectra elucidated the presence of ruthenium oxide in the as-prepared composites after electrochemical oxidation. Cyclic voltammetry result demonstrated that a specific capacitance of deposited ruthenium oxide electrode was significantly greater than that of the pristine MWCNTs electrode in the same medium.

Yan Shancheng; Qu Peng; Wang Haitao; Tian Tian [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096 (China); Xiao Zhongdang [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096 (China)], E-mail: zdxiao@seu.edu.cn

2008-10-02T23:59:59.000Z

452

Formaldehyde yields from methanol electrochemical oxidation on carbon-supported platinum catalysts  

Science Conference Proceedings (OSTI)

The formation of formaldehyde during methanol electrochemical oxidation on supported Pt and Pt-Ru catalysts was investigated. While on solid platinum electrodes, the formaldehyde yields from methanol oxidation are near 30% at low potentials; the yields fall below 2% for methanol electrochemical oxidation on carbon-supported catalysts in Nafion. The lower formaldehyde yields, which result from more complete methanol oxidation, are believed to arise from the ability of partial oxidation products to be transported to an array of active catalyst sites dispersed within the three-dimensional network of the Nafion film.

Childers, C.L.; Huang, H.; Korzeniewski, C. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemistry and Biochemistry

1999-02-02T23:59:59.000Z

453

Alternating-polarity operation for complete regeneration of electrochemical deionization system  

SciTech Connect

An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. By polarizing the cells, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the electrodes of each cell of the battery are saturated with the removed ions, the battery is regenerated electrically at a reversed polarity from that during the deionization step of the cycle, thus significantly minimizing secondary wastes.

Tran, Tri D. (Livermore, CA); Lenz, David J. (Livermore, CA)

2002-01-01T23:59:59.000Z

454

Non-Kinetic Losses Caused by Electrochemical Carbon Corrosion in PEM Fuel Cells  

SciTech Connect

This paper presented non-kinetic losses in PEM fuel cells under an accelerated stress test of catalyst support. The cathode with carbon-supported Pt catalyst was prepared and characterized with potential hold at 1.2 V vs. SHE in PEM fuel cells. Irreversible losses caused by carbon corrosion were evaluated using a variety of electrochemical characterizations including cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy, and polarization technique. Ohmic losses at the cathode with potential hold were determined using its capacitive responses. Concentration losses in PEM fuel cells were analyzed in terms of Tafel behavior and thin film/flooded-agglomerate dynamics.

Park, Seh Kyu; Shao, Yuyan; Viswanathan, Vilayanur V.; Liu, Jun; Wang, Yong

2012-05-01T23:59:59.000Z

455

Electrochemical and in situ neutron diffraction investigations of La-Ni-Al-H alloys  

DOE Green Energy (OSTI)

Li/metal hydride batteries are a strong contender to replace Ni/Cd batteries. Since the role of alloying components is not yet understood, a combination of electrochemical and neutron diffraction techniques has been designed to investigate metal hydrides. In this work, several Al-substituted LaNi{sub 5} alloys were investigated for their specific capacity (measured by mAh/La and symbolized by x in LaNi{sub 5-y}Al{sub y}H{sub x}), impedance, and cycling stability. Neutron diffraction was used to study the electrochemically induced phase transformation and structure change during charge/discharge.

Peng, W. [Illinois Institute of Technology (United States); Redey, L.; Vissers, D.R.; Myles, K.M.; Carpenter, J.; Richardson; Burr, G. [Argonne National Lab., IL (United States)

1996-05-01T23:59:59.000Z

456

Optimizing journal bearing bit performance  

SciTech Connect

This article explains that continuous progress in the field of rock bit technology has produced many new designs and improved features in the tri-cone rock bits used today. Much of the research and advancements have centered around journal bearing systems, seals and lubricants leading to greatly extended bearing life. These improved bearing systems, incorporated into both tooth and insert-type bits, have not only increased the effective life of a rock bit, but have also allowed greater energy levels to be applied. This, in turn, has allowed for higher rates of penetration and lower costs per foot of hole drilled. Continuous improvements in journal bearing bits allowing them to run longer and harder have required similar advancements to be made in cutting structures. In tooth bit designs, these improvements have been basically limited to the areas of gauge protection and to application of hardfacing materials.

Moerbe, O.E.; Evans, W.

1986-10-01T23:59:59.000Z

457

Electrochemical Membrane for Carbon Dioxide Separation and Power Generation  

Science Conference Proceedings (OSTI)

uelCell Energy, Inc. (FCE) has developed a novel system concept for separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane (ECM). The salient feature of the ECM is its capability to produce electric power while capturing CO2 from flue gas, such as from an existing pulverized coal (PC) plant. Laboratory scale testing of the ECM has verified the feasibility of the technology for CO2 separation from simulated flue gases of PC plants as well as combined cycle power plants and other industrial facilities. Recently, FCE was awarded a contract (DE-FE0007634) from the U.S. Department of Energy to evaluate the use of ECM to efficiently and cost effectively separate CO2 from the emissions of existing coal fired power plants. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from flue gas of an existing PC plant with no more than 35% increase in the cost of electricity (COE) produced by the plant. The specific objectives and related activities planned for the project include: 1) conduct bench scale tests of a planar membrane assembly consisting of ten or more cells of about 0.8 m2 area each, 2) develop the detailed design for an ECM-based CO2 capture system applied to an existing PC plant, and 3) evaluate the effects of impurities (pollutants such as SO2, NOx, Hg) present in the coal plant flue gas by conducting laboratory scale performance tests of the membrane. The results of this project are anticipated to demonstrate that the ECM is an advanced technology, fabricated from inexpensive materials, based on proven operational track records, modular, scalable to large sizes, and a viable candidate for >90% carbon capture from existing PC plants. In this paper, the fundamentals of ECM technology including: material of construction, principal mechanisms of operation, carbon capture test results and the benefits of applications to PC plants will be presented.

Jolly, Stephen; Ghezel-Ayagh, Hossein; Hunt, Jennifer; Patel, Dilip; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

2012-12-28T23:59:59.000Z

458

Fellows of Professional Societies in the Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology...

459

The Czech Society for New Materials and Technologies (CSNMT)  

Science Conference Proceedings (OSTI)

The Czech Society for New Materials and Technologies (CSNMT), which was founded in 1993, is a voluntary association of individual and collective members

460

Buchanan elected fellow of American Chemical Society | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Jennifer Brouner Communications and Media Relations 865.241.0709 Buchanan elected fellow of American Chemical Society Oak Ridge National Laboratory researcher A. C. Buchanan III...

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Radiation Research Society 2005 Annual Meeting, Denver, Colorado  

SciTech Connect

Abstracts and proceedings of the 2005 Annual Meeting of the Radiation Research Society held in Denver, Colorado on October 16-19, 2005.

Robert Ullrich, PhD

2005-10-04T23:59:59.000Z

462

In-situ Analysis of Zinc Electrodeposition within an Ionic Liquid Electrolyte  

E-Print Network (OSTI)

chloride low temperature molten salt. Electrochimica Acta,room temperature molten salt. Journal of the Electrochemical

Keist, Jayme

2013-01-01T23:59:59.000Z

463

ElectroChemical Arsenic Removal (ECAR) for Rural Bangladesh-Merging  

NLE Websites -- All DOE Office Websites (Extended Search)

ElectroChemical Arsenic Removal (ECAR) for Rural Bangladesh-Merging ElectroChemical Arsenic Removal (ECAR) for Rural Bangladesh-Merging Technology with Sustainable Implementation Title ElectroChemical Arsenic Removal (ECAR) for Rural Bangladesh-Merging Technology with Sustainable Implementation Publication Type Report Year of Publication 2009 Authors Addy, Susan E., Ashok J. Gadgil, Kristin Kowolik, and Robert Kostecki Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Today, 35-77 million Bangladeshis drink arsenic-contaminated groundwater from shallow tube wells. Arsenic remediation efforts have focused on the development and dissemination of household filters that frequently fall into disuse due to the amount of attention and maintenance that they require. A community scale clean water center has many advantages over household filters and allows for both chemical and electricity-based technologies to be beneficial to rural areas. Full cost recovery would enable the treatment center to be sustainable over time. ElectroChemical Arsenic Remediation (ECAR) is compatible with community scale water treatment for rural Bangladesh. We demonstrate the ability of ECAR to reduce arsenic levels > 500 ppb to less than 10 ppb in synthetic and real Bangladesh groundwater samples and examine the influence of several operating parameters on arsenic removal effectiveness. Operating cost and waste estimates are provided. Policy implication recommendations that encourage sustainable community treatment centers are discussed.

464

Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties  

Science Conference Proceedings (OSTI)

A green and facile approach was demonstrated to prepare graphene nanosheets/ZnO (GNS/ZnO) composites for supercapacitor materials. Glucose, as a reducing agent, and exfoliated graphite oxide (GO), as precursor, were used to synthesize GNS, then ZnO directly grew onto conducting graphene nanosheets as electrode materials. The small ZnO particles successfully anchored onto graphene sheets as spacers to keep the neighboring sheets separate. The electrochemical performances of these electrodes were analyzed by cyclic voltammetry, electrochemical impedance spectrometry and chronopotentiometry. Results showed that the GNS/ZnO composites displayed superior capacitive performance with large capacitance (62.2 F/g), excellent cyclic performance, and maximum power density (8.1 kW/kg) as compared with pure graphene electrodes. Our investigation highlight the importance of anchoring of small ZnO particles on graphene sheets for maximum utilization of electrochemically active ZnO and graphene for energy storage application in supercapacitors. - Graphical abstract: Glucose was used to synthesize GNS, then ZnO directly grew onto conducting graphene nanosheets as electrode materials for supercapacitor. Results showed that the composites have superior capacitive performance. Highlights: > Graphene nanosheets were synthesized via using glucose as a reducing agent. > The reductant and the oxidized product are environmentally friendly. > ZnO grew onto conducting graphene sheets keeping neighboring sheets separate. > The structure improves the contact between the electrode and the electrolyte. > Results showed that these composites have good electrochemical property.

Wang Jun, E-mail: zhqw1888@sohu.com [College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin 150001 (China); Gao Zan [College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin 150001 (China); Li Zhanshuang; Wang Bin; Yan Yanxia; Liu Qi [College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Mann, Tom [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin 150001 (China); Zhang Milin [College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin 150001 (China); Jiang Zhaohua [College of Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China)

2011-06-15T23:59:59.000Z

465

Synthesis and characterization of a nanocomposite of goethite nanorods and reduced graphene oxide for electrochemical capacitors  

Science Conference Proceedings (OSTI)

We report a one-step synthesis of a nanocomposite of goethite ({alpha}-FeOOH) nanorods and reduced graphene oxide (RGO) using a solution method in which ferrous cations serve as a reducing agent of graphite oxide (GO) to graphene and a precursor to grow goethite nanorods. As-prepared goethite nanorods have an average length of 200 nm and a diameter of 30 nm and are densely attached on both sides of the RGO sheets. The electrochemical properties of the nanocomposite were characterized by cyclic voltammetry (CV) and chronopotentiometry (CP) charge-discharge tests. The results showed that goethite/RGO composites have a high electrochemical capacitance of 165.5 F g{sup -1} with an excellent recycling capability making the material promising for electrochemical capacitors. - Graphical abstract: The reduced graphene oxide sheets are decorated with goethite nanorods. The as-prepared composite exhibits a high electrochemical capacitance with good recycling capability, which is promising for supercapacitor applications. Higlights: Black-Right-Pointing-Pointer Ferrous ions act as reductant of graphite oxide and precursor of goethite nanorods. Black-Right-Pointing-Pointer Goethite nanorods are attached on both sides of the reduced graphene oxide sheets. Black-Right-Pointing-Pointer Composite exhibits a high specific capacitance and a good recycling capability. Black-Right-Pointing-Pointer Composite is promising for supercapacitor applications.

Shou Qingliang [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Cheng Jipeng, E-mail: chengjp@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang Li, E-mail: lizhang@ethz.ch [Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8092 Zurich (Switzerland); Nelson, Bradley J. [Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8092 Zurich (Switzerland); Zhang Xiaobin [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

2012-01-15T23:59:59.000Z

466

Flotation process for removal of precipitates from electrochemical chromate reduction unit  

DOE Patents (OSTI)

This invention is an improved form of a conventional electrochemical process for removing hexavalent chromium or other metal-ion contaminants from cooling-tower blowdown water. In the conventional process, the contaminant is reduced and precipitated at an iron anode, thus forming a mixed precipitate of iron and chromium hydroxides, while hydrogen being evolved copiously at a cathode is vented from the electrochemical cell. In the conventional process, subsequent separation of the fine precipitate has proved to be difficult and inefficient. In accordance with this invention, the electrochemical operation is conducted in a novel manner permitting a much more efficient and less expensive precipitate-recovery operation. That is, the electrochemical operation is conducted under an evolved-hydrogen partial pressure exceeding atmospheric pressure. As a result, most of the evolved hydrogen is entrained as bubbles in the blowdown in the cell. The resulting hydrogen-rich blowdown is introduced to a vented chamber, where the entrained hydrogen combines with the precipitate to form a froth which can be separated by conventional techniques. In addition to the hydrogen, two materials present in most blowdown act as flotation promoters for the precipitate. These are (1) air, with which the blowdown water becomes saturated in the course of normal cooling-tower operation, and (2) surfactants which commonly are added to cooling-tower recirculating-water systems to inhibit the growth of certain organisms or prevent the deposition of insoluble particulates.

DeMonbrun, James R. (Knoxville, TN); Schmitt, Charles R. (Oak Ridge, TN); Williams, Everett H. (Oak Ridge, TN)

1976-01-01T23:59:59.000Z

467

Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions  

DOE Patents (OSTI)

A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

Sansinena, Jose-Maria (Los Alamos, NM); Redondo, Antonio (Los Alamos, NM); Olazabal, Virginia (Los Alamos, NM); Hoffbauer, Mark A. (Los Alamos, NM); Akhadov, Elshan A. (Los Alamos, NM)

2009-12-29T23:59:59.000Z

468

Palladium deuteride formation in the cathode of an electrochemical cell: An in situ neutron diffraction study  

DOE Green Energy (OSTI)

In this report, neutron diffraction of palladium cathodes is utilized to reveal palladium deuteride formation within the crystal structure of the metal. The experiment described in this report demonstrates the efficacy of neutron powder diffraction as a tool for structural studies of metal deuterides/hydrides and the feasibility of in situ diffraction measurements from a working electrochemical cell. (JL)

Rotella, F.J.; Richardson, J.W. Jr.; Redey, L.; Felcher, G.P.; Hitterman, R.L.; Kleb, R.

1991-12-31T23:59:59.000Z

469

Exploratory Technology Research Program for Electrochemical Energy Storage. Annual report, 1992  

SciTech Connect

This report summarizes the progress made by the Exploratory Technology Research (ETR) Program for Electrochemical Energy Storage during calendar year 1992. The primary objective of the ETR Program, which is sponsored by the US Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance, durability and economic requirements for electric vehicles (EVs). The ultimate goal is to transfer the most-promising electrochemical technologies to the private sector or to another DOE program (e.g., SNL`s Electric Vehicle Advanced Battery Systems Development Program, EVABS) for further development and scale-up. Besides LBL, which has overall responsibility for the ETR Program, LANL and BNL have participated in the ETR Program by providing key research support in several of the program elements. The ETR Program consists of three major elements: Exploratory Research; Applied Science Research; and Air Systems Research. The objectives and the specific battery and electrochemical systems addressed by each program element are discussed in the following sections, which also include technical summaries that relate to the individual programs. Financial information that relates to the various programs and a description of the management activities for the ETR Program are described in the Executive Summary.

Kinoshita, K. [ed.

1993-10-01T23:59:59.000Z

470

Exploratory Technology Research Program for Electrochemical Energy Storage. Executive Summary report, 1992  

SciTech Connect

This summary denotes the progress made by the Exploratory Technology Research (ETR) Program for Electrochemical Energy Storage during calendar year 1992. The primary objective of the ETR Program, which is sponsored by the US Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance, durability and economic requirements for electric vehicles (EVs). The ultimate goal is to transfer the most-promising electrochemical technologies to the private sector or to another DOE program (e.g., SNL`s Electric Vehicle Advanced Battery Systems Development Program, EVABS) for further development and scale-up. Besides LBL, which has overall responsibility for the ETR Program, LANL and BNL have participated in the ETR Program by providing key research support in several of the program elements. Program consists of three major elements: Exploratory Research; Applied Science Research; and Air Systems Research. The objectives and the specific battery and electrochemical systems addressed by each program element are discussed. Financial information that relates to the various programs and a description of the management activities for the ETR Program are described.

Kinoshita, K. [ed.

1993-10-01T23:59:59.000Z

471

In Situ Electrochemical X-ray Absorption Spectroscopy of Oxygen Reduction Electrocatalysis with High Oxygen Flux  

E-Print Network (OSTI)

(CE) and carbon paper/Pt working electrode (WE) were added to the pouch. (B) The PDMS pouch was very of Pt established a potential dependence of d-band vacancies.12 Later, a similar increase in white in the electrochemical environment could not investigate the effect of added O2 on the Pt structure because of the design

Frenkel, Anatoly

472

Electrochem icalStim ulation of M icrobialPerchlorate Reduction  

Electrochem icalStim ulation of M icrobialPerchlorate Reduction J . C A M E R O N T H R A S H , J . I A N V A N T R U M P , K A R R I E A . W E B E R ,

473

Alternative Electrochemical Salt Waste Forms, Summary of FY/CY2011 Results  

Science Conference Proceedings (OSTI)

This report summarizes the 2011 fiscal+calendar year efforts for developing waste forms for a spent salt generated in reprocessing nuclear fuel with an electrochemical separations process. The two waste forms are tellurite (TeO2-based) glasses and sol-gel-derived high-halide mineral analogs to stable minerals found in nature.

Riley, Brian J.; McCloy, John S.; Crum, Jarrod V.; Rodriguez, Carmen P.; Windisch, Charles F.; Lepry, William C.; Matyas, Josef; Westman, Matthew P.; Rieck, Bennett T.; Lang, Jesse B.; Pierce, David A.

2011-12-01T23:59:59.000Z

474

Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries  

Science Conference Proceedings (OSTI)

This paper presents a multi-scale finite element approach for lithium batteries to study electrochemical-mechanical interaction phenomena at macro- and micro-scales. The battery model consists of a lithium foil anode, a separator, and a porous cathode ... Keywords: Finite element method, Homogenization, Multi-scale modeling, Porous electrode theory

Stephanie Golmon; Kurt Maute; Martin L. Dunn

2009-12-01T23:59:59.000Z

475

Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

4 results: 4 results: BibTex RIS RTF XML Sort by: Author Title Type [ Year (Desc) ] Filters: Author is Paul L. Ridgway [Clear All Filters] 2012 Ridgway, Paul L., Honghe Zheng, A. F. Bello, Xiangyun Song, Shidi Xun, Jin Chong, and Vincent S. Battaglia. "Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites." Journal of The Electrochemical Society 159, no. 5 (2012): A520. Cho, Kyu Taek, Paul L. Ridgway, Adam Z. Weber, Sophia Haussener, Vincent S. Battaglia, and Venkat Srinivasan. "High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage." Journal of the Electrochemical Society 159, no. 11 (2012): A1806-A1815. 2010 Delacourt, Charles, Paul L. Ridgway, and John S. Newman. "Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes." Journal of

476

Towards a knowledge society in India: issues for management  

Science Conference Proceedings (OSTI)

The paper points out that in the evolutionary process of human society, different groups of people have been left at different levels. Therefore, within countries, it is necessary to identify these different levels and tailor modern knowledge/skill ... Keywords: knowledge management, knowledge society, skill management, technology management

Y. S. Rajan

2003-08-01T23:59:59.000Z

477

Science, Technology, Medicine & Society Speaker How Geneticists Learned  

E-Print Network (OSTI)

Science, Technology, Medicine & Society Speaker Series How Geneticists Learned to Stop Worrying on a history of American medical genetics, tentatively titled The Science of Human Perfection. More information: Science, Technology and Society Program 734-763-2066 umsts@umich.edu www

Rosenberg, Noah

478

Exploratory Technology Research Program for electrochemical energy storage. Executive summary report for 1991  

SciTech Connect

The US DOE Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (EM) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the US automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This executive summary summarizes the research, financial and management activities relevant to the ETR Program in CY 1991.

Kinoshita, K. [ed.

1992-06-01T23:59:59.000Z

479

Exploratory Technology Research Program for electrochemical energy storage. Annual report for 1991  

SciTech Connect

The US Department of Energy`s Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the US automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1991.

Kinoshita, K. [ed.

1992-06-01T23:59:59.000Z

480

Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993  

SciTech Connect

The U.S. Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

Kinoshita, K. [ed.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "journal electrochemical society" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Exploratory Technology Research Program for electrochemical energy storage: Executive summary report for 1993  

DOE Green Energy (OSTI)

The U.S. Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the FIR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

Kinoshita, K. [ed.

1994-09-01T23:59:59.000Z

482

A round robin evaluation of the corrosiveness of wet residential insulation by electrochemical measurements  

SciTech Connect

The results of a round cabin evaluation of the use of an electrochemical method of calculating the corrosion rate of low carbon steel in environments related to cellulosic building insulations are reported. Environments included the leachate from a wet cellulosic insulation and solutions based on pure and commercial grades of borax, ammonium sulfate and aluminum sulfate. The pH values of these environments were in the range of 2.5 to 9.5. Electrochemical measurements were made using a direct reading corrosion rate instrument. The calculated corrosion rates were compared with those determined directly by weight loss measurements. Electrochemical measurements were made over a period of 48 hours and weight loss exposures were for two weeks. Poor agreement was observed for the corrosion rates determined electrochemically and the values were consistently larger than those based on weight loss. Reasons proposed for these results included the complex nature of the corrosion product deposits and the control these deposits have on oxygen diffusion to the metal interface. Both factors influence the validity of the calculation of the corrosion rate by the direct reading instrument. It was concluded that development of a viable electrochemical method of general applicability to the evaluation of the corrosiveness of wet residential building thermal insulations were doubtful. Because of the controlling influence of dissolved oxygen on the corrosion rate in the insulation leachate, an alternate evaluation method is proposed in which a thin steel specimen is partially immersed in wet insulation for three weeks. The corrosiveness of the wet insulation is evaluated in terms of the severity of attack near the metal-air-wet insulation interface. With thin metal specimens, complete penetration along the interface is proposed as a pass/fail criterion. An environment of sterile cotton wet with distilled water is proposed as a comparative standard. 9 refs., 2 figs., 3 tabs.

Stansbury, E.E. (Stansbury (E.E.), Knoxville, TN (United States))

1991-10-01T23:59:59.000Z

483

Los Alamos physicist honored by American Physical Society  

NLE Websites -- All DOE Office Websites (Extended Search)

Physicist honored by American Physical Society Physicist honored by American Physical Society Los Alamos physicist honored by American Physical Society George Kyrala is among a team honored with the American Physical Society's 2012 John Dawson Award for Excellence in Plasma Physics Research. August 29, 2012 George Kyrala George Kyrala Contact Communications Office (505) 667-7000 LOS ALAMOS, NEW MEXICO, August 29, 2012-Los Alamos National Laboratory physicist George Kyrala, along with researchers from Lawrence Livermore National Laboratory (LLNL), is among a team honored with the American Physical Society's 2012 John Dawson Award for Excellence in Plasma Physics Research. The team is being recognized for its work on a far-reaching discovery about laser-matter interaction, which has important implications for LLNL's National Ignition Facility (NIF).

484

Hoagland selected as a new Materials Research Society Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

Hoagland selected as Materials Research Society Fellow Hoagland selected as Materials Research Society Fellow Hoagland selected as a new Materials Research Society Fellow Hoagland has made notable contributions in both experimental and computational materials research. July 9, 2013 Richard G. Hoagland Richard G. Hoagland The Materials Research Society (MRS) is an organization of materials researchers that promotes the advancement of interdisciplinary materials research to improve the quality of life. Richard G. Hoagland of the Laboratory's Materials Science in Radiation and Dynamic Extremes group has been honored with the rank of Fellow by the Materials Research Society (MRS). Hoagland is cited for "outstanding contributions in fracture mechanics and atomistic modeling of dislocation mechanisms of deformation and fracture of metals, ceramics and nanolayered

485

NETL Publications - Journal of Energy and Environmental Research  

NLE Websites -- All DOE Office Websites (Extended Search)

2002 Full Issue PDF-19MB PDF Linked Version PDF-411KB (See NOTE Below) Journal of Energy and Environmental Research - Vol. 2 No. 1 IN THIS ISSUE: Journal Papers, Geologic...

486

Rejection Rates for Journals Publishing in the Atmospheric Sciences  

Science Conference Proceedings (OSTI)

Characteristics of 63 journals publishing peer-reviewed articles on atmospheric science were collected from online information and through a survey e-mailed to the journals. The rate that submitted manuscripts were rejected for publication (...

David M. Schultz

2010-02-01T23:59:59.000Z

487

JOM: The Member Journal of TMS - JOM Monthly  

Science Conference Proceedings (OSTI)

Mar 6, 2009 ... ARPA-E Awards EV Energy Storage Projects. .... "Industrial Waste Heat Recovery Using Thermally Regenerative Electrochemical Cells": This...

488

SC e-journals Help page  

Office of Scientific and Technical Information (OSTI)

Help Help Table of Contents General User Information Access Technical Requirements Desktop Shortcut Archived Journal Issues Open Access Journals Spotlight Spotlight Archive Alerts E-mailing Search Results Need Help With Searching? 'Web of Science' Search General Search Tips General User Information Access: Access to this site is available only through work stations and remote computers connected to the internet via the Office of Science (SC) Lan. Subscription journals accessible via this site are governed by license agreements and may be used by SC Staff whose duty stations are located at DOE Headquarters. SC e-journals 3.0: The Office of Science staff is now provided the latest technology in search and retrieval with the new Federated Search provided with this upgrade. Search results are more likely to meet individual user

489

The China Journal January 2011 Issue 65  

E-Print Network (OSTI)

_________________________________________________________ The China Journal January 2011 Issue 65 Revolution Conflict in Nanjing 1 Anita Chan, Strikes in China's Export Industries in Comparative Perspective 27 Christian Göbel, Uneven Policy Implementation in Rural China 53 Teresa Kuan, "The Heart Says One

Botea, Adi

490

The China Journal July 2011 Issue 66  

E-Print Network (OSTI)

_________________________________________________________ The China Journal July 2011 Issue 66 ____________________________________________________________ Frederick C. Teiwes and Warren Sun, China's New Economic Policy under Hua Guofeng: Party Consensus and Party in China 77 Ka-ming Wu, Tradition Revival with Socialist Characteristics: Propaganda Storytelling Turned

Botea, Adi

491

SLAC National Accelerator Laboratory - Journal's Special Issue...  

NLE Websites -- All DOE Office Websites (Extended Search)

Journal's Special Issue Highlights New Frontier of X-ray Lasers By Glenn Roberts Jr. September 9, 2013 A special issue of a physics publication highlights the contributions of...

492

SC e-journals, Environment  

Office of Scientific and Technical Information (OSTI)

Environment Environment Acta hydrochimica et hydrobiologica Agricultural & Forest Meteorology Air, Soil and Water Research - OAJ American Journal of Environmental Sciences - OAJ Annual Review of Ecology, Evolution, and Systematics Annual Review of Environment and Resources Annual Review of Plant Biology Applied and Environmental Microbiology Applied and Environmental Soil Science - OAJ Applied Microbiology and Biotechnology Aquatic Ecology Archives of Environmental Contamination and Toxicology Atmospheric Chemistry and Physics - OAJ Atmospheric Environment BioControl Biogeochemistry Biogeosciences - OAJ Biomass & Bioenergy Bioprocess and Biosystems Engineering Bioresource Technology Biotechnology Advances BMC Ecology - OAJ Bulletin of Engineering Geology and the Environment

493

SC e-journals, Chemistry  

Office of Scientific and Technical Information (OSTI)

Chemistry Chemistry Accounts of Chemical Research Accreditation and Quality Assurance ACS Chemical Biology ACS Nano Acta Biotheoretica Acta Materialia Acta Neuropathologica Adsorption Advanced Engineering Materials Advances in Physical Chemistry - OAJ AlChE Journal Amino Acids Analyst Analytica Chimica Acta Analytical and Bioanalytical Chemistry Analytical Biochemistry Analytical Chemistry Analytical Sciences - OAJ Angewandte Chemie - International Edition Annual Review of Analytical Chemistry Annual Review of Biochemistry Annual Review of Biophysics Annual Review of Materials Research Annual Review of Physical Chemistry Antimicrobial Agents and Chemotherapy Applied Geochemistry Applied Radiation and Isotopes Applied Surface Science Applied Thermal Engineering Aquatic Geochemistry

494

SC e-journals, Physics  

Office of Scientific and Technical Information (OSTI)

Physics Physics ACS Nano Acta Materialia Adsorption Advanced Composite Materials Advances in Condensed Matter Physics - OAJ Advances in Acoustics and Vibration - OAJ Advances in High Energy Physics - OAJ Advances in Materials Science and Engineering - OAJ Advances in Mathematical Physics - OAJ Advances in Optical Technologies - OAJ Advances in Optics and Photonics Advances in Tribology - OAJ American Journal of Physics, The Annalen der Physik Annales Henri Poincare Annals of Global Analysis and Geometry Annals of Nuclear Energy Annals of Physics Annual Review of Biophysics Annual Review of Fluid Mechanics Annual Review of Nuclear and Particle Science Annual Review of Physical Chemistry Applied Optics Applied Physics A Applied Physics Letters Applied Psychophysiology and Biofeedback

495

Examining Potential Demographic Trends in the Opinions of Undergraduate Journalism Professors Concerning the Topic of Technological and Traditional Journalism Skills and Theories.  

E-Print Network (OSTI)

??This study examined demographics and characteristics of journalism professors and administrators to find potential trends in opinion of the importance of technologically based journalism skills (more)

Riley, Jeffrey K.

2011-01-01T23:59:59.000Z

496

International Journal of Energy Economics and Policy  

NLE Websites -- All DOE Office Websites (Extended Search)

Journal of Energy Economics and Policy Journal of Energy Economics and Policy Vol. 3, No. 1, 2013, pp.60-74 ISSN: 2146-4553 www.econjournals.com 60 Carbon Emissions Caps and the Impact of a Radical Change in Nuclear Electricity Costs Benjamin D. Leibowicz Management Science and Engineering Department, Stanford University, United States. Email: bleibowicz@stanford.edu Maria Roumpani Management Science and Engineering Department,

497

73rd American Welding Society annual meeting  

SciTech Connect

The volume includes the abstracts of papers presented at the 73rd American Welding Society Annual Meeting. Detailed summaries are given for 118 technical sessions papers discussing computer and control applications in welding, stainless steel, nickel and nickel alloys, weld metal microstructure, shipbuilding, consumables, structural welding, investigations in arc welding and cutting, arc welding processes, weldability testing, piping and tubing, high energy beam welding processes, welding metallurgy of structural steels, new applications, weld metal behavior, NDT certification, aluminum welding, submerged arc welding, modeling studies, resistance welding, friction welding, and safety and health. The 23rd International AWS Brazing and Soldering Conference was also held during this meeting. The topics presented in 24 papers included recent developments in soldering technology, brazing of stainless steel, brazing of ceramics and nickel material, filler metal developments for torch brazing, and developments in diffusion and induction brazing.

1992-01-01T23:59:59.000Z

498

Electrochemical Behavior and Li Diffusion Study of LiCoO? Thin Film Electrodes Prepared by PLD  

E-Print Network (OSTI)

Preferred c-axis oriented LiCoO? thin films were prepared on the SiO?/Si (SOS) substrates by pulsed laser deposition (PLD). Thin film electrodes without carbon and binder are ideal samples to study the electrochemical ...

Xia, H.

499

Electrochemical degradation characteristics of refractory organic pollutants in coking wastewater on multiwall carbon nanotube-modified electrode  

Science Conference Proceedings (OSTI)

The multiwall carbon nanotube-mollified electrode (MWCNT-ME) was fabricated and its electrocatalytic activity of refractory organic pollutants of coking wastewater was investigated. The surface morphology, absorption properties, and the electrochemical ...

Yan Wang; Shujing Sun; Guifu Ding; Hong Wang

2012-01-01T23:59:59.000Z

500

An Estimate of the Vertical Ozone Profile Discrepancy between the Australian BrewerMast and Electrochemical Concentration Cell Ozonesondes  

Science Conference Proceedings (OSTI)

An analysis is described that provides an additive correction for referencing the vertical ozone profiles of the Australian BrewerMast (BM; October 1984December 1990) ozonesonde to those of the electrochemical concentration cell (ECC; January ...

Paul Lehmann

2005-12-01T23:59:59.000Z