Powered by Deep Web Technologies
Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Joint Actinide Shock Physics Experimental Research - JASPER  

ScienceCinema (OSTI)

Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

None

2015-01-09T23:59:59.000Z

2

Joint Actinide Shock Physics Experimental Research - JASPER  

SciTech Connect (OSTI)

Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

None

2014-10-31T23:59:59.000Z

3

Joint Actinide Shock Physics Experimental Research | National...  

National Nuclear Security Administration (NNSA)

the safety and security of the nation's stockpile in the absence of underground nuclear testing. For more information visit JASPER's webpage. Jasper Gun Related Topics...

4

Joint Actinide Shock Physics Experimental Research (JASPER) Facility Overview  

SciTech Connect (OSTI)

The JASPER Facility will utilize a Two-Stage Light Gas Gun to conduct equation-of-state (EOS) experiments of plutonium and other special nuclear materials. The overall facility will be discussed with emphasis on the Two-Stage Light Gas Gun characteristics and mission. The primary and secondary containment systems that were developed for this project will be presented. Primary gun diagnostics and timing will also be discussed.

C.H. Konrad; R.W. Braddy; Mark Martinez

2001-09-01T23:59:59.000Z

5

Joint Actinide Shock Physics Experimental Research (JASPER) Facility Update  

SciTech Connect (OSTI)

The JASPER Facility utilizes a Two-Stage Light Gas Gun to conduct equation-of-state(EOS) experiments on plutonium and other special nuclear materials. The overall facility will be discussed with emphasis on the Two-Stage Light Gas Gun characteristics and control interfaces and containment. The containment systems that were developed for this project will be presented.

C. H. Conrad; J. Miller; M. Cowan; M. Martinez; B. Whitcomb

2003-10-01T23:59:59.000Z

6

Joint Actinide Shock Physics Experimental Research | National Nuclear  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApply for Our Jobs / How toNuclear SecuritySecurity

7

Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media  

SciTech Connect (OSTI)

This study presents discrete and continuum simulations of shock wave propagating through jointed media. The simulations were performed using the Lagrangian hydrocode GEODYN-L with joints treated explicitly using an advanced contact algorithm. They studied both isotropic and anisotropic joint representations. For an isotropically jointed geologic medium, the results show that the properties of the joints can be combined with the properties of the intact rock to develop an equivalent continuum model suitable for analyzing wave propagation through the jointed medium. For an anisotropically jointed geologic medium, they found it difficult to develop an equivalent continuum (EC) model that matches the response derived from mesoscopic simulation. They also performed simulations of wave propagation through jointed media. Two appraoches are suggested for modeling the rock mass. In one approach, jointed are modeled explicitly in a Lagrangian framework with appropriate contact algorithms used to track motion along the interfaces. In the other approach, the effect of joints is taken into account using a constitutive model derived from mesoscopic simulations.

Vorobiev, O; Antoun, T

2009-12-11T23:59:59.000Z

8

Actinides-1981  

SciTech Connect (OSTI)

Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

Not Available

1981-09-01T23:59:59.000Z

9

Actinide Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building Technologies OfficeAccountingGuideON STELLAWongActinide

10

E-Print Network 3.0 - actinides review hyperfine Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commission of the European Communities, Joint Research Centre, European... bande et la nature des liaisons chimiques sont tudies, pour les mtaux et composs d'actinides, ...

11

Actinide metal processing  

DOE Patents [OSTI]

A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

Sauer, Nancy N. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

12

Actinide metal processing  

DOE Patents [OSTI]

A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

Sauer, N.N.; Watkin, J.G.

1992-03-24T23:59:59.000Z

13

Actinide extraction methods  

DOE Patents [OSTI]

Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether. The ether is removed to yield the dithiophosphinic acid.

Peterman, Dean R. (Idaho Falls, ID) [Idaho Falls, ID; Klaehn, John R. (Idaho Falls, ID) [Idaho Falls, ID; Harrup, Mason K. (Idaho Falls, ID) [Idaho Falls, ID; Tillotson, Richard D. (Moore, ID) [Moore, ID; Law, Jack D. (Pocatello, ID) [Pocatello, ID

2010-09-21T23:59:59.000Z

14

Research in actinide chemistry  

SciTech Connect (OSTI)

This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH[sup [minus

Choppin, G.R.

1993-01-01T23:59:59.000Z

15

Actinide recovery process  

DOE Patents [OSTI]

Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrenedivinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like.

Muscatello, Anthony C. (Arvada, CO); Navratil, James D. (Arvada, CO); Saba, Mark T. (Arvada, CO)

1987-07-28T23:59:59.000Z

16

Thermochemistry of the actinides  

SciTech Connect (OSTI)

The measurement of equilibria by Knudsen effusion techniques and the enthalpy of formation of the actinide atoms is briefly discussed. Thermochemical data on the sublimation of the actinide fluorides is used to calculate the enthalpies of formation and entropies of the gaseous species. Estimates are made for enthalpies and entropies of the tetrafluorides and trifluorides for those systems where data is not available. The pressure of important species in the tetrafluoride sublimation processes is calculated based on this thermochemical data.

Kleinschmidt, P.D.

1993-10-01T23:59:59.000Z

17

Actinide recovery process  

DOE Patents [OSTI]

Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrene-divinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like. 2 tabs.

Muscatello, A.C.; Navratil, J.D.; Saba, M.T.

1985-06-13T23:59:59.000Z

18

Actinide halide complexes  

DOE Patents [OSTI]

A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

1992-11-24T23:59:59.000Z

19

Actinide halide complexes  

DOE Patents [OSTI]

A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

Avens, Larry R. (Los Alamos, NM); Zwick, Bill D. (Santa Fe, NM); Sattelberger, Alfred P. (Los Alamos, NM); Clark, David L. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

20

Managing Inventories of Heavy Actinides  

SciTech Connect (OSTI)

The Department of Energy (DOE) has stored a limited inventory of heavy actinides contained in irradiated targets, some partially processed, at the Savannah River Site (SRS) and Oak Ridge National Laboratory (ORNL). The 'heavy actinides' of interest include plutonium, americium, and curium isotopes; specifically 242Pu and 244Pu, 243Am, and 244/246/248Cm. No alternate supplies of these heavy actinides and no other capabilities for producing them are currently available. Some of these heavy actinide materials are important for use as feedstock for producing heavy isotopes and elements needed for research and commercial application. The rare isotope 244Pu is valuable for research, environmental safeguards, and nuclear forensics. Because the production of these heavy actinides was made possible only by the enormous investment of time and money associated with defense production efforts, the remaining inventories of these rare nuclear materials are an important part of the legacy of the Nuclear Weapons Program. Significant unique heavy actinide inventories reside in irradiated Mark-18A and Mark-42 targets at SRS and ORNL, with no plans to separate and store the isotopes for future use. Although the costs of preserving these heavy actinide materials would be considerable, for all practical purposes they are irreplaceable. The effort required to reproduce these heavy actinides today would likely cost billions of dollars and encompass a series of irradiation and chemical separation cycles for at least 50 years; thus, reproduction is virtually impossible. DOE has a limited window of opportunity to recover and preserve these heavy actinides before they are disposed of as waste. A path forward is presented to recover and manage these irreplaceable National Asset materials for future use in research, nuclear forensics, and other potential applications.

Wham, Robert M [ORNL; Patton, Bradley D [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Environmental research on actinide elements  

SciTech Connect (OSTI)

The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G. (eds.)

1987-08-01T23:59:59.000Z

22

33rd Actinide Separations Conference  

SciTech Connect (OSTI)

Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

McDonald, L M; Wilk, P A

2009-05-04T23:59:59.000Z

23

Kinetics of actinide complexation reactions  

SciTech Connect (OSTI)

Though the literature records extensive compilations of the thermodynamics of actinide complexation reactions, the kinetics of complex formation and dissociation reactions of actinide ions in aqueous solutions have not been extensively investigated. In light of the central role played by such reactions in actinide process and environmental chemistry, this situation is somewhat surprising. The authors report herein a summary of what is known about actinide complexation kinetics. The systems include actinide ions in the four principal oxidation states (III, IV, V, and VI) and complex formation and dissociation rates with both simple and complex ligands. Most of the work reported was conducted in acidic media, but a few address reactions in neutral and alkaline solutions. Complex formation reactions tend in general to be rapid, accessible only to rapid-scan and equilibrium perturbation techniques. Complex dissociation reactions exhibit a wider range of rates and are generally more accessible using standard analytical methods. Literature results are described and correlated with the known properties of the individual ions.

Nash, K.L.; Sullivan, J.C.

1997-09-01T23:59:59.000Z

24

Actinide Lanthanide Separation Process – ALSEP  

SciTech Connect (OSTI)

Separation of the minor actinides (Am, Cm) from the lanthanides at an industrial scale remains a significant technical challenge for closing the nuclear fuel cycle. To increase the safety of used nuclear fuel (UNF) reprocessing, as well as reduce associated costs, a novel solvent extraction process has been developed. The process allows for partitioning minor actinides, lanthanides and fission products following uranium/plutonium/neptunium removal; minimizing the number of separation steps, flowsheets, chemical consumption, and waste. This new process, Actinide Lanthanide SEParation (ALSEP), uses an organic solvent consisting of a neutral diglycolamide extractant, either N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) or N,N,N',N'-tetraoctyldiglycolamide (TODGA), and an acidic extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]), dissolved in an aliphatic diluent (e.g. n-dodecane). The An/Ln co-extraction is conducted from moderate-to-strong nitric acid, while the selective stripping of the minor actinides from the lanthanides is carried out using a polyaminocarboxylic acid/citrate buffered solution at pH anywhere between 3 and 4.5. The extraction and separation of the actinides from the fission products is very effective in a wide range of HNO3 concentrations and the minimum separation factors for lanthanide/Am exceed 30 for Nd/Am, reaching > 60 for Eu/Am under some conditions. The experimental results presented here demonstrate the great potential for a combined system, consisting of a neutral extractant such as T2EHDGA or TODGA, and an acidic extractant such as HEH[EHP], for separating the minor actinides from the lanthanides.

Gelis, Artem V.; Lumetta, Gregg J.

2014-01-29T23:59:59.000Z

25

Actinide Thermodynamics at Elevated Temperatures  

SciTech Connect (OSTI)

The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

2007-11-16T23:59:59.000Z

26

Ceramic composition for immobilization of actinides  

DOE Patents [OSTI]

Disclosed is a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile.

Ebbinghaus, Bartley B. (Livermore, CA); Van Konynenburg, Richard A. (Livermore, CA); Vance, Eric R. (Kirrawee, AU); Stewart, Martin W. (Barden Ridge, AU); Jostsons, Adam (Eastwood, AU); Allender, Jeffrey S. (North Augusta, SC); Rankin, David Thomas (Aiken, SC)

2000-01-01T23:59:59.000Z

27

Analysis of large soil samples for actinides  

SciTech Connect (OSTI)

A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

Maxwell, III; Sherrod L. (Aiken, SC)

2009-03-24T23:59:59.000Z

28

PREPARATION AND SPECTROSCOPIC PROPERTIES OF THREE NEW ACTINIDE (IV) BOROHYDRIDES  

E-Print Network [OSTI]

uranium tetrakis-borohydrides were prepared by a different reaction which involves the actinide tetrafluoride

Banks, Rodney Howard

2010-01-01T23:59:59.000Z

29

E-Print Network 3.0 - actinides recycling studies Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

minor Actinides (predominantly... of data, the study of the possibility of transmuting heavy actinides in PWRs, the development of codes... on purely minor actinide fuel,...

30

E-Print Network 3.0 - actinide burning experiment Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

actinide burning molten salt - liquid f... for fission products and actinides in subcritical cores with different neutron spectra. This experiment... on purely minor actinide...

31

Experimental studies of actinides in molten salts  

SciTech Connect (OSTI)

This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

Reavis, J.G.

1985-06-01T23:59:59.000Z

32

Actinide removal from spent salts  

DOE Patents [OSTI]

A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

Hsu, Peter C. (Pleasanton, CA); von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

2002-01-01T23:59:59.000Z

33

BWR Assembly Optimization for Minor Actinide Recycling  

SciTech Connect (OSTI)

The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

2010-03-22T23:59:59.000Z

34

Actinide minimization using pressurized water reactors  

E-Print Network [OSTI]

Transuranic actinides dominate the long-term radiotoxity in spent LWR fuel. In an open fuel cycle, they impose a long-term burden on geologic repositories. Transmuting these materials in reactor systems is one way to ease ...

Visosky, Mark Michael

2006-01-01T23:59:59.000Z

35

Overview of actinide chemistry in the WIPP  

SciTech Connect (OSTI)

The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as part of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important inorganic complexants are expected to be carbonate/bicarbonate and hydroxide. There are also organic complexants in TRU waste with the potential to strongly influence actinide solubility. (3) Intrinsic and pseudo-actinide colloid formation - Many actinide species in their expected oxidation states tend to form colloids or strongly associate with non actinide colloids present (e.g., microbial, humic and organic). In this context, the relative importance of actinides, based on the TRU waste inventory, with respect to the potential release of actinides from the WIPP, is greater for plutonium and americium, and to less extent for uranium and thorium. The most important oxidation states for WIPP-relevant conditions are III and IV. We will present an update of the literature on WIPP-specific data, and a summary of the ongoing research related to actinide chemistry in the WIPP performed by the Los Alamos National Laboratory (LANL) Actinide Chemistry and Repository Science (ACRSP) team located in Carlsbad, NM [Reed 2007, Lucchini 2007, and Reed 2006].

Borkowski, Marian [Los Alamos National Laboratory; Lucchini, Jean - Francois [Los Alamos National Laboratory; Richmann, Michael K [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Swanson, Juliet [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

36

Advanced Aqueous Separation Systems for Actinide Partitioning  

SciTech Connect (OSTI)

One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

Nash, Kenneth L.; Sue Clark; G. Patrick Meier; Spiro Alexandratos; Robert Paine; Robert Hancock; Dale Ensor

2012-03-21T23:59:59.000Z

37

Ultratrace analysis of transuranic actinides by laser-induced fluorescence  

DOE Patents [OSTI]

Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

Miller, S.M.

1983-10-31T23:59:59.000Z

38

Rapid determination of actinides in asphalt samples  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.

Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

2014-01-12T23:59:59.000Z

39

Characterization of transuranium actinide alloy phase diagrams  

SciTech Connect (OSTI)

Alloys of Np have been studied less than those,of the neighboring elements, U and Pu; the higher actinides have received even less attention. Recent interest in {sup 237}Np, {sup 241}Am and other actinide isotopes as significant, long-lived and highly radiotoxic nuclear waste components, and particularly the roles of metallic materials new handling/separations and remediation technologies, demands that this paucity of information concerning alloy behaviors be addressed. An additional interest in these arises from the possibility of revealing fundamental properties and bonding interactions, which would further characterize the unique electronic structures (e.g., 5f electrons) of the actinide elements. The small empirical knowledge basis presently available for understanding and modeling the alloying behavior of Np is summarized here, with emphasis on our recent results for the Np-Am, Np-Zr and Np-Fe phase diag rams. In view of the limited experimental data base for neptunium and the transplutonium metals, the value of semi-empirical intermetallic bonding models for predicting actinide alloy thermodynamics is evaluated.

Gibson, J.K.; Haire, R.G.; Gensini, M.M. [Oak Ridge National Lab., TN (United States); Ogawa, T. [Japan Atomic Energy Research Inst., Tokai (Japan)

1994-05-02T23:59:59.000Z

40

Ceramic joints  

DOE Patents [OSTI]

Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.

Miller, Bradley J. (Worcester, MA); Patten, Jr., Donald O. (Sterling, MA)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Synthesis of actinide nitrides, phosphides, sulfides and oxides  

DOE Patents [OSTI]

A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

Van Der Sluys, William G. (Missoula, MT); Burns, Carol J. (Los Alamos, NM); Smith, David C. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

42

Independent Activity Report, Nevada National Security Site -...  

Broader source: Energy.gov (indexed) [DOE]

- July 2011 July 2011 NNSS Operational Readiness Review of the Joint Actinide Shock Physics Experimental Research Facility HIAR-NNSS-2011-07-28 This Independent Activity...

43

Molecular dynamics simulation and topological analysis of the network structure of actinide-bearing materials  

E-Print Network [OSTI]

Actinide waste production and storage is a complex problem, and a whole-cycle approach to actinide management is necessary to minimize the total volume of waste. In this dissertation, I examine three actinide-bearing ...

Dewan, Leslie

2013-01-01T23:59:59.000Z

44

Actinide and lanthanide separation process (ALSEP)  

DOE Patents [OSTI]

The process of the invention is the separation of minor actinides from lanthanides in a fluid mixture comprising, fission products, lanthanides, minor actinides, rare earth elements, nitric acid and water by addition of an organic chelating aid to the fluid; extracting the fluid with a solvent comprising a first extractant, a second extractant and an organic diluent to form an organic extractant stream and an aqueous raffinate. Scrubbing the organic stream with a dicarboxylic acid and a chelating agent to form a scrubber discharge. The scrubber discharge is stripped with a simple buffering agent and a second chelating agent in the pH range of 2.5 to 6.1 to produce actinide and lanthanide streams and spent organic diluents. The first extractant is selected from bis(2-ethylhexyl)hydrogen phosphate (HDEHP) and mono(2-ethylhexyl)2-ethylhexyl phosphonate (HEH(EHP)) and the second extractant is selected from N,N,N,N-tetra-2-ethylhexyl diglycol amide (TEHDGA) and N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA).

Guelis, Artem V.

2013-01-15T23:59:59.000Z

45

E-Print Network 3.0 - actinide partitioning studies Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MA : Minor Actinide LLFP : Long... of data, the study of the possibility of transmuting heavy actinides in PWRs, the development of codes... and transmutation were divided in...

46

E-Print Network 3.0 - actinide separations final Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

us to explore alternatives to some... , of minor actinides, i.e. neptunium, americium and curium. If stored in geological depositories, plutonium... actinides than uranium fuels,...

47

E-Print Network 3.0 - actinides conditioning synthese Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND CONCEPT EVOLUTIONS Summary: , of minor actinides, i.e. neptunium, americium and curium. If stored in geological depositories, plutonium... actinides than uranium fuels,...

48

E-Print Network 3.0 - actinide ma recycling Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by a chemical process. These plants can however not separate neptunium, americium and curium (minor actinides... to developing a process for separation of the minor actinides...

49

E-Print Network 3.0 - actinide target preparation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for such materials... ' actinides, to distinguish them from the larger quantities of uranium and plutonium also present in the fuel... to extract and recycle all actinides in...

50

E-Print Network 3.0 - actinide compounds Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

concept of valence instabilities in light actinides has been... response of ICF rare earth compounds and actinide materials. -The important aspects of physical property......

51

E-Print Network 3.0 - actinide halide complexes Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

It has been observed that complexes of lanthanide, actinide, and transition metal activate... that these actinide alkyl complexes undergo interesting C-H and C-N bond...

52

E-Print Network 3.0 - actinide complexation kinetics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

It has been observed that complexes of lanthanide, actinide, and transition metal activate... that these actinide alkyl complexes undergo interesting C-H and C-N bond...

53

POTENTIAL BENCHMARKS FOR ACTINIDE PRODUCTION IN HANFORD REACTORS  

SciTech Connect (OSTI)

A significant experimental program was conducted in the early Hanford reactors to understand the reactor production of actinides. These experiments were conducted with sufficient rigor, in some cases, to provide useful information that can be utilized today in development of benchmark experiments that may be used for the validation of present computer codes for the production of these actinides in low enriched uranium fuel.

PUIGH RJ; TOFFER H

2011-10-19T23:59:59.000Z

54

Process for making a ceramic composition for immobilization of actinides  

DOE Patents [OSTI]

Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

Ebbinghaus, Bartley B. (Livermore, CA); Van Konynenburg, Richard A. (Livermore, CA); Vance, Eric R. (Kirrawee, AU); Stewart, Martin W. (Barden Ridge, AU); Walls, Philip A. (Cronulla, AU); Brummond, William Allen (Livermore, CA); Armantrout, Guy A. (Livermore, CA); Herman, Connie Cicero (Pleasanton, CA); Hobson, Beverly F. (Livermore, CA); Herman, David Thomas (Pleasanton, CA); Curtis, Paul G. (Tracy, CA); Farmer, Joseph (Tracy, CA)

2001-01-01T23:59:59.000Z

55

Improved method for extracting lanthanides and actinides from acid solutions  

DOE Patents [OSTI]

A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

1983-07-26T23:59:59.000Z

56

E-Print Network 3.0 - actinide iii cations Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Actinide(III) 2.26x10-7 log f(CO2) -5.50 Actinide(IV) 5.66x10... Actinide(III) case: Americium in WIPP Brine 12;Figure 2 Actinide(V) case: Neptunium in WIPP Brine 12... November...

57

Cosmological shock waves  

E-Print Network [OSTI]

Large-scale structure formation, accretion and merging processes, AGN activity produce cosmological gas shocks. The shocks convert a fraction of the energy of gravitationally accelerated flows to internal energy of the gas. Being the main gas-heating agent, cosmological shocks could amplify magnetic fields and accelerate energetic particles via the multi-fluid plasma relaxation processes. We first discuss the basic properties of standard single-fluid shocks. Cosmological plasma shocks are expected to be collisionless. We then review the plasma processes responsible for the microscopic structure of collisionless shocks. A tiny fraction of the particles crossing the shock is injected into the non-thermal energetic component that could get a substantial part of the ram pressure power dissipated at the shock. The energetic particles penetrate deep into the shock upstream producing an extended shock precursor. Scaling relations for postshock ion temperature and entropy as functions of shock velocity in strong collisionless multi-fluid shocks are discussed. We show that the multi-fluid nature of collisionless shocks results in excessive gas compression, energetic particle acceleration, precursor gas heating, magnetic field amplification and non-thermal emission. Multi-fluid shocks provide a reduced gas entropy production and could also modify the observable thermodynamic scaling relations for clusters of galaxies.

A. M. Bykov; K. Dolag; F. Durret

2008-01-07T23:59:59.000Z

58

Separating the Minor Actinides Through Advances in Selective Coordination Chemistry  

SciTech Connect (OSTI)

This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.

Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Carter, Jennifer C.

2012-08-22T23:59:59.000Z

59

Process to remove actinides from soil using magnetic separation  

DOE Patents [OSTI]

A process of separating actinide-containing components from an admixture including forming a slurry including actinide-containing components within an admixture, said slurry including a dispersion-promoting surfactant, adjusting the pH of the slurry to within a desired range, and, passing said slurry through a pretreated matrix material, said matrix material adapted to generate high magnetic field gradients upon the application of a strong magnetic field exceeding about 0.1 Tesla whereupon a portion of said actinide-containing components are separated from said slurry and remain adhered upon said matrix material is provided.

Avens, Larry R. (Los Alamos, NM); Hill, Dallas D. (Los Alamos, NM); Prenger, F. Coyne (Los Alamos, NM); Stewart, Walter F. (Las Cruces, NM); Tolt, Thomas L. (Los Alamos, NM); Worl, Laura A. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

60

The Heliospheric Termination Shock  

E-Print Network [OSTI]

The heliospheric Termination Shock is the largest (by dimension) shock in the heliosphere. It is believed that it is also the strongest shock and is responsible for the generation of the Anomalous Cosmic Ray component in the heliosphere. This chapter review the gross properties and observations of the Termination Shock. It is structured as follows: 1. The heliosphere, providing the heliospheric stage for Termination Shock formation, 2. The argument for a heliospheric Termination Shock, 3. The global heliospheric system, 4. Termination Shock properties, 5. Observations: the Voyager passages, radio observations, plasma waves and electron beams, traces of plasma and magnetic field, energetic particles, galactic cosmic rays, Termination Shock particles, the anomalous cosmic ray component, 6. Conclusions.

R. A. Treumann; C. H. Jaroschek

2008-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Separations and Actinide Science -- 2005 Roadmap  

SciTech Connect (OSTI)

The Separations and Actinide Science Roadmap presents a vision to establish a separations and actinide science research (SASR) base composed of people, facilities, and collaborations and provides new and innovative nuclear fuel cycle solutions to nuclear technology issues that preclude nuclear proliferation. This enabling science base will play a key role in ensuring that Idaho National Laboratory (INL) achieves its long-term vision of revitalizing nuclear energy by providing needed technologies to ensure our nation's energy sustainability and security. To that end, this roadmap suggests a 10-year journey to build a strong SASR technical capability with a clear mission to support nuclear technology development. If nuclear technology is to be used to satisfy the expected growth in U.S. electrical energy demand, the once-through fuel cycle currently in use should be reconsidered. Although the once-through fuel cycle is cost-effective and uranium is inexpensive, a once-through fuel cycle requires long-term disposal to protect the environment and public from long-lived radioactive species. The lack of a current disposal option (i.e., a licensed repository) has resulted in accumulation of more than 50,000 metric tons of spent nuclear fuel. The process required to transition the current once-through fuel cycle to full-recycle will require considerable time and significant technical advancement. INL's extensive expertise in aqueous separations will be used to develop advanced separations processes. Computational chemistry will be expanded to support development of future processing options. In the intermediate stage of this transition, reprocessing options will be deployed, waste forms with higher loading densities and greater stability will be developed, and transmutation of long-lived fission products will be explored. SASR will support these activities using its actinide science and aqueous separations expertise. In the final stage, full recycle will be enabled by advanced reactors and reprocessing methods based on pyrochemical methods and by using different fuel cycles that do not readily produce plutonium. SASR will facilitate the deployment of advanced pyrochemical separation technology and support development of reprocessing of thorium-based reactor fuels.

Not Available

2005-09-01T23:59:59.000Z

62

Biomass shock pretreatment  

SciTech Connect (OSTI)

Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

2014-07-01T23:59:59.000Z

63

Comparison of Joint Modeling Approaches Including Eulerian Sliding Interfaces  

SciTech Connect (OSTI)

Accurate representation of discontinuities such as joints and faults is a key ingredient for high fidelity modeling of shock propagation in geologic media. The following study was done to improve treatment of discontinuities (joints) in the Eulerian hydrocode GEODYN (Lomov and Liu 2005). Lagrangian methods with conforming meshes and explicit inclusion of joints in the geologic model are well suited for such an analysis. Unfortunately, current meshing tools are unable to automatically generate adequate hexahedral meshes for large numbers of irregular polyhedra. Another concern is that joint stiffness in such explicit computations requires significantly reduced time steps, with negative implications for both the efficiency and quality of the numerical solution. An alternative approach is to use non-conforming meshes and embed joint information into regular computational elements. However, once slip displacement on the joints become comparable to the zone size, Lagrangian (even non-conforming) meshes could suffer from tangling and decreased time step problems. The use of non-conforming meshes in an Eulerian solver may alleviate these difficulties and provide a viable numerical approach for modeling the effects of faults on the dynamic response of geologic materials. We studied shock propagation in jointed/faulted media using a Lagrangian and two Eulerian approaches. To investigate the accuracy of this joint treatment the GEODYN calculations have been compared with results from the Lagrangian code GEODYN-L which uses an explicit treatment of joints via common plane contact. We explore two approaches to joint treatment in the code, one for joints with finite thickness and the other for tight joints. In all cases the sliding interfaces are tracked explicitly without homogenization or blending the joint and block response into an average response. In general, rock joints will introduce an increase in normal compliance in addition to a reduction in shear strength. In the present work we consider the limiting case of stiff discontinuities that only affect the shear strength of the material.

Lomov, I; Antoun, T; Vorobiev, O

2009-12-16T23:59:59.000Z

64

Minor actinide waste disposal in deep geological boreholes  

E-Print Network [OSTI]

The purpose of this investigation was to evaluate a waste canister design suitable for the disposal of vitrified minor actinide waste in deep geological boreholes using conventional oil/gas/geothermal drilling technology. ...

Sizer, Calvin Gregory

2006-01-01T23:59:59.000Z

65

30th Actinide Separations Conference, PNNL-SA-50126  

SciTech Connect (OSTI)

Program booklet for the 30th Actinide Separations Conference. Contains agenda and abstracts for 27 poster and 38 oral presentations to be made during the 3-day meeting, May 23-25, 2006.

Delegard, Calvin H.

2006-05-25T23:59:59.000Z

66

actinide consumption nuclear: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in this work, fission cross-sections on 233U, the main fissile isotope of the ThU fuel cycle, and on the minor actinides 241Am, 243Am and 245Cm have been analyzed. Data on...

67

Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS  

SciTech Connect (OSTI)

Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator.

Perkasa, Y. S. [Department of Physics, Sunan Gunung Djati State Islamic University Bandung, Jl. A.H Nasution No. 105 Cibiru, Bandung (Indonesia); Waris, A., E-mail: awaris@fi.itb.ac.id; Kurniadi, R., E-mail: awaris@fi.itb.ac.id; Su'ud, Z., E-mail: awaris@fi.itb.ac.id [Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa No. 10 Bandung 40132 (Indonesia)

2014-09-30T23:59:59.000Z

68

E-Print Network 3.0 - actinide standard ii-iii Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of a-U (*) Summary: and costly. Thus, while we were able to study the light and heavy actinide metals 1 in their cubic (high... applied to the study of some actinide...

69

E-Print Network 3.0 - actinide compound ufe Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

49, dkcembre 1988 Summary: and actinide Laves phases. In comparison with RFE2 (R Rare earth) Laves phase compounds CeFe2 exhibits... M2 (Ac actinides) 5demon- strates that...

70

E-Print Network 3.0 - actinide system inconsistencies Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of actinide metals Summary: heats of actinide metals M. J. Mortimer Chemistry Division, AERE Harwell, Didcot, Oxon, OX11 ORA, G... 'volution de ces grandeurs ainsi que celle de...

71

E-Print Network 3.0 - actinides exposure review Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of actinide metals Summary: heats of actinide metals M. J. Mortimer Chemistry Division, AERE Harwell, Didcot, Oxon, OX11 ORA, G... 'volution de ces grandeurs ainsi que celle de...

72

E-Print Network 3.0 - actinide alloys Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of actinide metals Summary: heats of actinide metals M. J. Mortimer Chemistry Division, AERE Harwell, Didcot, Oxon, OX11 ORA, G... 'volution de ces grandeurs ainsi que celle de...

73

E-Print Network 3.0 - actinide chemistry Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: actinide chemistry Page: << < 1 2 3 4 5 > >> 1 www.emsl.pnl.gov ACTINIDE CHEMISTRY MEETS COMPUTATION...

74

E-Print Network 3.0 - actinide complexes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(04-400) Summary: of the electronic properties and reactions of actinide and transition metal complexes. Hay, who is a Laboratory... as a leader in actinide chemistry, Burns was...

75

E-Print Network 3.0 - actinide decay series Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

page C2-841 Summary: in the actinide series whereas the acti 1 es up to Pu metal are transition metal likeq" : The f states in Am... aux actinides metalliques et aux oxydes sont...

76

E-Print Network 3.0 - actinide complexing agent Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(04-400) Summary: of the electronic properties and reactions of actinide and transition metal complexes. Hay, who is a Laboratory... as a leader in actinide chemistry, Burns was...

77

Actinide (III) solubility in WIPP Brine: data summary and recommendations  

SciTech Connect (OSTI)

The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

2009-09-01T23:59:59.000Z

78

Physics studies of higher actinide consumption in an LMR  

SciTech Connect (OSTI)

The core physics aspects of the transuranic burning potential of the Integral Fast Reactor (IFR) are assessed. The actinide behavior in fissile self-sufficient IFR closed cycles of 1200 MWt size is characterized, and the transuranic isotopics and risk potential of the working inventory are compared to those from a once-through LWR. The core neutronic performance effects of rare-earth impurities present in the recycled fuel are addressed. Fuel cycle strategies for burning transuranics from an external source are discussed, and specialized actinide burner designs are described. 4 refs., 4 figs., 3 tabs.

Hill, R.N.; Wade, D.C.; Fujita, E.K.; Khalil, H.S.

1990-01-01T23:59:59.000Z

79

Butt Joint Tool Commissioning  

SciTech Connect (OSTI)

ITER Central Solenoid uses butt joints for connecting the pancakes in the CS module. The principles of the butt joining of the CICC were developed by the JAPT during CSMC project. The difference between the CSMC butt joint and the CS butt joint is that the CS butt joint is an in-line joint, while the CSMC is a double joint through a hairpin jumper. The CS butt joint has to carry the hoop load. The straight length of the joint is only 320 mm, and the vacuum chamber around the joint has to have a split in the clamp shell. These requirements are challenging. Fig.1 presents a CSMC joint, and Fig.2 shows a CS butt joint. The butt joint procedure was verified and demonstrated. The tool is capable of achieving all specified parameters. The vacuum in the end was a little higher than the target, which is not critical and readily correctable. We consider, tentatively that the procedure is established. Unexpectedly, we discover significant temperature nonuniformity in the joint cross section, which is not formally a violation of the specs, but is a point of concern. All testing parameters are recorded for QA purposes. We plan to modify the butt joining tool to improve its convenience of operation and provide all features necessary for production of butt joints by qualified personnel.

Martovetsky, N N

2007-12-06T23:59:59.000Z

80

Method for recovery of actinides from actinide-bearing scrap and waste nuclear material using O/sub 2/F/sub 2/  

DOE Patents [OSTI]

Method for recovery of actinides from nuclear waste material containing sintered and other oxides thereof and from scrap materials containing the metal actinides using O/sub 2/F/sub 2/ to generate the hexafluorides of the actinides present therein. The fluorinating agent, O/sub 2/F/sub 2/, has been observed to perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are not detroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is readily prepared, stored and transferred to the place of reaction.

Asprey, L.B.; Eller, P.G.

1984-09-12T23:59:59.000Z

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

RAPID SEPARATION OF ACTINIDES AND RADIOSTRONTIUM IN VEGETATION SAMPLES  

SciTech Connect (OSTI)

A new rapid method for the determination of actinides and radiostrontium in vegetation samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations or for routine analysis. The actinides in vegetation method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Alpha emitters are prepared using rare earth microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. The actinide and {sup 90}Sr in vegetation sample analysis can be performed in less than 8 h with excellent quality for emergency samples. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory actinide particles or vegetation residue after furnace heating is effectively digested.

Maxwell, S.

2010-06-01T23:59:59.000Z

82

actinide materials annual: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

actinide materials annual First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Molecular dynamics simulation...

83

Delayed neutron measurements from fast fission of actinide waste isotopes  

E-Print Network [OSTI]

, was suggested which would yield a superior fit to the measured data. A series of measurements were performed to test the hypothesis suggested by this alternate group structure. Using a set of highly purified actinide samples (provided by Oak Ridge National...

Charlton, William S.

2012-06-07T23:59:59.000Z

84

actinides loading optimization: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

actinides loading optimization First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Building load control...

85

Shock Tube Design  

E-Print Network [OSTI]

Shock accelerated flows exhibit some of the most violent and complex mechanisms in nature by which two separate fluids can be mixed. The Richtmyer-Meshkov instability (RMI) is generated when a perturbed interface between two fluids is impulsively...

Koppenberger, Peter K.

2010-07-14T23:59:59.000Z

86

Shock Chlorination of Wells  

E-Print Network [OSTI]

Shock chlorination is a method of disinfecting a water well. This publication gives complete instructions for chlorinating with bleach or with dry chlorine. It is also available in Spanish as publication L-5441S...

McFarland, Mark L.; Dozier, Monty

2003-06-11T23:59:59.000Z

87

Shock recovery experiments: An assessment  

SciTech Connect (OSTI)

Systematic shock recovery experiments, in which microstructural and mechanical property effects are characterized quantitatively, constitute an important means of increasing our understanding of shock processes. Through studies of the effects of variations in metallurgical and shock loading parameters on structure/property relationships, the micromechanisms of shock deformation, and how they differ from conventional strain rate processes, are beginning to emerge. This paper will highlight the state-of-the-art in shock recovery of metallic and ceramic materials. Techniques will be described which are utilized to ''soft'' recover shock-loaded metallic samples possessing low residual strain; crucial to accurate ''post-mortem'' metallurgical investigations of the influence of shock loading on material behavior. Illustrations of the influence of shock assembly design on the structure/property relationships in shock-recovered copper samples including such issues as residual strain and contact stresses, and their consequences are discussed. Shock recovery techniques used on brittle materials will be reviewed and discussed in light of recent experimental results. Finally, shock recovery structure/property results and VISAR data on the /alpha/--/omega/ shock-induced phase transition in titanium will be used to illustrate the beneficial link between shock recovery and ''real-time'' shock data. 26 refs., 3 figs.

Gray, G.T. III

1989-01-01T23:59:59.000Z

88

Development of a remote bushing for actinide vitrification  

SciTech Connect (OSTI)

The Savannah River Site (SRS) and the Savannah River Technology Center (SRTC) are combining their existing experience in handling highly radioactive, special nuclear materials with commercial glass fiberization technology in order to assemble a small vitrification system for radioactive actinide solutions. The vitrification system or {open_quotes}brushing{close_quotes}, is fabricated from platinum-rhodium alloy and is based on early marble remelt fiberization technology. Advantages of this unique system include its relatively small size, reliable operation, geometrical safety (nuclear criticality), and high temperature capability. The bushing design should be capable of vitrifying a number of the actinide nuclear materials, including solutions of americium/curium, neptunium, and possibly plutonium. State of the art, mathematical and oil model studies are being combined with basic engineering evaluations to verify and improve the thermal and mechanical design concepts.

Schumacher, R.F.; Ramsey, W.G.; Johnson, F.M. [and others

1996-12-31T23:59:59.000Z

89

Complexation of lanthanides and actinides by acetohydroxamic acid  

SciTech Connect (OSTI)

Acetohydroxamic acid (AHA) has been proposed as a suitable reagent for the complexant-based, as opposed to reductive, stripping of plutonium and neptunium ions from the tributylphosphate solvent phase in advanced PUREX or UREX processes designed for future nuclear-fuel reprocessing. Stripping is achieved by the formation of strong hydrophilic complexes with the tetravalent actinides in nitric acid solutions. To underpin such applications, knowledge of the complexation constants of AHA with all relevant actinide (5f) and lanthanide (4f) ions is therefore important. This paper reports the determination of stability constants of AHA with the heavier lanthanide ions (Dy-Yb) and also U(IV) and Th(IV) ions. Comparisons with our previously published AHA stability-constant data for 4f and 5f ions are made. (authors)

Taylor, R.J. [British Technology Centre, Nexia Solutions, Sellafield, Seascale, CA20 1PG (United Kingdom); Sinkov, S.I. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Choppin, G.R. [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL (United States)

2008-07-01T23:59:59.000Z

90

Minor Actinides Transmutation Scenario Studies in PWR with Innovative Fuels  

SciTech Connect (OSTI)

With the innovative fuels (CORAIL, APA, MIX, MOX-UE) in current PWRs, it is theoretically possible to obtain different plutonium and minor actinides transmutation scenarios, in homogeneous mode, with a significant reduction of the waste radio-toxicity inventory and of the thermal output of the high level waste. Regarding each minor actinide element transmutation in PWRs, conclusions are : neptunium : a solution exists but the gain on the waste radio-toxicity inventory is not significant, americium : a solution exists but it is necessary to transmute americium with curium to obtain a significant gain, curium: Cm244 has a large impact on radiation and residual power in the fuel cycle; a solution remains to be found, maybe separating it and keeping it in interim storage for decay into Pu240 able to be transmuted in reactor.

Grouiller, J. P.; Boucher, L.; Golfier, H.; Dolci, F.; Vasile, A.; Youinou, G.

2003-02-26T23:59:59.000Z

91

Comparative Study of f-Element Electronic Structure across a Series of Multimetallic Actinide, Lanthanide-Actinide and Lanthanum-Actinide Complexes Possessing Redox-Active Bridging Ligands  

SciTech Connect (OSTI)

A comparative examination of the electronic interactions across a series of trimetallic actinide and mixed lanthanide-actinide and lanthanum-actinide complexes is presented. Using reduced, radical terpyridyl ligands as conduits in a bridging framework to promote intramolecular metal-metal communication, studies containing structural, electrochemical, and X-ray absorption spectroscopy are presented for (C{sub 5}Me{sub 5}){sub 2}An[-N=C(Bn)(tpy-M{l_brace}C{sub 5}Me4R{r_brace}{sub 2})]{sub 2} (where An = Th{sup IV}, U{sup IV}; Bn = CH{sub 2}C{sub 6}H{sub 5}; M = La{sup III}, Sm{sup III}, Yb{sup III}, U{sup III}; R = H, Me, Et) to reveal effects dependent on the identities of the metal ions and R-groups. The electrochemical results show differences in redox energetics at the peripheral 'M' site between complexes and significant wave splitting of the metal- and ligand-based processes indicating substantial electronic interactions between multiple redox sites across the actinide-containing bridge. Most striking is the appearance of strong electronic coupling for the trimetallic Yb{sup III}-U{sup IV}-Yb{sup III}, Sm{sup III}-U{sup IV}-Sm{sup III}, and La{sup III}-U{sup IV}-La{sup III} complexes, [8]{sup -}, [9b]{sup -} and [10b]{sup -}, respectively, whose calculated comproportionation constant K{sub c} is slightly larger than that reported for the benchmark Creutz-Taube ion. X-ray absorption studies for monometallic metallocene complexes of U{sup III}, U{sup IV}, and U{sup V} reveal small but detectable energy differences in the 'white-line' feature of the uranium L{sub III}-edges consistent with these variations in nominal oxidation state. The sum of this data provides evidence of 5f/6d-orbital participation in bonding and electronic delocalization in these multimetallic f-element complexes. An improved, high-yielding synthesis of 4{prime}-cyano-2,2{prime}:6{prime},2{double_prime}-terpyridine is also reported.

Schelter, Eric J.; Wu, Ruilian; Veauthier, Jacqueline M.; Bauer, Eric D.; Booth, Corwin H.; Thomson, Robert K.; Graves, Christopher R.; John, Kevin D.; Scott, Brian L.; Thompson, Joe D.; Morris, David E.; Kiplinger, Jaqueline L.

2010-02-24T23:59:59.000Z

92

ACTINIDE-SPECIFIC SEQUESTERING AGENTS AND DECONTAMINATION APPLICATIONS  

SciTech Connect (OSTI)

We have briefly reviewed the biological hazards associated with the actinide elements. The most abundant transuranium element produced by both industrial nuclear power plants and nuclear weapons programs is plutonium. It is also potentially the most toxic - particularly due to its long-term hazard as a carcinogen if it is introduced into the body. This toxicity is due in large part to the chemical and biochemical similarities of Pu(IV) and Fe(III). Thus in mammals plutonium is transported and stored by the transport and storage systems for iron. This results in the concentration and long-term retention of an alpha-emitting radionuclide ({sup 239}Pu) at sites such as the bone marrow where cell division occurs at a high rate. The earliest attempts at removal of actinide contamination by chelation therapy were essentially heuristic in that sequestering agents known to be effective at binding other elements were tried with plutonium. The research described here is intended to be a rational approach that begins with the observation that since Fe(III) and Pu(IV) are so similar, and since microbes produce agents called siderophores that are extremely effective and selective sequestering agents for Fe(III), the construction of similar chelating agents for the actinides should be possible using the same chelating groups found in the siderophores. The incorporation of four such groups (primarily catechol and hydroxamic acid) results in multidentate chelating agents that can completely encapsulate the central actinide(IV) ion and achieve the eight-coordinate environment most favored by such ions. The continuing development and improvement of such sequestering agents has produced compounds which remove significant amounts of plutonium deposited in bone and which remove a greater fraction of the total body burden than any other chelation therapy developed to date.

Smith, William L.; Raymond, Kenneth N.

1980-07-01T23:59:59.000Z

93

Determination of actinides in urine and fecal samples  

DOE Patents [OSTI]

A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

McKibbin, Terry T. (Larimer County, CO)

1993-01-01T23:59:59.000Z

94

Determination of actinides in urine and fecal samples  

DOE Patents [OSTI]

A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

McKibbin, T.T.

1993-03-02T23:59:59.000Z

95

Chemical and Ceramic Methods Toward Safe Storage of Actinides  

SciTech Connect (OSTI)

A very import, extremely-long-term, use for monazite as a radwaste encapsulant has been proposed. THe use of ceramic La-monazite for sequestering actinides (isolating them from the environment), especially plutonium and some other radioactive elements )e.g., fission-product rare earths), had been especially championed by Lynn Boatner of ORNL. Monazite may be used alone or, copying its compatibility with many other minerals in nature, may be used in diverse composite combinations.

P.E.D. Morgan; R.M. Housley; J.B. Davis; M.L. DeHaan

2005-08-19T23:59:59.000Z

96

Method for the concentration and separation of actinides from biological and environmental samples  

DOE Patents [OSTI]

A method and apparatus for the quantitative recover of actinide values from biological and environmental sample by passing appropriately prepared samples in a mineral acid solution through a separation column of a dialkyl(phenyl)-N,N-dialylcarbamoylmethylphosphine oxide dissolved in tri-n-butyl phosphate on an inert substrate which selectively extracts the actinide values. The actinide values can be eluted either as a group or individually and their presence quantitatively detected by alpha counting. 3 figs.

Horwitz, E.P.; Dietz, M.L.

1989-05-30T23:59:59.000Z

97

Shock destruction armor system  

DOE Patents [OSTI]

A shock destruction armor system is constructed and arranged to destroy the force of impact of a projectile by shock hydrodynamics. The armor system is designed to comprise a plurality of superimposed armor plates each preferably having a thickness less than five times the projectile's diameter and are preferably separated one-from-another by a distance at least equal to one-half of the projectile's diameter. The armor plates are effective to hydrodynamically and sequentially destroy the projectile. The armor system is particularly adapted for use on various military vehicles, such as tanks, aircraft and ships.

Froeschner, Kenneth E. (Livermore, CA)

1993-01-01T23:59:59.000Z

98

Microbial Transformation of TRU and Mixed Waste: Actinide Speciation and Waste Volume  

SciTech Connect (OSTI)

In order to understand the susceptibility of transuranic and mixed waste to microbial degradation (as well as any mechanism which depends upon either complexation and/or redox of metal ions), it is essential to understand the association of metal ions with organic ligands present in mixed wastes. These ligands have been found in our previous EMSP study to limit electron transfer reactions and strongly affect transport and the eventual fate of radionuclides in the environment. As transuranic waste (and especially mixed waste) will be retained in burial sites and in legacy containment for (potentially) many years while awaiting treatment and removal (or remaining in place under stewardship agreements at government subsurface waste sites), it is also essential to understand the aging of mixed wastes and its implications for remediation and fate of radionuclides. Mixed waste containing actinides and organic materials are especially complex and require extensive study. The EMSP program described in this report is part of a joint program with the Environmental Sciences Department at Brookhaven National Laboratory. The Stony Brook University portion of this award has focused on the association of uranium (U(VI)) and transuranic analogs (Ce(III) and Eu(III)) with cellulosic materials and related compounds, with development of implications for microbial transformation of mixed wastes. The elucidation of the chemical nature of mixed waste is essential for the formulation of remediation and encapsulation technologies, for understanding the fate of contaminant exposed to the environment, and for development of meaningful models for contaminant storage and recovery.

Halada, Gary P

2008-04-10T23:59:59.000Z

99

A literature review of actinide-carbonate mineral interactions  

SciTech Connect (OSTI)

Chemical retardation of actinides in groundwater systems is a potentially important mechanism for assessing the performance of the Waste Isolation Pilot Plant (WIPP), a facility intended to demonstrate safe disposal of transuranic waste. Rigorous estimation of chemical retardation during transport through the Culebra Dolomite, a water-bearing unit overlying the WIPP, requires a mechanistic understanding of chemical reactions between dissolved elements and mineral surfaces. This report represents a first step toward this goal by examining the literature for pertinent experimental studies of actinide-carbonate interactions. A summary of existing models is given, along with the types of experiments on which these models are based. Articles pertaining to research into actinide interactions with carbonate minerals are summarized. Select articles involving trace element-carbonate mineral interactions are also reviewed and may serve as templates for future research. A bibliography of related articles is included. Americium(III), and its nonradioactive analog neodymium(III), partition strongly from aqueous solutions into carbonate minerals. Recent thermodynamic, kinetic, and surface studies show that Nd is preferentially removed from solution, forming a Nd-Ca carbonate solid solution. Neptunium(V) is rapidly removed from solution by carbonates. Plutonium incorporation into carbonates is complicated by multiple oxidation states. Little research has been done on the radium(H) and thorium(IV) carbonate systems. Removal of uranyl ion from solution by calcite is limited to monolayer surface coverage.

Stout, D.L. [Missouri Univ., Columbia, MO (United States). Dept. of Geological Sciences; Carroll, S.A. [Lawrence Livermore National Lab., CA (United States)

1993-10-01T23:59:59.000Z

100

RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY SOIL SAMPLES  

SciTech Connect (OSTI)

A new rapid method for the determination of actinides in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for samples up to 2 grams in emergency response situations. The actinides in soil method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride soil matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha sources are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency soil samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinides in soil results were reported within 4-5 hours with excellent quality.

Maxwell, S.; Culligan, B.; Noyes, G.

2009-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY AIR FILTER SAMPLES  

SciTech Connect (OSTI)

A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and {sup 90}Sr in air filter results were reported in {approx}4 hours with excellent quality.

Maxwell, S.; Noyes, G.; Culligan, B.

2010-02-03T23:59:59.000Z

102

Supercritical Fluid Extraction and Separation of Uranium from Other Actinides  

SciTech Connect (OSTI)

This paper investigates the feasibility of separating uranium from other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of an extraction and counter current stripping technique, which would be a more efficient and environmentally benign technology for used nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U(VI), Np(VI), Pu(IV), and Am(III)) were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, the separation of uranium from plutonium in sc-CO2 modified with TBP was successful at nitric acid concentrations of less than 3 M in the presence of acetohydroxamic acid or oxalic acid, and the separation of uranium from neptunium was successful at nitric acid concentrations of less than 1 M in the presence of acetohydroxamic acid, oxalic acid, or sodium nitrite.

Donna L. Quach; Bruce J. Mincher; Chien M. Wai

2014-06-01T23:59:59.000Z

103

The EBR-II X501 Minor Actinide Burning Experiment  

SciTech Connect (OSTI)

The X501 experiment was conducted in EBR-II as part of the IFR (Integral Fast Reactor) program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data, and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few minor actinide-bearing fuel irradiation tests conducted worldwide and knowledge can be gained by understanding the changes in fuel behavior due to addition of MA’s. Of primary interest are the affect of the MA’s on fuel-cladding-chemical-interaction, and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995-1996, and currently represents a set of observations rather than a complete understanding of fuel behavior. This paper provides a summary of the X501 fabrication, characterization, irradiation, and post irradiation examination.

M. K. Meyer; S. L. Hayes; W. J. Carmack; H. Tsai

2009-07-01T23:59:59.000Z

104

The EBR-II X501 Minor Actinide Burning Experiment  

SciTech Connect (OSTI)

The X501 experiment was conducted in EBR-II as part of the IFR (Integral Fast Reactor) program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data, and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few minor actinide-bearing fuel irradiation tests conducted worldwide and knowledge can be gained by understanding the changes in fuel behavior due to addition of MA’s. Of primary interest are the affect of the MA’s on fuel-cladding-chemical-interaction, and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995-1996, and currently represents a set of observations rather than a complete understanding of fuel behavior.

Jon Carmack; S. L. Hayes; M. K. Meyer; H. Tsai

2008-06-01T23:59:59.000Z

105

E-Print Network 3.0 - actinide recovery process Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

report, April 2006 The report can... is a trivalent actinide and a chemical analog to curium, and it has many chemical similarities to trivalent... complexes stay in solution....

106

E-Print Network 3.0 - actinides storage host Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the most developed of the immobilisation technologies... - emitting radionuclides of heavy metals (actinides, Raand Po). The specific activity of the ash ... Source:...

107

E-Print Network 3.0 - actinides including cm Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of waste actinides. Such damage can be studied by many techniques, including heavy-ionfast neutron... were presented and proposed, including; Fundamental studies...

108

E-Print Network 3.0 - advanced actinide fuels Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Breeder Summary: energy moderation, actinide solubility, and initial fuel inventory. For heavy nuclei (HN) proportions... the fuel refabrication problem in the presence of...

109

E-Print Network 3.0 - actinide decay heat Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

then on, it is the actinides... --specifically, isotopes of plutonium, americium, and curium--that will contribute most to radioactive ... Source: Massachusetts Institute of...

110

E-Print Network 3.0 - actinide separations conference Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

region 1, 2. 2. Separation in-29;ight and the parent21;daughter method for heavy... . Mnzenberg et al., Proc. Actinides-1981 Conference, Paci28;c Grove, Cali-...

111

E-Print Network 3.0 - actinide separations thermodynamic Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of SARS (severe acute respiratory syndrome) Summary: of the actinide elements such as uranium and plutonium is central to predicting nuclear weapons performance......

112

E-Print Network 3.0 - actinides phosphinic resins Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Databases and Resources 11 Development of an Automatic Method for Americium and Plutonium Separation and Summary: tetravalent and hexavalent actinides present in the real sample,...

113

E-Print Network 3.0 - actinides ix behavior Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Torstein - Institut for Fysik og Astronomi, Aarhus Universitet Collection: Physics ; Materials Science 5 One-electron physics of the actinides A. Toropova, C. A. Marianetti, K....

114

E-Print Network 3.0 - actinide region progress Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Databases and Resources 71 The materials test station: A fast-spectrum irradiation facility Eric J. Pitcher Summary: with significant inclusion of plutonium and minor actinides....

115

E-Print Network 3.0 - actinide intermetallic laves-phase Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. - Essentially atomic electron-polaron mechanism reducing the magnetic moments of rare-earth and actinide... elements in intermetallic compounds is proposed. This mechanism is...

116

Crystal Chemistry of Early Actinides (Thorium, Uranium, and Neptunium) and Uranium Mesoporous Materials.  

E-Print Network [OSTI]

??Despite their considerable global importance, the structural chemistry of actinides remains understudied. Thorium and uranium fuel cycles are used in commercial nuclear reactors in India… (more)

Sigmon, Ginger E.

2010-01-01T23:59:59.000Z

117

MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES  

E-Print Network [OSTI]

importance in the chemistry of uranium, and these species5f orbitals in the chemistry of uranium complexes. Using CHchemistry studies involving the actinides dealt with volatile uranium

Heaven, Michael C.

2011-01-01T23:59:59.000Z

118

E-Print Network 3.0 - actinides bilan des Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(March 1977) p. 43. 8... heats of actinide metals M. J. Mortimer Chemistry Division, AERE ... Source: Ecole Polytechnique, Centre de mathmatiques Collection: Mathematics 73...

119

EA-1404: Actinide Chemistry and Repository Science Laboratory, Carlsbad, New Mexico  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to construct and operate an Actinide Chemistry and Repository Science Laboratory to support chemical research activities related to the...

120

E-Print Network 3.0 - actinide partitioning part Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

lowest f... . 2. -Variation of the atomic volume along the actinide, lanthanide and transition metal series Source: Ecole Polytechnique, Centre de mathmatiques Collection:...

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

E-Print Network 3.0 - actinide bearing nitride Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

> >> 41 Electronic structure and pairwise interactions in substoichiometric transition metal carbides and nitrides Summary: ) of transition metals, rare earths and actinides in...

122

E-Print Network 3.0 - actinide transmutation reactor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

All these names are used... . The idea of combining powerful accelerators - with a subcritical reactor for transmutation purposes... homogeneous fuel Actinides MgO Tc Fast...

123

E-Print Network 3.0 - actinide burner core Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the fuel... of minor actinides whose management would be problematic. Scenario with Light Water Reactors and Fast... and difficult process. Indeed, a 1 GWe reactor, whether it is...

124

E-Print Network 3.0 - actinide based fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MA represents minor actinides such as Np, Am, and Cm. Fuel... of the performance on the subcritical level. Numerical experiments are carried out on a ... Source: Royal Institute...

125

E-Print Network 3.0 - actinide measurement quality Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 LA-UR 09-03222 LOS ALAMOS NATIONAL LABORATORY Summary: assurance QAPD Quality Assurance Program Document SNL Sandia National Laboratories SOTERM Actinide Source... on the...

126

STEREO interplanetary shocks and foreshocks  

SciTech Connect (OSTI)

We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and {theta}{sub Bn}{approx}20-86 Degree-Sign . We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr {<=}0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at {approx}1 AU and have been producing suprathermal particles for a shorter time.

Blanco-Cano, X. [Instituto de Geofisica, UNAM, CU, Coyoacan 04510 DF (Mexico); Kajdic, P. [IRAP-University of Toulouse, CNRS, Toulouse (France); Aguilar-Rodriguez, E. [Instituto de Geofisica, UNAM, Morelia (Mexico); Russell, C. T. [ESS and IGPP, University of California, Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095 (United States); Jian, L. K. [NASA Goddard Space Flight Center, Greenbelt, MD and University of Maryland, College Park, MD (United States); Luhmann, J. G. [SSL, University of California Berkeley (United States)

2013-06-13T23:59:59.000Z

127

Computational investigation of structured shocks  

E-Print Network [OSTI]

. Grujicic, W.C. Bell and B. Pandurangan Department of Mechanical Engineering, Clemson University, Clemson, Composite materials, Wave propagation, Mechanical shock, Metal matrix composites, Structured shocks, Dynamic Detonation Explosives Shallow-Buried in Soil" Contract Number W911NF-06-2-0042. Structured shocks in MMCs 469

Grujicic, Mica

128

Advanced Extraction Methods for Actinide/Lanthanide Separations  

SciTech Connect (OSTI)

The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form high level liquid wastes and a general actinide clean-up procedure. The selectivity of the standard extractant for tetravalent actinides, (N,N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide (CMPO), was markedly improved by the attachment of three CMPO-like functions onto a triphenoxymethane platform, and a ligand that is both highly selective and effective for An(IV) ions was isolated. A 10 fold excess of ligand will remove virtually all of the 4+ actinides from the acidic layer without extracting appreciable quantities of An(III) and Ln(III) unlike simple CMPO ligands. Inspired by the success of the DIAMEX industrial process for extractions, three new tripodal chelates bearing three diglycolamide and thiodiglycolamide units precisely arranged on a triphenoxymethane platform have been synthesized for an highly efficient extraction of trivalent f-element cations from nitric acid media. A single equivalent of ligand will remove 80% of the Ln(III) ion from the acidic layer since the ligand is perfectly suited to accommodate the tricapped trigonal prismatic geometry preferred by the metal center. The ligand is perhaps the most efficient binder available for the heavier lanthanides and due to this unique attribute, the extraction event can be easily followed by 1H NMR spectroscopy confirming the formation of a TPP complex. The most lipophilic di-n-butyl tris-diglycolamide was found to be a significantly weaker extractant in comparison to the di-isopropyl analogs. The tris-thiodiglycolamide derivative proved to be an ineffective chelate for f-elements and demonstrated the importance of the etheric oxygens in the metal binding. The results presented herein clearly demonstrate a cooperative action of these three ligating groups within a single molecule, confirmed by composition and structure of the extracted complexes, and since actinides prefer to have high coordination numbers, the ligands should be particularly adept at binding with three arms. The use of such an extractant permits the extraction of metal ions form highly acidic environment through the ability

Scott, M.J.

2005-12-01T23:59:59.000Z

129

Note LPSC 07-37 The TMSR as Actinide Burner and Thorium Breeder  

E-Print Network [OSTI]

Note LPSC 07-37 The TMSR as Actinide Burner and Thorium Breeder E. Merle-Lucotte, D. Heuer, C. Le actinides. Studies [1] have thus been done on the Molten Salt Breeder Reactor (MSBR) [2] of Oak-Ridge to re fluoride salt LiF- ThF4 with 28%- mole 232 Th. This reflector, corresponding to a fertile blanket

Paris-Sud XI, Université de

130

MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS  

SciTech Connect (OSTI)

This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

Hobbs, D.; Visser, A.; Bridges, N.

2011-09-20T23:59:59.000Z

131

Final Report on Actinide Glass Scintillators for Fast Neutron Detection  

SciTech Connect (OSTI)

This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a signal for fast neutron capture.

Bliss, Mary; Stave, Jean A.

2012-10-01T23:59:59.000Z

132

Electrical shock accident investigation  

SciTech Connect (OSTI)

This report documents results of the accident investigation of an electrical shock received by two subcontractor employees on May 13, 1994, at the Pinellas Plant. The direct cause of the electrical shock was worker contact with a cut ``hot`` wire and a grounded panelboard (PPA) enclosure. Workers presumed that all wires in the enclosure were dead at the time of the accident and did not perform thorough Lockout/Tagout (LO/TO). Three contributing causes were identified. First, lack of guidance in the drawing for the modification performed in 1987 allowed the PPA panel to be used as a junction box. The second contributing cause is that Environmental, Safety and Health (ES&H) procedures do not address multiple electrical sources in an enclosure. Finally, the workers did not consider the possibility of multiple electrical sources. The root cause of the electrical shock was the inadequacy of administrative controls, including construction requirement and LO/TO requirements, and subcontractor awareness regarding multiple electrical sources. Recommendations to prevent further reoccurrence of this type of accident include revision of ES&H Standard 2.00, Electrical Safety Program Manual, to document requirements for multiple electrical sources in a single enclosure to specify a thorough visual inspection as part of the voltage check process. In addition, the formality of LO/TO awareness training for subcontractor electricians should be increased.

Not Available

1994-09-30T23:59:59.000Z

133

Plutonium and minor actinides utilization in Thorium molten salt reactor  

SciTech Connect (OSTI)

FUJI-12 reactor is one of MSR systems that proposed by Japan. The original FUJI-12 design considers Th/{sup 233}U or Th/Pu as main fuel. In accordance with the currently suggestion to stay away from the separation of Pu and minor actinides (MA), in this study we evaluated the utilization of Pu and MA in FUJI-12. The reactor grade Pu was employed in the present study as a small effort of supporting THORIMS-NES scenario. The result shows that the reactor can achieve its criticality with the Pu and MA composition in the fuel of 5.96% or more.

Waris, Abdul; Aji, Indarta K.; Novitrian,; Kurniadi, Rizal; Su'ud, Zaki [Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132 (Indonesia)

2012-06-06T23:59:59.000Z

134

Actinide Neutron-Induced Fission Cross Section Measurements At LANSCE  

SciTech Connect (OSTI)

Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub thermal energies up to 200 MeV. Parallel-plate ionization chambers are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with existing evaluations and previous data.

Tovesson, F.; Laptev, A. B. [Los Alamos National Laboratory, Los Alamos NM 87545 (United States); Hill, T. S. [Idaho National Laboratory, Idaho Falls ID 83415 (United States)

2011-06-01T23:59:59.000Z

135

UCN Actinides | Ultracold Neutrons at Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlong version) The U.S.1,summer gasoline priceActinides

136

SC Brochure_Final_10dec12.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

performance. Joint Actinide Shock Physics Experimental Research (JASPER) https:www2.nstec.comPagesDESS.aspx JASPER is a two-stage light-gas gun used to study the behavior of...

137

Effects of adaptation to shock on shock-elicited aggression  

E-Print Network [OSTI]

EFFECTS OF ADAPTATION TO SHOCK ON SHOCK-ELICITED AGGRESSION A THESIS THONAS ANDREW BUCHANAN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1971... Major Subject: Psychology 0 R 0 R EFFECTS OF ADAPTATION TO SHOCK ON SHOCK-ELICITED AGGRESSION fbi a z H o 0 g CC W z C 5 a N A Thesis by THO. 'LAS ANDREN BUCHANAN Approved as to style and content by: airman oz Comm ~ t ) ( Hea f D...

Buchanan, Thomas Andrew

1971-01-01T23:59:59.000Z

138

Grain Destruction in Interstellar Shocks  

E-Print Network [OSTI]

Interstellar shock waves can erode and destroy grains present in the shocked gas, primarily as the result of sputtering and grain-grain collisions. Uncertainties in current estimates of sputtering yields are reviewed. Results are presented for the simple case of sputtering of fast grains being stopped in cold gas. An upper limit is derived for sputtering of refractory grains in C-type MHD shocks: shock speeds $v_s \\gtrsim 50 \\kms$ are required for return of more than 30\\% of the silicate to the gas phase. Sputtering can also be important for removing molecular ice mantles from grains in two-fluid MHD shock waves in molecular gas. Recent estimates of refractory grain lifetimes against destruction in shock waves are summarized, and the implications of these short lifetimes are discussed.

B. T. Draine

1995-08-16T23:59:59.000Z

139

Actinide production from xenon bombardments of curium-248  

SciTech Connect (OSTI)

Production cross sections for many actinide nuclides formed in the reaction of /sup 129/Xe and /sup 132/Xe with /sup 248/Cm at bombarding energies slightly above the coulomb barrier were determined using radiochemical techniques to isolate these products. These results are compared with cross sections from a /sup 136/Xe + /sup 248/Cm reaction at a similar energy. When compared to the reaction with /sup 136/Xe, the maxima in the production cross section distributions from the more neutron deficient projectiles are shifted to smaller mass numbers, and the total cross section increases for the production of elements with atomic numbers greater than that of the target, and decreases for lighter elements. These results can be explained by use of a potential energy surface (PES) which illustrates the effect of the available energy on the transfer of nucleons and describes the evolution of the di-nuclear complex, an essential feature of deep-inelastic reactions (DIR), during the interaction. The other principal reaction mechanism is the quasi-elastic transfer (QE). Analysis of data from a similar set of reactions, /sup 129/Xe, /sup 132/Xe, and /sup 136/Xe with /sup 197/Au, aids in explaining the features of the Xe + Cm product distributions, which are additionally affected by the depletion of actinide product yields due to deexcitation by fission. The PES is shown to be a useful tool to predict the general features of product distributions from heavy ion reactions.

Welch, R.B.

1985-01-01T23:59:59.000Z

140

Raman spectroscopy of shocked water  

SciTech Connect (OSTI)

Raman scattering has been used extensively to study the vibrational and rotational properties of molecules under a variety of conditions. Here, interest is in the behavior of water molecules shocked to high pressures and temperatures. Behind the shock front the water molecules undergo changes in bonding and the molecules may become ionized. Raman spectroscopy can be used to determine the molecular species behind the shock front. In addition, changes in Raman spectra can yield information regarding inter- and intramolecular potentials and the temperature behind the shock front.

Holmes, N.C.; Mitchell, A.C.; Nellis, W.J.; Graham, W.B.; Walrafen, G.E.

1983-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High pressure ceramic joint  

DOE Patents [OSTI]

Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

Ward, M.E.; Harkins, B.D.

1993-11-30T23:59:59.000Z

142

High pressure ceramic joint  

DOE Patents [OSTI]

Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

Ward, Michael E. (Poway, CA); Harkins, Bruce D. (San Diego, CA)

1993-01-01T23:59:59.000Z

143

The Dirac equation in electronic structure calculations: Accurate evaluation of DFT predictions for actinides  

SciTech Connect (OSTI)

Brooks, Johansson, and Skriver, using the LMTO-ASA method and considerable insight, were able to explain many of the ground state properties of the actinides. In the many years since this work was done, electronic structure calculations of increasing sophistication have been applied to actinide elements and compounds, attempting to quantify the applicability of DFT to actinides and actinide compounds and to try to incorporate other methodologies (i.e. DMFT) into DFT calculations. Through these calculations, the limits of both available density functionals and ad hoc methodologies are starting to become clear. However, it has also become clear that approximations used to incorporate relativity are not adequate to provide rigorous tests of the underlying equations of DFT, not to mention ad hoc additions. In this talk, we describe the result of full-potential LMTO calculations for the elemental actinides, comparing results obtained with a full Dirac basis with those obtained from scalar-relativistic bases, with and without variational spin-orbit. This comparison shows that the scalar relativistic treatment of actinides does not have sufficient accuracy to provide a rigorous test of theory and that variational spin-orbit introduces uncontrolled errors in the results of electronic structure calculations on actinide elements.

Wills, John M [Los Alamos National Laboratory; Mattsson, Ann E [Sandia National Laboratories

2012-06-06T23:59:59.000Z

144

Literature review of United States utilities computer codes for calculating actinide isotope content in irradiated fuel  

SciTech Connect (OSTI)

This paper reviews the accuracy and precision of methods used by United States electric utilities to determine the actinide isotopic and element content of irradiated fuel. After an extensive literature search, three key code suites were selected for review. Two suites of computer codes, CASMO and ARMP, are used for reactor physics calculations; the ORIGEN code is used for spent fuel calculations. They are also the most widely used codes in the nuclear industry throughout the world. Although none of these codes calculate actinide isotopics as their primary variables intended for safeguards applications, accurate calculation of actinide isotopic content is necessary to fulfill their function.

Horak, W.C.; Lu, Ming-Shih

1991-12-01T23:59:59.000Z

145

Conjugates of Actinide Chelator-Magnetic Nanoparticles for Used Fuel Separation Technology  

SciTech Connect (OSTI)

The actinide separation method using magnetic nanoparticles (MNPs) functionalized with actinide specific chelators utilizes the separation capability of ligand and the ease of magnetic separation. This separation method eliminated the need of large quantity organic solutions used in the liquid-liquid extraction process. The MNPs could also be recycled for repeated separation, thus this separation method greatly reduces the generation of secondary waste compared to traditional liquid extraction technology. The high diffusivity of MNPs and the large surface area also facilitate high efficiency of actinide sorption by the ligands. This method could help in solving the nuclear waste remediation problem.

You Qiang; Andrzej Paszczynski; Linfeng Rao

2011-10-30T23:59:59.000Z

146

Integral Validation of Minor Actinide Nuclear Data by using Samples Irradiated at Dounreay Prototype Fast Reactor  

SciTech Connect (OSTI)

The reliability of nuclear data for minor actinides was evaluated by using the results of the post-irradiation experiment for actinide samples irradiated at the Dounreay Prototype Fast Reactor. The burnup calculations with JENDL-3.3, ENDF/B-VI.8, and JEFF-3.0 were performed. From the comparison between the experimental data and the calculational results, in general, the reliability of nuclear data for the minor actinides are at an adequate level for the conceptual design study of transmutation systems. It is, however, found that improvement of the accuracy is necessary for some nuclides, such as 238Pu, 242Pu, and 241Am.

Tsujimoto, Kazufumi; Oigawa, Hiroyuki; Shinohara, Nobuo [Japan Atomic Energy Research Institute, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan)

2005-05-24T23:59:59.000Z

147

Delayed Neutron and Delayed Photon Characteristics from Photofission of Actinides  

SciTech Connect (OSTI)

Delayed neutron (DN) and delayed photon (DP) emissions from photofission reactions play an important role for applications involving nuclear material detection and characterization. To provide new, accurate, basic nuclear data for evaluations and data libraries, an experimental programme of DN and DP measurements has been undertaken for actinides with bremsstrahlung endpoint energy in the giant resonance region ({approx}15 MeV). In this paper, the experimental setup and the data analysis method will be described. Experimental results for DN and DP characteristics will be presented for {sup 232}Th, {sup 235,238}U, {sup 237}Np, and {sup 239}Pu. Finally, an example of an application to study the contents of nuclear waste packages will be briefly discussed.

Dore, D.; Berthoumieux, E.; Leprince, A.; Ridikas, D. [DSM/IRFUS/PhN, CEA/Saclay, Gif-sur-Yvette, F-91191 (France); Ledoux, X. [CEA/DAM/DIF, Arpajon, F-91297 (France); Agelou, M.; Carrel, F.; Gmar, M. [CEA, LIST, Gif-sur-Yvette, F-91191 (France)

2011-12-13T23:59:59.000Z

148

Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers  

SciTech Connect (OSTI)

Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation of hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.

Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

2013-03-21T23:59:59.000Z

149

E-Print Network 3.0 - actinide elements volume Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

no 5-6, Tome 33, Mai-Juin 1972,page C3-57 RELATIVISTIC ELECTRONIC BAND STRUCTURE OF THE HEAVY METALS Summary: and properties of the actinide elements before discussing the band...

150

E-Print Network 3.0 - actinides np pu Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NpTe, PuTe. Actinides compounds with the ThCr2Si2 type structure Since the discovery of heavy... . - The magneticand electricaltransport propertiesof the U, Np and Pu...

151

E-Print Network 3.0 - actinide transmutation physics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fission Barriers and Half-Lives Summary: Acta Phys. Hung. A 251 (2006) 000-000 HEAVY ION PHYSICS On the Multiple-Humped Fission Barriers... and Half-Lives of Actinides...

152

E-Print Network 3.0 - actinides fuel research Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: in safety, proliferation resistance, and can be designed to breed fuel or burn heavy actinides. One... . The number of fuel pins in a fuel assembly of a PWR core is...

153

E-Print Network 3.0 - application aux actinides Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

au Journal de Physique 111, Vol. 1,dCcembre 1991 Summary: and actinides : application to curium. Radiochim. Acta. 5253, part 1, 119 (1991). 12;... . MAUCHlEN CEADCCDPESPEA...

154

E-Print Network 3.0 - actinide burning fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: in safety, proliferation resistance, and can be designed to breed fuel or burn heavy actinides. One... . The number of fuel pins in a fuel assembly of a PWR core is...

155

Configuration adjustment potential of the Very High Temperature Reactor prismatic cores with advanced actinide fuels  

E-Print Network [OSTI]

Minor actinides represent the long-term radiotoxicity of nuclear wastes. As one of their potential incineration options, partitioning and transmutation in fission reactors are seriously considered worldwide. If implemented, these technologies could...

Ames, David E, II

2006-10-30T23:59:59.000Z

156

E-Print Network 3.0 - actinide waste forms Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

.-F. Lucchini, M.K. Richmann, and D.T. Reed. 2008. "Actinide (III) Solubility in WIPP Brine: Data Summary... ) but carbonate phases can be formed at the higher fugacities...

157

E-Print Network 3.0 - actinide nuclei indirectly Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

40 (2009) ACTA PHYSICA POLONICA B No 3 PRODUCTION OF NEW SUPERHEAVY NUCLEI IN COMPLETE FUSION... physics. The cold Pb- and Bi-based 1 and hot actinide-based 2 complete...

158

E-Print Network 3.0 - actinide nuclei induced Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

40 (2009) ACTA PHYSICA POLONICA B No 3 PRODUCTION OF NEW SUPERHEAVY NUCLEI IN COMPLETE FUSION... physics. The cold Pb- and Bi-based 1 and hot actinide-based 2 complete...

159

E-Print Network 3.0 - actinide-based complete-fusion reactions...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fusion reactions. The yields of superheavies with Z > 118 are sensitive... physics. The cold Pb- and Bi-based 1 and hot actinide-based 2 complete fusion reactions were...

160

E-Print Network 3.0 - actinide nuclei Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

40 (2009) ACTA PHYSICA POLONICA B No 3 PRODUCTION OF NEW SUPERHEAVY NUCLEI IN COMPLETE FUSION... physics. The cold Pb- and Bi-based 1 and hot actinide-based 2 complete...

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Optimization of actinide transmutation in innovative lead-cooled fast reactors  

E-Print Network [OSTI]

The thesis investigates the potential of fertile free fast lead-cooled modular reactors as efficient incinerators of plutonium and minor actinides (MAs) for application to dedicated fuel cycles for transmutation. A methodology ...

Romano, Antonino, 1972-

2003-01-01T23:59:59.000Z

162

E-Print Network 3.0 - actinides separation chemistry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

separation chemistry Search Powered by Explorit Topic List Advanced Search Sample search results for: actinides separation chemistry Page: << < 1 2 3 4 5 > >> 1 www.emsl.pnl.gov...

163

E-Print Network 3.0 - actinides solution chemistry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solution chemistry Search Powered by Explorit Topic List Advanced Search Sample search results for: actinides solution chemistry Page: << < 1 2 3 4 5 > >> 1 www.emsl.pnl.gov...

164

E-Print Network 3.0 - actinide metal compounds Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

effects in the X-ray photoemission spectra of the actinides Summary: in 3d transition metal compounds and ns (n 4 , 5) levels in rare earth systems, it is clear that ME......

165

E-Print Network 3.0 - actinide elements progress Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DE PHYSIQUE Colloque C4, supplment au n 4, Tome 40, avril 1979, page C4-207 Alkali metal actinide complex halides: thermochemical and structural Summary: Elements and...

166

Actinide-lanthanide separation with solvents on the base of amides of heterocyclic diacids  

SciTech Connect (OSTI)

The separation of actinides from lanthanides with a particular emphasis on Am(III) from Eu(III) with amides of heterocyclic dicarboxylic diacids was reviewed. It was shown that the di-amides of the 2,2'-dipyridyl-6,6'-dicarboxylic acid are the most promising ligands for the simultaneous selective recovery of actinides from HLLW (high level radioactive liquid waste) within the GANEX concept. (author)

Babain, V.A.; Alyapyshev, M.Y.; Tkachenko, L.I. [Khlopin Radium Institute, 28, 2ndMurinski pr., St-Petersburg, Russia 19402 (Russian Federation)

2013-07-01T23:59:59.000Z

167

Extraction of trivalent lanthanides and actinides by ``CMPO-like`` calixarenes  

SciTech Connect (OSTI)

Extractive properties of calix[4]arenes bearing carbamoylmethylphosphine oxide moieties on their upper rim toward trivalent lanthanide and actinide cations were investigated. The study revealed that these molecules selectively extract light lanthanides and actinides from heavy lanthanides. All parameters present in the extraction system were varied to determine the origin of the selectivity. It was found that this selectivity requires a calix[4]arene platform and acetamidophosphine oxide groups containing phenyl substituents on the four phosphorus atoms.

Delmau, L.H.; Simon, N. [CEA Cadarache, St. Paul lez Durance (France)] [CEA Cadarache, St. Paul lez Durance (France); Schwing-Weill, M.J. [ECPM, Strasbourg (France)] [and others] [ECPM, Strasbourg (France); and others

1999-04-01T23:59:59.000Z

168

CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES  

SciTech Connect (OSTI)

In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

Nash, Kenneth L.

2008-11-20T23:59:59.000Z

169

Shock temperature measurements in ammonia  

SciTech Connect (OSTI)

Our first shock temperature measurements on a cryogenic target are reported for NH/sub 3/. A new fast optical pyrometer and a cryogenic specimen holder for liquid NH/sub 3/ were developed to measure shock temperatures of 4400 and 3600 K at pressures of 61 and 48 GPa. These conditions correspond to those in the ice layers in Uranus and Neptune. The shock temperature data are in reasonable agreement with an equation of state based on an intermolecular potential derived from NH/sub 3/ Hugoniot data.

Radousky, H.B.; Mitchell, A.C.; Nellis, W.J.; Ross, M.

1985-07-01T23:59:59.000Z

170

Agonist-Activated Glucocorticoid Receptor Inhibits Binding of Heat Shock Factor 1 to the Heat Shock  

E-Print Network [OSTI]

Agonist-Activated Glucocorticoid Receptor Inhibits Binding of Heat Shock Factor 1 to the Heat Shock- cocorticoid receptor (GR) signaling in stressed cells will cause inhibition of the heat shock re- sponse as mediated by heat shock transcription factor 1 (HSF1). In that work, a full-length human heat shock protein

Abraham, Nader G.

171

Rolling contact orthopaedic joint design  

E-Print Network [OSTI]

Arthroplasty, the practice of rebuilding diseased biological joints using engineering materials, is often used to treat severe arthritis of the knee and hip. Prosthetic joints have been created in a "biomimetic" manner to ...

Slocum, Alexander Henry, Jr

2013-01-01T23:59:59.000Z

172

Shock compression of precompressed deuterium  

SciTech Connect (OSTI)

Here we report quasi-isentropic dynamic compression and thermodynamic characterization of solid, precompressed deuterium over an ultrafast time scale (< 100 ps) and a microscopic length scale (< 1 {micro}m). We further report a fast transition in shock wave compressed solid deuterium that is consistent with the ramp to shock transition, with a time scale of less than 10 ps. These results suggest that high-density dynamic compression of hydrogen may be possible on microscopic length scales.

Armstrong, M R; Crowhurst, J C; Zaug, J M; Bastea, S; Goncharov, A F; Militzer, B

2011-07-31T23:59:59.000Z

173

Method for fluorination of actinide fluorides and oxyfluorides using O/sub 2/F/sub 2/  

DOE Patents [OSTI]

The present invention relates generally to methods of fluorination and more particularly to the use of O/sub 2/F/sub 2/ for the preparation of actinide hexafluorides, and for the extraction of deposited actinides and fluorides and oxyfluorides thereof from reaction vessels. The experiments set forth hereinabove demonstrate that the room temperature or below use of O/sub 2/F/sub 2/ will be highly beneficial for the preparation of pure actinide hexafluorides from their respective tetrafluorides without traces of HF being present as occurs using other fluorinating agents: and decontamination of equipment previously exposed to actinides: e.g., walls, feed lines, etc.

Eller, P.G.; Malm, J.G.; Penneman, R.A.

1984-08-01T23:59:59.000Z

174

Proliferation Resistance Evaluation of ACR-1000 Fuel with Minor Actinides  

SciTech Connect (OSTI)

The Global Nuclear Energy Partnership (GNEP) program is to significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. It consists of both innovative nuclear reactors and innovative research in separation and transmutation. The merits of nuclear energy are high-density energy, with low environmental impacts (i.e. almost zero greenhouse gas emission). Planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current light water reactors (LWRs) as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. For future advanced nuclear systems, minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In this work, an Advanced CANDU Reactor (ACR) fuel unit lattice cell model with 43 UO2 fuel rods will be used to investigate the effectiveness of a Minor Actinide Reduction Approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. The main MARA objective is to increase the 238Pu / Pu isotope ratio by using the transuranic nuclides (237Np and 241Am) in the high burnup fuel and thereby increase the proliferation resistance even for a very low fuel burnup. As a result, MARA is a very effective approach to enhance the proliferation resistance for the on power refueling ACR system nuclear fuel. The MA transmutation characteristics at different MA loadings were compared and their impact on neutronics criticality assessed. The concept of MARA, significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy reconnaissance

Gray S. Chang

2008-09-01T23:59:59.000Z

175

Minor actinide transmutation in thorium and uranium matrices in heavy water moderated reactors  

SciTech Connect (OSTI)

The irradiation of Th{sup 232} breeds fewer of the problematic minor actinides (Np, Am, Cm) than the irradiation of U{sup 238}. This characteristic makes thorium an attractive potential matrix for the transmutation of these minor actinides, as these species can be transmuted without the creation of new actinides as is the case with a uranium fuel matrix. Minor actinides are the main contributors to long term decay heat and radiotoxicity of spent fuel, so reducing their concentration can greatly increase the capacity of a long term deep geological repository. Mixing minor actinides with thorium, three times more common in the Earth's crust than natural uranium, has the additional advantage of improving the sustainability of the fuel cycle. In this work, lattice cell calculations have been performed to determine the results of transmuting minor actinides from light water reactor spent fuel in a thorium matrix. 15-year-cooled group-extracted transuranic elements (Np, Pu, Am, Cm) from light water reactor (LWR) spent fuel were used as the fissile component in a thorium-based fuel in a heavy water moderated reactor (HWR). The minor actinide (MA) transmutation rates, spent fuel activity, decay heat and radiotoxicity, are compared with those obtained when the MA were mixed instead with natural uranium and taken to the same burnup. Each bundle contained a central pin containing a burnable neutron absorber whose initial concentration was adjusted to have the same reactivity response (in units of the delayed neutron fraction ?) for coolant voiding as standard NU fuel. (authors)

Bhatti, Zaki; Hyland, B.; Edwards, G.W.R. [Atomic Energy of Canada Limited, Chalk River Laboratories, 1 Plant Road, Chalk River, Ontario, K0J 1J0 (Canada)

2013-07-01T23:59:59.000Z

176

Actinide production in /sup 136/Xe bombardments of /sup 249/Cf  

SciTech Connect (OSTI)

The production cross sections for the actinide products from /sup 136/Xe bombardments of /sup 249/Cf at energies 1.02, 1.09, and 1.16 times the Coulomb barrier were determined. Fractions of the individual actinide elements were chemically separated from recoil catcher foils. The production cross sections of the actinide products were determined by measuring the radiations emitted from the nuclides within the chemical fractions. The chemical separation techniques used in this work are described in detail, and a description of the data analysis procedure is included. The actinide production cross section distributions from these /sup 136/Xe + /sup 249/Cf bombardments are compared with the production cross section distributions from other heavy ion bombardments of actinide targets, with emphasis on the comparison with the /sup 136/Xe + /sup 248/Cm reaction. A technique for modeling the final actinide cross section distributions has been developed and is presented. In this model, the initial (before deexcitation) cross section distribution with respect to the separation energy of a dinuclear complex and with respect to the Z of the target-like fragment is given by an empirical procedure. It is then assumed that the N/Z equilibration in the dinuclear complex occurs by the transfer of neutrons between the two participants in the dinuclear complex. The neutrons and the excitation energy are statistically distributed between the two fragments using a simple Fermi gas level density formalism. The resulting target-like fragment initial cross section distribution with respect to Z, N, and excitation energy is then allowed to deexcite by emission of neutrons in competition with fission. The result is a final cross section distribution with respect to Z and N for the actinide products. 68 refs., 33 figs., 6 tabs.

Gregorich, K.E.

1985-08-01T23:59:59.000Z

177

Laboratory characterization of rock joints  

SciTech Connect (OSTI)

A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed.

Hsiung, S.M.; Kana, D.D.; Ahola, M.P.; Chowdhury, A.H.; Ghosh, A. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

1994-05-01T23:59:59.000Z

178

MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES  

SciTech Connect (OSTI)

In this chapter we review the spectroscopic data for actinide molecules and the reaction dynamics for atomic and molecular actinides that have been examined in the gas phase or in inert cryogenic matrices. The motivation for this type of investigation is that physical properties and reactions can be studied in the absence of external perturbations (gas phase) or under minimally perturbing conditions (cryogenic matrices). This information can be compared directly with the results from high-level theoretical models. The interplay between experiment and theory is critically important for advancing our understanding of actinide chemistry. For example, elucidation of the role of the 5f electrons in bonding and reactivity can only be achieved through the application of experimentally verified theoretical models. Theoretical calculations for the actinides are challenging due the large numbers of electrons that must be treated explicitly and the presence of strong relativistic effects. This topic has been reviewed in depth in Chapter 17 of this series. One of the goals of the experimental work described in this chapter has been to provide benchmark data that can be used to evaluate both empirical and ab initio theoretical models. While gas-phase data are the most suitable for comparison with theoretical calculations, there are technical difficulties entailed in generating workable densities of gas-phase actinide molecules that have limited the range of species that have been characterized. Many of the compounds of interest are refractory, and problems associated with the use of high temperature vapors have complicated measurements of spectra, ionization energies, and reactions. One approach that has proved to be especially valuable in overcoming this difficulty has been the use of pulsed laser ablation to generate plumes of vapor from refractory actinide-containing materials. The vapor is entrained in an inert gas, which can be used to cool the actinide species to room temperature or below. For many spectroscopic measurements, low temperatures have been achieved by co-condensing the actinide vapor in rare gas or inert molecule host matrices. Spectra recorded in matrices are usually considered to be minimally perturbed. Trapping the products from gas-phase reactions that occur when trace quantities of reactants are added to the inert host gas has resulted in the discovery of many new actinide species. Selected aspects of the matrix isolation data were discussed in chapter 17. In the present chapter we review the spectroscopic matrix data in terms of its relationship to gas-phase measurements, and update the description of the new reaction products found in matrices to reflect the developments that have occurred during the past two years. Spectra recorded in matrix environments are usually considered to be minimally perturbed, and this expectation is borne out for many closed shell actinide molecules. However, there is growing evidence that significant perturbations can occur for open shell molecules, resulting in geometric distortions and/or electronic state reordering. Studies of actinide reactions in the gas phase provide an opportunity to probe the relationship between electronic structure and reactivity. Much of this work has focused on the reactions of ionic species, as these may be selected and controlled using various forms of mass spectrometry. As an example of the type of insight derived from reaction studies, it has been established that the reaction barriers for An+ ions are determined by the promotion energies required to achieve the 5fn6d7s configuration. Gas-phase reaction studies also provide fundamental thermodynamic properties such as bond dissociation and ionization energies. In recent years, an increased number of gas-phase ion chemistry studies of bare (atomic) and ligated (molecular) actinide ions have appeared, in which relevant contributions to fundamental actinide chemistry have been made. These studies were initiated in the 1970's and carried out in an uninterrupted way over the course of the past three d

Heaven, Michael C.; Gibson, John K.; Marcalo, Joaquim

2009-02-01T23:59:59.000Z

179

Status of development of actinide blanket processing flowsheets for accelerator transmutation of nuclear waste  

SciTech Connect (OSTI)

An accelerator-driven subcritical nuclear system is briefly described that transmutes actinides and selected long-lived fission products. An application of this accelerator transmutation of nuclear waste (ATW) concept to spent fuel from a commercial nuclear power plant is presented as an example. The emphasis here is on a possible aqueous processing flowsheet to separate the actinides and selected long-lived fission products from the remaining fission products within the transmutation system. In the proposed system the actinides circulate through the thermal neutron flux as a slurry of oxide particles in heavy water in two loops with different average residence times: one loop for neptunium and plutonium and one for americium and curium. Material from the Np/Pu loop is processed with a short cooling time (5-10 days) because of the need to keep the total actinide inventory, low for this particular ATW application. The high radiation and thermal load from the irradiated material places severe constraints on the separation processes that can be used. The oxide particles are dissolved in nitric acid and a quarternary, ammonium anion exchanger is used to extract neptunium, plutonium, technetium, and palladium. After further cooling (about 90 days), the Am, Cm and higher actinides are extracted using a TALSPEAK-type process. The proposed operations were chosen because they have been successfully tested for processing high-level radioactive fuels or wastes in gram to kilogram quantities.

Dewey, H.J.; Jarvinen, G.D.; Marsh, S.F.; Schroeder, N.C.; Smith, B.F.; Villarreal, R.; Walker, R.B.; Yarbro, S.L.; Yates, M.A.

1993-09-01T23:59:59.000Z

180

Technical requirements for the actinide source-term waste test program  

SciTech Connect (OSTI)

This document defines the technical requirements for a test program designed to measure time-dependent concentrations of actinide elements from contact-handled transuranic (CH TRU) waste immersed in brines similar to those found in the underground workings of the Waste Isolation Pilot Plant (WIPP). This test program wig determine the influences of TRU waste constituents on the concentrations of dissolved and suspended actinides relevant to the performance of the WIPP. These influences (which include pH, Eh, complexing agents, sorbent phases, and colloidal particles) can affect solubilities and colloidal mobilization of actinides. The test concept involves fully inundating several TRU waste types with simulated WIPP brines in sealed containers and monitoring the concentrations of actinide species in the leachate as a function of time. The results from this program will be used to test numeric models of actinide concentrations derived from laboratory studies. The model is required for WIPP performance assessment with respect to the Environmental Protection Agency`s 40 CFR Part 191B.

Phillips, M.L.F.; Molecke, M.A.

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Thermally unstable complexants: Stability of lanthanide/actinide complexes, thermal instability of the ligands, and applications in actinide separations  

SciTech Connect (OSTI)

Water soluble complexing agents are commonly used in separations to enhance the selectivity of both ion exchange and solvent extraction processes. Applications of this type in the treatment of nuclear wastes using conventional complexing agents have found mixed success due to the nature of the complexants. In addition, the residual solutions containing these species have led to potentially serious complications in waste storage. To overcome some of the limitations of carboxylic acid and aminopolycarboxylate ligands, we have initiated a program to investigate the complexing ability, thermal/oxidative instability, and separation potential of a group of water soluble organophosphorus compounds which we call Thermally Unstable Complexants, or simply TUCS. Complexants of this type appear to be superior to conventional analogues in a number of respects. In this report, we will summarize our research to date on the actinide/lanthanide complexes with a series of substituted methanediphosphonic acids, the kinetics of their oxidative decomposition, and a few applications which have been developed for their use. 17 refs., 5 figs., 3 tab.

Nash, K.L.; Rickert, P.G.

1991-01-01T23:59:59.000Z

182

INL Joint Appointment Agreements The Joint Appointment Program...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at Idaho National Laboratory is designed to enhance research collaboration between INL and university staff. Joint appointees develop or conduct research and development at...

183

Enhancing BWR Proliferation Resistance Fuel with Minor Actinides  

SciTech Connect (OSTI)

Key aspects of the Global Nuclear Energy Partnership (GNEP) are to significantly advance the science and technology of nuclear energy systems and the Advanced Fuel Cycle (AFC) program. It consists of both innovative nuclear reactors and innovative research in separation and transmutation. To accomplish these goals, international cooperation is very important and public acceptance is crucial. The merits of nuclear energy are high-density energy, with low environmental impacts (i.e. almost zero greenhouse gas emission). Planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current light water reactors (LWRs) as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. The challenges are solving the energy needs of the world, protection against nuclear proliferation, the problem of nuclear waste, and the global environmental problem. To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu and 240Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides (237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of 238Pu /Pu. For future advanced nuclear systems, the minor actinides (MA) are viewed more as a resource to be recycled, or transmuted to less hazardous and possibly more useful forms, rather than simply as a waste stream to be disposed of in expensive repository facilities. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In the study, a typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate term goal for future nuclear energy systems. To account for the water coolant density variation from the bottom (0.76 g/cm3) to the top (0.35 g/cm3) of the core, the axial coolant channel and fuel pin were divided to 24 nodes. The MA transmutation characteristics at different elevations were compared and their impact on neutronics criticality discussed. We concluded that the concept of MARA, which involves the use of transuranic nuclides (237Np and/or 241Am), significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy rennaissance.

Gray S. Chang

2008-07-01T23:59:59.000Z

184

Experimental level-structure determination in odd-odd actinide nuclei  

SciTech Connect (OSTI)

The status of experimental determination of level structure in odd-odd actinide nuclei is reviewed. A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei is applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation are derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings are used. Calculated and experimental level structures for /sup 238/Np, /sup 244/Am, and /sup 250/Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Applications of this modeling technique are discussed.

Hoff, R.W.

1985-04-04T23:59:59.000Z

185

Metal to ceramic sealed joint  

DOE Patents [OSTI]

A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

Lasecki, John V. (Livonia, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

1991-01-01T23:59:59.000Z

186

Metal to ceramic sealed joint  

DOE Patents [OSTI]

A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

Lasecki, J.V.; Novak, R.F.; McBride, J.R.

1991-08-27T23:59:59.000Z

187

Minor Actinides Loading Optimization for Proliferation Resistant Fuel Design - BWR  

SciTech Connect (OSTI)

One approach to address the United States Nuclear Power (NP) 2010 program for the advanced light water reactor (LWR) (Gen-III+) intermediate-term spent fuel disposal need is to reduce spent fuel storage volume while enhancing proliferation resistance. One proposed solution includes increasing burnup of the discharged spent fuel and mixing minor actinide (MA) transuranic nuclides (237Np and 241Am) in the high burnup fuel. Thus, we can reduce the spent fuel volume while increasing the proliferation resistance by increasing the isotopic ratio of 238Pu/Pu. For future advanced nuclear systems, MAs are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. A typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of adding MAs (237Np and/or 241Am) to enhance proliferation resistance and improve fuel cycle performance for the intermediate-term goal of future nuclear energy systems. However, adding MAs will increase plutonium production in the discharged spent fuel. In this work, the Monte-Carlo coupling with ORIGEN-2.2 (MCWO) method was used to optimize the MA loading in the UO2 fuel such that the discharged spent fuel demonstrates enhanced proliferation resistance, while minimizing plutonium production. The axial averaged MA transmutation characteristics at different burnup were compared and their impact on neutronics criticality and the ratio of 238Pu/Pu discussed.

G. S. Chang; Hongbin Zhang

2009-09-01T23:59:59.000Z

188

ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION  

SciTech Connect (OSTI)

Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

Martino, C.; Herman, D.; Pike, J.; Peters, T.

2014-06-05T23:59:59.000Z

189

[working paper] Regional Economic Capacity, Economic Shocks,  

E-Print Network [OSTI]

1 [working paper] Regional Economic Capacity, Economic Shocks, and Economic that makes them more likely to resist economic shocks or to recover quickly from of resilience capacity developed by Foster (2012) is related to economic resilience

Sekhon, Jasjeet S.

190

Jointly Sponsored Research Program  

SciTech Connect (OSTI)

U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.

Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson

2009-03-31T23:59:59.000Z

191

Joint Center for Artificial Photosynthesis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Union address, January 26, 2011 Overview The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an...

192

Joint Center for Artificial Photosynthesis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JCAP North JCAP Headquarters Joint Center for Artificial Photosynthesis California Institute of Technology Jorgensen Laboratory, Mail Code 132-80 1200 East California Boulevard...

193

Joint Center for Artificial Photosynthesis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology....

194

Separation and analysis of actinides by extraction chromatography coupled with alpha-particle liquid scintillation spectrometry  

SciTech Connect (OSTI)

This work describes the development and testing of a new method for the separation and analysis of most actinides of interest in environmental samples. It combines simplified extraction chromatography using highly selective absorption resins (EiChrom columns) to partition the individual actinides with the measurement of their alpha-particle activities by liquid scintillation spectrometry using the Photon-Electron Rejecting Alpha Liquid Scintillation (PERALS{sup TM}) system. Water and soil samples along with environment quality-assurance standards are routinely processed by this method with an accuracy of {+-}5 to 20% at activity levels of 0.01 to 0.1 Bq.

Cadieux, J.R. Jr.; Reboul, S.H. [Westinghouse Savannah River Co., Aiken, SC (United States)

1996-11-01T23:59:59.000Z

195

Reliable estimation of shock position in shock-capturing compressible hydrodynamics codes  

SciTech Connect (OSTI)

The displacement method for estimating shock position in a shock-capturing compressible hydrodynamics code is introduced. Common estimates use simulation data within the captured shock, but the displacement method uses data behind the shock, making the estimate consistent with and as reliable as estimates of material parameters obtained from averages or fits behind the shock. The displacement method is described in the context of a steady shock in a one-dimensional lagrangian hydrodynamics code, and demonstrated on a piston problem and a spherical blast wave.The displacement method's estimates of shock position are much better than common estimates in such applications.

Nelson, Eric M [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

196

Stability of shocks relating to the shock ignition inertial fusion energy scheme  

SciTech Connect (OSTI)

Motivated by the shock ignition approach to improve the performance of inertial fusion targets, we make a series of studies of the stability of shock waves in planar and converging geometries. We examine stability of shocks moving through distorted material and driving shocks with non-uniform pressure profiles. We then apply a fully 3D perturbation, following this spherically converging shock through collapse to a distorted plane, bounce and reflection into an outgoing perturbed, broadly spherical shock wave. We find broad shock stability even under quite extreme perturbation.

Davie, C. J., E-mail: c.davie10@imperial.ac.uk; Bush, I. A.; Evans, R. G. [Imperial College London, London SW7 2AZ (United Kingdom)

2014-08-15T23:59:59.000Z

197

Hypersonic Molecular Shocks in Star Forming Regions  

E-Print Network [OSTI]

Much emission from star forming regions is from shock-excited gas. Shocks in molecular clouds are still not fully understood, as magnetic fields, dust and chemistry all play significant roles. I review the history, physics and current work in understanding these shocks, and in their possible use as diagnostics of local conditions.

Brand, P W J L

2006-01-01T23:59:59.000Z

198

Hypersonic Molecular Shocks in Star Forming Regions  

E-Print Network [OSTI]

Much emission from star forming regions is from shock-excited gas. Shocks in molecular clouds are still not fully understood, as magnetic fields, dust and chemistry all play significant roles. I review the history, physics and current work in understanding these shocks, and in their possible use as diagnostics of local conditions.

Peter W. J. L. Brand

2006-09-08T23:59:59.000Z

199

SCATTERING BEHAVIOR OF TRANSITIONAL SHOCK WAVES  

E-Print Network [OSTI]

SCATTERING BEHAVIOR OF TRANSITIONAL SHOCK WAVES Kevin R. Zumbrun Bradley J. Plohr Dan Marchesin September, 1991 Abstract. We study the stability and asymptotic behavior of transitional shock waves as solutions of a parabolic system of conservation laws. In contrast to classical shock waves, transitional

New York at Stoney Brook, State University of

200

Heliospheric shocks and sheaths John D. Richardson  

E-Print Network [OSTI]

into the thermal ions but instead heated these pickup ions. ICME-driven shocks are studied and compared to planetary bow shocks and the TS to see if pickup ions affect the heating at these shocks. The percentage in planetary magnetosheaths at the same distance. However, outside 35 AU, no reflected thermal ions

Richardson, John

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Foreign Fishery Developments Japanese Joint  

E-Print Network [OSTI]

-215. In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nationsForeign Fishery Developments Japanese Joint Fishing Ventures Stabilize Activity Trawling Skipjack tuna harvest Whaling Other harvests Aquaculture Refrigeration operations Fish processing Average $1

202

Joint Seminar Risk Management Institute &  

E-Print Network [OSTI]

Joint Seminar Risk Management Institute & Department of Decision Sciences Details of Seminar Date and statistics is leading to a greatly broadened theory of regression which draws on tools of convex analysis with factor analysis in finance and economics. Risk Management Institute Joint Seminar #12;

Chaudhuri, Sanjay

203

Shock waves in strongly coupled plasmas  

SciTech Connect (OSTI)

Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper, we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically AdS{sub 5} space. In the gravity approximation, weak and strong shocks should be described by smooth metrics with no discontinuities. For weak shocks, we find the dual metric in a derivative expansion, and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular, we find that, when the velocity of the fluid relative to the shock approaches the speed of light v{yields}1 the penetration depth l scales as l{approx}(1-v{sup 2}){sup 1/4}. We compare the results with second-order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.

Khlebnikov, Sergei; Kruczenski, Martin; Michalogiorgakis, Georgios [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907 (United States)

2010-12-15T23:59:59.000Z

204

Hydraulic/Shock-Jumps in Protoplanetary Disks  

E-Print Network [OSTI]

In this paper, we describe the nonlinear outcome of spiral shocks in protoplanetary disks. Spiral shocks, for most protoplanetary disk conditions, create a loss of vertical force balance in the post-shock region and result in rapid expansion of the gas perpendicular to the disk midplane. This expansion has characteristics similar to hydraulic jumps, which occur in incompressible fluids. We present a theory to describe the behavior of these hybrids between shocks and hydraulic jumps (shock bores) and then compare the theory to three-dimensional hydrodynamics simulations. We discuss the fully three-dimensional shock structures that shock bores produce and discuss possible consequences for disk mixing, turbulence, and evolution of solids.

A. C. Boley; R. H. Durisen

2006-03-10T23:59:59.000Z

205

Shock-induced chemistry in organic materials  

SciTech Connect (OSTI)

The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

2011-01-20T23:59:59.000Z

206

ELECTRONIC STRUCTURE IN METALS AND ALLOYS. ELECTRONIC STRUCTURE OF THE LIGHT ACTINIDES  

E-Print Network [OSTI]

ELECTRONIC STRUCTURE IN METALS AND ALLOYS. ELECTRONIC STRUCTURE OF THE LIGHT ACTINIDES B. D. DUNLAP electrons. A review is given of some areas of current interest, especially where hyperfine techniques have the 60 keV y-ray of 237Np[l]. At that time, our understanding of the electronic properties

Boyer, Edmond

207

Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation  

SciTech Connect (OSTI)

Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of radiotoxicity and residual power packages as well as the repository area. In the SUPERFACT Experiment four different oxide fuels containing high and low concentrations of {sup 237}Np and {sup 241}Am, representing the homogeneous and heterogeneous in-pile recycling concepts, were irradiated in the PHENIX reactor. The behavior of advanced fuel materials with minor actinide needs to be fully characterized, understood and modeled in order to optimize the design of this kind of fuel elements and to evaluate its performances. This paper assesses the current predictability of fuel performance codes TRANSURANUS and GERMINAL V2 on the basis of post irradiation examinations of the SUPERFACT experiment for pins with low minor actinide content. Their predictions have been compared to measured data in terms of geometrical changes of fuel and cladding, fission gases behavior and actinide and fission product distributions. The results are in good agreement with the experimental results, although improvements are also pointed out for further studies, especially if larger content of minor actinide will be taken into account in the codes. (authors)

Bouineau, V.; Lainet, M.; Chauvin, N.; Pelletier, M. [French Alternative Energies and Atomic Energy Commission - CEA, CEA Cadarache, DEN/DEC/SESC, 13108 Saint Paul lez Durance (France); Di Marcello, V.; Van Uffelen, P.; Walker, C. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D- 76344 Eggenstein-Leopoldshafen (Germany)

2013-07-01T23:59:59.000Z

208

EXPERIENCE SUMMARY Development of the TALSqueak (Trivalent Actinide Lanthanide Separation using QUicker Extractants and  

E-Print Network [OSTI]

trivalent actinides Development of Warm Water Oxidation chemistry for remediation of Hanford's K Basin Development of the LimeAid Process to compliment the efforts of Hanford's Waste Treatment Plant Investigation sludge remediation of the Hanford Site Determination of thermodynamic parameters for biphasic systems

209

Shock Properties of Fansteel85  

SciTech Connect (OSTI)

The shock response of Fansteel85 was investigated in the pressure range 10-90 GPa. The linear U{sub s}-U{sub p} coefficients were found to be C = 4.160 {+-} .015 km/s and S = 1.195 {+-} .015. Ultrasound measurements yielded C{sub L} = 4.827 and C{sub T} = 2.101, implying a bulk sound speed C{sub B} = 4.173, which is in excellent agreement with the measured value for C. The Hugoniot elastic limit was determined to be 3.11 {+-} .05 GPa at U{sub p} = .0595 {+-} .001 km/s and U{sub s} = 4.886 {+-} .01 km/s. The speed of sound in the material behind the shock front was determined to be 5.10 {+-} .06 km/s at 10.2 GPa and 5.25 {+-} .06 km/s at 20.6 GPa.

Erskine, D J; Nellis, W J

2008-08-22T23:59:59.000Z

210

Shock response of dry sand.  

SciTech Connect (OSTI)

The dynamic compaction of sand was investigated experimentally and computationally to stresses of 1.8 GPa. Experiments have been performed in the powder's partial compaction regime at impact velocities of approximately 0.25, 0.5, and 0.75 km/s. The experiments utilized multiple velocity interferometry probes on the rear surface of a stepped target for an accurate measurement of shock velocity, and an impedance matching technique was used to deduce the shock Hugoniot state. Wave profiles were further examined for estimates of reshock states. Experimental results were used to fit parameters to the P-Lambda model for porous materials. For simple 1-D simulations, the P-Lambda model seems to capture some of the physics behind the compaction process very well, typically predicting the Hugoniot state to within 3%.

Reinhart, William Dodd; Thornhill, Tom Finley, III (,; ); Chhabildas, Lalit C.. (..); Vogler, Tracy John; Brown, Justin L.

2007-08-01T23:59:59.000Z

211

Joint Capability Technology Demonstration (JCTD) Industry Day...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Joint Capability Technology Demonstration (JCTD) Industry Day Agenda Joint Capability Technology Demonstration (JCTD) Industry Day Agenda Agenda outlines the activities of the 2014...

212

PROTON ACCELERATION AT OBLIQUE SHOCKS  

SciTech Connect (OSTI)

Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

Galinsky, V. L.; Shevchenko, V. I., E-mail: vit@ucsd.edu [ECE Department, UC San Diego, MC 407, La Jolla, CA 92093-0407 (United States)

2011-06-20T23:59:59.000Z

213

Remote shock sensing and notification system  

DOE Patents [OSTI]

A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

Muralidharan, Govindarajan (Knoxville, TN); Britton, Charles L. (Alcoa, TN); Pearce, James (Lenoir City, TN); Jagadish, Usha (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

2008-11-11T23:59:59.000Z

214

Joint probabilities and quantum cognition  

SciTech Connect (OSTI)

In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

Acacio de Barros, J. [Liberal Studies, 1600 Holloway Ave., San Francisco State University, San Francisco, CA 94132 (United States)

2012-12-18T23:59:59.000Z

215

Normal shock solutions to the viscous shock layer equations including thermal, chemical, thermodynamic, and radiative nonequilibrium  

E-Print Network [OSTI]

An existing axisymmetric body viscous shock layer code including chemical, thermal, and thermodynamic nonequilibrium and nonequilibrium radiative gasdynamic coupling is adapted to simulate the one-dimensional flow within a shock tube. A suitable...

Mott, David Ray

1993-01-01T23:59:59.000Z

216

Shock-activated electrochemical power supplies  

DOE Patents [OSTI]

A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolyte rendering the electrolyte electrochemically active. 2 figs.

Benedick, W.B.; Graham, R.A.; Morosin, B.

1987-04-20T23:59:59.000Z

217

Shock-activated electrochemical power supplies  

DOE Patents [OSTI]

A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active. 2 figs.

Benedick, W.B.; Graham, R.A.; Morosin, B.

1988-11-08T23:59:59.000Z

218

Shocks and sheaths in the heliosphere John D. Richardson  

E-Print Network [OSTI]

: Heliosphere Shocks Sheaths a b s t r a c t This paper compares three kinds of shocks and sheaths; the bow compares shocks and sheaths which form in the solar wind due to interactions with planets (bow shocks of the termination shock but the average increases by a factor of 2, and the temperature of the thermal protons

Richardson, John

219

Potentiometric Sensor for Real-Time Remote Surveillance of Actinides in Molten Salts  

SciTech Connect (OSTI)

A potentiometric sensor is being developed at the Idaho National Laboratory for real-time remote surveillance of actinides during electrorefining of spent nuclear fuel. During electrorefining, fuel in metallic form is oxidized at the anode while refined uranium metal is reduced at the cathode in a high temperature electrochemical cell containing LiCl-KCl-UCl3 electrolyte. Actinides present in the fuel chemically react with UCl3 and form stable metal chlorides that accumulate in the electrolyte. This sensor will be used for process control and safeguarding of activities in the electrorefiner by monitoring the concentrations of actinides in the electrolyte. The work presented focuses on developing a solid-state cation conducting ceramic sensor for detecting varying concentrations of trivalent actinide metal cations in eutectic LiCl-KCl molten salt. To understand the basic mechanisms for actinide sensor applications in molten salts, gadolinium was used as a surrogate for actinides. The ß?-Al2O3 was selected as the solid-state electrolyte for sensor fabrication based on cationic conductivity and other factors. In the present work Gd3+-ß?-Al2O3 was prepared by ion exchange reactions between trivalent Gd3+ from GdCl3 and K+-, Na+-, and Sr2+-ß?-Al2O3 precursors. Scanning electron microscopy (SEM) was used for characterization of Gd3+-ß?-Al2O3 samples. Microfocus X-ray Diffraction (µ-XRD) was used in conjunction with SEM energy dispersive X-ray spectroscopy (EDS) to identify phase content and elemental composition. The Gd3+-ß?-Al2O3 materials were tested for mechanical and chemical stability by exposing them to molten LiCl-KCl based salts. The effect of annealing on the exchanged material was studied to determine improvements in material integrity post ion exchange. The stability of the ß?-Al2O3 phase after annealing was verified by µ-XRD. Preliminary sensor tests with different assembly designs will also be presented.

Natalie J. Gese; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson

2012-07-01T23:59:59.000Z

220

Time reversal duality of magnetohydrodynamic shocks  

SciTech Connect (OSTI)

The shock conditions in magnetohydrodynamics (MHD) are reduced to their most concise, three-parameter, distilled form by consistent use of the scale independence of the MHD equations and of the de Hoffmann-Teller transformation. They then exhibit a distinct time reversal duality between entropy-allowed shocks and entropy-forbidden jumps. This yields a new classification of MHD shocks by means of the monotonicity properties with respect to upstream and downstream Alfven Mach numbers, it exhibits the central role of intermediate discontinuities, and permits straightforward construction of all relevant dimensionless quantities of the shocks. An exhaustive overview is presented of solutions in the different parameter regimes.

Goedbloed, J. P. [FOM-Institute for Plasma Physics 'Rijnhuizen', Nieuwegein and Astronomical Institute, Utrecht University, Utrecht 3439 MN (Netherlands)

2008-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Acceleration time scale at ultrarelativistic shock waves  

E-Print Network [OSTI]

The first-order cosmic ray acceleration at ultrarelativistic shocks is investigated using the Monte Carlo method. We apply a method of discrete particle momentum scattering as a model of particle pitch angle diffusion to reproduce highly anisotropic conditions at the shock wave. Shocks with Lorentz factors $\\gamma$ up to 320 and varying magnetic field inclinations $\\psi$ are considered. Values of diffusion coefficients upstream in the point where energy spectral indices stabilize to the limit 2.2 were calculated. The obtained acceleration time does not depend on shock conditions.

J. Bednarz

1998-08-26T23:59:59.000Z

222

Transient absorption spectroscopy of laser shocked explosives  

SciTech Connect (OSTI)

Transient absorption spectra from 390-890 nm of laser shocked RDX, PETN, sapphire, and polyvinylnitrate (PVN) at sub-nanosecond time scales are reported. RDX shows a nearly linear increase in absorption with time after shock at {approx}23 GPa. PETN is similar, but with smaller total absorption. A broad visible absorption in sapphire begins nearly immediately upon shock loading but does not build over time. PVN exhibits thin film interference in the absorption spectra along with increased absorption with time. The absorptions in RDX and PETN are suggested to originate in chemical reactions happening on picosecond time scales at these shock stresses, although further diagnostics are required to prove this interpretation.

Mcgrane, Shawn D [Los Alamos National Laboratory; Dang, Nhan C [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Bolome, Cindy A [Los Alamos National Laboratory; Moore, D S [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

223

Thermal Shock-resistant Cement  

SciTech Connect (OSTI)

We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

Sugama T.; Pyatina, T.; Gill, S.

2012-02-01T23:59:59.000Z

224

Test of Actinide-Lanthanide Separation in an Aluminum-Based Pyrochemical System  

SciTech Connect (OSTI)

The investigation of the actinide and lanthanide distribution between a liquid metal and a molten fluoride salt shows a significant increase of the separation coefficient by using an aluminum-based pyrochemical system instead of a zinc-based system. The obtained values partly depend on the LiF/AlF{sub 3} ratio and can reach more than 30 000 when AlF{sub 3} is in excess with regard to the formation of the cryolite (Li{sub 3} AlF{sub 6}). Furthermore, in the metal phase, the aluminum interacts with the lanthanides to a lesser extent than in other usual metallic solvents. This opens a new way to explore the feasibility of the separation of actinides and lanthanides in the field of nuclear fuel reprocessing.

Rault, Laurence [Institut National Polytechnique de Grenoble (France); Heusch, Murielle [Institut National Polytechnique de Grenoble (France); Allibert, Michel [Institut National Polytechnique de Grenoble (France); Lemort, Florent [Commissariat a l'Energie Atomique (CEA) (France); Deschane, Xavier [Commissariat a l'Energie Atomique (CEA) (France); Boen, Roger [Commissariat a l'Energie Atomique (CEA) (France)

2002-08-15T23:59:59.000Z

225

Evaluation of Fluid Conduction and Mixing within a Subassembly of the Actinide Burner Test Reactor  

SciTech Connect (OSTI)

The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of the Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid, including axial and radial heat conduction and subchannel mixing, that are not currently represented with internal code models. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor.

Cliff B. Davis

2007-09-01T23:59:59.000Z

226

Final Technical Progress Report Long term risk from actinides in the environment: Modes of mobility  

SciTech Connect (OSTI)

The key source of uncertainty in assessing actinide mobility is the relative importance of transport by: (1) wind erosion, (2) water erosion, and (3) vertical migration. Each of these three processes depends on several environmental factors and they compete with one another. A scientific assessment of the long-term risks associated with actinides in surface soils depends on better quantifying each of these three modes of mobility. The objective from our EMSP study was to quantify the mobility of soil actinides by wind erosion, water erosion, and vertical migration at three semiarid sites where actinide mobility is a key technical, social and legal issue. This EMSP project was the first to evaluate all three factors at a site. The approach has been to investigate both short- and long-term issues based on field and lab studies and model comparisons. Our results demonstrate the importance of incorporating threshold responses into a modeling framework that accounts for environmental factors and natural disturbances that trigger large changes in actinide mobility. The study measured erosional losses of sediment and fallout cesium (an actinide analogue) from field plots located near WIPP in 1998. The results highlight the large effect of burning as a disturbance on contaminant transport and mobility via runoff and erosion. The results show that runoff, erosion, and actinide transport are (1) strongly site specific-differences in radionuclide transport between WIPP and Rocky Flats differed by a factor of twelve because of soil and vegetation differences, and (2) are strongly impacted by disturbances such as fire, which can increase runoff, erosion, and actinide transport by more than an order of magnitude. In addition, a laboratory experiment using soil columns was conducted to investigate the vertical transport of contaminants in sandy soils. Nine columns of soil collected from the vicinity of the WIPP site were prepared. The column consisted of a piece of PVC pipe 20 cm in diameter and approximately 22 cm long. A thin ''marker layer'' of white soil was added to the top of each column followed by a thin layer of soil that had been spiked with 137Cs, cerium and lanthanum was applied to the surface. Approximately 900 cm of water (the equivalent of about 30 years of rainfall) was then applied at a rate of 3.2 L d-1. All of the activity contained in the soil core appeared to be in the top few mm of soil, i.e. there was virtually no movement of the 134Cs labeled particles. Finally, a library of object-oriented model components was created using Visual Basic to support the construction of contaminant transport models. These components greatly simplify the task of building 1- to 3- dimensional simulation models for risk assessment. The model components created under this funding were subsequently applied to help answer questions regarding risks from irrigation associated with potential releases from the Yucca Mountain waste repository.

Thomas B. Kirchner

2002-03-22T23:59:59.000Z

227

Strategic Design and Optimization of Inorganic Sorbents for Cesium, Strontium and Actinides  

SciTech Connect (OSTI)

The basic science goal in this project is to identify structure/affinity relationships for selected radionuclides and existing sorbents. The research will then apply this knowledge to the design and synthesis of sorbents that will exhibit increased cesium, strontium and actinide removal. The target problem focuses on the treatment of high-level nuclear wastes. The general approach can likewise be applied to non-radioactive separations.

Maginn, Edward J.

2005-07-01T23:59:59.000Z

228

Strategic Design and Optimization of Inorganic Sorbents For Cesium, Strontium and Actinides  

SciTech Connect (OSTI)

The basic science goal in this project identifies structure/affinity relationships for selected radionuclides and existing sorbents. The task will apply this knowledge to the design and synthesis of new sorbents that will exhibit increased affinity for cesium, strontium and actinide separations. The target problem focuses on the treatment of high-level nuclear wastes. The general approach can likewise be applied to nonradioactive separations.

Hobbs, D.; Nyman, M.; Clearfield, A.; Maginn, E.

2006-06-01T23:59:59.000Z

229

Influence of microorganisms on the oxidation state distribution of multivalent actinides under anoxic conditions  

SciTech Connect (OSTI)

The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.

Reed, Donald Timothy [Los Alamos National Laboratory; Borkowski, Marian [Los Alamos National Laboratory; Lucchini, Jean - Francois [Los Alamos National Laboratory; Ams, David [Los Alamos National Laboratory; Richmann, M. K. [Los Alamos National Laboratory; Khaing, H. [Los Alamos National Laboratory; Swanson, J. S. [Los Alamos National Laboratory

2010-12-10T23:59:59.000Z

230

Dynamic tests for actinide/lanthanide separation by CMPO solvent in fluorinated diluents  

SciTech Connect (OSTI)

Actinide and lanthanide extraction by new solvent: 0.2 M phenyl-octyl-N,N-diiso-butylcarbamoyl-phosphine oxide (CMPO) + 30% TBP + formal of octafluoro-pentanol was studied. A dynamic test with this solvent was performed. It was shown that americium and lanthanides are effectively extracted from PUREX process raffinate. The separation of americium from light lanthanides was confirmed in the modified SETFICS flowsheet with this new solvent. (authors)

Tkachenko, L.; Babain, V.; Alyapyshev, M.; Vizniy, A.; Il'in, A. [V. G. Khlopin Radium Institute, 2nd Murinskiy Ave 28., St. Petersburg 194021 (Russian Federation); Shadrin, A. [A.A. Bochvar High-technology Research Institute of Inorganic Materials, 5-a, Rogova str., Moscow 123098 (Russian Federation)

2013-07-01T23:59:59.000Z

231

Electronic Structure of Transition Metal Clusters and Actinide Complexes and Their Reactivity  

SciTech Connect (OSTI)

Our research in this area since October 2007 has resulted in seven completed publications and more papers of the completed work are in progress. Our work during this period principally focused on actinide complexes with secondary emphasis on spectroscopic properties and electronic structure of metal complexes. As the publications are available online with all of the details of the results, tables and figures, we are providing here only a brief summary of major highlights, in each of the categories.

Balasubramanian, K

2008-10-06T23:59:59.000Z

232

Shock compression profiles in ceramics  

SciTech Connect (OSTI)

An investigation of the shock compression properties of high-strength ceramics has been performed using controlled planar impact techniques. In a typical experimental configuration, a ceramic target disc is held stationary, and it is struck by plates of either a similar ceramic or by plates of a well-characterized metal. All tests were performed using either a single-stage propellant gun or a two-stage light-gas gun. Particle velocity histories were measured with laser velocity interferometry (VISAR) at the interface between the back of the target ceramic and a calibrated VISAR window material. Peak impact stresses achieved in these experiments range from about 3 to 70 GPa. Ceramics tested under shock impact loading include: Al{sub 2}O{sub 3}, AlN, B{sub 4}C, SiC, Si{sub 3}N{sub 4}, TiB{sub 2}, WC and ZrO{sub 2}. This report compiles the VISAR wave profiles and experimental impact parameters within a database-useful for response model development, computational model validation studies, and independent assessment of the physics of dynamic deformation on high-strength, brittle solids.

Grady, D.E.; Moody, R.L.

1996-03-01T23:59:59.000Z

233

Shear shocks in fragile networks  

E-Print Network [OSTI]

A minimal model for studying the mechanical properties of amorphous solids is a disordered network of point masses connected by unbreakable springs. At a critical value of its mean connectivity, such a network becomes fragile: it undergoes a rigidity transition signaled by a vanishing shear modulus and transverse sound speed. We investigate analytically and numerically the linear and non-linear visco-elastic response of these fragile solids by probing how shear fronts propagate through them. Our approach, that we tentatively label shear front rheology, provides an alternative route to standard oscillatory rheology. In the linear regime, we observe at late times a diffusive broadening of the fronts controlled by an effective shear viscosity that diverges at the critical point. No matter how small the microscopic coefficient of dissipation, strongly disordered networks behave as if they were over-damped because energy is irreversibly leaked into diverging non-affine fluctuations. Close to the transition, the regime of linear response becomes vanishingly small: the tiniest shear strains generate strongly non-linear shear shock waves qualitatively different from their compressional counterparts in granular media. The inherent non-linearities trigger an energy cascade from low to high frequency components that keep the network away from attaining the quasi-static limit. This mechanism, reminiscent of acoustic turbulence, causes a super-diffusive broadening of the shock width.

Stephan Ulrich; Nitin Upadhyaya; Bas van Opheusden; Vincenzo Vitelli

2013-07-29T23:59:59.000Z

234

QUANTIFICATION OF ACTINIDE ALPHA-RADIATION DAMAGE IN MINERALS AND CERAMICS  

SciTech Connect (OSTI)

There are large amounts of heavy alpha-emitters in nuclear waste and nuclear materials inventories stored in various sites around the world. These include plutonium and minor actinides such as americium and curium. In preparation for geological disposal there is a consensus that actinides that have been separated from spent nuclear fuel should be immobilised within mineral-based ceramics rather than glass. Over the long-term, the alpha-decay taking place in these ceramics will severely disrupt their crystalline structure and reduce their durability. A fundamental property in predicting cumulative radiation damage is the number of atoms permanently displaced per alpha–decay. Currently, this number is estimated as 1000-2000 atoms/alpha decay event. Here, we report nuclear magnetic resonance, spin-counting experiments that measure close to 5000 atoms/alpha decay event in radiation damaged natural zircons. New radiological NMR measurements on highly radioactive, 239Pu zircon show damage similar to that created by 238U and 232Th in mineral zircons at the same dose, indicating no significant effect of dose rate. Based on these measurements, the initially crystalline structure of a 10 wt% 239Pu zircon would be amorphous after only 1400 years in a geological repository. These measurements establish a basis for assessing the long-term structural durability of actinide-containing ceramics based on an atomistic understanding of the fundamental damage event.

Farnan, Ian E.; Cho, Herman M.; Weber, William J.

2007-01-11T23:59:59.000Z

235

Dissolution of metal oxides and separation of uranium from lanthanides and actinides in supercritical carbon dioxide  

SciTech Connect (OSTI)

This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO{sub 2}) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO{sub 2} modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO{sub 2} modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO{sub 2} and counter current stripping columns is presented. (authors)

Quach, D.L.; Wai, C.M. [Department of Chemistry, University of Idaho, Moscow, Idaho 83844 (United States); Mincher, B.J. [Idaho National Lab, Idaho Falls, Idaho (United States)

2013-07-01T23:59:59.000Z

236

Actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP): FY94 results  

SciTech Connect (OSTI)

This document contains six reports on actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP). These reports, completed in FY94, are relevant to the estimation of the potential dissolved actinide concentrations in WIPP brines under repository breach scenarios. Estimates of potential dissolved actinide concentrations are necessary for WIPP performance assessment calculations. The specific topics covered within this document are: the complexation of oxalate with Th(IV) and U(VI); the stability of Pu(VI) in one WIPP-specific brine environment both with and without carbonate present; the solubility of Nd(III) in a WIPP Salado brine surrogate as a function of hydrogen ion concentration; the steady-state dissolved plutonium concentrations in a synthetic WIPP Culebra brine surrogate; the development of a model for Nd(III) solubility and speciation in dilute to concentrated sodium carbonate and sodium bicarbonate solutions; and the development of a model for Np(V) solubility and speciation in dilute to concentrated sodium Perchlorate, sodium carbonate, and sodium chloride media.

Novak, C.F. [ed.

1995-08-01T23:59:59.000Z

237

JOWOG 22/2 - Actinide Chemical Technology (July 9-13, 2012)  

SciTech Connect (OSTI)

The Plutonium Science and Manufacturing Directorate provides world-class, safe, secure, and reliable special nuclear material research, process development, technology demonstration, and manufacturing capabilities that support the nation's defense, energy, and environmental needs. We safely and efficiently process plutonium, uranium, and other actinide materials to meet national program requirements, while expanding the scientific and engineering basis of nuclear weapons-based manufacturing, and while producing the next generation of nuclear engineers and scientists. Actinide Process Chemistry (NCO-2) safely and efficiently processes plutonium and other actinide compounds to meet the nation's nuclear defense program needs. All of our processing activities are done in a world class and highly regulated nuclear facility. NCO-2's plutonium processing activities consist of direct oxide reduction, metal chlorination, americium extraction, and electrorefining. In addition, NCO-2 uses hydrochloric and nitric acid dissolutions for both plutonium processing and reduction of hazardous components in the waste streams. Finally, NCO-2 is a key team member in the processing of plutonium oxide from disassembled pits and the subsequent stabilization of plutonium oxide for safe and stable long-term storage.

Jackson, Jay M. [Los Alamos National Laboratory; Lopez, Jacquelyn C. [Los Alamos National Laboratory; Wayne, David M. [Los Alamos National Laboratory; Schulte, Louis D. [Los Alamos National Laboratory; Finstad, Casey C. [Los Alamos National Laboratory; Stroud, Mary Ann [Los Alamos National Laboratory; Mulford, Roberta Nancy [Los Alamos National Laboratory; MacDonald, John M. [Los Alamos National Laboratory; Turner, Cameron J. [Los Alamos National Laboratory; Lee, Sonya M. [Los Alamos National Laboratory

2012-07-05T23:59:59.000Z

238

DISSOLUTION OF METAL OXIDES AND SEPARATION OF URANIUM FROM LANTHANIDES AND ACTINIDES IN SUPERCRITICAL CARBON DIOXIDE  

SciTech Connect (OSTI)

This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO2 modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO2 and counter current stripping columns is presented.

Donna L. Quach; Bruce J. Mincher; Chien M. Wai

2013-10-01T23:59:59.000Z

239

Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms - Final Report  

SciTech Connect (OSTI)

The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials.

Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandra

2001-03-01T23:59:59.000Z

240

Heat Shock Response Modulators as Therapeutic  

E-Print Network [OSTI]

Heat Shock Response Modulators as Therapeutic Tools for Diseases of Protein Conformation* Published. This review addresses the regulation of molecular chaperones and components of protein homeostasis by heat understanding of pharmacologically active small molecule regu- lators of the heat shock response

Morimoto, Richard

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Quasi-perpendicular Shock Structure and Processes  

E-Print Network [OSTI]

and Thermalization 5.2.1 Bow shock orientation and global structure Knowledge of the basic parameters of a shock responsible for the overall thermalization of the principle plasma populations as well as the acceleration of an energetic non-thermal com- ponent. Despite the considerable effort, key questions remained unanswered or re

California at Berkeley, University of

242

Technique and application for quantifying dynamic shoulder joint kinematics and glenohumeral joint contact patterns  

E-Print Network [OSTI]

The shoulder (glenohumeral) joint has the greatest range of motion of all human joints; as a result, it is particularly vulnerable to dislocation and injury. The ability to accurately measure dynamic in-vivo joint kinematics ...

Massimini, Daniel Frank

2014-01-01T23:59:59.000Z

243

Fundamentals of Non-relativistic Collisionless Shock Physics: III. Quasi-Perpendicular Supercritical Shocks  

E-Print Network [OSTI]

The theory and simulations of quasi-perpendicular and strictly perpendicular collisionless shocks are reviewed. The text is structured into the following sections and subsections: 1. Setting the frame, where the quasi-perpendicular shock problem is formulated, reflected particle dynamics is described in theoretical terms, foot formation and foot ion acceleration discussed, and the shock potential explained. 2. Shock structure, 3. Ion dynamics, describing its role in shock reformation and the various ion-excited instabilities. 4. Electron dynamics, describing electron instabilities in the foot; 5. The problem of stationarity, posing the theoretical reasons for shocks being non-stationary, discussing nonlinear whistler mediated variability, two-stream and modified two-stream variability, formation of ripples in two-dimensions, 6. Summary and conclusions: The possibility of shock breaking.

R. A. Treumann; C. H. Jaroschek

2008-05-14T23:59:59.000Z

244

Ion acceleration processes at reforming collisionless shocks  

E-Print Network [OSTI]

The identification of pre-acceleration mechanisms for cosmic ray ions in supernova remnant shocks is an important problem in astrophysics. Recent particle-in-cell (PIC) shock simulations have shown that inclusion of the full electron kinetics yields non-time-stationary solutions, in contrast to previous hybrid (kinetic ions, fluid electrons) simulations. Here, by running a PIC code at high phase space resolution, ion acceleration mechanisms associated with the time dependence of a supercritical collisionless perpendicular shock are examined. In particular the components of $\\int \\mathbf{F} \\cdot \\mathbf{v} dt$ are analysed along trajectories for ions that reach both high and low energies. Selection mechanisms for the ions that reach high energies are also examined. In contrast to quasi-stationary shock solutions, the suprathermal protons are selected from the background population on the basis of the time at which they arrive at the shock, and thus are generated in bursts.

R. E. Lee; S. C. Chapman; R. O. Dendy

2004-10-25T23:59:59.000Z

245

Oil Price Shocks: Causes and Consequences  

E-Print Network [OSTI]

Research on oil markets conducted during the last decade has challenged long-held beliefs about the causes and consequences of oil price shocks. As the empirical and theoretical models used by economists have evolved, so has our understanding of the determinants of oil price shocks and of the interaction between oil markets and the global economy. Some of the key insights are that the real price of oil is endogenous with respect to economic fundamentals, and that oil price shocks do not occur ceteris paribus. This makes it necessary to explicitly account for the demand and supply shocks underlying oil price shocks when studying their transmission to the domestic economy. Disentangling cause and effect in the relationship between oil prices and the economy requires structural models of the global economy including oil and other commodity markets.

Lutz Kilian; Key Words

246

Molecular shock response of explosives: electronic absorption spectroscopy  

SciTech Connect (OSTI)

Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the question of the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference from the shock front as well as broadband increased absorption. Relation to shock initiation hypotheses and the need for time dependent absorption data (future experiments) is briefly discussed.

Mcgrne, Shawn D [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Bolme, Cindy A [Los Alamos National Laboratory; Eakins, Daniel E [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

247

Joint measurability through Naimark's theorem  

E-Print Network [OSTI]

We use Naimark's dilation theorem in order to characterize the joint measurability of two POVMs. Then, we analyze the joint measurability of two commutative POVMs $F_1$ and $F_2$ which are the smearing of two self-adjoint operators $A_1$ and $A_2$ respectively. We prove that the compatibility of $F_1$ and $F_2$ is connected to the existence of two compatible self-adjoint dilations $A_1^+$ and $A_2^+$ of $A_1$ and $A_2$ respectively. As a corollary we prove that each couple of self-adjoint operators can be dilated to a couple of compatible self-adjoint operators. Next, we analyze the joint measurability of the unsharp position and momentum observables and show that it provides a master example of the scheme we propose. Finally, we give a sufficient condition for the compatibility of two effects.

Roberto Beneduci

2014-04-05T23:59:59.000Z

248

Joint Institutes | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologies |JenniferB. StorerJohnofJoint GenomeJoint

249

An Assessment of Spent Fuel Reprocessing for Actinide Destruction and Resource Sustainability.  

SciTech Connect (OSTI)

The reprocessing and recycling of spent nuclear fuel can benefit the nuclear fuel cycle by destroying actinides or extending fissionable resources if uranium supplies become limited. The purpose of this study was to assess reprocessing and recycling in both fast and thermal reactors to determine the effectiveness for actinide destruction and resource utilization. Fast reactor recycling will reduce both the mass and heat load of actinides by a factor of 2, but only after 3 recycles and many decades. Thermal reactor recycling is similarly effective for reducing actinide mass, but the heat load will increase by a factor of 2. Economically recoverable reserves of uranium are estimated to sustain the current global fleet for the next 100 years, and undiscovered reserves and lower quality ores are estimated to contain twice the amount of economically recoverable reserves--which delays the concern of resource utilization for many decades. Economic analysis reveals that reprocessed plutonium will become competitive only when uranium prices rise to about %24360 per kg. Alternative uranium sources are estimated to be competitive well below that price. Decisions regarding the development of a near term commercial-scale reprocessing fuel cycle must partially take into account the effectiveness of reactors for actnides destruction and the time scale for when uranium supplies may become limited. Long-term research and development is recommended in order to make more dramatic improvements in actinide destruction and cost reductions for advanced fuel cycle technologies.The original scope of this work was to optimize an advanced fuel cycle using a tool that couples a reprocessing plant simulation model with a depletion analysis code. Due to funding and time constraints of the late start LDRD process and a lack of support for follow-on work, the project focused instead on a comparison of different reprocessing and recycling options. This optimization study led to new insight into the fuel cycle. AcknowledgementThe authors would like to acknowledge the support of Laboratory Directed Research and Development Project 125862 for funding this research.

Cipiti, Benjamin B.; Smith, James D.

2008-09-01T23:59:59.000Z

250

The technical and economic impact of minor actinide transmutation in a sodium fast reactor  

SciTech Connect (OSTI)

Within the frame work of the French National Act of June 28, 2006 pertaining to the management of high activity, long-lived radioactive waste, one of the proposed processes consists in transmuting the Minor Actinides (MA) in the radial blankets of a Sodium Fast Reactor (SFR). With this option, we may assess the additional cost of the reactor by comparing two SFR designs, one with no Minor Actinides, and the other involving their transmutation. To perform this exercise, we define a reference design called SFRref, of 1500 MWe that is considered to be representative of the Reactor System. The SFRref mainly features a pool architecture with three pumps, six loops with one steam generator per loop. The reference core is the V2B core that was defined by the CEA a few years ago for the Reactor System. This architecture is designed to meet current safety requirements. In the case of transmutation, for this exercise we consider that the fertile blanket is replaced by two rows of assemblies having either 20% of Minor Actinides or 20% of Americium. The assessment work is performed in two phases. - The first consists in identifying and quantifying the technical differences between the two designs: the reference design without Minor Actinides and the design with Minor Actinides. The main differences are located in the reactor vessel, in the fuel handling system and in the intermediate storage area for spent fuel. An assessment of the availability is also performed so that the impact of the transmutation can be known. - The second consists in making an economic appraisal of the two designs. This work is performed using the CEA's SEMER code. The economic results are shown in relative values. For a transmutation of 20% of MA in the assemblies (S/As) and a hypothesis of 4 kW allowable for the washing device, there is a large external storage demanding a very long cooling time of the S/As. In this case, the economic impact may reach 5% on the capital part of the Levelized Unit Electricity Cost (LUEC). A diminished concentration at 10% of MA, reduces the size of the external storage and the cooling time of the assemblies becomes compatible with the management of the irradiated fuel. Even with a low allowable power for the washing device, the economic impact on the capital cost is less than 2.5%. (authors)

Gautier, G. M.; Morin, F. [Alternative Energy and Atomic Energy Commission, CEA, DEN, F - 13108 St Paul lez Durance (France); Dechelette, F.; Sanseigne, E. [Alternative Energy and Atomic Energy Commission, CEA, DEN DTN, F - 13108 St Paul lez Durance (France); Chabert, C. [Alternative Energy and Atomic Energy Commission, CEA, DEN, F - 13108 St Paul lez Durance (France)

2012-07-01T23:59:59.000Z

251

First metatarsophalangeal joint range of motion : influence of ankle joint position and gastrocsoleus muscle stretching.  

E-Print Network [OSTI]

??[Truncated abstract] First metatarsophalangeal joint (MTPJ1) motion is an important factor in normal weight transference during walking. Disruptions to normal range can influence joints both… (more)

North, Ian Graham

2008-01-01T23:59:59.000Z

252

Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...  

Broader source: Energy.gov (indexed) [DOE]

Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Presentation slides from the joint Fuel Cell...

253

Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life Bhr Configurations: Designs, Advantages and Limitations  

SciTech Connect (OSTI)

This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.

Dr. Pavel V. Tsvetkov

2009-05-20T23:59:59.000Z

254

JOINT PROGRAM IN TRANSPORTATION UNIVERSITY OF TORONTO  

E-Print Network [OSTI]

JOINT PROGRAM IN TRANSPORTATION UNIVERSITY OF TORONTO 2001 TRANSPORTATION TOMORROW SURVEY of Transportation, Ontario Additions in 1996 Regional Municipalities of Niagara, Waterloo Counties of Peterborough not to participate) #12;JOINT PROGRAM IN TRANSPORTATION UNIVERSITY OF TORONTO 2001 TRANSPORTATION TOMORROW SURVEY

Toronto, University of

255

Thermal Shock Effects Modeling on a Globe Valve Body-Bonnet Bolted Flange Joint  

E-Print Network [OSTI]

and are sources of issues to suppliers and users. This is also the case when it comes to valve reliability. In French nuclear industry, EDF used to work closely with valve suppliers to ensure the reliability. Thus of qualification was created in the beginning of the French nuclear Pressurized Water Reactors (PWR) industry

Paris-Sud XI, Université de

256

Modeling joint friction in structural dynamics.  

SciTech Connect (OSTI)

The presence of mechanical joints--typified by the lap joint--in otherwise linear structures has been accommodated in structural dynamics via ad hoc methods for a century. The methods range from tuning linear models to approximate non-linear behavior in restricted load ranges to various methods which introduce joint dissipation in a post-processing stage. Other methods, employing constitutive models for the joints are being developed and their routine use is on the horizon.

Segalman, Daniel Joseph

2005-05-01T23:59:59.000Z

257

Joint Genome Institute's Automation Approach and History  

E-Print Network [OSTI]

Joint Genome Institute’s Automation Approach and Historythroughput environment; – automation does not necessarilyissues “Islands of Automation” – modular instruments with

Roberts, Simon

2006-01-01T23:59:59.000Z

258

Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols  

SciTech Connect (OSTI)

In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one–dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 × 10{sup 6} simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation.

Bragard, Jean, E-mail: jbragard@unav.es; Simic, Ana; Elorza, Jorge [Department of Physics and Applied Math., University of Navarra, Pamplona (Spain)] [Department of Physics and Applied Math., University of Navarra, Pamplona (Spain); Grigoriev, Roman O.; Fenton, Flavio H. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)] [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Cherry, Elizabeth M. [School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623 (United States)] [School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623 (United States); Gilmour, Robert F. [University of Prince Edward Island, Charlottetown C1A 4P3 (Canada)] [University of Prince Edward Island, Charlottetown C1A 4P3 (Canada); Otani, Niels F. [School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623 (United States) [School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623 (United States); Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853 (United States)

2013-12-15T23:59:59.000Z

259

JOINT DEGREE PROGRAMS DEFINITION AND POLICY  

E-Print Network [OSTI]

1 JOINT DEGREE PROGRAMS DEFINITION AND POLICY: Within the fields of medicine and law, dual training for such complementary training can be demonstrated, the creation of a formal "Joint" degree program in which students or MD) offered at Penn State may be warranted. Such Joint degree programs enhance the educational

Omiecinski, Curtis

260

The Joint Essential Numerical Range of operators  

E-Print Network [OSTI]

The Joint Essential Numerical Range of operators: Convexity and Related Results Chi-Kwong Li Classification 47A12, 47A13, 47A55. Keywords Joint essential numerical range, self-adjoint operator, Hilbert the joint behavior of several operators A1, . . . , Am. One may see [1, 5, 12, 14, 15, 16, 19, 23, 28, 31

Li, Chi-Kwong

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Full particle simulation of a perpendicular collisionless shock: A shock-rest-frame model  

E-Print Network [OSTI]

The full kinetic dynamics of a perpendicular collisionless shock is studied by means of a one-dimensional electromagnetic full particle simulation. The present simulation domain is taken in the shock rest frame in contrast to the previous full particle simulations of shocks. Preliminary results show that the downstream state falls into a unique cyclic reformation state for a given set of upstream parameters through the self-consistent kinetic processes.

Takayuki Umeda; Ryo Yamazaki

2006-10-30T23:59:59.000Z

262

MIGRATION DES JOINTS DE GRAINS LA MIGRATION DES JOINTS INTERGRANULAIRES  

E-Print Network [OSTI]

(influence de la force motrice, de la température, de l'orientation, de la présence d'éléments étrangers produise sponta- nément, il faut qu'il existe une force motrice, c'est-à-dire que le déplacement du joint accessibles. Très schématiquement, on pourra poser entre la vitesse de migration v et la force motrice F une

Boyer, Edmond

263

JOINTLY HYPONORMAL PAIRS OF COMMUTING SUBNORMAL OPERATORS NEED NOT BE JOINTLY SUBNORMAL  

E-Print Network [OSTI]

JOINTLY HYPONORMAL PAIRS OF COMMUTING SUBNORMAL OPERATORS NEED NOT BE JOINTLY SUBNORMAL RA´UL E operators, jointly hyponormal but not admitting commuting normal extensions. Each such family can be used] := ST - TS. We say that an n-tuple T = (T1, · · · , Tn) of operators on H is (jointly) hyponormal

Curto, RaĂşl

264

READY FOR TODAY. PREPARING FOR TOMORROW. The Joint Operating Environment is intended to inform joint concept  

E-Print Network [OSTI]

READY FOR TODAY. PREPARING FOR TOMORROW. #12;The Joint Operating Environment is intended to inform. Inquiries about the Joint Operating Environment should be directed to USJFCOM Public Affairs, 1562 Mitscher R O N M E N T ( J O E ) #12;While U.S. Joint Forces Command's Joint Operating Environment (JOE

Sainudiin, Raazesh

265

Long-term risk from actinides in the environment: Modes of mobility. 1998 annual progress report  

SciTech Connect (OSTI)

'The mobility of actinides in surface soils is a key issue of concern at several DOE facilities in arid and semiarid environments, including Rocky Flats, Hanford, Nevada Test Site, Idaho National Engineering Laboratory, and Los Alamos National Laboratory and the Waste Isolation Pilot Plant (WIPP). Key sources of uncertainty in assessing Pu mobility are the magnitudes of mobility resulting from three modes of transport: (1) wind erosion, (2) water erosion, and (3) vertical migration. Each of these three processes depend on numerous environmental factors and they compete with one another, particularly for actinides in very shallow soils ({approximately} 1 \\265m). The overall goal of the study is to quantify the mobility of soil actinides from all three modes. The authors study is using field measurements, laboratory experiments, and ecological modeling to address these three processes at three DOE facilities where actinide kinetics are of concern: WIPP, Rocky Flats, and Hanford. Wind erosion is being measured with suite of monitoring equipment, water erosion is being studied with rainfall simulation experiments, vertical migration is being studied in controlled laboratory experiments, and the three processes are being integrated using ecological modeling. Estimates for clean up of soil actinides for the extensive tracts of DOE land range to hundreds of billion $ in the US Without studies of these processes, unnecessary clean-up of these areas may waste billions of dollars and cause irreparable ecological damage through the soil removal. Further, the outcomes of litigation against DOE are dependent on quantifying the mobility of actinides in surface soils. This report provides a summary of work for the first year of a 3-year project; subcontracts to collaborating institutions (Colorado State University and New Mexico State University) were not in place until late December 1997, and hence this report focuses on the results of the 5 months from January through May 1998. The major result to date is a review of literature on the potential for using soil concentrations of {sup 137}Cs and {sup 241}Am as tracers for plutonium in soil. Measurements of {sup 239}Pu contamination in the environment are expensive and time consuming, requiring radiochemical analysis and alpha spectroscopy. They evaluated the literature for measurements of {sup 137}Cs and {sup 241}Am, both of which are more cost-effectively measured by gamma spectrometry, as tracers for Pu in soil. Their results indicate that: significant positive correlation exists between Pu, Cs, and Am in soils and sediments at several locations including Rocky Flats, Los Alamos, and Hanford; atmospheric transport of Pu and Cs from worldwide fallout is essentially the same; the attachment of Pu and Cs to soil particles of various size is very similar; both Pu and Cs movement in the environment correlate well with soil and sediment particle movements; a significant correlation between Pu, Cs, and Am was found in soil as a function of depth, indicating similar vertical migration behavior (most of the activity of these radionuclides is confined to the top 10--20 cm of soil at virtually all locations); most Pu and Cs are strongly absorbed onto clay and organic matter in soils and there is essentially very little leaching of Pu, Am and Cs through soil columns. Based on the above information, they believe that {sup 137}Cs and {sup 241}Am are excellent tracers for both {sup 239}Pu and soil particle transport processes in clay, mineral bearing and/or organic soils. Therefore, Cs and Am would be good tracers for the proposed water erosion and vertical migration work, at least for both Rocky Flats and Hanford. The correlation between Pu and Cs may not be as strong in sandy soil (e.g. WIPP site), however, examination of more data is needed.'

Breshears, D.D.; Whicker, J.J. [Los Alamos National Lab., NM (US); Ibrahim, S.A.; Whicker, F.W.; Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (US); Kirchner, T. [New Mexico State Univ., Las Cruces, NM (US)

1998-06-01T23:59:59.000Z

266

Fundamentals of Non-relativistic Collisionless Shock Physics: IV. Quasi-Parallel Supercritical Shocks  

E-Print Network [OSTI]

1. Introduction, 2. The (quasi-parallel) foreshock; Ion foreshock, Ion foreshock boundary region; Diffuse ions;Low-frequency upstream waves; Ion beam waves; The expected wave modes; Observations; Diffuse ion waves; Electron foreshock; Electron beams; Langmuir waves; stability of the electron beam; Electron foreshock boundary waves; Nature of electron foreshock waves; Radiation; Observations; Interpretation; 3. Quasi-parallel shock reformation; Low-Mach number quasi-parallel shocks; Turbulent reformation; Observations; Simulations of quasi-parallel shock reformation; Hybrid simulations in 1D; Hybrid simulations in 2D; Full particle PIC simulations; Conclusions; 4. Hot flow anomalies; Observations; Models and simulations; Solitary shock; 5. Downstream region; 6. Summary and conclusions.

R. A. Treumann; C. H. Jaroschek

2008-05-16T23:59:59.000Z

267

Condensed matter at high shock pressures  

SciTech Connect (OSTI)

Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N/sub 2/, CO, SiO/sub 2/-aerogel, H/sub 2/O, and C/sub 6/H/sub 6/. The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab.

Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

1985-07-12T23:59:59.000Z

268

Particle acceleration in relativistic subluminal shock environments  

E-Print Network [OSTI]

The understanding of the particle spectra resulting from acceleration in relativistic shocks as they occur in extragalactic sources, is essential for the interpretation of the cosmic ray spectrum above the ankle ($E_p>3\\cdot 10^{18}$ eV). It is believed that extragalactic sources like Active Galactic Nuclei and Gamma Ray Bursts can produce particle spectra up to $E_p\\sim 10^{21}$ eV. In this contribution, subluminal shocks are investigated with respect to different shock boost factors $\\Gamma$ and the inclination angle between the shock normal and the magnetic field $\\psi$. A correlation between the boost factor and the spectral behavior of the emitted particles is found. The results are compared to Active Galactic Nuclei and Gamma Ray Burst diffuse cosmic ray contribution and the observed cosmic ray spectrum at the highest energies.

A. Meli; J. Becker; J. J. Quenby; J. Luenemann

2007-08-10T23:59:59.000Z

269

Efficiency limits of diffusive shock acceleration  

E-Print Network [OSTI]

It is well accepted today that diffusive acceleration in shocks results to the cosmic ray spectrum formation. This is in principle true for non-relativistic shocks, since there is a detailed theory covering a large range of their properties and the resulting power-law spectrum, which is nevertheless not as efficient to reach the very high energies observed in the cosmic ray spectrum. On the other hand, the cosmic ray maximum energy and the resulting spectra from relativistic shocks, are still under investigation and debate concerning their contribution to the features of the cosmic ray spectrum and the measured, or implied, cosmic ray radiation from candidate astrophysical sources. Here, we discuss the efficiency of the first order Fermi (diffusive) acceleration mechanism up to relativistic shock speeds, presenting Monte Carlo simulations.

A. Meli; A. Mastichiadis

2007-08-10T23:59:59.000Z

270

Critical point anomalies include expansion shock waves  

SciTech Connect (OSTI)

From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

2014-02-15T23:59:59.000Z

271

Disinfecting Water Wells by Shock Chlorination  

E-Print Network [OSTI]

If your well has been flooded, it must be shock chlorinated before it can be used as a source of drinking water. This publication explains how to disinfect a well using either dry chlorine or liquid household bleach....

Dozier, Monty; McFarland, Mark L.

2005-09-30T23:59:59.000Z

272

Electron Heating in Quasi-Perpendicular Shocks  

E-Print Network [OSTI]

Seventy crossings of the Earths bow shock by the THEMIS satellites have been used to study thermal electron heating in collisionless, quasi-perpendicular shocks. It was found that the temperature increase of thermal electrons differed from the magnetic field increase by factors as great as three, that the parallel electron temperature increase was not produced by parallel electric fields, and that the parallel and perpendicular electron temperature increases were the same on the average. It was also found that the perpendicular and parallel electron heating occurred simultaneously so that the isotropization time is the same as the heating time. These results cannot be explained by energy transfer from waves to electrons or by the motion of magnetized electrons through the shock. Electric field fluctuations on the scale of the electron gyro-diameter were found to be of finite amplitude in the shock ramp, which requires that the electron trajectories be more random and chaotic than orderly and adiabatic. The da...

Mozer, F S

2013-01-01T23:59:59.000Z

273

Fluid description of shock phenomena in  

E-Print Network [OSTI]

an overview of the results on MHD bow shock ows which are presented throughout this dissertation. We. 2.1 represents the contribution from irreversible dissipative processes like viscosity and thermal

De Sterck, Hans

274

Actinide Production in the Reaction of Heavy Ions withCurium-248  

SciTech Connect (OSTI)

Chemical experiments were performed to examine the usefulness of heavy ion transfer reactions in producing new, neutron-rich actinide nuclides. A general quasi-elastic to deep-inelastic mechanism is proposed, and the utility of this method as opposed to other methods (e.g. complete fusion) is discussed. The relative merits of various techniques of actinide target synthesis are discussed. A description is given of a target system designed to remove the large amounts of heat generated by the passage of a heavy ion beam through matter, thereby maximizing the beam intensity which can be safely used in an experiment. Also described is a general separation scheme for the actinide elements from protactinium (Z = 91) to mendelevium (Z = 101), and fast specific procedures for plutonium, americium and berkelium. The cross sections for the production of several nuclides from the bombardment of {sup 248}Cm with {sup 18}O, {sup 86}Kr and {sup 136}Xe projectiles at several energies near and below the Coulomb barrier were determined. The results are compared with yields from {sup 48}Ca and {sup 238}U bombardments of {sup 248}Cm. Simple extrapolation of the product yields into unknown regions of charge and mass indicates that the use of heavy ion transfer reactions to produce new, neutron-rich above-target species is limited. The substantial production of neutron-rich below-target species, however, indicates that with very heavy ions like {sup 136}Xe and {sup 238}U the new species {sup 248}Am, {sup 249}Am and {sup 247}Pu should be produced with large cross sections from a {sup 248}Cm target. A preliminary, unsuccessful attempt to isolate {sup 247}Pu is outlined. The failure is probably due to the half life of the decay, which is calculated to be less than 3 minutes. The absolute gamma ray intensities from {sup 251}Bk decay, necessary for calculating the {sup 251}Bk cross section, are also determined.

Moody, K.J.

1983-07-01T23:59:59.000Z

275

The attenuation of strong shock waves  

E-Print Network [OSTI]

THE ATTENUATION OF STRONG SHOCK WAVES A Thesis By Ronald Crecelius Kirkpatrick Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 1963 Major Subject: Physics. THE ATTENUATION OF STRONG SHOCK WAVES A Thesis By Ronald Crecelius Kirkpatrick Approved as to style and content by: (Chairman of Committee (He of Departme ) May 1963 TABLE OF CONTENTS INT R ODU C TI ON ~Pe e...

Kirkpatrick, Ronald Crecelius

1963-01-01T23:59:59.000Z

276

Shock-induced enhancement of learning  

E-Print Network [OSTI]

Subject: Psychology SHOCK INDUCFD ENHANCEMENT OF LEARNING A Thesis by ADAM RICHARD FERGUSON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved... as to style and content by: I ames Grau ( air of Committee) Mary Meagher (Member) Ra ond Battalio (Member) u3 Paul Wellman (Head of Department) December 2000 Major Subject: Psychology ABSTRACT Shock-Induced Enhancement of Learning. (December...

Ferguson, Adam Richard

2000-01-01T23:59:59.000Z

277

Shock wave propagation in vibrofluidized granular materials  

E-Print Network [OSTI]

Shock wave formation and propagation in two-dimensional granular materials under vertical vibration are studied by digital high speed photography. The steepen density and temperature wave fronts form near the plate as granular layer collides with vibrating plate and propagate upward through the layer. The temperature front is always in the transition region between the upward and downward granular flows. The effects of driving parameters and particle number on the shock are also explored.

Kai Huang; Guoqing Miao; Peng Zhang; Yi Yun; Rongjue Wei

2005-11-29T23:59:59.000Z

278

Shock Chlorination of Stored Water Supplies  

E-Print Network [OSTI]

of their well water. While these procedures effectively may san- itize water wells and distribution systems, addition- al steps may be necessary to shock- chlorinate water stored in tanks. Storage Tanks In several regions of Texas, such as the Texas Hill... Country and the Central Texas Blacklands, water is pumped from wells into large storage tanks. Pipes from such tanks then deliver water to houses for domestic use. However, shock-chlorinating a water well alone may not provide enough chlorinated water...

Dozier, Monty; McFarland, Mark L.

2005-05-25T23:59:59.000Z

279

Sigma Team for Minor Actinide Separation: PNNL FY 2011 Status Report  

SciTech Connect (OSTI)

This report summarizes work conducted in FY 2011 at PNNL to investigate new methods of separating the minor actinide elements (Am and Cm) from the trivalent lanthanide elements, and separation of Am from Cm. For the former, work focused on a solvent extraction system combining an acidic extractant (HDEHP) with a neutral extractant (CMPO) to form a hybrid solvent extraction system referred to as TRUSPEAK (combining the TRUEX and TALSPEAK processes). For the latter, ligands that strongly bing uranyl ion were investigated for stabilizing corresponding americyl ion.

Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Levitskaia, Tatiana G.; Carter, Jennifer C.; Warner, Marvin G.; Pittman, Jonathan W.

2011-08-13T23:59:59.000Z

280

Micro-Analysis of Actinide Minerals for Nuclear Forensics and Treaty Verification  

SciTech Connect (OSTI)

Micro-Raman spectroscopy has been demonstrated to be a viable tool for nondestructive determination of the crystal phase of relevant minerals. Collecting spectra on particles down to 5 microns in size was completed. Some minerals studied were weak scatterers and were better studied with the other techniques. A decent graphical software package should easily be able to compare collected spectra to a spectral library as well as subtract out matrix vibration peaks. Due to the success and unequivocal determination of the most common mineral false positive (zircon), it is clear that Raman has a future for complementary, rapid determination of unknown particulate samples containing actinides.

M. Morey, M. Manard, R. Russo, G. Havrilla

2012-03-22T23:59:59.000Z

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Actinide extraction from simulated and irradiated spent nuclear fuel using TBP solutions in HFC-134a  

SciTech Connect (OSTI)

It was demonstrated that solutions of TBP-nitric acid adduct in liquid Freon HFC-134a (1.2 MPa, 25 deg. C) allowed for recovery of uranium with nearly the same effectiveness as supercritical CO{sub 2} at 30 MPa. At nearly quantitative recovery of U and Pu, a DF of ca. 10 can be attained on dissolution and extraction of simulated SNF samples. The possibility of recovery of actinides contained in cakes produced by oxide conversion of simulated and irradiated SNF with solutions of TBP and DBE in Freon HFC-134a was shown. (authors)

Shadrin, A.; Babain, V.; Kamachev, V.; Murzin, A.; Shafikov, D.; Dormidonova, A. [Khlopin Radium Institute, RPA, 28, 2-nd Murinskii ay., St-Petersburg (Russian Federation)

2008-07-01T23:59:59.000Z

282

Low-Temperature Synthesis of Actinide Tetraborides by Solid-State Metathesis Reactions  

SciTech Connect (OSTI)

The synthesis of actinide tetraborides including uranium tetraboride (UB,), plutonium tetraboride (PUB,) and thorium tetraboride (ThB{sub 4}) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to {approx_equal}850 C. As an example, when UCl{sub 4}, is reacted with an excess of MgB{sub 2}, at 850 C, crystalline UB, is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl{sub 3}, as the initial step in the reaction. The UB, product is purified by washing water and drying.

Lupinetti, Anthony J.; Garcia, Eduardo; Abney, Kent D.

2004-12-14T23:59:59.000Z

283

Conceptual configurations of an accelerator-driven subcritical system utilizing minor actinides  

SciTech Connect (OSTI)

This paper purposes an Accelerator-Driven Subcritical (ADS) system which utilizes the Minor Actinides (MAs) from the US spent nuclear fuel inventory. A mobile fuel concept with micro-particles suspended in the liquid metal is adopted in the purposed system to avoid difficulties of developing and testing new MAs solid fuel forms. Three ADS configurations were developed and analyzed using the Monte Carlo fuel burnup methodology. The analyses demonstrated the capabilities of the proposed system to utilize the MAs and to dispose of the US spent nuclear fuels. (authors)

Cao, Y.; Gohar, Y. [Nuclear Engineering Div., Argonne National Laboratory, 9700 South Cass Ave., IL 60439 (United States)

2012-07-01T23:59:59.000Z

284

Metal-ceramic joint assembly  

DOE Patents [OSTI]

A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

Li, Jian (New Milford, CT)

2002-01-01T23:59:59.000Z

285

Joint strength in RCS frames  

E-Print Network [OSTI]

SETUP 3. 4. 1 Loading System. 3. 4. 2 Deformation Measurements . . . . Vt X111 . 1 . I . 1 . 2 . 3 . . . . 3 . 3 . 4 . 5 . . . 6 . 6 . 6 . 7 . 9 . 11 . 13 . 13 . 13 . 13 . 15 . 15 . 15 . 16 . 17 . 19 . 19 . 20 Page 3. 4... Vertical Bearing. 4. 6. 4 Beam Failure Mechanism. Page 4. 6. 5 Column Failure Mechanism 4. 6. 6 Predicted Failure Mechanisms 4. 7 JOINT STRENGTH PREDICTIONS (DISCONTINUOUS BEAM DIRECTION). 5. RESPONSE 5. 1 INTRODUCTION . . 5. 2. GENERAL BEHAVIOR 5...

Kirby, Cynthia Dawn

1998-01-01T23:59:59.000Z

286

Mon. Not. R. Astron. Soc. 415, 7782 (2011) doi:10.1111/j.1365-2966.2011.18648.x Is GeV emission from Gamma-Ray Bursts of external shock origin?  

E-Print Network [OSTI]

from Gamma-Ray Bursts of external shock origin? Amanda Maxham, Bin-Bin Zhang and Bing Zhang Department February 22; in original form 2010 December 30 ABSTRACT Recent observations of Gamma-Ray Bursts (GRBs (080916C, 090510, 090902B and 090926A) jointly detected by Fermi LAT and Gamma-ray Burst Monitor (GBM

Zhang, Bing

287

Investigation of the unsteady Edney type IV and VII shock-shock interaction  

E-Print Network [OSTI]

adaptation, thermochemical nonequilibrium. 1. Introduction The proper prediction of thermal and structural loads is crucial for the design of future space transportation systems. Especially the thermal of an incident shock wave which impinges on the bow shock in front of a blunt body. A supersonic jet forms

288

Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels  

SciTech Connect (OSTI)

The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-{Np,Am}, leaving Cm for later study. The overall objectives of this project are to: Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels; and, Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling.

Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong Austin [Univ. of Wisconsin, Madison, WI (United States)

2013-10-28T23:59:59.000Z

289

Beta-delayed fission and neutron emission calculations for the actinide cosmochronometers  

SciTech Connect (OSTI)

The Gamow-Teller beta-strength distributions for 19 neutron-rich nuclei, including ten of interest for the production of the actinide cosmochronometers, are computed microscopically with a code that treats nuclear deformation explicitly. The strength distributions are then used to calculate the beta-delayed fission, neutron emission, and gamma deexcitation probabilities for these nuclei. Fission is treated both in the complete damping and WKB approximations for penetrabilities through the nuclear potential-energy surface. The resulting fission probabilities differ by factors of 2 to 3 or more from the results of previous calculations using microscopically computed beta-strength distributions around the region of greatest interest for production of the cosmochronometers. The indications are that a consistent treatment of nuclear deformation, fission barriers, and beta-strength functions is important in the calculation of delayed fission probabilities and the production of the actinide cosmochronometers. Since we show that the results are very sensitive to relatively small changes in model assumptions, large chronometric ages for the Galaxy based upon high beta-delayed fission probabilities derived from an inconsistent set of nuclear data calculations must be considered quite uncertain.

Meyer, B.S.; Howard, W.M.; Mathews, G.J.; Takahashi, K.; Moeller, P.; Leander, G.A.

1989-05-01T23:59:59.000Z

290

Separation and Analysis of Actinides by Extraction Chromotography Coupled with Alpha Liquid Scintillation Spectrometry  

SciTech Connect (OSTI)

This work describes the development and testing of a new method for the separation and analysis of most actinides of interest in environmental samples. It combines simplified extraction chromatography using highly selective absorption resins to partition the individual actinides with the measurement of their alpha activities by liquid scintillation spectrometry. The liquid scintillation counting technique pioneered by McDowell proved useful in determination of alpha emitting radionuclide in a wide variety of matrices. Alpha emitters are chemically extracted into an organic phase which also contains the scintillation cocktail. Oxygen is purged from the solution to improve the energy resolution of the measurement and the counting sample is sealed in a small glass tube for assay. The Photon-Electron Rejecting Alpha Liquid Scintillation (PERALS{trademark}) Spectrometer provides high counting efficiency, low background, pulse shape discrimination for photon/electron/{beta} particle rejection and moderate energy resolution in a compact package. Chemical extraction/liquid scintillation counting significantly reduces the extensive chemical purification and electroplating required for conventional alpha spectrometry with semiconductor detectors. PERALS{trademark} analyses have been used routinely for quickly surveying suspect samples and determining the source of unknown alpha activities.

Cadieux, J.R.; Reboul, S.H.

1995-09-21T23:59:59.000Z

291

Selective partitioning of mercury from co-extracted actinides in a simulated acidic ICPP waste stream  

SciTech Connect (OSTI)

The TRUEX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) as a means to partition the actinides from acidic sodium-bearing waste (SBW). The mercury content of this waste averages 1 g/l. Because the chemistry of mercury has not been extensively evaluated in the TRUEX process, mercury was singled out as an element of interest. Radioactive mercury, {sup 203}Hg, was spiked into a simulated solution of SBW containing 1 g/l mercury. Successive extraction batch contacts with the mercury spiked waste simulant and successive scrubbing and stripping batch contacts of the mercury loaded TRUEX solvent (0.2 M CMPO-1.4 M TBP in dodecane) show that mercury will extract into and strip from the solvent. The extraction distribution coefficient for mercury, as HgCl{sub 2} from SBW having a nitric acid concentration of 1.4 M and a chloride concentration of 0.035 M was found to be 3. The stripping distribution coefficient was found to be 0.5 with 5 M HNO{sub 3} and 0.077 with 0.25 M Na{sub 2}CO{sub 3}. An experimental flowsheet was designed from the batch contact tests and tested counter-currently using 5.5 cm centrifugal contactors. Results from the counter-current test show that mercury can be removed from the acidic mixed SBW simulant and recovered separately from the actinides.

Brewer, K.N.; Herbst, R.S.; Tranter, T.J. [and others

1995-12-01T23:59:59.000Z

292

Technical and economic assessment of different options for minor actinide transmutation: the French case  

SciTech Connect (OSTI)

Studies have been performed to assess the industrial perspectives of partitioning and transmutation of long-lived elements. These studies were carried out in tight connection with GEN-IV systems development. The results include the technical and economic evaluation of fuel cycle scenarios along with different options for optimizing the processes between the minor actinide transmutation in fast neutron reactors, their interim storage and geological disposal of ultimate waste. The results are analysed through several criteria (impacts on waste, on waste repository, on fuel cycle plants, on radiological exposure of workers, on costs and on industrial risks). These scenario evaluations take place in the French context which considers the deployment of the first Sodium-cooled Fast Reactor (SFR) in 2040. 3 management options of minor actinides have been studied: no transmutation, transmutation in SFR and transmutation in an accelerator-driven system (ADS). Concerning economics the study shows that the cost overrun related to the transmutation process could vary between 5 to 9% in SFR and 26 % in the case of ADS.

Chabert, C.; Coquelet-Pascal, C. [CEA-Cadarache, DEN, Saint-Paul-lez-Durance (France); Saturnin, A. [CEA, DEN, Marcoule (France); Mathonniere, G.; Boullis, B.; Warin, D. [CEA-Saclay, DEN, Gif-sur-Yvette (France); Van Den Durpel, L. [AREVA-NC, Paris-la-Defense (France); Caron-Charles, M. [AREVA-NP, Paris-la-Defense (France); Garzenne, C. [EDF, Paris (France)

2013-07-01T23:59:59.000Z

293

Determining the dissolution rates of actinide glasses: A time and temperature Product Consistency Test study  

SciTech Connect (OSTI)

Vitrification has been identified as one potential option for the e materials such as Americium (Am), Curium (Cm), Neptunium (Np), and Plutonium (Pu). A process is being developed at the Savannah River Site to safely vitrify all of the highly radioactive Am/Cm material and a portion of the fissile (Pu) actinide materials stored on site. Vitrification of the Am/Cm will allow the material to be transported and easily stored at the Oak Ridge National Laboratory. The Am/Cm glass has been specifically designed to be (1) highly durable in aqueous environments and (2) selectively attacked by nitric acid to allow recovery of the valuable Am and Cm isotopes. A similar glass composition will allow for safe storage of surplus plutonium. This paper will address the composition, relative durability, and dissolution rate characteristics of the actinide glass, Loeffler Target, that will be used in the Americium/Curium Vitrification Project at Westinghouse Savannah River Company near Aiken, South Carolina. The first part discusses the tests performed on the Loeffler Target Glass concerning instantaneous dissolution rates. The second part presents information concerning pseudo-activation energy for the one week glass dissolution process.

Daniel, W.E.; Best, D.R.

1995-12-01T23:59:59.000Z

294

Conceptual design of minor actinides burner with an accelerator-driven subcritical system.  

SciTech Connect (OSTI)

In the environmental impact study of the Yucca Mountain nuclear waste repository, the limit of spent nuclear fuel (SNF) for disposal is assessed at 70,000 metric tons of heavy metal (MTHM), among which 63,000 MTHM are the projected SNF discharge from U.S. commercial nuclear power plants though 2011. Within the 70,000 MTHM of SNF in storage, approximately 115 tons would be minor actinides (MAs) and 585 tons would be plutonium. This study describes the conceptual design of an accelerator-driven subcritical (ADS) system intended to utilize (burn) the 115 tons of MAs. The ADS system consists of a subcritical fission blanket where the MAs fuel will be burned, a spallation neutron source to drive the fission blanket, and a radiation shield to reduce the radiation dose to an acceptable level. The spallation neutrons are generated from the interaction of a 1 GeV proton beam with a lead-bismuth eutectic (LBE) or liquid lead target. In this concept, the fission blanket consists of a liquid mobile fuel and the fuel carrier can be LBE, liquid lead, or molten salt. The actinide fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Therefore, fresh fuel can be fed into the fission blanket to adjust its reactivity and to control system power during operation. Monte Carlo analyses were performed to determine the overall parameters of an ADS system utilizing LBE as an example. Steady-state Monte Carlo simulations were studied for three fission blanket configurations that are similar except that the loaded amount of actinide fuel in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factor values of the three configurations are all approximately 0.98 and the MA initial inventories are each approximately 10 tons. Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. Preliminary burnup analysis shows that all three conceptual ADS systems consume about 1.2 tons of actinides per year and produce 3 GW thermal power, with a proton beam power of 25 MW. Total MA fuel that would be consumed in the first 10 years of operation is 9.85, 11.80, or 12.68 tons, respectively, for the systems with 5, 7, or 10% actinide fuel particles loaded in the LBE. The corresponding annual MA fuel transmutation rate after reaching equilibrium at 10 years of operation is 0.83, 0.94, or 1.02 tons/year, respectively. Assuming that the ADS systems can be operated for 35 full-power years, the total MAs consumed in the three ADS systems are 30.6, 35.3, and 37.2 tons, respectively. For the three configurations, it is estimated that 3.8, 3.3, or 3.1 ADS system units are required to utilize the entire 115 tons of MA fuel in the SNF inventory, respectively.

Cao, Y.; Gohar, Y. (Nuclear Engineering Division)

2011-11-04T23:59:59.000Z

295

A REVERSE SHOCK IN GRB 130427A  

SciTech Connect (OSTI)

We present extensive radio and millimeter observations of the unusually bright GRB 130427A at z = 0.340, spanning 0.67-12 days after the burst. We combine these data with detailed multi-band UV, optical, NIR, and Swift X-ray observations and find that the broadband afterglow emission is composed of distinct reverse shock and forward shock contributions. The reverse shock emission dominates in the radio/millimeter and at ?< 0.1 days in the UV/optical/NIR, while the forward shock emission dominates in the X-rays and at ?> 0.1 days in the UV/optical/NIR. We further find that the optical and X-ray data require a wind circumburst environment, pointing to a massive star progenitor. Using the combined forward and reverse shock emission, we find that the parameters of the burst include an isotropic kinetic energy of E{sub K,{sub iso}} ? 2 × 10{sup 53} erg, a mass loss rate of M-dot ?3×10{sup -8} M{sub ?} yr{sup –1} (for a wind velocity of 1000 km s{sup –1}), and a Lorentz factor at the deceleration time of ?(200 s) ? 130. Due to the low density and large isotropic energy, the absence of a jet break to ?15 days places only a weak constraint on the opening angle, ?{sub j} ?> 2.°5, and therefore a total energy of E{sub ?} + E{sub K} ?> 1.2 × 10{sup 51} erg, similar to other gamma-ray bursts (GRBs). The reverse shock emission is detectable in this burst due to the low circumburst density, which leads to a slow cooling shock. We speculate that this property is required for the detectability of reverse shocks in radio and millimeter bands. Following on GRB 130427A as a benchmark event, observations of future GRBs with the exquisite sensitivity of the Very Large Array and ALMA, coupled with detailed modeling of the reverse and forward shock contributions, will test this hypothesis.

Laskar, T.; Berger, E.; Zauderer, B. A.; Margutti, R.; Soderberg, A. M.; Chakraborti, S.; Lunnan, R.; Chornock, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chandra, P. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Ganeshkhind, Pune 411 007 (India); Ray, A. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India)

2013-10-20T23:59:59.000Z

296

Analytical model for fast-shock ignition  

SciTech Connect (OSTI)

A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ?4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ?0.3??micron and the shock ignitor energy weight factor about 0.25.

Ghasemi, S. A., E-mail: abo.ghasemi@yahoo.com; Farahbod, A. H. [Plasma Physics Research School, NSTRI, North Kargar Avenue, Tehran (Iran, Islamic Republic of); Sobhanian, S. [Department of Physics, Tabriz University, Tabriz (Iran, Islamic Republic of)

2014-07-15T23:59:59.000Z

297

Joint Announcement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartmentatJeffRoundtables | Department ofJoint

298

Joint Center for Artificial Photosynthesis  

ScienceCinema (OSTI)

The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

Koval, Carl; Lee, Kenny; Houle, Frances; Lewis, Nate

2013-12-19T23:59:59.000Z

299

Joint DOE-Rosatom Statement  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7January 2015Jim Stock AboutSummit |theJoint

300

Actinide Corroles: Synthesis and Characterization of Thorium(IV) and Uranium(IV) bis(-chloride) Dimers  

SciTech Connect (OSTI)

The first synthesis and structural characterization of actinide corroles is presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesised and characterized by single-crystal X-ray diffraction, UV-Visible spectroscopy, variable-temperature 1H NMR, ESI mass spectrometry and cyclic voltammetry.

Ward, Ashleigh L.; Buckley, Heather L.; Gryko, Daniel T.; Lukens, Wayne W.; Arnold, John

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

New density functional theory approaches for enabling prediction of chemical and physical properties of plutonium and other actinides.  

SciTech Connect (OSTI)

Density Functional Theory (DFT) based Equation of State (EOS) construction is a prominent part of Sandia's capabilities to support engineering sciences. This capability is based on amending experimental data with information gained from computational investigations, in parts of the phase space where experimental data is hard, dangerous, or expensive to obtain. A prominent materials area where such computational investigations are hard to perform today because of limited accuracy is actinide and lanthanide materials. The Science of Extreme Environment Lab Directed Research and Development project described in this Report has had the aim to cure this accuracy problem. We have focused on the two major factors which would allow for accurate computational investigations of actinide and lanthanide materials: (1) The fully relativistic treatment needed for materials containing heavy atoms, and (2) the needed improved performance of DFT exchange-correlation functionals. We have implemented a fully relativistic treatment based on the Dirac Equation into the LANL code RSPt and we have shown that such a treatment is imperative when calculating properties of materials containing actinides and/or lanthanides. The present standard treatment that only includes some of the relativistic terms is not accurate enough and can even give misleading results. Compared to calculations previously considered state of the art, the Dirac treatment gives a substantial change in equilibrium volume predictions for materials with large spin-orbit coupling. For actinide and lanthanide materials, a Dirac treatment is thus a fundamental requirement in any computational investigation, including those for DFT-based EOS construction. For a full capability, a DFT functional capable of describing strongly correlated systems such as actinide materials need to be developed. Using the previously successful subsystem functional scheme developed by Mattsson et.al., we have created such a functional. In this functional the Harmonic Oscillator Gas is providing the necessary reference system for the strong correlation and localization occurring in actinides. Preliminary testing shows that the new Hao-Armiento-Mattsson (HAM) functional gives a trend towards improved results for the crystalline copper oxide test system we have chosen. This test system exhibits the same exchange-correlation physics as the actinide systems do, but without the relativistic effects, giving access to a pure testing ground for functionals. During the work important insights have been gained. An example is that currently available functionals, contrary to common belief, make large errors in so called hybridization regions where electrons from different ions interact and form new states. Together with the new understanding of functional issues, the Dirac implementation into the RSPt code will permit us to gain more fundamental understanding, both quantitatively and qualitatively, of materials of importance for Sandia and the rest of the Nuclear Weapons complex.

Mattsson, Ann Elisabet

2012-01-01T23:59:59.000Z

302

RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH  

SciTech Connect (OSTI)

A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are split between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead. Multiple vacuum box locations may be set-up to supply several ICP-MS units with purified sample fractions such that a high sample throughput may be achieved, while still allowing for rapid measurement of short-lived actinides by alpha spectrometry.

Maxwell, S.; Jones, V.

2009-05-27T23:59:59.000Z

303

Entropic uncertainties for joint quantum measurements  

SciTech Connect (OSTI)

We investigate the uncertainty associated with a joint quantum measurement of two spin components of a spin-(1/2) particle and quantify this in terms of entropy. We consider two entropic quantities, the joint entropy and the sum of the marginal entropies, and obtain lower bounds for each of these quantities. For the case of joint measurements where we measure each spin observable equally well, these lower bounds are tight.

Brougham, Thomas [Department of Physics, FJFI, CVUT, Brehova 7, 115 19 Praha 1 (Czech Republic); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 ONG (United Kingdom); Andersson, Erika [SUPA, Department of Physics, School of EPS, Heriot-Watt University, Edinburgh EH14 4As (United Kingdom); Barnett, Stephen M. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 ONG (United Kingdom)

2009-10-15T23:59:59.000Z

304

Range of joint motion in college males  

E-Print Network [OSTI]

. These include the fact that there is little agreement as to the definition and limits of normal f1exibility. It was also found that the range of joint motion is highly specific and that measurement of one body joint cannot be used to predict the range... many of the problems outlined by Holland. There have been several techniques developed for measuring range of' joint motion. Adrian (1968), The American Academy of Orthopedic Surgeons (1968), Ayoub (1972), Clarke (1975), Dempster (1955), Garrett...

Houy, David Richard

1982-01-01T23:59:59.000Z

305

Shock compression of low-density foams  

SciTech Connect (OSTI)

Shock compression of very low density micro-cellular materials allows entirely new regimes of hot fluid states to be investigated experimentally. Using a two-stage light-gas gun to generate strong shocks, temperatures of several eV are readily achieved at densities of roughly 0.5--1 g/cm{sup 3} in large, uniform volumes. The conditions in these hot, expanded fluids are readily found using the Hugoniot jump conditions. We will briefly describe the basic methodology for sample preparation and experimental measurement of shock velocities. We present data for several materials over a range of initial densities. This paper will explore the applications of these methods for investigations of equations of state and phase diagrams, spectroscopy, and plasma physics. Finally, we discus the need for future work on these and related low-density materials.

Holmes, N.C.

1993-07-01T23:59:59.000Z

306

A lecture on detonation-shock dynamics  

SciTech Connect (OSTI)

We summarize recent investigations into the theory of multi-dimensional, time-dependent detonation. These advances have led to the development of a theory for describing the propagation of high-order detonation in condensed-phase explosives. The central approximation in the theory is that the detonation shock is weakly curved. Specifically, we assume that the radius of curvature of the detonation shock is large compared to a relevant reaction-zone thickness. Our main findings are: (1) the flow is quasi-steady and nearly one dimensional along the normal to the detonation shock; and (2) the small deviation of the normal detonation velocity from the Chapman-Jouguet (CJ) value is generally a function of curvature. The exact functional form of the correction depends on the equation of state (EOS) and the form of the energy-release law. 8 refs.

Stewart, D.S.; Bdzil, J.B.

1987-01-01T23:59:59.000Z

307

Nonlinear dust acoustic waves and shocks  

SciTech Connect (OSTI)

We describe experiments on (1) nonlinear dust acoustic waves and (2) dust acoustic shocks performed in a direct current (DC) glow discharge dusty plasma. First, we describe experiments showing nonlinear dust acoustic waves characterized by waveforms of the dust density that are typically sharper in the wave crests and flatter in the wave troughs (compared to sinusoidal waves), indicating the development of wave harmonics. We discuss this behavior in terms of a second-order fluid theory for dust acoustic waves. Second, experimental observations of the propagation and steepening of large-amplitude dust acoustic waves into dust acoustic shock waves are presented. The observed shock wave evolution is compared with numerical calculations based on the Riemann solution of the fully nonlinear fluid equations for dust acoustic waves.

Merlino, R. L.; Heinrich, J. R.; Hyun, S.-H.; Meyer, J. K. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

2012-05-15T23:59:59.000Z

308

LIBS Spectral Data for a Mixed Actinide Fuel Pellet Containing Uranium, Plutonium, Neptunium and Americium  

SciTech Connect (OSTI)

Laser-induced breakdown spectroscopy (LIBS) was used to analyze a mixed actinide fuel pellet containing 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2}. The preliminary data shown here is the first report of LIBS analysis of a mixed actinide fuel pellet, to the authors knowledge. The LIBS spectral data was acquired in a plutonium facility at Los Alamos National Laboratory where the sample was contained within a glove box. The initial installation of the glove box was not intended for complete ultraviolet (UV), visible (VIS) and near infrared (NIR) transmission, therefore the LIBS spectrum is truncated in the UV and NIR regions due to the optical transmission of the window port and filters that were installed. The optical collection of the emission from the LIBS plasma will be optimized in the future. However, the preliminary LIBS data acquired is worth reporting due to the uniqueness of the sample and spectral data. The analysis of several actinides in the presence of each other is an important feature of this analysis since traditional methods must chemically separate uranium, plutonium, neptunium, and americium prior to analysis. Due to the historic nature of the sample fuel pellet analyzed, the provided sample composition of 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2} cannot be confirm without further analytical processing. Uranium, plutonium, and americium emission lines were abundant and easily assigned while neptunium was more difficult to identify. There may be several reasons for this observation, other than knowing the exact sample composition of the fuel pellet. First, the atomic emission wavelength resources for neptunium are limited and such techniques as hollow cathode discharge lamp have different dynamics than the plasma used in LIBS which results in different emission spectra. Secondly, due to the complex sample of four actinide elements, which all have very dense electronic energy levels, there may be reactions and interactions occurring within the plasma, such as collisional energy transfer, that might be a factor in the reduction in neptunium emission lines. Neptunium has to be analyzed alone using LIBS to further understand the dynamics that may be occurring in the plasma of the mixed actinide fuel pellet sample. The LIBS data suggests that the emission spectrum for the mixed actinide fuel pellet is not simply the sum of the emission spectra of the pure samples but is dependent on the species present in the plasma and the interactions and reactions that occur within the plasma. Finally, many of the neptunium lines are in the near infrared region which is drastically reduced in intensity by the current optical setup and possibly the sensitivity of the emission detector in the spectral region. Once the optics are replaced and the optical collection system is modified and optimized, the probability of observing emission lines for neptunium might be increased significantly. The mixed actinide fuel pellet was analyzed under the experimental conditions listed in Table 1. The LIBS spectra of the fuel pellet are shown in Figures 1-49. The spectra are labeled with the observed wavelength and atomic species (both neutral (I) and ionic (II)). Table 2 is a complete list of the observed and literature based emission wavelengths. The literature wavelengths have references including NIST Atomic Spectra Database (NIST), B.A. Palmer et al. 'An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge' taken at the Kitt Peak National Observatory (KPNO), R.L. Kurucz 1995 Atomic Line Data from the Smithsonian Astrophysical Observatory (SAO), J. Blaise et al. 'The Atomic Spectrum of Plutonium' from Argonne National Laboratory (BFG), and M. Fred and F.S. Tomkins, 'Preliminary Term Analysis of Am I and Am II Spectra' (FT). The dash (-) shown under Ionic State indicates that the ionic state of the transition was not available. In the spectra, the dash (-) is replaced with a question mark (?). Peaks that are not assigned are most likely real features and not noise but cannot be confidently assi

Judge, Elizabeth J. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Le, Loan A. [Los Alamos National Laboratory; Lopez, Leon N. [Los Alamos National Laboratory; Barefield, James E. [Los Alamos National Laboratory

2012-06-18T23:59:59.000Z

309

JIBS | Joint Institute for Biological Sciences | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

joint institute is located close to ORNL's Laboratory for Comparative and Functional Genomics, other biomolecular sciences research laboratories, and the Environmental Sciences...

310

Infrared Images of Shock-Heated Tin  

SciTech Connect (OSTI)

High-resolution, gated infrared images were taken of tin samples shock heated to just below the 505 K melting point. Sample surfaces were either polished or diamond-turned, with grain sizes ranging from about 0.05 to 10 mm. A high explosive in contact with a 2-mm-thick tin sample induced a peak sample stress of 18 GPa. Interferometer data from similarly-driven tin shots indicate that immediately after shock breakout the samples spall near the free (imaged) surface with a scab thickness of about 0.1 mm.

Craig W. McCluskey; Mark D. Wilke; William D. Turley; Gerald D. Stevens; Lynn R. Veeser; Michael Grover

2004-09-01T23:59:59.000Z

311

Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms  

SciTech Connect (OSTI)

Implementation of a closed loop nuclear fuel cycle requires the utilization of Pu-containing MOX fuels with the important side effect of increased production of the transplutonium actinides, most importantly isotopes of Am and Cm. Because the presence of these isotopes significantly impacts the long-term radiotoxicity of high level waste, it is important that effective methods for their isolation and/or transmutation be developed. Furthermore, since transmutation is most efficiently done in the absence of lanthanide fission products (high yield species with large thermal neutron absorption cross sections) it is important to have efficient procedures for the mutual separation of Am and Cm from the lanthanides. The chemistries of these elements are nearly identical, differing only in the slightly stronger strength of interaction of trivalent actinides with ligand donor atoms softer than O (N, Cl-, S). Research being conducted around the world has led to the development of new reagents and processes with considerable potential for this task. However, pilot scale testing of these reagents and processes has demonstrated the susceptibility of the new classes of reagents to radiolytic and hydrolytic degradation. In this project, separations of trivalent actinides from fission product lanthanides have been investigated in studies of 1) the extraction and chemical stability properties of a class of soft-donor extractants that are adapted from water-soluble analogs, 2) the application of water soluble soft-donor complexing agents in tandem with conventional extractant molecules emphasizing fundamental studies of the TALSPEAK Process. This research was conducted principally in radiochemistry laboratories at Washington State University. Collaborators at the Radiological Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) have contributed their unique facilities and capabilities, and have supported student internships at PNNL to broaden their academic experience. New information has been developed to qualify the extraction potential of a class of pyridine-functionalized tetraaza complexants indicating potential single contact Am-Nd separation factors of about 40. The methodology developed for characterization will find further application in our continuing efforts to synthesize and characterize new reagents for this separation. Significant new insights into the performance envelope and supporting information on the TALSPEAK process has also been developed.

Kenneth L. Nash

2009-09-22T23:59:59.000Z

312

Dynamic Response Of Complex Materials Under Shock Loading  

E-Print Network [OSTI]

resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yielded shock states in agreement with experiments on similar polymers, except the "phase change" observed in experiments, indicating...

Arman, Bedri

2012-10-19T23:59:59.000Z

313

Prediction of Septic Shock in Patients with Hematologic Malignancies  

E-Print Network [OSTI]

65 and SMRT-CO in the prediction of early transfers to theThiel, S.W. , et al. , Early prediction of septic shock inCALIFORNIA   Los  Angeles   Prediction of Septic Shock in

Hu, Scott Bin-Ti

2013-01-01T23:59:59.000Z

314

acoustic shock waves: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shock waves. We address the method in detail and present results of the modeling of the propagation of shock-associated extreme-ultraviolet (EUV) waves as well as Moreton waves...

315

Collisionless Weibel shocks: Full formation mechanism and timing  

SciTech Connect (OSTI)

Collisionless shocks in plasmas play an important role in space physics (Earth's bow shock) and astrophysics (supernova remnants, relativistic jets, gamma-ray bursts, high energy cosmic rays). While the formation of a fluid shock through the steepening of a large amplitude sound wave has been understood for long, there is currently no detailed picture of the mechanism responsible for the formation of a collisionless shock. We unravel the physical mechanism at work and show that an electromagnetic Weibel shock always forms when two relativistic collisionless, initially unmagnetized, plasma shells encounter. The predicted shock formation time is in good agreement with 2D and 3D particle-in-cell simulations of counterstreaming pair plasmas. By predicting the shock formation time, experimental setups aiming at producing such shocks can be optimised to favourable conditions.

Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Stockem, A. [GoLP/Instituto de Plasmas e Fusăo Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal); Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Narayan, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51 Cambridge, Massachusetts 02138 (United States); Silva, L. O. [GoLP/Instituto de Plasmas e Fusăo Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal)

2014-07-15T23:59:59.000Z

316

Localized enhancements of energetic particles at oblique collisionless shocks  

E-Print Network [OSTI]

We investigate the spatial distribution of charged particles accelerated by non-relativistic oblique fast collisionless shocks using three-dimensional test-particle simulations. We find that the density of low-energy particles exhibit a localised enhancement at the shock, resembling the "spike" measured at interplanetary shocks. In contrast to previous results based on numerical solutions to the focused transport equation, we find a shock spike for any magnetic obliquity, from quasi-perpendicular to parallel. We compare the pitch-angle distribution with respect to the local magnetic field and the momentum distribution far downstream and very near the shock within the spike; our findings are compatible with predictions from the scatter-free shock drift acceleration (SDA) limit in these regions. The enhancement of low-energy particles measured by Voyager 1 at solar termination shock is comparable with our profiles. Our simulations allow for predictions of supra-thermal protons at interplanetary shocks within te...

Fraschetti, Federico

2015-01-01T23:59:59.000Z

317

Actinide Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the EffectsAcknowledgment StatementGuidance »| Y-12

318

SciTech Connect: Numerical simulation of shock-heated plasma...  

Office of Scientific and Technical Information (OSTI)

Publication: United States Language: English Subject: N70100* --Physics--Controlled Thermonuclear Research-- Confinement & Heating; *HEATING-- SHOCK HEATING; *SHOCK HEATING--...

319

SHOCK EMERGENCE IN SUPERNOVAE: LIMITING CASES AND ACCURATE APPROXIMATIONS  

SciTech Connect (OSTI)

We examine the dynamics of accelerating normal shocks in stratified planar atmospheres, providing accurate fitting formulae for the scaling index relating shock velocity to the initial density and for the post-shock acceleration factor as functions of the polytropic and adiabatic indices which parameterize the problem. In the limit of a uniform initial atmosphere, there are analytical formulae for these quantities. In the opposite limit of a very steep density gradient, the solutions match the outcome of shock acceleration in exponential atmospheres.

Ro, Stephen; Matzner, Christopher D. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON M5S 3H4 (Canada)

2013-08-10T23:59:59.000Z

320

Compressible Turbulence and Interactions with Shock Waves and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in various disciplines, including supernova explosions, inertial confinement fusion, hypersonic flight and propulsion, and shock wave lithotripsy. Accomplishments: A novel...

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Cyclic Mode of Transmutation of Minor Actinides in Heavy-Water Reactor  

SciTech Connect (OSTI)

Characteristics of process of transmutation of americium and curium from spent nuclear fuel in heavy-water reactor during first 10 lifetimes and at transition to equilibrium mode are calculated. During transmutation, dangerous nuclides, first of all, {sup 244}Cm and {sup 238}Pu are accumulated. They cause an increase of radiotoxicity. At first 10 cycles of a transmutation, the radiotoxicity is increased by 11 times in comparison with initial load of transmuted actinides. Heavy-water reactor with thermal power of 1000 MW can transmute americium and curium extracted from 7-8 VVER-1000 type reactors. It means that the required power of transmutation reactor makes about 4 % of thermal power of VVER-1000 type reactors. (authors)

Gerasimov, Aleksander S.; Kiselev, Gennady V.; Myrtsymova, Lidia A.; Zaritskaya, Tamara S. [Institute of Theoretical and Experimental Physics, SSC RF ITEP, Bolshaya Cheremushkinskaya, 25, 117218 Moscow (Russian Federation)

2002-07-01T23:59:59.000Z

322

High Pressure Phase Transformations in Heavy Rare Earth Metals and Connections to Actinide Crystal Structures  

SciTech Connect (OSTI)

High-pressure studies have been performed on heavy rare earth metals Terbium (Tb) to 155 GPa and Holmium (Ho) to 134 GPa in a diamond anvil cell at room temperature. The following crystal structure sequence was observed in both metals hcp {yields} Sm-type {yields} dhcp {yields} distorted fcc (hR-24) {yields} monoclinic (C2/m) with increasing pressure. The last transformation to a low symmetry monoclinic phase is accompanied by a volume collapse of 5 % for Tb at 51 GPa and a volume collapse of 3 % for Ho at 103 GPa. This volume collapse under high pressure is reminiscent of f-shell delocalization in light rare earth metal Cerium (Ce), Praseodymium (Pr), and heavy actinide metals Americium (Am) and Curium (Cm). The orthorhombic Pnma phase that has been reported in Am and Cm after f-shell delocalization is not observed in heavy rare earth metals under high pressures. (authors)

Vohra, Yogesh K.; Sangala, Bagvanth Reddy; Stemshorn, Andrew K. [Physics, University of Alabama at Birmingham (UAB), 310 Campbell Hall, 1300 University Boulevard, Birmingham, AL, 35294-1170 (United States); Hope, Kevin M. [Biology, Chemistry, and Mathematics, University of Montevallo, Harman Hall, Station 6480, Montevallo, AL, 35115 (United States)

2008-07-01T23:59:59.000Z

323

Pre-neutron emission mass distributions for low-energy neutron-induced actinide fission  

E-Print Network [OSTI]

According to the driving potential of a fissile system, we propose a phenomenological fission potential for a description of the pre-neutron emission mass distributions of neutron-induced actinide fission. Based on the nucleus-nucleus potential with the Skyrme energy-density functional, the driving potential of the fissile system is studied considering the deformations of nuclei. The energy dependence of the potential parameters is investigated based on the experimental data for the heights of the peak and valley of the mass distributions. The pre-neutron emission mass distributions for reactions 238U(n, f), 237Np(n, f), 235U(n, f), 232Th(n, f) and 239Pu(n, f) can be reasonably well reproduced. Some predictions for these reactions at unmeasured incident energies are also presented.

Xiaojun Sun; Chenggang Yu; Ning Wang

2012-01-15T23:59:59.000Z

324

Tunneling through equivalent multihumped fission barriers: Some implications for the actinide nuclei  

SciTech Connect (OSTI)

A comparison of the penetrabilities calculated in the Wentzel-Kramers-Brillouin approximation through equivalent multihumped fission barriers shows that the penetrability saturates to its maximum value much more slowly for a three-humped potential than that for comparable two-humped and single-humped potentials. An analysis of the slopes of the near-barrier photofission cross sections of actinides yields results that can be understood in terms of the predicted potential barrier shapes for these nuclei, and thus provides evidence in support of resolving the ''thorium anomaly'' along the lines suggested by Moeller and Nix. Our results further indicate that the uranium nuclei, and in particular /sup 236/U, may more likely exhibit three-humped potential shapes in which the apparent consequences of both the second and third minima may be observable.

Bhandari, B.S.; Al-Kharam, A.S.

1989-03-01T23:59:59.000Z

325

Method for digesting spent ion exchange resins and recovering actinides therefrom using microwave radiation  

DOE Patents [OSTI]

The present invention relates to methods for digesting diphosphonic acid substituted cation exchange resins that have become loaded with actinides, rare earth metals, or heavy metals, in a way that allows for downstream chromatographic analysis of the adsorbed species without damage to or inadequate elution from the downstream chromatographic resins. The methods of the present invention involve contacting the loaded diphosphonic acid resin with concentrated oxidizing acid in a closed vessel, and irradiating this mixture with microwave radiation. This efficiently increases the temperature of the mixture to a level suitable for digestion of the resin without the use of dehydrating acids that can damage downstream analytical resins. In order to ensure more complete digestion, the irradiated mixture can be mixed with hydrogen peroxide or other oxidant, and reirradiated with microwave radiation.

Maxwell, III, Sherrod L. (Aiken, SC); Nichols, Sheldon T. (Augusta, GA)

1999-01-01T23:59:59.000Z

326

Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions  

DOE Patents [OSTI]

The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

Lupinetti, Anthony J. (Los Alamos, NM); Garcia, Eduardo (Los Alamos, NM); Abney, Kent D. (Los Alamos, NM)

2004-12-14T23:59:59.000Z

327

Sub-barrier capture with quantum diffusion approach: actinide-based reactions  

E-Print Network [OSTI]

With the quantum diffusion approach the behavior of capture cross sections and mean-square angular momenta of captured systems are revealed in the reactions with deformed nuclei at subbarrier energies. The calculated results are in a good agreement with existing experimental data. With decreasing bombarding energy under the barrier the external turning point of the nucleusnucleus potential leaves the region of short-range nuclear interaction and action of friction. Because of this change of the regime of interaction, an unexpected enhancement of the capture cross section is expected at bombarding energies far below the Coulomb barrier. This effect is shown its worth in the dependence of mean-square angular momentum of captured system on the bombarding energy. From the comparison of calculated and experimental capture cross sections, the importance of quasifission near the entrance channel is shown for the actinide-based reactions leading to superheavy nuclei.

V. V. Sargsyan; G. G. Adamian; N. V. Antonenko; W. Scheid; H. Q. Zhang

2011-06-14T23:59:59.000Z

328

Yields of neutron-rich nuclei by actinide photofission in giant dipole resonance region  

E-Print Network [OSTI]

Photofission of actinides is studied in the region of nuclear excitation energies that covers the entire giant dipole resonance (GDR) region. A comparative analysis of the behavior of the symmetric and asymmetric modes of photon induced fission as a function of the average excitation energy of the fissioning nucleus is performed. The mass distributions of $^{238}$U photofission fragments are obtained at the endpoint bremsstrahlung energy of 29.1 MeV which corresponds to mean photon energy of 13.7$\\pm$0.3 MeV that coincides with GDR peak for $^{238}$U photofission. The integrated yield of $^{238}$U photofission as well as charge distribution of photofission products are calculated and its role in the production of neutron-rich nuclei and their exoticity is explored.

Debasis Bhowmick; Debasis Atta; D. N. Basu; Alok Chakrabarti

2015-01-19T23:59:59.000Z

329

FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL  

SciTech Connect (OSTI)

The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

2009-03-10T23:59:59.000Z

330

Study on Equilibrium Characteristics of Thorium-Plutonium-Minor Actinides Mixed Oxides Fuel in PWR  

SciTech Connect (OSTI)

A study on characteristics of thorium-plutonium-minor actinides utilization in the pressurized water reactor (PWR) with the equilibrium burnup model has been conducted. For a comprehensive evaluation, several fuel cycles scenario have been included in the present study with the variation of moderator-to-fuel volume ratio (MFR) of PWR core design. The results obviously exhibit that the neutron spectra grow to be harder with decreasing of the MFR. Moreover, the neutron spectra also turn into harder with the rising number of confined heavy nuclides. The required {sup 233}U concentration for criticality of reactor augments with the increasing of MFR for all heavy nuclides confinement and thorium and uranium confinement in PWR.

Waris, A.; Permana, S.; Kurniadi, R.; Su'ud, Z. [Bosscha Laboratory, Department of Physics, Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia); Sekimoto, H. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology (Japan)

2010-06-22T23:59:59.000Z

331

Dynamical approach to heavy-ion induced fusion using actinide target  

SciTech Connect (OSTI)

To treat heavy-ion reactions using actinide target nucleus, we propose a model which takes into account the coupling to the collective states of interacting nuclei in the penetration of the Coulomb barrier and the dynamical evolution of nuclear shape from the contact configuration. A fluctuation-dissipation model (Langevin equation) was applied in the dynamical calculation, where effect of nuclear orientation at the initial impact on the prolately deformed target nucleus was considered. Using this model, we analyzed the experimental data for the mass distribution of fission fragments (MDFF) in the reaction of {sup 36}S+{sup 238}U at several incident energies. Fusion-fission, quasifission and deep-quasi-fission are separated as different trajectories on the potential energy surface. We estimated the fusion cross section of the reaction.

Aritomo, Y.; Hagino, K.; Chiba, S.; Nishio, K. [Flerov Laboratory of Nuclear Reactions, JINR, Dubna, 141980 (Russian Federation); Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195 (Japan)

2012-10-20T23:59:59.000Z

332

Yields of neutron-rich nuclei by actinide photofission in giant dipole resonance region  

E-Print Network [OSTI]

Photofission of actinides is studied in the region of nuclear excitation energies that covers the entire giant dipole resonance (GDR) region. A comparative analysis of the behavior of the symmetric and asymmetric modes of photon induced fission as a function of the average excitation energy of the fissioning nucleus is performed. The mass distributions of $^{238}$U photofission fragments are obtained at the endpoint bremsstrahlung energy of 29.1 MeV which corresponds to mean photon energy of 13.7$\\pm$0.3 MeV that coincides with GDR peak for $^{238}$U photofission. The integrated yield of $^{238}$U photofission as well as charge distribution of photofission products are calculated and its role in the production of neutron-rich nuclei and their exoticity is explored.

Bhowmick, Debasis; Basu, D N; Chakrabarti, Alok

2015-01-01T23:59:59.000Z

333

Fabrication of advanced oxide fuels containing minor actinide for use in fast reactors  

SciTech Connect (OSTI)

R and D of advanced fuel containing minor actinide for use in fast reactors is described related to the composite fuel with MgO matrix. Fabrication tests of MgO composite fuels containing Am were done by a practical process that could be adapted to the presently used commercial manufacturing technology. Am-containing MgO composite fuels having good characteristics, i.e., having no defects, a high density, a homogeneous dispersion of host phase, were obtained. As related technology, burn-up characteristics of a fast reactor core loaded with the present MgO composite fuel were also analyzed, mainly in terms of core criticality. Furthermore, phase relations of MA oxide which was assumed to be contained in MgO matrix fuel were experimentally investigated. (authors)

Miwa, Shuhei; Osaka, Masahiko; Tanaka, Kosuke; Ishi, Yohei; Yoshimochi, Hiroshi; Tanaka, Kenya [Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Oarai-machi, Higashi-ibaraki-gun, Ibaraki, 311-1393 (Japan)

2007-07-01T23:59:59.000Z

334

TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: OPTIMIZED MONOSODIUM TITANATE PHASE II FINAL REPORT  

SciTech Connect (OSTI)

This document provides a final report of Phase II testing activities for the development of a modified monosodium titanate (MST) that exhibits improved strontium and actinide removal characteristics compared to the baseline MST material. The activities included determining the key synthesis conditions for preparation of the modified MST, preparation of the modified MST at a larger scale by a commercial vendor, demonstration of the strontium and actinide removal characteristics with actual tank waste supernate and measurement of filtration characteristics. Key findings and conclusions include the following. Testing evaluated three synthetic methods and eleven process parameters for the optimum synthesis conditions for the preparation on an improved form of MST. We selected the post synthesis method (Method 3) for continued development based on overall sorbate removal performance. We successfully prepared three batches of the modified MST using Method 3 procedure at a 25-gram scale. The laboratory prepared modified MST exhibited increased sorption kinetics with simulated and actual waste solutions and similar filtration characteristics to the baseline MST. Characterization of the modified MST indicated that the post synthesis treatment did not significantly alter the particle size distribution, but did significantly increase the surface area and porosity compared to the original MST. Testing indicated that the modified MST exhibits reduced affinity for uranium compared to the baseline MST, reducing risk of fissile loading. Shelf-life testing indicated no change in strontium and actinide performance removal after storing the modified MST for 12-months at ambient laboratory temperature. The material releases oxygen during the synthesis and continues to offgas after the synthesis at a rapidly diminishing rate until below a measurable rate after 4 months. Optima Chemical Group LLC prepared a 15-kilogram batch of the modified MST using the post synthesis procedure (Method 3). Performance testing with simulated and actual waste solutions indicated that the material performs as well as or better than batches of modified MST prepared at the laboratory-scale. Particle size data of the vendor-prepared modified MST indicates a broader distribution centered at a larger particle size and microscopy shows more irregular particle morphology compared to the baseline MST and laboratory prepared modified MST. Stirred-cell (i.e., dead-end) filter testing revealed similar filtration rates relative to the baseline MST for both the laboratory and vendor-prepared modified MST materials. Crossflow filtration testing indicated that with MST-only slurries, the baseline MST produced between 30-100% higher flux than the vendor-prepared modified MST at lower solids loadings and comparable flux at higher solids loadings. With sludge-MST slurries, the modified MST produced 1.5-2.2 times higher flux than the baseline MST at all solids loadings. Based on these findings we conclude that the modified MST represents a much improved sorbent for the separation of strontium and actinides from alkaline waste solutions and recommend continued development of the material as a replacement for the baseline MST for waste treatment facilities at the Savannah River Site.

Hobbs, D; Thomas Peters, T; Michael Poirier, M; Mark Barnes, M; Major Thompson, M; Samuel Fink, S

2007-06-29T23:59:59.000Z

335

A FRONT TRACKING METHOD FOR TRANSITIONAL SHOCK WAVES  

E-Print Network [OSTI]

A FRONT TRACKING METHOD FOR TRANSITIONAL SHOCK WAVES HYUN­CHEOL HWANG Abstract. Non of transitional shock waves, which are dependent on the parabolic regularization of the conservation laws transitional shock waves correctly. The algorithm includes the computation of saddle­to­saddle connec­ tions

New York at Stoney Brook, State University of

336

Responses of African economies to the international economic shocks: an  

E-Print Network [OSTI]

rate shocks and five to World price of oil shocks. Furthermore, we investigate the viability of the African economies after an international income, monetary or price shocks tend to be in general more economies (Madeley, 2003). Contrary to the assumption of decoupling for the economic cycles, these countries

Paris-Sud XI, Université de

337

Introduction Organisms exhibit a heat shock response in which  

E-Print Network [OSTI]

Introduction Organisms exhibit a heat shock response in which increased expression of stress proteins (or heat shock proteins, HSPs) is coincident with the induction of thermotolerance (the ability tissue because heat shock (HS) can protect neurons against ischaemic damage1 and this protection may

Robertson, Meldrum

338

Shock wave propagation in composites and active Vinamra Agrawal  

E-Print Network [OSTI]

Shock wave propagation in composites and active Vinamra Agrawal California Institute of Technology travel through a material. These waves are characterized as a discontinuity propagating through shock waves propagate in heterogeneous materials. Shock waves are also being used to o pulsed currents

Shyamasundar, R.K.

339

Injection and acceleration of H at Earth's bow shock  

E-Print Network [OSTI]

Injection and acceleration of H and He2 at Earth's bow shock M. Scholer1 , H. Kucharek1 , K the injection and subsequent acceleration of part of the solar wind ions at the Earth's bow shock. The shocks particles does not contribute to ion injection. Acceleration models that permit thermal particles to scatter

Paris-Sud XI, Université de

340

Comparison of actinide production in traveling wave and pressurized water reactors  

SciTech Connect (OSTI)

The geopolitical problems associated with civilian nuclear energy production arise in part from the accumulation of transuranics in spent nuclear fuel. A traveling wave reactor is a type of breed-burn reactor that could, if feasible, reduce the overall production of transuranics. In one possible configuration, a cylinder of natural or depleted uranium would be subjected to a fast neutron flux at one end. The neutrons would transmute the uranium, producing plutonium and higher actinides. Under the right conditions, the reactor could become critical, at which point a self-stabilizing fission wave would form and propagate down the length of the reactor cylinder. The neutrons from the fission wave would burn the fissile nuclides and transmute uranium ahead of the wave to produce additional fuel. Fission waves in uranium are driven largely by the production and fission of {sup 239}Pu. Simulations have shown that the fuel burnup can reach values greater than 400 MWd/kgIHM, before fission products poison the reaction. In this work we compare the production of plutonium and minor actinides produced in a fission wave to that of a UOX fueled light water reactor, both on an energy normalized basis. The nuclide concentrations in the spent traveling wave reactor fuel are computed using a one-group diffusion model and are verified using Monte Carlo simulations. In the case of the pressurized water reactor, a multi-group collision probability model is used to generate the nuclide quantities. We find that the traveling wave reactor produces about 0.187 g/MWd/kgIHM of transuranics compared to 0.413 g/MWd/kgIHM for a pressurized water reactor running fuel enriched to 4.95 % and burned to 50 MWd/kgIHM. (authors)

Osborne, A.G.; Smith, T.A.; Deinert, M.R. [Department of Mechanical Engineering, University of Texas at Austin, Austin, TX (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hardening Neutron Spectrum for Advanced Actinides Transmutation Experiments in the ATR  

SciTech Connect (OSTI)

The most effective method for transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products is in a fast neutron spectrum reactor. In the absence of a fast rest reactor in the United States, initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. Such a test facility, with a spectrum similar but somewhat softer than that of the liquid-metal fast breeder reactor (LMFBR), has been constructed in the INEEL's Advanced Test Reactor (ATR). The radial fission power distribution of the actinide fuel pin, which is an important parameter in fission gas released modelling, needs to be accurately predicted and the hardened neturon spectrum in the ATR and the LMFBR fast neutron spectrum is compared. The comparison analyses in this study are peformed using MCWO, a well-developed tool that couples the Monte Carlo transport code MCNP with the isotope depletion and build-up code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations and detailed radial fission power profile calculations for a typical fast reactor (LMFBR) neutron spectrum and the hardened neturon spectrum test region in the ATR. The MCWO-calculated results indicate that the cadmium basket used in the advanced fuel test assembly in the ATR can effectively depress the linear heat generation rate in the experimental fuels and harden the neutron spectrum in the test region.

G. S. Chang; R. G. Ambrosek

2004-05-01T23:59:59.000Z

342

Plant Mounds as Concentration and Stabilization Agents for Actinide Soil Contaminants in Nevada  

SciTech Connect (OSTI)

Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around the base of shrubs and are common features in deserts in the southwestern United States. An important factor in their formation is that shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, 241Am, and U in plant mounds at safety experiment and storage-transportation test sites of nuclear devices. Although aerial concentrations of these contaminants were highest in the intershrub or desert pavement areas, the concentration in mounds were higher than in equal volumes of intershrub or desert pavement soil. The NAEG studies found the ratio of contaminant concentration of actinides in soil to be greater (1.6 to 2.0) in shrub mounds than in the surrounding areas of desert pavement. At Project 57 on the NTTR, 17 percent of the area was covered in mounds while at Clean Slate III on the TTR, 32 percent of the area was covered in mounds. If equivalent volumes of contaminated soil were compared between mounds and desert pavement areas at these sites, then the former might contain as much as 34 and 62 percent of the contaminant inventory, respectively. Not accounting for radionuclides associated with shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. In addition, preservation of shrub mounds could be important part of long-term stewardship if these sites are closed by fencing and posting with administrative controls.

D.S. Shafer; J. Gommes

2009-02-03T23:59:59.000Z

343

Three-dimensional shock-shock interactions on the scramjet inlet  

SciTech Connect (OSTI)

The effects of shock impingement on the inlet of a scramjet engine are investigated numerically. The impinging shock is caused by the vehicle forebody. The interaction of this forebody shock with the inlet leading edge shock results in a very complex fully three-dimensional flowfield containing local regions of high pressure and intense heating. In the present investigation, this complex flowfield is calculated by solving the thin-layer Navier-Stokes equations using a finite-volume flux splitting technique due to van Leer. For zero or small sweep angles a Type IV interaction occurs while for moderate sweep of about 25 deg, a Type V interaction occurs. Both Type IV and Type V interactions are investigated. 25 refs.

Singh, D.J.; Tiwari, S.N.; Kumar, A.

1990-01-01T23:59:59.000Z

344

Shock wave absorber having a deformable liner  

DOE Patents [OSTI]

This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

1983-08-26T23:59:59.000Z

345

Gravimagnetic shock waves in the anisotropic plasma  

E-Print Network [OSTI]

The relativistic magnetohydrodynamic equations for the anisotropic magnetoactive plasma are obtained and accurately integrated in the plane gravitational wave metrics. The dependence of the induction mechanism of the gravimagnetic shock waves on the degree of the magnetoactive plasma anisotropy is analyzed.

Yu. G. Ignatyev; D. N. Gorokhov

2011-01-01T23:59:59.000Z

346

EFFECT OF JOINT AUDITOR PAIR ON CONSERVATISM  

E-Print Network [OSTI]

1 EFFECT OF JOINT AUDITOR PAIR ON CONSERVATISM: EVIDENCE FROM IMPAIRMENT TESTS Gerald Lobo's (1997) measure of conservatism, are more likely to book impairments when operating performance is low requiring joint audit to improve audit quality. Mots clés : Co-commissariat ­ Reconnaissance adéquate des

Paris-Sud XI, Université de

347

Joint Fuel Cell Bus Workshop Summary Report  

E-Print Network [OSTI]

Joint Fuel Cell Bus Workshop Summary Report Prepared for: U.S. Department of Energy (DOE/EERE) U was jointly sponsored by the Energy Efficiency and Renewable Energy office of the DOE and the Federal Transit the entire range of operating conditions and cycles · Cost (manufacturing, capital, operations

348

Shock compression and expansion in central collisions  

SciTech Connect (OSTI)

Physics of central symmetric reactions of heavy nuclei, in the beam energy range from few tens of MeV to a couple of GeV per nucleon, is discussed. Within transport simulations, it is shown that shock fronts perpendicular to the beam axis form in the head-on reactions. The fronts propagate into projectile and target and they separate hot compressed matter from normal matter. With an increase of the impact parameter, the angle of inclination of fronts relative to the beam axis decreases, and in-between the fronts a weak tangential discontinuity develops. Hot matter exposed to the vacuum in directions perpendicular to the shock motion (and parallel to fronts), starts to expand sideways, early within reactions. Expansion in the direction of shock motion follows, after the shocks traverse nuclei, but due to the delay does not acquire same strength. Expansion affects angular distributions and mean-energy components, and further shapes of spectra and mean energies of different particles emitted into any one direction, and also particle yields. Both the anisotropy in the expansion and a collective motion associated with the weak discontinuity, affect the magnitude of sideward flow within reaction plane. Differences in mean particle energy components in and out of the reaction plane in semicentral collisions, depend sensitively on the relative magnitude of shock speed in normal matter and speed of sound in hot matter. The missing energy, considered in the past in association with low measured pion-multiplicity in central reactions, may be identified with the energy of collective expansion.

Danielewicz, P. [Univ. of Washington, Seattle, WA (United States). Institute for Nuclear Theory]|[Michigan State Univ., East Lansing, MI (United States)

1995-01-01T23:59:59.000Z

349

Interaction of an oblique shock wave with a pair of parallel vortices: Shock dynamics and mechanism of sound generation  

E-Print Network [OSTI]

and the mechanism of sound generation in the interaction between an oblique shock wave and a pair of vortices. We is related to the interaction of the reflected shock waves and sound waves. The first mechanism is dominating affected by the interaction of the reflected shock waves and sound waves. © 2006 American Institute

Zhang, Yong-Tao

350

Strong shock generation by fast electron energy deposition  

SciTech Connect (OSTI)

It has been suggested that fast electrons may play a beneficial role in the formation of the ignitor shock in shock ignition owing to the high areal density of the fuel at the time of the ignitor pulse. In this paper, we extend previous studies which have focused on monoenergetic electron sources to populations with extended energy distributions. In good agreement with analytic scalings, we show that strong shocks can be produced with peak pressures of a few hundred Mbar to over 1 Gbar using fast electron intensities of 1–10 PW/cm{sup 2} in a uniform deuterium-tritium plasma at 10 g/cm{sup 3}. However, the length required for shock formation increases with fast electron temperature. As this shock formation distance becomes comparable to the target size, the shock is not able to fully develop, and this implies a limit on the ability of fast electrons to aid shock formation.

Fox, T. E.; Pasley, J. [York Plasma Institute, University of York, York YO10 5DD (United Kingdom) [York Plasma Institute, University of York, York YO10 5DD (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Robinson, A. P. L. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

2013-12-15T23:59:59.000Z

351

Sandia National Laboratories: New Report Describes Joint Opportunities...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets New Report Describes Joint Opportunities for Natural Gas and Hydrogen...

352

New Report Describes Joint Opportunities for Natural Gas and...  

Energy Savers [EERE]

New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel Cell Vehicle Markets New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel Cell...

353

Fifth National Report for the Joint Convention on the Safety...  

Energy Savers [EERE]

Fifth National Report for the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management Fifth National Report for the Joint Convention...

354

National Report Joint Convention on the Safety of Spent Fuel...  

Office of Environmental Management (EM)

National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report Joint Convention on the Safety of Spent...

355

Joint inversion of electrical and seismic data for Fracture char...  

Broader source: Energy.gov (indexed) [DOE]

Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char....

356

United States and Japan Sign Joint Nuclear Energy Action Plan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy...

357

acute prosthetic joint: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 110 Joint Degrees & Promotion towards European Students Computer...

358

anatomical joint angles: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 110 Joint Degrees & Promotion towards European Students Computer...

359

atlanto-axial joint: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 13 Joint Degrees & Promotion towards European Students Computer...

360

artificial joint replacements: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 152 Joint Degrees & Promotion towards European Students Computer...

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ankle joint mobility: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 214 Joint Degrees & Promotion towards European Students Computer...

362

acromioclavicular joint reconstruction: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 68 Joint Degrees & Promotion towards European Students Computer...

363

acromioclavicular joint: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 14 Joint Degrees & Promotion towards European Students Computer...

364

animals jointly organized: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 109 Joint Degrees & Promotion towards European Students Computer...

365

anticorrosive field joint: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 48 Joint Degrees & Promotion towards European Students Computer...

366

ankle joint position: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 205 Joint Degrees & Promotion towards European Students Computer...

367

articular process joints: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 146 Joint Degrees & Promotion towards European Students Computer...

368

atlanto-occipital joint: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 15 Joint Degrees & Promotion towards European Students Computer...

369

Joint Institute for Neutron Sciences | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Joint Institute for Neutron Sciences SHARE Joint Institute for Neutron Sciences JINS is located on Chestnut Ridge within the 80-acre SNS site, part of Oak Ridge National...

370

Joint Technical Operations Team | National Nuclear Security Administra...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Blog Home About Us Our Programs Emergency Response Responding to Emergencies Render Safe Joint Technical Operations Team Joint Technical Operations Team JTOT Logo...

371

Phosphine oxide derivatives as hosts for blue phosphors: A joint...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oxide derivatives as hosts for blue phosphors: A joint theoretical and experimental study of their electronic Phosphine oxide derivatives as hosts for blue phosphors: A joint...

372

application driven joint: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This applica- tion is particularly challenging due to its demand for multiple concurrent media Smith, Jonathan M. 60 JOINT SEMINAR FINAL REPORT Mathematics Websites Summary: JOINT...

373

Sealed joint structure for electrochemical device  

DOE Patents [OSTI]

Several members make up a joint in a high-temperature electrochemical device, wherein the various members perform different functions. The joint is useful for joining multiple cells (generally tubular modules) of an electrochemical device to produce a multi-cell segment-in-series stack for a solid oxide fuel cell, for instance. The joint includes sections that bond the joining members to each other; one or more seal sections that provide gas-tightness, and sections providing electrical connection and/or electrical insulation between the various joining members. A suitable joint configuration for an electrochemical device has a metal joint housing, a first porous electrode, a second porous electrode, separated from the first porous electrode by a solid electrolyte, and an insulating member disposed between the metal joint housing and the electrolyte and second electrode. One or more brazes structurally and electrically connects the first electrode to the metal joint housing and forms a gas tight seal between the first electrode and the second electrode.

Tucker, Michael C; Jacobson, Craig P; De Jonghe, Lutgard C; Visco, Steven J

2013-05-21T23:59:59.000Z

374

Simulations of Turbulent Flows with Strong Shocks and Density Variations  

SciTech Connect (OSTI)

In this report, we present the research efforts made by our group at UCLA in the SciDAC project ���¢��������Simulations of turbulent flows with strong shocks and density variations���¢�������. We use shock-fitting methodologies as an alternative to shock-capturing schemes for the problems where a well defined shock is present. In past five years, we have focused on development of high-order shock-fitting Navier-Stokes solvers for perfect gas flow and thermochemical non-equilibrium flow and simulation of shock-turbulence interaction physics for very strong shocks. Such simulation has not been possible before because the limitation of conventional shock capturing methods. The limitation of shock Mach number is removed by using our high-order shock-fitting scheme. With the help of DOE and TeraGrid/XSEDE super computing resources, we have obtained new results which show new trends of turbulence statistics behind the shock which were not known before. Moreover, we are also developing tools to consider multi-species non-equilibrium flows. The main results are in three areas: (1) development of high-order shock-fitting scheme for perfect gas flow, (2) Direct Numerical Simulation (DNS) of interaction of realistic turbulence with moderate to very strong shocks using super computing resources, and (3) development and implementation of models for computation of mutli-species non-quilibrium flows with shock-fitting codes.

Zhong, Xiaolin

2012-12-13T23:59:59.000Z

375

Demonstration of a TODGA/TBP process for recovery of trivalent actinides and lanthanides from a PUREX raffinate  

SciTech Connect (OSTI)

The efficiency of the partitioning of trivalent actinides from a PUREX raffinate has been demonstrated with a TODGA + TBP extractant mixture dissolved in an industrial aliphatic solvent TPH. Based on the results coming from cold and hot batch extraction studies and with the aid of computer code calculations a continuous counter current process have been developed and two flowsheets were tested using miniature centrifugal contactors. The feed solutions was a synthetic PUREX raffinate, spiked with {sup 241}Am, {sup 244}Cm, {sup 252}Cf, {sup 152}Eu and {sup 134}Cs. More than 99.9 % of the trivalent actinides and lanthanides were extracted and back-extracted and very high decontamination factors to most fission products were obtained. Co-extraction of zirconium, molybdenum and palladium was prevented using oxalic acid and HEDTA. However 10% of ruthenium was extracted and only 3 % could be back extracted using diluted nitric acid. (authors)

Modolo, G.; Asp, H.; Vijgen, H. [Forschungszentrum Juelich GmbH, Institut fuer Energieforschung, 52425 Juelich (Germany); Malmbeck, R.; Magnusson, D. [European Commission, JRC, Institute for Transuranium Elements - ITU, 76125 Karlsruhe (Germany); Sorel, C. [Commissariat a l'Energie Atomique Valrho - CEA, DRCP/SCPS, BP17171, 30207 Bagnols-sur-Ceze (France)

2007-07-01T23:59:59.000Z

376

Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste  

DOE Patents [OSTI]

Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

Zaitsev, Boris N. (St. Petersburg, RU); Esimantovskiy, Vyacheslav M. (St. Petersburg, RU); Lazarev, Leonard N. (St. Petersburg, RU); Dzekun, Evgeniy G. (Ozersk, RU); Romanovskiy, Valeriy N. (St. Petersburg, RU); Todd, Terry A. (Aberdeen, ID); Brewer, Ken N. (Arco, ID); Herbst, Ronald S. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID)

2001-01-01T23:59:59.000Z

377

Speciation and structural characterization of plutonium and actinide-organic complexes in surface and groundwaters. 1998 annual progress report  

SciTech Connect (OSTI)

'The authors proposed research is designed to study the association of actinides with dissolved organic complexes in subsurface waters. This study expands considerably on prior work due to the combination of Pu oxidation studies (for Pu speciation/chemical reactivity information), Pu isotope ratio work (for Pu source function information), and the detailed characterization of organic matter in size-fractionated groundwater samples. They have postulated that actinide associations with organic matter may be enhanced due to colloidal biopolymers. This report summarizes work completed after less than 2 years of a 3-year project. Activities thus far have included: (1) the development of sampling techniques to minimize contamination and artifact formation, (2) the separation of Pu isotopes by oxidation state in groundwater, (3) the development of techniques for the separation and identification of organic constituents from natural waters, (4) a study of background Pu and organic carbon concentrations at the proposed study sites, and (5) field work at the Savannah River site (SRS).'

Buesseler, K.O.; Repeta, D.J. [Woods Hole Oceanographic Inst., MA (US); Kelley, J.M. [Pacific Northwest National Lab., Richland, WA (US)

1998-06-01T23:59:59.000Z

378

Inspection of Fusion Joints in Plastic Pipe  

SciTech Connect (OSTI)

The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

Connie Reichert

2005-09-01T23:59:59.000Z

379

Actinide destruction and power peaking analysis in a 1000 MWt advanced burner reactor using moderated heterogeneous target assemblies  

SciTech Connect (OSTI)

The purpose of this research was to determine the effect of moderated heterogeneous subassemblies located in the core of a sodium-cooled fast reactor on minor actinide (MA) destruction rates over the lifecycle of the core. Additionally, particular emphasis was placed on the power peaking of the pins and the assemblies with the moderated targets as compared to standard unmoderated heterogeneous targets and a core without MA targets present. Power peaking analysis was performed on the target assemblies and on the fuel assemblies adjacent to the targets. The moderated subassemblies had a marked improvement in the overall destruction of heavy metals in the targets. The design with acceptable power peaking results had a 12.25% greater destruction of heavy metals than a similar ex-core unmoderated assembly. The increase in minor actinide destruction was most evident with americium where the moderated assemblies reduced the initial amount to less than 3% of the initial loading over a period of five years core residency. In order to take advantage of the high minor actinide destruction and minimize the power peaking effects, a hybrid scenario was devised where the targets resided ex-core in a moderated assembly for the first 506.9 effective full power days (EFPDs) and were moved to an in-core arrangement with the moderated targets removed for the remainder of the lifecycle. The hybrid model had an assembly and pin power peaking of less than 2.0 and a higher heavy metal and minor actinide destruction rate than the standard unmoderated heterogeneous targets either in-core or ex-core. The hybrid model has a 54.5% greater Am reduction over the standard ex-core model. It also had a 27.8% greater production of Cm and a 41.5% greater production of Pu than the standard ex-core model. The radiotoxicity of the targets in the hybrid design was 20% less than the discharged standard ex-core targets.

Kenneth Allen; Travis Knight; Samuel Bays

2011-05-01T23:59:59.000Z

380

Gas-phase energies of actinide oxides -- an assessment of neutral and cationic monoxides and dioxides from thorium to curium  

SciTech Connect (OSTI)

An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.

Marcalo, Joaquim; Gibson, John K.

2009-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling  

SciTech Connect (OSTI)

Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

Koch, M.; Kazimi, M.S.

1991-04-01T23:59:59.000Z

382

MIX and Instability Growth from Oblique Shock  

SciTech Connect (OSTI)

We have studied the formation and evolution of shock-induced mix resulting from interface features in a divergent cylindrical geometry. In this research a cylindrical core of high-explosive was detonated to create an oblique shock wave and accelerate the interface. The interfaces studied were between the high-explosive/aluminum, aluminum/plastic, and finally plastic/air. Pre-emplaced surface features added to the aluminum were used to modify this interface. Time sequence radiographic imaging quantified the resulting instability formation from the growth phase to over 60 {micro}s post-detonation. Thus allowing the study of the onset of mix and evolution to turbulence. The plastic used here was porous polyethylene. Radiographic image data are compared with numerical simulations of the experiments.

Molitoris, J D; Batteux, J D; Garza, R G; Tringe, J W; Souers, P C; Forbes, J W

2011-07-22T23:59:59.000Z

383

Shock wave absorber having apertured plate  

DOE Patents [OSTI]

The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

Shin, Yong W. (Western Springs, IL); Wiedermann, Arne H. (Chicago Heights, IL); Ockert, Carl E. (Vienna, VA)

1985-01-01T23:59:59.000Z

384

Shock wave absorber having apertured plate  

DOE Patents [OSTI]

The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

Shin, Y.W.; Wiedermann, A.H.; Ockert, C.E.

1983-08-26T23:59:59.000Z

385

AGN Heating through Cavities and Shocks  

E-Print Network [OSTI]

Three comments are made on AGN heating of cooling flows. A simple physical argument is used to show that the enthalpy of a buoyant radio lobe is converted to heat in its wake. Thus, a significant part of ``cavity'' enthalpy is likely to end up as heat. Second, the properties of the repeated weak shocks in M87 are used to argue that they can plausibly prevent gas close to the AGN from cooling. As the most significant heating mechanism at work closest to the AGN, shock heating probably plays a critical role in the feedback mechanism. Third, results are presented from a survey of AGN heating rates in nearby giant elliptical galaxies. With inactive systems included, the overall AGN heating rate is reasonably well matched to the total cooling rate for the sample. Thus, intermittent AGN outbursts are energetically capable of preventing the hot atmospheres of these galaxies from cooling and forming stars.

P. E. J. Nulsen; C. Jones; W. R. Forman; L. P. David; B. R. McNamara; D. A. Rafferty; L. Birzan; M. W. Wise

2006-11-04T23:59:59.000Z

386

Shocks and Wind Bubbles Around Energetic Pulsars  

E-Print Network [OSTI]

The Crab Nebula demonstrates that neutron stars can interact with their environments in spectacular fashion, their relativistic winds generating nebulae observable across the electromagnetic spectrum. At many previous conferences, astronomers have discussed, debated and puzzled over the complicated structures seen in the Crab, but have been limited to treating most other pulsar wind nebulae (PWNe) as simple calorimeters for a pulsar's spin-down energy. However, with the wealth of high-quality data which have now become available, this situation has changed dramatically. I here review some of the main observational themes which have emerged from these new measurements. Highlights include the ubiquity of pulsar termination shocks, the unambiguous presence of relativistic jets in PWNe, complicated time variability seen in PWN structures, and the use of bow shocks to probe the interaction of pulsar winds with the ambient medium.

Bryan M. Gaensler

2004-05-14T23:59:59.000Z

387

Transportation Shock and Vibration Literature Review  

SciTech Connect (OSTI)

This report fulfills the M4 milestone M4FT-13OR08220112, "Report Documenting Experimental Activities." The purpose of this report is to document the results of a literature review conducted of studies related to the vibration and shock associated with the normal conditions of transport for rail shipments of used nuclear fuel from commercial light-water reactors. As discussed in Adkins (2013), the objective of this report is to determine if adequate data exist that would enable the impacts of the shock and vibration associated with the normal conditions of transport on commercial light-water reactor used nuclear fuel shipped in current generation rail transportation casks to be realistically modeled.

Maheras, Steven J.; Lahti, Erik A.; Ross, Steven B.

2013-06-06T23:59:59.000Z

388

Shock phenomena in baryonless strongly interacting matter  

SciTech Connect (OSTI)

Shock phenomena associated with the quark-to-hadron matter phase transition are studied using the concept of adiabats. To allow for an analysis of a medium with vanishing baryon density, the shock and Poisson adiabats are formulated in terms of hydrodynamic fluxes, rather than only thermodynamic variables. The bag-model equation of state is used to describe the phase transition. It is shown that deflagrations from the quark phase above the critical temperature and strong detonations from the supercooled quark phase to the superheated hadron phase are unlikely. Instead the possibility of weak condensation detonations from the supercooled quark phase to a mixed phase is indicated. Strong detonations can occur if the latent energy density of the phase transition is small compared to the energy density of the hadron gas. Simple properties of the adiabats and of the equation of state are employed to derive several analytic results.

Danielewicz, P.; Ruuskanen, P.V.

1987-01-01T23:59:59.000Z

389

On particle acceleration around shocks. I  

E-Print Network [OSTI]

We derive a relativistically covariant (although not manifestly so) equation for the distribution function of particles accelerated at shocks, which applies also to extremely relativistic shocks, and arbitrarily anisotropic particle distributions. The theory is formulated for arbitrary pitch angle scattering, and reduces to the well--known case for small angle scatterings via a Fokker--Planck approximation. The boundary conditions for the problem are completely reformulated introducing a physically motivated Green's function; the new formulation allows derivation of the particle spectrum both close and far away from the injection energy in an exact way, while it can be shown to reduce to a power--law at large particle energies. The particle spectral index is also recovered in a novel way. Contact is made with the Newtonian treatment.

Mario Vietri

2003-03-28T23:59:59.000Z

390

Introduction to Plasma Dynamo, Reconnection and Shocks  

SciTech Connect (OSTI)

In our plasma universe, most of what we can observe is composed of ionized gas, or plasma. This plasma is a conducting fluid, which advects magnetic fields when it flows. Magnetic structure occurs from the smallest planetary to the largest cosmic scales. We introduce at a basic level some interesting features of non linear magnetohydrodynamics (MHD). For example, in our plasma universe, dynamo creates magnetic fields from gravitationally driven flow energy in an electrically conducting medium, and conversely magnetic reconnection annihilates magnetic field and accelerates particles. Shocks occur when flows move faster than the local velocity (sonic or Alfven speed) for the propagation of information. Both reconnection and shocks can accelerate particles, perhaps to gigantic energies, for example as observed with 10{sup 20} eV cosmic rays.

Intrator, Thomas P. [Los Alamos National Laboratory

2012-08-30T23:59:59.000Z

391

Test of the adequacy of using smoothly joined parabolic segments to parametrize the multihumped fission barriers in actinides  

SciTech Connect (OSTI)

The adequacy of using smoothly joined parabolic segments to parametrize the multihumped fission barriers has been tested by examining its simultaneous consistency with the three relevant fission observables, namely, the near-barrier fission cross sections, isomeric half-lives, and the ground-state spontaneous fission half-lives of a wide variety of a total of 25 actinide nuclides. The penetrabilities through such multihumped fission barriers have been calculated in the Wentzel-Kramers-Brillouin approximation, and the various fission half-lives have been determined using the formalism given earlier by Nix and Walker. The results of our systematic analysis of these actinide nuclides suggest that such a parametrization is quite adequate at least for the even-even nuclei, as it reproduces satisfactorily their various observed fission characteristics. Major difficulties remain, however, for the odd mass and for the doubly odd nuclei where the calculated ground-state spontaneous fission half-lives are found to be several orders of magnitude larger than those measured. Possible reasons for such discrepancies are discussed. Fission branching ratios of the decay of the shape isomers in various actinide nuclides have also been calculated and are compared with their measured values.

Bhandari, B.S. (Department of Physics, Faculty of Science, University of Garyounis, Benghazi (Libya))

1990-10-01T23:59:59.000Z

392

Review Article: The Effects of Radiation Chemistry on Solvent Extraction 3: A Review of Actinide and Lanthanide Extraction  

SciTech Connect (OSTI)

The partitioning of the long-lived ?-emitters and the high-yield fission products from dissolved nuclear fuel is a key component of processes envisioned for the safe recycling of nuclear fuel and the disposition of high-level waste. These future processes will likely be based on aqueous solvent extraction technologies for light water reactor fuel and consist of four main components for the sequential separation of uranium, fission products, group trivalent actinides and lanthanides, and then trivalent actinides from lanthanides. Since the solvent systems will be in contact with highly radioactive solutions, they must be robust toward radiolytic degradation in an irradiated mixed organic, aqueous acidic environment. Therefore, an understanding of their radiation chemistry is important to the design of a practical system. In the first paper in this series we reviewed the radiation chemistry of irradiated aqueous nitric acid and the tributyl phosphate ligand for uranium extraction in the first step of these extractions. In the second, we reviewed the radiation chemistry of the ligands proposed for use in the extraction of cesium and strontium fission products. Here, we review the radiation chemistry of the ligands that might be used in the third step in the series of separations, for the group extraction of the lanthanides and actinides. This includes traditional organophosphorous reagents such as CMPO and HDEHP, as well as novel reagents such as the amides and diamides currently being investigated.

Bruce J. Mincher; Giuseppe Modolo; Stephen P. Mezyk

2009-12-01T23:59:59.000Z

393

Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields  

SciTech Connect (OSTI)

In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

2011-07-01T23:59:59.000Z

394

Smoothed Particle Magnetohydrodynamics (some shocking results...)  

E-Print Network [OSTI]

There have been some issues in the past in attempts to simulate magnetic fields using the Smoothed Particle Hydrodynamics (SPH) method. SPH is well suited to star formation problems because of its Lagrangian nature. We present new, stable and conservative methods for magnetohydrodynamics (MHD) in SPH and present numerical tests on both waves and shocks in one dimension to show that it gives robust and accurate results.

D. J. Price; J. J. Monaghan

2003-10-06T23:59:59.000Z

395

GRB060218: A Relativistic Supernova Shock Breakout  

E-Print Network [OSTI]

We show that the prompt and afterglow X-ray emission of GRB060218, as well as its early (tsun envelope of the star, which was heated to high temperature during shock passage. The observed X-ray afterglow and the early optical-UV emission are both consistent with those expected in this model. Detailed analysis of the early optical-UV emission may provide detailed constraints on the density distribution near the stellar surface.

E. Waxman; P. Meszaros; S. Campana

2007-02-16T23:59:59.000Z

396

Collisionless Shocks and TeV Neutrinos before Supernova Shock Breakout from an Optically Thick Wind  

E-Print Network [OSTI]

During a supernova explosion, a radiation-dominated shock (RDS) travels through its progenitor. A collisionless shock (CS) is usually assumed to replace it during shock breakout (SB). We demonstrate here that for some realistic progenitors enshrouded in optically thick winds, such as possibly SN 2008D, a CS forms deep inside the wind, soon after the RDS leaves the core, and therefore significantly before SB. The RDS does not survive the transition from the core to the thick wind when the wind close to the core is not sufficiently dense to compensate for the $r^{-2}$ dilution of photons due to shock curvature. This typically happens when the shock velocity is $\\lesssim 0.1 {\\rm c} \\, (\\frac{u_{\\rm w}}{10\\,{\\rm km/s}}) (\\frac{\\dot{M}}{5 \\cdot 10^{-4} \\, {\\rm M}_\\odot {\\rm /yr}})^{-1} (\\frac{r_\\ast}{10^{13}\\,{\\rm cm}})$, where $u_{\\rm w}$, $\\dot{M}$ and $r_\\ast$ are respectively the wind velocity, mass-loss rate and radius of the progenitor star. The radiative CS results in a hard spectrum of the photon flash at...

Giacinti, G

2015-01-01T23:59:59.000Z

397

Heating Cooling Flows with Weak Shock Waves  

E-Print Network [OSTI]

The discovery of extended, approximately spherical weak shock waves in the hot intercluster gas in Perseus and Virgo has precipitated the notion that these waves may be the primary heating process that explains why so little gas cools to low temperatures. This type of heating has received additional support from recent gasdynamical models. We show here that outward propagating, dissipating waves deposit most of their energy near the center of the cluster atmosphere. Consequently, if the gas is heated by (intermittent) weak shocks for several Gyrs, the gas within 30-50 kpc is heated to temperatures that far exceed observed values. This heating can be avoided if dissipating shocks are sufficiently infrequent or weak so as not to be the primary source of global heating. Local PV and viscous heating associated with newly formed X-ray cavities are likely to be small, which is consistent with the low gas temperatures generally observed near the centers of groups and clusters where the cavities are located.

W. G. Mathews; A. Faltenbacher; F. Brighenti

2005-11-05T23:59:59.000Z

398

Direct Simulation of Shock Layer Plasmas  

SciTech Connect (OSTI)

Approximate models of the electric field used with the DSMC method all impose quasi-neutrality everywhere in the shock layer plasma. The shortcomings of these models are examined in this study by simulating a weak shock layer plasma with a coupled DSMC-Particle-In-Cell (PIC) method. The stagnation streamline of an axisymmetric shock layer is simulated for entry velocities in air that correspond to both lunar and Mars return trajectories. The atmospheric densities, particle diameters and chemical reaction rates are varied from the actual values to make the computations tractable while retaining the mean free path of air at 85 km altitude. In contrast to DSMC flow field predictions, regions of non-neutrality are predicted by the DSMC-PIC method, and the electrons are predicted to be isothermal. Perhaps the most important result of this study is that the DSMC-PIC results at both reentry energies yield a 14% increase in heat flux to the vehicle surface relative to the DSMC results. Rather unintuitively, this is mostly due to an increase in ion flux to the surface, rather than the potential energy gained by each ion as it traverses the plasma sheath. In this study, an approximate electric field model is presented, with the goal of accounting for this heat flux augmentation without the need for a computationally expensive DSMC-PIC calculation of the entire flow-field. Convective heat flux results obtained with new electric field model are compared to results from the rigorous DSMC-PIC calculations.

Farbar, E. D.; Boyd, I. D. [Dept. of Aerospace Engineering, University of Michigan, 1320 Beal Ave., Ann Arbor MI, 48109 (United States)

2011-05-20T23:59:59.000Z

399

Safety Monitor Joint Working Group (JWG) Tour  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Joint Working Group of the U.S.-Japan Coordinating Committee of Fusion Energy on Safety in Inter-Institutional Collaborations (U.S.-Japan Safety Monitoring Program) Meeting...

400

OXFORD UNIVERSITY JOINT COMMITTEE FOR MATHEMATICS AND  

E-Print Network [OSTI]

OXFORD UNIVERSITY JOINT COMMITTEE FOR MATHEMATICS AND PHILOSOPHY October 2014 Programme: for Mathematics, Statistics and Operational Research, and for Philosophy. http · to provide, within the supportive and stimulating environment of the collegiate university, a course

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Dynamic Ball & Socket Joint Force Simulator  

E-Print Network [OSTI]

The stability of an implant in the bone, one factor in joint replacement survival, is usually tested using biaxial fatigue loading. These loading protocols do not replicate physiological loading conditions. The Dynamic ...

Farmer, Ryan Neal

2011-07-26T23:59:59.000Z

402

CHARACTERIZATION OF DAMPING IN BOLTED LAP JOINTS  

SciTech Connect (OSTI)

The dynamic response of a jointed beam was measured in laboratory experiments. The data were analyzed and the system was mathematically modeled to establish plausible representations of joint damping behavior. Damping is examined in an approximate, local linear framework using log decrement and half power bandwidth approaches. in addition, damping is modeled in a nonlinear framework using a hybrid surface irregularities model that employs a bristles-construct. Experimental and analytical results are presented.

C. MALONEY; D. PEAIRS; ET AL

2000-08-01T23:59:59.000Z

403

JointResearchCentre THE WATER FRAMEWORK DIRECTIVE  

E-Print Network [OSTI]

Commission *Directorate General Environment **Joint Research Centre #12;Evolvement of the EU Water.for operational methods and other supporting tools. ll Joint efforts and activities by all involved partiesJointJointResearchCentre THE WATER FRAMEWORK DIRECTIVE: THE CHALLENGES OF TESTING AND VALIDATION

404

GRB Phenomenology, Shock Dynamo, and the First Magnetic Fields  

E-Print Network [OSTI]

A relativistic collisionless shock propagating into an unmagnetized medium leaves behind a strong large-scale magnetic field. This seems to follow from two assumptions: (i) GRB afterglows are explained by synchrotron emission of a relativistic shock, (ii) magnetic field can't exist on microscopic scales only, it would decay by phase space mixing. Assumption (i) is generally accepted because of an apparent success of the shock synchrotron phenomenological model of GRB afterglow. Assumption (ii) is confirmed in this work by a low-dimensional numerical simulation. One may hypothesize that relativistic shock velocities are not essential for the magnetic field generation, and that all collisionless shocks propagating into an unmagnetized medium generate strong large-scale magnetic fields. If this hypothesis is true, the first cosmical magnetic fields could have been generated in shocks of the first virialized objects.

Andrei Gruzinov

2001-07-05T23:59:59.000Z

405

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production  

SciTech Connect (OSTI)

The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

2002-01-01T23:59:59.000Z

406

REVIEW OF EXPERIMENTAL STUDIES INVESTIGATING THE RATE OF STRONTIUM AND ACTINIDE ADSORPTION BY MONOSODIUM TITANATE  

SciTech Connect (OSTI)

A number of laboratory studies have been conducted to determine the influence of mixing and mixing intensity, solution ionic strength, initial sorbate concentrations, temperature, and monosodium titanate (MST) concentration on the rates of sorbate removal by MST in high-level nuclear waste solutions. Of these parameters, initial sorbate concentrations, ionic strength, and MST concentration have the greater impact on sorbate removal rates. The lack of a significant influence of mixing and mixing intensity on sorbate removal rates indicates that bulk solution transport is not the rate controlling step in the removal of strontium and actinides over the range of conditions and laboratory-scales investigated. However, bulk solution transport may be a significant parameter upon use of MST in a 1.3 million-gallon waste tank such as that planned for the Small Column Ion Exchange (SCIX) program. Thus, Savannah River National Laboratory (SRNL) recommends completing the experiments in progress to determine if mixing intensity influences sorption rates under conditions appropriate for this program. Adsorption models have been developed from these experimental studies that allow prediction of strontium (Sr), plutonium (Pu), neptunium (Np) and uranium (U) concentrations as a function of contact time with MST. Fairly good agreement has been observed between the predicted and measured sorbate concentrations in the laboratory-scale experiments.

Hobbs, D.

2010-10-01T23:59:59.000Z

407

REVIEW OF ACTINIDE AND STRONTIUM LOADING DATA FOR MST AND MMST  

SciTech Connect (OSTI)

SRNL reviewed the relevant data from MST and mMST fissile loading studies to determine if further studies were required. With respect to MST, SRNL found that the published results adequately bound the expected conditions that Small Column Ion Exchange (SCIX) process will operate under. The lack of strontium data does not represent an issue as strontium is not relevant to criticality. There is no threat to criticality safety from the lack of strontium loading data. However, SRNL proposes a single test with MST to ensure that future SCIX operations are conservatively bounded and strontium maximum loading is understood. With respect to attempts to maximally load mMST, SRNL's knowledge on actinide and strontium loading is limited to uranium behavior. mMST has a very weak affinity for uranium, and even extended contact time at high uranium concentration shows minimal loading onto mMST. This leaves questions about the ability to load plutonium, neptunium and strontium. SRNL proposes to perform two tests with mMST to ensure that questions on plutonium, neptunium, and strontium sorption are answered, as well as ensuring that future mMST operations are conservatively bounded.

Peters, T.; Hobbs, D.; Fink, S.

2010-10-20T23:59:59.000Z

408

Approach for Validating Actinide and Fission Product Compositions for Burnup Credit Criticality Safety Analyses  

SciTech Connect (OSTI)

This paper describes a depletion code validation approach for criticality safety analysis using burnup credit for actinide and fission product nuclides in spent nuclear fuel (SNF) compositions. The technical basis for determining the uncertainties in the calculated nuclide concentrations is comparison of calculations to available measurements obtained from destructive radiochemical assay of SNF samples. Probability distributions developed for the uncertainties in the calculated nuclide concentrations were applied to the SNF compositions of a criticality safety analysis model by the use of a Monte Carlo uncertainty sampling method to determine bias and bias uncertainty in effective neutron multiplication factor. Application of the Monte Carlo uncertainty sampling approach is demonstrated for representative criticality safety analysis models of pressurized water reactor spent fuel pool storage racks and transportation packages using burnup-dependent nuclide concentrations calculated with SCALE 6.1 and the ENDF/B-VII nuclear data. The validation approach and results support a recent revision of the U.S. Nuclear Regulatory Commission Interim Staff Guidance 8.

Radulescu, Georgeta [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Wagner, John C [ORNL

2014-01-01T23:59:59.000Z

409

Strategic Design and Optimization of Inorganic Sorbents for Cesium, Strontium and Actinides  

SciTech Connect (OSTI)

It has been determined that poorly crystalline CST and SNT prepared at low temperature (100-150 C) exhibit much faster kinetics in uptake of Sr2+. In-situ X-ray studies has shown that SNT is a precursor phase to the formation of CST. It is possible to form mixtures of CST and SNT in a single reactant mix by control of temperature and time of reaction. It has been found that addition of a small amount of Cs+ to the reactant mix for the preparation of Nb-CST allows formation of the crystals in one day rather than ten days at 200 C. These discoveries suggest that a proper mix of sorbents (SNT, CST, Nb-CST) can be made easily at low cost that would remove all the HLW at the Savannah River site with a single in-tank procedure. The basic science goal in this project is to identify structure/affinity relationships for selected radionuclides and existing sorbents. The research will then apply this knowledge to the design and synthesis of sorbents that will exhibit increased cesium, strontium and actinide removal. The target problem focuses on the treatment of high-level nuclear wastes. The general approach can likewise be applied to non-radioactive separations.

Clearfield, Abraham

2005-07-01T23:59:59.000Z

410

Strategic Design and Optimization of Inorganic Sorbents for Cesium, Strontium and Actinides  

SciTech Connect (OSTI)

It has been determined that poorly crystalline CST and SNT prepared at low temperature (100-150 deg. C) exhibit much faster kinetics in uptake of Sr2+. 2. In-situ X-ray studies has shown that SNT is a precursor phase to the formation of CST. 3. It is possible to form mixtures of CST and SNT in a single reactant mix by control of temperature and time of reaction. 4. It has been found that addition of a small amount of Cs+ to the reactant mix for the preparation of Nb-CST allows formation of the crystals in one day rather than ten days at 200 deg. C. 5. These discoveries suggest that a proper mix of sorbents (SNT, CST, Nb-CST) can be made easily at low cost that would remove all the HLW at the Savannah River site with a single in-tank procedure. Research Objective The basic science goal in this project is to identify structure/affinity relationships for selected radionuclides and existing sorbents. The research will then apply this knowledge to the design and synthesis of sorbents that will exhibit increased cesium, strontium and actinide removal. The target problem focuses on the treatment of high-level nuclear wastes. The general approach can likewise be applied to non-radioactive separations.

Clearfield, Abraham

2005-07-01T23:59:59.000Z

411

Solubility testing of actinides on breathing-zone and area air samples  

SciTech Connect (OSTI)

A solubility testing method for several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALS{reg_sign}) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of U{sub 3}O{sub 8}. Profiles developed for U{sub 3}O{sub 8} samples show good agreement with in vitro and in vivo tests performed by other investigators on samples from the same uranium mills.

Metzger, R.L.; Jessop, B.H.; McDowell, B.L. [Radiation Safety Engineering, Inc., Chandler, AZ (United States)

1996-02-01T23:59:59.000Z

412

Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation  

SciTech Connect (OSTI)

The ingenious combination of lactate and diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

Peter R Zalupski; Leigh R Martin; Ken Nash; Yoshinobu Nakamura; Masahiko Yamamoto

2009-07-01T23:59:59.000Z

413

Improving the actinides recycling in closed fuel cycles, a major step towards nuclear energy sustainability  

SciTech Connect (OSTI)

Increasing the sustainability of nuclear energy is a longstanding road that requires a stepwise approach to successively tackle the following 3 objectives. First of all, optimize the consumption of natural resource to preserve them for future generations and hence guarantee the energetic independence of the countries (no uranium ore is needed anymore). The current twice-through cycle of Pu implemented by France, UK, Japan and soon China is a first step in this direction and already allows the development and optimization of the relevant industrial processes. It also allows a major improvement regarding the conditioning of the ultimate waste in a durable and robust nuclear glass. Secondly, the recycling of americium could be an interesting option for the future with the deployment of FR fleet to save the repository resource and optimize its use by allowing a denser disposal. It would limit the burden towards the future generations and the need for additional repositories before several centuries. Thirdly, the recycling of the whole minor actinides inventory could be an interesting option for the far-future for strongly decreasing the waste long-term toxicity, down to a few centuries. It would bring the waste issue back within the human history, which should promote its acceptance by the social opinion.

Poinssot, C.; Grandjean, S.; Masson, M. [RadioChemistry and Processes Department, CEA Marcoule, 30207 Bagnols sur Ceze (France); Bouillis, B.; Warin, D. [Innovation and Industrial Support Direction, CEA Saclay, F-91191 Gif-sur-Yvette (France)

2013-07-01T23:59:59.000Z

414

Shock compression of liquid helium to 56 GPa (560 kbar)  

SciTech Connect (OSTI)

The first shock-compression experiments on liquid helium are reported. With a two-stage light-gas gun, liquid He at 4.3 K and 1 atm was shocked to 16 GPa and 12 000 K and double shocked to 56 GPa and 21 000 K. Liquid perturbation theory has been used to determine an effective interatomic potential from which the equation of state of He can be obtained over a wide range of densities and temperatures.

Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Trainor, R.J.; Governo, G.K.; Ross, M.; Young, D.A.

1984-09-24T23:59:59.000Z

415

Self-similar spherical shock solution with sustained energy injection  

E-Print Network [OSTI]

We present the generalization of the Sedov-Taylor self-similar strong spherical shock solution for the case of a central energy source varying in time, $E=A t^k$, where $A$ and $k$ are constants. The known Sedov-Taylor solution corresponds to a particular adiabatic case of $k=0$ or \\emph{instant shock} with an instant energy source of the shock, $E=A$. The self-similar hydrodynamic flow in the nonadiabatic $k\

V. I. Dokuchaev

2002-09-20T23:59:59.000Z

416

Optical Response of Shocked Cerium-Doped Lutetium Oxyorthosilicate  

SciTech Connect (OSTI)

Shock experiments were performed in order to characterize the triboluminescent signature of cerium-doped lutetium oxyorthosilicate (LSO:Ce). This material shows prompt, nano-second timescale light emission when driven by explosive detonation. When properly applied to a surface, it may be used as a shock arrival sensor, and also for imaging the propagation of a shock front. Triboluminescent rise times, spectral content, and spatial resolution measurements are presented.

G. D. Stevens

2003-03-01T23:59:59.000Z

417

acute cardiogenic shock: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform...

418

CRUDE OIL PRICE SHOCKS AND GROSS DOMESTIC PRODUCT.  

E-Print Network [OSTI]

??This study uses ordinary least squares estimation to test multivariate models in order to find out whether or not crude oil price shocks are contractionary… (more)

Hernandez, Jordan

2012-01-01T23:59:59.000Z

419

Remarks on the formation and decay of multidimensional shock waves  

E-Print Network [OSTI]

In this paper, we present a formula describing the formation and decay of shock wave type solutions in some special cases.

V. G. Danilov

2005-12-27T23:59:59.000Z

420

Reversal of Hugoniot locus for strong shocks due to radiation  

SciTech Connect (OSTI)

Shock Hugoniot can be used to express the response of a material to shocks, and the compression ratio of the shock can be determined by the Hugoiot locus. When the shock is strong, it will become radiating, and the radiation will affect the Hugoniot. The role of radiation on the Hugoniot condition is studied in the paper. For the radiative flux-dominated shocks, the radiative flux if large enough may render the structure of the shock Hugoniot locus totally different with the case for the pure hydrodynamic shock: the two branches with one in quadrant I and the other in quadrant III are reversed into two in quadrants IV and II, respectively, correspondingly the compression ratio may be larger than the limiting value ({gamma}+1)/({gamma}-1) for ideal gases with index {gamma}. For the radiative shock in which the radiative heat wave propagates supersonically, a threshold value for the net radiative flux to the preshock is also defined which determines whether the Hugoniot locus is reversed and the compression ratio exceeds the limiting value. Numerical results also verify the reversal of the Hugoniot locus of the shocks if the net radiative flux to the preshock exceeds the threshold value.

Li Jiwei; Li Jinghong; Meng Guangwei [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

2011-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Qualification of the Joints for the ITER Central Solenoid  

SciTech Connect (OSTI)

The ITER Central Solenoid has 36 interpancake joints, 12 bus joints, and 12 feeder joints in the magnet. The joints are required to have resistance below 4 nOhm at 45 kA at 4.5 K. The US ITER Project Office developed two different types of interpancake joints with some variations in details in order to find a better design, qualify the joints, and establish a fabrication process. We built and tested four samples of the sintered joints and two samples with butt-bonded joints (a total of eight joints). Both designs met the specifications. Results of the joint development, test results, and selection of the baseline design are presented and discussed in the paper. The ITER Central Solenoid (CS) consists of six modules. Each module is composed of six wound hexapancakes and one quadrapancake. The multipancakes are connected electrically and hydraulically by in-line interpancake joints. The joints are located at the outside diameter (OD) of the module. Cable in conduit conductor (CICC) high-current joints are critical elements in the CICC magnets. In addition to low resistivity, the CS joints must fit a space envelope equivalent to the regular conductor cross section and must have low hydraulic impedance and enough structural strength to withstand the hoop and compressive forces during operation, including cycling. This paper is the continuation of the work reported on the intermodule joints.

Martovetsky, N; Berryhill, A; Kenney, S

2011-09-01T23:59:59.000Z

422

Internal energy relaxation in shock wave structure  

SciTech Connect (OSTI)

The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, “Solution of the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315–329 (2006); F. Cheremisin, “Solution of the Wang Chang-Uhlenbeck equation,” Dokl. Phys. 47, 487–490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream.

Josyula, Eswar, E-mail: Eswar.Josyula@us.af.mil; Suchyta, Casimir J. [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)] [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Boyd, Iain D. [University of Michigan, Ann Arbor, Michigan 48109 (United States)] [University of Michigan, Ann Arbor, Michigan 48109 (United States); Vedula, Prakash [University of Oklahoma, Norman, Oklahoma 73019 (United States)] [University of Oklahoma, Norman, Oklahoma 73019 (United States)

2013-12-15T23:59:59.000Z

423

Sharp shock model for propagating detonation waves  

SciTech Connect (OSTI)

Recent analyses of the reactive Euler equations have led to an understanding of the effect of curvature on an underdriven detonation wave. This advance can be incorporated into an improved sharp shock model for propagating detonation waves in hydrodynamic calculations. We illustrate the model with two simple examples: time dependent propagation of a diverging detonation wave in 1-D, and the steady 2-D propagation of a detonation wave in a rate stick. Incorporating this model into a 2-D front tracking code is discussed. 20 refs., 3 figs.

Bukiet, B.; Menikoff, R.

1989-01-01T23:59:59.000Z

424

Demagnetized Electron Heating at Collisionless Shocks  

E-Print Network [OSTI]

Seventy measurements of electron heating at the Earth's quasi-perpendicular bow shock are analyzed in terms of Maxwellian-temperatures obtained from fits to the core electrons that separate thermal heating from supra-thermal acceleration. The perpendicular temperatures are both greater and lesser than expected for adiabatic compression. The average parallel and perpendicular heating is the same. These results are explained because, over the electron gyroradius, $\\delta B/B\\sim 1$ and $e\\delta \\phi/T_e\\sim 1$, so electron trajectories are more random and chaotic than adiabatic. Because density fluctuations are also large, trapping and wave growth in density holes may be important.

Sundkvist, David

2013-01-01T23:59:59.000Z

425

Handbook on dynamics of jointed structures.  

SciTech Connect (OSTI)

The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided.

Ames, Nicoli M.; Lauffer, James P.; Jew, Michael D.; Segalman, Daniel Joseph; Gregory, Danny Lynn; Starr, Michael James; Resor, Brian Ray

2009-07-01T23:59:59.000Z

426

DIFFUSIVE ACCELERATION OF PARTICLES AT OBLIQUE, RELATIVISTIC, MAGNETOHYDRODYNAMIC SHOCKS  

SciTech Connect (OSTI)

Diffusive shock acceleration (DSA) at relativistic shocks is expected to be an important acceleration mechanism in a variety of astrophysical objects including extragalactic jets in active galactic nuclei and gamma-ray bursts. These sources remain good candidate sites for the generation of ultrahigh energy cosmic rays. In this paper, key predictions of DSA at relativistic shocks that are germane to the production of relativistic electrons and ions are outlined. The technique employed to identify these characteristics is a Monte Carlo simulation of such diffusive acceleration in test-particle, relativistic, oblique, magnetohydrodynamic (MHD) shocks. Using a compact prescription for diffusion of charges in MHD turbulence, this approach generates particle angular and momentum distributions at any position upstream or downstream of the shock. Simulation output is presented for both small angle and large angle scattering scenarios, and a variety of shock obliquities including superluminal regimes when the de Hoffmann-Teller frame does not exist. The distribution function power-law indices compare favorably with results from other techniques. They are found to depend sensitively on the mean magnetic field orientation in the shock, and the nature of MHD turbulence that propagates along fields in shock environs. An interesting regime of flat-spectrum generation is addressed; we provide evidence for it being due to shock drift acceleration, a phenomenon well known in heliospheric shock studies. The impact of these theoretical results on blazar science is outlined. Specifically, Fermi Large Area Telescope gamma-ray observations of these relativistic jet sources are providing significant constraints on important environmental quantities for relativistic shocks, namely, the field obliquity, the frequency of scattering, and the level of field turbulence.

Summerlin, Errol J. [Heliospheric Physics Laboratory, Code 672, NASA's Goddard Space Flight Center, Greenbelt, MD 20770 (United States); Baring, Matthew G., E-mail: errol.summerlin@nasa.gov, E-mail: baring@rice.edu [Department of Physics and Astronomy, MS 108, Rice University, Houston, TX 77251 (United States)

2012-01-20T23:59:59.000Z

427

Testing hyperalgesia and hypoalgesia in human pain reactivity using shock and radiant heat  

E-Print Network [OSTI]

the elects of an unpredictable shock and the threat of an unpredictable shock on pain thresholds using a radiant heat test (putative spinal mediation). Experiment 2 examined the effects of the same unpredictable shock and its threat on pain thresholds...

Rhudy, Jamie Lynn

1998-01-01T23:59:59.000Z

428

Role of the opioid system in the behavioral deficit observed after uncontrollable shock  

E-Print Network [OSTI]

to minimize shock exposure by maintaining a hindlimb in a flexed position. Preexposure to uncontrollable shock (shock independent of leg position) disrupts this learning. Activation of opioid receptors seems to contribute to the expression of the behavioral...

Washburn, Stephanie Nicole

2006-08-16T23:59:59.000Z

429

Characterization of an Aerosol Shock Tube Facility for Heterogeneous Combustion Studies  

E-Print Network [OSTI]

tube prior to running the experiment. An incident shock wave vaporizes the liquid fuel droplets, then the reflected shock wave initiates ignition of the mixture. This study presents the characterization of an aerosol fuel injection method to the shock...

Sandberg, Lori Marie

2013-04-05T23:59:59.000Z

430

Fabrication and Pre-irradiation Characterization of a Minor Actinide and Rare Earth Containing Fast Reactor Fuel Experiment for Irradiation in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy, seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter lived fission products, thereby decreasing the volume of material requiring disposal and reducing the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository. This transmutation of the long lived actinides plutonium, neptunium, americium and curium can be accomplished by first separating them from spent Light Water Reactor fuel using a pyro-metalurgical process, then reprocessing them into new fuel with fresh uranium additions, and then transmuted to short lived nuclides in a liquid metal cooled fast reactor. An important component of the technology is developing actinide-bearing fuel forms containing plutonium, neptunium, americium and curium isotopes that meet the stringent requirements of reactor fuels and materials.

Timothy A. Hyde

2012-06-01T23:59:59.000Z

431

Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping  

SciTech Connect (OSTI)

Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissile material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.

Permana, Sidik; Novitrian,; Waris, Abdul [Nuclear Physics and Biophysics Research Division, Physics Department, Institut Teknologi Bandung (Indonesia); Ismail [Center for Technical Assessment of Nuclear Installation and Materials, Indonesian Nuclear Energy Regulatory (Indonesia); Suzuki, Mitsutoshi [Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA) (Japan); Saito, Masaki [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology (Japan)

2014-09-30T23:59:59.000Z

432

Microbially-Promoted Solubilization of Steel Corrosion Products and Fate of Associated Actinides  

SciTech Connect (OSTI)

Microorganisms have the capacity to modify iron oxides during anaerobic respiration. When the dissimilatory sulfate-reducing bacterium Desulfovibrio desulfuricans G20 respires soluble sulfate during colonization of the solid-phase iron oxide hematite, the sulfide product reacts with the iron to produce the insoluble iron sulfide, pyrrhotite. When soluble uranium is present as uranyl ion, these microorganisms reduce the U(VI) to U(IV) as insoluble uraninite on the hematite surface. There is also evidence that a stable form of U is produced under these conditions that displays an oxidation state between U(VI) and U(iv). The dissimilatory iron reducing bacterium, Shewanella oneidensis MR1 can utilize insoluble hematite as the sole electron acceptor for anaerobic respiration during growth and biofilm development on the mineral. The growth rate, maximum cell density and detachment rate for this bacterium are significantly greater on hematite than on magnetite (111) and (100). The difference could not be attributed to iron site density in the iron oxide. A gene (ferA) encoding a c-tyoe cytochrome involved in dissimulatory iron reduction in the bacterium Geobacter sulfurreducens was completed sequenced and characterized. The sequence information was used to develop an in-situ reverse transcriptase polymerase chain reaction assay that could detect expression of the gene during growth and biofilm development on ferrihydrite at the single cell and microcolony level. X-ray photoelectron spectroscopic analysis revealed that the ferrihydrite was reduced during expression of this gene. The assay was extended to detect expression of genes involved in sulfate reduction and hydrogen reduction in sulfate-reducing bacteria. This assay will be useful to assess mechanisms of biotransformation of minerals including corrosion products on buried metal containers containing radionuclide waste. In summary, the research has shown that dissimilatory sulfate and iron reducing bacteria can modify the iron oxide surfaces that they colonize and promote the reduction and precipitation of actinides such as uranium at these sites

Gill Geesey; Timothy Magnuson; Andrew Neal

2002-06-15T23:59:59.000Z

433

Joint measurability, steering and entropic uncertainty  

E-Print Network [OSTI]

The notion of incompatibility of measurements in quantum theory is in stark contrast with the corresponding classical perspective, where all physical observables are jointly measurable. It is of interest to examine if the results of two or more measurements in the quantum scenario can be perceived from a classical point of view or they still exhibit non-classical features. Clearly, commuting observables can be measured jointly using projective measurements and their statistical outcomes can be discerned classically. However, such simple minded association of compatibility of measurements with commutativity turns out to be limited in an extended framework, where the usual notion of sharp projective valued measurements of self adjoint observables gets broadened to include unsharp measurements of generalized observables constituting positive operator valued measures (POVM). There is a surge of research activity recently towards gaining new physical insights on the emergence of classical behavior via joint measurability of unsharp observables. Here, we explore the entropic uncertainty relation for a pair of discrete observables (of Alice's system) when an entangled quantum memory of Bob is restricted to record outcomes of jointly measurable POVMs only. Within the joint measurability regime, the sum of entropies associated with Alice's measurement outcomes - conditioned by the results registered at Bob's end - are constrained to obey an entropic steering inequality. In this case, Bob's non-steerability reflects itself as his inability in predicting the outcomes of Alice's pair of non-commuting observables with better precision, even when they share an entangled state. As a further consequence, the quantum advantage envisaged for the construction of security proofs in key distribution is lost, when Bob's measurements are restricted to the joint measurability regime.

H. S. Karthik; A. R. Usha Devi; A. K. Rajagopal

2014-10-05T23:59:59.000Z

434

Oblique and conical shock similarity laws for non-equilibrium flows  

E-Print Network [OSTI]

. IV. VI. INTRODUCTION REVIEN OF PREVIOUS WORK. OBl I'VE SHOCK VIBRATIONAL SIMILITUDE CHEilllCAL iNOZ -EQUILI BRIIVl EXTENSIOiN TO CONICAL FLON. RE1IARKS AND CONCLUSIONS. REFERENCES APPENDIX Page 12 22 31 37 39 LIST OF FIGUWHS Figure... Normal Shock Vibrational Similarity Param ter Normal Shock Dissociation Similarity Parameter Page 10 Oblique Shock Vibrational Similarity Law 19 Oblique Shock Dissociation Similarity Parameter Conical Shock Dissociation Similarity Parameter...

Holster, Jesse Louis

1968-01-01T23:59:59.000Z

435

Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities  

SciTech Connect (OSTI)

This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus our studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP methods with all-electron Douglas-Kroll relativistic methods. We have the capabilities for computing full CI extrapolations including spin-orbit effects and several one-electron properties and electron density maps including spin-orbit effects. We are continuously collaborating with several experimental groups around the country and at National Labs to carry out computational studies on the DOE-BES funded projects. The past work in the last 3 years was primarily motivated and driven by the concurrent or recent experimental studies on these systems. We were thus significantly benefited by coordinating our computational efforts with experimental studies. The interaction between theory and experiment has resulted in some unique and exciting opportunities. For example, for the very first time ever, the upper spin-orbit component of a heavy trimer such as Au{sub 3} was experimentally observed as a result of our accurate computational study on the upper electronic states of gold trimer. Likewise for the first time AuH{sub 2} could be observed and interpreted clearly due to our computed potential energy surfaces that revealed the existence of a large barrier to convert the isolated AuH{sub 2} back to Au and H{sub 2}. We have also worked on yet to be observed systems and have made predictions for future experiments. We have computed the spectroscopic and thermodynamic properties of transition metal carbides transition metal clusters and compared our electronic states to the anion photodetachment spectra of Lai Sheng Wang. Prof Mike Morse and coworkers(funded also by DOE-BES) and Prof Stimle and coworkers(also funded by DOE-BES) are working on the spectroscopic properties of transition metal carbides and nitrides. Our predictions on the excited states of transition metal clusters such as Hf{sub 3}, Nb{sub 2}{sup +} etc., have been confirmed experimentally by Prof. Lombardi and coworkers using resonance Raman spectroscopy. We have also been studying larger complexes critical to the environmental management of high-level nuclear wastes. In collaboration with experimental co

Krishnan Balasubramanian

2009-07-18T23:59:59.000Z

436

Water purification by shock electrodialysis: Deionization, filtration, separation, and disinfection  

E-Print Network [OSTI]

purification is performed primarily by reverse osmosis (RO) plants and in some cases by electrodialysis (EDWater purification by shock electrodialysis: Deionization, filtration, separation, and disinfection H L I G H T S · Experiments demonstrate the multi- functionality of shock electrodialysis. · Besides

Bazant, Martin Z.

437

Micromechanics applied to the thermal shock behavior of refractory ceramics  

E-Print Network [OSTI]

Micromechanics applied to the thermal shock behavior of refractory ceramics N. Schmitt a,*, A. Burr-phase ceramics subjected to thermal shock. A macroscopic fracture criterion is proposed that accounts for local, F-59 381 Dunkerque, France Received 3 May 2002 Abstract Oxides­carbon refractories are ceramics

438

Ion Heating in Collisionless Shocks in Supernovae and the Heliosphere  

E-Print Network [OSTI]

Collisionless shocks play a role in many astrophysical phenomena, from coronal mass ejections (CMEs) in the heliosphere to supernova remnants. Their role in heating and accelerating particles is well accepted yet the exact mechanism for ion heating is not well understood. Two systems, CMEs and supernova remnants, were examined to determine the heating of heavy ions as they pass through collisionless shocks thus providing a seed population for cosmic ray acceleration processes. Three parameters are examined, the plasma beta, the Mach number of the shock and the magnetic angle of the shock. CMEs heat heavy ions preferentially. This is in contrast to the supernova data which shows less than mass proportional heating. In addition to these studies, heating in astrophysical systems involves neutral atoms. A Monte Carlo model simulated neutral particles as they pass through the shock. Neutrals can create a precursor to the shock additionally heating the plasma. This work uses in situ data from the heliosphere to study astronomical systems because of common shock properties is a unique way to study magnetic components of shocks remotely.

K. E. Korreck

2005-06-14T23:59:59.000Z

439

Introduction to Macroeconomic Dynamics Special Issue on Oil Price Shocks  

E-Print Network [OSTI]

Introduction to Macroeconomic Dynamics Special Issue on Oil Price Shocks Apostolos Serletisy in macroeconometrics and ...nancial econometrics to investigate the e¤ects of oil price shocks and uncertainty about the price of oil on the level of economic activity. JEL classi...cation: G31, E32, C32. Keywords: Oil price

Garousi, Vahid

440

POST-SHOCK TEMPERATURE MEASUREMENTS OF ALUMINUM A. Seifter1  

E-Print Network [OSTI]

POST-SHOCK TEMPERATURE MEASUREMENTS OF ALUMINUM A. Seifter1 , S. T. Stewart2 , M. R. Furlanetto1 concurrent VISAR measurements in the same optical path, validation experiments on aluminum have been-shock temperature of 495 K ± 30 K was recorded from a polished free surface of aluminum 2024-T4 subject to a peak

Stewart, Sarah T.

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NONTHERMAL RADIATION FROM COSMIC-RAY MODIFIED SHOCKS  

SciTech Connect (OSTI)

We calculate nonthermal radiation from cosmic-ray (CR) protons and electrons accelerated at CR modified plane and spherical shocks, using time-dependent, diffusive shock acceleration (DSA) simulations that include radiative losses of CR electrons. Strong non-relativistic shocks with physical parameters relevant for young supernova remnants (SNRs) are considered in both the plane-parallel and spherically symmetric geometries, and compared at times when their dynamical and CR properties are concordant. A thermal leakage injection model and a Bohm-like diffusion coefficient are adopted. After DSA energy gains balance radiative losses, the electron spectrum at the plane shock approaches a time-asymptotic spectrum with a super-exponential cutoff above the equilibrium momentum. The postshock electron spectrum cuts off at a progressively lower momentum downstream from the shock due to the energy losses. That results in the steepening of the volume integrated electron energy spectrum by one power of the particle energy. These features evolve toward lower energies in the spherical, SNR shocks. In a CR modified shock, pion decay gamma-ray emission reveals distinct signatures of nonlinear DSA due to the concave proton momentum spectrum. Although the electron momentum spectrum has a much weaker concavity, the synchrotron spectral slope at the shock may flatten by about 0.1-0.3 between radio and X-ray bands. The slope of the volume integrated emission spectrum behaves nonlinearly around the break frequency.

Kang, Hyesung [Department of Earth Sciences, Pusan National University, Pusan 609-735 (Korea, Republic of); Edmon, Paul P. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Jones, T. W., E-mail: kang@uju.es.pusan.ac.kr, E-mail: pedmon@physics.umanitoba.ca, E-mail: twj@msi.umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

2012-02-01T23:59:59.000Z

442

Economic Analysis of "Steam-Shock" and "Pasteurization"  

E-Print Network [OSTI]

Economic Analysis of "Steam-Shock" and "Pasteurization" Processes for Oyster Shucking JOHN W. BROWN Introduction "Steam-shock" is an oyster shucking process that uses steam to relax the oyster's adductor muscle of the shucking process as in integral part of the operation of an existing oyster-shucking house. The term "steam

443

Thermal analysis for fuel handling system for sodium cooled reactor considering minor actinide-bearing metal fuel.  

SciTech Connect (OSTI)

The Advanced Burner Reactor (ABR) is one of the components of the Global Nuclear Energy Partnership (GNEP) used to close the fuel cycle. ABR is a sodium-cooled fast reactor that is used to consume transuranic elements resulting from the reprocessing of light water reactor spent nuclear fuel. ABR-1000 [1000 MW(thermal)] is a fast reactor concept created at Argonne National Laboratory to be used as a reference concept for various future trade-offs. ABR-1000 meets the GNEP goals although it uses what is considered base sodium fast reactor technology for its systems and components. One of the considerations of any fast reactor plant concept is the ability to perform fuel-handling operations with new and spent fast reactor fuel. The transmutation fuel proposed as the ABR fuel has a very little experience base, and thus, this paper investigates a fuel-handling concept and potential issues of handling fast reactor fuel containing minor actinides. In this study, two thermal analyses supporting a conceptual design study on the ABR-1000 fuel-handling system were carried out. One analysis investigated passive dry spent fuel storage, and the other analysis investigated a fresh fuel shipping cask. Passive dry storage can be made suitable for the ABR-1000 spent fuel storage with sodium-bonded metal fuel. The thermal analysis shows that spent fast reactor fuel with a decay heat of 2 kW or less can be stored passively in a helium atmosphere. The 2-kW value seems to be a reasonable and practical level, and a combination of reasonably-sized in-sodium storage followed by passive dry storage could be a candidate for spent fuel storage for the next-generation sodium-cooled reactor with sodium-bonded metal fuel. Requirements for the shipping casks for minor actinide-bearing fuel with a high decay heat level are also discussed in this paper. The shipping cask for fresh sodium-cooled-reactor fuel should be a dry type to reduce the reaction between residual moisture on fresh fuel and the sodium coolant. The cladding temperature requirement is maintained below the creep temperature limit to avoid any damage before core installation. The thermal analysis shows that a helium gas-filled cask can accommodate ABR-1000 fresh minor actinide-bearing fuel with 700-W decay heat. The above analysis results revealed the overall requirement for minor actinide-bearing metal fuel handling. The information is thought to be helpful in the design of the ABR-1000 and future sodium-cooled-reactor fuel-handling system.

Chikazawa, Y.; Grandy, C.; Nuclear Engineering Division

2009-03-01T23:59:59.000Z

444

Evaluation of Homogeneous Options: Effects of Minor Actinide Exclusion from Single and Double Tier Recycle in Sodium Fast Reactors  

SciTech Connect (OSTI)

The Systems Analysis Campaign under the Global Nuclear Energy Partnership (GNEP) has requested the fuel cycle analysis group at the Idaho National Laboratory (INL) to analyze and provide isotopic data for four scenarios in which different strategies for Minor Actinides (MA) management are investigated. A 1000 MWth commercial-scale Sodium Fast Reactor (SFR) design was selected as the baseline in this scenario study. Two transuranic (TRU) conversion ratios, defined as the ratio of the amount of TRU produced over the TRU destroyed in the reactor core, along with different fuel-types were investigated.

R. M. Ferrer; S. Bays; M. Pope

2008-03-01T23:59:59.000Z

445

Atomistic Calculations of the Effect of Minor Actinides on Thermodynamic and Kinetic Properties of UO{sub 2{+-}x}  

SciTech Connect (OSTI)

The team will examine how the incorporation of actinide species important for mixed oxide (MOX) and other advanced fuel designs impacts thermodynamic quantities of the host UO{sub 2} nuclear fuel and how Pu, Np, Cm and Am influence oxygen mobility. In many cases, the experimental data is either insufficient or missing. For example, in the case of pure NpO2, there is essentially no experimental data on the hyperstoichiometric form it is not even known if hyperstoichiometry NpO{sub 2{+-}x} is stable. The team will employ atomistic modeling tools to calculate these quantities

Deo, Chaitanya; Adnersson, Davis; Battaile, Corbett; uberuaga, Blas

2012-10-30T23:59:59.000Z

446

Use of Information Theory Concepts for Developing Contaminated Site Detection Method: Case for Fission Product and Actinides Accumulation Modeling  

SciTech Connect (OSTI)

Information theory concepts and their fundamental importance for environmental pollution analysis in light of experience of Chernobyl accident in Belarus are discussed. An information and dynamic models of the radionuclide composition formation in the fuel of the Nuclear Power Plant are developed. With the use of code DECA numerical calculation of actinides (58 isotopes are included) and fission products (650 isotopes are included) activities has been carried out and their dependence with the fuel burn-up of the RBMK-type reactor have been investigated. (authors)

Harbachova, N.V.; Sharavarau, H.A. [Joint Institute of Power and Nuclear Research - 'Sosny' National Academy of Sciences, 99 Academic, A.K. Krasin Str., 220109 Minsk (Belarus)

2006-07-01T23:59:59.000Z

447

Acceleration at Relativistic Shocks in Gamma-Ray Bursts  

E-Print Network [OSTI]

Most recent extragalactic models of gamma-ray bursts consider the expansion of a relativistic blast wave, emanating from a solar-mass type progenitor, into the surrounding interstellar medium as the site for their activity. The popular perception is that the optical afterglows result from the external shock interface, while the prompt transient gamma-ray signal arises from multiple shocks internal to the expansion. This paper illustrates a number of acceleration properties of relativistic and ultrarelativistic shocks that pertain to GRB models, by way of a standard Monte Carlo simulation. Computations of the spectral shape, the range of spectral indices, and the energy gain per shock crossing are presented, as functions of the shock speed and the type of particle scattering.

Baring, M G

1999-01-01T23:59:59.000Z

448

Shock-ignition relevant experiments with planar targets on OMEGA  

SciTech Connect (OSTI)

We report on laser-driven, strong-shock generation and hot-electron production in planar targets in the presence of a pre-plasma at shock-ignition (SI) relevant laser and pre-plasma conditions. 2-D simulations reproduce the shock dynamics well, indicating ablator shocks of up to 75 Mbar have been generated. We observe hot-electron temperatures of ?70?keV at intensities of 1.4?×?10{sup 15}?W/cm{sup 2} with multiple overlapping beams driving the two-plasmon decay instability. When extrapolated to SI-relevant intensities of ?10{sup 16}?W/cm{sup 2}, the hot electron temperature will likely exceed 100?keV, suggesting that tightly focused beams without overlap are better suited for launching the ignitor shock.

Hohenberger, M.; Hu, S. X.; Anderson, K. S.; Boehly, T. R.; Sangster, T. C.; Seka, W.; Stoeckl, C.; Yaakobi, B. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Theobald, W.; Lafon, M.; Nora, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States) [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Betti, R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States) [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14627 (United States); Casner, A. [CEA, DAM, DIF, Arpajon (France)] [CEA, DAM, DIF, Arpajon (France); Fratanduono, D. E. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Ribeyre, X.; Schurtz, G. [Centre Lasers Intenses et Applications, CELIA, Université Bordeaux 1-CEA-CNRS, Talence (France)] [Centre Lasers Intenses et Applications, CELIA, Université Bordeaux 1-CEA-CNRS, Talence (France)

2014-02-15T23:59:59.000Z

449

Species separation and kinetic effects in collisional plasma shocks  

SciTech Connect (OSTI)

The properties of collisional shock waves propagating in uniform plasmas are studied with ion-kinetic calculations, in both slab and spherical geometry and for the case of one and two ion species. Despite the presence of an electric field at the shock front—and in contrast to the case where an interface is initially present [C. Bellei et al., Phys. Plasmas 20, 044702 (2013)]—essentially no ion reflection at the shock front is observed due to collisions, with a probability of reflection ?10{sup ?4} for the cases presented. A kinetic two-ion-species spherical convergent shock is studied in detail and compared against an average-species calculation, confirming effects of species separation and differential heating of the ion species at the shock front. The effect of different ion temperatures on the DT and D{sup 3}He fusion reactivity is discussed in the fluid limit and is estimated to be moderately important.

Bellei, C., E-mail: bellei1@llnl.gov; Wilks, S. C.; Amendt, P. A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Rinderknecht, H.; Zylstra, A.; Rosenberg, M.; Sio, H.; Li, C. K.; Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2014-05-15T23:59:59.000Z

450

E-Print Network 3.0 - adiabatic shock capturing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of shock acceleration, adiabatic and radiative losses as well as diffusive spatial transport in various... of shock and stochastic acceleration, adiabatic and radiative losses...

451

QUANTITATIVE STUDIES OF THERMAL SHOCK IN CERAMICS BASED ON A NOVEL TEST TECHNIQUE  

E-Print Network [OSTI]

QUANTITATIVE STUDIES OF THERMAL SHOCK IN CERAMICS BASED ON AQUANTITATIVE STUDIES OF THERMAL SHOCK IN CERAMICS BASED ON AAl 203). The thermal failure of another ceramic material (

Faber, K.T.

2013-01-01T23:59:59.000Z

452

E-Print Network 3.0 - accretion shocks application Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California Institute of Technology Collection: Physics 24 Shock Waves in Out ows from Young Stars Patrick Hartigan Summary: of a shock front given by Draine (1980) as an...

453

SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS  

SciTech Connect (OSTI)

In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L{sub X}, remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L{sub X}/L{sub bol}). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

Parkin, E. R.; Sim, S. A., E-mail: parkin@mso.anu.edu.au, E-mail: s.sim@qub.ac.uk [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

2013-04-20T23:59:59.000Z

454

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network [OSTI]

Fuels: The Joint BioEnergy Institute Harvey W. Blanch †,‡,§,¶, * † Joint BioEnergy Institute, ‡ Department of Chemicalbiomass monomers. The Joint BioEnergy Institute (JBEI) is a

Blanch, Harvey

2010-01-01T23:59:59.000Z

455

Joint Inverted Indexing Kaiming He2  

E-Print Network [OSTI]

Joint Inverted Indexing Yan Xia1 Kaiming He2 Fang Wen2 Jian Sun2 1 University of Science and Technology of China 2 Microsoft Research Asia Abstract Inverted indexing is a popular non-exhaustive solution to large scale search. An inverted file is built by a quantizer such as k-means or a tree structure. It has

Bernstein, Phil

456

Wave Propagation in Jointed Geologic Media  

SciTech Connect (OSTI)

Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

Antoun, T

2009-12-17T23:59:59.000Z

457

Jointly organised by HKU CIVIL ENGRG. DEPT.  

E-Print Network [OSTI]

SEMINAR Jointly organised by and HKU CIVIL ENGRG. DEPT. Centre for Infrastructure and Construction Industry Development THE USE OF TRENCHLESS TECHNOLOGY FOR THE IMPROVEMENT OF URBAN HABITATS by Ian, vibration, and air pollution. The frustration this causes is aggravated by the knowledge that there often

Tam, Vincent W. L.

458

Dashboards in Higher UMACRAO/WACRAO Joint  

E-Print Network [OSTI]

Dashboards in Higher Education UMACRAO/WACRAO Joint Conference November 1-3, 2006 Phil Hull charts, pie charts and gauges are usually set in a portal-like environment that is often role for Short Term Decision Making Transactional Current, Unit Record Level Data Used for Daily Operational

Wisconsin at Madison, University of

459

JOINT SEMINAR Chemical and Biological Engineering  

E-Print Network [OSTI]

in the failure of oil capture from the dome placed on top of the flowing well. In one very large natural gas. The energy industry uses large quantities of aromatic solvents to change bulk phase properties to avoidJOINT SEMINAR Chemical and Biological Engineering and Wanger Institute for Sustainable Energy

Saniie, Jafar

460

Wild Hypersurfaces joint work with Andrew Crabbe  

E-Print Network [OSTI]

Wild Hypersurfaces joint work with Andrew Crabbe Graham J. Leuschke gjleusch@math.syr.edu Syracuse University Notre Dame, 6 Nov 2010 , Wild Hypersurfaces, Crabbe­Leuschke 1/14 #12;Outline Representation types in general Tame and Wild examples MCM modules over hypersurfaces Finite MCM type for hypersurfaces Tame MCM

Leuschke, Graham

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Joint with application in electrochemical devices  

DOE Patents [OSTI]

A joint for use in electrochemical devices, such as solid oxide fuel cells (SOFCs), oxygen separators, and hydrogen separators, that will maintain a hermetic seal at operating temperatures of greater than 600.degree. C., despite repeated thermal cycling excess of 600.degree. C. in a hostile operating environment where one side of the joint is continuously exposed to an oxidizing atmosphere and the other side is continuously exposed to a wet reducing gas. The joint is formed of a metal part, a ceramic part, and a flexible gasket. The flexible gasket is metal, but is thinner and more flexible than the metal part. As the joint is heated and cooled, the flexible gasket is configured to flex in response to changes in the relative size of the metal part and the ceramic part brought about by differences in the coefficient of thermal expansion of the metal part and the ceramic part, such that substantially all of the tension created by the differences in the expansion and contraction of the ceramic and metal parts is absorbed and dissipated by flexing the flexible gasket.

Weil, K Scott [Richland, WA; Hardy, John S [Richland, WA

2010-09-14T23:59:59.000Z

462

Flash photolysis-shock tube studies  

SciTech Connect (OSTI)

Even though this project in the past has concentrated on the measurement of thermal bimolecular reactions of atomic species with stable molecules by the flash or laser photolysis-shock tube (FP- or LP-ST) method using atomic resonance absorption spectrometry (ARAS) as the diagnostic technique, during the past year the authors have concentrated on studies of the thermal decompositions of selected chlorocarbon molecules. These studies are necessary if the degradation of chlorine containing organic molecules by incineration are to be understood at the molecular level. Clearly, destruction of these molecules will not only involve abstraction reactions, when possible, but also thermal decomposition followed by secondary reactions of the initially formed atoms and radicals. Studies on the thermal decomposition of CH{sub 3}Cl are complete, and the curve-of-growth for Cl-atom atomic resonance absorption has been determined. The new thermal decomposition studies are similar to those already reported for CH{sub 3}Cl.

Michael, J.V. [Argonne National Laboratory, IL (United States)

1993-12-01T23:59:59.000Z

463

High Bandwidth Differential Amplifier for Shock Experiments  

SciTech Connect (OSTI)

We developed a high bandwidth differential amplifier for gas gun shock experiments/applications. The circuit has a bandwidth > 1 GHz, and is capable of measuring signals of ?1.5 V with a common mode rejection of 250 V. Conductivity measurements of gas gun targets are measured by flowing high currents through the targets. The voltage is measured across the target using a technique similar to a four-point probe. Because of the design of the current source and load, the target voltage is approximately 250 V relative to ground. Since the expected voltage change in the target is < 1 V, the differential amplifier must have a large common mode rejection. High pass filters suppress internal ringing of operational amplifiers. Results of bench tests are shown.

Ross, P. W., Tran, V., Chau, R.

2012-04-30T23:59:59.000Z

464

Reverse-Shock in Tycho's Supernova Remnant  

E-Print Network [OSTI]

Thermal X-ray emission from young supernova remnants (SNRs) is usually dominated by the emission lines of the supernova (SN) ejecta, which are widely believed being crossed and thus heated by the inwards propagating reverse shock (RS). Previous works using imaging X-ray data have shown that the ejecta are heated by the RS by locating the peak emission region of the most recently ionized matter, which is found well separated towards the inside from the outermost boundary. Here we report the discovery of a systematic increase of the Sulfur (S) to Silicon (Si) K$\\alpha$ line flux ratio with radius in Tycho's SNR. This allows us, for the first time, to present continuous radial profiles of the ionization age and, furthermore, the elapsed ionization time since the onset of the ionization, which tells the propagation history of the ionization front into the SNR ejecta.

Lu, F J; Zheng, S J; Zhang, S N; Long, X; Aschenbach, B

2015-01-01T23:59:59.000Z

465

SHOCK BREAKOUT FROM TYPE Ia SUPERNOVA  

SciTech Connect (OSTI)

The mode of explosive burning in Type Ia supernovae (SNe Ia) remains an outstanding problem. It is generally thought to begin as a subsonic deflagration, but this may transition into a supersonic detonation (the delayed detonation transition, DDT). We argue that this transition leads to a breakout shock, which would provide the first unambiguous evidence that DDTs occur. Its main features are a hard X-ray flash (approx20 keV) lasting approx10{sup -2} s with a total radiated energy of approx10{sup 40} erg, followed by a cooling tail. This creates a distinct feature in the visual light curve, which is separate from the nickel decay. This cooling tail has a maximum absolute visual magnitude of M{sub V} approx -9 to -10 at approx1 day, which depends most sensitively on the white dwarf radius at the time of the DDT. As the thermal diffusion wave moves in, the composition of these surface layers may be imprinted as spectral features, which would help to discern between SN Ia progenitor models. Since this feature should accompany every SNe Ia, future deep surveys (e.g., m = 24) will see it out to a distance of approx80 Mpc, giving a maximum rate of approx60 yr{sup -1}. Archival data sets can also be used to study the early rise dictated by the shock heating (at approx20 days before maximum B-band light). A similar and slightly brighter event may also accompany core bounce during the accretion-induced collapse to a neutron star, but with a lower occurrence rate.

Piro, Anthony L.; Chang, Philip; Weinberg, Nevin N., E-mail: tpiro@astro.berkeley.ed, E-mail: pchang@astro.berkeley.ed, E-mail: nweinberg@astro.berkeley.ed [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States)

2010-01-01T23:59:59.000Z

466

Variation in joint fluid composition and its effect on the tribology of replacement joint articulation  

E-Print Network [OSTI]

Polyethylene wear is a significant clinical problem limiting the long-term survival of joint replacement prostheses, particularly in total hip arthroplasty (THA) and total knee arthroplasty (TKA). Although the tribology ...

Mazzucco, Daniel Clarke, 1976-

2003-01-01T23:59:59.000Z

467

SiC Schottky Diode Detectors for Measurement of Actinide Concentrations from Alpha Activities in Molten Salt Electrolyte  

SciTech Connect (OSTI)

In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 {degrees}C, in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multi scale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multi scale model consists of ab initio modeling to understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.

Windl, Wolfgang; Blue, Thomas

2013-01-28T23:59:59.000Z

468

Speciation and structural characterization of plutonium and actinide-organic complexes in surface and groundwaters. 1998 annual progress report  

SciTech Connect (OSTI)

'The authors proposed research is designed to study the association of actinides with dissolved organic complexes in subsurface waters. This study expands considerably on prior work due to the combination of Pu oxidation studies (for Pu speciation/chemical reactivity information), Pu isotope ratio work (for Pu source function information), and the detailed characterization of organic matter in size-fractionated groundwater samples. The authors have postulated that actinide associations with organic matter may be enhanced due to colloidal biopolymers. This report summarizes work completed after less than 2 years of a 3-year project. Activities thus far have included: (1) the development of sampling techniques to minimize contamination and artifact formation, (2) the separation of Pu isotopes by oxidation state in groundwater, (3) the development of techniques for the separation and identification of organic constituents from natural waters, (4) a study of background Pu and organic carbon concentrations at the proposed study sites, and (5) field work at the Savannah River Site (SRS).'

Buesseler, K.O.; Repeta, D.J. [Woods Hole Oceanographic Inst., Woods Hole, MA (US); Kelley, J.M. [Pacific Northwest National Lab., Richland, WA (US)

1998-06-01T23:59:59.000Z

469

Optimal Joint Preventive Maintenance and Production Policies* Xiaodong Yao  

E-Print Network [OSTI]

Optimal Joint Preventive Maintenance and Production Policies* Xiaodong Yao SAS Institute Inc. Cary preventive maintenance (PM) and production policies for an unreliable production-inventory system in which to establish some additional structural properties. Keywords: optimal preventive maintenance, joint maintenance

Marcus, Steven I.

470

Third National Report for the Joint Convention on the Safety...  

Office of Environmental Management (EM)

for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Third National Report for the Joint Convention on the Safety...

471

Second National Report for the Joint Convention on the Safety...  

Office of Environmental Management (EM)

for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Second National Report for the Joint Convention on the Safety...

472

Fourth National Report for the Joint Convention on the Safety...  

Broader source: Energy.gov (indexed) [DOE]

for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Fourth National Report for the Joint Convention on the Safety...

473

Expansion Joint Concepts for High Temperature Insulation Systems  

E-Print Network [OSTI]

EXPANSION JOINT CONCEPTS FOR HIGH TEMPERATURE INSULATION SYSTEMS Michael R. Harrison Johns-Manville Sales Corporation ";.,' Denver, Colorado ABSTRACT As high temperature steam and process piping expands with heat, joints beg in to open...

Harrison, M. R.

1980-01-01T23:59:59.000Z

474

ankle joint complex: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

then there exists A S(H)m Li, Chi-Kwong 458 READY FOR TODAY. PREPARING FOR TOMORROW. The Joint Operating Environment is intended to inform joint concept Mathematics Websites...

475

ankle joint: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

then there exists A S(H)m Li, Chi-Kwong 366 READY FOR TODAY. PREPARING FOR TOMORROW. The Joint Operating Environment is intended to inform joint concept Mathematics Websites...

476

ankle joint direkte: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

then there exists A S(H)m Li, Chi-Kwong 375 READY FOR TODAY. PREPARING FOR TOMORROW. The Joint Operating Environment is intended to inform joint concept Mathematics Websites...

477

alpha rotary joint: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

337 389 494 In 1977, 175 joint fishing ventures with the participation-215. In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations...

478

activities implemented jointly: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

337 389 494 In 1977, 175 joint fishing ventures with the participation-215. In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations...

479

acromioclavicular joint separations: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

337 389 494 In 1977, 175 joint fishing ventures with the participation-215. In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations...

480

artificial hip joints: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

this could involve the use of additively Evans, Paul 2 COMPUTATIONAL MODELING OF HIP JOINT MECHANICS CiteSeer Summary: The hip joint is one of the largest weight bearing...

Note: This page contains sample records for the topic "joint actinide shock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

2014 SAME Mid-Atlantic Regional Joint Engineer Training Symposium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SAME Mid-Atlantic Regional Joint Engineer Training Symposium (JETS) 2014 SAME Mid-Atlantic Regional Joint Engineer Training Symposium (JETS) November 12, 2014 8:00AM EST to...

482

ON THE EXISTENCE OF SHOCKS IN IRRADIATED EXOPLANETARY ATMOSPHERES  

SciTech Connect (OSTI)

Supersonic flows are expected to exist in the atmospheres of irradiated exoplanets, but the question of whether shocks develop lingers. Specifically, it reduces to whether continuous flow in a closed loop may become supersonic and if some portions of the supersonic flow steepen into shocks. We first demonstrate that continuous, supersonic flow may exist in two flavors: isentropic and non-isentropic, with shocks being included in the latter class of solutions. Supersonic flow is a necessary but insufficient condition for shocks to develop. The development of a shock requires the characteristics of neighboring points in a flow to intersect. We demonstrate that the intersection of characteristics may be quantified via the knowledge of the Mach number. Finally, we examine three-dimensional simulations of hot Jovian atmospheres and demonstrate that shock formation is expected to occur mostly on the dayside hemisphere, upstream of the substellar point, because the enhanced temperatures near the s