Powered by Deep Web Technologies
Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Edward Jones, Lawrence Livermore National Laboratory, Outcomes...  

Energy Savers [EERE]

Edward Jones, Lawrence Livermore National Laboratory, Outcomes of U.S.-Japan Roundtable Edward Jones, Lawrence Livermore National Laboratory, Outcomes of U.S.-Japan Roundtable...

2

Chemical Resources | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Resources Chemical Resources Chemical Inventory All Sample Preparation Labs are stocked with an assortment of common solvents, acids, bases, buffers, and other reagents. See our Chemical Inventories for a list of available reagents. If you need large quantities of any chemicals, please order or bring your own supply (see below). Chemical Inventories Standard Operating Procedures (SOPs) If you will be working with any samples or reagents that are significantly toxic, reactive, corrosive, flammable, or otherwise especially hazardous, we may require an approved SOP before you can begin work. Examples: Reagents with an NFPA Rating of 3 or 4 in any category, nanomaterials, heavy metals, pyrophoric materials, water reactive materials. BLANK SOP SSRL BLANK SOP LCLS Ordering Chemicals

3

Chemical Inventory | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Inventory Chemical Inventory Use the following dropdown menus to filter the results for chemical records. To reset the results clear the entries and click "update". Facility - Any - SSRL LCLS Building - Any - 120 131 999 Room - Any - 109 113 209 257 Storage Area Storage Category Apply Title Facility Building Room Storage Area Storage Category Available to All Qty. Size Units Responsible Person 1,3-cyclohexadiene SSRL 131 209 CI L No 1 25 milliliters (ml) Tsu-Chien Weng 1,4- dioxane SSRL 120 257 CB1 L Yes 1 1 liters (l) Cynthia Patty 1,8-Octanedithiol SSRL 131 209 CA3 L No 1 5 grams (g) Schmidt 1-Chloronapthalene SSRL 131 209 CA3 L No 1 100 grams (g) Schmidt 1-Propanol LCLS 999 109 B1 L Yes 1 4 liters (l) Lisa Hammon

4

Sandia National Laboratories: American Chemical SocietyInternational...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials LaboratoryAmerican Chemical Society International-Domestic Student Summit American Chemical Society International-Domestic Student Summit...

5

Polymer Reaction Engineering Laboratory Chemical and Biomolecular Engineering  

E-Print Network [OSTI]

Transporting chemicals Fume hoods and ventilation Refrigerators Incompatible chemicals The followingPolymer Reaction Engineering Laboratory Chemical and Biomolecular Engineering University are general guidelines for all laboratory workers: Follow all safety instructions carefully. Become

Choi, Kyu Yong

6

Airborne chemical baseline evaluation of the 222-S laboratory complex  

SciTech Connect (OSTI)

The 222-S Laboratory complex stores and uses over 400 chemicals. Many of these chemicals are used in laboratory analysis and some are used for maintenance activities. The majority of laboratory analysis chemicals are only used inside of fume hoods or glove boxes to control both chemical and radionuclide airborne concentrations. This evaluation was designed to determine the potential for laboratory analysis chemicals at the 222-S Laboratory complex to cause elevated airborne chemical concentrations under normal conditions. This was done to identify conditions and activities that should be subject to airborne chemical monitoring in accordance with the Westinghouse Hanford Company Chemical Hygiene Plan.

Bartley, P., Fluor Daniel Hanford

1997-02-12T23:59:59.000Z

7

September 2013 Laboratory Safety Manual Section 2 -Chemical Management  

E-Print Network [OSTI]

. General Chemical Storage Guidelines ............................................2-9 a. Good Storage..............................................................2-13 d. Globally Harmonized System (GHS) Labels ..............2-13 F. TRANSPORTING CHEMICALSSeptember 2013 Laboratory Safety Manual Section 2 - Chemical Management Page 2-1 Section 2

Wilcock, William

8

Sandia National Laboratories: MOgene Green Chemicals LLC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MOgene Green Chemicals LLC Sandia to Partner with MOgene Green Chemicals on ARPA-E REMOTE Project On October 2, 2013, in Energy, News, News & Events, Partnership, Research &...

9

V. Rory Jones  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rory Jones Rory Jones CEO and Co-Founder PlanetEcosystems This speaker was a visiting speaker who delivered a talk or talks on the date(s) shown at the links below. This speaker is not otherwise associated with Lawrence Berkeley National Laboratory, unless specifically identified as a Berkeley Lab staff member. Rory co-founded PlanetEcosystems after two decades leading business services organizations. This includes leading Business Value Associates, a premier tech sector strategy consulting firm, serving as SVP, Business Development with Nextera, a publicly traded technology services provider, and leading the US Shareholder Value consulting practice as a Partner at PricewaterhouseCoopers. Previously, Rory held senior positions at Thomson Electronics in Europe. Rory earned an MBA from the University of Chicago, a

10

Sean Jones | Department of Energy  

Office of Environmental Management (EM)

Sean Jones About Us Sean Jones - Senior Policy Analyst, White House Office of Science & Technology...

11

Laboratory Safety Survey Chemical Hygiene Plan  

E-Print Network [OSTI]

. Are refrigerators/freezers used for storage of flammables non-sparking (laboratory safe) and properly labeled? 26 in the lab and kept out of the laboratory refrigerators or cabinets? 16. Are fire extinguishers accessible. Are non-spark-proof refrigerators (household-type) labeled as "Unsafe for Flammable Storage"? 27. Are all

Ferrara, Katherine W.

12

Fire Protection for Laboratories Using Chemicals  

Broader source: Energy.gov (indexed) [DOE]

Protection Engineer Fire Protection Engineering Pacific Northwest National Laboratory Phone 509-371-7902; Cell 509-308-7658 Fax 509-371-7890 andrew.minister@pnnl.gov Questions?...

13

Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds  

E-Print Network [OSTI]

fail. Fostering Creativity | Cover Story | Chemical & Engineering News httpChemical & Engineering News Serving the chemical, life sciences and laboratory worlds Cover Story Home » March 22, 2010 Issue » Cover Story » Bubbling With Enthusiasm » Fostering Creativity March 22

Zare, Richard N.

14

David Robertson Argonne National Laboratory Chemical Sciences and Engineering Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Robertson Robertson Argonne National Laboratory Chemical Sciences and Engineering Division 9700 South Cass Avenue, Building 205 Argonne, IL 60439-4837 Phone: 630/252-7906; fax: 630/972-4468 e-mail: robertsond@anl.gov Professional Experience * May 2010-present: Argonne National Laboratory, Argonne, IL: Engineering Specialist, Electrochemical Analysis and Diagnostics Laboratory, Testing of advanced battery technologies, DOE contract deliverables, benchmarking of foreign battery technologies * July 2007-May 2010: LGCPI, Troy, MI: Electrical Engineering Manager, Lead the development, validation and integration of Battery Management and Control systems, electrical interfaces, wiring systems and sensing interfaces of large format lithium ion batteries for automotive and other applications.

15

Argonne National Laboratory Chemical Engineering Division Catalysts for autothermal reforming  

E-Print Network [OSTI]

Krause Chemical Engineering Division Argonne National Laboratory Hydrogen, Fuel Cells, and Infrastructure2, CO, CO2, and CH4) as a function of: catalyst composition fuel composition and sulfur content,110,861) awarded Oct 2000: CRADA w/H2Fuel to commercialize reformer Aug 2001: Began work on perovskite catalysts

16

Sandia National Laboratories, California Chemical Management Program annual report.  

SciTech Connect (OSTI)

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Chemical Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Chemical Management Program, one of six programs that supports environmental management at SNL/CA. SNL/CA is responsible for tracking chemicals (chemical and biological materials), providing Material Safety Data Sheets (MSDS) and for regulatory compliance reporting according to a variety of chemical regulations. The principal regulations for chemical tracking are the Emergency Planning Community Right-to-Know Act (EPCRA) and the California Right-to-Know regulations. The regulations, the Hazard Communication/Lab Standard of the Occupational Safety and Health Administration (OSHA) are also key to the CM Program. The CM Program is also responsible for supporting chemical safety and information requirements for a variety of Integrated Enabling Services (IMS) programs primarily the Industrial Hygiene, Waste Management, Fire Protection, Air Quality, Emergency Management, Environmental Monitoring and Pollution Prevention programs. The principal program tool is the Chemical Information System (CIS). The system contains two key elements: the MSDS library and the chemical container-tracking database that is readily accessible to all Members of the Sandia Workforce. The primary goal of the CM Program is to ensure safe and effective chemical management at Sandia/CA. This is done by efficiently collecting and managing chemical information for our customers who include Line, regulators, DOE and ES and H programs to ensure compliance with regulations and to streamline customer business processes that require chemical information.

Brynildson, Mark E.

2012-02-01T23:59:59.000Z

17

Siberian Chemical Combine laboratory project work plan, fiscal year 1999  

SciTech Connect (OSTI)

The Siberian Chemical Combine (SKhK), Laboratory Project Work Plan (Plan) is intended to assist the US Laboratory Project Team, and Department of Energy (DOE) staff with the management of the FY99 joint material protection control and accounting program (MPC and A) for enhancing nuclear material safeguards within the Siberian Chemical Combine. The DOE/Russian/Newly Independent States, Nuclear Material Task Force, uses a project work plan document for higher-level program management. The SKhK Plan is a component of the Russian Defense related Sites` input to that document. In addition, it contains task descriptions and a Gantt Chart covering the FY99 time-period. This FY99 window is part of a comprehensive, Project Status Gantt Chart for tasking and goal setting that extends to the year 2003. Secondary and tertiary levels of detail are incorporated therein and are for the use of laboratory project management. The SKhK Plan is a working document, and additions and modifications will be incorporated as the MPC and A project for SKhK evolves.

Morgado, R.E.; Acobyan, R.; Shropsire, R.

1998-12-31T23:59:59.000Z

18

ADVANTAGES AND DISADVANTAGES TO OPERATING AN ON-SITE LABORATORY AT THE SANDIA NATIONAL LABORATORIES CHEMICAL WASTE LANDFILL  

SciTech Connect (OSTI)

During the excavation of the Sandia National Laboratories, New Mexico (SNL/NM) Chemical Waste Landfill (CWL), operations were realized by the presence of URS' (formerly known as United Research Services) On-site Mobile Laboratory (OSML) and the close proximity of the SNL/NM Environmental Restoration Chemical Laboratory (ERCL). The laboratory was located adjacent to the landfill in order to provide soil characterization, health and safety support, and waste management data. Although the cost of maintaining and operating an analytical laboratory can be higher than off-site analysis, there are many benefits to providing on site analytical services. This paper describes the synergies between the laboratory, as well as the advantages and disadvantages to having a laboratory on-site during the excavation of SNL/NM CWL.

Young, S.G.; Creech, M.N.

2003-02-27T23:59:59.000Z

19

Radiation and Chemical Risk Management | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

contaminated soil, military munitions disposal areas, and groundwater contaminated with carbon tetrachloride. Argonne's work in radiation and chemical risk management includes...

20

Chemical analysis of thin films at Sandia National Laboratories  

SciTech Connect (OSTI)

The characterization of thin films produced by chemical and physical vapor deposition requires special analytical techniques. When the average compositions of the films are required, dissolution of the thin films and measurement of the concentrations of the solubilized species is the appropriate analytical approach. In this report techniques for the wet chemical analysis of thin films of Si:Al, P/sub 2/O/sub 5/:SiO/sub 2/, B/sub 2/O/sub 3/:SiO/sub 2/, TiB/sub x/ and TaB/sub x/ are described. The analyses are complicated by the small total quantities of these analytes present in the films, the refractory characters of these analytes, and the possibility of interferences from the substrates on which the films are deposited. Etching conditions are described which dissolve the thin films without introducing interferences from the substrates. A chemical amplification technique and inductively coupled plasma atomic emission spectrometry are shown to provide the sensitivity required to measure the small total quantities (micrograms to milligrams) of analytes present. Also the chemical analysis data has been used to calibrate normal infrared absorption spectroscopy to give fast estimates of the phosphorus and/or boron dopant levels in thin SiO/sub 2/ films.

Tallant, D.R.; Taylor, E.L.

1980-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

TACKLEY ET AL.:THERMO-CHEMICAL PHILOSOPHY Numerical and laboratory studies of mantle convection: Philosophy,  

E-Print Network [OSTI]

TACKLEY ET AL.:THERMO-CHEMICAL PHILOSOPHY 1 Numerical and laboratory studies of mantle convection: Philosophy, accomplishments and thermo-chemical structure and evolution Paul J. Tackley Department of Earth how the solid parts of Earth and other terrestrial planets work. Here, the general philosophy

Tackley, Paul J.

22

Task- and Time-Dependent Weighting Factors in a Retrospective Exposure Assessment of Chemical Laboratory Workers  

SciTech Connect (OSTI)

Results are reported from a chemical exposure assessment that was conducted for a cohort mortality study of 6157 chemical laboratory workers employed between 1943 and 1998 at four Department of Energy sites in Oak Ridge, Tenn., and Aiken, S.C.

Scott A. Henn, David F. Utterback, Kathleen M. Waters, Andrea M. Markey, William G. Tankersley

2007-02-01T23:59:59.000Z

23

Michael M. Thackeray Argonne National Laboratory Chemical Sciences and Engineering Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

M. Thackeray M. Thackeray Argonne National Laboratory Chemical Sciences and Engineering Division 9700 South Cass Avenue, Building 205 Argonne, IL 60439-4837 phone: 630/252-9184, fax: 630/252-4176 Email: thackeray@anl.gov Professional Experience 1994-Present. Argonne National Laboratory, Argonne Distinguished Fellow, Group Leader and Senior Scientist, Electrochemical Energy Storage Department, Chemical Sciences and Engineering Division. 1983-1994. Council for Scientific and Industrial Research (CSIR), Division of Materials Science and Technology, Pretoria, South Africa (Manager and Senior Research Officer, Battery Technology Unit). 1981-82; 1985. Oxford University (Postdoctoral Appointee, Academic Visitor). 1973-1982. CSIR, National Physical Research Laboratory, Pretoria, South Africa (Research

24

Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009  

SciTech Connect (OSTI)

From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H{sup 3} or C{sup 14}. The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994.

Moore, T.E.; Smith, J.M.

1994-04-01T23:59:59.000Z

25

Organic Particles Kevin Wilson Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Studying the Chemical Transformations of for Studying the Chemical Transformations of Organic Particles Kevin Wilson Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Molecular weight growth and decomposition chemistries play important roles in the transformation of particles from soot formation to atmospheric aerosol oxidation. Understanding these complex reaction pathways requires novel methods of analyzing particle phase hydrocarbons. We are developing a suite of synchrotron-based tools to provide better insights into the molecular composition, isomer distribution, and elemental composition of complex hydrocarbon mixtures, aimed at developing simple yet realistic descriptions of molecular weight growth and decomposition that occur during a heterogeneous reaction.

26

CHEM 5510 Introduction to Laboratory Safety 1 credit course on chemical safety (1 hour course, Friday afternoons, Fall Semester)  

E-Print Network [OSTI]

with Chemicals. I (Heemstra) I. General Considerations (Chemical Segregation, Transfer and Transport, Chemical of the Cylinder, Cylinder Pressure Regulator, Stor- age Guidelines, Transporting Cylinders, Handling CompressedCHEM 5510 Introduction to Laboratory Safety ! 1 credit course on chemical safety (1 hour course

Simons, Jack

27

header for SPIE use Laboratory Data and Model Comparisons of the Transport of Chemical  

E-Print Network [OSTI]

National Laboratories, Albuquerque, NM b New Mexico Institute of Mining and Technology, Socorro, NM processes are fairly well understood from many years of agricultural and industrial pollution soil physics of explosive chemicals. The humidity of the air flowing through the plenum was set at about 50% RH to generate

Cal, Mark P.

28

A suite of RS/1 procedures for chemical laboratory statistical quality control and Shewhart control charting  

SciTech Connect (OSTI)

A suite of RS/1 procedures for Shewhart control charting in chemical laboratories is described. The suite uses the RS series product QCA (Quality Control Analysis) for chart construction and analysis. The suite prompts users for data in a user friendly fashion and adds the data to or creates the control charts. All activities are time stamped. Facilities for generating monthly or contiguous time segment summary charts are included. The suite is currently in use at Westinghouse Savannah River Company.

Shanahan, K.L.

1990-09-01T23:59:59.000Z

29

Microsoft PowerPoint - Jones Dec 2009  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer and the Technology Transfer and the Federal Laboratory Consortium: "Identifying and accessing U.S. federal lab technologies available for partnering" Gary K. Jones FLC DC Representative Department of Energy Business Opportunity Session Washington, DC December 17, 2009 Overview Overview of U.S. Federal Technology Transfer Role of the Federal Lab Consortium for Tech Transfer (FLC) Identifying Potential U.S. Federal Lab Partners Selected Examples of Tech Transfer Federal Technology Transfer Defined Technology transfer is the process by which technology or knowledge developed in one place or for one purpose is applied and exploited in another place or for another purpose --- it can occur: Between the government and non-government entities Between government entities (labs/agencies)

30

Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380{sup 3} corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification.

Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

1994-03-01T23:59:59.000Z

31

EXPEDITING THE PATH TO CLOSURE THE CHEMICAL WASTE LANDFILL, SANDIA NATIONAL LABORATORIES, NEW MEXICO  

SciTech Connect (OSTI)

The Chemical Waste Landfill (CWL) at Sandia National Laboratories, New Mexico (SNL/NM) is undergoing closure subject to the requirements of Subtitle C of RCRA. This paper identifies regulatory mechanisms that have and continue to expedite and simplify the closure of the CWL. These include (1) the Environmental Restoration (ER) Programmatic effort to achieve progress quickly with respect to the standard regulatory processes, which resulted in the performance of voluntary corrective measures at the CWL years in advance of the standard process schedule, (2) the management and disposal of CWL remediation wastes and materials according to the risks posed, and (3) the combination of multiple regulatory requirements into a single submittal.

Young, S.G.; Schofield, D.P.; Davis, M.J.; Methvin, R.; Mitchell, M.

2003-02-27T23:59:59.000Z

32

Jones Electric Moho Page 1 ImagingandobservingtheElectricalMoho  

E-Print Network [OSTI]

Jones Electric Moho Page 1 ImagingandobservingtheElectricalMoho Alan G. Jones Dublin Institute version: 18 July, 2012 Revised version: 06 February 2013 Keywords: Moho, electrical Moho, electrical conductivity, electrical resistivity, crustmantle boundary #12;Jones Electric Moho Page 2 Abstract

Jones, Alan G.

33

Treatment of effluents arising from a material characterization laboratory, using chemical precipitation and reverse osmosis processes  

SciTech Connect (OSTI)

Owing to the restrictions imposed by the Regulations, mainly in the field of effluent release into a water body, it`s necessary to use a set of technologies that will help meeting the standards established by these regulations. Taking into account what was exposed above, a process for treating the effluents arising from a Material Characterization Laboratory, that will characterize nuclear materials is proposed in this paper. The process proposed uses chemical precipitation for removing chemicals which can be removed by this means (Chromium, Calcium and Sulfate for instance), and reverse osmosis process to purify the filtrate from precipitation process. The reverse osmosis process is used to remove dissolved chemicals (Nitrates and Chlorides). A synthetic solution with a COD of 8000 mg/l was used to simulate the treatment process. After treatment was finished, a purified stream, which represents 90 % of the intake stream have presented a COD of less then 10 mg/l, showing that this process can be utilized to minimize the impact caused to the environment. The characterization of all streams involved in the treatment process as well as the process description is presented in this paper.

Bello, S.M.G.; Mierzwa, J.C. [Cidade Universitaria, Sao Paulo (Brazil)

1995-11-01T23:59:59.000Z

34

PHYSICS (Div. III) Chair: Professor KEVIN JONES  

E-Print Network [OSTI]

1 PHYSICS (Div. III) Chair: Professor KEVIN JONES Professors: AALBERTS, S. BOLTON*, K. JONES a laser work? What is a black hole? What are the fundamental building blocks of the universe? Physics majors and Astrophysics majors study these and related questions to understand the physical world around

Aalberts, Daniel P.

35

Anne Jones | Center for Bio-Inspired Solar Fuel Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ana Moore Anne Jones Devens Gust Don Seo Giovanna Ghirlanda Hao Yan James Allen Kevin Redding Petra Fromme Thomas Moore Yan Liu Anne Jones Principal Investigator Phone:...

36

The Excavation and Remediation of the Sandia National Laboratories Chemical Waste Landfill  

SciTech Connect (OSTI)

The Chemical Waste Landfill (CWL) at Sandia National Laboratories/New Mexico (SNL/NM) is a 1.9-acre disposal site that was used for the disposal of chemical wastes generated by many of SNL/NM research laboratories from 1962 until 1985. These laboratories were primarily involved in the design, research and development of non-nuclear components of nuclear weapons and the waste generated by these labs included small quantities of a wide assortment of chemical products. A Resource Conservation and Recovery Act (RCRA) Closure Plan for the Chemical Waste Landfill was approved by the New Mexico Environment Department (NMED) in 1992. Subsequent site characterization activities identified the presence of significant amounts of chromium in the soil as far as 80 feet below ground surface (fbgs) and the delineation of a solvent plume in the vadose zone that extends to groundwater approximately 500 fbgs. Trichloroethylene (TCE) was detected in some groundwater samples at concentrations slightly above the drinking water limit of 5 parts per billion. In 1997 an active vapor extraction system reduced the size of the TCE vapor plume and for the last six quarterly sampling events groundwater samples have not detected TCE above the drinking water standard. A source term removal, being conducted as a Voluntary Corrective Measure (VCM), began in September 1998 and is expected to take up to two years. Four distinct disposal areas were identified from historical data and the contents of disposal pits and trenches in these areas, in addition to much of the highly contaminated soil surrounding the disposal cells, are currently being excavated. Buried waste and debris are expected to extend to a depth of 12 to 15 fbgs. Excavation will focus on the removal of buried debris and contaminated soil in a sequential, area by area manner and will proceed to whatever depth is required in order to remove all pit contents. Up to 50,000 cubic yards of soil and debris will be removed and managed during the excavation of the CWL. As part of the excavation process, soil is being separated from the buried debris using a 2-inch mechanical screen. After separation from the soil, debris items are further-segregated by matrix into the following categories: wood, scrap metal, concrete/aggregates, resins, compatible debris, intact chemical containers, radioactive and mixed waste, and high hazard items. One of the greatest sources of hazards throughout the excavation process is the removal of numerous intact chemical containers with unknown contents. A large portion of the excavated soil is contaminated with metals and/or solvents, Polychlorinated biphenyls (PCBs) are also known to be present. Most of the contaminated soils being excavated will be taken to the nearby Corrective Action Management Unit (CAMU) for treatment and management while a majority of the containers will be taken to the Hazardous Waste Management Facility or the Radioactive and Mixed Waste Management Facility for proper treatment and/or disposal at permitted offsite facilities.

KWIECINSKI,DANIEL ALBERT; METHVIN,RHONDA KAY; SCHOFIELD,DONALD P.; YOUNG,SHARISSA G.

1999-11-23T23:59:59.000Z

37

An infrared free-electron laser for the Chemical Dynamics Research Laboratory. Design report  

SciTech Connect (OSTI)

This document describes a free-electron laser (FEL) proposed as part of the Chemical Dynamics Research Laboratory (CDRL), a user facility that also incorporates several advanced lasers of conventional design and two beamlines for the ALS. The FEL itself addresses the needs of the chemical sciences community for a high-brightness, tunable source covering a broad region of the infrared spectrum -- from 3 to 50 {mu}m. All of these sources, together with a variety of sophisticated experimental stations, will be housed in a new building to be located adjacent to the ALS. The radiation sources can be synchronized to permit powerful two-color, pump-probe experiments that will further our fundamental understanding of chemical dynamics at the molecular level, especially those aspects relevant to practical issues in combustion chemistry. The technical approach adopted in this design makes use of superconducting radiofrequency (SCRF) accelerating structures. The primary motivation for adopting this approach was to meet the user requirement for wavelength stability equal to one part in 10{sup 4}. Previous studies concluded that a wavelength stability of only one part in 10{sup 3} could be achieved with currently available room-temperature technology. In addition, the superconducting design operates in a continuous-wave (cw) mode and hence offers considerably higher average optical output power. It also allows for various pulse-gating configurations that will permit simultaneous multiuser operations. A summary of the comparative performance attainable with room-temperature and superconducting designs is given. The FEL described in this report provides a continuous train of 30-ps micropulses, with 100{mu}J of optical energy per micropulse, at a repetition rate of 6.1 MHz. The device can also deliver pulses at a cw repetition rate of 12.2 MHz, with a peak power of 50 {mu}J per micropulse. 70 ref.

Vaughan, D. [comp.

1992-04-01T23:59:59.000Z

38

An infrared free-electron laser for the Chemical Dynamics Research Laboratory  

SciTech Connect (OSTI)

This document describes a free-electron laser (FEL) proposed as part of the Chemical Dynamics Research Laboratory (CDRL), a user facility that also incorporates several advanced lasers of conventional design and two beamlines for the ALS. The FEL itself addresses the needs of the chemical sciences community for a high-brightness, tunable source covering a broad region of the infrared spectrum -- from 3 to 50 {mu}m. All of these sources, together with a variety of sophisticated experimental stations, will be housed in a new building to be located adjacent to the ALS. The radiation sources can be synchronized to permit powerful two-color, pump-probe experiments that will further our fundamental understanding of chemical dynamics at the molecular level, especially those aspects relevant to practical issues in combustion chemistry. The technical approach adopted in this design makes use of superconducting radiofrequency (SCRF) accelerating structures. The primary motivation for adopting this approach was to meet the user requirement for wavelength stability equal to one part in 10{sup 4}. Previous studies concluded that a wavelength stability of only one part in 10{sup 3} could be achieved with currently available room-temperature technology. In addition, the superconducting design operates in a continuous-wave (cw) mode and hence offers considerably higher average optical output power. It also allows for various pulse-gating configurations that will permit simultaneous multiuser operations. A summary of the comparative performance attainable with room-temperature and superconducting designs is given. The FEL described in this report provides a continuous train of 30-ps micropulses, with 100{mu}J of optical energy per micropulse, at a repetition rate of 6.1 MHz. The device can also deliver pulses at a cw repetition rate of 12.2 MHz, with a peak power of 50 {mu}J per micropulse. 70 ref.

Vaughan, D. (comp.)

1992-04-01T23:59:59.000Z

39

The Jones Matrix of a birefringent plate  

E-Print Network [OSTI]

the birefringence in the phase difference calculation is incorrect, and we have corrected two common errors that appeared in previous publications. The Jones Matrix of a single birefringent plate is rigorously determined; previous published results are inaccurate...

Wan, Xiaoke

2012-06-07T23:59:59.000Z

40

CHRISTINE JENNINGS, ELLEN FEDDER, LANCE JONES, ERNEST  

E-Print Network [OSTI]

, Electronic Frontier Foundation, San Francisco, California; Rebecca Harrison Steele & Zeina N. Salam, A.CCHRISTINE JENNINGS, ELLEN FEDDER, LANCE JONES, ERNEST LASCHE A/K/A/ MIKE LASCHE, BARBARA KLEIN

Shamos, Michael I.

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

APPENDIX B CHEMICAL STORAGE SEGREGATION SCHEME Developing safe storage practices for laboratory chemicals is not always easy and often  

E-Print Network [OSTI]

/or ventilated gas storage cabinet. Methane, Acetylene, Hydrogen Oxidizing and toxic compressed gases, oxidizing68 APPENDIX B ­ CHEMICAL STORAGE SEGREGATION SCHEME Developing safe storage practices. Your ability to develop a safe storage system will depend on your knowledge of chemicals or your

42

THE HOLIFIELD HEAVY-ION RESEARCH FACILITY AT OAK RIDGE C. M. JONES  

E-Print Network [OSTI]

1353 THE HOLIFIELD HEAVY-ION RESEARCH FACILITY AT OAK RIDGE C. M. JONES Oak Ridge National Laboratory*, Oak Ridge, Tennessee 37830, U.S.A. Résumé. 2014 Un nouveau laboratoire de recherche sur les ions lourds est actuellement en construction au Laboratoire National d'Oak Ridge. Cet exposé présente une

Paris-Sud XI, Université de

43

A mechanism for providing institutional assurance for the safe handling of acutely toxic or physically dangerous chemicals in research laboratories  

Science Journals Connector (OSTI)

Chemical use is ubiquitous in research laboratories and is necessary for the advancement of research and creation of new technology. Regulatory mechanisms currently exist that mandate the provision of basic safety training for workers and the assurance that essential safety information is readily available. Unfortunately, in some cases, institutional oversight of specific high risk laboratory chemical use may be absent. This may be due in part to the difficulty in delineating between chemicals that are commonly used but possess a hazardous characteristic (e.g., flammability) and those that exhibit acutely toxic or particularly dangerous properties (e.g., explosivity). In 1994, The University of Texas Health Science Center at Houston began addressing this issue through the creation of an institutional Chemical Safety Committee (CSC) that consists largely of research faculty. Through a shared governance process, the committee identified criteria for which certain chemical use would require institutional review and approval, striving to achieve a balance between supporting research while providing an added level of assurance that work involving the acutely toxic or physically dangerous chemical can be performed safely. The process used for developing these criteria is described along with the lessons learned from its evolutionary process.

Robert Emery

2013-01-01T23:59:59.000Z

44

Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Three - Appendix F  

SciTech Connect (OSTI)

This appendix supports the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-13711/V1. This volume contains Appendix F. Appendix F is essentially a photocopy of the ORNL researchers' laboratory notebooks from the Environmental Sciences Division (ESD) and the Radioactive Materials Analytical Laboratory (RMAL).

Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

1999-04-01T23:59:59.000Z

45

The Jones Act : an economic and political evaluation  

E-Print Network [OSTI]

On June 5, 1920, the Merchant Marine Act of 1920, also known as the Jones Act, became law. The Jones Act, a cabotage law, restricts American waterborne domestic trade to vessels flagged in the United States, owned by ...

Smith, Richard A. (Richard Allen), 1981-

2004-01-01T23:59:59.000Z

46

Jones, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jones, Oklahoma: Energy Resources Jones, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5658936°, -97.2869781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.5658936,"lon":-97.2869781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

A supply chain carbon footprint analysis of the University of California, Berkeley Christopher M. Jones and Daniel M. Kammen  

E-Print Network [OSTI]

. Jones and Daniel M. Kammen Renewable and Appropriate Energy Laboratory University of California with an assessment of indirect emissions from purchased energy, construction and procurement of goods, food "hot spots" to target mitigation strategies. However, the study was also preliminary in nature

Kammen, Daniel M.

48

Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities  

SciTech Connect (OSTI)

Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEAs interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team then identified commercial off the shelf (COTS) chemical detectors that may detect the chemicals of interest. Three chemical detectors were selected and tested both in laboratory settings and in field operations settings at Idaho National Laboratory. The instruments selected are: Thermo Scientific TruDefender FT (FTIR), Thermo Scientific FirstDefender RM (Raman), and Bruker Tracer III SD (XRF). Functional specifications, operability, and chemical detectability, selectivity, and limits of detection were determined. Results from the laboratory and field tests will be presented. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.

Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

2014-07-01T23:59:59.000Z

49

Biographical sketch - Anne Jones | Center for Bio-Inspired Solar...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A. K. Jones, S. E. Lamle, H. R. Pershad, K. A. Vincent, S. P. J. Albracht, and F. A. Armstrong. Enzyme electrokinetics: electrochemical studies of the anaerobic interconversions...

50

IN-SITU MONITORING OF CORROSION DURING A LABORATORY SIMULATION OF OXALIC ACID CHEMICAL CLEANING  

SciTech Connect (OSTI)

The Savannah River Site (SRS) will disperse or dissolve precipitated metal oxides as part of radioactive waste tank closure operations. Previously SRS used oxalic acid to accomplish this task. To better understand the conditions of oxalic acid cleaning of the carbon steel waste tanks, laboratory simulations of the process were conducted to determine the corrosion rate of carbon steel and the generation of gases such as hydrogen and carbon dioxide. Open circuit potential measurements, linear polarization measurements, and coupon immersion tests were performed in-situ to determine the corrosion behavior of carbon steel during the demonstration. Vapor samples were analyzed continuously to determine the constituents of the phase. The combined results from these measurements indicated that in aerated environments, such as the tank, that the corrosion rates are manageable for short contact times and will facilitate prediction and control of the hydrogen generation rate during operations.

Wiersma, B; John Mickalonis, J; Michael Poirier, M; John Pareizs, J; David Herman, D; David Beam, D; Samuel Fink, S; Fernando Fondeur, F

2007-10-08T23:59:59.000Z

51

A Global Optimization Approach for Lennard--Jones Microclusters  

E-Print Network [OSTI]

A Global Optimization Approach for Lennard--Jones Microclusters Costas D. Maranas and Christodoulos 1992 Abstract A global optimization approach is proposed for finding the global minimum energy configuration of Lennard--Jones microclusters. First, the original nonconvex total poten­ tial energy function

Neumaier, Arnold

52

Jones-Onslow EMC - Residential Heating and Cooling Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Jones-Onslow EMC - Residential Heating and Cooling Rebate Program Jones-Onslow EMC - Residential Heating and Cooling Rebate Program Jones-Onslow EMC - Residential Heating and Cooling Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Central AC (15 SEER or greater): $35 Central AC (16 SEER or greater): $50 Heat Pump (15 SEER or greater): $250 Geothermal Heat Pump (19 EER or greater): $350 Provider Jones-Onslow EMC Jones-Onslow Electric Membership Corporation offers rebates to residential members who install energy efficient heating and cooling equipment. Members can replace an existing central AC or heat pump, which does not have a SEER rating greater than 13, with a central AC, heat pump, or geothermal heat

53

Advantages of Using the ANSI/ASHRAE 110-1995 Tracer Gas Test Method Versus the ANSI/AIHA Z9.5-1992 Face Velocity Test Method for Chemical Laboratory Hood Certification.  

E-Print Network [OSTI]

??A total of 484 tests were performed on chemical laboratory Hoods (chemical hoods), using the ANSI/AIHA Z9.5-1992 (American National Standard Institute / American Industrial Hygiene (more)

Fahim, Mahdi H.

2007-01-01T23:59:59.000Z

54

Ms. Leslie Jones ENERGY STAR Program  

Broader source: Energy.gov (indexed) [DOE]

December 21,2010 December 21,2010 U.S. Environmental Protection Agency 1200 Pennsylvania Avenue, NW Room 62023 Washington, DC 20460 Dear Ms. Jones: On November 24, 2010, the United States Department of Energy (DOE) notified Haier that DOE had tested the Haier room air conditioner model ESA3087 as part of the ENERGY STAR Testing Pilot Program, and that, according to Stage I testing, this model exceeded allowable ENERGY STAR energy-efficiency requirements by 18 percent. DOE gave Haier until December 3, 2010, to request additional testing or have this matter referred to the United States Environmental Protection Agency (EPA) for disqualification from the ENERGY STAR program. On December 2, Haier notified DOE that it was in the process of voluntarily removing model

55

Ms. Leslie Jones ENERGY STAR Program  

Broader source: Energy.gov (indexed) [DOE]

September 20, 2011 September 20, 2011 U.S. Environmental Protection Agency 1200 Pennsylvania Avenue, NW Room 62023 Washington, DC 20460 Dear Ms. Jones: On March 7, 2011, the United States Depmiment of Energy (DOE) notified Baier America Trading, L.L.C. (Baier) that DOE had completed testing of Baier refrigerator model PRTS21SAC* under the ENERGY STAR Verification Testing Pilot Program and confirmed that the model did not meet ENERGY STAR energy efficiency requirements. DOE gave Baier until March 28, 2011, to provide conclusive manufacturing or design evidence or quality assurance information to rebut DOE testing results, which showed that this product did not meet the ENERGY STAR Program's energy efficiency requirement. Baier responded to DOE in a letter dated March 22, 2011, contending that the results of

56

Ms. Leslie Jones ENERGY STAR Program  

Broader source: Energy.gov (indexed) [DOE]

June 6, 2012 June 6, 2012 U.S. Environmental Protection Agency 1200 Pennsylvania Avenue, NW Room62023 Washington, DC 20460 Dear Ms. Jones: On October 28, 2011, the United States Depatiment of Energy (DOE) notified Friedrich Air Conditioning Company (Friedrich) that DOE had completed testing of Friedrich room air conditioner models WS12Cl0 and WS13C30 under the ENERGY STAR Testing Pilot Program and confirmed that these models do not meet the ENERGY STAR energy efficiency requirement of9.4 EER. On November 3, 201 I, DOE notified Friedrich that its room air conditioner model USI2C30 does not meet the ENERGY STAR energy efficiency requirement of9.4 EER. In each notice, DOE gave Friedrich twenty days to provide conclusive manufacturing or design evidence or quality assurance information on why DOE testing showed that these models do not

57

Ms. Leslie Jones ENERGY STAR Program  

Broader source: Energy.gov (indexed) [DOE]

July 7, 2011 July 7, 2011 U.S. Environmental Protection Agency 1200 Pennsylvania Avenue NW Room62023 Washington, DC 20460 Dear Ms. Jones: Electrolux Home Products, Inc. (Electro lux) room air conditioner model FRA256ST2 was selected for testing as part of the U.S. Department of Energy's (DOE) ENERGY STAR® Verification Testing Pilot Program. DOE's initial testing, performed on a unit of this model, indicated that it may not meet ENERGY STAR requirements. After testing three additional units of this model, and finding that each fell short of the minimum standard of9.4 EER, DOE asked Electrolux to provide conclusive manufacturing or design evidence or quality assurance information on why this product should be viewed as meeting the ENERGY STAR Program's energy efficiency

58

The National Chemical Laboratory  

Science Journals Connector (OSTI)

... the aqueous leach pulp and the extracting solvent. This principle is employed in the disk contactor : the disks are wetted by the aqueous phase, and, as they rotate, ...

1958-12-27T23:59:59.000Z

59

The National Chemical Laboratory  

Science Journals Connector (OSTI)

... a compact solvent extraction plant embodying four stages of a recently developed rotatory-disk film contactor, which operates directly on unfiltered leach slurries. Extraction from pulps appears to be a ... leach slurries. Extraction from pulps appears to be a promising technique, and the rotary contactor has already been tested over lengthy periods.

J. S. ANDERSON

1960-12-17T23:59:59.000Z

60

The National Chemical Laboratory  

Science Journals Connector (OSTI)

... Extraction of Metals Group showed the progress it has made in developing a rotary-disk contactor for the solvent extraction of solutes from slurries. A 5-stage unit utilizing 4- ...

E. A. COULSON

1962-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Jones Splashland Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Jones Splashland Pool & Spa Low Temperature Geothermal Facility Jones Splashland Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jones Splashland Pool & Spa Low Temperature Geothermal Facility Facility Jones Splashland Sector Geothermal energy Type Pool and Spa Location Alamosa, Colorado Coordinates 37.4694491°, -105.8700214° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

62

Fish and river pollution (J. R. Erichsen Jones)  

Science Journals Connector (OSTI)

Fish and River. Pollution. Butterworth. Inc., Washington,. D.C. viii + 203 p. $9.75. Fish und River Pollution by J. R. Erichsen Jones fills the long-felt need for a...

1999-12-28T23:59:59.000Z

63

EA-437; Environmental Assessment Process Equipment Waste and Process Waste Liquid Collection Systems Idaho Chemical Processing Plant Idaho National Engineering Laboratory  

Broader source: Energy.gov (indexed) [DOE]

437; Environmental Assessment Process Equipment Waste and 437; Environmental Assessment Process Equipment Waste and Process Waste Liquid Collection Systems Idaho Chemical Processing Plant Idaho National Engineering Laboratory TABLE OF CONTENTS Environmental Assessment Process Equipment Waste and Process Waste Liquid Collection Systems Idaho Chemical Processing Plant Idaho National Engineering Laboratory 1. INTRODUCTION 2. DESCRIPTION OF THE PROPOSED ACTION AND ALTERNATIVES 2.1 Purpose and Need of the Proposed Action 2.2 Description of the Affected Facilities 2.3 Description of Proposed Action 2.4 Alternatives to the Proposed Action 2.5 Separate But Related Actions 3. AFFECTED ENVIRONMENT 3.1 Introduction 3.2 Physical Environment 3.3 Biological Resources 3.4 Cultural Resources 3.5 Environmental Quality and Monitoring Programs

64

Jones-Onslow Elec Member Corp | Open Energy Information  

Open Energy Info (EERE)

Jones-Onslow Elec Member Corp Jones-Onslow Elec Member Corp Jump to: navigation, search Name Jones-Onslow Elec Member Corp Place North Carolina Utility Id 9837 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Medium General Service Single Phase Commercial Medium General Service Three Phase Commercial Residential Rate Residential Small General Service Single Phase Commercial Small General Service Three Phase Commercial Average Rates Residential: $0.1040/kWh

65

Thermomigration of Tellurium Inclusions in CZT Brian Faulkner, Dr. Kelvin Lynn and Kelly Jones  

E-Print Network [OSTI]

Thermomigration of Tellurium Inclusions in CZT Brian Faulkner, Dr. Kelvin Lynn and Kelly Jones Datta, Kelly Jones, Chandrasekar Minnal Santosh Swain, Gitau Munge, Raji Soundararajan To make a good

Collins, Gary S.

66

Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fria Reservoir, Poza Rica-Altamira Field, Mexico  

SciTech Connect (OSTI)

Waterflooding for enhanced oil recovery requires that injected waters must be chemically compatible with connate reservoir waters, in order to avoid mineral dissolution-and-precipitation cycles that could seriously degrade formation permeability and injectivity. Formation plugging is a concern especially in reservoirs with a large content of carbonates, such as calcite and dolomite, as such minerals typically react rapidly with an aqueous phase, and have strongly temperature-dependent solubility. Clay swelling can also pose problems. During a preliminary waterflooding pilot project, the Poza Rica-Altamira oil field, bordering the Gulf coast in the eastern part of Mexico, experienced injectivity loss after five months of reinjection of formation waters into well AF-847 in 1999. Acidizing with HCl restored injectivity. We report on laboratory experiments and reactive chemistry modeling studies that were undertaken in preparation for long-term waterflooding at Agua Frma. Using analogous core plugs obtained from the same reservoir interval, laboratory coreflood experiments were conducted to examine sensitivity of mineral dissolution and precipitation effects to water composition. Native reservoir water, chemically altered waters, and distilled water were used, and temporal changes in core permeability, mineral abundances and aqueous concentrations of solutes were monitored. The experiments were simulated with the multi-phase, nonisothermal reactive transport code TOUGHREACT, and reasonable to good agreement was obtained for changes in solute concentrations. Clay swelling caused an additional impact on permeability behavior during coreflood experiments, whereas the modeled permeability depends exclusively on chemical processes. TOUGHREACT was then used for reservoir-scale simulation of injecting ambient-temperature water (30 C, 86 F) into a reservoir with initial temperature of 80 C (176 F). Untreated native reservoir water was found to cause serious porosity and permeability reduction due to calcite precipitation, which is promoted by the retrograde solubility of this mineral. Using treated water that performed well in the laboratory flow experiments was found to avoid excessive precipitation, and allowed injection to proceed.

Birkle, P.; Pruess, K.; Xu, T.; Figueroa, R.A. Hernandez; Lopez, M. Diaz; Lopez, E. Contreras

2008-10-01T23:59:59.000Z

67

CRADA with International Polyol Chemicals, Inc. (IPCI) and Pacific Northwest National Laboratory (PNL-053): Process Optimization for Polyols Production from Glucose  

SciTech Connect (OSTI)

The objective of this CRADA is to provide sufficient process development to allow a decision for commercialization of the International Polyol Chemicals, Inc. (IPCI) process for production of polyols from glucose. This cooperative research allowed Pacific Northwest National Laboratory (PNNL) to focus its aqueous processing systems expertise on the IPCI process to facilitate process optimization. The project was part of the Department of Energy's (DOE/EE-OIT) Alternative Feedstocks Program (AFP). The project was a demonstration of the cooperative effort between the AFP and the Department of Agriculture's Alternative Agriculture Research Center, which was also funding IPCI research.

Elliott, D.C.

1997-01-01T23:59:59.000Z

68

Hard Drive Power Consumption Uncovered Computer Laboratory  

E-Print Network [OSTI]

Hard Drive Power Consumption Uncovered Computer Laboratory Digital Technology Group Anthony Hylick, Andrew Rice, Brian Jones, Ripduman Sohan Motivation Attempts to reduce power consumption have mainly of power consumption and identify the need for a more expressive API between the OS and hardware devices

Cambridge, University of

69

Clinical and Experimental Optometry 88.5 September 2005 Retinal remodelling Jones, Watt and Marc  

E-Print Network [OSTI]

Clinical and Experimental Optometry 88.5 September 2005 282 Retinal remodelling Jones, Watt defects). Even though all these INVITED REVIEW Retinal remodelling Bryan W Jones PhD Carl B Watt Ph and Experimental Optometry 88.5 September 2005 283 Retinal remodelling Jones, Watt and Marc dystrophies

Marc, Robert E.

70

Parallel evolution of chimeric fusion genes Corbin D. Jones*  

E-Print Network [OSTI]

Parallel evolution of chimeric fusion genes Corbin D. Jones* and David J. Begun *Department in Drosophila to guide our analyses. We discovered a fundamental similarity in the temporal, spatial, and types in the evolution of chimeric fusion genes. We suggest that the patterns we observed are both general and predictive

Begun, David

71

1 Density Functional Theory for Emergents Robert O. Jones  

E-Print Network [OSTI]

1 Density Functional Theory for Emergents Robert O. Jones Peter-Gr¨unberg-Institut PGI-1 and German the widespread use of density functional (DF) theory in materials science and chemistry and the physical insight as basic variable 3 3 An "approximate practical method" 5 4 Density functional formalism 7 4.1 Single

72

Will Climate Change Mathematics (?) Christopher K.R.T. Jones  

E-Print Network [OSTI]

Will Climate Change Mathematics (?) Christopher K.R.T. Jones Warwick Mathematics Institute to climate change facing us are enormous and we will almost certainly have to harness all of our scienti complex calculations and predictions as are undertaken by the Intergovernmental Panel on Climate Change

73

Heat Kernel for Open Manifolds Trevor H. Jones  

E-Print Network [OSTI]

Heat Kernel for Open Manifolds Trevor H. Jones 22nd July, 2010 Abstract It is known that for open manifolds with bounded geometry, the differential form heat kernel exists and is unique. Furthermore, it has been shown that the components of the differential form heat kernel are related via the exterior

Jones, Trevor H.

74

Jones County, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jones County, North Carolina: Energy Resources Jones County, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0306293°, -77.3324425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0306293,"lon":-77.3324425,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

75

Development of Molten Corium Using An Exothermic Chemical Reaction for the Molten- Fuel Moderator-Interaction Studies at Chalk River Laboratories  

SciTech Connect (OSTI)

Atomic Energy of Canada Limited (AECL) has partnered with Argonne National Laboratory to develop a corium thermite prototypical of Candu material and test the concept of ejecting {approx}25 kg of the molten material from a pressure tube with a driving pressure of 10 MPa. This development program has been completed and the technology transferred to AECL. Preparation for the molten-fuel moderator-interaction tests at AECL's Chalk River Laboratories is well underway. A mixture of 0.582 U/0.077 U{sub 3}O{sub 8}/0.151 Zr/0.19 CrO{sub 3} (wt%) as reactant chemicals has been demonstrated to produce a corium consisting of 0.73 UO{sub 2}/0.11 Zr/0.06 ZrO{sub 2}/0.10 Cr (wt%) at {approx}2400 deg. C. This is comparable to the target Candu specific corium of 0.9 UO{sub 2}/0.1 Zr (wt%), with limited oxidation. The peak melt temperature was confirmed from small-scale thermitic reaction tests. Several small-scale tests were completed to qualify the thermite to ensure operational safety and a quantifiable experimental outcome. The proposed molten-fuel moderator-interaction experiments at Chalk River Laboratories will consist of heating the thermite mixture inside a 1.14-m long insulated pressure tube. Once the molten material has reached the desired temperature of {approx}2400 deg. C, the pressure inside the tube will be raised to about 10 MPa, and the pressure tube will fail at a pre-machined flaw, ejecting the molten material into the surrounding tank of water. The test apparatus, instrumentation, data acquisition and control systems have been assembled, and a series of successful commissioning tests have been completed. (authors)

Nitheanandan, T.; Sanderson, D.B.; Kyle, G. [Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, Ontario, K0J 1J0 (Canada); Farmer, M. [Argonne National Laboratory, 9700, S. Cass Avenue, Argonne, IL 60439 (United States)

2004-07-01T23:59:59.000Z

76

Chemical Concentrations in Field Mice from Open-Detonation Firing Sites TA-36 Minie and TA-39 Point 6 at Los Alamos National Laboratory  

SciTech Connect (OSTI)

Field mice (mostly Peromyscus spp.) were collected at two open-detonation (high explosive) firing sites - Minie at Technical Area (TA) 36 and Point 6 at TA-39 - at Los Alamos National Laboratory in August of 2010 and in February of 2011 for chemical analysis. Samples of whole body field mice from both sites were analyzed for target analyte list elements (mostly metals), dioxin/furans, polychlorinated biphenyl congeners, high explosives, and perchlorate. In addition, uranium isotopes were analyzed in a composite sample collected from TA-36 Minie. In general, all constituents, with the exception of lead at TA-39 Point 6, in whole body field mice samples collected from these two open-detonation firing sites were either not detected or they were detected below regional statistical reference levels (99% confidence level), biota dose screening levels, and/or soil ecological chemical screening levels. The amount of lead in field mice tissue collected from TA-39 Point 6 was higher than regional background, and some lead levels in the soil were higher than the ecological screening level for the field mouse; however, these levels are not expected to affect the viability of the populations over the site as a whole.

Fresquez, Philip R. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

77

A review of "Inigo Jones and the European Classicist Tradition" by Giles Worsley  

E-Print Network [OSTI]

version of classi- cism found not only in Italy, but also in France, Germany and the Netherlands in the early seventeenth century. Furthermore, what Inigo Jones added to this style was an intellectual framework that included a discussion of decorum... career within the court prior to his mid-life shift toward architectural design. Jones traveled extensively before his 1613 Italy tour, likely within a court entourage to France, Germany, Italy, and Denmark. During these formative years, Jones began...

Palmer, Allison Lee

2008-01-01T23:59:59.000Z

78

Composable Memory Transactions Tim Harris Simon Marlow Simon Peyton Jones Maurice Herlihy  

E-Print Network [OSTI]

Composable Memory Transactions Tim Harris Simon Marlow Simon Peyton Jones Maurice Herlihy Microsoft Research 7 J J Thomson Avenue, Cambridge, UK, CB3 0FB {tharris

Ramsey, Norman

79

Advanced Jones calculus for the classification of periodic metamaterials  

Science Journals Connector (OSTI)

By relying on an advanced Jones calculus, we analyze the polarization properties of light upon propagation through metamaterial slabs in a comprehensive manner. Based on symmetry considerations, we show that all periodic metamaterials may be divided into five different classes only. It is shown that each class differently affects the polarization of the transmitted light and sustains different eigenmodes. We show how to deduce these five classes from symmetry considerations and provide a simple algorithm that can be applied to decide to which class a given metamaterial belongs by measuring only the transmitted intensities.

Christoph Menzel; Carsten Rockstuhl; Falk Lederer

2010-11-15T23:59:59.000Z

80

Laboratory Access | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Access Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety requirements. Refer to the SSRL or LCLS Safety Offices for further guidance. Upon Arrival Upon Arrival Once you arrive you must complete training and access forms before accessing the Sample Preparation Laboratories (SPL). All Sample Prep Lab doors are locked with access key codes. Once your SPL

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A Variational Approach for Minimizing Lennard-Jones Energies  

E-Print Network [OSTI]

A variational method for computing conformational properties of molecules with Lennard-Jones potentials for the monomer-monomer interactions is presented. The approach is tailored to deal with angular degrees of freedom, {\\it rotors}, and consists in the iterative solution of a set of deterministic equations with annealing in temperature. The singular short-distance behaviour of the Lennard-Jones potential is adiabatically switched on in order to obtain stable convergence. As testbeds for the approach two distinct ensembles of molecules are used, characterized by a roughly dense-packed ore a more elongated ground state. For the latter, problems are generated from natural frequencies of occurrence of amino acids and phenomenologically determined potential parameters; they seem to represent less disorder than was previously assumed in synthetic protein studies. For the dense-packed problems in particular, the variational algorithm clearly outperforms a gradient descent method in terms of minimal energies. Although it cannot compete with a careful simulating annealing algorithm, the variational approach requires only a tiny fraction of the computer time. Issues and results when applying the method to polyelectrolytes at a finite temperature are also briefly discussed.

Carsten Peterson; Ola Sommelius; Bo Sderberg

1995-02-17T23:59:59.000Z

82

A global optimization approach for Lennard-Jones microclusters Costas D. Maranas and Christodoulos A. Floudasa)  

E-Print Network [OSTI]

the global minimum energy configuration of Lennard-Jones microclusters. First, the original nonconvex total the total potential energy function. Then, a decomposition strategy based on the global optimization (GOPA global optimization approach for Lennard-Jones microclusters Costas D. Maranas and Christodoulos

Maranas, Costas

83

Abstract No. jone0514 Elemental Distributions for NY/NJ Harbor Sediments  

E-Print Network [OSTI]

Abstract No. jone0514 Elemental Distributions for NY/NJ Harbor Sediments K. Jones (BNL), H. Feng (Montclair State U.) and A. Lanzirotti (U. of Chicago) Beamline(s): X26A Sediments in the New York/New Jersey Waterways Sediments, is a useful material for use in investigation of the spatial variability. This standard

Brookhaven National Laboratory

84

Abstract No. jone0499 FTIR Measurement of Organic Functional Groups in NY/NJ Harbor Sediments  

E-Print Network [OSTI]

Abstract No. jone0499 FTIR Measurement of Organic Functional Groups in NY/NJ Harbor Sediments H. Jones (BNL) Beamline(s): U2B Sediments in urban rivers and estuaries are usually contaminated contaminated sediments cause to the environment and human health is now widely recognized and has stimulated

Brookhaven National Laboratory

85

A new goodness of fit test: the reversed Berk-Jones statistic  

E-Print Network [OSTI]

probabilites (corresponding to the power of the tests) of our new bands with the (corrected version of) Owen confidence bands for F by inverting the Berk and Jones test, and then calculates the power associatedA new goodness of fit test: the reversed Berk-Jones statistic Leah Jager1 and Jon A. Wellner2

Washington at Seattle, University of

86

Chemical Physics | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics FWPProject Description: Project Leader(s): James Evans, Mark Gordon Principal Investigators: James Evans, Mark Gordon, Klaus Ruedenberg, Theresa Windus Key Scientific...

87

Laboratory Chemical Transportation By Departments  

E-Print Network [OSTI]

the driver and must be located beside the driver or in the driver's side door. The paperwork must contain The vehicle must be a CSU state vehicle and be driven by a full time CSU employee who has had CSU Hazardous only occur if the vehicle crosses Prospect at the light on Center Avenue and turns off Center Avenue

Fischer, Emily V.

88

VIA EMAIL Ms. Leslie Jones ENERGY STAR Program  

Broader source: Energy.gov (indexed) [DOE]

May 22,2012 May 22,2012 U.S. Environmental Protection Agency 1200 Pennsylvania Avenue, NW Room62023 Washington, DC 20460 Dear Ms. Jones: The U.S. Department of Energy ("DOE") selected an Avanti Products ("Avanti") refrigerator, basic model BCA4560W-2 ("model BCA4560W-2"), for testing as patt of the DOE's ENERGY STAR® Verification Testing Program. On April 6, 2012, DOE notified Avanti that the model did not meet the ENERGY STAR energy efficiency requirement for maximum permitted annual energy usage. DOE gave Avanti until April27, 2012, to respond. Avanti responded to DOE via email, submitting various documents, on April27, 2012. Avanti explained that it had randomly selected units of model BCA4560W -2 for testing at third-party

89

VIA EMAIL Ms. Leslie Jones ENERGY STAR Program  

Broader source: Energy.gov (indexed) [DOE]

September 13, 2011 September 13, 2011 U.S. Environmental Protection Agency 1200 Pennsylvania Avenue, NW Room62023 Washington, DC 20460 Dear Ms. Jones: On July 18,2011, the United States Department of Energy (DOE) notified Whirlpool Corporation (Whirlpool) that DOE had completed testing of the Whirlpool (KitchenAid brand) refrigerator model KSRG25FVMS* under the ENERGY STAR Verification Testing Pilot Program and confirmed that the model did not meet the ENERGY STAR energy efficiency requirement for maximum permitted annual energy usage. DOE gave Whirlpool until Augnst 8, 2011, to provide conclusive manufacturing or design evidence or quality assurance information rebutting DOE testing, which showed that this product did not meet the ENERGY STAR Program's energy efficiency requirement.

90

VIA EMAIL Ms. Leslie Jones ENERGY STAR Program  

Broader source: Energy.gov (indexed) [DOE]

December 22, 2011 December 22, 2011 U.S. Environmental Protection Agency 1200 Pennsylvania Avenue, NW Room 62023 Washington, DC 20460 Dear Ms. Jones: On November 1, 2011, the United States Depmiment of Energy ("DOE") notified Grainger Global Sourcing ("Grainger") that DOE had completed testing of the Dayton-brand refrigerator- freezer model 5NTX1 under the ENERGY STAR® Verification Testing Pilot Program and explained that the model did not meet the ENERGY STAR energy efficiency requirement for maximum permitted annual energy usage. DOE gave Grainger until November 20, 2011, to provide conclusive manufacturing or design evidence or quality assurance information rebutting DOE's test results. Grainger responded to DOE via email, submitting various documents, on November 18, 2011.

91

VIA EMAIL Ms. Leslie Jones ENERGY STAR Program  

Broader source: Energy.gov (indexed) [DOE]

October 28, 2011 October 28, 2011 U.S. Environmental Protection Agency 1200 Pennsylvania Avenue NW Room 62023 Washington, DC 20460 Dear Ms. Jones: The Summit Appliance Division chest freezer model CFllES, manufactured by Midea, was selected for testing as part of the U.S. Department of Energy's (DOE) ENERGY STAR® Verification Testing Pilot Program. DOE's initial testing, performed on a unit of this model, indicated that it may not meet ENERGY STAR requirements. DOE notified Summit of the initial test results, and Summit voluntarily withdrew its model from ENERGY STAR without additional testing. DOE also notified Midea, as Midea manufactures the same basic model for distribution under a variety of other brand names and model numbers, including Midea HS-390C. Midea requested that DOE

92

Application of a NAPL partitioning interwell tracer test (PITT) to support DNAPL remediation at the Sandia National Laboratories/New Mexico chemical waste landfill  

SciTech Connect (OSTI)

Chlorinated solvents as dense non-aqueous phase liquid (DNAPL) are present at a large number of hazardous waste sites across the U.S. and world. DNAPL is difficult to detect in the subsurface, much less characterize to any degree of accuracy. Without proper site characterization, remedial decisions are often difficult to make and technically effective, cost-efficient remediations are even more difficult to obtain. A new non-aqueous phase liquid (NAPL) characterization technology that is superior to conventional technologies has been developed and applied at full-scale. This technology, referred to as the Partitioning Interwell Tracer Test (PITT), has been adopted from oil-field practices and tailored to environmental application in the vadose and saturated zones. A PITT has been applied for the first time at full-scale to characterize DNAPL in the vadose zone. The PITT was applied in December 1995 beneath two side-by-side organic disposal pits at Sandia National Laboratories/New Mexico (SNL/NM) RCRA Interim Status Chemical Waste Landfill (CWL), located in Albuquerque, New Mexico. DNAPL, consisting of a mixture of chlorinated solvents, aromatic hydrocarbons, and PCE oils, is known to exist in at least one of the two buried pits. The vadose zone PITT was conducted by injecting a slug of non-partitioning and NAPL-partitioning tracers into and through a zone of interest under a controlled forced gradient. The forced gradient was created by a balanced extraction of soil gas at a location 55 feet from the injector. The extracted gas stream was sampled over time to define tracer break-through curves. Soil gas sampling ports from multilevel monitoring installations were sampled to define break-through curves at specific locations and depths. Analytical instrumentation such as gas chromatographs and a photoacoustical analyzers operated autonomously, were used for tracer detection.

Studer, J.E. [INTERA Inc., Albuquerque, NM (United States); Mariner, P.; Jin, M. [INTERA Inc., Austin, TX (United States)] [and others

1996-05-01T23:59:59.000Z

93

Radiochemical Radiochemical Processing Laboratory  

E-Print Network [OSTI]

capabilities, supports the design and testing of advanced nuclear fuel recycling technologies. Expert Chemical is a critical facility at the Pacific Northwest National Laboratory, supporting environmental, nuclear, national and development. Capabilities include comprehensive nuclear counting instrumentation radionuclide separations

94

Statement from Secretary Bodman on Signing of the Jones Act Waiver |  

Broader source: Energy.gov (indexed) [DOE]

from Secretary Bodman on Signing of the Jones Act Waiver from Secretary Bodman on Signing of the Jones Act Waiver Statement from Secretary Bodman on Signing of the Jones Act Waiver September 26, 2005 - 10:52am Addthis WASHINGTON, DC - Please find below a statement from Department of Energy Secretary Samuel W. Bodman on DHS Secretary Chertoff's decision to waive the Jones Act. This waiver will allow foreign as well as U.S. shipping vessels to transport petroleum and refined petroleum products (gasoline and diesel) until 12:01 a.m. October 24, between domestic ports. This will enable more crude oil and gasoline to be shipped between ports throughout the country. Statement from Secretary Bodman: "In the aftermath of these two hurricanes, the administration remains committed to using the tools at our disposal to ensure our nation's fuel

95

A Study of Scaled Nucleation in a Model Lennard-Jones System  

E-Print Network [OSTI]

A Study of Scaled Nucleation in a Model Lennard-Jones System Barbara N. Hale Physics Department gases with each n-cluster size constituting an ideal gas of Nn clusters. This permits (with

Hale, Barbara N.

96

Comparison of Small Cluster Effects in Argon Lennard-Jones Nucleation  

E-Print Network [OSTI]

Comparison of Small Cluster Effects in Argon Lennard-Jones Nucleation Barbara Hale and Gerald of volume, V, with each cluster size constituting an ideal gas species. The law of mass action for a dilute

Hale, Barbara N.

97

Inigo Jones's library and the language of architectural classicism in England, 1580-1640  

E-Print Network [OSTI]

Inigo Jones's collection of books is a unique and early survival of an architect's annotated library. The combination of standard sixteenth century Italian and French editions of classics, mathematical and scientific ...

Anderson, Christy Jo

1993-01-01T23:59:59.000Z

98

Record Series Descriptions: Lawrence Berkeley Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Berkeley Laboratory Berkeley Laboratory LBL Business Manager/Research and Development Administrative Files Life Sciences Division Administrative Files of Baird Whaley,Administrator Administrative Files of Administrative Assistants to the Directors of the Biology and Medicine Division and Donner Laboratory Donner Clinic and Donner Pavilion Patients/Subjects Index Card Master File Donner Laboratory Clinical Logs and Notebooks Donner Laboratory R&D Project Case Files High-Altitude/Decompression Studies Patient Medical Records Research Medicine and Radiation Biophysics Historical Files Statistical Summaries Thomas Budinger Files Patricia Durbin Files John W. Gofman Files Joseph G. Hamilton Records Joseph G. Hamilton Materials: Edwin M. McMillan Papers Hardin Jones Files John Hundale Lawrence Files

99

Cover image: Research within Pacific Northwest National Laboratory's Chemical Imaging Initiative is characterizing chemical and physical interactions of biofilms produced by microbes. This information is used to provide insight on  

E-Print Network [OSTI]

depth biofilm fermenter. #12;Douglas Ray, Ph.D. Associate Laboratory Director Fundamental, energy materials and processes, and atmospheric aerosol research. Our technical leadership of another DOE fundamental research and technology development of natural and engineered biological systems in the laboratory

100

Dynamics of Dielectrophoretic Liquid Microactuation T. B. Jones  

E-Print Network [OSTI]

) are envisioned. The microfluid mechanics of DEP actuation are complex and not entirely well understood, due in the practical application of DEP microactuation. Keywords: dielectrophoresis, microfluidics, laboratory, we report progress made in understanding these interesting microfluid dynamics. MICROFLUIDICS

Jones, Thomas B.

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

November 2006 CHEMICAL HYGIENE PLAN  

E-Print Network [OSTI]

.4 LABORATORY-SPECIFIC SAFETY PLANS 4.5 LABORATORY SAFETY AUDITS 4.6 CHEMICAL HYGIENE PLAN REVIEW 5.0 LABORATORYNovember 2006 1 CHEMICAL HYGIENE PLAN (November 2006) Department of Chemistry Vanderbilt University #12;November 2006 2 1.0 INTRODUCTION 2.0 THE LABORATORY STANDARD 3.0 SCOPE AND APPLICATION 4

Bordenstein, Seth

102

HARVARD UNIVERSITY CHEMICAL BIOLOGY  

E-Print Network [OSTI]

HARVARD UNIVERSITY CHEMICAL BIOLOGY PHD PROGRAM 2013-2014 Student Handbook #12;Program Contacts at the beginning of each semester. Laboratory Rotations Students in the Chemical Biology Program are expected an interest in having Chemical Biology Program Students in their labs. Students may rotate in the labs

Church, George M.

103

Congratulations to Dr. Wolan, Associate Professor in Chemical Engineering and the team of students who placed as finalists in the prestigious 2010 Oak Ridge National Laboratory Global  

E-Print Network [OSTI]

who placed as finalists in the prestigious 2010 Oak Ridge National Laboratory Global Venture Challenge Awards held in Oak Ridge, Tennessee on March 25-26, 2010. The USF project was submitted by Dr. Wolan into jet fuel. The project was among an elite group of 15 projects named as semi-finalist for the Oak Ridge

Arslan, Hüseyin

104

Bench-Scale Fermentation Laboratory (Fact Sheet), National Bioenergy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bench-Scale Fermentation Laboratory Bench-scale process development capabilities for the conversion of biomass to sugars, fuels, and chemicals NREL is a national laboratory of the...

105

CoreNet Global/Jones Lang LaSalle Sustainability survey | ENERGY STAR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CoreNet Global/Jones Lang LaSalle Sustainability survey CoreNet Global/Jones Lang LaSalle Sustainability survey Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

106

Patch dynamics in a landscape modified by ecosystem engineers Justin P. Wright, William S. C. Gurney and Clive G. Jones  

E-Print Network [OSTI]

Patch dynamics in a landscape modified by ecosystem engineers Justin P. Wright, William S. C. Gurney and Clive G. Jones Wright, J. P., Gurney, W. S. C. and Jones, C. G. 2004. Patch dynamics, dependent on the dynamics of the patches that engineers create. Here we develop a set of models that links

107

ATP Hydrolysis in Water -A Density Functional Study J. Akola and R. O. Jones*  

E-Print Network [OSTI]

ATP Hydrolysis in Water - A Density Functional Study J. Akola and R. O. Jones* Institut fu¨r Festko 5-triphosphate (ATP) is a basic energy carrier in cellular metabolism. As a high-energy intermediate-dependent hydrolysis reaction. Two paths for ATP hydrolysis in water with Mg2+ are studied here using the density

108

Lavers & Jones: Band resighting errors 19 Marine Ornithology 36: 1923 (2008)  

E-Print Network [OSTI]

Lavers & Jones: Band resighting errors 19 Marine Ornithology 36: 19­23 (2008) 19 INTRODUCTION identifiable (Anderson et al. 1985, Pollock 1991). Band wear and loss clearly violate these assumptions and to incorporate factors such as band loss and band wear into survival analyses (Schwarz & Stobo 1999, Conn et al

Jones, Ian L.

109

Surface tension of a Lennard-Jones liquid under supersaturation Songnian He and Phil Attard*  

E-Print Network [OSTI]

Surface tension of a Lennard-Jones liquid under supersaturation Songnian He and Phil Attard* School A formally exact Kirkwood­Buff virial formula for the surface tension of a supersaturated interface-vapor interface. The Kirkwood­Buff results for the supersaturated surface tension are found to be in reasonable

Attard, Phil

110

Autonomic Healing of Carbon Fiber/Epoxy Interfaces Amanda R. Jones,  

E-Print Network [OSTI]

Autonomic Healing of Carbon Fiber/Epoxy Interfaces Amanda R. Jones, Alicia Cintora, Scott R. White (IFSS) is achieved for carbon fiber/epoxy interfaces functionalized with capsules containing reactive of capsules on the carbon fiber surface. Two different methods for applying the binder to the carbon fiber

Sottos, Nancy R.

111

A Counterflow Pipeline Experiment Bill Coates, Jo Ebergen, Jon Lexau, Scott Fairbanks, Ian Jones,  

E-Print Network [OSTI]

A Counterflow Pipeline Experiment Bill Coates, Jo Ebergen, Jon Lexau, Scott Fairbanks, Ian Jones The counterflow pipeline architecture [12] consists of two interacting pipelines in which data items flow in op. The maximum total throughput of the chip, which is the sum of the throughputs of the two pipelines, varies

Harris, David Money

112

STM Tip Construction and Calibration of Evaporation Sources for UHV Joshua Jones  

E-Print Network [OSTI]

1 STM Tip Construction and Calibration of Evaporation Sources for UHV Joshua Jones (Senior Physics (UHV) makes it necessary to have well calibrated deposition sources. Calibration and construction the morphology and absorption of Sulfur and Cobalt onto a Au(111) surface requires ultra high vacuum(UHV) better

Pohl, Karsten

113

Structural optimization of LennardJones clusters by a genetic algorithm D.M. Deaven  

E-Print Network [OSTI]

is the distance between two atoms. The ith atom has energy E i = (1=2) P j 6=i v(r ij ), and the total energy discussion centers on candidate configurations for global energy minima. Such candidates have been pub results we can contribute to the catalog of global energy minimum candidates for Lennard­Jones clusters

Neumaier, Arnold

114

1 | P a g e THE OSHA LABORATORY STANDARD  

E-Print Network [OSTI]

1 | P a g e THE OSHA LABORATORY STANDARD AND THE RICE UNIVERSITY CHEMICAL HYGIENE PLAN THE OSHA LABORATORY STANDARD Laboratories typically differ from industrial operations in their use and handling of hazardous chemicals. The Occupational Safety and Health Administration (OSHA) Laboratory Standard (29 CFR

Natelson, Douglas

115

Seismic Absorption and Modulus Measurements in Porous Rocks Under Fluid and Gas Flow-Physical and Chemical Effects: a Laboratory Study  

SciTech Connect (OSTI)

This paper describes the culmination of a research project in which we investigated the complex modulus change in partially fluid saturated porous rocks. The investigation started with simple flow experiments over ''clean'' and ''contaminated'' surfaces, progressed to moduli measurements on partially filled single cracks, to measurements in ''clean'' and ''contaminated'' porous rocks and finally to a feasibility study in the field. For the experiments with the simple geometries we were able to measure fundamental physical properties such as contact angles of the meniscus and time dependent forces required to get the meniscus moving and to keep it moving at various velocities. From the data thus gathered we were able to interpret the complex elastic moduli data we measured in the partially saturated single cracks. While the geometry in real rocks is too complex to make precise calculations we determined that we had indeed identified the mechanisms responsible for the changes in the moduli we had measured. Thus encouraged by the laboratory studies we embarked on a field experiment in the desert of Arizona. The field site allowed for controlled irrigation. Instrumentation for fluid sampling and water penetration were already in place. The porous loosely consolidated rocks at the site were not ideal for finding the effects of the attenuation mechanism we had identified in the lab, but for logistic and cost constraint reasons we chose to field test the idea at that site. Tiltmeters and seismometers were installed and operated nearly continuously for almost 3 years. The field was irrigated with water in the fall of 2003 and with water containing a biosurfactant in the fall of 2004. We have indications that the biosurfactant irrigation has had a notable effect on the tilt data.

Harmut Spetzler

2005-11-28T23:59:59.000Z

116

Sandia National Laboratories: Offshore Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Offshore Publications Jason Magalen, Craig Jones, and Jesse Roberts, Offshore Wind Guidance Document: Oceanography and Sediment Stability, Development of a Conceptual...

117

Benzene Exposure and Risk of Non-Hodgkin Lymphoma Martyn T. Smith, Rachael M. Jones, and Allan H. Smith  

E-Print Network [OSTI]

Benzene Exposure and Risk of Non-Hodgkin Lymphoma Martyn T. Smith, Rachael M. Jones, and Allan H. Smith Center for Occupational and Environmental Health, School of Public Health, University

California at Berkeley, University of

118

Transport coefficients of liquid CF4 and SF6 computed by molecular dynamics using polycenter Lennard-Jones potentials  

Science Journals Connector (OSTI)

For several liquid states of CF4 and SF4, the shear and the bulk viscosity as well as the thermal conductivity were determined by equilibrium molecular dynamics (MD) calculations. Lennard-Jones four- and six-cent...

C. Hoheisel

1989-01-01T23:59:59.000Z

119

Free Parking Available for Famous Idaho Potato Bowl Media Contact: Casey Jones, Executive Director, Transportation & Parking Services  

E-Print Network [OSTI]

Free Parking Available for Famous Idaho Potato Bowl Media Contact: Casey Jones, Executive Director Potato Bowl at Boise State University on Saturday, Dec. 15, can park for free in exchange for donations

Barrash, Warren

120

VIA EMAIL Ms. Leslie Jones ENERGY STAR Program U.S. Environmental Protection Agency  

Broader source: Energy.gov (indexed) [DOE]

6, 2011 6, 2011 VIA EMAIL Ms. Leslie Jones ENERGY STAR Program U.S. Environmental Protection Agency Washington, DC 20460 Dear Ms. Jones: On March 9, 2011, the United States Department of Energy (DOE) notified Whirlpool Corporation (Whirlpool) that DOE had completed testing of the KitchenAid refrigerator model KSRS25RV* under the ENERGY STAR Testing Pilot Program and confirmed that the model did not meet the ENERGY STAR maximum energy consumption requirement of 580 kWh/yr. DOE gave Whirlpool until March 29, 2011, to provide conclusive manufacturing or design evidence or quality assurance information rebutting DOE testing, which showed that this product did not meet the ENERGY STAR Program's energy-efficiency. On March 29,2011, Whirlpool replied that its certification test results for the model met the

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Laboratory Fellows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were confirmed by the Laboratory Director. Brenda Dingus has pioneered work in gamma-ray bursts and is a major contributor to the relatively young scientific field of...

122

Laboratory Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrological controls on carbon cycling in flood plain ecosystems into Earth System Models. - 5814 A neutron detector like this one at Los Alamos National Laboratory is...

123

Final Report for the DOE Chemical Hydrogen Storage Center of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and recommendations from the DOE's Chemical Hydrogen Storage Center of Excellence, led by Los Alamos National Laboratory with Pacific Northwest National Laboratory from 2005...

124

Virtual Center of Excellence for Hydrogen Storage - Chemical...  

Broader source: Energy.gov (indexed) [DOE]

Engineering and Environmental Laboratory Virtual Center of Excellence for Hydrogen Storage - Chemical Hydrides Pre-Solicitation Presentation James Lake, PhD Associate Laboratory...

125

Laboratory Protection Division, Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Points of Contact Points of Contact Organization Chart (pdf) Groups Emergency Services Emergency Management Security Operations BNL Site Access Main Gate Access Forms Welcome to the... Laboratory Protection Division (LP) Mission Statement: To serve and protect Brookhaven National Laboratory's staff, guests, and interests from the undesirable consequences of unwanted events by providing preparedness, assessment, engineering, and immediate response services for all types of security and non-security related emergencies. Protect DOE special nuclear materials, classified matter, sensitive information, and property against theft, diversion, or destruction; prevent the sabotage of programs that could result in significant scientific or financial impact; prevent the malevolent release of hazardous materials including radiological, chemical, and infectious agents or other criminal acts protecting people, property, and national security, providing a safe and secure environment for employees, the public, and the environment.

126

Chemical and Isotopic Composition and Gas Concentrations of Ground Water and Surface Water from Selected Sites At and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994-97  

SciTech Connect (OSTI)

>From May 1994 through May 1997, the US Geological Survey, in cooperation with the US Department of Energy, collected water samples from 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory. The samples were analyzed for a variety of chemical constituents including all major elements and 22 trace elements. Concentrations of scandium, yttrium, and the lanthanide series were measured in samples from 11 wells and 1 hot spring. The data will be used to determine the fraction of young water in the ground water. The fraction of young water must be known to calculate the ages of ground water using chlorofluorocarbons. The concentrations of the isotopes deuterium, oxygen-18, carbon-13, carbon-14, and tritium were measured in many ground water, surface-water and spring samples. The isotopic composition will provide clues to the origin and sources of water in the Snake River Plain aquifer. Concentrations ! of helium-3 , helium-4, total helium, and neon were measured in most groundwater samples, and the results will be used to determine the recharge temperature, and to date the ground waters.

E. Busenberg; L. N. Plummer; M. W. Doughten; P. K. Widman; R. C. Bartholomay (USGS)

2000-05-30T23:59:59.000Z

127

Laboratory Directors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. Agnew...

128

MICROSYSTEMS LABORATORIES  

E-Print Network [OSTI]

15 nm MICROSYSTEMS TECHNOLOGY LABORATORIES ANNUAL RESEARCH REPORT 2014 MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MA AUGUST 2014 #12;MTL Annual Research Report 2014 Director Jesús A. del Alamo Project........................................................................ 47 Energy: Photovoltaics, Energy Harvesting, Batteries, Fuel Cells

Culpepper, Martin L.

129

TIER I CHEMICALS: 2.LABORATORY SAFETY PLAN  

E-Print Network [OSTI]

-89-6 Dimethylzinc 544-97-8 Potassium hydrosulphite 14293-73-3 Disilane* 1590-87-0 Potassium Sulphide 1312

Sherrill, David

130

Basic Chemical Safety and Laboratory Survival Skills  

E-Print Network [OSTI]

talk about safety in your lab Hopefully this presentation will help you to be: More aware of lab with safety glasses Safety Glasses are required in all areas where soldering or machining occurs. Safety

Gallivan, Martha A.

131

Sandia National Laboratories: Careers: Chemistry & Chemical Engineerin...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials structure, properties, and performance and about the processes to produce, transform, and analyze materials to ensure mission success. For example, a key area of basic...

132

INCOMPATIBLE CHEMICAL LIST PRUDENT PRACTICES FOR HANDLING CHEMICALS IN LABORATORIES  

E-Print Network [OSTI]

tetrachloride or other chlorinated hydrocarbons, carbon dioxide, halogens Ammonia (anhydrous) Mercury (in oxidizing agents Carbon tetrachloride Sodium Chlorates Ammonium salts, acids, powdered metals, sulfur tetrachloride, carbon dioxide, water Potassium chlorate Sulfuric and other acids Potassium perchlorate (see also

Cho, Junghyun

133

Abstract Error Groups Via Jones Unitary Braid Group Representations at q=i  

E-Print Network [OSTI]

In this paper, we classify a type of abstract groups by the central products of dihedral groups and quaternion groups. We recognize them as abstract error groups which are often not isomorphic to the Pauli groups in the literature. We show the corresponding nice error bases equivalent to the Pauli error bases modulo phase factors. The extension of these abstract groups by the symmetric group are finite images of the Jones unitary representations (or modulo a phase factor) of the braid group at q=i or r=4. We hope this work can finally lead to new families of quantum error correction codes via the representation theory of the braid group.

Yong Zhang

2009-02-02T23:59:59.000Z

134

Federal Laboratory Consortium | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Laboratory Consortium The Federal Laboratory Consortium for Technology Transfer (FLC) is the nationwide network of federal laboratories that provides the forum to develop...

135

Life Science Directorate, Brookhaven National Laboratory, BNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resource Books Resource Books These books are available from Kris Duryea in Biology (x7850, duryea@bnl.gov ). Check them out and ask Kris for a detailed critique and more resources. Grant Application Writer's Handbook Liane Reif-Lehrer Jones and Bartlett Publishers, 2005 Read Publisher's Review Both first-time grant seekers and those who have already attempted to get funding can benefit from the wealth of updated information regarding the grant application process, including funding sources and newly instituted electronic submission guidelines. The Craft of Scientific Writing Michael Alley Springer, 1996 Read Publisher's Review Written for use as a text in courses on scientific writing, the book includes many useful suggestions about approaching a wide variety of writing tasks - from laboratory reports to grant

136

THE JOURNAL OF CHEMICAL PHYSICS 140, 114502 (2014) Thermal conductivity of simple liquids: Origin of temperature and packing  

E-Print Network [OSTI]

. For example, in concen- trating solar power plants1 or in prospective Generation IV nuclear reactors,2THE JOURNAL OF CHEMICAL PHYSICS 140, 114502 (2014) Thermal conductivity of simple liquids: Origin dependence of T1/4 3/2 in the thermal conductivity of the simple Lennard-Jones (LJ) liquid is explored

Boyer, Edmond

137

Sandia National Laboratories: Federal Laboratory Consortium Regional...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& CapabilitiesCapabilitiesFederal Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia Federal Laboratory...

138

OAK RIDGE NATIONAL LABORATORY  

Office of Legacy Management (LM)

POST OFFICE 80X 2008 POST OFFICE 80X 2008 OAK RIDGE, TENNESSEE 37831 MANAGED BY MARTIN MARlElTA ENERGY SYSTEMS. INC. FOR THE U.S. DEPARTMENT OF ENERGY July 15, 1992 Dr. W. A Williams Department of Energy Trevion II Building EM-421 Washington, D. C. 20585 Dear Dr. Williams: Trip Report of ORNL Health Physics Support at the Uniroyal Chemical Company Painesvik, Ohio, on June 25,1992 As per agreement between DOE-HQ and Uniroyal of Painesville, on June 25, 1992, a member, the undersigned, from the Health and Safety Research Division of the Oak Rtdge Nattonal Laboratory (ORNL) provided health physics support for the Uniroyal Chemical Company. The job encompassed a contractor excavating around a fire hydrant and finding an underground water leak. The leak was in an area where no contamination was detected in an earlier survey.

139

National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Homesteading on the Pajarito Plateau Homesteading on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory January 4, 2013 Lecture series begins yearlong commemoration of 70th anniversary LOS ALAMOS, NEW MEXICO, Jan. 3, 2013-In commemoration of its 70th anniversary, Los Alamos National Laboratory kicks off a yearlong lecture series on Wednesday, Jan. 9, at 5:30 p.m. with a presentation about homesteading on the Pajarito Plateau at the Bradbury Science Museum, 1350 Central Avenue, Los Alamos. - 2 - The inaugural lecture is based on a book by local writers Dorothy Hoard, Judy Machen and Ellen McGehee about the area's settlement between 1887 and 1942. On hikes across the Pajarito Plateau, Hoard envisioned the Los Alamos area before modern roads and bridges made transportation much easier. The trails she walked

140

SULI at Ames Laboratory  

SciTech Connect (OSTI)

A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

None

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ChemicalChemical StratigraphyStratigraphy Oxygen, Carbon, Strontium,  

E-Print Network [OSTI]

2/25/2009 1 ChemicalChemical StratigraphyStratigraphy Oxygen, Carbon, Strontium, Sulphur Isotopes Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department evolves over time, with the geological time line running from right to left in this graph. The increased

Miami, University of

142

Chemical and Materials Sciences Building | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

143

Green, Mark A., Michael E. Jones, Carrie L. Boudreau, Richard L ...  

Science Journals Connector (OSTI)

scales. If carbonate saturation state is a chemical cue for .... vae: New data on chemical and genetic roles. ... platform carbonate sediments in marine pore fluids

2004-04-22T23:59:59.000Z

144

Bandwidth-aware Co-allocating Meta-schedulers for Mini-grid Architectures William M. Jones  

E-Print Network [OSTI]

Bandwidth-aware Co-allocating Meta-schedulers for Mini-grid Architectures William M. Jones Louis W resource collections naturally lends itself to the formation of a mini-grid. A mini-grid is distinguished from a traditional compu- tational grid in that the mini-grid utilizes a dedicated inter- connection

Jones, William Michael

145

Towards a Situated, Multimodal Interface for Multiple UAV Control Geraint Jones, Nadia Berthouze, Roman Bielski, Simon Julier  

E-Print Network [OSTI]

Towards a Situated, Multimodal Interface for Multiple UAV Control Geraint Jones, Nadia Berthouze, Roman Bielski, Simon Julier Abstract-- Multiple autonomous Unmanned Aerial Vehicles (UAVs) can be used perspective, Unmanned Aerial Ve- hicles (UAVs) can aid the activities of human teams in a number of situations

Jones, Peter JS

146

Xray CCD Calibration for the AXAF CCD Imaging Spectrometer M. Bautz, S. Kissel, G. Prigozhin, S. Jones, T. Isobe,  

E-Print Network [OSTI]

. Jones, T. Isobe, H. Manning, M. Pivovaroff, G. Ricker and J. Woo 1 Massachusetts Institute of TechnologyV and 10 keV. The very demanding calibration requirements (energy scale knowledge error of order 0 of the detector response which it is the objective of the calibration enterprise to constrain. The accuracy

147

Phase Diffusion in Graphene-Based Josephson Junctions I. V. Borzenets, U. C. Coskun, S. J. Jones, and G. Finkelstein  

E-Print Network [OSTI]

Phase Diffusion in Graphene-Based Josephson Junctions I. V. Borzenets, U. C. Coskun, S. J. Jones July 2011; published 21 September 2011) We report on graphene-based Josephson junctions with contacts. We attribute this resistance to the phase diffusion mechanism, which has not been yet identified

Finkelstein, Gleb

148

Electronic Selection Rules Controlling Dislocation Glide in bcc Metals Travis E. Jones,1,* Mark E. Eberhart,2,+  

E-Print Network [OSTI]

electronic structure density functional theory (DFT) calculations to study closely spaced disloca- tionElectronic Selection Rules Controlling Dislocation Glide in bcc Metals Travis E. Jones,1,* Mark E the coupling of electronic states with the strain field at the core of long a=2h111i screw dislocations. DOI

149

The Effects of Aging on Spatial Memory Reconsolidation in Rats B. Jones , E. Bukoski , L. Nadel , JM. Fellous  

E-Print Network [OSTI]

rats which were mildly food deprived. Y Y Pretraining List Training: rats learn a list of 3 feeders (eThe Effects of Aging on Spatial Memory Reconsolidation in Rats 1 2 2 2,3 B. Jones , E. Bukoski , L in young rats but not in aged rats 1. Introduction £ £ £ £ £ Memory reconsolidation is the process by which

Fellous, Jean-Marc

150

Minimization of energy per particle among Bravais lattices in R2 Lennard-Jones and Thomas-Fermi cases  

E-Print Network [OSTI]

that the global min- imizer of the total energy is the triangular lattice of length one. His method was adapted. The problem is to find the configuration of the points which minimizes the total energy of interaction, calledMinimization of energy per particle among Bravais lattices in R2 : Lennard-Jones and Thomas

151

VIA EMAIL Ms. Leslie Jones ENERGY STAR Program U.S. Environmental Protection Agency  

Broader source: Energy.gov (indexed) [DOE]

Room 62023 Room 62023 Washington, DC 20460 Dear Ms. Jones: April3, 2012 The U.S. Department of Energy ("DOE") selected an Electrolux Major Appliances North America ("Electrolux") dishwasher, basic model EIDW6305*** ("model EIDW6305***"), for testing as patt of the DOE's ENERGY STAR® Verification Testing Program. DOE's initial testing, performed on a single unit of this model, indicated that it might not meet the ENERGY STAR requirement for maximum annual energy consumption. In accordance with DOE's procedures for conducting verification testing in support of ENERGY STAR, DOE would normally test tlu·ee additional units to determine whether the basic model meets the ENERGY STAR specification. DOE has been unable to procure and test three additional units of model EIDW6305***.

152

Hmelo, Bin Hu, Alamgir Karim, Martyn McLachlan, and Ron Jones (by phone)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting of the CNMS User Executive Committee Meeting of the CNMS User Executive Committee September 13, 2010 - ORNL Bldg 8600, Room C-152 Members attending: Venkat Gopalan (Chair), Mark Dadmun (Vice Chair), David Bucknall (Secretary), Tony Hmelo, Bin Hu, Alamgir Karim, Martyn McLachlan, and Ron Jones (by phone) CNMS representatives: Peter Cummings, Laura Edwards, Tony Haynes, Mike Simonson Meeting convened 6:10pm. Discussion was guided by Chair's slides (attached). CNMS update provided by Mike Simonson (slides attached). Discussed several suggestions for CNMS user program and for future UEC activities. See slides 7 and 9 in Chair's presentation and the following. For UEC * Include an Industry liaison in UEC telecons/meetings- invited by UEC * Alternatively, designate an At-Large position on UEC for industrial member (requires change to by-laws)

153

VIA EMAIL Ms. Leslie Jones ENERGY STAR Program U.S. Environmental Protection Agency  

Broader source: Energy.gov (indexed) [DOE]

Room62023 Room62023 Washington, DC 20460 Dear Ms. Jones: December 22, 2011 The ASKO Appliances, Inc. ("ASKO") dishwasher model D5253XXL was selected for testing as part of the U.S. Department of Energy's ("DOE") ENERGY STAR®Verification Testing Pilot Program. DOE's initial testing, performed on a single unit of this model, indicated that it may not meet the ENERGY STAR requirement. In accordance with DOE's procedures for conducting verification testing in support of ENERGY STAR (see http://www l.eere.energy. go v/buildings/appliance standards/pdfs/ estar verification process.pdf), DOE determined that it would need to test three additional units to determine whether the model met the ENERGY STAR specification. DOE was unable to procure and test these three

154

The Bethe-Weizscker Mass Formula and Lennard-Jones N-N Potentials  

Science Journals Connector (OSTI)

An elementary derivation of the Bethe-Weizscker semiempiricalnuclear mass formula which is in the spirit of current views of nuclear structure is given. Lennard-Jones potentials are assumed to act between nucleons. Thus the major interaction between nn pp and np pairs is taken of the form ?gsol;r 3 +hsol;r 4 where r is the separation distance between nucleons and g and h are constants. An additional symmetry interaction of the form ?s/r 3 is assumed for np pairs. Summing the potential energy over all nucleon pairs and using the Fermi statistical estimate of the kinetic energy the Bethe-Weizscker semiempirical mass formula is obtained directly. The constants of the mass formula are discussed in relation to the N-N interaction and are found to be quite plausible.

James Paul Wesley; Alex E. S. Green

1968-01-01T23:59:59.000Z

155

The Mayer series of the Lennard-Jones gas: improved bounds for the convergence radius  

E-Print Network [OSTI]

We provide a lower bound for the convergence radius of the Mayer series of the Lennard-Jones gas which strongly improves on the classical bound obtained by Penrose and Ruelle 1963. To obtain this result we use an alternative estimate recently proposed by Morais et al. (J. Stat. Phys. 2014) for a restricted class of stable and tempered pair potentials (namely those which can be written as the sum of a non-negative potential plus an absolutely integrable and stable potential) combined with a method developed by Locatelli and Schoen (J. Glob. Optim. 2002) for establishing a lower bound for the minimal interatomic distance between particles interacting via a Morse potential in a cluster of minimum-energy configurations.

Bernardo N. B. de Lima; Aldo Procacci

2014-08-04T23:59:59.000Z

156

Exact solution of the Schrdinger equation with a Lennard-Jones potential  

E-Print Network [OSTI]

The Schr\\"odinger equation with a Lennard-Jones potential is solved by using a procedure that treats in a rigorous way the irregular singularities at the origin and at infinity. Global solutions are obtained thanks to the computation of the connection factors between Floquet and Thom\\'e solutions. The energies of the bound states result as zeros of a function defined by a convergent series whose successive terms are calculated by means of recurrence relations. The procedure gives also the wave functions expressed either as a linear combination of two Laurent expansions, at moderate distances, or as an asymptotic expansion, near the singular points. A table of the critical intensities of the potential, for which a new bound state (of zero energy) appears, is also given.

J. Sesma

2014-05-23T23:59:59.000Z

157

VIA EMAIL Ms. Leslie Jones ENERGY STAR Program U,S. Enviromnental Protection Agency  

Broader source: Energy.gov (indexed) [DOE]

U,S. Enviromnental Protection Agency U,S. Enviromnental Protection Agency 1200 Pennsylvania Avenue, NW Room 62023 Washington, DC 20460 Dear Ms. Jones: April18, 2012 Kenmore-brand freezer model253.16582104, manufactured by Electrolux Major Appliances North America ("Electrolux"), was selected for testing as part of the U.S. Department of Energy's ("DOE") ENERGY STAR® Verification Testing Pilot Program. DOE's initial testing, performed by a third-party lab on a single unit of this model, indicated that the model might not meet the ENERGY STAR energy efficiency requirement for maximum permitted annual energy usage. In accordance with DOE's Pilot Program procedures for conducting verification testing in support of ENERGY STAR (see http://wwwl.eere.energy.gov/buildings/appliance standards/pdfs/fag final december-201 O.pdj),

158

Ms. Leslie Jones ENERGY STAR Program U.S. Environmental Protection Agency  

Broader source: Energy.gov (indexed) [DOE]

Avenue, NW Avenue, NW Room 62023 Washington, DC 20460 Dear Ms. Jones: March 16,2011 On September 20, 2010, the United States Department of Energy (DOE) notified Whirlpool Corporation (Whirlpool) that DOE testing of one unit ofMaytag clothes washer model MVWC6ESWW1 as part of the ENERGY STAR Testing Pilot Program indicated that this model exceeded allowable ENERGY STAR energy-efficiency requirements. After consulting with Whirlpool, DOE proceeded with testing of additional units. Stage II testing also indicated that model MVWC6ESWW1 does not meet the ENERGY STAR requirements. The Department notified Whirlpool of these results on January 19, 2011. In response, Whirlpool explained that the discrepancy between DOE's test results and Whirlpool's own testing stemmed from the measurement of the clothes container capacity. Whirlpool further

159

Ms. Leslie Jones ENERGY STAR Program U.S. Environmental Protection Agency  

Broader source: Energy.gov (indexed) [DOE]

A venue, NW A venue, NW Room 62023 Washington, DC 20460 Dear Ms. Jones: March 4, 2011 On January 31,2011, the United States Department of Energy (DOE) notified Haier that DOE testing ofHaier room air conditioner model ESA408J under the ENERGY STAR Testing Pilot Program confirmed that this model exceeded allowable ENERGY STAR energy-efficiency specification. On February 18,2011, Haier notified DOE that it is willing to accept the results of the ENERGY STAR testing for the purposes of determining whether this model meets the applicable ENERGY STAR efficiency level, although Haier' s test results are not consistent with DOE's testing. Haier stressed that this model has not been manufactured since May 2010. Haier also stated that it had previously informed ENERGY STAR that the model has been discontinued

160

CHEMICAL ENGINEERING Fall Term Spring Term  

E-Print Network [OSTI]

to Engineering (FYE) 2 CHEM 112 General Chemistry 3 CHEM 111 General Chemistry 3 CHEG 112 Introduction I 3 CHEG 345 Chemical Engineering Laboratory I 3 CHEM 333 Organic Chemistry Laboratory 1 CHEM 332CHEMICAL ENGINEERING CURRICULUM FALL 2010 Fall Term Spring Term EGGG 101 Introduction

Lee, Kelvin H.

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Sandia National Laboratories: Advanced Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Laboratory Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy...

162

Photobiology Research Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photobiology Research Photobiology Research Laboratory Understanding fundamental biological processes for the production of fuels and chemicals, and understanding electron transport for hybrid generation of solar fuels NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. The photobiology group's research is in four main areas: * Comprehensive studies of fuel-producing photosynthetic, fermentative, and chemolithotrophic model microorganisms * Characterization and engineering of redox enzymes and proteins for fuel production * Genetic and pathway engineering of model organisms to improve production of hydrogen and hydrocarbon fuels * Studies of nanosystems using biological and non-

163

Argonne National Laboratory 9700 South Cass Avenue, Argonne, Illinois 60439  

Office of Legacy Management (LM)

National Laboratory National Laboratory 9700 South Cass Avenue, Argonne, Illinois 60439 DERIVATION OF I,]RANIUM RESIDUAL RADIOACTTVE I\{ATERIAL GI]IDELINES FOR THE ALIQIJIPPA FORGE SITE by F. Monette, L. Jones, and C. Yu Environmental Assessment and Information Sciences Division September 1992 work sponsored by U.S. Department of Energy DOE Field Office Forrner Sites Restoration Division Oak Ridge, Tennessee CONTEI{TS SUMMARY 1 INTRODUCTION AND BRIEF HISTORY 1.1 Site Description and Setting 1.2 Site History 1.3 Derivation of Cleanup Guidelines 2 SCENARIO DEFINITIONS 3 DOSE/SOURCE CONCENTRATION RATIOS . . 4 RESIDUAL RADIOACTIVE MATERIAL GUIDELINES 5 REFERENCES Appendix: Parameters Used in the Analysis of the Aliquippa Forge site . TABLES Summary of Pathways for Scenarios A, B, C, and D at the Aliquippa Forge Site

164

Brookhaven National Laboratory site environmental report for calendar year 1994  

SciTech Connect (OSTI)

This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

Naidu, J.R.; Royce, B.A. [eds.

1995-05-01T23:59:59.000Z

165

Lawrence Livermore National Laboratory  

Broader source: Energy.gov [DOE]

Lawrence Livermore National Laboratorys (LLNL) primary mission is research and development in support of national security.

166

Sandia National Laboratories: photovoltaic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PV Facilities On November 10, 2010, in Photovoltaic System Evaluation Laboratory Distributed Energy Technologies Laboratory Microsystems and Engineering Sciences Applications...

167

Facilities | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced...

168

Jones, C., Chanier, T. & Foucher, A-L (2011). " Transatlantic Tutoring : The Pittsburgh Clermont-Ferrand Collaboration ", CALICO 201, 28th Annual conference  

E-Print Network [OSTI]

Jones, C., Chanier, T. & Foucher, A-L (2011). " Transatlantic Tutoring : The Pittsburgh ­ Clermont, Canada. Short version (104 words) Transatlantic Tutoring : The Pittsburgh ­ Clermont the challenges and benefits of the arrangement. Long version (225 words ) Transatlantic Tutoring

Paris-Sud XI, Université de

169

Effect of confinement on the solid-liquid coexistence of Lennard-Jones Fluid  

SciTech Connect (OSTI)

The solid-liquid coexistence of a Lennard-Jones fluid confined in slit pores of variable pore size, H, is studied using molecular dynamics simulations. Three-stage pseudo-supercritical transformation path of Grochola [J. Chem. Phys. 120(5), 2122 (2004)] and multiple histogram reweighting are employed for the confined system, for various pore sizes ranging from 20 to 5 molecular diameters, to compute the solid-liquid coexistence. The Gibbs free energy difference is evaluated using thermodynamic integration method by connecting solid-liquid phases under confinement via one or more intermediate states without any first order phase transition among them. Thermodynamic melting temperature is found to oscillate with wall separation, which is in agreement with the behavior seen for kinetic melting temperature evaluated in an earlier study. However, thermodynamic melting temperature for almost all wall separations is higher than the bulk case, which is contrary to the behavior seen for the kinetic melting temperature. The oscillation founds to decay at around H = 12, and beyond that pore size dependency of the shift in melting point is well represented by the Gibbs-Thompson equation.

Das, Chandan K.; Singh, Jayant K., E-mail: jayantks@iitk.ac.in [Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

2013-11-07T23:59:59.000Z

170

The Lennard-Jones Potential Minimization Problem for Prion AGAAAAGA Amyloid Fibril Molecular Modeling  

E-Print Network [OSTI]

The simplified Lennard-Jones (LJ) potential minimization problem is minimize f(x)=4\\sum_{i=1}^N \\sum_{j=1,j

Jiapu Zhang

2011-06-08T23:59:59.000Z

171

DOE - Office of Legacy Management -- TA-1 Manhattan Laboratory - NM 11  

Office of Legacy Management (LM)

TA-1 Manhattan Laboratory - NM 11 TA-1 Manhattan Laboratory - NM 11 FUSRAP Considered Sites Site: TA-1 MANHATTAN LABORATORY (NM.11 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Main Technical Area LASL LANL NM.11-1 NM.11-2 NM.11-3 Location: Los Alamos , New Mexico NM.11-3 Evaluation Year: 1985 NM.11-1 Site Operations: Nuclear weapons research and development. NM.11-1 NM.11-3 Site Disposition: Site Disposition NM.11-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium , Plutonium, Fission Products NM.11-1 NM.11-3 Radiological Survey(s): Yes NM.11-2 NM.11-3 Site Status: Eliminated from consideration under FUSRAP NM.11-1 Also see Documents Related to TA-1 MANHATTAN LABORATORY NM.11-1 - DOE Memorandum/Checklist; Jones to File; Subject:

172

Chemical Storage-Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

173

Chemical profiles of switchgrass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

profiles profiles of switchgrass Zhoujian Hu a,b , Robert Sykes a,c , Mark F. Davis a,c , E. Charles Brummer a,d , Arthur J. Ragauskas a,b,e, * a BioEnergy Science Center, USA b School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332, USA c National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, USA d Institute for Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA e Forest Products and Chemical Engineering Department, Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden a r t i c l e i n f o Article history: Received 15 April 2009 Received in revised form 10 December 2009 Accepted 10 December 2009 Available online 13 January 2010 Keywords: Switchgrass Morphological components Chemical

174

Ames Laboratory Logos | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ames Laboratory Logos The Ames Laboratory Logo comes in several formats. EPS files are vector graphics created in Adobe Illustrator and saved with a tiff preview so they will...

175

Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers National Energy Technology Laboratory Contact NETL...

176

10 Questions for a Chemical Engineer: Alan Zacher | Department...  

Office of Environmental Management (EM)

done" Alan Zacher Chemical engineer Alan Zacher works on advancing cost competitive biofuels at Pacific Northwest National Laboratory. He took some time to share advice for...

177

Institute for Atom-Efficient Chemical Transformations Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Job Openings at the Institute for Atom-Efficient Chemical Transformations Openings at Argonne National Laboratory Three IACT postdoctoral positions, described below, are open at...

178

Laboratory Equipment & Supplies | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Equipment & Supplies Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert atmosphere chambers, and cold rooms. For specific information please see: Equipment Inventory Checkout Equipment & Supplies To view equipment inventory by laboratory, refer to the following pages: Biology Chemistry & Material Science Laboratory 1 Inventory

179

News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News Argonne Laboratory Director Peter Littlewood (left) talks with a small business owner during the second annual "Doing Business with Argonne and Fermi National Laboratories"...

180

jevans | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

jevans Ames Laboratory Profile James Evans Associate 315 Wilhelm Phone Number: 515-294-1638 Email Address: evans@ameslab.gov Ames Laboratory Associate and Professor, Iowa State...

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sustainability | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sustainability Ames Laboratory is committed to environmental sustainability in all of its operations as outlined in the Laboratory's Site Sustainability Plan. Executive orders set...

182

Brookhaven National Laboratory site environmental report for calendar year 1996  

SciTech Connect (OSTI)

This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1996. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and non-radiological emissions and effluents to the environment.

Schroeder, G.L.; Paquette, D.E.; Naidu, J.R.; Lee, R.J.; Briggs, S.L.K.

1998-01-01T23:59:59.000Z

183

Sandia National Laboratories: Z Pulsed Power Facility: Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications *only first authors listed 2013 Author Title Journal Volume RE Falcon An experimental platform for creating white dwarf photospheres in the laboratory High Energy Density Physics 9 TA Haill Mesoscale simulation of mixed equations of state with application to shocked platinum-doped PMP foams Procedia Engineering 58 SB Hansen Testing the reliability of Non-LTE Spectroscopic Models for Complex Ions High Energy Density Physics 9 B Jones Basis set expansion for inverse problems in plasma diagnostic analysis Review of Scientific Instruments 84 PF Knapp Diagnosing suprathermal ion populations in Z-pinch plasmas using fusion neutron spectra Physics of Plasmas 20 MD Knudson Shock response of low-density silica aerogel in the multi-Mbar regime Journal of Applied Physics

184

A Cross-Taxon Analysis of Insect-Associated Bacterial Ryan Thomas Jones1  

E-Print Network [OSTI]

.1371/ journal.pone.0061218 Editor: Jack Anthony Gilbert, Argonne National Laboratory, United States of America and source are credited. Funding: RTJ's salary was provided through an American Society for Microbiology

Fierer, Noah

185

LANSCE | Lujan Center | Chemical & Sample Prep  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical & Sample Preparation Chemical & Sample Preparation For general questions, please contact the Lujan Center Chemical and Sample Preparation Laboratory responsible: Monika Hartl | hartl@lanl.gov | 505.665.2375 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact Lujan Center Experiment Coordinator: Leilani Conradson | leilani@lanl.gov | 505.665.9505 Chemistry Laboratories High-Pressure Laboratory X-ray Laboratory Spectroscopy Laboratory Clean Room Glove box - He atmosphere High-purity water Diamond anvils Rotating anode generators (reflectometry, residual stress, powder diffraction) Zeiss microscope (with fluorescence abilities) Tube and box furnaces Ultrasonic bath ZAP-cell (for in situ diffraction at high P) Infrared spectrometer Brewster angle microscope

186

CHEMICAL MARKETING  

Science Journals Connector (OSTI)

CHEMICAL MARKETING ... The reason, I believe, is that the chemical industry has been blind (until very recently) to the need for paying attention to marketing. ... Its marketing needs are now like those of a matureno longer a growingindustry. ...

1960-12-19T23:59:59.000Z

187

Commercial Fisheries Biological Laboratory  

E-Print Network [OSTI]

scientists; a substation with a laboratory on Chincoteague Bay; and a sampling substation at Point Pleasant

188

Argonne National Laboratory | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne National Laboratory Fighting friction Graphene offers dramatic improvement over conventional mechanical lubricants Read More Forecasting supply Researchers use real-world...

189

Sandia National Laboratories: Advanced Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

190

Heat Transfer Laboratory | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a wide range of mechanical systems and vehicle cooling applications. Understanding how...

191

Sandia National Laboratories: National Renewable Energy Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis The solar industry is now more than 60% of the way toward achieving...

192

Sandia National Laboratories: Idaho National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Idaho National Laboratory Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels,...

193

Independent Oversight Inspection, Brookhaven National Laboratory - April  

Broader source: Energy.gov (indexed) [DOE]

Brookhaven National Laboratory - Brookhaven National Laboratory - April 2004 Independent Oversight Inspection, Brookhaven National Laboratory - April 2004 April 2004 Inspection of Emergency Management at the Brookhaven National Laboratory The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA), within the newly created Office of Security and Safety Performance Assurance, conducted an inspection of the emergency management program at the U.S. Department of Energy (DOE) Brookhaven National Laboratory (BNL) in March 2004. The inspection was performed by the OA Office of Emergency Management Oversight. A number of positive attributes were identified during this review. Most significant is the aggressive program for reducing hazardous material inventories, minimizing hazardous waste, and evaluating chemical use to

194

EARLY DEVELOPMENTAL STAGES OF THE BROWN SHRIMP, Penaeus aztecus IVES, REARED IN THE LABORATORY 1  

E-Print Network [OSTI]

Laboratory, Galveston, Texas 77550. , Formerly National Marme Fisheries Service Bio- logical Laboratory. Galveston, Texas; present address: Division of Contract Research, Texas Division, Dow Chemical Company, Freeport, Texas 77541. , National Marine Fisheries Service Biological Lab- oratory, Galveston, Texas 77550

195

Chemical kinetics modeling  

SciTech Connect (OSTI)

This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

196

Mills Laboratory | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Currently, Angela is working with Dr. Gary Mills research program on constructed wetlands. Additional responsibilities include chemical coordinator for the Mills lab and...

197

Laboratory measurements and modeling of trace atmospheric species  

E-Print Network [OSTI]

Trace species play a major role in many physical and chemical processes in the atmosphere. Improving our understanding of the impact of each species requires a combination of laboratory exper- imentation, field measurements, ...

Sheehy, Philip M. (Philip Michael)

2005-01-01T23:59:59.000Z

198

E-Print Network 3.0 - alcon laboratories ma60 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample search results for: alcon laboratories ma60 Page: << < 1 2 3 4 5 > >> 1 Chemical Engineering Research Support 2007 Abitibi-Consolidated Inc. Summary: Agriculture &...

199

EA-1404: Actinide Chemistry and Repository Science Laboratory, Carlsbad, New Mexico  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to construct and operate an Actinide Chemistry and Repository Science Laboratory to support chemical research activities related to the...

200

Manager, International Chemical Threat Reduction Department, Sandia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Chemical Threat Reduction Department, Sandia International Chemical Threat Reduction Department, Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Nancy Jackson Manager, International Chemical Threat Reduction Department, Sandia National Laboratories

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Manager, International Chemical Threat Reduction Department, Sandia  

National Nuclear Security Administration (NNSA)

International Chemical Threat Reduction Department, Sandia International Chemical Threat Reduction Department, Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Nancy Jackson Manager, International Chemical Threat Reduction Department, Sandia National Laboratories

202

ORNL's Jeskie active on chemical safety panels | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

865.574.4399 865.574.4399 ORNL's Jeskie active on chemical safety panels Oak Ridge National Laboratory's Kim Jeskie. Oak Ridge National Laboratory's Kim Jeskie. OAK RIDGE, Oct. 3, 2013 -- Oak Ridge National Laboratory's Kim Jeskie led the 12-member committee that developed new chemical safety guidelines described in the report, "Identifying and Evaluating Hazards in Research Laboratories," released by the American Chemical Society (ACS) at its 246th National Meeting & Exposition held in September. Jeskie was also appointed last spring to serve on the National Research Council Committee on Establishing and Promoting a Culture of Safety in Academic Laboratory Research. That panel is examining chemical research laboratory safety in nonindustrial settings.

203

Sandia National Laboratories: About Sandia: Leadership: Vice President and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Julia M. Phillips Julia M. Phillips Vice-President and Chief Technology Officer Julia Phillips Julia M. Phillips is vice president and chief technology officer at Sandia National Laboratories. Responsibilities include leadership of the Laboratory's $165 million Laboratory Directed Research and Development (LDRD) program, research strategy development and implementation, and intellectual property protection and deployment. Previous positions at Sandia include deputy chief technology officer and director of laboratory research strategy and partnerships, director, nuclear weapons science and technology programs, director, Physical, Chemical, and Nano Sciences Center, and director of the DOE Center for Integrated Nanotechnologies (CINT) at Sandia and Los Alamos National Laboratories. She is a member of the National Academy of Engineering,

204

Biotechnology Laboratory Spring 2012  

E-Print Network [OSTI]

CH369T Biotechnology Laboratory Spring 2012 Instructor: Dr. Gene McDonald Office: WEL 3.270C Phone, and at the same time to introduce you to issues associated with various biotechnology laboratory operations. After

205

Chemical structure and dynamics. Annual report 1995  

SciTech Connect (OSTI)

The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.

Colson, S.D.; McDowell, R.S.

1996-05-01T23:59:59.000Z

206

Sandia National Laboratories: Photovoltaic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microelectronic Photovoltaics On June 13, 2012, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar Sandia National Laboratories semiconductor engineer...

207

Sandia National Laboratories: Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling...

208

Sandia National Laboratories: EC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling...

209

Sandia National Laboratories: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling...

210

Sandia National Laboratories  

Broader source: Energy.gov [DOE]

Sandia National Laboratories' (SNL) primary mission is to provide scientific and technology support to national security programs.

211

Sandia National Laboratories: Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal, Materials Science, News, News & Events, Partnership,...

212

Cytogenetic Biodosimetry Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cytogenetic Biodosimetry Laboratory Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an incubator for 48 hours using a standard growth medium. Culture tubes are centrifuged, and cells are re-suspended in a weak salt solution, which allows the chromosomes to separate and spread evenly on slides.

213

Argonne Tribology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tribology Laboratory Tribology Laboratory CemeCon coating chamber CemeCon coating chamber Engineers in Argonne's Tribology Laboratory conduct research on advanced tribological systems (surface engineered materials, lubricants, fuels, and fuel/lubricant additives) for use in aggressive environments (for example, where two surfaces are rubbing together). The Laboratory is equipped with a full range of coating development, friction and wear testing, and characterization facilities. Evaluation of Coatings and Systems The Tribology Laboratory evaluates high performance coatings primarily intended to protect engine-component surfaces that undergo sliding and rolling contact in advanced transportation systems. Also tested are systems powered by diesel and gasoline engines, as well as

214

Leadership | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Leadership Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the scientific and societal needs of our nation. Eric D. Isaacs Eric D. Isaacs, Director, Argonne National Laboratory Director, Argonne National Laboratory Argonne National Laboratory Eric D. Isaacs, a prominent University of Chicago physicist, is President of UChicago Argonne, LLC, and Director of Argonne National Laboratory. Mark Peters Mark Peters, Deputy Lab Director for Programs Deputy Laboratory Director for Programs

215

Sun et al. Reply: In the preceding Comment [1], Akola and Jones (AJ) claim that our findings [2] are artifacts of  

E-Print Network [OSTI]

Sun et al. Reply: In the preceding Comment [1], Akola and Jones (AJ) claim that our findings [2 not see much rationale in the presented criti- cism of our work. Zhimei Sun,1,* Jian Zhou,1 Andreas, preceding Comment, Phys. Rev. Lett. 104, 019603 (2010). [2] Z. Sun, J. Zhou, A. Blomqvist, B. Johansson

216

Electrical anisotropy of mineralized and non mineralized rocks T.J. Katsube, M.E. Best*, and Jones, A.G., Geological Survey of Canada  

E-Print Network [OSTI]

PP 10.2 Electrical anisotropy of mineralized and non mineralized rocks T.J. Katsube, M.E. Best*, and Jones, A.G., Geological Survey of Canada Summary Significant electrical resistivity anisotropy, up to 1 to understand the electrical mechanisms involved in such anisotropic processes in order to provide information

Jones, Alan G.

217

Chemical Occurrences  

Broader source: Energy.gov [DOE]

Classification of Chemical Occurrence Reports into the following four classes: Occurrences characterized by serious energy release, injury or exposure requiring medical treatment, or severe environmental damage, Occurrences characterized by minor injury or exposure, or reportable environmental release, Occurrences that were near misses including notable safety violations and Minor occurrences.

218

Chemical analysis quality assurance at the Idaho Chemical Processing Plant  

SciTech Connect (OSTI)

The Idaho Chemical Processing Plant (ICPP) is a uranium reprocessing facility operated by Westinghouse Idaho Nuclear Company for the Department of Energy at the Idaho National Engineering Laboratory (INEL). The chemical analysis support required for the plant processes is provided by a chemical analysis staff of 67 chemists, analysts, and support personnel. The documentation and defense of the chemical analysis data at the ICPP has evolved into a complete chemical analysis quality assurance program with training/qualification and requalification, chemical analysis procedures, records management and chemical analysis methods quality control as major elements. The quality assurance procedures are implemented on a central analytical computer system. The individual features provided by the computer system are automatic method selection for process streams, automation of method calculations, automatic assignment of bias and precision estimates at analysis levels to all method results, analyst specific daily requalification or with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of process stream results for replicate agreement, automatic testing of process results against pre-established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of analysis data plus the results of all statistical testing to the Production Department.

Hand, R.L.; Anselmo, R.W.; Black, D.B.; Jacobson, J.J.; Lewis, L.C.; Marushia, P.C.; Spraktes, F.W.; Zack, N.R.

1985-01-01T23:59:59.000Z

219

Argonne National Laboratory - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Argonne National Laboratory Activity Reports 2012 Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012 Review Reports 2011 Review of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Readiness Assessment (Implementation Verification Review Sections), November 2011 Nuclear Safety Enforcement Regulatory Assistance Review of UChicago Argonne, LLC at the Argonne National Laboratory, October 3, 2011 Activity Reports 2011 Orientation Visit to the Argonne National Laboratory, August 2011 Review Reports 2005 Independent Oversight Inspection of Environment, Safety and Health Programs at Argonne National Laboratory, Summary Report, Vol. 1, May, 2005 Independent Oversight Inspection of Environment, Safety, and Health Programs at the Argonne National Laboratory, Technical Appendices, Volume II, May 2005

220

Laboratory Computing Resource Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computing DOE Logo Computing DOE Logo Search BIO ... Search Argonne Home > BIO home > Laboratory Computing Resource Center BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Argonne National Laboratory Logo Laboratory Computing Resource Center In 2002 Argonne National Laboratory established the Laboratory Computing Project to enable and promote the use of high-performance computing (HPC) across the Laboratory in support of its varied research missions. The Laboratory Computing Resource Center (LCRC) was established, and in April 2003 LCRC began full operations with Argonne’s first teraflops computing cluster, Jazz. In 2010 Jazz was replaced by Fusion, with a peak performance of 30 teraflops (and still growing). We just acquired Blues which will a performance of 100 teraflops.

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Chemical Sciences Division: Annual report 1992  

SciTech Connect (OSTI)

The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences).

Not Available

1993-10-01T23:59:59.000Z

222

ELECTION OF OFFICERS OF THE AMERICAN CHEMICAL SOCIETY  

Science Journals Connector (OSTI)

...29'How to Cultivate Plants and Influence...Department of Plant Nutrition at California...THE AMER-ICAN CHEMICAL SOCIETY THE election...Products Laboratory, Madison, Wis.; Secretary-treasurer...Division of Chemical Education: Chairman...University of Illinois. Division of...Bass, of the Dow Chemical Company...

1940-10-25T23:59:59.000Z

223

Going green earns Laboratory gold  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

224

Standards for publication of isotope ratio and chemical data in Chemical Geology  

E-Print Network [OSTI]

Editorial Standards for publication of isotope ratio and chemical data in Chemical Geology Abstract reporting data for internation- al standards that were analyzed in the same laboratory, using the same and trace elements, there are a large number of reasonably well-characterized whole rock standards from

Rudnick, Roberta L.

225

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explosive Components Facility Explosive Components Facility The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis capabilities for energetic materials and explosive components: advanced design of energetic devices and subsystems optical ordnance energetic materials testing of explosives and explosive components and subsystems advanced explosives diagnostics reliability analyses failure modes evaluation safety evaluation The ECF has the full-range of capabilities necessary to support the understanding of energetic materials and components: Optical and Semiconductor Bridge (SCB) Initiation Laboratories Characterization Laboratories thermal properties gas analyses powder characterization

226

Energistics Laboratory facility  

Science Journals Connector (OSTI)

Energistics Laboratory in Houston Texas is a leading laboratory for the testing of HVAC equipment. For over 15 years this facility has ensured the highest standards in leading?edge HVAC technology and architectural testing capabilities. Testing capabilities include both industry standard rating procedures and mock?up testing to simulate field conditions. The laboratory is open to developers owners architects engineers general contractors manufacturers and others who require independent component testing and evaluation.

2001-01-01T23:59:59.000Z

227

Chemical Accelerators The phrase "chemical accelerators"  

E-Print Network [OSTI]

Meetings Chemical Accelerators The phrase "chemical accelerators" is scarcely older than for one or two dozen people grew to include nearly a hundred. Chemical accelerators is a name sug- gested-volt region. Thus chemical accelerators can provide the same type of information for elemen- tary chemical

Zare, Richard N.

228

FY 2005 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Congressional Budget Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. include both the discretionary and mandatory funding in the budget. balances, deferrals, rescissions, or other adjustments appropria ted as offsets to the DOE appropriations by the Congress.

229

Sandia National Laboratories: TCES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TCES Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

230

Sandia National Laboratories: perovskites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

perovskites Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

231

Sandia National Laboratories: NSTTF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSTTF Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

232

levin | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Education and the Ministry of Science and Technology, Lviv State University, Lviv, Ukraine, 1988 - 1998 Visiting Scientist (periodically) at the International Laboratory of...

233

Procurement | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Procurement More than 150 attend second joint Argonne-Fermilab small business fairSeptember 2, 2014 On Thursday, Aug. 28, Illinois' two national laboratories - Argonne and Fermi...

234

Mentoring | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Rick Stevens, Associate Laboratory Director, Computing, Environment & Life Sciences Argonne is committed to cultivating a climate that promotes meaningful relationships that...

235

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

environmental service to northern New Mexico," said Jeff Mousseau, associate director for environmental programs at the Laboratory. "Having local companies of this high caliber...

236

Laboratory disputes citizens' lawsuit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

showing Laboratory storm water controls," said Susan G. Stiger, associate director for Environmental Programs. "Rather than a lawsuit, we had hoped to continue our work with...

237

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

commitment to the environment and the public," said Jeff Mousseau, associate director for Environmental Programs at the Laboratory. This is the fifth master task order agreement...

238

National Laboratory Liaisons  

Broader source: Energy.gov [DOE]

The following U.S. Department of Energy national laboratory liaisons serve as primary contacts for the Federal Energy Management Program.

239

Oak Ridge National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About ORNL History Historical Photo Gallery To view historical photographs of the laboratory, browse the collections below. Clinton Engineering Works Department of Energy...

240

Sandia National Laboratories: Photovoltaics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sandia National Laboratories: PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

242

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis Sandia and the Electric Power Research...

243

Laborativ matematik; Laboratory mathematics.  

E-Print Network [OSTI]

?? Research indicates that a more hands-on education in mathematics could improve how students relate to mathematics. Laboratory mathematics is a way of making mathematics (more)

Kresj, Ida

2010-01-01T23:59:59.000Z

244

Sandia National Laboratories: LVOC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility Opens at Sandia's California Site On June 13, 2012, in Cyber, Cybersecurity Technologies Research Laboratory, Energy Assurance, Energy Surety, Facilities,...

245

Sandia National Laboratories: Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

246

budko | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

budko Ames Laboratory Profile Serguei Budko Scientist I Division of Materials Science & Engineering A111 Zaffarano Phone Number: 515-294-3986 Email Address: budko@ameslab.gov...

247

Sandia National Laboratories: EPRI  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis Sandia and Electric Power Research Institute (EPRI) are delighted...

248

Sandia National Laboratories: RTC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis The solar industry is now more than 60% of the way toward achieving...

249

Sandia National Laboratories: NREL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis The solar industry is now more than 60% of the way toward achieving...

250

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that's the hallmark of the Laboratory. This year's stories include alternative energy research, world record magnetic fields, disease tracking, the study of Mars, climate...

251

Sandia National Laboratories: Climate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

252

Sandia National Laboratories: Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

253

Disclaimers | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the United States Government or Iowa State University, and shall not be used for advertising or product endorsements purposes. COPYRIGHT STATUS: Ames Laboratory authored...

254

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

255

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

256

Underwriters Laboratories: Streamlining Interconnection  

SciTech Connect (OSTI)

Summarizes Underwriters Laboratories' work under contract to DOE's Distribution and Interconnection R&D to develop a streamlined system to interconnect distributed generators with the utility grid.

Not Available

2003-01-01T23:59:59.000Z

257

Underwriters Laboratories: Streamlining Interconnection  

SciTech Connect (OSTI)

Summarizes Underwriters Laboratories' work under contract to DOE's Distribution and Interconnection R&D to develop a streamlined system to interconnect distributed generators with the utility grid.

Not Available

2003-10-01T23:59:59.000Z

258

Standards and Calibration Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Our customers and services include: INL programs, the Department of Energy, Bechtel Bettis Inc., the National Oceanic and Atmospheric Administration, Argonne National Laboratory...

259

marit | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

marit Ames Laboratory Profile Marit Nilsen-Hamilton Associate 3206 Molecular Biology Bldg Phone Number: 515-294-9996 Email Address: marit@iastate.edu Education: Postdoctoral Cell...

260

Laboratory announces 2008 Fellows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lab announces 2008 Fellows Laboratory announces 2008 Fellows Robert C. Albers, Paul A. Johnson and Kurt E. Sickafus recognized for contributions. December 4, 2008 Los Alamos...

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Sandia National Laboratories: RO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RO ECIS-UNM: Biomimetic Membranes for Water Purification On February 20, 2013, in Advanced Materials Laboratory, Energy Efficiency, Facilities, Global Climate & Energy, Materials...

262

Sandia National Laboratories: desalination  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to saltwater to meet their water ... ECIS-UNM: Biomimetic Membranes for Water Purification On February 20, 2013, in Advanced Materials Laboratory, Energy Efficiency,...

263

Sandia National Laboratories: CIRI  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Energy Laboratory (NREL) will work in support of H2USA, the ... Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for...

264

National Laboratory Photovoltaics Research  

Broader source: Energy.gov [DOE]

DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

265

Education | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The MFRC has established a network of Midwest crime laboratories and university-based forensic science programs. This network has two general goals: help universities become better...

266

Projects | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Tool Mark Characterization Development of an AccuTOF-DART Database for Use by Forensic Laboratories Forensic Technology Center of Excellence MFRC Training Development &...

267

Sandia National Laboratories: Photovoltaics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

device technology, and advanced PV systems analysis. Learn More Grid Integration The Grid Integration Program at Sandia National Laboratories addresses technical barriers to...

268

Marius Stan | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marius Stan Senior Scientist - Nuclear Engineering Dr. Marius Stan is a physicist and a chemist interested in non-equilibrium thermodynamics, heterogeneity, and multi-scale computational science for energy applications. He came to Argonne and the University of Chicago in 2010, from Los Alamos National Laboratory. Marius is a Senior Fellow at the University of Chicago's Computation Institute. The goal of his research is to discover or design materials, structures, and device architectures for nuclear energy and energy storage. To that end, Marius develops theory-based (as opposite to empirical) mathematical models of thermomechanical and chemical properties of imperfect materials. The imperfection comes from defects or deviations from stoichiometry (e.g.,

269

Argonne National Laboratory  

Science Journals Connector (OSTI)

Argonne National Laboratory is the nation's senior atomic energy laboratory, and is operated by the University of Chicago under contract mth the U. S. Atomic Energy Commission. In addition to its broad program of basic research activities, it serves as a, ...

1957-04-08T23:59:59.000Z

270

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2007 Prepared by: National Institute to present to the President and the Congress this Federal Laboratory Technology Transfer Report summarizing the achievements of Federal technology transfer and partnering programs of the Federal research and development

Perkins, Richard A.

271

LABORATORY V ELECTRIC CIRCUITS  

E-Print Network [OSTI]

Lab V -1 LABORATORY V ELECTRIC CIRCUITS Electrical devices are the cornerstones of our modern world understanding of them. In the previous laboratory, you studied the behavior of electric fields and their effect on the motion of electrons using a cathode ray tube (CRT). This beam of electrons is one example of an electric

Minnesota, University of

272

Russell Furr Laboratory Safety &  

E-Print Network [OSTI]

Russell Furr Director 8/20/13 Laboratory Safety & Compliance #12;#12;Research Safety Full Time Students Part- Time #12; Organizational Changes Office of Research Safety Research Safety Advisors Safety Culture Survey Fire Marshal Inspections Laboratory Plans Review New Research Safety Initiatives

273

Summaries of FY 1993 research in the chemical sciences  

SciTech Connect (OSTI)

The summaries in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced battery technology are arranged according to national laboratories and offsite institutions. Small business innovation research projects are also listed. Special facilities supported wholly or partly by the Division of Chemical Sciences are described. Indexes are provided for selected topics of general interest, institutions, and investigators.

Not Available

1993-08-01T23:59:59.000Z

274

nfang | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nanoparticles because they require no contact and make minimal intrusion to the sample Chemical and biological discovery through the development and use of a novel optical...

275

Laboratory Safety January 2012  

E-Print Network [OSTI]

......................................................................................... 5 4.1 CHEMICAL SUBSTANCES ................................................................... 7 7 SUBSTANCE ACQUISITION, STORAGE, INVENTORY, TRANSPORTATION, WASTE DISPOSAL AND MINIMIZATION............................................................... 9 7.2.3 Compatible Storage Guidelines

Saskatchewan, University of

276

Sandia National Laboratories: Sensors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensors Sensors Sandia's Microsensor and Sensor Microsystem effort develops sensors and sensor arrays for chemical, physical, and biological detection Custom Solutions Microsensors...

277

Diversity | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scientist Read more about Beth Drewniak Damla Eroglu October 27, 2014 Chemical Engineer Read more about Damla Eroglu Extending a hand: Argonne Hispanic Latino Club mentors...

278

Biomass Compositional Analysis Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

Not Available

2014-07-01T23:59:59.000Z

279

SANDIA NATIONAL LABORATORIES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impacts on Sandia and the Nation Impacts on Sandia and the Nation 2 SANDIA NATIONAL LABORATORIES 3 LDRD Impacts on Sandia and the Nation For further information, contact: Wendy R. Cieslak Senior Manager, Science, Technology, and Engineering Strategic Initiatives wrciesl@sandia.gov (505) 844-8633 or Henry R. Westrich LDRD Program Manager hrwestr@sandia.gov 505-844-9092 LDRD Impacts on Sandia and the Nation ABOUT THE COVER: Images from some of the case studies in this brochure: a near-UV light- emitting diode (LED), a cell membrane, a NISAC model, synthetic aperture radar (SAR) image of Washington, D.C. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT 4 SANDIA NATIONAL LABORATORIES 5 LDRD Impacts on Sandia and the Nation Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) Program:

280

FY 2010 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Tables Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2010 Congressional Budget Page 1 of 3 (Dollars In Thousands) 2:08:56PM Department Of Energy 5/4/2009 Page Number FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request Laboratory Table 1 1 $1,200

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Chemical Sciences Division: Research: Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Programs Programs The Chemical Sciences Division (CSD) is one of Berkeley Laboratory's basic research divisions. The CSD is composed of individual research groups that conduct research in the areas of chemical physics and the dynamics of chemical reactions, the structure and reactivity of transient species, electron spectroscopy, surface chemistry and catalysis, electrochemistry, chemistry of the actinide elements and their relationship to environmental issues, and atomic physics. The division's 28 principal investigators, many of whom are on the faculty of the University of California at Berkeley, direct the individual research projects and the work of 6 staff scientists, 41 postdoctoral researchers, and 75 graduate students. Our research staff continues to achieve fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients using both state-of-the-art experimental and theoretical methods. In addition, the division supports a strong effort in heterogeneous and homogeneous catalysis.

282

Final Report for the DOE Chemical Hydrogen Storage Center of Excellence  

Broader source: Energy.gov [DOE]

This technical report describes the activities carried out, key accomplishments, and recommendations from the DOEs Chemical Hydrogen Storage Center of Excellence, led by Los Alamos National Laboratory with Pacific Northwest National Laboratory from 2005 through 2010.

283

Chemical Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Science Chemical Science Compton double ionization of helium in the region of the cross-section maximum B. Krässig, R.W. Dunford, D.S. Gemmell, S. Hasegawa, E.P. Kanter, H. Schmidt-Böcking, W. Schmitt, S.H. Southworth, Th. Weber, and L. Young Crystal structure analysis of microporous Na16Nb12.8Ti3.2O44.8(OH)3.2l8H2O and Na/Nb/Zr/O/H2O phases A. Tripathi, J. Parise, M. Nyman, T.M. Nenoff, and W. Harrison Double K-photoionization of heavy atoms R.W. Dunford, D.S. Gemmell, E.P. Kanter, B. Krässig, and S.H. Southworth Forward-backward asymmetries of atomic photoelectrons S.H. Southworth, B. Krässig, E.P. Kanter, J.C. Bilheux, R.W. Dunford, D.S. Gemmell, S. Hasegawa, and L. Young In situreduction of various iron oxides to form high-surface-area Fe-metal catalysts as studied by high-resolution powder diffraction

284

Coal Direct Chemical Looping (CDCL) Process Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Chemical Looping (CDCL) Retrofit to Direct Chemical Looping (CDCL) Retrofit to Pulverized Coal Power Plants for In-Situ CO 2 Capture William G. Lowrie Department of Chemical & Biomolecular Engineering The Ohio State University Columbus, OH 43210 Award #: DE-NT0005289 PI: Liang-Shih Fan Presenter: Samuel Bayham Department of Chemical and Biomolecular Engineering The Ohio State University 2013 NETL CO2 Capture Technology Meeting July 11, 2013 Pittsburgh, PA Clean Coal Research Laboratory at The Ohio State University Sub-Pilot Scale Unit 250kW th Pilot Unit (Wilsonville, Alabama) Syngas Chemical Looping Coal-Direct Chemical Looping Cold Flow Model Sub-Pilot Scale Unit HPHT Slurry Bubble Column 120kW th Demonstration Unit Calcium Looping Process CCR Process Sub-Pilot Unit F-T Process

285

Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: April-June 1998  

SciTech Connect (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during th eperiod April-June 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

Jubin, R.T.

1999-04-01T23:59:59.000Z

286

Computers Gaining Firm Hold in Chemical Labs  

Science Journals Connector (OSTI)

Computers aren't new to the chemical laboratory; analytical and computational chemists have long made use of their power. ... The burgeoning use of microcomputers, as well as new and wider uses for larger computer systems, cuts across all fields of chemistry. ... Relatively small research laboratories are finding flexible microcomputers better suited for data acquisition and analysis than is time-sharing on larger computers. ...

PAMELA S. S. ZURER

1985-08-19T23:59:59.000Z

287

Chemical structure and dynamics: Annual report 1996  

SciTech Connect (OSTI)

The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.

Colson, S.D.; McDowell, R.S.

1997-03-01T23:59:59.000Z

288

Department of Chemical Engineering Thermal and Flow Engineering Laboratory  

E-Print Network [OSTI]

: theoretical stages 12.4 McCabe-Thiele procedure II: minimum reflux, minimum number of stages 12.5 Condensers.6 Concentrated solutions; distillation 14. Extraction and leaching 14.1 Liquid-liquid extraction 14.2 Equilibrium 14.3 Equilibrium stages 14.4 Solid-liquid extraction (leaching) 15. Membranes 15.1 Overview, membrane

Zevenhoven, Ron

289

Brookhaven National Laboratory - Sr90 - Chemical Holes | Department...  

Office of Environmental Management (EM)

Other Contaminants? No Tritium Present? No Nitrates Present? No Sulfates Present? No Isotope Name Concentration (pCil) Regulatory Driver Cleanup Requirement Sr 150 Yes 8...

290

Chemical Mechanism Development: Laboratory Studies and Model Applications  

Science Journals Connector (OSTI)

Within the German Tropospheric Research Programme (TFS) numerous kinetic and mechanistic studies on the tropospheric reaction/degradation of the following reactants were carried out: ...

Harald Geiger; Ian Barnes; Karl H. Becker; Birger Bohn

2002-01-01T23:59:59.000Z

291

Oak Ridge National Laboratory Chemical Sciences at ORNL  

E-Print Network [OSTI]

Economics Experience and Capability · System Costs - Engineering cost analysis - Materials supply and Vehicle Scale Economies: Cost vs. Plant Size 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 0 20,000 40,000 60,000 80,000 100,000 Plant Size (Vehicles/Year) TotalVehicleProductionCost($/Vehicle

292

THE NEW CHEMICAL LABORATORY OF THE RENSSELAER POLYTECHNIC INSTITUTE  

Science Journals Connector (OSTI)

...with the concrete applications of botany in agriculture, horticulture and forestry. The ecologist will never lack that wonderful...only, inasmuch as electricity is to be depended upon for lighting purposes. W. P. MASON ALLAN MACFADYEN AT the early age...

W. P. Mason

1907-04-19T23:59:59.000Z

293

REPRODUCTIVE TOXINS OSHA Laboratory Standard Definition: Reproductive toxin means chemicals  

E-Print Network [OSTI]

acetate 111-15-9 Ethylene glycol monomethyl ether acetate 110-49-6 Ethylene thiourea 96-45-7 Etoposide-73-2 Iodine-131 24267-56-9 Isotretinoin 4759-48-2 Lead Lithium carbonate 554-13-2 Lithium citrate 919-16-4 Lorazapam 846-49-1 Lovastatin 75330-75-5 Medroxyprogesterone acetate 71-58-9 Megestrol acetate 595

Jalali. Bahram

294

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

7, 2012 7, 2012 CX-009374: Categorical Exclusion Determination Development of a Carbon Dioxide Chemical Sensor for Downhole Carbon Dioxide Monitoring in Carbon Sequestration CX(s) Applied: B3.6 Date: 09/17/2012 Location(s): New Mexico Offices(s): National Energy Technology Laboratory September 17, 2012 CX-009373: Categorical Exclusion Determination Testing of an Advanced Dry Cooling Technology for Power Plants CX(s) Applied: B3.6 Date: 09/17/2012 Location(s): North Dakota Offices(s): National Energy Technology Laboratory September 17, 2012 CX-009372: Categorical Exclusion Determination Small Scale Coal-Biomass to Liquids Using Highly Selective Fischer-Tropsch Synthesis CX(s) Applied: A9 Date: 09/17/2012 Location(s): California Offices(s): National Energy Technology Laboratory

295

Irradiated Fuels Examination Laboratory (IFEL) | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiated Fuels Examination Laboratory Irradiated Fuels Examination Laboratory May 30, 2013 The Irradiated Fuels Examination Laboratory (IFEL) was initially designed and constructed to permit the safe handling of increasing levels of radiation in the chemical, physical, and metallurgical examination of nuclear reactor fuel elements and reactor parts. The IFEL was constructed in 1963 and is a two-story brick building with a partial basement. The front or northern-most section is a single-story office area. The two story area to the immediate rear houses the cell complex, the operating areas, and other supporting activities. The office area is isolated from the main part of the building, so the office area can be excluded from the secondary containment zone. The facility has a gross floor area of about 27,000 ft2.

296

Nuclear Forensics at Los Alamos National Laboratory  

SciTech Connect (OSTI)

The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities at Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities. Some conclusions are: (1) Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous defense and non-defense programs including safeguards accountancy verification measurements; (2) Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material forensic characterization; (3) Actinide analytical chemistry uses numerous means to validate and independently verify that measurement data quality objectives are met; and (4) Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

Podlesak, David W [Los Alamos National Laboratory; Steiner, Robert E. [Los Alamos National Laboratory; Burns, Carol J. [Los Alamos National Laboratory; LaMont, Stephen P. [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory

2012-08-09T23:59:59.000Z

297

Peter W. Thorne, David E. Parker, Simon F. B. Tett, Phil D. Jones, and Mark McCarthy Hadley Centre for Climate Prediction and Research, Met Office, UK. Climatic Research Unit, University of East Anglia, UK.  

E-Print Network [OSTI]

Peter W. Thorne, David E. Parker, Simon F. B. Tett, Phil D. Jones, and Mark McCarthy Hadley Centre and understand this uncertainty. The Hadley Centre's current radiosonde-based global gridded upper-air product

Feigon, Brooke

298

E-Print Network 3.0 - anisotropic nmr chemical Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Laboratory Summary: to spectral frequencies can be achieved, for example, a transform from torsion angles to anisotropic chemical... Spectral Mapping of Protein Torsion...

299

Research in the chemical sciences: Summaries of FY 1994  

SciTech Connect (OSTI)

This summary book is published annually on research supported by DOE`s Division of Chemical Sciences in the Office of Energy Research. Research in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced batteries is arranged according to national laboratories, offsite institutions, and small businesses. Goal is to add to the knowledge base on which existing and future efficient and safe energy technologies can evolve. The special facilities used in DOE laboratories are described. Indexes are provided (topics, institution, investigator).

Not Available

1994-12-01T23:59:59.000Z

300

Chemical Looping Combustion Kinetics  

SciTech Connect (OSTI)

One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

Edward Eyring; Gabor Konya

2009-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Vehicle Research Laboratory - FEERC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

302

Safeguards Laboratory (SL) | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safeguards Laboratory Safeguards Laboratory May 30, 2013 The Safeguards Laboratory is a Department of Energy user facility equipped with a comprehensive set of field-deployable instrumentation for safeguards system development and personnel training. Mock-ups using industrial equipment and reference nuclear materials simulate real-world conditions for training, testing, and evaluations. The lab's openness and availability to the private sector enable development of new technologies that combat the proliferation of weapons of mass destruction. Applications Training and International Outreach Nondestructive Analysis Measurements Instrument Evaluations Integrated Safeguards Methodologies Measurement Technique Development Specifications Gamma and X-ray detection systems Handheld survey instruments

303

Sonication standard laboratory module  

DOE Patents [OSTI]

A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

1999-01-01T23:59:59.000Z

304

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

remembers former director Harold remembers former director Harold Agnew September 30, 2013 Manhattan Project pioneer was LANL director from 1970-1979 LOS ALAMOS, N.M., Sept. 30, 2013-Los Alamos National Laboratory Director Charlie McMillan today remembered Harold Agnew as a national treasure who transformed the Laboratory into what it is in the 21st century. "His contributions to the Laboratory made us the institution we are today," McMillan said. "It was his vision - decades ago - that recognized that national security science - 2 - brings value to a broad spectrum of breakthroughs. Los Alamos and the nation will be forever in Harold's debt." Agnew died at home on Sunday, Sept. 29, his family announced. He was the third director of Los Alamos National Laboratory, succeeding Robert

305

FY 2007 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Laboratory tables Laboratory tables preliminary Department of Energy FY 2007 Congressional Budget Request February 2006 Printed with soy ink on recycled paper Office of Chief Financial Officer Laboratory tables preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2007 Congressional Budget Page 1 of 3 (Dollars In Thousands) 12:10:40PM Department Of Energy 1/31/2006 Page Number FY 2005 Appropriation FY 2006 Appropriation FY 2007

306

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

employees receive Pollution Prevention employees receive Pollution Prevention Awards April 23, 2013 Protecting environment, saving taxpayer dollars LOS ALAMOS, N.M., April 23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than $8 million. The employees were recognized at the Laboratory's annual Pollution Prevention Awards ceremony on Monday (April 22), Earth Day. "The Pollution Prevention Awards are the result of people taking the initiative to improve their own operations," said Pat Gallagher of the Laboratory's Environmental - 2 - Stewardship group. "These are clever, innovative, homegrown and home-owned ideas that save the Laboratory and taxpayers millions of dollars each year while reducing

307

FY 2011 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Tables Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 Laboratory / Facility Index FY 2011 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:24:57AM Department Of Energy 1/29/2010 Page

308

FY 2008 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Table Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2008 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:51:02AM Department Of Energy 2/1/2007 Page Number FY 2006 Appropriation FY 2007 Request FY 2008 Request

309

FY 2006 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Tables Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2006 Congressional Budget Page 1 of 3 (Dollars In Thousands) 3:43:16PM Department Of Energy 1/27/2005 Page Number FY 2004 Comp/Approp FY 2005 Comp/Approp

310

Fy 2009 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Tables Laboratory Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2009 Congressional Budget Page 1 of 3 (Dollars In Thousands) 8:59:25AM Department Of Energy 1/30/2008 Page Number FY 2007 Appropriation FY 2008 Appropriation FY 2009

311

Savannah River National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Savannah River National Laboratory Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance Additive Manufacturing (3D Printing): Selectively Printed Conductive Pathways Researchers at the Savannah River National Laboratory (SRNL) have developed a rapid prototype conductive material that can be used for electrical shielding or circuit fabrication. Background Several rapid prototype technologies currently exist. A few of the technologies produce metallic parts, but the majority produce nonconductive parts made from various grades of plastic. In all of these technologies however, only conductive material or nonconductive material can be used within one part created. There is no known option for 3D printing conductive material for

312

Sandia National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PHOTOVOLTAIC ARRAY PERFORMANCE MODEL D. L. King, W. E. Boyson, J. A. Kratochvil Sandia National Laboratories Albuquerque, New Mexico 87185-0752 2 SAND2004-3535 Unlimited Release...

313

Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hazardous devices teams showcase skills at Robot Rodeo June 24-27 June 18, 2014 Bomb squads compete in timed scenarios at Los Alamos National Laboratory LOS ALAMOS, N.M., June 19,...

314

National Laboratory's Weapons Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Charles McMillan to lead Los Alamos National Laboratory's Weapons Program July 28, 2009 Los Alamos, New Mexico, July 28, 2009- Charles McMillan has been appointed the new principal...

315

DOE Laboratory Accreditation Program  

Broader source: Energy.gov [DOE]

Administered by the HSS Office of Corporate Safety Programs, the DOE Laboratory Accreditation Program (DOELAP) is responsible for implementing performance standards for DOE contractor external dosimetry and radiobioassay programs through periodic performance testing and on-site program assessments.

316

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

new student app July 15, 2014 Job searching tool for students, postdocs LOS ALAMOS, N.M., July 15, 2014-Los Alamos National Laboratory recently launched its new student mobile app...

317

Safety | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate...

318

Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory November 25, 2013 Podcast part of Lab's new multi-channel effort to better...

319

Argonne National Laboratory  

Broader source: Energy.gov [DOE]

Argonne is a multidisciplinary science and engineering research center, where dream teams of world-class researchers work alongside experts from industry, academia and other government laboratories to address vital national challenges in clean energy, environment, technology and national security.

320

Sandia National Laboratories: Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scale. The SWiFT site is managed and operated by Sandia National Laboratories for the DOE Wind Program. In a separate, ... Sandia Has Signed a Memorandum of Understanding with...

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Keeping Tabs on the World's Dangerous Chemicals | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Keeping Tabs on the World's Dangerous Chemicals Keeping Tabs on the World's Dangerous Chemicals Keeping Tabs on the World's Dangerous Chemicals March 20, 2013 - 5:07pm Addthis Sandia chemical engineer Nancy Jackson has worked in laboratories around the world to help ensure that chemicals are used safely and kept secure. The American Association for the Advancement of Science honored her with the 2013 Science Diplomacy Award. | Photo by Randy Montoya, Sandia National Lab. Sandia chemical engineer Nancy Jackson has worked in laboratories around the world to help ensure that chemicals are used safely and kept secure. The American Association for the Advancement of Science honored her with the 2013 Science Diplomacy Award. | Photo by Randy Montoya, Sandia National Lab. Stephanie Hobby Media Relations, Sandia National Lab

322

Keeping Tabs on the World's Dangerous Chemicals | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Keeping Tabs on the World's Dangerous Chemicals Keeping Tabs on the World's Dangerous Chemicals Keeping Tabs on the World's Dangerous Chemicals March 20, 2013 - 5:07pm Addthis Sandia chemical engineer Nancy Jackson has worked in laboratories around the world to help ensure that chemicals are used safely and kept secure. The American Association for the Advancement of Science honored her with the 2013 Science Diplomacy Award. | Photo by Randy Montoya, Sandia National Lab. Sandia chemical engineer Nancy Jackson has worked in laboratories around the world to help ensure that chemicals are used safely and kept secure. The American Association for the Advancement of Science honored her with the 2013 Science Diplomacy Award. | Photo by Randy Montoya, Sandia National Lab. Stephanie Hobby Media Relations, Sandia National Lab

323

Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety  

E-Print Network [OSTI]

Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety Risk all connections and fittings prior to start of anesthesia. Carefully pour Isoflurane from Environmental Health & Safety before re-entering the laboratory. REFERENCES 1. Procedure

Machel, Hans

324

sent to the WIPP Laboratories, Los Alamos National Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Samples collected by employees during last week's re-entry into the WIPP underground facility will be sent to the WIPP Laboratories, Los Alamos National Laboratory, and...

325

The integral fast reactor fuels reprocessing laboratory at Argonne National Laboratory, Illinois  

SciTech Connect (OSTI)

The processing of Integral Fast Reactor (IFR) metal fuel utilizes pyrochemical fuel reprocessing steps. These steps include separation of the fission products from uranium and plutonium by electrorefining in a fused salt, subsequent concentration of uranium and plutonium for reuse, removal, concentration, and packaging of the waste material. Approximately two years ago a facility became operational at Argonne National Laboratory-Illinois to establish the chemical feasibility of proposed reprocessing and consolidation processes. Sensitivity of the pyroprocessing melts to air oxidation necessitated operation in atmosphere-controlled enclosures. The Integral Fast Reactor Fuels Reprocessing Laboratory is described.

Wolson, R.D.; Tomczuk, Z.; Fischer, D.F.; Slawecki, M.A.; Miller, W.E.

1986-09-01T23:59:59.000Z

326

Nanomaterial Laboratory Safety, Boise State University | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nanomaterial Laboratory Safety, Boise State University Nanomaterial Laboratory Safety, Boise State University Nanomaterial Laboratory Safety, Boise State University A nanomaterial, as defined by The ASTM Committee on Nanotechnology, is a particle withlengths in 2 or 3 dimensions between 1 to 100 nm that mayor may not have a size related intensive property. Nanomaterials are of increasing interest due to their unique properties compared to the same material on the micro and macroscopic scales and their potential associated applications based upon these properties. The Boise State University Chemical Hygiene Plan (CHP) provides general guidance in regard to safely handling chemicals in a laboratory setting, but nanomaterials can come with unique and/or unknown risks and warrant being specifically addressed. Labs must adhere to the CHP and may need to

327

Nanomaterial Laboratory Safety, Boise State University | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nanomaterial Laboratory Safety, Boise State University Nanomaterial Laboratory Safety, Boise State University Nanomaterial Laboratory Safety, Boise State University A nanomaterial, as defined by The ASTM Committee on Nanotechnology, is a particle withlengths in 2 or 3 dimensions between 1 to 100 nm that mayor may not have a size related intensive property. Nanomaterials are of increasing interest due to their unique properties compared to the same material on the micro and macroscopic scales and their potential associated applications based upon these properties. The Boise State University Chemical Hygiene Plan (CHP) provides general guidance in regard to safely handling chemicals in a laboratory setting, but nanomaterials can come with unique and/or unknown risks and warrant being specifically addressed. Labs must adhere to the CHP and may need to

328

Lawrence Livermore National Laboratory Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lawrence Livermore National Laboratory Awards The Laboratory bestows awards to outstanding scientists and engineers from among its workforce and for exceptionally qualified...

329

Sandia National Laboratories: bankability validation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Testing Center (PV RTC), Renewable Energy, Solar, Solar Newsletter, SunShot HelioVolt, Sandia National Laboratories, the National Renewable Energy Laboratory,...

330

Sandia National Laboratories: factory audits  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Testing Center (PV RTC), Renewable Energy, Solar, Solar Newsletter, SunShot HelioVolt, Sandia National Laboratories, the National Renewable Energy Laboratory,...

331

Edward Daniels | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edward Daniels Edward Daniels Deputy Associate Laboratory Director - Energy and Global Security Mr. Daniels is currently a deputy associate laboratory director in the Energy...

332

Sandia National Laboratories: Sandia National Laboratories: Missions:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Nuclear Weapons at Sandia About Nuclear Weapons at Sandia Weapons Researcher World-class scientists and engineers come to Sandia to conduct breakthrough research in nuclear weapons. Sandia designs more than 6,300 parts of a modern nuclear weapon's 6,500 components. Our state-of-the-art laboratories facilitate large-scale testing and computer simulation. Sandia's work is of the highest consequence and those doing the work face awesome responsibilities. Unlike other national labs, which focus on the physics package, Sandia's work is to weaponize the physics package. Sandia must ensure that the other 95% of the weapon's parts work perfectly at every point of contact with the delivery systems. This requires the broadest competencies in engineering, with a deep science foundation. At the core of Sandia's nuclear weapons program is warhead systems

333

FY 2013 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

8 8 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0078 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2013 Congressional Budget

334

Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

record neutron beam at Los record neutron beam at Los Alamos National Laboratory July 10, 2012 New method has potential to advance materials measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in advanced materials science. Using the TRIDENT laser, a unique and powerful 200 trillion-watt short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin plastic sheet

335

IDAHO NATIONAL LABORATORY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History of the Idaho National Laboratory (INL) History of the Idaho National Laboratory (INL) You are here: DOE-ID Home > Inside ID > Brief History Site History The Idaho National Laboratory (INL), an 890-square-mile section of desert in southeast Idaho, was established in 1949 as the National Reactor Testing Station. Initially, the missions at the INL were the development of civilian and defense nuclear reactor technologies and management of spent nuclear fuel. Fifty-two reactors—most of them first-of-a-kind—were built, including the Navy’s first prototype nuclear propulsion plant. Of the 52 reactors, three remain in operation at the site. In 1951, the INL achieved one of the most significant scientific accomplishments of the century—the first use of nuclear fission to produce a usable quantity of electricity at the Experimental Breeder Reactor No.

336

National Energy Technology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design Standards for the NETL Logo Design Standards for the NETL Logo May 2013 The Logo Display of the NETL logo is critical because this symbol represents who we are - it's our signature. Consistent application of the logo is crucial to the success of our identity. As the primary identifier of the National Energy Technology Laboratory, it is essential that the logo's appearance is consistent throughout all of the Laboratory's communications. Over time, consistent and repeated use of the logo will establish a strengthened visual identity for the laboratory. To ensure consistency it is critical for every user of the logo, regardless of personal preference, to use it in accordance with the guidelines that follow. The height of the NETL logo is .75 times the length, a 3 by 4 ratio. This relationship is always the same, regardless of

337

Idaho National Laboratory - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Idaho National Laboratory Review Reports 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of the Idaho Site, April 2013 Review of the Facility Representative Program at the Idaho Site, March 2013 Activity Reports 2013 Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013 Review Reports 2012 Review of Radiation Protection Program Implementation at the Idaho Site, November 2012 Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project, November 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Idaho National Laboratory, July 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review, June 2012

338

FY 2012 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

5 5 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0065 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2012 Congressional Budget

339

Laboratory disputes citizens' lawsuit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lab disputes ctizens' lawsuit Lab disputes ctizens' lawsuit Laboratory disputes citizens' lawsuit Lab officials expressed surprise to a lawsuit alleging noncompliance with the federal Clean Water Act filed today by citizens groups. February 7, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact James E. Rickman

340

LANL: Materials Science Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SANDIA NATIONAL LABORATORIES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NATIONAL LABORATORIES NATIONAL LABORATORIES SF 6432-CS (10-98) SECTION II STANDARD TERMS & CONDITIONS FOR COMMERCIAL SERVICES PROCURED ON A FIRM FIXED PRICE OR FIXED RATE BASIS THE FOLLOWING CLAUSES APPLY TO THIS CONTRACT AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE SIGNATURE PAGE OR SECTION I. CS10 - DEFINITIONS The following terms shall have the meanings set forth below for all purposes of this contract. (a) GOVERNMENT means the United States of America and includes the U.S. Department of Energy (DOE) or any duly authorized representative thereof. (b) SANDIA means Sandia National Laboratories, operated by Sandia Corporation under Contract No. DE-ACO4-94AL-85000 with the U.S. Department of Energy.

342

Analytical laboratory quality audits  

SciTech Connect (OSTI)

Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

Kelley, William D.

2001-06-11T23:59:59.000Z

343

Science @WIPP: Underground Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WIPP WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field" office has allowed WIPP to offer its mine operations infrastructure and space in the underground to researchers requiring a deep underground setting with dry conditions and very low levels of naturally occurring radioactive materials. Please contact Roger Nelson, chief scientist of the Department of

344

National Energy Technology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CRTD-80 CRTD-80 National Energy Technology Laboratory Final Report Carbon Sequestration Project Review Meeting Greater Pittsburgh International Airport Hyatt Hotel September 26-29, 2005 Volume I: Meeting Summary and Recommendations José D. Figueroa NETL Project Manager and Meeting Coordinator D:\Project Files\EPD\RDS Sequestration Project Review Task\Volume 1\ASME Final Version Nov 28 2005\2005 Carbon Sequestration Project Review Meeting Final 11292005.doc National Energy Technology Laboratory Final Report Carbon Sequestration Project Review Meeting Greater Pittsburgh International Airport Hyatt Hotel September 26-29, 2005 Volume I: Meeting Summary and Recommendations José D. Figueroa NETL Project Manager and Meeting Coordinator

345

Sandia National Laboratories (SNL)  

National Nuclear Security Administration (NNSA)

Sandia National Laboratories (SNL) Sandia National Laboratories (SNL) Current Projects with the Russian Federation Project Title: Development of Models of Energy Transfer in Nanostructured Materials. Russian Institute: Institute for Problems in Mechanical Engineering, Russian Academy of Sciences (IPME RAS), St. Petersburg. Brief Description: To develop modeling approaches and simulations to examine energy transport and transfer in materials with structural features at the nanoscale. Tasks include developing such a model for thin crystal structures subjected to short duration laser excitation, and using atomic-scale simulations to evaluate microscopic expressions for stress and heat flux in crystals containing defects such as vacancies, dislocations and bi-material interfaces.

346

Sandia National Laboratories Combustion Research Facility  

E-Print Network [OSTI]

Hydrogen & Combustion Technologies Department Livermore, CA DOE Hydrogen, Fuel Cells, and Infrastructure collector, compressor, high-P storage, pump, FC stack (efficiency vs power) · Developing: ICE gen-set, wind Borns, Scott Jones, Paul Pickard ­ Economic modeling of H2 unit cost · Production: reforming

347

Oversight Reports - Argonne National Laboratory | Department...  

Broader source: Energy.gov (indexed) [DOE]

Argonne National Laboratory Oversight Reports - Argonne National Laboratory August 24, 2012 Independent Activity Report, Argonne National Laboratory - July 2012 Operational...

348

Updated 8-3-12 CHEMICAL HYGIENE GUIDE  

E-Print Network [OSTI]

Employee Acknowledgement & Review of Chemical Hygiene Plan CHEMICAL HYGIENE PLAN ELEMENTS A. STANDARD STANDARDS (PELS) 29 CFR 1910.1000 APPENDIX 9: POLYCHLORINATED BIPHENYLS (PCB) WASTE MANAGEMENT PLAN APPENDIX Standard. While it is not mandatory that all University laboratories use this model plan, it is provided

Cheng, Mei-Fang

349

Center for Nano and Micro Manufacturing Chemical Hygiene Plan  

E-Print Network [OSTI]

Center for Nano and Micro Manufacturing Chemical Hygiene Plan Vers. 12/13 Page 1 Chemical Hygiene and safety information for all members of the Center for Nano-MicroManufacturing (CNM2) laboratory chase) 1268 (Service chase) 1274 Lab work room 1276 (Service chase) #12;Center for Nano and Micro

Woodall, Jerry M.

350

CAMD Cleanroom Chemical List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CAMD Cleanroom Chemical List Chemicals on this list are routine use chemicals in the CAMD Cleanroom and are available to users for general use. All others (*) are approved for use...

351

Oak Ridge National Laboratory | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oak Ridge National Laboratory Oak Ridge National Laboratory An aerial view of the Oak Ridge National Laboratory campus. An aerial view of the Oak Ridge National Laboratory campus....

352

Oak Ridge National Laboratory | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory Oak Ridge National Laboratory Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge...

353

Department of Energy National Laboratories A - L  

Office of Scientific and Technical Information (OSTI)

Department of Energy National Laboratories A - L DOE National Laboratories N- T Other Major Laboratories and Facilities National Laboratories The Department of Energy (DOE) has...

354

Department of Energy National Laboratories N - T  

Office of Scientific and Technical Information (OSTI)

Energy National Laboratories N - T DOE National Laboratories A - L Other Major Laboratories and Facilities National Laboratories The Department of Energy (DOE) has seventeen...

355

Telco Laboratory Prof. Riccardo Melen  

E-Print Network [OSTI]

. Collaborations · Internal: OpenIT laboratory, GAS project · Industry: Lottomatica (security certifications), UGIS

Schettini, Raimondo

356

Digital Technology Group Computer Laboratory  

E-Print Network [OSTI]

Digital Technology Group 1/20 Computer Laboratory Digital Technology Group Computer Laboratory William R Carson Building on the presentation by Francisco Monteiro Matlab #12;Digital Technology Group 2/20 Computer Laboratory Digital Technology Group Computer Laboratory The product: MATLAB® - The Language

Cambridge, University of

357

Lawrence Berkeley National Laboratory Overview  

Office of Energy Efficiency and Renewable Energy (EERE)

Presentation about the history, structure, and projects of the Lawrence Berkeley National Laboratory.

358

Infrared Thermography Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrared Thermography Laboratory Infrared Thermography Laboratory The Infrared Thermography Laboratory (IRLab) conducts detailed laboratory experiments on the thermal performance of windows and other insulated systems. During a typical experiment, a specimen is placed between two environmental chambers that simulate a long, cold night during winter. Besides generating informative thermal images, the experiments collect several types of quantitative data with high spatial resolution that are useful for understanding subtle details in the thermal performance and for validating computer simulations of heat and fluid flows. Thermography experiments in the IRLab use an infrared imager to produce qualitative thermal images, or thermograms, that help provide a visual interpretation of how heat is flowing through the specimen. The infrared thermograms are also taken and postprocessed to extract numerical data to perform quantitative thermography that produces a database of the distribution of surface temperatures on the warm side of various specimen. A traversing system is also used to measure the distribution of air temperatures and velocities near the specimen. Research results are presented at various technical conferences -- see our schedule of upcoming conferences. Technical papers on infrared thermography are available for downloading. The IRLab contains a machine tool shop area that supports fabrication efforts in the Building Technologies Department. Other types of research, such as Non-Destructive Evaluation, are also conducted in the IRLab.

359

Laboratory Density Functionals  

E-Print Network [OSTI]

We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

B. G. Giraud

2007-07-26T23:59:59.000Z

360

Sandia National Laboratories  

E-Print Network [OSTI]

Sandia National Laboratories 7011 East Ave. Livermore, CA 94550 Las Positas College 3000 Campus competitions scheduled for the California Bay Area. The Science Bowl is a Jeopardy-like highly competitive Area competitions: Date (all on Saturdays): Location: Host: Regional HIGH SCHOOL Science Bowls January

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2009 Prepared by: National Institute to submit this fiscal year 2009 Technology Transfer Summary Report to the President and the Congress in accordance with 15 USC Sec 3710(g)(2) for an annual summary on the implementation of technology transfer

Perkins, Richard A.

362

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2008 Prepared by: National Institute to submit this fiscal year 2008 Technology Transfer Summary Report to the President and the Congress transfer authorities established by the Technology Transfer Commercialization Act of 2000 (P.L. 106

Perkins, Richard A.

363

Energy Systems Laboratory Groundbreaking  

ScienceCinema (OSTI)

INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

2013-05-28T23:59:59.000Z

364

LABORATORY III POTENTIAL ENERGY  

E-Print Network [OSTI]

LABORATORY III POTENTIAL ENERGY Lab III - 1 In previous problems, you have been introduced to the concepts of kinetic energy, which is associated with the motion of an object, and internal energy, which is associated with the internal structure of a system. In this section, you work with another form of energy

Minnesota, University of

365

National Laboratory Poornima Upadhya  

E-Print Network [OSTI]

-program national laboratory operated by Brookhaven Science Associates for the U.S. Department of Energy is not detrimentally affected by the magnetic fields produced by the MRI scanner. The technology allows one which includes a magnet for producing a magnetic field suitable for magnetic resonance imaging

366

FUTURE LOGISTICS LIVING LABORATORY  

E-Print Network [OSTI]

FUTURE LOGISTICS LIVING LABORATORY Delivering Innovation The Future Logistics Living Lab is a collaboration between NICTA, SAP and Fraunhofer. Australia's first Living Lab provides a platform for industry and research to work together, to investigate real-world problems and to demonstrate innovative technology

Heiser, Gernot

367

Argonne National Laboratory's Nondestructive  

E-Print Network [OSTI]

the safe operationof advanced nuclear reactors. Argonne's World-Class Nondestructive Evaluation and other government laboratories to develop new techniques and assess the reliability of conventional and electromagnetic interaction with complex media as well as advanced signal processing and data analysis

Kemner, Ken

368

BROOKHAVENNATIONAL LABORATORY Building 510  

E-Print Network [OSTI]

BROOKHAVENNATIONAL LABORATORY Building 510 P.O. Box 5000 Upton, NY 11973-5000 Phone 631 344 in C-AD buildings. Work Planning and Control for Experiments The intent of this agreement is to ensure or modification work on experiments performed by Physics personnel or guests in C-AD buildings. The Collider

Homes, Christopher C.

369

National Laboratory Dorene Price  

E-Print Network [OSTI]

Brookhaven National Laboratory Dorene Price Office of Intellectual Property and Sponsored Research: price@bnl.gov ACTIVATED ALUMINUM HYDRIDE HYDROGEN STORAGE COMPOSITIONS AND USES THEREOF Brookhaven alternatives to increase the fuel economies of vehicles as well as other applications that require an energy

370

National Laboratory Dorene Price  

E-Print Network [OSTI]

Brookhaven National Laboratory Dorene Price Office of Intellectual Property and Sponsored Research: price@bnl.gov ELECTROCHEMICAL ENHANCEMENT OF BIO-ETHANOL AND METABOLITE PRODUCTION Brookhaven National-ethanol fuel, as a beverage, or industries which by means of fermenting microbes commercially make ethanol

371

ECOLOGY LABORATORY BIOLOGY 341  

E-Print Network [OSTI]

Page 1 ECOLOGY LABORATORY BIOLOGY 341 Fall Semester 2008 Bighorn Sheep Rams at Bison Range National ecological data; and 3) oral and written communication skills. Thus, these ecology labs, and statistical analyses appropriate for ecological data. A major goal of this class will be for you to gain

Vonessen, Nikolaus

372

National Laboratory Poornima Upadhya  

E-Print Network [OSTI]

-program national laboratory operated by Brookhaven Science Associates for the U.S. Department of Energy-Exclusive · Exclusive Patent Status ApplicationFiled US-2007-0262269-A1 Product Describes a compact particle therapy in medical cancer therapy facilities. Inventor Dejan Trbojevic License Status Available for Licensing · Non

373

National Laboratory Contacts  

Broader source: Energy.gov [DOE]

Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

374

Lawrence Livermore National Laboratory - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Review Reports 2013 Independent Oversight Review of the Fire Protection Program at Lawrence Livermore National Laboratory, September 2013 Independent Oversight Review of Preparedness for Severe Natural Phenomena Events at the Lawrence Livermore National Laboratory, July 2013 Activity Reports 2013 Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility, February 2013 Activity Reports 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities, October 2012 Review Reports 2011 Review of Integrated Safety Management System Effectiveness at the Livermore Site Office, October 2011 Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory, September 2011

375

chemical analysis | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemical analysis chemical analysis Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a...

376

TRENDS in Chemical Marketing  

Science Journals Connector (OSTI)

TRENDS in Chemical Marketing ... BEFORE any chemical sales organization, can meet or establish new trends in marketing, it must be completely aware of the problem it faces. ...

W. M. RUSSELL

1955-08-29T23:59:59.000Z

377

Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds  

E-Print Network [OSTI]

counterparts have also taken their first steps. Scientists are even starting to prod a few DNA-based synthetic & Technology Home » March 21, 2011 Issue » Science & Technology » Synthetic Strollers March 21, 2011 Volume 89 of using proteins as nature does, scientists built the first synthetic walking motors out of complex three

Leigh, David A.

378

Chemical Safety Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Program Home Chemical Safety Topical Committee Library Program Contacts Related Links Site Map Tools 2013 Chemical Safety Workshop Archived Workshops Contact Us Health and Safety HSS Logo Chemical Safety Program logo The Department of Energy's (DOE's) Chemical Safety web pages provide a forum for the exchange of best practices, lessons learned, and guidance in the area of chemical management. This page is supported by the Chemical Safety Topical Committee which was formed to identify chemical safety-related issues of concern to the DOE and pursue solutions to issues identified. Noteworthy products are the Chemical Management Handbooks and the Chemical Lifecycle Cost Analysis Tool, found under the TOOLS menu. Chemical Management Handbook Vol (1) Chemical Management Handbook Vol (2)

379

BIOLOGY 650 (credit 2 hours) Animal Physiology LABORATORY  

E-Print Network [OSTI]

BIOLOGY 650 (credit 2 hours) Animal Physiology LABORATORY Spring 2011 Instructor: ROBIN COOPER , Ph role of ion channels and transporters in regulation of the membrane potential will be covered in great-neuron communication through electrical and chemical synapses will be examined in live preparations. The historical

Cooper, Robin L.

380

Quantitative Nuclear Magnetic Resonance Spectroscopy as a Tool To Evaluate Chemical Modification of Deep Hydrotreated Recycled Lube Oils  

Science Journals Connector (OSTI)

Quantitative Nuclear Magnetic Resonance Spectroscopy as a Tool To Evaluate Chemical Modification of Deep Hydrotreated Recycled Lube Oils ... Argonne National Laboratory, Argonne, Illinois 60439, United States ...

John V. Muntean; Joseph A. Libera; Seth W. Snyder; Tianpin Wu; Donald C. Cronauer

2012-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Transportation | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Transportation From modeling and simulation programs to advanced electric powertrains, engines, biofuels, lubricants, and batteries, Argonne's transportation research is vital to the development of next-generation vehicles. Revolutionary advances in transportation are critical to reducing our nation's petroleum consumption and the environmental impact of our vehicles. Some of the most exciting new vehicle technologies are being ushered along by research conducted at Argonne National Laboratory. Our Transportation Technology R&D Center (TTRDC) brings together scientists and engineers from many disciplines across the laboratory to work with the U.S. Department of Energy (DOE), automakers and other industrial partners. Our goal is to put new transportation technologies on the road that improve

382

National Renewable Energy Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RENEWABLE ENERGY RENEWABLE ENERGY AND ENERGY EFFICIENCY SCIENCE PROJECTS 1 SCIENCE PROECTS IN RENEWABLE ENERGY AND ENERGY EFFICIENCY A guide for Secondary School Teachers Authors and Acknowledgements: This second edition was produced at the National Renewable Energy Laboratory (NREL), through the laboratory's Office of Education Programs, under the leadership of the Manager, Dr. Cynthia Howell and guidance of the Program Coordinators, Matt Kuhn and Linda Lung. The contents are the result of contributions by a select group of teacher researchers that were invited to NREL as part of the Department of Energy's Teacher Research Programs. During the summers between 2003 and 2007, fifty four secondary pre-service and experienced teachers came to NREL to do real research in

383

Infrared Thermography Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scientists measuring sample at IR Thermography lab Scientists measuring sample at IR Thermography lab Infrared Thermography Laboratory In the Infrared Thermography Laboratory (IRLab), researchers test the thermal performance of windows and other insulated systems. Test specimens are placed between chambers that simulate different climate conditions, including household room temperature versus extreme winter cold with high exterior wind speed. Using an infrared imaging system, the IRLab produces calibrated quantitative thermal images, or surface temperature maps, of the specimens in heat transfer experiments. This high resolution non-contact surface temperature data help researchers understand details of thermal performance and validate computer simulations of heat and fluid flow, as well as provide a powerful visualization of detailed thermal features in

384

Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Laboratory National Laboratory Standard Procurement Forms An Acrobat Reader is needed to display these documents How to get an Acrobat Reader Date Form (Link to PDF) Title GSA Library of Standard Government Forms ANL Forms Repository PARIS Enrollment/Change Status Forms Argonne Terms & Conditions (headmark list) Suspect/Counterfeit Parts December 9, 2010 Poster PD-154 Appendix A - ARRA Supplement Previous Revisions: August 17,2010 August 7, 2009 Whistleblower Protection Poster Under Recovery Act January 24, 2013 ANL-71-COM Argonne Terms and Conditions for Commercial Items Previous Revisions: May 10, 2012 January 5, 2012 July 11, 2011 April 14, 2011 March 1, 2011 December 7, 2010 August 13, 2010 June 15, 2010 January 18, 2010 December 22, 2009 April 2, 2009

385

Laboratory Shuttle Bus Routes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rear bike rack image Rear bike rack image The Laboratory provides shuttle bus services, contracted through MV Transportation Services. Routes run throughout its 200-acre facility, downtown Berkeley, local off-site facilities, UC Campus, Downtown Berkeley BART, and Rockridge BART stations. Shuttles offer free wifi onboard. Riders are asked to adhere to riding instructions. Active shuttle stops are marked with this sign: Bus sign image Shuttles run Monday through Friday, except Laboratory holidays. There is no weekend service. Special service for tours, group travel, etc. is available for a fee. All shuttles are equipped with Nextbus which uses GPS technology to enable riders to obtain real-time information on bus arrivals. Contact Bus Services at busservices@lbl.gov or 510-486-4165 to provide

386

S ARGONNE NATIONAL LABORATORY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARGONNE NATIONAL LABORATORY ARGONNE NATIONAL LABORATORY 19 ON CLOSED SHEIIS IN NUCLEI. II Maria G. Mayer April., 1949 Feenberg (1) ' (2) and Nordlkeim (3) have used the spins and magnetic moments of the even-odd nuclei to determine the angular momentum of the eigenfunction of the odd particle. The tabulations given by them indi- cate that spin orbit coupling favors the state of higher total angular momentum, If - strong spin.orbit coupling' increasing with angular mom- entum is assumed, a level assignment encounters a very few contradictions. with experimental facts and requires no major crossing of the levels from those of a square well potential. The magic numbers O, 82, and 126 occur at the' place of the spin-orbit splitting of levels of high angular momen- tum, Table 1 contains in column two in order

387

Safety | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Safety Biosafety Safety Safety is integral to Argonne's scientific research and engineering technology mission. As a leading U.S. Department of Energy multi-program research laboratory, our obligation to the American people demands that we conduct our research and operations safely and responsibly. As a recognized leader in safety, we are committed to making ethical decisions that provide a safe and healthful workplace and a positive presence within the larger Chicagoland community. Argonne's Integrated Safety Management program is the foundation of the laboratory's ongoing effort to provide a safe and productive environment for employees, users, other site personnel, visitors and the public. Related Sites U.S. Department of Energy Lessons Learned Featured Media

388

ARGONNE NATIONAL LABORATORY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Empirical Empirical performance modeling of GPU kernels using active learning 1 Prasanna Balaprakash 2 , Karl Rupp 2 , Azamat Mametjanov 2 , Robert B. Gramacy 3 , Paul D. Hovland 2 , Stefan M. Wild 2 Mathematics and Computer Science Division Preprint ANL/MCS-P4097-0713 July 2013 1 Support for this work was provided through the SciDAC program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under Contract No. DE-AC02-06CH11357. 2 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA 3 Booth School of Business, University of Chicago Empirical performance modeling of GPU kernels using active learning Prasanna Balaprakash 1 , Karl Rupp 1 , Azamat Mametjanov 1 Robert B. Gramacy 2 , Paul D. Hovland 1 , Stefan M. Wild 1 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

389

Remote Sensing Laboratory - RSL  

ScienceCinema (OSTI)

One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

None

2015-01-09T23:59:59.000Z

390

Remote Sensing Laboratory - RSL  

SciTech Connect (OSTI)

One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

None

2014-11-06T23:59:59.000Z

391

Bettis Atomic Power Laboratory  

SciTech Connect (OSTI)

The Bettis Atomic Power Laboratory (Bettis) is owned by the US Department of Energy (DOE) and has been operated under Government contract by the Westinghouse Electric Corporation since 1949. The Bettis Site in West Mifflin, Pennsylvania conducts research and development work on improved nuclear propulsion plants for US Navy warships and is the headquarters for all of the Laboratory's operations. For many years, environmental monitoring has been performed to demonstrate that the Bettis Site is being operated in accordance with environmental standards. While the annual report describes monitoring practices and results, it does not describe the nature and environmental aspects of work and facilities at the Bettis Site nor give a historical perspective of Bettis' operations. The purpose of this report is to provide this information as well as background information, such as the geologic and hydrologic nature of the Bettis Site, pertinent to understanding the environmental aspects of Bettis operations. Waste management practices are also described.

Not Available

1992-01-01T23:59:59.000Z

392

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 14, 2013 May 14, 2013 Value of up to $150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will compete for environmental work worth up to $150 million over five years. The businesses each have offices in northern New Mexico. The agreement is for technical services for the Laboratory's Environmental Programs directorate and includes work such as environmental engineering design, regulatory support, risk assessment and reporting. - 2 - The companies chosen are Terranear PMC, Navarro Research and Engineering, Inc., and Adelante Consulting, Inc. The agreement is for three years with two additional one- year options. Task orders under this agreement will be competitively bid among the

393

Annual Report Alfvn Laboratory  

E-Print Network [OSTI]

discharge type for atmospheric plasma processing 97 C.2.5 Diagnostics of a pulsed RF-plasma 98 C.2 LABORATORY 3 2.1 Plasma Physics 5 2.2 Fusion Plasma Physics 6 2.3 Applied Electrophysics 7 2.3.1 Accelerator of Plasma Physics Section page A.1 Space physics group research 33 A.1.1 Rocket experiments 34 A.1

Haviland, David

394

Laboratory-Specific-Documentation-HHN.docx CHP updated 8/21/13 Virginia Tech  

E-Print Network [OSTI]

Laboratory-Specific-Documentation-HHN.docx CHP updated 8/21/13 Virginia Tech Chemistry Department Chemical Hygiene Plan This CHP applies to rooms Current worker beginning a new task Reviewing a revised edition of the CHP 1

Crawford, T. Daniel

395

Teaching Sustainable Development Concepts in the Laboratory: A SolidLiquid Extraction Experiment  

Science Journals Connector (OSTI)

Teaching Sustainable Development Concepts in the Laboratory: A SolidLiquid Extraction Experiment ... One of the principles of sustainable development is to replace chemicals traditionally derived from oil with alternative, renewable materials. ...

Juan Carlos Paraj; Herminia Domnguez; Valentn Santos; Jos Luis Alonso; Gil Garrote

2008-07-01T23:59:59.000Z

396

Chemical Management Contacts  

Broader source: Energy.gov [DOE]

Contacts for additional information on Chemical Management and brief description on Energy Facility Contractors Group

397

OAK RIDGE NATIONAL LABORATORY LABORATORY RESULTS OF THE INDEPENDENT...  

Office of Legacy Management (LM)

4q Le *.Al fl1b ORNLRASA-8669 (LN005V) OAK RIDGE NATIONAL LABORATORY LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL L'ririir g VERIFICATION SURVEY AT 3 HANCOCK...

398

OAK RIDGE NATIONAL LABORATORY LABORATORY RESULTS OF THE INDEPENDENT...  

Office of Legacy Management (LM)

L15 ) pouiuh, Olst ORNLRASA-8670 (LN006V) OAK RIDGE NATIONAL LABORATORY LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL 'i * rf-if nVERIFICATION SURVEY AT 121 AVENUE F,...

399

Annual Report 2000. Chemical Structure and Dynamics  

SciTech Connect (OSTI)

This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

Colson, Steven D.; McDowell, Robin S.

2001-04-15T23:59:59.000Z

400

Smart Grid Integration Laboratory  

SciTech Connect (OSTI)

The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation ?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

Wade Troxell

2011-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

About Chemical Hazards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Hazards Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in our homes and can result in serious injuries if not properly handled. Household items such as bleach can result in harmful chlorine gas or hydrochloric acid if carelessly used. Gasoline fumes from containers for lawnmowers or boats can result in major health hazards if inhaled. DOE Oak Ridge uses thousands of chemicals in its varied research and other operations. New chemicals are or can be created as a result of the research or other activities. DOE follows national safety requirements in storing and handling these chemicals to minimize the risk of injuries from its chemical usage. However, accidents can occur despite careful attention to proper handling and storage procedures.

402

Ames Laboratory Site Sustainability Plan | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ames Laboratory Site Sustainability Plan Document Number: NA Effective Date: 122012 File (public): Ames FY2013 SSP FINAL.pdf...

403

Carol Jones Research Engineer  

E-Print Network [OSTI]

canola varieties, Oklahoma producers have the option of rotating canola with wheat to break the weed and disease cycle and to potentially increase wheat yields. Production of canola also provides an income source outside of the grain market. The recent increase in canola production in Oklahoma has prompted

Jones, Carol

404

John Paul Jones  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chart Administration Advanced Network Technologies Audio, Video, Data Collaboration Cybersecurity Infrastructure and Identity Network Engineering Office of the CTO Operations and...

405

Profile: Barrie W Jones  

Science Journals Connector (OSTI)

......Ireland and the Netherlands (method of import- stratospheric balloon), and a flying saucer scare over Birmingham...Ireland and the Netherlands (method of import- stratospheric balloon), a flying saucer scare over Birmingham, and......

Barrie W Jones

2009-04-01T23:59:59.000Z

406

History of the Laboratory Protection Division Oak Ridge National Laboratory  

E-Print Network [OSTI]

i i #12;#12;History of the Laboratory Protection Division Oak Ridge National Laboratory 1942, Emergency Preparedness Date Published: March 1992 Prepared by the Oak Ridge National Laboratory Oak Ridge stations should be tucked comfortably away in isolated places. As such, the Oak Ridge area seemed perfect

407

NREL: Energy Storage - Laboratory Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Capabilities Laboratory Capabilities Photo of NREL's Energy Storage Laboratory. NREL's Energy Storage Laboratory. Welcome to our Energy Storage Laboratory at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Much of our testing is conducted at this state-of-the-art laboratory, where researchers use cutting-edge modeling and analysis tools to focus on thermal management systems-from the cell level to the battery pack or ultracapacitor stack-for electric, hybrid electric, and fuel cell vehicles (EVs, HEVs, and FCVs). In 2010, we received $2 million in funding from the U.S. Department of Energy under the American Recovery and Reinvestment Act of 2009 (ARRA) to enhance and upgrade the NREL Battery Thermal and Life Test Facility. The Energy Storage Laboratory houses two unique calorimeters, along with

408

Contact OAK RIDGE NATIONAL LABORATORY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact OAK RIDGE NATIONAL LABORATORY ORNL is managed by UT-Battelle for the US Department of Energy Solving the big problems Oak Ridge National Laboratory is the largest US...

409

National Laboratory Impact Initiative Team  

Office of Energy Efficiency and Renewable Energy (EERE)

The mission of the Office of Energy Efficiency and Renewable Energy's (EERE's) National Laboratory Impact Initiative is to significantly increase the industrial impact of the Energy Department's national laboratories on the U.S. clean energy sector.

410

Licensing Oppurtunities | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with the US Treasury. Ames Laboratory has been the only Laboratory to have returned royalty income to the US Treasury and has done so for the last 5 years. For additional...

411

Laboratories to Explore, Explain VLBACHANDRA  

E-Print Network [OSTI]

Institute of Technology Idaho National Engineering Laboratory Lawrence Livermore National Laboratory, at least, be one that allows the scientific exploration of burning plasmas" and if Japan and Europe do

412

Chemical structure and dynamics. Annual report 1994  

SciTech Connect (OSTI)

The Chemical Structure and Dynamics program was organized as a major component of Pacific Northwest Laboratory`s Environmental and Molecular Sciences Laboratory (EMSL), a state-of-the-art collaborative facility for studies of chemical structure and dynamics. Our program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces, and (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage. This research effort was initiated in 1989 and will continue to evolve over the next few years into a program of rigorous studies of fundamental molecular processes in model systems, such as well-characterized surfaces, single-component solutions, clusters, and biological molecules; and studies of complex systems found in the environment (multispecies, multiphase solutions; solid/liquid, liquid/liquid, and gas/surface interfaces; colloidal dispersions; ultrafine aerosols; and functioning biological systems). The success of this program will result in the achievement of a quantitative understanding of chemical reactions at interfaces, and more generally in condensed media, that is comparable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for predictions of macroscopic chemical behavior in condensed and heterogeneous media, adding significantly to the value of field-scale environmental models, the prediction of short- and long-term nuclear waste storage stabilities, and other problems related to the primary missions of the DOE.

Colson, S.D.

1995-07-01T23:59:59.000Z

413

Chemical Structure and Dynamics annual report 1997  

SciTech Connect (OSTI)

The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE`s environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous.

Colson, S.D.; McDowell, R.S.

1998-03-01T23:59:59.000Z

414

Sandia National Laboratories: Renewable Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling...

415

Sandia National Laboratories: News & Events  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling...

416

Department of Energy Multiprogram Laboratories  

SciTech Connect (OSTI)

Volume III includes the following appendices: laboratory goals and missions statements; laboratory program mix; class waiver of government rights in inventions arising from the use of DOE facilities by or for third party sponsors; DOE 4300.2: research and development work performed for others; procedure for new work assignments at R and D laboratories; and DOE 5800.1: research and development laboratory technology transfer program.

Not Available

1982-09-01T23:59:59.000Z

417

NATIONAL ENERGY TECHNOLOGY LABORATORY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Cover image: NETL researcher Corinne Disenhof examines a basalt thin section under a geoscience laboratory petrographic microscope. NETL is investigating the effects of microbes on basalt during carbon sequestration, and petrography is one of several analysis methods being used. Others include scanning electron microscopy and x-ray diffraction. Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. 2 Contents 2011 Letter from the Director ___________________________ 4 Advanced Power Systems __________________________ 6 Clean Energy ____________________________________ 24 Oil & Natural Gas ________________________________ 40 A Legacy of Benefit: The Return on Federal Research at NETL ______________

418

Lawrence Livermore National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March/April 2008 March/April 2008 4 Lawrence Livermore National Laboratory Extending the Search for Extending the Search for A new imager will allow astrophysicists to study the atmospheres of distant planets. T HE discovery of other solar systems beyond ours has been the stuff of science fiction for decades. Great excitement greeted the positive identification of the first planet outside our solar system in 1995. Since then, scientists have identified approximately 250 extrasolar planets (exoplanets), but they have had no way to study the majority of these planets or their

419

Laboratory.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pharmaceutical Industry's Approach Pharmaceutical Industry's Approach to Safe Handling of New Molecular Entities Donna S. Heidel, CIH The findings and conclusions in this presentation have not been formally disseminated by the National Institute for Occupational Safety and Health and should not be construed to represent any agency determination or policy 2 Pharma IH Process Overview Focus on R&D laboratories * Occupational Health Hazard Characterization - "Default" Health Hazard Band for Discovery labs - Health Hazard Banding for Development labs - Occupational Exposure Limits * Control Selection - Graded approach for engineering controls * Exposure Verification - Applicability to Engineered Nanoparticles 3 Pharma's Philosophy and Rationale for Health Hazard/Control Banding * Possible to group together

420

Parallel Matlab MIT Lincoln Laboratory  

E-Print Network [OSTI]

Slide-1 Parallel Matlab MIT Lincoln Laboratory Parallel Matlab: The Next Generation Dr. Jeremy Lincoln LaboratorySlide-2 Parallel Matlab · Motivation · Challenges Outline · Introduction · Approach · Performance Results · Future Work and Summary #12;MIT Lincoln LaboratorySlide-3 Parallel Matlab Motivation: Do

Kepner, Jeremy

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Humidity requirements in WSCF Laboratories  

SciTech Connect (OSTI)

The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment.

Evans, R.A.

1994-10-01T23:59:59.000Z

422

CRAD, Chemical Management Implementation - June 30, 2011 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Chemical Management Implementation - June 30, 2011 Chemical Management Implementation - June 30, 2011 CRAD, Chemical Management Implementation - June 30, 2011 June 30, 2011 Chemical Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 45-31, Rev. 1) This document provides an overview of the Criteria, Activities, and Lines of Inquiry that will be used to collect information to evaluate the chemical management against DOE policy, regulatory requirements. Primary attention will be given to activities governed by the Occupational Safety and Health Administration's Hazard Communication Standards (29 CFR 1910.1200 and 29 CFR 1926.59) and Occupational Exposure to Chemicals in Laboratories (29 CFR 1910.1450). However, review of any activities for managing, storing, or using hazardous chemicals, pesticides, and toxic

423

CRAD, Chemical Management Implementation - June 30, 2011 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Chemical Management Implementation - June 30, 2011 Chemical Management Implementation - June 30, 2011 CRAD, Chemical Management Implementation - June 30, 2011 June 30, 2011 Chemical Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 45-31, Rev. 1) This document provides an overview of the Criteria, Activities, and Lines of Inquiry that will be used to collect information to evaluate the chemical management against DOE policy, regulatory requirements. Primary attention will be given to activities governed by the Occupational Safety and Health Administration's Hazard Communication Standards (29 CFR 1910.1200 and 29 CFR 1926.59) and Occupational Exposure to Chemicals in Laboratories (29 CFR 1910.1450). However, review of any activities for managing, storing, or using hazardous chemicals, pesticides, and toxic

424

Shanghai TL Chemical Company | Open Energy Information  

Open Energy Info (EERE)

TL Chemical Company TL Chemical Company Jump to: navigation, search Name Shanghai TL Chemical Company Place Shanghai, China Zip 200240 Product Focuses on novel chemical structure PEM and PE Resin, PEM FC materials and parts, Key chemical materials in Zn-Air fuel cell, Polymer additives, Fine chemicals,Chemical laboratory and Industry automation solutions. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Savannah River Sites Liquid Waste Operations Adds Multi-Functional Laboratory  

Broader source: Energy.gov [DOE]

AIKEN, S.C. A new multi-functional laboratory supporting high-level waste processing at the Savannah River Site (SRS) gives workers a new and improved place to provide back-up laboratory support and more space for chemical storage.

426

The Department of Energy's National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

THE THE DEPARTMENT OF ENERGY'S National Laboratories All National Laboratories Achievements History Argonne National Laboratory (ANL) Achievements History Brookhaven National Laboratory (BNL) Achievements History Fermi National Accelerator Laboratory (FNAL) Achievements History Idaho National Laboratory (INL) Achievements History Lawrence Berkeley National Laboratory (LBNL) Achievements History Lawrence Livermore National Laboratory (LLNL) Achievements History Los Alamos National Laboratory (LANL) Achievements History National Energy Technology Laboratory (NETL) Achievements History National Renewable Energy Laboratory (NREL) Achievements History Oak Ridge National Laboratory (ORNL) Achievements History Pacific Northwest National Laboratory (PNNL) Achievements History

427

Hazards and controls at the Sandia National Laboratories microelectronics development laboratory  

SciTech Connect (OSTI)

The Microelectronics Development Laboratory (MDL) contains 3,000 m{sup 2}, Which includes 1,000 m{sup 2}of Class I clean room space. There are 20 laminar flow Class I clean room bays. The MDL supplies several, full-flow process technologies which produce complementary metal oxide semiconductor (CMOS) integrated circuits using 150 nun diameter silicon wafers. All gases, chemicals and physical hazards used in the fabrication processes are controlled to levels well below regulatory requirements. Facility engineering controls in the MDL include toxic and pyrophoric gas monitoring, interlocks, ventilation, substitution and chemical segregation. Toxic and pyrophoric gases are monitored continuously inside processing tools as well as through the exhaust lines, gas cabinets, the valve boxes, and in general work areas. The toxic gas monitoring systems are interlocked to gas shutoff valves and have both low and high level alarms. In-use process gases are stored in exhausted cabinets. All chemicals and gases are segregated by chemical type. The processes are organized into eight sector areas that consist of photolithography, wet processes, dry etch, ion implant, metals, diffusion, chemical vapor deposition (CVD) and chemical mechanical polishing (CW). Each morning, engineering, safety and facilities personnel meet to review the equipment and wafer lot status and discuss processing issues. Hazards are assessed in the MDL with periodic walkthroughs, continuous toxic and pyrophoric gas monitoring and personal monitoring. All chemicals and gases proposed for use in the MDL are reviewed by the industrial hygienist and must be approved by a manager before they are purchased. All new equipment and processes are reviewed by a hazard and barrier committee and cannot be used in the MDL without the committee`s approval and an IH hazard assessment. Overall risk of operating the MDL has been reduced to a level that is as low as reasonable achievable for this research facility.

Benton, M.A.

1997-03-01T23:59:59.000Z

428

Laboratory Science Highlights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

laboratories/highlights/ The Office of Science is laboratories/highlights/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {B0DFBA1D-D6A0-4920-8E73-4779F8F5ACEA}http://science.energy.gov/np/highlights/2013/np-2013-12-a/ Modeling Cosmic Nucleosynthesis First measurements of isotopes produced by Argonne's new CARIBU facility provide insight into the creation of the elements in the universe. Thu, 09

429

ChemCam for Mars Science Laboratory rover, undergoing pre-flight testing  

ScienceCinema (OSTI)

Los Alamos National Laboratory and partners developed a laser instrument, ChemCam, that will ride on the elevated mast of the Mars Science Laboratory rover Curiosity. The system allows Curiosity to "zap" rocks from a distance, reading their chemical composition through spectroscopic analysis. In this video, laboratory shaker-table testing of the instrument ensures that all of its components are solidly attached and resistant to damage from the rigors of launch, travel and landing.

None

2014-08-12T23:59:59.000Z

430

Laboratory Partnering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Partnering Laboratory Partnering Laboratory Partnering The Department of Energy operates multiple laboratories and facilities that conduct Technology Transfer through partnerships with industry, universities and non-profit organizations. Technology transfer involves deployment of newly generated technology intended for commercial deployment, and making unique resources in the form of collaborations with laboratory staff and unique equipment available for use by third parties. Technology transfer is done through a variety of legal instruments from technical assistance agreements to solve a specific problem, user agreements, licensing of patents and software, exchange of personnel, work for others agreements and cooperative research and development agreements. The most appropriate mechanism will depend on the objective of each

431

Mark Peters | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About About Core Capabilities Leadership Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Mark Peters, Deputy Lab Director for Programs Mark Peters Deputy Laboratory Director for Programs Dr. Mark Peters is the Deputy Laboratory Director for Programs at Argonne National Laboratory. He is responsible for the management and integration of the Laboratory's science and technology portfolio, strategic planning, Laboratory Directed Research and Development (LDRD) program and technology transfer. Dr. Peters also serves as a senior advisor to the Department of Energy on nuclear energy technologies and research and development programs, and nuclear waste policy.

432

Environmental Review Form for Argonne National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Title: Indoor Bench-Scale Research Projects and Conventional Laboratory Operations Title: Indoor Bench-Scale Research Projects and Conventional Laboratory Operations (?)AS0 NEPA track in^ No. ASO-CX-265 (?)Tv~e of Funding: DOE, WFO. or CRADA Replaces AAO-CX- 160 B&R Code J?IIdentifvin~ number: NIA WFO proposal # CRADA proposal # Work Project # ANL accounting # (item 3a in Field Work Proposal) Other (explain) f?)Proiect Manager: n/a Signature: Date: J?)NEPA Owner: D. Haugen Signature: Date: < / $ b / ! & h 7 J?)NEPA Owner: G. Dyrkacz Signature: Date: :/3@?0/0 J?)NEPA Owner: R. Riel Signature: ,ate: 3/30/d0/6 ANL NEPA Reviewer: M A. Kaniva signatu&:',^ .Q - Date:3 1 3 r, 1 t s I. (?)Description of Proposed Action: All proposed actions will be indoor bench-scale research projects and conventional laboratory operations conducted in existing buildings at Argonne. Specifically, bench-scale chemical,

433

Chemical speciation of radionuclides migrating in groundwaters  

SciTech Connect (OSTI)

In order to more accurately predict the rates and mechanisms of radionuclide migration from low-level waste disposal facilities via groundwater transport, ongoing studies are being conducted at field sites at Chalk River Laboratories to identify and characterize the chemical speciation of mobile, long-lived radionuclides migrating in groundwaters. Large-volume water sampling techniques are being utilized to separate and concentrate radionuclides into particular, cationic, anionic, and nonionic chemical forms. Most radionuclides are migrating as soluble, anionic species that appear to be predominantly organoradionuclide complexes. Laboratory studies utilizing anion exchange chromatography have separated several anionically complexed radionuclides, e.g., {sup 60}Co and {sup 106}Ru, into a number of specific compounds or groups of compounds. Further identification of the anionic organoradionuclide complexes is planned utilizing high resolution mass spectrometry. Large-volume ultra-filtration experiments are characterizing the particulate forms of radionuclides being transported in these groundwaters.

Robertson, D.; Schilk, A.; Abel, K.; Lepel, E.; Thomas, C.; Pratt, S. [Pacific Northwest Lab., Richland, WA (United States); Cooper, E.; Hartwig, P.; Killey, R. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

1994-04-01T23:59:59.000Z

434

Craig, II, Roizen, Smith, Jones, and Stoltz Supporting Information Enantioselective Synthesis of a Hydroxymethyl-cis-1,3-cyclopentendiol  

E-Print Network [OSTI]

a Chiralcel OB-H column (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd with visualization using E. Merck silica gel 60 F254 precoated plates (250 nm) and visualized by UV fluorescence quenching, potassium permanganate, or p-anisaldehyde staining. Silicycle SiliaFlash P60 Academic Silica gel (particle

Stoltz, Brian M.

435

Argonne National Laboratory - Enforcement Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enforcement Documents Enforcement Documents Argonne National Laboratory Preliminary Notice of Violation issued to the University of Chicago related to Nuclear Safety Program Deficiencies at Argonne National Laboratory, March 7, 2006 (EA-2006-02) - University of Chicago/Argonne National Laboratory - Press Release, March 7, 2006 Preliminary Notice of Violation issued to the University of Chicago related to the Uncontrolled Release of Radioactive Material at Argonne National Laboratory-East, August 14, 2001 (EA-2001-05) - Argonne National Laboratory - Press Release, August 17, 2001 Preliminary Notice of Violation issued to the University of Chicago related to Programmatic Management Failures at Argonne National Laboratory-West, February 28, 2001 (EA-2001-01) - Argonne National Laboratory-West - Press Release, March 2, 2001

436

Historical Photographs: Lawrence Berkeley Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lawrence Berkeley Laboratory Lawrence Berkeley Laboratory [Small Image] 1. A whole body counter (circa 1964) at the Berkeley Donner Laboratory. Such counters were used in human radiation tracer studies and for measuring AEC worker radiation exposure. (294Kbytes) [Small Image] 2. Early treatment for Parkinson's disease at the Berkeley Donner Laboratory (134Kbytes) [Small Image] 3. Donner Laboratory carbon-14 metabolic study apparatus (146Kbytes) [Small Image] 4. Respiration analysis using injected radioactive tracers at Donner Laboratory (circa 1968). (217Kbytes) [Small Image] 5. A patient under a positron camera. The camera was a diagnostic tool developed at Donner Laboratory, Berkeley, to photograph radioactive tracer concentrations. Unlike a whole body scanner, this device photographs a single, specific area of the body. (146Kbytes)

437

Los Alamos National Laboratory - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Nuclear Safety Home Nuclear Sites Map Nuclear Sites List › Argonne National Laboratory › East Tennessee Technology Park › Hanford › Idaho Site › Los Alamos National Laboratory › Lawrence Livermore National Laboratory › Nevada National Security Site › New Brunswick Laboratory › Oak Ridge National Laboratory › Paducah › Pantex › Pacific Northwest National Laboratory › Portsmouth Gaseous Diffusion Plant › Sandia National Laboratories › Savannah River Site › Waste Isolation Pilot Plant › West Valley Demonstration Project › Y-12 National Security Complex HSS Reports - Enforcement - Corporate Safety Analysis Fire Protection DOELAP - Safety and Emergency Management Evaluations Safety Basis Information System Office of Corporate Safety Analysis

438

Ames Laboratory annual site environmental report, calendar year 1996  

SciTech Connect (OSTI)

This report summarizes the environmental status of Ames Laboratory for calendar year 1996. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies twelve buildings owned by the Department of Energy (DOE). The Laboratory also leases space in ISU owned buildings. Laboratory activities involve less than ten percent of the total chemical use and approximately one percent of the radioisotope use on the ISU campus. In 1996, the Office of Assurance and Assessment merged with the Environment, Safety and Health Group forming the Environment, Safety, Health and Assurance (ESH and A) office. In 1996, the Laboratory accumulated and disposed of wastes under US Environmental Protection Agency (EPA) issued generator numbers. Ames Laboratory submitted a Proposed Site Treatment Plan to EPA in December 1995. This plan complied with the Federal Facilities Compliance Act (FFCA). It was approved by EPA in January 1996. The consent agreement/consent order was issued in February 1996. Pollution awareness, waste minimization and recycling programs, implemented in 1990 and updated in 1994, continued through 1996. Included in these efforts were a waste white paper and green computer paper recycling program. Ames Laboratory also continued to recycle salvageable metal and used oil, and it recovered freon for recycling. All of the chemical and nearly all of the radiological legacy wastes were properly disposed by the end of 1996. Additional radiological legacy waste will be properly disposed during 1997.

NONE

1998-04-01T23:59:59.000Z

439

Capacitive chemical sensor  

DOE Patents [OSTI]

A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

2014-05-27T23:59:59.000Z

440

Chemicals from Metabolic Pathways  

Science Journals Connector (OSTI)

A few basic raw materials, petroleum, natural gas, +S from oil or natural gas, and O2 + N2 from air, generate first primary (or platform) chemicals, next secondary (commodity) chemicals, then intermediates, and f...

John Villadsen; Jens Nielsen; Gunnar Lidn

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Chemistry 455 Chemical Nanotechnology  

E-Print Network [OSTI]

Chemistry 455 Chemical Nanotechnology 4 units Prof. Richard Brutchey, Fall 2014 (Lecture = 12:00�12:50 pm MWF) CHEM 455 is an upper-division undergraduate course in Chemical Nanotechnology. The intent

Rohs, Remo

442

Chemicals and health  

Science Journals Connector (OSTI)

Chemicals and health ... I must add here that some chemicals are indeed dangerous in the environment, largely because they persist, they don't break down, and they can therefore build up in the food chain. ...

1980-11-03T23:59:59.000Z

443

ARGONNE NATIONAL LABORATORY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Performance Performance modeling for exascale autotuning: An integrated approach ∗ Prasanna Balaprakash, Stefan M. Wild, and Paul D. Hovland Mathematics and Computer Science Division Preprint ANL/MCS-P5000-0813 July 2013 ∗ Support for this work was provided through the SciDAC program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under Contract No. DE-AC02-06CH11357. 1 Performance modeling for exascale autotuning: An integrated approach Prasanna Balaprakash ∗ , Stefan M. Wild, and Paul D. Hovland Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 The usual suspects-shrinking integrated circuit feature sizes, heterogeneous nodes with many- core processors, deep memory hierarchies, an ever-present power wall, energy efficiency demands, and resiliency concerns-make exascale

444

Renewable Energy Laboratory  

Open Energy Info (EERE)

success of any solar energy success of any solar energy installation depends largely on the site's solar resource. Therefore, detailed knowledge of an area's solar resource is critical to installation planning and siting. To help with these efforts, the National Renewable Energy Laboratory (NREL) and the National Climatic Data Center (NCDC) have updated the National Solar Radiation Database (NSRDB). Since 1992, the database has provided solar planners and designers, building architects and engineers, renewable energy analysts, and countless others with extensive solar radiation information. The 1991-2005 NSRDB contains hourly solar radiation (including global, direct, and diffuse) and meteorological data for 1,454 stations. This update builds on the 1961-1990 NSRDB, which contains

445

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

announces Express Licensing program announces Express Licensing program August 1, 2013 Streamlined procedure speeds business access to new technology LOS ALAMOS, N.M., August 1, 2013-With the launch of a new "Express Licensing" program, access to innovative technology invented at Los Alamos National Laboratory (LANL) has gotten easier. The new licensing alternative was announced today by David Pesiri, director of LANL's Technology Transfer Division. "The Express License program offers an additional licensing resource for local entrepreneurs as well as national collaborators," Pesiri said. "Our licensing and software teams have worked very hard to offer this specialized model for those wanting to quickly license Los Alamos technology." - 2 - The Express Licensing program at LANL is the first of several new initiatives under

446

Home | Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ABOUT | NEED A MATERIAL | NEWS CENTER | RESEARCH | TECH ABOUT | NEED A MATERIAL | NEWS CENTER | RESEARCH | TECH TRANSFER | CONTACT search LOG IN | RARE EARTH METALS | CRITICAL MATERIALS INSTITUTE | STAFF/ASSOCIATES | VISITORS | BE A PART OF AMES LAB | STUDENTS | EDUCATORS | FUNDING AGENCIES | INDUSTRY | RESEARCHERS | COMMUNITY RARE EARTH METALS Current Market Prices About Rare Earth Metals Materials Preparation STAFF/ASSOCIATES Operations Forms & Documents Find People VISITORS How To Get Here Tours of Ames Laboratory Local Events Calendar BE A PART OF AMES LAB Job News Human Resources Ames Lab At A Glance STUDENTS K-12 Resources Undergraduates Graduates and Others EDUCATORS Science Bowl SULI Program VFP Program FUNDING AGENCIES DOE/Contractor Research Highlights Contract INDUSTRY Technology Transfer Unique Capabilities

447

Infrared Thermography Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hollow vs. Foam-Filled Vinyl Windows Hollow vs. Foam-Filled Vinyl Windows Hollow vs. Foam-filled Vinyl Windows (100K) These two windows are the same except for what is inside the vinyl frames. The frame on the left is hollow, while the frame on the right is filled with insulating foam. The units have the same insulated glazing unit, a superwindow with R-8 center of glass. The hollow window frame allows air to circulate inside the frame; this convective effect is observed by noticing the frame temperatures are cooler at the bottom than at the top. The foam-filled window doesnÌt show this effect. These windows are being cooled on the back side with wind at -15°C (5°F). For more information contact: Howdy Goudey Building Technologies Program 510-486-6046 (fax) Return to the IRlab page Building Technologies | Energy & Environment Division | Lawrence Berkeley National Laboratory

448

OAK RIDGE NATIONAL LABORATORY  

Office of Legacy Management (LM)

Results of the Independent Results of the Independent Radiological Verification Survey L O C K W R R D M A R T I N of the Remedial Action Performed at the Former Alba Craft Laboratory Site Oxford, Ohio (0x0001) K. R. Kleinhans M. E. Murray R. F. Camer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Rcfer- ence herein to any specific commercial product, process, or service by trade name, trademark,

449

Science | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Argonne Research Library supports the scientific and technical research The Argonne Research Library supports the scientific and technical research of the employees of Argonne National Laboratory. While the library is not open to the public, we do make our catalog available for searching. The Institute for Molecular Engineering explores innovative technologies that address fundamental societal problems through advances in nanoscale manipulation and design at a molecular scale. Women in Science and Technology (WIST) aims to promote the success of women in scientific and technical positions at Argonne. Science The best and brightest minds come to Argonne to make scientific discoveries and technological innovations that improve the quality of life throughout the nation and the world. The best and brightest minds come to Argonne.

450

ARGONNE NATIONAL LABORATORY May  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 9, 1994 Light Source Note: LS{234 Comparison of the APS and UGIMAG Helmholtz Coil Systems David W. Carnegie Accelerator Systems Division Advanced Photon Source Argonne National Laboratory 9700 S. Cass Ave., Argonne, IL 60439-4815 Telephone: (708) 252-6660 FAX: (708) 252-6607 ABSTRACT UGIMAG [1] is manufacturing the NdFeB permanent magnet blocks to be used in undulator A now being assembled by STI Optronics. We would like to be able to compare measurements made at the plant with those made at ANL and potentially with those made at the STI facility. Since there are no permanent magnet standard samples, measurement systems are compared by trading sets of magnets set aside as standards. APS has ten NdFeB permanent magnet blocks supplied by Sumitomo [2] that we use to make these comparisons. These magnet samples have been exten- sively measured on the APS system. The data include the

451

Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ICE SLURRY PHASE-CHANGE COOLANTS FOR ICE SLURRY PHASE-CHANGE COOLANTS FOR INDUSTRIAL AND MEDICAL APPLICATIONS K. Kasza*, Y. Wu, J. Heine, D. Sheradon, and Steve Lake * Argonne National Laboratory, 9700 South Cass Avenue, Argonne Illinois, 60439, USA kasza@anl.gov Abstract Over the last 15 years, interest in using phase-change ice slurry coolants has grown significantly. Because of the high energy content of ice slurry, which is due to the phase change (melting) of the ice particles under a cooling load, the cooling capacity of ice slurry is many times greater than that of single phase fluids. Research is focused on understanding ice slurry behavior and developing highly-loaded, storable, and pumpable ice slurry coolants. Research has shown that the ice slurry must be engineered to have the correct

452

Contract | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne's Prime Contract is the contract between the U.S. Department of Argonne's Prime Contract is the contract between the U.S. Department of Energy and UChicago Argonne, LLC that sets out the terms and conditions for the operation of Argonne National Laboratory. Please direct general comments and questions about the Argonne Prime Contract to William Luck. Navigation Tips Listed below are tips on navigating through the Argonne Prime Contract. The navigation menu contains the currently available options. Select the main Argonne Prime Contract at any time to return to the main menu. When searching the text of the Argonne Prime Contract, the previous/next hit buttons will take you to the previous/next occurrence of your search term(s) in the current section. Search Table of Contents Advanced Search List of Modifications List of Appendices

453

ARGONNE NATIONAL LABORATORY  

Office of Legacy Management (LM)

7/ 7/ ARGONNE NATIONAL LABORATORY 9700 Sod CASS AVENUE, A~o~NE, llhois 60439 oh/, lb w- /7 T-E 312/972-3322 e-,/f pa, / =i ' 4 /2 August 21, 1984 MI-. 3' (it+ ipj Aerospace Corporation Suite 4000 955 L'Enfant Plaza S. W. Washington, D.C. 20024 Dear Mr. Wallo: Subject: Aerospace Records Search Reference: 1. Letter, H. J. Rauch to A. Schriesheim, dated July 30, 1984, subject same as above. 2. Letter, J. E. Baublitz to R. M. Moser, dated July 19, 1984, subject same as above. In accordance with the above referenced letters, please find enclosed copies of information from our files relating to the following sites. ~ 1. Revere Copper and Brass Company, Detroit, Michigan. 2. Parker Rust Proof and Meistermatic, formerly McKinney Tool and Manufacturing Company, Cleveland, Ohio.

454

Biobased Chemicals Without Biomass  

Science Journals Connector (OSTI)

Unlike most other companies using biology to make chemicals, LanzaTech does not rely on biomass feedstocks. ...

MELODY BOMGARDNER

2012-08-27T23:59:59.000Z

455

Institute of Chemical Engineering and High Temperature Chemical...  

Open Energy Info (EERE)

Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical Processes (ICEHT) Place: Hellas, Greece Zip:...

456

Independent Oversight Review, Argonne National Laboratory - November...  

Energy Savers [EERE]

Argonne National Laboratory - November 2011 Independent Oversight Review, Argonne National Laboratory - November 2011 November 2011 Review of the Argonne National Laboratory...

457

Independent Oversight Review, Oak Ridge National Laboratory ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Laboratory - January 2013 Independent Oversight Review, Oak Ridge National Laboratory - January 2013 January 2013 Review of the Oak Ridge National Laboratory High Flux...

458

Oversight Reports - Oak Ridge National Laboratory | Department...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory Oversight Reports - Oak Ridge National Laboratory April 24, 2014 Independent Oversight Targeted Review, Oak Ridge National Laboratory - April 2014...

459

Measured Peak Equipment Loads in Laboratories  

E-Print Network [OSTI]

of measured equipment load data for laboratories, designersmeasured peak equipment load data from 39 laboratory spacesmeasured equipment load data from various laboratory spaces

Mathew, Paul A.

2008-01-01T23:59:59.000Z

460

Latest Feature Video | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Science Undergraduate Laboratory Internship (SULI) program at the Ames Laboratory. Printing 3D Catalytic Devices Ames Laboratory scientist Igor Slowing discusses using 3D...

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

National Laboratory Contacts | Department of Energy  

Office of Environmental Management (EM)

National Laboratory Contacts National Laboratory Contacts The Geothermal Technologies Office works closely with several DOE national laboratories in managing and contributing to...

462

Computational Chemical Materials Engineering  

E-Print Network [OSTI]

: Thermal barrier coatings, wear resistance coatings, radiation resistant materials · Materials for opticalHome Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department to understand behavior and properties of materials as a function of ­ Chemical constitution ­ Composition

463

Brookhaven National Laboratory site environmental report for calendar year 1995  

SciTech Connect (OSTI)

This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1995. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment. Areas of known contamination are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement established by the Department of Energy, Environmental Protection Agency and the New York Department of Environmental Conservation. Except for identified areas of soil and groundwater contamination, the environmental monitoring data has continued to demonstrate that compliance was achieved with the applicable environmental laws and regulations governing emission and discharge of materials to the environment. Also, the data show that the environmental impacts at Brookhaven National Laboratory are minimal and pose no threat to the public nor to the environment. This report meets the requirements of Department of Energy Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

Naidu, J.R.; Paquette, D.E.; Schroeder, G.L. [eds.] [and others

1996-12-01T23:59:59.000Z

464

Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 LDRD PROJECTS 8 LDRD PROJECTS LDRD Project Project Title P.I. Dept/Bldg. 06-004 Detector Development for Very Long Baseline Neutrino Exp. M. Diwan PHYS/510E 06-012 Detector for High Quality Images of Electron Microscopy P. Rehak INST/535B 06-017 Transmission Photocathode Development J. Smedley INST/535B 06-021 Synthesis and Characterization of Band-Gap- Narrowed TiO2 Thin Films and Nanoparticles for Solar Energy Conversion E. Sutter CFN/480 06-030 Development of Gadolinium-Loaded Liquid- Scintillators with Long-Term Chemical Stability for a New High-Precision Measurement of the Neutrino Mixing Angle, Theta-13 R.L. Hahn CHEM/555A 06-037 Electronic Properties of Carbon Nanotubes and Novel Multicomponent Nanomaterials J.P. Hill CMPMSD/510B 06-038 Growth and Characterization of CdZnTe Crystals

465

Ames Laboratory Site Environmental Report, Calendar year 1991  

SciTech Connect (OSTI)

The summarized data and conclusions from the Ames Laboratory environmental monitoring program are presented in this Annual Site Environmental Report. This program is a working requirement of Department of Energy (DOE) Order 5484.1, ``Environmental Protection, Safety, and Health Protection Information Reporting Requirements`` and Order 5400.1, ``General Environmental Protection Program.`` Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies several buildings owned by the DOE. The Laboratory also leases space in ISU-owned buildings. Laboratory research activities involve less than ten percent of the total chemical use and one percent of the radioisotope use on the ISU campus. Ames Laboratory is responsible for a small chemical burial site, located on ISU property. The site was used for the disposal of chemical and metal slags from thorium and uranium production. Samples of water from existing test wells and upstream and downstream sites on the nearby Squaw Creek show no detectable migration of the contents of the burial site. A Site Assessment plan submitted to the State of Iowa Department of Natural Resources (DNR) was approved. A Remedial Investigation/Feasibility Study work plan has been completed for additional studies at the site. This has been reviewed and approved by the DOE Chicago Field Office and the DNR. A National Environmental Policy Act (NEPA) review of the site resulted in a categorical exclusion finding which has been approved by the DOE. Ames Laboratory has an area contaminated by diesel fuel at the location of a storage tank which was removed in 1970. Soil corings and groundwater have been analyzed for contamination and an assessment written. Pollution awareness and waste minimization programs and plans were implemented in 1990. Included in this effort was the implementation of a waste white paper and green computer paper recycling program.

Mathison, L.

1991-12-31T23:59:59.000Z

466

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atom-Efficient Chemical Transformations Atom-Efficient Chemical Transformations iact logo Argonne National Laboratory along with its academic partners has established an Energy Frontier Research Center, the Institute for Atom-efficient Chemical Transformations (IACT) whose focus is to advance the science of catalysis for the efficient conversion of energy resources into usable forms. IACT is one of 46 Energy Frontier Research Centers that DOE has established in the United States. IACT is a partnership among world-class scientists at Argonne National Laboratory, Northwestern University, Purdue University, University of Wisconsin-Madison, and Brookhaven National Laboratory. Using a multidisciplinary approach involving integrated catalyst synthesis, advanced characterization, catalytic experimentation, and computation, IACT is addressing key

467

Beyond Laboratories, Beyond Being Green  

Broader source: Energy.gov (indexed) [DOE]

Beyond Laboratories Beyond Laboratories Beyond Being Green The International Institute for Sustainable Laboratories Laboratories for the 21 st Century (Labs21 ® ) A U.S. Environmental Protection Agency and U.S. Department of Energy Co-Sponsored Program Promoting the Design, Engineering and Construction of High Performance, Low Energy Laboratories What is Labs21? * Genesis: Ann Arbor, Michigan ESPC * A joint EPA/DOE partnership program to improve the energy and environmental performance of U.S. laboratories. * Encourages the design, construction, and operation of sustainable, high- performance, high-tech facilities that will: - Minimize overall environmental impacts. - Protect occupant safety. - Optimize whole building efficiency on a lifecycle basis. Purpose of I 2 SL I 2 SL's Role in Labs21

468

Laboratory program helps small businesses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory program helps small businesses Laboratory program helps small businesses Laboratory program helps small businesses The NMSBA allows for-profit small businesses to request technical assistance that capitalizes on the unique expertise and capabilities of Los Alamos and Sandia national laboratories. June 23, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

469

Going green earns Laboratory gold  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Going green earns Laboratory gold Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design status and Gold certification from the U.S. Green Building Council. June 18, 2012 LANL Green Building Radiological Laboratory Utility Office Building Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email "RLUOB's LEED certification demonstrates tremendous leadership in green building...serves as a prime example of just how much we can accomplish." High performance sustainable building attains LEED Gold certification From its robust design to its advanced scientific equipment, the Radiological Laboratory Utility Office Building (RLUOB) is essential to the

470

Universal scaling of potential energy functions describing intermolecular interactions. I. Foundations and scalable forms of new generalized Mie, Lennard-Jones, Morse, and Buckingham exponential-6 potentials  

SciTech Connect (OSTI)

Based on the formulation of the analytical expression of the potential V(r) describing intermolecular interactions in terms of the dimensionless variables r*=r/rm and !*=V/!, where rm is the separation at the minimum and ! the well depth, we propose more generalized scalable forms for the commonly used Lennard-Jones, Mie, Morse and Buckingham exponential-6 potential energy functions (PEFs). These new generalized forms have an additional parameter from and revert to the original ones for some choice of that parameter. In this respect, the original forms can be considered as special cases of the more general forms that are introduced. We also propose a scalable, but nonrevertible to the original one, 4-parameter extended Morse potential.

Xantheas, Sotiris S.; Werhahn, Jasper C.

2014-08-14T23:59:59.000Z

471

Chemical Speciation of Chromium in Drilling Muds  

SciTech Connect (OSTI)

Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.

Taguchi, Takeyoshi [X-ray Research Laboratory, RIGAKU Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666 (Japan); Yoshii, Mitsuru [Mud Technical Center, Telnite Co., Ltd., 1-2-14 Ohama, Sakata-shi, Yamagata 998-0064 (Japan); Shinoda, Kohzo [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577 (Japan)

2007-02-02T23:59:59.000Z

472

American Chemical Society-Chinese Chemical Society Alliance  

Science Journals Connector (OSTI)

American Chemical Society-Chinese Chemical Society Alliance ... The American Chemical Society and the Chinese Chemical Society (CCS) formed a three-year collaborative alliance in 2010 to address shared global concerns. ...

MARINDA LI WU; YAO JIANNIAN

2013-01-07T23:59:59.000Z

473

Chemical exchange program analysis.  

SciTech Connect (OSTI)

As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of unneeded chemicals and the amount spent on new purchases, but will also avoid disposal costs. If SNL/NM were to realize a 5 percent reduction in chemical inventory and a 10 percent reduction in disposal of unused chemicals the total savings would be $189, 200 per year.

Waffelaert, Pascale

2007-09-01T23:59:59.000Z

474

Thomas Wallner | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel economy Fuel injection Heavy-duty vehicles Hybrid & electric vehicles Hydrogen & fuel cells Internal combustion Powertrain research Vehicle testing Building design Manufacturing Energy sources Renewable energy Bioenergy Solar energy Wind energy Fossil fuels Oil Nuclear energy Nuclear energy modeling & simulation Nuclear fuel cycle Geology & disposal Reactors Nuclear reactor safety Nuclear reactor materials Energy usage Energy life-cycle analysis Energy storage Batteries Lithium-ion batteries Lithium-air batteries Smart Grid

475

Sandia National Laboratories: CSP: ELEMENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSP: ELEMENTS Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

476

Sandia National Laboratories: Systems Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar...

477

Sandia National Laboratories: materials science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of microsystems-enabled PV (MEPV) technology and ... Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating...

478

Sandia National Laboratories: Energy Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is collaborating with Sandia National Laboratories on a new concentrated solar power (CSP) installation with thermal energy storage. The CSP storage project combines Areva's...

479

Sandia National Laboratories: NSTTF Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSTTF Capabilities Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage,...

480

Sandia National Laboratories: Water Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia is also supporting work with Argonne National Laboratory in conventional hydropower optimization. Highlights: Sandia will receive more than 9 million over three years...

Note: This page contains sample records for the topic "jones chemical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy Storage, Facilities, Materials Science, News, News & Events, Partnership, Research...

482

Current Jobs | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Job Openings Argonne National Laboratory is currently hiring Co-op students in the following areas: Facilities Management and Services Division: The Facilities Management and...

483

Los Alamos National Laboratory begins  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

one of our highest environmental priorities," said Jeff Mousseau, associate director for environmental programs at the Laboratory. "We've committed this to the state and it's the...

484

Los Alamos National Laboratory selects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

play such a vital role in our local economy," said Dan Cox, deputy associate director for Environmental Programs. The Laboratory expects to award three more master task order...

485

Los Alamos National Laboratory ships  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory and its neighbors," said Michael Graham, Los Alamos's associate director for environmental programs. Through this effort, approximately 20 percent of the material at...

486

Sandia National Laboratories: technology transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technology transfer Federal Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia On September 23, 2014, in Capabilities, Carbon...

487

Internal Applicants | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne National Laboratory Argonne Login Service Please log in to continue Username * Enter your ANL domain account username. Password * Enter the password that accompanies your...

488

with Oak Ridge National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Mechanisms for Partnering with Oak Ridge National Laboratory Partnerships-It's our name, but it also represents our driving philosophy and commitment. Oak Ridge National...

489

Sandia National Laboratories: PV Value  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

490

Sandia National Laboratories: PV evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

491

about Savannah River National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

has a unique capability unlike any other laboratory in the world. By investigating the Hydrogen Helium embrittlement of materials, SRNL is able to drive the design codes for...

492

Sandia National Laboratories: Energy Surety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility Opens at Sandia's California Site On June 13, 2012, in Cyber, Cybersecurity Technologies Research Laboratory, Energy Assurance, Energy Surety, Facilities,...

493

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Materials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project On May 22,...

494

Sandia National Laboratories: Solar Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Release of Version 1.1 of the PVLIB Toolbox for Matlab On March 7, 2013, in Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory...

495

Sandia National Laboratories: Energy Surety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photovoltaic, Renewable Energy, Research & Capabilities, Solar, Solar Newsletter, SunShot A recently released Sandia National Laboratories report, "Suggested Guidelines for...

496

MagLab - Microanalysis Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microanalysis Laboratory BSCCO Sample of the superconducting material bismuth strontium calcium copper oxide (BSCCO). Section pictured measures 120 microns wide. Click on photo for...

497

Sandia National Laboratories: Areva Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

498

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable Energy, Solar...

499

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

500

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...