National Library of Energy BETA

Sample records for joint actinide shock

  1. Joint Actinide Shock Physics Experimental Research | National...

    National Nuclear Security Administration (NNSA)

    Actinide Shock Physics Experimental Research | National Nuclear Security Administration ... Facilities Joint Actinide Shock Physics Experimental Research Joint Actinide ...

  2. Joint Actinide Shock Physics Experimental Research - JASPER

    ScienceCinema (OSTI)

    None

    2015-01-09

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  3. Joint Actinide Shock Physics Experimental Research - JASPER

    SciTech Connect (OSTI)

    2014-10-31

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  4. Joint Actinide Shock Physics Experimental Research | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Actinide Shock Physics Experimental Research | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  5. Shock transmissibility of threaded joints

    SciTech Connect (OSTI)

    Hansen, N.R.; Bateman, V.I.; Brown, F.A.

    1996-12-31

    Sandia National Laboratories (SNL) designs mechanical systems with threaded joints that must survive high shock environments. These mechanical systems include penetrators that must survive soil and rock penetration; drilling pipe strings that must survive rock-cutting, shock environments; and laydown weapons that must survive delivery impact shock. This paper summarizes an analytical study and an experimental evaluation of compressive, one-dimensional, shock transmission through a threaded joint in a split Hopkinson bar configuration. Thread geometries were scaled to simulate large diameter threaded joints with loadings parallel to the axis of the threads. Both strain and acceleration were evaluated with experimental measurements and analysis. Analytical results confirm the experimental conclusions that in this split Hopkinson bar configuration, the change in the one-dimensional shock wave by the threaded joint is localized to a length equal to a few diameters` length beyond the threaded joint.

  6. Equivalent Continuum Modeling for Shock Wave Propagation in Jointed...

    Office of Scientific and Technical Information (OSTI)

    Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media Citation Details In-Document Search Title: Equivalent Continuum Modeling for Shock Wave Propagation in...

  7. Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media Citation Details In-Document Search Title: Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media This study presents discrete and continuum simulations of shock wave propagating through jointed media. The simulations were performed using the Lagrangian hydrocode GEODYN-L with joints treated explicitly using an advanced contact algorithm. They studied both

  8. Preparation of actinide specimens for the US/UK joint experiment in the Dounreay Prototype Fast Reactor

    SciTech Connect (OSTI)

    Quinby, T C; Adair, H L; Kobisk, E H

    1982-05-01

    A joint research program involving the United States and the United Kingdom was initiated about four years ago for the purpose of studying the fuel behavior of higher actinides using in-core irradiation in the fast reactor at Dounreay, Scotland. Simultaneously, determination of integral cross sections of a wide variety of higher actinide isotopes (physics specimens) was proposed. Coincidental neutron flux and energy spectral measurements were to be made using vanadium encapsulated dosimetry materials in the immediate region of the fuel pellets and physics samples. The higher actinide samples chosen for the fuel study were /sup 241/Am and /sup 244/Cm in the forms of Am/sub 2/O/sub 3/, Cm/sub 2/O/sub 3/, and Am/sub 6/Cm(RE)/sub 7/O/sub 21/, where (RE) represents a mixture of lanthanides. Milligram quantities of actinide oxides of /sup 248/Cm, /sup 246/Cm, /sup 244/Cm, /sup 243/Cm, /sup 243/Am, /sup 241/Am, /sup 244/Pu, /sup 242/Pu, /sup 241/Pu, /sup 240/Pu, /sup 239/Pu, /sup 238/Pu, /sup 237/Np, /sup 238/U, /sup 236/U, /sup 235/U, /sup 234/U, /sup 233/U, /sup 232/Th, /sup 230/Th, and /sup 231/Pa were encapsulated to obtain nuclear cross section and reaction rate data for these materials.

  9. Equivalent Continuum Modeling for Shock Wave Propagation in Jointed...

    Office of Scientific and Technical Information (OSTI)

    combined with the properties of the intact rock to develop an equivalent continuum model ... Two appraoches are suggested for modeling the rock mass. In one approach, jointed are ...

  10. Actinide Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to provide fundamental information on the electronic structure of actinides. Using modern metallographic sample preparation and analysis on a variety of actinide materials to meet...

  11. Actinide Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provide fundamental information on the electronic structure of actinides. * Using modern metallographic sample preparation and analysis on a variety of actinide materials to meet...

  12. Actinides-1981

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  13. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, Nancy N. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  14. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  15. Actinide-ion sensor

    DOE Patents [OSTI]

    Li, Shelly X; Jue, Jan-fong; Herbst, Ronald Scott; Herrmann, Steven Douglas

    2015-01-13

    An apparatus for the real-time, in-situ monitoring of actinide-ion concentrations. A working electrolyte is positioned within the interior of a container. The working electrolyte is separated from a reference electrolyte by a separator. A working electrode is at least partially in contact with the working electrolyte. A reference electrode is at least partially in contact with the reference electrolyte. A voltmeter is electrically connected to the working electrode and the reference electrode. The working electrolyte comprises an actinide-ion of interest. The separator is ionically conductive to the actinide-ion of interest. The separator comprises an actinide, Zr, and Nb. Preferably, the actinide of the separator is Am or Np, more preferably Pu. In one embodiment, the actinide of the separator is the actinide of interest. In another embodiment, the separator further comprises P and O.

  16. Actinide extraction methods

    DOE Patents [OSTI]

    Peterman, Dean R. [Idaho Falls, ID; Klaehn, John R. [Idaho Falls, ID; Harrup, Mason K. [Idaho Falls, ID; Tillotson, Richard D. [Moore, ID; Law, Jack D. [Pocatello, ID

    2010-09-21

    Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether. The ether is removed to yield the dithiophosphinic acid.

  17. Actinide recovery process

    DOE Patents [OSTI]

    Muscatello, Anthony C. (Arvada, CO); Navratil, James D. (Arvada, CO); Saba, Mark T. (Arvada, CO)

    1987-07-28

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrenedivinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like.

  18. Actinide recovery process

    DOE Patents [OSTI]

    Muscatello, A.C.; Navratil, J.D.; Saba, M.T.

    1985-06-13

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrene-divinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like. 2 tabs.

  19. Thermochemistry of the actinides

    SciTech Connect (OSTI)

    Kleinschmidt, P.D.

    1993-10-01

    The measurement of equilibria by Knudsen effusion techniques and the enthalpy of formation of the actinide atoms is briefly discussed. Thermochemical data on the sublimation of the actinide fluorides is used to calculate the enthalpies of formation and entropies of the gaseous species. Estimates are made for enthalpies and entropies of the tetrafluorides and trifluorides for those systems where data is not available. The pressure of important species in the tetrafluoride sublimation processes is calculated based on this thermochemical data.

  20. Actinide halide complexes

    DOE Patents [OSTI]

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  1. Actinide halide complexes

    DOE Patents [OSTI]

    Avens, Larry R. (Los Alamos, NM); Zwick, Bill D. (Santa Fe, NM); Sattelberger, Alfred P. (Los Alamos, NM); Clark, David L. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  2. Actinide Burning in CANDU Reactors

    SciTech Connect (OSTI)

    Hyland, B.; Dyck, G.R.

    2007-07-01

    Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

  3. Environmental research on actinide elements

    SciTech Connect (OSTI)

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G.

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

  4. Aqueous recovery of actinides from aluminum alloys

    SciTech Connect (OSTI)

    Gray, J.H.; Chostner, D.F.; Gray, L.W.

    1989-01-01

    Early in the 1980's, a joint Rocky Flats/Savannah River program was established to recover actinides from scraps and residues generated during Rocky Flats purification operations. The initial program involved pyrochemical treatment of Molten Salt Extraction (MSE) chloride salts and Electrorefining (ER) anode heel metal to form aluminum alloys suitable for aqueous processing at Savannah River. Recently Rocky Flats has expressed interest in expanding the aluminum alloy program to include treatment of chloride salt residues from a modified Molten Salt Extraction process and from the Electrorefining purification operations. Samples of the current aluminum alloy buttons were prepared at Rocky Flats and sent to Savannah River Laboratory for flowsheet development and characterization of the alloys. A summary of the scrub alloy-anode heel alloy program will be presented along with recent results from aqueous dissolution studies of the new aluminum alloys. 2 figs., 4 tabs.

  5. 33rd Actinide Separations Conference

    SciTech Connect (OSTI)

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  6. Actinide Thermodynamics at Elevated Temperatures

    SciTech Connect (OSTI)

    Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

    2007-11-16

    The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

  7. Separations of actinides, lanthanides and other metals

    DOE Patents [OSTI]

    Smith, Barbara F.; Jarvinen, Gordon D.; Ensor, Dale D.

    1995-01-01

    An organic extracting solution comprised of a bis(acylpyrazolone or a substituted bis(acylpyrazolone) and an extraction method useful for separating certain elements of the actinide series of the periodic table having a valence of four from one other, and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also useful for separating hexavalent actinides from one or more of the substances in a group consisting of trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals.

  8. Enhancing the actinide sciences in Europe through hot laboratories networking and pooling: from ACTINET to TALISMAN

    SciTech Connect (OSTI)

    Bourg, S.; Poinssot, C.

    2013-07-01

    Since 2004, Europe supports the strengthening of the European actinides sciences scientific community through the funding of dedicated networks: (i) from 2004 to 2008, the ACTINET6 network of excellence (6. Framework Programme) gathered major laboratories involved in nuclear research and a wide range of academic research organisations and universities with the specific aims of funding and implementing joint research projects to be performed within the network of pooled facilities; (ii) from 2009 to 2013, the ACTINET-I3 integrated infrastructure initiative (I3) supports the cost of access of any academics in the pooled EU hot laboratories. In this continuation, TALISMAN (Trans-national Access to Large Infrastructures for a Safe Management of Actinides) gathers now the main European hot laboratories in actinides sciences in order to promote their opening to academics and universities and strengthen the EU-skills in actinides sciences. Furthermore, a specific focus is set on the development of advanced cutting-edge experimental and spectroscopic capabilities, the combination of state-of-the art experimental with theoretical first-principle methods on a quantum mechanical level and to benefit from the synergy between the different scientific and technical communities. ACTINET-I3 and TALISMAN attach a great importance and promote the Education and Training of the young generation of actinides scientists in the Trans-national access but also by organizing Schools (general Summer Schools or Theoretical User Lab Schools) or by granting students to attend International Conference on actinide sciences. (authors)

  9. Independent Activity Report, Nevada National Security Site- July 2011

    Broader source: Energy.gov [DOE]

    NNSS Operational Readiness Review of the Joint Actinide Shock Physics Experimental Research Facility [HIAR-NNSS-2011-07-28

  10. Process for recovering actinide values

    DOE Patents [OSTI]

    Horwitz, E. Philip; Mason, George W.

    1980-01-01

    A process for rendering actinide values recoverable from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorous extractants such as tri-n butyl phosphate (TBP) and dihexyl-N,N-diethyl carbamylmethylene phosphonate (DHDECAMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is preferably made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant is recycled after stripping the degradation products with a neutral sodium carbonate solution.

  11. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  12. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  13. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  14. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  15. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Covalent Bonding in Actinide Sandwich Molecules Print Wednesday, 28 May 2014 00:00 Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic

  16. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  17. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  18. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in discussions of...

  19. Ceramic composition for immobilization of actinides

    DOE Patents [OSTI]

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Jostsons, Adam; Allender, Jeffrey S.; Rankin, David Thomas

    2000-01-01

    Disclosed is a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile.

  20. Comparison of Joint Modeling Approaches Including Eulerian Sliding...

    Office of Scientific and Technical Information (OSTI)

    faults is a key ingredient for high fidelity modeling of shock propagation in geologic media. The following study was done to improve treatment of discontinuities (joints) in the...

  1. Analysis of large soil samples for actinides

    DOE Patents [OSTI]

    Maxwell, III; Sherrod L. (Aiken, SC)

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  2. Prompt fission neutron spectra of actinides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Capote, R.; Chen, Y. -J.; Hambsch, F. -J.; Kornilov, N. V.; Lestone, J. P.; Litaize, O.; Morillon, B.; Neudecker, D.; Oberstedt, S.; Ohsawa, T.; et al

    2016-01-06

    Here, the energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  3. Separation of actinides from lanthanides

    DOE Patents [OSTI]

    Smith, B.F.; Jarvinen, G.D.; Ryan, R.R.

    1988-03-31

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form is described. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4- dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  4. Separation of actinides from lanthanides

    DOE Patents [OSTI]

    Smith, Barbara F.; Jarvinen, Gordon D.; Ryan, Robert R.

    1989-01-01

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  5. Actinide removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C. (Pleasanton, CA); von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  6. Overview of actinide chemistry in the WIPP

    SciTech Connect (OSTI)

    Borkowski, Marian; Lucchini, Jean - Francois; Richmann, Michael K; Reed, Donald T; Khaing, Hnin; Swanson, Juliet

    2009-01-01

    The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as part of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important inorganic complexants are expected to be carbonate/bicarbonate and hydroxide. There are also organic complexants in TRU waste with the potential to strongly influence actinide solubility. (3) Intrinsic and pseudo-actinide colloid formation - Many actinide species in their expected oxidation states tend to form colloids or strongly associate with non actinide colloids present (e.g., microbial, humic and organic). In this context, the relative importance of actinides, based on the TRU waste inventory, with respect to the potential release of actinides from the WIPP, is greater for plutonium and americium, and to less extent for uranium and thorium. The most important oxidation states for WIPP-relevant conditions are III and IV. We will present an update of the literature on WIPP-specific data, and a summary of the ongoing research related to actinide chemistry in the WIPP performed by the Los Alamos National Laboratory (LANL) Actinide Chemistry and Repository Science (ACRSP) team located in Carlsbad, NM [Reed 2007, Lucchini 2007, and Reed 2006].

  7. BWR Assembly Optimization for Minor Actinide Recycling

    SciTech Connect (OSTI)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  8. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect (OSTI)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  9. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  10. Rapid determination of actinides in seawater samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.; Utsey, Robin C.; McAlister, Daniel R.

    2014-03-09

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti+3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used tomore »separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1–2 weeks and provide chemical yields of ~30–60 %. This new sample preparation method can be performed in 4–8 h with tracer yields of ~85–95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.« less

  11. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOE Patents [OSTI]

    Miller, S.M.

    1983-10-31

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  12. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOE Patents [OSTI]

    Miller, Steven M. (Chelmsford, MA)

    1988-01-01

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  13. Rapid determination of actinides in asphalt samples

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.

  14. Actinide Targets for Neutron Cross Section Measurements

    SciTech Connect (OSTI)

    John D. Baker; Christopher A. McGrath

    2006-10-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from "minor" actinides that currently have poorly known or in some cases not measured (n,?) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 239Pu, 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  15. Rapid determination of actinides in asphalt samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organicsmore » present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.« less

  16. Ceramic joints

    DOE Patents [OSTI]

    Miller, Bradley J. (Worcester, MA); Patten, Jr., Donald O. (Sterling, MA)

    1991-01-01

    Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.

  17. Comparison of Joint Modeling Approaches Including Eulerian Sliding

    Office of Scientific and Technical Information (OSTI)

    Interfaces (Technical Report) | SciTech Connect Comparison of Joint Modeling Approaches Including Eulerian Sliding Interfaces Citation Details In-Document Search Title: Comparison of Joint Modeling Approaches Including Eulerian Sliding Interfaces Accurate representation of discontinuities such as joints and faults is a key ingredient for high fidelity modeling of shock propagation in geologic media. The following study was done to improve treatment of discontinuities (joints) in the Eulerian

  18. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    DOE Patents [OSTI]

    Van Der Sluys, William G. (Missoula, MT); Burns, Carol J. (Los Alamos, NM); Smith, David C. (Los Alamos, NM)

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  19. Microbial Transformations of Actinides and Other Radionuclides

    SciTech Connect (OSTI)

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  20. In vitro removal of actinide (IV) ions

    DOE Patents [OSTI]

    Weitl, Frederick L. (Martinez, CA); Raymond, Kenneth N. (Berkeley, CA)

    1982-01-01

    A compound of the formula: ##STR1## wherein X is hydrogen or a conventional electron-withdrawing group, particularly --SO.sub.3 H or a salt thereof; n is 2, 3, or 4; m is 2, 3, or 4; and p is 2 or 3. The present compounds are useful as specific sequestering agents for actinide (IV) ions. Also described is a method for the 2,3-dihydroxybenzamidation of azaalkanes.

  1. Actinide and lanthanide separation process (ALSEP)

    DOE Patents [OSTI]

    Guelis, Artem V.

    2013-01-15

    The process of the invention is the separation of minor actinides from lanthanides in a fluid mixture comprising, fission products, lanthanides, minor actinides, rare earth elements, nitric acid and water by addition of an organic chelating aid to the fluid; extracting the fluid with a solvent comprising a first extractant, a second extractant and an organic diluent to form an organic extractant stream and an aqueous raffinate. Scrubbing the organic stream with a dicarboxylic acid and a chelating agent to form a scrubber discharge. The scrubber discharge is stripped with a simple buffering agent and a second chelating agent in the pH range of 2.5 to 6.1 to produce actinide and lanthanide streams and spent organic diluents. The first extractant is selected from bis(2-ethylhexyl)hydrogen phosphate (HDEHP) and mono(2-ethylhexyl)2-ethylhexyl phosphonate (HEH(EHP)) and the second extractant is selected from N,N,N,N-tetra-2-ethylhexyl diglycol amide (TEHDGA) and N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA).

  2. Theory in evaluation of actinide fission and capture cross sections.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Theory in evaluation of actinide fission and capture cross sections. Citation Details In-Document Search Title: Theory in evaluation of actinide fission and capture cross sections. The authors discuss the possibilities and limitations of the use of theory as a tool in the evaluation of actinide fission and capture cross-sections. They consider especially the target {sup 235}U as an example. They emphasize the roles of intermediate structure in the fission

  3. MEMS reliability in shock environments

    SciTech Connect (OSTI)

    TANNER,DANELLE M.; WALRAVEN,JEREMY A.; HELGESEN,KAREN SUE; IRWIN,LLOYD W.; BROWN,FREDERICK A.; SMITH,NORMAN F.; MASTERS,NATHAN

    2000-02-09

    In order to determine the susceptibility of the MEMS (MicroElectroMechanical Systems) devices to shock, tests were performed using haversine shock pulses with widths of 1 to 0.2 ms in the range from 500g to 40,000g. The authors chose a surface-micromachined microengine because it has all the components needed for evaluation: springs that flex, gears that are anchored, and clamps and spring stops to maintain alignment. The microengines, which were unpowered for the tests, performed quite well at most shock levels with a majority functioning after the impact. Debris from the die edges moved at levels greater than 4,000g causing shorts in the actuators and posing reliability concerns. The coupling agent used to prevent stiction in the MEMS release weakened the die-attach bond, which produced failures at 10,000g and above. At 20,000g the authors began to observe structural damage in some of the thin flexures and 2.5-micron diameter pin joints. The authors observed electrical failures caused by the movement of debris. Additionally, they observed a new failure mode where stationary comb fingers contact the ground plane resulting in electrical shorts. These new failure were observed in the control group indicating that they were not shock related.

  4. Development of the Actinide-Lanthanide Separation (ALSEP) Process

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; Carter, Jennifer C.; Niver, Cynthia M.; Gelis, Artem V.

    2014-09-30

    Separating the minor actinide elements (Am and Cm) from acidic high-level raffinates arising from the reprocessing of irradiated nuclear fuel is an important step in closing the nuclear fuel cycle. Most proposed approaches to this problem involve two solvent extraction steps: 1) co-extraction of the trivalent lanthanides and actinides, followed by 2) separation of the actinides from the lanthanides. The objective of our work is to develop a single solvent-extraction process for isolating the minor actinide elements. We report here a solvent containing N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) combined with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) that can be used to separate the minor actinides in a single solvent-extraction process. T2EHDGA serves to co-extract the trivalent actinide and lanthanide ions from nitric acid solution. Switching the aqueous phase chemistry to a citrate buffered solution of N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid at pH 2.5 to 4 results in selective transfer of the actinides to the aqueous phase, thus affecting separation of the actinides from the lanthanides. Separation factors between the lanthanides and actinides are approximately 20 in the pH range of 3 to 4, and the distribution ratios are not highly dependent on the pH in this system.

  5. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect (OSTI)

    Nash, Ken; Martin, Leigh; Lumetta, Gregg

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale necessary for commercial fuel processing supporting transmutation of transplutonium elements. This research project continued basic themes investigated by this research group during the past decade. In the Fuel Cycle Research and Development program at DOE, the current favorite process for accomplishing the separation of trivalent actinides from fission product lanthanides is the TALSPEAK process. TALSPEAK is a solvent extraction method (developed at Oak Ridge National Lab in the 1960s) based on the combination of a cation exchanging extractant (e.g., HDEHP), an actinide-selective aminopolycarboxylate complexing agent (e.g., DTPA), and a carboxylic acid buffer to control pH in the range of 3-4. Considerable effort has been expended in this research group during the past 8 years to elaborate the details of TALSPEAK in the interest of developing improved approaches to the operation of TALSPEAK-like systems. In this project we focused on defining aggregation phenomena in conventional TALSPEAK separations, on supporting the development of Advanced TALSPEAK processes, on profiling the aqueous complexation kinetics of lanthanides in TALSPEAK relevant aqueous media, on the design of new diglycolamide and N-donor extractants, and on characterizing cation-cation complexes of pentavalent actinides.

  6. Independent Oversight Activity Report, Nevada National Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    initiatives, as well as tours of the Device Assembly Facility (DAF), National Criticality Experimental Research Center, and the Joint Actinide Shock Physics Experimental facility. ...

  7. Audit Memo Template

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and reviewed the following audit reports (and workpapers) issued by the DOE OIG: ... 4232012 The Joint Actinide Shock Physics Experimental Research Facility at the ...

  8. Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    of Life Extension Programs, Future physics design and certification capability as ... National Laboratory Joint Actinide Shock Physics Experimental Research (JASPER), Nevada ...

  9. Process for making a ceramic composition for immobilization of actinides

    DOE Patents [OSTI]

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph

    2001-01-01

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  10. POTENTIAL BENCHMARKS FOR ACTINIDE PRODUCTION IN HANFORD REACTORS

    SciTech Connect (OSTI)

    PUIGH RJ; TOFFER H

    2011-10-19

    A significant experimental program was conducted in the early Hanford reactors to understand the reactor production of actinides. These experiments were conducted with sufficient rigor, in some cases, to provide useful information that can be utilized today in development of benchmark experiments that may be used for the validation of present computer codes for the production of these actinides in low enriched uranium fuel.

  11. Improved method for extracting lanthanides and actinides from acid solutions

    DOE Patents [OSTI]

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  12. Hanford Site production reactor data pertinent to actinide burning

    SciTech Connect (OSTI)

    Toffer, H.; Roblyer, S.P.

    1993-06-01

    During the 44 years of operation, irradiation of special actinides occurred in the Hanford Site production reactors. The data derived from such irradiations could be of value to advanced actinide burners having a thermal neutron spectrum. Recently, such information has become unclassified and, therefore available for public release. This data is discussed in this report.

  13. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    SciTech Connect (OSTI)

    Dr. David L. Clark; Dr. Alexander M. Fedosseev

    2001-12-21

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier.

  14. MODELING UNDERGROUND STRUCTURE VULNERABILITY IN JOINTED ROCK

    SciTech Connect (OSTI)

    R. SWIFT; D. STEEDMAN

    2001-02-01

    The vulnerability of underground structures and openings in deep jointed rock to ground shock attack is of chief concern to military planning and security. Damage and/or loss of stability to a structure in jointed rock, often manifested as brittle failure and accompanied with block movement, can depend significantly on jointed properties, such as spacing, orientation, strength, and block character. We apply a hybrid Discrete Element Method combined with the Smooth Particle Hydrodynamics approach to simulate the MIGHTY NORTH event, a definitive high-explosive test performed on an aluminum lined cylindrical opening in jointed Salem limestone. Representing limestone with discrete elements having elastic-equivalence and explicit brittle tensile behavior and the liner as an elastic-plastic continuum provides good agreement with the experiment and damage obtained with finite-element simulations. Extending the approach to parameter variations shows damage is substantially altered by differences in joint geometry and liner properties.

  15. Biomass shock pretreatment

    DOE Patents [OSTI]

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  16. Process to remove actinides from soil using magnetic separation

    DOE Patents [OSTI]

    Avens, Larry R.; Hill, Dallas D.; Prenger, F. Coyne; Stewart, Walter F.; Tolt, Thomas L.; Worl, Laura A.

    1996-01-01

    A process of separating actinide-containing components from an admixture including forming a slurry including actinide-containing components within an admixture, said slurry including a dispersion-promoting surfactant, adjusting the pH of the slurry to within a desired range, and, passing said slurry through a pretreated matrix material, said matrix material adapted to generate high magnetic field gradients upon the application of a strong magnetic field exceeding about 0.1 Tesla whereupon a portion of said actinide-containing components are separated from said slurry and remain adhered upon said matrix material is provided.

  17. Actinide targets for the synthesis of super-heavy elements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; Ezold, Julie G.; Felker, Leslie Kevin; Rykaczewski, Krzysztof Piotr; Hogle, Susan L.

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less

  18. Thorium and Uranium: Elements of Opportunity in Actinide Organometalli...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thorium and Uranium: Elements of Opportunity in Actinide Organometallic Chemistry January 12, 2016 11:00AM to 12:00PM Presenter Jaqueline L. Kiplinger, Los Alamos National...

  19. Actinide Ion Sensor For Pyroprocess Monitoring - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Actinide Ion Sensor For Pyroprocess Monitoring DOE Grant Recipients Idaho National Laboratory Contact GRANT About This Technology Technology Marketing Summary Idaho National Laboratory (INL) has created a novel method and apparatus for monitoring plutonium concentration during pyroprocessing to ensure that the refining process is efficient at collecting actinides. Unlike existing solutions, which require complex, time-consuming remote testing, this unique sensor is capable of providing real-time

  20. Environmental Assessment for Actinide Chemistry and Repository Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory questions on the Environmental Assessment for Actinide Chemistry and Repository Science Laboratory, email Harold.Johnson@wipp.ws or call (505) 234-7349. Environmental Assessment for Actinide Chemistry and Repository Science Laboratory Final - January, 2006 This document has been provided to you in PDF format. Please install Adobe Acrobat Reader before accessing these documents. Some of the Chapters containing complex graphics have been split into multiple parts to allow for more

  1. Theory in evaluation of actinide fission and capture cross sections.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Theory in evaluation of actinide fission and capture cross sections. Citation Details In-Document Search Title: Theory in evaluation of actinide fission and capture cross sections. × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science

  2. Thermodynamic stability of actinide pyrochlore minerals in deep geologic

    Office of Scientific and Technical Information (OSTI)

    repository environments (Conference) | SciTech Connect Thermodynamic stability of actinide pyrochlore minerals in deep geologic repository environments Citation Details In-Document Search Title: Thermodynamic stability of actinide pyrochlore minerals in deep geologic repository environments Crystalline phases of pyrochlore (e.g., CaPuTi{sub 2}O{sub 7}, CaUTi{sub 2}O{sub 7}) have been proposed as a durable ceramic waste form for disposal of high level radioactive wastes including surplus

  3. Actinide Source Term Program, position paper. Revision 1

    SciTech Connect (OSTI)

    Novak, C.F.; Papenguth, H.W.; Crafts, C.C.; Dhooge, N.J.

    1994-11-15

    The Actinide Source Term represents the quantity of actinides that could be mobilized within WIPP brines and could migrate with the brines away from the disposal room vicinity. This document presents the various proposed methods for estimating this source term, with a particular focus on defining these methods and evaluating the defensibility of the models for mobile actinide concentrations. The conclusions reached in this document are: the 92 PA {open_quotes}expert panel{close_quotes} model for mobile actinide concentrations is not defensible; and, although it is extremely conservative, the {open_quotes}inventory limits{close_quotes} model is the only existing defensible model for the actinide source term. The model effort in progress, {open_quotes}chemical modeling of mobile actinide concentrations{close_quotes}, supported by a laboratory effort that is also in progress, is designed to provide a reasonable description of the system and be scientifically realistic and supplant the {open_quotes}Inventory limits{close_quotes} model.

  4. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    SciTech Connect (OSTI)

    Perkasa, Y. S.; Waris, A. Kurniadi, R. Su'ud, Z.

    2014-09-30

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator.

  5. Nuclear waste actinides as fissile fuel in hybrid blankets

    SciTech Connect (OSTI)

    Sahin, S.; Al-Kusayer, T.A.

    1983-12-01

    The widespread use of the present LWRs produces substantial quantities of nuclear waste materials. Among those, actinide nuclear waste poses a serious problem of stockage because the associated half life times for actinides is measured in terms of geological time periods (several millions of years) so that no waste disposal guarantee over such time intervals can be given, except for space disposal. On the other hand, these nuclear waste actinides are very good fissionable materials for high energetic (D,T) fusion neutrons. It is therefore worthwhile to investigate their quality as potential nuclear fuel in hybrid blankets. The present study investigates the neutronic performance of hybrid blankets containing Np/sup 237/ and Cm/sup 244/ as fissile materials. The isotopic composition of Americium has been adjusted to the spent fuel isotope composition of a LWR. The geometrical design has been made, according to the AYMAN fussion-fission (hybrid) experimental facility, now in the very early phase of planning.

  6. Actinide Dioxides in Water: Interactions at the Interface

    SciTech Connect (OSTI)

    Alexandrov, Vitaly; Shvareva, Tatiana Y.; Hayun, Shmuel; Asta, Mark; Navrotsky, Alexandra

    2011-12-15

    A comprehensive understanding of chemical interactions between water and actinide dioxide surfaces is critical for safe operation and storage of nuclear fuels. Despite substantial previous research, understanding the nature of these interactions remains incomplete. In this work, we combine accurate calorimetric measurements with first-principles computational studies to characterize surface energies and adsorption enthalpies of water on two fluorite-structured compounds, ThO? and CeO?, that are relevant for understanding the behavior of water on actinide oxide surfaces more generally. We determine coverage-dependent adsorption enthalpies and demonstrate a mixed molecular and dissociative structure for the first hydration layer. The results show a correlation between the magnitude of the anhydrous surface energy and the water adsorption enthalpy. Further, they suggest a structural model featuring one adsorbed water molecule per one surface cation on the most stable facet that is expected to be a common structural signature of water adsorbed on actinide dioxide compounds.

  7. Actinide (III) solubility in WIPP Brine: data summary and recommendations

    SciTech Connect (OSTI)

    Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

    2009-09-01

    The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

  8. Method for extracting lanthanides and actinides from acid solutions

    DOE Patents [OSTI]

    Horwitz, E. Philip; Kalina, Dale G.; Kaplan, Louis; Mason, George W.

    1985-01-01

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions with an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high level nuclear reprocessing waste solutions.

  9. INERT-MATRIX FUEL: ACTINIDE ''BURINGIN'' AND DIRECT DISPOSAL

    SciTech Connect (OSTI)

    Rodney C. Ewing; Lumin Wang

    2002-10-30

    Excess actinides result from the dismantlement of nuclear weapons (Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241 Am, 244 Cm and 237 Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burnup of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-cycle of burn-up. Direct disposal can considerably reduce cost, processing requirements, and radiation exposure to workers.

  10. Methyltrihydroborate complexes of the lanthanides and actinides

    SciTech Connect (OSTI)

    Shinomoto, R.S.

    1984-11-01

    Reaction of MC1/sub 4/ (M = Zr, Hf, U, Th, Np) with LiBH/sub 3/CH/sub 3/ in chlorobenzene produces volatile, hexane-soluble M(BH/sub 3/CH/sub 3/)/sub 4/. Crystal structures are monomeric, tetrahedral species. Lewis base adducts prepared include U(BH/sub 3/CH/sub 3/)/sub 4/.THT, Th(BH/sub 3/CH/sub 3/)/sub 4/.L (L = THF (tetrahydrofuran), THT (tetrahydrothiophene), SMe/sub 2/, OMe/sub 2/), U(BH/sub 3/CH/sub 3/)/sub 4/.2L (L = THF, pyridine, NH/sub 3/), Th(BH/sub 3/CH/sub 3/)/sub 4/.2L (L = THF, THT, py, NH/sub 3/), M(BH/sub 3/CH/sub 3/)/sub 4/.L-L (M = U, Th; L-L = dme (1,2-dimethoxyethane), bmte (bis(1,2-methylthio)ethane), tmed (N,N,N',N'-tetramethylethylenediamine), dmpe (1,2-dimethylphosphinoethane)) and Th(BH/sub 3/CH/sub 3/)/sub 4/.1/2 OEt/sub 2/. Reaction of MC1/sub 3/ (M = Ho, Yb, Lu) with LiBH/sub 3/CH/sub 3/ in diethyl ether produces volatile, toluene-soluble M(BH/sub 3/CH/sub 3/)/sub 3/.OEt/sub 2/. Other Lewis base adducts prepared from M(BH/sub 3/CH/sub 3/)/sub 3/.OEt/sub 2/ include Ho(BH/sub 3/CH/sub 3/)/sub 3/.L (L = THT, THF, py), Ho(BH/sub 3/CH/sub 3/)/sub 3/.2L (L = THT, THF, py), Ho(BH/sub 3/CH/sub 3/)/sub 3/.tmed, Ho(BH/sub 3/CH/sub 3/)/sub 3/.3/2 L-L (L-L = dmpe, bmte), Yb(BH/sub 3/CH/sub 3/)/sub 3/.3/2 dmpe, Yb(BH/sub 3/Ch/sub 3/).L (L = THF, dme), Yb(BH/sub 3/CH/sub 3/)/sub 3/.2THF, and Lu(BH/sub 3/CH/sub 3/)/sub 3/.THF. By structural criteria, the bonding in actinide and lanthanide methyltrihydroborate complexes is primarily ionic in character even though they display covalent-like physical properties. Spectroscopic measurements indicate that there is some degree of covalent bonding in U(BH/sub 3/CH/sub 3/)/sub 4/.

  11. Literature review of intrinsic actinide colloids related to spent fuel waste package release rates

    SciTech Connect (OSTI)

    Zhao, P.; Steward, S.A.

    1997-01-01

    Existence of actinide colloids provides an important mechanism in the migration of radionuclides and will be important in performance of a geologic repository for high-level nuclear waste. Actinide colloids have been formed during long-term unsaturated dissolution of spent fuel by groundwater. This article summarizes a literature search of actinide colloids. This report emphasizes the formation of intrinsic actinide colloids, because they would have the opportunity to form soon after groundwater contact with the spent fuel and before actinide-bearing groundwater reaches the surrounding geologic formations.

  12. Method for recovery of actinides from actinide-bearing scrap and waste nuclear material using O/sub 2/F/sub 2/

    DOE Patents [OSTI]

    Asprey, L.B.; Eller, P.G.

    1984-09-12

    Method for recovery of actinides from nuclear waste material containing sintered and other oxides thereof and from scrap materials containing the metal actinides using O/sub 2/F/sub 2/ to generate the hexafluorides of the actinides present therein. The fluorinating agent, O/sub 2/F/sub 2/, has been observed to perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are not detroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is readily prepared, stored and transferred to the place of reaction.

  13. Experimental Evaluation of Actinide Transport in a Fractured Granodiorite

    SciTech Connect (OSTI)

    Dittrich, Timothy M.; Reimus, Paul W.

    2015-03-16

    The objective of this study was to demonstrate and evaluate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments have already been conducted with uranium and additional field experiments using other actinides are planned at the site. Thus, working on this system provides a unique opportunity to compare lab experiment results with fieldscale observations. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption and column breakthrough experiments. Solutions with pH 6.8 and 8.8 were tested. Solutions were switched to radionuclide-free synthetic Grimsel groundwater after near-steady actinide/colloid breakthrough occurred in column experiments. We are currently evaluating actinide adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, and mineralogy in solutions and suspensions with bentonite colloids. (auth)

  14. Actinide partitioning-transmutation program final report. I. Overall assessment

    SciTech Connect (OSTI)

    Croff, A.G.; Blomeke, J.O.; Finney, B.C.

    1980-06-01

    This report is concerned with an overall assessment of the feasibility of and incentives for partitioning (recovering) long-lived nuclides from fuel reprocessing and fuel refabrication plant radioactive wastes and transmuting them to shorter-lived or stable nuclides by neutron irradiation. The principal class of nuclides considered is the actinides, although a brief analysis is given of the partitioning and transmutation (P-T) of /sup 99/Tc and /sup 129/I. The results obtained in this program permit us to make a comparison of the impacts of waste management with and without actinide recovery and transmutation. Three major conclusions concerning technical feasibility can be drawn from the assessment: (1) actinide P-T is feasible, subject to the acceptability of fuels containing recycle actinides; (2) technetium P-T is feasible if satisfactory partitioning processes can be developed and satisfactory fuels identified (no studies have been made in this area); and (3) iodine P-T is marginally feasible at best because of the low transmutation rates, the high volatility, and the corrosiveness of iodine and iodine compounds. It was concluded on the basis of a very conservative repository risk analysis that there are no safety or cost incentives for actinide P-T. In fact, if nonradiological risks are included, the short-term risks of P-T exceed the long-term benefits integrated over a period of 1 million years. Incentives for technetium and iodine P-T exist only if extremely conservative long-term risk analyses are used. Further RD and D in support of P-T is not warranted.

  15. Spin and orbital moments in actinide compounds (invited)

    SciTech Connect (OSTI)

    Lebech, B. ); Wulff, M.; Lander, G.H. )

    1991-04-15

    The extended spatial distribution of both the transition-metal 3{ital d} electrons and the actinide 5{ital f} electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single-electron band-structure calculations, is that the orbital moments of the actinide 5{ital f} electrons are considerably reduced from the values anticipated by a simple application of Hund's rules. To test these ideas, and thus to obtain a measure of the hybridization, we have performed a series of neutron scattering experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe{sub 2}, NpCo{sub 2}, and PuFe{sub 2} and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced as compared to the free-ion expectations. In addition there is qualitative agreement with theory, although the latter predicts values of both components that are larger than those found by experiment. Because {bold L} and {bold S} are opposed in the light actinides, and {ital L} is usually greater than {ital S}, the reduction of {ital L} can result in a situation for which {ital L}{minus}{ital S}{congruent}0. This almost occurs in UFe{sub 2}. However, neutrons are capable of observing the individual components at finite wave vector ({bold Q}), although the total component (observed at {bold Q}={bold 0}) may indeed be close to zero.

  16. Large displacement spherical joint

    DOE Patents [OSTI]

    Bieg, Lothar F. (Albuquerque, NM); Benavides, Gilbert L. (Albuquerque, NM)

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  17. 2014 Joint Action Workshop

    Broader source: Energy.gov [DOE]

    The Joint Action Workshop is an annual event for joint action agencies and their members to meet informally and discuss emerging policy, regulatory, and power supply issues, and other topics...

  18. Shock destruction armor system

    DOE Patents [OSTI]

    Froeschner, Kenneth E. (Livermore, CA)

    1993-01-01

    A shock destruction armor system is constructed and arranged to destroy the force of impact of a projectile by shock hydrodynamics. The armor system is designed to comprise a plurality of superimposed armor plates each preferably having a thickness less than five times the projectile's diameter and are preferably separated one-from-another by a distance at least equal to one-half of the projectile's diameter. The armor plates are effective to hydrodynamically and sequentially destroy the projectile. The armor system is particularly adapted for use on various military vehicles, such as tanks, aircraft and ships.

  19. Complexation of lanthanides and actinides by acetohydroxamic acid

    SciTech Connect (OSTI)

    Taylor, R.J.; Sinkov, S.I.; Choppin, G.R.

    2008-07-01

    Acetohydroxamic acid (AHA) has been proposed as a suitable reagent for the complexant-based, as opposed to reductive, stripping of plutonium and neptunium ions from the tributylphosphate solvent phase in advanced PUREX or UREX processes designed for future nuclear-fuel reprocessing. Stripping is achieved by the formation of strong hydrophilic complexes with the tetravalent actinides in nitric acid solutions. To underpin such applications, knowledge of the complexation constants of AHA with all relevant actinide (5f) and lanthanide (4f) ions is therefore important. This paper reports the determination of stability constants of AHA with the heavier lanthanide ions (Dy-Yb) and also U(IV) and Th(IV) ions. Comparisons with our previously published AHA stability-constant data for 4f and 5f ions are made. (authors)

  20. Comparative Study of f-Element Electronic Structure across a Series of Multimetallic Actinide, Lanthanide-Actinide and Lanthanum-Actinide Complexes Possessing Redox-Active Bridging Ligands

    SciTech Connect (OSTI)

    Schelter, Eric J.; Wu, Ruilian; Veauthier, Jacqueline M.; Bauer, Eric D.; Booth, Corwin H.; Thomson, Robert K.; Graves, Christopher R.; John, Kevin D.; Scott, Brian L.; Thompson, Joe D.; Morris, David E.; Kiplinger, Jaqueline L.

    2010-02-24

    A comparative examination of the electronic interactions across a series of trimetallic actinide and mixed lanthanide-actinide and lanthanum-actinide complexes is presented. Using reduced, radical terpyridyl ligands as conduits in a bridging framework to promote intramolecular metal-metal communication, studies containing structural, electrochemical, and X-ray absorption spectroscopy are presented for (C{sub 5}Me{sub 5}){sub 2}An[-N=C(Bn)(tpy-M{l_brace}C{sub 5}Me4R{r_brace}{sub 2})]{sub 2} (where An = Th{sup IV}, U{sup IV}; Bn = CH{sub 2}C{sub 6}H{sub 5}; M = La{sup III}, Sm{sup III}, Yb{sup III}, U{sup III}; R = H, Me, Et) to reveal effects dependent on the identities of the metal ions and R-groups. The electrochemical results show differences in redox energetics at the peripheral 'M' site between complexes and significant wave splitting of the metal- and ligand-based processes indicating substantial electronic interactions between multiple redox sites across the actinide-containing bridge. Most striking is the appearance of strong electronic coupling for the trimetallic Yb{sup III}-U{sup IV}-Yb{sup III}, Sm{sup III}-U{sup IV}-Sm{sup III}, and La{sup III}-U{sup IV}-La{sup III} complexes, [8]{sup -}, [9b]{sup -} and [10b]{sup -}, respectively, whose calculated comproportionation constant K{sub c} is slightly larger than that reported for the benchmark Creutz-Taube ion. X-ray absorption studies for monometallic metallocene complexes of U{sup III}, U{sup IV}, and U{sup V} reveal small but detectable energy differences in the 'white-line' feature of the uranium L{sub III}-edges consistent with these variations in nominal oxidation state. The sum of this data provides evidence of 5f/6d-orbital participation in bonding and electronic delocalization in these multimetallic f-element complexes. An improved, high-yielding synthesis of 4{prime}-cyano-2,2{prime}:6{prime},2{double_prime}-terpyridine is also reported.

  1. Chemical properties of the heavier actinides and transactinides

    SciTech Connect (OSTI)

    Hulet, E.K.

    1981-01-01

    The chemical properties of each of the elements 99 (Es) through 105 are reviewed and their properties correlated with the electronic structure expected for 5f and 6d elements. A major feature of the heavier actinides, which differentiates them from the comparable lanthanides, is the increasing stability of the divalent oxidation state with increasing atomic number. The divalent oxidation state first becomes observable in the anhydrous halides of californium and increases in stability through the series to nobelium, where this valency becomes predominant in aqueous solution. In comparison with the analogous 4f electrons, the 5f electrons in the latter part of the series are more tightly bound. Thus, there is a lowering of the 5f energy levels with respect to the Fermi level as the atomic number increases. The metallic state of the heavier actinides has not been investigated except from the viewpoint of the relative volatility among members of the series. In aqueous solutions, ions of these elements behave as a normal trivalent actinides and lanthanides (except for nobelium). Their ionic radii decrease with increasing nuclear charge which is moderated because of increased screening of the outer 6p electrons by the 5f electrons. The actinide series of elements is completed with the element lawrencium (Lr) in which the electronic configuration is 5f/sup 14/7s/sup 2/7p. From Mendeleev's periodicity and Dirac-Fock calculations, the next group of elements is expected to be a d-transition series corresponding to the elements Hf through Hg. The chemical properties of elements 104 and 105 only have been studied and they indeed appear to show the properties expected of eka-Hf and eka-Ta. However, their nuclear lifetimes are so short and so few atoms can be produced that a rich variety of chemical information is probably unobtainable.

  2. Chemical and Ceramic Methods Toward Safe Storage of Actinides

    SciTech Connect (OSTI)

    P.E.D. Morgan; R.M. Housley; J.B. Davis; M.L. DeHaan

    2005-08-19

    A very import, extremely-long-term, use for monazite as a radwaste encapsulant has been proposed. THe use of ceramic La-monazite for sequestering actinides (isolating them from the environment), especially plutonium and some other radioactive elements )e.g., fission-product rare earths), had been especially championed by Lynn Boatner of ORNL. Monazite may be used alone or, copying its compatibility with many other minerals in nature, may be used in diverse composite combinations.

  3. Determination of actinides in urine and fecal samples

    DOE Patents [OSTI]

    McKibbin, T.T.

    1993-03-02

    A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

  4. Determination of actinides in urine and fecal samples

    DOE Patents [OSTI]

    McKibbin, Terry T. (Larimer County, CO)

    1993-01-01

    A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

  5. Supercritical Fluid Extraction and Separation of Uranium from Other Actinides

    SciTech Connect (OSTI)

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2014-06-01

    This paper investigates the feasibility of separating uranium from other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of an extraction and counter current stripping technique, which would be a more efficient and environmentally benign technology for used nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U(VI), Np(VI), Pu(IV), and Am(III)) were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, the separation of uranium from plutonium in sc-CO2 modified with TBP was successful at nitric acid concentrations of less than 3 M in the presence of acetohydroxamic acid or oxalic acid, and the separation of uranium from neptunium was successful at nitric acid concentrations of less than 1 M in the presence of acetohydroxamic acid, oxalic acid, or sodium nitrite.

  6. Actinide behavior in the Integral Fast Reactor. Final project report

    SciTech Connect (OSTI)

    Courtney, J.C.

    1994-11-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and weapons grade plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for seven day exposure in the Experimental Breeder Reactor-II which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction rates and neutron spectra. These experimental data increase the authors confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  7. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY AIR FILTER SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.; Noyes, G.; Culligan, B.

    2010-02-03

    A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and {sup 90}Sr in air filter results were reported in {approx}4 hours with excellent quality.

  8. SRNL Development of Recovery Processes for Mark-18A Heavy Actinide Targets

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect SRNL Development of Recovery Processes for Mark-18A Heavy Actinide Targets Citation Details In-Document Search Title: SRNL Development of Recovery Processes for Mark-18A Heavy Actinide Targets Savannah River National Laboratory (SRNL) and Oak Ridge National Laboratory (ORNL) are developing plans for the recovery of rare and unique isotopes contained within heavy-actinide target assemblies, specifically the Mark-18A. Mark-18A assemblies were irradiated in

  9. Method for the concentration and separation of actinides from biological and environmental samples

    DOE Patents [OSTI]

    Horwitz, E. Philip (Naperville, IL); Dietz, Mark L. (Tucson, AZ)

    1989-01-01

    A method and apparatus for the quantitative recover of actinide values from biological and environmental sample by passing appropriately prepared samples in a mineral acid solution through a separation column of a dialkyl(phenyl)-N,N-dialylcarbamoylmethylphosphine oxide dissolved in tri-n-butyl phosphate on an inert substrate which selectively extracts the actinide values. The actinide values can be eluted either as a group or individually and their presence quantitatively detected by alpha counting.

  10. Materials Science of Actinides (MSA) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Materials Science of Actinides (MSA) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Materials Science of Actinides (MSA) Print Text Size: A A A FeedbackShare Page MSA Header Director Peter Burns Lead Institution University of Notre Dame Year Established 2009 Mission To understand and control, at the nanoscale, materials that contain actinides (radioactive heavy elements

  11. Method for the concentration and separation of actinides from biological and environmental samples

    DOE Patents [OSTI]

    Horwitz, E.P.; Dietz, M.L.

    1989-05-30

    A method and apparatus for the quantitative recover of actinide values from biological and environmental sample by passing appropriately prepared samples in a mineral acid solution through a separation column of a dialkyl(phenyl)-N,N-dialylcarbamoylmethylphosphine oxide dissolved in tri-n-butyl phosphate on an inert substrate which selectively extracts the actinide values. The actinide values can be eluted either as a group or individually and their presence quantitatively detected by alpha counting. 3 figs.

  12. DOE - NNSA/NFO -- National Security Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JASPER NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Joint Actinide Shock Physics Experimental Research (JASPER) Photo of JASPER The Joint Actinide Shock Physics Experimental Research (JASPER) Facility plays an integral role in the testing of the nation's nuclear weapons stockpile by providing a method to generate and measure data pertaining to the properties of materials (radioactive chemical elements) at high shock pressures, temperatures and strain rates. These extreme

  13. EA-1404: Actinide Chemistry and Repository Science Laboratory, Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to construct and operate an Actinide Chemistry and Repository Science Laboratory to support chemical research activities related to the...

  14. WIPP - Joint Information Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Joint Information Center is located at 4021 National Parks Highway in Carlsbad, N.M. Joint Information Center In the unlikely event of an emergency, the WIPP Joint Information Center (JIC) serves as a central control point to coordinate multi-agency efforts to issue timely and accurate information to the public, news media and project employees. Emergency contact information: The public If the JIC is activated, members of the general public, including family members, may call (575) 234-7380

  15. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    SciTech Connect (OSTI)

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a signal for fast neutron capture.

  16. Plutonium and minor actinides utilization in Thorium molten salt reactor

    SciTech Connect (OSTI)

    Waris, Abdul; Aji, Indarta K.; Novitrian,; Kurniadi, Rizal; Su'ud, Zaki

    2012-06-06

    FUJI-12 reactor is one of MSR systems that proposed by Japan. The original FUJI-12 design considers Th/{sup 233}U or Th/Pu as main fuel. In accordance with the currently suggestion to stay away from the separation of Pu and minor actinides (MA), in this study we evaluated the utilization of Pu and MA in FUJI-12. The reactor grade Pu was employed in the present study as a small effort of supporting THORIMS-NES scenario. The result shows that the reactor can achieve its criticality with the Pu and MA composition in the fuel of 5.96% or more.

  17. Recovery of the actinides by electrochemical methods in molten chlorides using solid aluminium cathode

    SciTech Connect (OSTI)

    Malmbeck, R.; Mendes, E.; Serp, J.; Soucek, P.; Glatz, J.P.; Cassayre, L.

    2007-07-01

    An electrorefining process in molten chloride salts is being developed at ITU to reprocess the spent nuclear fuel. According to the thermochemical properties of the system, aluminium is the most promising electrode material for the separation of actinides (An) from lanthanides (Ln). The actinides are selectively reduced from the fission products and stabilized by the formation of solid and compact actinide-aluminium alloys with the reactive cathode material. In this work, the maximum loading of aluminium with actinides was investigated by potentiostatic and galvano-static electrorefining of U-Pu- Zr alloys. A very high aluminium capacity was achieved, as the average loading was 1.6 g of U and Pu into 1 g of aluminium and the maximum achieved loading was 2.3 g. For recovery of the actinides from aluminium, a process based on chlorination and a subsequent sublimation of AlCl{sub 3} is proposed. (authors)

  18. Selective extraction of trivalent actinides from lanthanides with dithiophosphinic acids and tributylphosphate

    SciTech Connect (OSTI)

    Jarvinen, G.; Barrans, R.; Schroeder, N.; Wade, K.; Jones, M.; Smith, B.F.; Mills, J.; Howard, G.; Freiser, H.; Muralidharan, S.

    1995-01-01

    A variety of chemical systems have been developed to separate trivalent actinides from lanthanides based on the slightly stronger complexation of the trivalent actinides with ligands that contain soft donor atoms. The greater stability of the actinide complexes in these systems has often been attributed to a slightly greater covalent bonding component for the actinide ions relative to the lanthanide ions. The authors have investigated several synergistic extraction systems that use ligands with a combination of oxygen and sulfur donor atoms that achieve a good group separation of the trivalent actinides and lanthanides. For example, the combination of dicyclohexyldithiophosphinic acid and tributylphosphate has shown separation factors of up to 800 for americium over europium in a single extraction stage. Such systems could find application in advanced partitioning schemes for nuclear waste.

  19. Characterization of Shocked Beryllium

    SciTech Connect (OSTI)

    Cady, Carl M; Adams, Chris D; Hull, Lawrence M; Gray III, George T; Prime, Michael B; Addessio, Francis L; Wynn, Thomas A; Brown, Eric N

    2012-08-24

    Beryllium metal has many excellent structural properties in addition to its unique radiation characteristics, including: high elastic modulus, low Poisson's ratio, low density, and high melting point. However, it suffers from several major mechanical drawbacks: 1) high anisotropy - due to its hexagonal lattice structure and its susceptibility to crystallographic texturing; 2) susceptibility to impurity-induced fracture - due to grain boundary segregation; and 3) low intrinsic ductility at ambient temperatures thereby limiting fabricability. While large ductility results from deformation under the conditions of compression, the material can exhibit a brittle behavior under tension. Furthermore, there is a brittle to ductile transition at approximately 200 C under tensile conditions. While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. The beryllium used in this study was Grade S200-F (Brush Wellman, Inc., Elmore, OH) material. The work focused on high strain rate deformation and examine the validity of constitutive models in deformation rate regimes, including shock, the experiments were modeled using a Lagrangian hydrocode. Two constitutive strength (plasticity) models, the Preston-Tonks-Wallace (PTW) and Mechanical Threshold Stress (MTS) models, were calibrated using the same set of quasi-static and Hopkinson bar data taken at temperatures from 77K to 873K and strain rates from 0.001/sec to 4300/sec. In spite of being calibrated on the same data, the two models give noticeably different results when compared with the measured wave profiles. These high strain rate tests were conducted using both explosive drive and a gas gun to accelerate the material. Preliminary analysis of the results appears to indicate that, if fractured by the initial shock loading, the S200F Be remains sufficiently intact to support a shear stress following partial release and subsequent shock re-loading of the material. Additional 'arrested' drive shots were designed and tested to minimize the reflected tensile pulse in the sample. These tests were done to both validate the model and to put large shock induced compressive loads into the beryllium sample.

  20. Operation of a bushing melter system designed for actinide vitrification

    SciTech Connect (OSTI)

    Ramsey, W.G.

    1996-03-01

    The Westinghouse Savannah River Company is developing a melter system to vitrify actinide materials. The melter system will used to vitrify the americium and curium solution which is currently stored in one of the Savannah River Site`s (SRS) processing canyons. This solution is one of the materials designated by the Defense Nuclear Facilities Safety Board (DNFSB) to be dispositioned as part of the DNFSB recommendation 94-1. The Am/Cm solution contains an extremely large fraction (>2 kilograms of Cm and 10 kilograms of Am) of t he United States`s total inventory of both elements. They have an estimated value on the order of one billion dollars - if they are processed through the DOE Isotope Sales program at the Oak Ridge National Laboratory. It is therefore deemed highly desirable to transfer the material to Oak Ridge in a form which can allow for recovery of the material. A commercial glass composition has been demonstrated to be compatible with up to 40 weight percent of the Am/Cm solution contents. This glass is also selectively attacked by nitric acid. This allows the actinide to be recovered by common separation processes.

  1. Actinide production from xenon bombardments of curium-248

    SciTech Connect (OSTI)

    Welch, R.B.

    1985-01-01

    Production cross sections for many actinide nuclides formed in the reaction of /sup 129/Xe and /sup 132/Xe with /sup 248/Cm at bombarding energies slightly above the coulomb barrier were determined using radiochemical techniques to isolate these products. These results are compared with cross sections from a /sup 136/Xe + /sup 248/Cm reaction at a similar energy. When compared to the reaction with /sup 136/Xe, the maxima in the production cross section distributions from the more neutron deficient projectiles are shifted to smaller mass numbers, and the total cross section increases for the production of elements with atomic numbers greater than that of the target, and decreases for lighter elements. These results can be explained by use of a potential energy surface (PES) which illustrates the effect of the available energy on the transfer of nucleons and describes the evolution of the di-nuclear complex, an essential feature of deep-inelastic reactions (DIR), during the interaction. The other principal reaction mechanism is the quasi-elastic transfer (QE). Analysis of data from a similar set of reactions, /sup 129/Xe, /sup 132/Xe, and /sup 136/Xe with /sup 197/Au, aids in explaining the features of the Xe + Cm product distributions, which are additionally affected by the depletion of actinide product yields due to deexcitation by fission. The PES is shown to be a useful tool to predict the general features of product distributions from heavy ion reactions.

  2. Finite Mach number spherical shock wave, application to shock ignition

    SciTech Connect (OSTI)

    Vallet, A.; Ribeyre, X.; Tikhonchuk, V.

    2013-08-15

    A converging and diverging spherical shock wave with a finite initial Mach number M{sub s0} is described by using a perturbative approach over a small parameter M{sub s}{sup ?2}. The zeroth order solution is the Guderley's self-similar solution. The first order correction to this solution accounts for the effects of the shock strength. Whereas it was constant in the Guderley's asymptotic solution, the amplification factor of the finite amplitude shock ?(t)?dU{sub s}/dR{sub s} now varies in time. The coefficients present in its series form are iteratively calculated so that the solution does not undergo any singular behavior apart from the position of the shock. The analytical form of the corrected solution in the vicinity of singular points provides a better physical understanding of the finite shock Mach number effects. The correction affects mainly the flow density and the pressure after the shock rebound. In application to the shock ignition scheme, it is shown that the ignition criterion is modified by more than 20% if the fuel pressure prior to the final shock is taken into account. A good agreement is obtained with hydrodynamic simulations using a Lagrangian code.

  3. Joint Facilities User Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Forum on Data-Intensive Computing Panel: 20 Minutes Into Our Future Near-term technology panel discussion between facility operations, applications developer, and users 2 Joint Facilities User Forum Guiding Thoughts of this Panel * Talking to the Compute, Store, Analyze cycle - Users - Developers - Operators/integrators * What problems have we solved? * What problems have we found? * How do we inspire interesting dinner conversation for participants? 3 Joint Facilities User Forum Format *

  4. High pressure ceramic joint

    DOE Patents [OSTI]

    Ward, Michael E. (Poway, CA); Harkins, Bruce D. (San Diego, CA)

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  5. High pressure ceramic joint

    DOE Patents [OSTI]

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  6. Development of spectral interferometry for shock characterization...

    Office of Scientific and Technical Information (OSTI)

    interferometry for shock characterization in energetic materials. Citation Details In-Document Search Title: Development of spectral interferometry for shock characterization in ...

  7. Shock Desensitization Experiments and Reactive Flow Modeling...

    Office of Scientific and Technical Information (OSTI)

    Shock Desensitization Experiments and Reactive Flow Modeling on Self-Sustaining LX-17 Detonation Waves Citation Details In-Document Search Title: Shock Desensitization Experiments ...

  8. Conjugates of Actinide Chelator-Magnetic Nanoparticles for Used Fuel Separation Technology

    SciTech Connect (OSTI)

    Qiang, You; Paszczynski, Andrzej; Rao, Linfeng

    2011-10-30

    The actinide separation method using magnetic nanoparticles (MNPs) functionalized with actinide specific chelators utilizes the separation capability of ligand and the ease of magnetic separation. This separation method eliminated the need of large quantity organic solutions used in the liquid-liquid extraction process. The MNPs could also be recycled for repeated separation, thus this separation method greatly reduces the generation of secondary waste compared to traditional liquid extraction technology. The high diffusivity of MNPs and the large surface area also facilitate high efficiency of actinide sorption by the ligands. This method could help in solving the nuclear waste remediation problem.

  9. Irradiation of Metallic and Oxide Fuels for Actinide Transmutation in the ATR

    SciTech Connect (OSTI)

    MacLean, Heather J.; Hayes, Steven L.

    2007-07-01

    Metallic fuels containing minor actinides and rare earth additions have been fabricated and are prepared for irradiation in the ATR, scheduled to begin during the summer of 2007. Oxide fuels containing minor actinides are being fabricated and will be ready for irradiation in ATR, scheduled to begin during the summer of 2008. Fabrication and irradiation of these fuels will provide detailed studies of actinide transmutation in support of the Global Nuclear Energy Partnership. These fuel irradiations include new fuel compositions that have never before been tested. Results from these tests will provide fundamental data on fuel irradiation performance and will advance the state of knowledge for transmutation fuels. (authors)

  10. Practical combinations of light-water reactors and fast reactors for future actinide transmutation

    SciTech Connect (OSTI)

    Collins, Emory D.; Renier, John-Paul

    2007-07-01

    Multicycle partitioning-transmutation (P-T) studies continue to show that use of existing light-water reactors (LWRs) and new advanced light-water reactors (ALWRs) can effectively transmute transuranic (TRU) actinides, enabling initiation of full actinide recycle much earlier than waiting for the development and deployment of sufficient fast reactor (FR) capacity. The combination of initial P-T cycles using LWRs/ALWRs in parallel with economic improvements to FR usage for electricity production, and a follow-on transition period in which FRs are deployed, is a practical approach to near-term closure of the nuclear fuel cycle with full actinide recycle. (authors)

  11. Integral Validation of Minor Actinide Nuclear Data by using Samples Irradiated at Dounreay Prototype Fast Reactor

    SciTech Connect (OSTI)

    Tsujimoto, Kazufumi; Oigawa, Hiroyuki; Shinohara, Nobuo [Japan Atomic Energy Research Institute, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan)

    2005-05-24

    The reliability of nuclear data for minor actinides was evaluated by using the results of the post-irradiation experiment for actinide samples irradiated at the Dounreay Prototype Fast Reactor. The burnup calculations with JENDL-3.3, ENDF/B-VI.8, and JEFF-3.0 were performed. From the comparison between the experimental data and the calculational results, in general, the reliability of nuclear data for the minor actinides are at an adequate level for the conceptual design study of transmutation systems. It is, however, found that improvement of the accuracy is necessary for some nuclides, such as 238Pu, 242Pu, and 241Am.

  12. National Ignition Facility

    National Nuclear Security Administration (NNSA)

    NIF, in particular the first Pu experiment on NIF, the return to operations of the TA-55 gas gun, a successful series of plutonium experiments on Joint Actinide Shock Physics...

  13. ssp

    National Nuclear Security Administration (NNSA)

    NIF, in particular the first Pu experiment on NIF, the return to operations of the TA-55 gas gun, a successful series of plutonium experiments on Joint Actinide Shock Physics...

  14. stockpile stewardship program

    National Nuclear Security Administration (NNSA)

    NIF, in particular the first Pu experiment on NIF, the return to operations of the TA-55 gas gun, a successful series of plutonium experiments on Joint Actinide Shock Physics...

  15. advanced simulation and computing

    National Nuclear Security Administration (NNSA)

    NIF, in particular the first Pu experiment on NIF, the return to operations of the TA-55 gas gun, a successful series of plutonium experiments on Joint Actinide Shock Physics...

  16. National Security & Safety Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratories April 23, 2012 Audit Report: OAS-L-12-05 The Joint Actinide Shock Physics Experimental Research Facility at the Nevada National Security Site March 6,...

  17. NNSA releases Stockpile Stewardship Program quarterly experiments...

    National Nuclear Security Administration (NNSA)

    in particular the first Pu experiment on NIF, the return to operations of the TA-55 gas gun, a successful series of plutonium experiments on Joint Actinide Shock Physics ...

  18. Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers

    SciTech Connect (OSTI)

    Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

    2013-03-21

    Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation of hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.

  19. ENHANCING ADVANCED CANDU PROLIFERATION RESISTANCE FUEL WITH MINOR ACTINIDES

    SciTech Connect (OSTI)

    Gray S. Chang

    2010-05-01

    The advanced nuclear system will significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. Minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In this work, an Advanced CANDU Reactor (ACR) fuel unit lattice cell model with 43 UO2 fuel rods will be used to investigate the effectiveness of a Minor Actinide Reduction Approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. The main MARA objective is to increase the 238Pu / Pu isotope ratio by using the transuranic nuclides (237Np and 241Am) in the high burnup fuel and thereby increase the proliferation resistance even for a very low fuel burnup. As a result, MARA is a very effective approach to enhance the proliferation resistance for the on power refueling ACR system nuclear fuel. The MA transmutation characteristics at different MA loadings were compared and their impact on neutronics criticality assessed. The concept of MARA, significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy reconnaissance.

  20. Chondrule destruction in nebular shocks

    SciTech Connect (OSTI)

    Jacquet, Emmanuel; Thompson, Christopher

    2014-12-10

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios ? ? 0.1, and possibly even for solar abundances because of 'sandblasting' by finer dust. A flow with ? ? 10 requires much smaller shock velocities (?2 versus 8 km s{sup –1}) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  1. Audit Report: OAS-L-12-05 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Audit Report: OAS-L-12-05 April 23, 2012 The Joint Actinide Shock Physics Experimental Research Facility at the Nevada National Security Site The Department of Energy, National Nuclear Security Administration's (NNSA), Joint Actinide Shock Physics Experimental Research (JASPER) facility plays an integral role in the certification of the Nation's nuclear weapons stockpile. In February 2009, JASPER, located at the Nevada National Security Site, discontinued operations and all JASPER experiments

  2. Partitioning of minor actinides from PUREX raffinate by the TODGA process

    SciTech Connect (OSTI)

    Magnusson, D.; Christiansen, B.; Glatz, J.P.; Malmbeck, R.; Serrano Purroy, D.; Modolo, G.; Sorel, C.

    2007-07-01

    A genuine High Active Raffinate (HAR) was produced from small scale PUREX reprocessing of a UO{sub 2} spent fuel solution as feed for a subsequent TODGA/TBP process. In this process, efficient recovery of the trivalent Minor Actinides (MA) actinides could be demonstrated using a hot cell set-up of 32 centrifugal contactor stages. The feed decontamination factors obtained for Am and Cm were in the range of 4 x 10{sup 4} which corresponds to a recovery of more than 99.99 % in the product fraction. Trivalent lanthanides and Y were co-extracted, otherwise only a small part of the Ru ended up in the product. The collected actinide/lanthanide fraction can be used as feed for a SANEX (separation actinides from lanthanides) with some modification of the acidity depending on the extracting molecule. (authors)

  3. Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides...

    Office of Scientific and Technical Information (OSTI)

    Conference: Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides Citation Details In-Document Search Title: Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of...

  4. Key features of the Talspeak and similar trivalent actinide-lanthanide partitioning processes

    SciTech Connect (OSTI)

    Nash, Kenneth L.

    2008-07-01

    As closing of the nuclear-fuel cycle via the suite of UREX processes under development in the U.S. progresses, the Trivalent Actinide-Lanthanide Separation by Phosphorus Extractants and Aqueous Komplexants (TALSPEAK) process has been selected as the baseline process for partition of trivalent actinides away from fission-product lanthanides. In this report, selected features of the chemistry of the TALSPEAK process and the limited parallel information on other TALSPEAK-like processes are discussed. (author)

  5. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fissionmore » yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.« less

  6. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    SciTech Connect (OSTI)

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fission yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.

  7. Laser Detection of Actinides and Other Elements | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Laser Detection of Actinides and Other Elements Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 09.01.15 Laser Detection of Actinides and Other Elements

  8. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    SciTech Connect (OSTI)

    Selle, J E

    1992-06-26

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented.

  9. Factors influencing the transport of actinides in the groundwater environment. Final report

    SciTech Connect (OSTI)

    Sheppard, J.C.; Kittrick, J.A.

    1983-07-31

    This report summarizes investigations of factors that significantly influence the transport of actinide cations in the groundwater environment. Briefly, measurements of diffusion coefficients for Am(III), Cm(III), and Np(V) in moist US soils indicated that diffusion is negligible compared to mass transport in flowing groundwater. Diffusion coefficients do, however, indicate that, in the absence of flowing water, actinide elements will migrate only a few centimeters in a thousand years. The remaining investigations were devoted to the determination of distribution ratios (K/sub d/s) for representative US soils, factors influencing them, and chemical and physical processes related to transport of actinides in groundwaters. The computer code GARD was modified to include complex formation to test the importance of humic acid complexing on the rate of transport of actinides in groundwaters. Use of the formation constant and a range of humic acid, even at rather low concentrations of 10/sup -5/ to 10/sup -6/ molar, significantly increases the actinide transport rate in a flowing aquifer. These computer calculations show that any strong complexing agent will have a similar effect on actinide transport in the groundwater environment. 32 references, 9 figures.

  10. Gamesa Santana Joint Venture | Open Energy Information

    Open Energy Info (EERE)

    Gamesa Santana Joint Venture Place: Spain Sector: Wind energy Product: Wind turbine manufacturing joint venture in Spain. References: Gamesa Santana Joint Venture1 This article...

  11. Method for fluorination of actinide fluorides and oxyfluorides thereof using O.sub.2 F.sub.2

    DOE Patents [OSTI]

    Eller, Phillip G. (Los Alamos, NM); Malm, John G. (Naperville, IL); Penneman, Robert A. (Albuquerque, NM)

    1988-01-01

    Method for fluorination of actinides and fluorides and oxyfluorides thereof using O.sub.2 F.sub.2 which generates actinide hexafluorides, and for removal of actinides and compounds thereof from surfaces upon which they appear as unwanted deposits. The fluorinating agent, O.sub.2 F.sub.2, has been observed to readily perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are thereby not destroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is easily prepared, stored and transferred to the desired place of reaction.

  12. Method for fluorination of actinide fluorides and oxyfluorides thereof using O[sub 2]F[sub 2

    DOE Patents [OSTI]

    Eller, P.G.; Malm, J.G.; Penneman, R.A.

    1988-11-08

    Method is described for fluorination of actinides and fluorides and oxyfluorides thereof using O[sub 2]F[sub 2] which generates actinide hexafluorides, and for removal of actinides and compounds thereof from surfaces upon which they appear as unwanted deposits. The fluorinating agent, O[sub 2]F[sub 2], has been observed to readily perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are thereby not destroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is easily prepared, stored and transferred to the desired place of reaction.

  13. Method for fluorination of actinide fluorides and oxyfluorides using O/sub 2/F/sub 2/

    DOE Patents [OSTI]

    Eller, P.G.; Malm, J.G.; Penneman, R.A.

    1984-08-01

    The present invention relates generally to methods of fluorination and more particularly to the use of O/sub 2/F/sub 2/ for the preparation of actinide hexafluorides, and for the extraction of deposited actinides and fluorides and oxyfluorides thereof from reaction vessels. The experiments set forth hereinabove demonstrate that the room temperature or below use of O/sub 2/F/sub 2/ will be highly beneficial for the preparation of pure actinide hexafluorides from their respective tetrafluorides without traces of HF being present as occurs using other fluorinating agents: and decontamination of equipment previously exposed to actinides: e.g., walls, feed lines, etc.

  14. Spherical strong-shock generation for shock-ignition inertial fusion

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Spherical strong-shock generation for shock-ignition inertial fusion Citation Details In-Document Search Title: Spherical strong-shock generation for shock-ignition inertial fusion Recent experiments on the Laboratory for Laser Energetics' OMEGA laser have been carried out to produce strong shocks in solid spherical targets with direct laser illumination. The shocks are launched at pressures of several hundred Mbars and reach Gbar upon convergence. The

  15. Double slotted socket spherical joint

    DOE Patents [OSTI]

    Bieg, Lothar F.; Benavides, Gilbert L.

    2001-05-22

    A new class of spherical joints is disclosed. These spherical joints are capable of extremely large angular displacements (full cone angles in excess of 270.degree.), while exhibiting no singularities or dead spots in their range of motion. These joints can improve or simplify a wide range of mechanical devices.

  16. Actinide production in /sup 136/Xe bombardments of /sup 249/Cf

    SciTech Connect (OSTI)

    Gregorich, K.E.

    1985-08-01

    The production cross sections for the actinide products from /sup 136/Xe bombardments of /sup 249/Cf at energies 1.02, 1.09, and 1.16 times the Coulomb barrier were determined. Fractions of the individual actinide elements were chemically separated from recoil catcher foils. The production cross sections of the actinide products were determined by measuring the radiations emitted from the nuclides within the chemical fractions. The chemical separation techniques used in this work are described in detail, and a description of the data analysis procedure is included. The actinide production cross section distributions from these /sup 136/Xe + /sup 249/Cf bombardments are compared with the production cross section distributions from other heavy ion bombardments of actinide targets, with emphasis on the comparison with the /sup 136/Xe + /sup 248/Cm reaction. A technique for modeling the final actinide cross section distributions has been developed and is presented. In this model, the initial (before deexcitation) cross section distribution with respect to the separation energy of a dinuclear complex and with respect to the Z of the target-like fragment is given by an empirical procedure. It is then assumed that the N/Z equilibration in the dinuclear complex occurs by the transfer of neutrons between the two participants in the dinuclear complex. The neutrons and the excitation energy are statistically distributed between the two fragments using a simple Fermi gas level density formalism. The resulting target-like fragment initial cross section distribution with respect to Z, N, and excitation energy is then allowed to deexcite by emission of neutrons in competition with fission. The result is a final cross section distribution with respect to Z and N for the actinide products. 68 refs., 33 figs., 6 tabs.

  17. Minor actinide transmutation in thorium and uranium matrices in heavy water moderated reactors

    SciTech Connect (OSTI)

    Bhatti, Zaki; Hyland, B.; Edwards, G.W.R.

    2013-07-01

    The irradiation of Th{sup 232} breeds fewer of the problematic minor actinides (Np, Am, Cm) than the irradiation of U{sup 238}. This characteristic makes thorium an attractive potential matrix for the transmutation of these minor actinides, as these species can be transmuted without the creation of new actinides as is the case with a uranium fuel matrix. Minor actinides are the main contributors to long term decay heat and radiotoxicity of spent fuel, so reducing their concentration can greatly increase the capacity of a long term deep geological repository. Mixing minor actinides with thorium, three times more common in the Earth's crust than natural uranium, has the additional advantage of improving the sustainability of the fuel cycle. In this work, lattice cell calculations have been performed to determine the results of transmuting minor actinides from light water reactor spent fuel in a thorium matrix. 15-year-cooled group-extracted transuranic elements (Np, Pu, Am, Cm) from light water reactor (LWR) spent fuel were used as the fissile component in a thorium-based fuel in a heavy water moderated reactor (HWR). The minor actinide (MA) transmutation rates, spent fuel activity, decay heat and radiotoxicity, are compared with those obtained when the MA were mixed instead with natural uranium and taken to the same burnup. Each bundle contained a central pin containing a burnable neutron absorber whose initial concentration was adjusted to have the same reactivity response (in units of the delayed neutron fraction ?) for coolant voiding as standard NU fuel. (authors)

  18. MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES

    SciTech Connect (OSTI)

    Heaven, Michael C.; Gibson, John K.; Marcalo, Joaquim

    2009-02-01

    In this chapter we review the spectroscopic data for actinide molecules and the reaction dynamics for atomic and molecular actinides that have been examined in the gas phase or in inert cryogenic matrices. The motivation for this type of investigation is that physical properties and reactions can be studied in the absence of external perturbations (gas phase) or under minimally perturbing conditions (cryogenic matrices). This information can be compared directly with the results from high-level theoretical models. The interplay between experiment and theory is critically important for advancing our understanding of actinide chemistry. For example, elucidation of the role of the 5f electrons in bonding and reactivity can only be achieved through the application of experimentally verified theoretical models. Theoretical calculations for the actinides are challenging due the large numbers of electrons that must be treated explicitly and the presence of strong relativistic effects. This topic has been reviewed in depth in Chapter 17 of this series. One of the goals of the experimental work described in this chapter has been to provide benchmark data that can be used to evaluate both empirical and ab initio theoretical models. While gas-phase data are the most suitable for comparison with theoretical calculations, there are technical difficulties entailed in generating workable densities of gas-phase actinide molecules that have limited the range of species that have been characterized. Many of the compounds of interest are refractory, and problems associated with the use of high temperature vapors have complicated measurements of spectra, ionization energies, and reactions. One approach that has proved to be especially valuable in overcoming this difficulty has been the use of pulsed laser ablation to generate plumes of vapor from refractory actinide-containing materials. The vapor is entrained in an inert gas, which can be used to cool the actinide species to room temperature or below. For many spectroscopic measurements, low temperatures have been achieved by co-condensing the actinide vapor in rare gas or inert molecule host matrices. Spectra recorded in matrices are usually considered to be minimally perturbed. Trapping the products from gas-phase reactions that occur when trace quantities of reactants are added to the inert host gas has resulted in the discovery of many new actinide species. Selected aspects of the matrix isolation data were discussed in chapter 17. In the present chapter we review the spectroscopic matrix data in terms of its relationship to gas-phase measurements, and update the description of the new reaction products found in matrices to reflect the developments that have occurred during the past two years. Spectra recorded in matrix environments are usually considered to be minimally perturbed, and this expectation is borne out for many closed shell actinide molecules. However, there is growing evidence that significant perturbations can occur for open shell molecules, resulting in geometric distortions and/or electronic state reordering. Studies of actinide reactions in the gas phase provide an opportunity to probe the relationship between electronic structure and reactivity. Much of this work has focused on the reactions of ionic species, as these may be selected and controlled using various forms of mass spectrometry. As an example of the type of insight derived from reaction studies, it has been established that the reaction barriers for An+ ions are determined by the promotion energies required to achieve the 5fn6d7s configuration. Gas-phase reaction studies also provide fundamental thermodynamic properties such as bond dissociation and ionization energies. In recent years, an increased number of gas-phase ion chemistry studies of bare (atomic) and ligated (molecular) actinide ions have appeared, in which relevant contributions to fundamental actinide chemistry have been made. These studies were initiated in the 1970's and carried out in an uninterrupted way over the course of the past three d

  19. Shock compression of liquid hydrazine

    SciTech Connect (OSTI)

    Garcia, B.O.; Chavez, D.J.

    1995-01-01

    Liquid hydrazine (N{sub 2}H{sub 4}) is a propellant used by the Air Force and NASA for aerospace propulsion and power systems. Because the propellant modules that contain the hydrazine can be subject to debris impacts during their use, the shock states that can occur in the hydrazine need to be characterized to safely predict its response. Several shock compression experiments have been conducted in an attempt to investigate the detonability of liquid hydrazine; however, the experiments results disagree. Therefore, in this study, we reproduced each experiment numerically to evaluate in detail the shock wave profiles generated in the liquid hydrazine. This paper presents the results of each numerical simulation and compares the results to those obtained in experiment. We also present the methodology of our approach, which includes chemical kinetic experiments, chemical equilibrium calculations, and characterization of the equation of state of liquid hydrazine.

  20. Coupled Hybrid Monte Carlo: Deterministic Analysis of VHTR Configurations with Advanced Actinide Fuels

    SciTech Connect (OSTI)

    Tsvetkov, Pavel V.; Ames II, David E.; Alajo, Ayodeji B.; Pritchard, Megan L.

    2006-07-01

    Partitioning and transmutation of minor actinides are expected to have a positive impact on the future of nuclear technology. Their deployment would lead to incineration of hazardous nuclides and could potentially provide additional fuel supply. The U.S. DOE NERI Project assesses the possibility, advantages and limitations of involving minor actinides as a fuel component. The analysis takes into consideration and compares capabilities of actinide-fueled VHTRs with pebble-bed and prismatic cores to approach a reactor lifetime long operation without intermediate refueling. A hybrid Monte Carlo-deterministic methodology has been adopted for coupled neutronics-thermal hydraulics design studies of VHTRs. Within the computational scheme, the key technical issues are being addressed and resolved by implementing efficient automated modeling procedures and sequences, combining Monte Carlo and deterministic approaches, developing and applying realistic 3D coupled neutronics-thermal-hydraulics models with multi-heterogeneity treatments, developing and performing experimental/computational benchmarks for model verification and validation, analyzing uncertainty effects and error propagation. This paper introduces the suggested modeling approach, discusses benchmark results and the preliminary analysis of actinide-fueled VHTRs. The presented up-to-date results are in agreement with the available experimental data. Studies of VHTRs with minor actinides suggest promising performance. (authors)

  1. Final Project Report for ER15351 “A Study of New Actinide Zintl Ion Materials”

    SciTech Connect (OSTI)

    Peter K. Dorhout

    2007-11-12

    The structural chemistry of actinide main-group metal materials provides the fundamental basis for the understanding of structural coordination chemistry and the formation of materials with desired or predicted structural features. The main-group metal building blocks, comprising sulfur-group, phosphorous-group, or silicon-group elements, have shown versatility in oxidation state, coordination, and bonding preferences. These building blocks have allowed us to elucidate a series of structures that are unique to the actinide elements, although we can find structural relationships to transition metal and 4f-element materials. In the past year, we investigated controlled metathesis and self-propagating reactions between actinide metal halides and alkali metal salts of main-group metal chalcogenides such as K-P-S salts. Ternary plutonium thiophosphates have resulted from these reactions at low temperature in sealed ampules. we have also focused efforts to examine reactions of Th, U, and Pu halide salts with other alkali metal salts such as Na-Ge-S and Na-Si-Se and copper chloride to identify if self-propagating reactions may be used as a viable reaction to prepare new actinide materials and we prepared a series of U and Th copper chalcogenide materials. Magnetic measurements continued to be a focus of actinide materials prepared in our laboratory. We also contributed to the XANES work at Los Alamos by preparing materials for study and for comparison with environmental samples.

  2. Shock Initiation of Damaged Explosives

    SciTech Connect (OSTI)

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  3. Stochastic Joint Inversion for Integrated Data Interpretation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration ...

  4. Multi-scale Shock Technique

    Energy Science and Technology Software Center (OSTI)

    2009-08-01

    The code to be released is a new addition to the LAMMPS molecular dynamics code. LAMMPS is developed and maintained by Sandia, is publicly available, and is used widely by both natioanl laboratories and academics. The new addition to be released enables LAMMPS to perform molecular dynamics simulations of shock waves using the Multi-scale Shock Simulation Technique (MSST) which we have developed and has been previously published. This technique enables molecular dynamics simulations of shockmore »waves in materials for orders of magnitude longer timescales than the direct, commonly employed approach.« less

  5. Enhancing BWR Proliferation Resistance Fuel with Minor Actinides

    SciTech Connect (OSTI)

    Gray S. Chang

    2008-07-01

    Key aspects of the Global Nuclear Energy Partnership (GNEP) are to significantly advance the science and technology of nuclear energy systems and the Advanced Fuel Cycle (AFC) program. It consists of both innovative nuclear reactors and innovative research in separation and transmutation. To accomplish these goals, international cooperation is very important and public acceptance is crucial. The merits of nuclear energy are high-density energy, with low environmental impacts (i.e. almost zero greenhouse gas emission). Planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current light water reactors (LWRs) as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. The challenges are solving the energy needs of the world, protection against nuclear proliferation, the problem of nuclear waste, and the global environmental problem. To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu and 240Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides (237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of 238Pu /Pu. For future advanced nuclear systems, the minor actinides (MA) are viewed more as a resource to be recycled, or transmuted to less hazardous and possibly more useful forms, rather than simply as a waste stream to be disposed of in expensive repository facilities. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In the study, a typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate term goal for future nuclear energy systems. To account for the water coolant density variation from the bottom (0.76 g/cm3) to the top (0.35 g/cm3) of the core, the axial coolant channel and fuel pin were divided to 24 nodes. The MA transmutation characteristics at different elevations were compared and their impact on neutronics criticality discussed. We concluded that the concept of MARA, which involves the use of transuranic nuclides (237Np and/or 241Am), significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy rennaissance.

  6. Fusion Techniques for the Oxidation of Refractory Actinide Oxides

    SciTech Connect (OSTI)

    Rudisill, T.S.

    1999-04-15

    Small-scale experiments were performed to demonstrate the feasibility of fusing refractory actinide oxides with a series of materials commonly used to decompose minerals, glasses, and other refractories as a pretreatment to dissolution and subsequent recovery operations. In these experiments, 1-2 g of plutonium or neptunium oxide (PuO2 or NpO2) were calcined at 900 degrees Celsius, mixed and heated with the fusing reagent(s), and dissolved. For refractory PuO2, the most effective material tested was a lithium carbonate (Li2CO3)/sodium tetraborate (Na2B4O7) mixture which aided in the recovery of 90 percent of the plutonium. The fused product was identified as a lithium plutonate (Li3PuO4) by x-ray diffraction. The use of a Li2CO3/Na2B4O7 mixture to solubilize high-fired NpO2 was not as effective as demonstrated for refractory PuO2. In a small-scale experiment, 25 percent of the NpO2 was oxidized to a neptunium (VI) species that dissolved in nitric acid. The remaining neptunium was then easily recovered from the residue by fusing with sodium peroxide (Na2O2). Approximately 70 percent of the neptunium dissolved in water to yield a basic solution of neptunium (VII). The remainder was recovered as a neptunium (VI) solution by dissolving the residue in 8M nitric acid. In subsequent experiments with Na2O2, the ratio of neptunium (VII) to (VI) was shown to be a function of the fusion temperature, with higher temperatures (greater than approximately 400 degrees C) favoring the formation of neptunium (VII). The fusion of an actual plutonium-containing residue with Na2O2 and subsequent dissolution was performed to demonstrate the feasibility of a pretreatment process on a larger scale. Sodium peroxide was chosen due to the potential of achieving higher actinide recoveries from refractory materials. In this experiment, nominally 10 g of a graphite-containing residue generated during plutonium casting operations was initially calcined to remove the graphite. Removal of combustible material prior to a large-scale fusion with Na2O2 is needed due to the large amount of heat liberated during oxidation. Two successive fusions using the residue from the calcination and the residue generated from the initial dissolution allowed recovery of 98 percent of the plutonium. The fusion of the residue following the first dissolution was performed at a higher temperature (600 degrees Celsius versus 450 degrees Celsius during the first fusion). The ability to recover most of the remaining plutonium from the residue suggest the oxidation efficiency of the Na2O2 fusion improves with higher temperatures similar to results observed with NpO2 fusion.

  7. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    SciTech Connect (OSTI)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  8. Minor Actinides Loading Optimization for Proliferation Resistant Fuel Design - BWR

    SciTech Connect (OSTI)

    G. S. Chang; Hongbin Zhang

    2009-09-01

    One approach to address the United States Nuclear Power (NP) 2010 program for the advanced light water reactor (LWR) (Gen-III+) intermediate-term spent fuel disposal need is to reduce spent fuel storage volume while enhancing proliferation resistance. One proposed solution includes increasing burnup of the discharged spent fuel and mixing minor actinide (MA) transuranic nuclides (237Np and 241Am) in the high burnup fuel. Thus, we can reduce the spent fuel volume while increasing the proliferation resistance by increasing the isotopic ratio of 238Pu/Pu. For future advanced nuclear systems, MAs are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. A typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of adding MAs (237Np and/or 241Am) to enhance proliferation resistance and improve fuel cycle performance for the intermediate-term goal of future nuclear energy systems. However, adding MAs will increase plutonium production in the discharged spent fuel. In this work, the Monte-Carlo coupling with ORIGEN-2.2 (MCWO) method was used to optimize the MA loading in the UO2 fuel such that the discharged spent fuel demonstrates enhanced proliferation resistance, while minimizing plutonium production. The axial averaged MA transmutation characteristics at different burnup were compared and their impact on neutronics criticality and the ratio of 238Pu/Pu discussed.

  9. Emergence of californium as the second transitional element in the actinide series

    SciTech Connect (OSTI)

    Cary, Samantha K.; Vasiliu, Monica; Baumbach, Ryan E.; Stritzinger, Jared T.; Green, Thomas D.; Diefenbach, Kariem; Cross, Justin N.; Knappenberger, Kenneth L.; Liu, Guokui; Silver, Mark A.; DePrince, A. Eugene; Polinski, Matthew J.; Van Cleve, Shelley M.; House, Jane H.; Kikugawa, Naoki; Gallagher, Andrew; Arico, Alexandra A.; Dixon, David A.; Albrecht-Schmitt, Thomas E.

    2015-04-16

    A break in periodicity occurs in the actinide series between plutonium and americium as the result of the localization of 5f electrons. The subsequent chemistry of later actinides is thought to closely parallel lanthanides in that bonding is expected to be ionic and complexation should not substantially alter the electronic structure of the metal ions. Here we demonstrate that ligation of californium(III) by a pyridine derivative results in significant deviations in the properties of the resultant complex with respect to that predicted for the free ion. We expand on this by characterizing the americium and curium analogues for comparison, and show that these pronounced effects result from a second transition in periodicity in the actinide series that occurs, in part, because of the stabilization of the divalent oxidation state. As a result, the metastability of californium(II) is responsible for many of the unusual properties of californium including the green photoluminescence.

  10. Emergence of californium as the second transitional element in the actinide series

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cary, Samantha K.; Vasiliu, Monica; Baumbach, Ryan E.; Stritzinger, Jared T.; Green, Thomas D.; Diefenbach, Kariem; Cross, Justin N.; Knappenberger, Kenneth L.; Liu, Guokui; Silver, Mark A.; et al

    2015-04-16

    A break in periodicity occurs in the actinide series between plutonium and americium as the result of the localization of 5f electrons. The subsequent chemistry of later actinides is thought to closely parallel lanthanides in that bonding is expected to be ionic and complexation should not substantially alter the electronic structure of the metal ions. Here we demonstrate that ligation of californium(III) by a pyridine derivative results in significant deviations in the properties of the resultant complex with respect to that predicted for the free ion. We expand on this by characterizing the americium and curium analogues for comparison, andmore » show that these pronounced effects result from a second transition in periodicity in the actinide series that occurs, in part, because of the stabilization of the divalent oxidation state. As a result, the metastability of californium(II) is responsible for many of the unusual properties of californium including the green photoluminescence.« less

  11. Jointly Sponsored Research Program

    SciTech Connect (OSTI)

    Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson

    2009-03-31

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.

  12. Stability of shocks relating to the shock ignition inertial fusion energy scheme

    SciTech Connect (OSTI)

    Davie, C. J. Bush, I. A.; Evans, R. G.

    2014-08-15

    Motivated by the shock ignition approach to improve the performance of inertial fusion targets, we make a series of studies of the stability of shock waves in planar and converging geometries. We examine stability of shocks moving through distorted material and driving shocks with non-uniform pressure profiles. We then apply a fully 3D perturbation, following this spherically converging shock through collapse to a distorted plane, bounce and reflection into an outgoing perturbed, broadly spherical shock wave. We find broad shock stability even under quite extreme perturbation.

  13. Metal to ceramic sealed joint

    DOE Patents [OSTI]

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  14. Metal to ceramic sealed joint

    DOE Patents [OSTI]

    Lasecki, John V. (Livonia, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

    1991-01-01

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  15. Final Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL

    Office of Scientific and Technical Information (OSTI)

    Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL Nuclear Engineering Education Research Program (grant # DE-FG07-99ID13767) Rodney C. Ewing (co-PI) Lumin Wang (co-PI) October 30,2002 For the Period of 07/01/1999 to 06/30/2002 Department of Nuclear Engineering and Radiological Sciences University of Michigan Ann Arbor, MI 48109 1 1. Background Excess actinides result from the dismantlement of nuclear weapons (239Pu) and the reprocessing of commercial spent

  16. Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent

    DOE Patents [OSTI]

    Horwitz, E.P.; Kalina, D.G.

    1984-05-21

    A process has been developed for the extraction of multivalent lanthanide and actinide values from acidic waste solutions, and for the separation of these values from fission product and other values, which utilizes a new series of neutral bi-functional extractants, the alkyl(phenyl)-N, N-dialkylcarbamoylmethylphosphine oxides, in combination with a phase modifier to form an extraction solution. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.

  17. PNNL: About PNNL - Joint Appointments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Appointments Thom Dunning Thom Dunning co-leads the Northwest Institute for Advanced Computing, a partnership of PNNL and the University of Washington. We value joint appointments with American universities and with colleagues who are leaders in their fields. Joint appointments increase both parties' access to new funding sources, graduate students, training opportunities, and unique instrumentation and facilities. They provide scientists with greater opportunities for multidisciplinary

  18. Method of loading organic materials with group III plus lanthanide and actinide elements

    DOE Patents [OSTI]

    Bell, Zane W. (Oak Ridge, TN); Huei-Ho, Chuen (Oak Ridge, TN); Brown, Gilbert M. (Knoxville, TN); Hurlbut, Charles (Sweetwater, TX)

    2003-04-08

    Disclosed is a composition of matter comprising a tributyl phosphate complex of a group 3, lanthanide, actinide, or group 13 salt in an organic carrier and a method of making the complex. These materials are suitable for use in solid or liquid organic scintillators, as in x-ray absorption standards, x-ray fluorescence standards, and neutron detector calibration standards.

  19. Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides

    DOE Patents [OSTI]

    Windt, Norman F. (Paducah, KY); Williams, Joe L. (Paducah, KY)

    1983-01-01

    The invention is a process for decontaminating particulate nickel contaminated with actinide-metal fluorides. In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel containing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.

  20. Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation

    SciTech Connect (OSTI)

    Bouineau, V.; Lainet, M.; Chauvin, N.; Pelletier, M.

    2013-07-01

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of radiotoxicity and residual power packages as well as the repository area. In the SUPERFACT Experiment four different oxide fuels containing high and low concentrations of {sup 237}Np and {sup 241}Am, representing the homogeneous and heterogeneous in-pile recycling concepts, were irradiated in the PHENIX reactor. The behavior of advanced fuel materials with minor actinide needs to be fully characterized, understood and modeled in order to optimize the design of this kind of fuel elements and to evaluate its performances. This paper assesses the current predictability of fuel performance codes TRANSURANUS and GERMINAL V2 on the basis of post irradiation examinations of the SUPERFACT experiment for pins with low minor actinide content. Their predictions have been compared to measured data in terms of geometrical changes of fuel and cladding, fission gases behavior and actinide and fission product distributions. The results are in good agreement with the experimental results, although improvements are also pointed out for further studies, especially if larger content of minor actinide will be taken into account in the codes. (authors)

  1. Method for forming an extraction agent for the separation of actinides from lanthanides

    DOE Patents [OSTI]

    Klaehn, John R.; Harrup, Mason K.; Law, Jack D.; Peterman, Dean R.

    2010-04-27

    An extraction agent for the separation of trivalent actinides from lanthanides in an acidic media and a method for forming same are described, and wherein the methodology produces a stable regiospecific and/or stereospecific dithiophosphinic acid that can operate in an acidic media having a pH of less than about 7.

  2. Performance Comparison of Metallic, Actinide Burning Fuel in Lead-Bismuth and Sodium Cooled Fast Reactors

    SciTech Connect (OSTI)

    Weaver, Kevan Dean; Herring, James Stephen; Mac Donald, Philip Elsworth

    2001-04-01

    Various methods have been proposed to “incinerate” or “transmutate” the current inventory of trans-uranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non-fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years.

  3. Method of forming a joint

    DOE Patents [OSTI]

    Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis

    2006-08-22

    A method of joining at least two sintered bodies to form a composite structure, including providing a first multicomponent metallic oxide having a perovskitic or fluorite crystal structure; providing a second sintered body including a second multicomponent metallic oxide having a crystal structure of the same type as the first; and providing at an interface a joint material containing at least one metal oxide containing at least one metal identically contained in at least one of the first and second multicomponent metallic oxides. The joint material is free of cations of Si, Ge, Sn, Pb, P and Te and has a melting point below the sintering temperatures of both sintered bodies. The joint material is heated to a temperature above the melting point of the metal oxide(s) and below the sintering temperatures of the sintered bodies to form the joint. Structures containing such joints are also disclosed.

  4. Shock dynamics of phase diagrams

    SciTech Connect (OSTI)

    Moro, Antonio

    2014-04-15

    A thermodynamic phase transition denotes a drastic change of state of a physical system due to a continuous change of thermodynamic variables, as for instance pressure and temperature. The classical van der Waals equation of state is the simplest model that predicts the occurrence of a critical point associated with the gas–liquid phase transition. Nevertheless, below the critical temperature theoretical predictions of the van der Waals theory significantly depart from the observed physical behaviour. We develop a novel approach to classical thermodynamics based on the solution of Maxwell relations for a generalised family of nonlocal entropy functions. This theory provides an exact mathematical description of discontinuities of the order parameter within the phase transition region, it explains the universal form of the equations of state and the occurrence of triple points in terms of the dynamics of nonlinear shock wave fronts. -- Highlights: •A new generalisation of van der Waals equation of state. •Description of phase transitions in terms of shock dynamics of state curves. •Proof of the universality of equations of state for a general class of models. •Interpretation of triple points as confluence of classical shock waves. •Correspondence table between thermodynamics and nonlinear conservation laws.

  5. Performance of the Lead-Alloy Cooled Concept Balanced for Actinide Burning and Electricity Production

    SciTech Connect (OSTI)

    Pavel Hejzlar; Cliff Davis

    2004-09-01

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners.

  6. Performance of the Lead-Alloy-Cooled Reactor Concept Balanced for Actinide Burning and Electricity Production

    SciTech Connect (OSTI)

    Hejzlar, Pavel [Massachusetts Institute of Technology (United States); Davis, Cliff B. [Idaho National Engineering and Environmental Laboratory (United States)

    2004-09-15

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners.

  7. The role of actinide burning and the Integral Fast Reactor in the future of nuclear power

    SciTech Connect (OSTI)

    Hollaway, W.R.; Lidsky, L.M.; Miller, M.M.

    1990-12-01

    A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing.

  8. Method for recovery of actinides from refractory oxides thereof using O.sub. F.sub.2

    DOE Patents [OSTI]

    Asprey, Larned B. (Los Alamos, NM); Eller, Phillip G. (Los Alamos, NM)

    1988-01-01

    Method for recovery of actinides from nuclear waste material containing sintered and other oxides thereof using O.sub.2 F.sub.2 to generate the hexafluorides of the actinides present therein. The fluorinating agent, O.sub.2 F.sub.2, has been observed to perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are not destroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is readily prepared, stored and transferred to the place of reaction.

  9. Joint Summer School on "The Evolution and Impact of Microstructural...

    Office of Science (SC) Website

    the Materials Science of Actinides (University of Notre Dame), the Advanced Test Reactor National Scientific User Facility (Idaho National Laboratory), the Consortium ...

  10. Italy Joint Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Italy Joint Statement Italy Joint Statement " U.S.-Italy Joint Statement prepared as part of the International Partnership for a Hydrogen Economy " PDF icon italy_joint_statement.pdf More Documents & Publications Joint Statement by Energy Ministers of G8, The People's Republic of China, India and The Republic of Korea (June 2008) Joint Statement by Energy Ministers of G8, The People's Republic of China, India and The Republic of Korea (Energy Efficiency)

  11. Remote shock sensing and notification system

    DOE Patents [OSTI]

    Muralidharan, Govindarajan (Knoxville, TN); Britton, Charles L. (Alcoa, TN); Pearce, James (Lenoir City, TN); Jagadish, Usha (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  12. Remote shock sensing and notification system

    DOE Patents [OSTI]

    Muralidharan, Govindarajan (Knoxville, TN) [Knoxville, TN; Britton, Charles L. (Alcoa, TN) [Alcoa, TN; Pearce, James (Lenoir City, TN) [Lenoir City, TN; Jagadish, Usha (Knoxville, TN) [Knoxville, TN; Sikka, Vinod K. (Oak Ridge, TN) [Oak Ridge, TN

    2010-11-02

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interface circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitter with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  13. Shock-activated electrochemical power supplies

    DOE Patents [OSTI]

    Benedick, W.B.; Graham, R.A.; Morosin, B.

    1987-04-20

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolyte rendering the electrolyte electrochemically active. 2 figs.

  14. Shock-activated electrochemical power supplies

    DOE Patents [OSTI]

    Benedick, William B. (Albuquerque, NM); Graham, Robert A. (Los Lunas, NM); Morosin, Bruno (Albuquerque, NM)

    1988-01-01

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active.

  15. Shock-activated electrochemical power supplies

    DOE Patents [OSTI]

    Benedick, W.B.; Graham, R.A.; Morosin, B.

    1988-11-08

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active. 2 figs.

  16. Climate Leaders Joint Venture | Open Energy Information

    Open Energy Info (EERE)

    Leaders Joint Venture Jump to: navigation, search Name: Climate Leaders' Joint Venture Place: Dallas, Texas Product: Tudor Investment and Camco International have partnered to...

  17. Malibu Joint Venture | Open Energy Information

    Open Energy Info (EERE)

    Malibu Joint Venture Jump to: navigation, search Name: Malibu Joint Venture Place: Germany Sector: Solar Product: String representation "German utility ... e of next year." is too...

  18. Transient absorption spectroscopy of laser shocked explosives

    SciTech Connect (OSTI)

    Mcgrane, Shawn D; Dang, Nhan C; Whitley, Von H; Bolome, Cindy A; Moore, D S

    2010-01-01

    Transient absorption spectra from 390-890 nm of laser shocked RDX, PETN, sapphire, and polyvinylnitrate (PVN) at sub-nanosecond time scales are reported. RDX shows a nearly linear increase in absorption with time after shock at {approx}23 GPa. PETN is similar, but with smaller total absorption. A broad visible absorption in sapphire begins nearly immediately upon shock loading but does not build over time. PVN exhibits thin film interference in the absorption spectra along with increased absorption with time. The absorptions in RDX and PETN are suggested to originate in chemical reactions happening on picosecond time scales at these shock stresses, although further diagnostics are required to prove this interpretation.

  19. Thermal Shock-resistant Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

  20. Potentiometric Sensor for Real-Time Remote Surveillance of Actinides in Molten Salts

    SciTech Connect (OSTI)

    Natalie J. Gese; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson

    2012-07-01

    A potentiometric sensor is being developed at the Idaho National Laboratory for real-time remote surveillance of actinides during electrorefining of spent nuclear fuel. During electrorefining, fuel in metallic form is oxidized at the anode while refined uranium metal is reduced at the cathode in a high temperature electrochemical cell containing LiCl-KCl-UCl3 electrolyte. Actinides present in the fuel chemically react with UCl3 and form stable metal chlorides that accumulate in the electrolyte. This sensor will be used for process control and safeguarding of activities in the electrorefiner by monitoring the concentrations of actinides in the electrolyte. The work presented focuses on developing a solid-state cation conducting ceramic sensor for detecting varying concentrations of trivalent actinide metal cations in eutectic LiCl-KCl molten salt. To understand the basic mechanisms for actinide sensor applications in molten salts, gadolinium was used as a surrogate for actinides. The ß?-Al2O3 was selected as the solid-state electrolyte for sensor fabrication based on cationic conductivity and other factors. In the present work Gd3+-ß?-Al2O3 was prepared by ion exchange reactions between trivalent Gd3+ from GdCl3 and K+-, Na+-, and Sr2+-ß?-Al2O3 precursors. Scanning electron microscopy (SEM) was used for characterization of Gd3+-ß?-Al2O3 samples. Microfocus X-ray Diffraction (µ-XRD) was used in conjunction with SEM energy dispersive X-ray spectroscopy (EDS) to identify phase content and elemental composition. The Gd3+-ß?-Al2O3 materials were tested for mechanical and chemical stability by exposing them to molten LiCl-KCl based salts. The effect of annealing on the exchanged material was studied to determine improvements in material integrity post ion exchange. The stability of the ß?-Al2O3 phase after annealing was verified by µ-XRD. Preliminary sensor tests with different assembly designs will also be presented.

  1. High-burnup core design using minor actinide-containing metal fuel

    SciTech Connect (OSTI)

    Ohta, Hirokazu; Ogata, Takanari; Obara, T.

    2013-07-01

    A neutronic design study of metal fuel fast reactor (FR) cores is conducted on the basis of an innovative fuel design concept to achieve an extremely high burnup and realize an efficient fuel cycle system. Since it is expected that the burnup reactivity swing will become extremely large in an unprecedented high burnup core, minor actinides (MAs) from light water reactors (LWRs) are added to fresh fuel to improve the core internal conversion. Core neutronic analysis revealed that high burnups of about 200 MWd/kg for a small-scale core and about 300 MWd/kg for a large-scale core can be attained while suppressing the burnup reactivity swing to almost the same level as that of conventional cores with normal burnup. An actinide burnup analysis has shown that the MA consumption ratio is improved to about 60% and that the accumulated MAs originating from LWRs can be efficiently consumed by the high-burnup metal fuel FR. (authors)

  2. Evaluation of Fluid Conduction and Mixing within a Subassembly of the Actinide Burner Test Reactor

    SciTech Connect (OSTI)

    Cliff B. Davis

    2007-09-01

    The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of the Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid, including axial and radial heat conduction and subchannel mixing, that are not currently represented with internal code models. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor.

  3. Extraction of actinides by multi-dentate diamides and their evaluation with computational molecular modeling

    SciTech Connect (OSTI)

    Sasaki, Y.; Kitatsuji, Y.; Hirata, M.; Kimura, T.; Yoshizuka, K.

    2008-07-01

    Multi-dentate diamides have been synthesized and examined for actinide (An) extractions. Bi- and tridentate extractants are the focus in this work. The extraction of actinides was performed from 0.1-6 M HNO{sub 3} to organic solvents. It was obvious that N,N,N',N'-tetra-alkyl-diglycolamide (DGA) derivatives, 2,2'-(methylimino)bis(N,N-dioctyl-acetamide) (MIDOA), and N,N'-dimethyl-N,N'-dioctyl-2-(3-oxa-pentadecane)-malonamide (DMDOOPDMA) have relatively high D values (D(Pu) > 70). The following notable results using DGA extractants were obtained: (1) DGAs with short alkyl chains give higher D values than those with long alkyl chain, (2) DGAs with long alkyl chain have high solubility in n-dodecane. Computational molecular modeling was also used to elucidate the effects of structural and electronic properties of the reagents on their different extractabilities. (authors)

  4. Electrodeposition of actinide compounds from an aqueous ammonium acetate matrix. Experimental development and optimization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boll, Rose Ann; Matos, Milan; Torrico, Matthew N.

    2015-03-27

    Electrodeposition is a technique that is routinely employed in nuclear research for the preparation of thin solid films of actinide materials which can be used in accelerator beam bombardments, irradiation studies, or as radioactive sources. The present study investigates the deposition of both lanthanides and actinides from an aqueous ammonium acetate electrolyte matrix. Electrodepositions were performed primarily on stainless steel disks; with yield analysis evaluated using -spectroscopy. Experimental parameters were studied and modified in order to optimize the uniformity and adherence of the deposition while maximizing the yield. The initial development utilized samarium as the plating material, with and withoutmore » a radioactive tracer. As a result, surface characterization studies were performed by scanning electron microscopy, electron microprobe analysis, radiographic imaging, and x-ray diffraction.« less

  5. Electrodeposition of actinide compounds from an aqueous ammonium acetate matrix: Experimental development and optimization

    SciTech Connect (OSTI)

    Boll, Rose Ann; Matos, Milan; Torrico, Matthew N.

    2015-03-27

    Electrodeposition is a technique that is routinely employed in nuclear research for the preparation of thin solid films of actinide materials which can be used in accelerator beam bombardments, irradiation studies, or as radioactive sources. The present study investigates the deposition of both lanthanides and actinides from an aqueous ammonium acetate electrolyte matrix. Electrodepositions were performed primarily on stainless steel disks; with yield analysis evaluated using -spectroscopy. Experimental parameters were studied and modified in order to optimize the uniformity and adherence of the deposition while maximizing the yield. The initial development utilized samarium as the plating material, with and without a radioactive tracer. As a result, surface characterization studies were performed by scanning electron microscopy, electron microprobe analysis, radiographic imaging, and x-ray diffraction.

  6. Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent

    DOE Patents [OSTI]

    Horwitz, E.P.; Kalina, D.G.

    1986-03-04

    A process is described for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula as shown in a diagram where [phi] is phenyl, R[sup 1] is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R[sup 2] is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions. 6 figs.

  7. Method for extracting lanthanides and actinides from acid solutions by modification of purex solvent

    DOE Patents [OSTI]

    Horwitz, E. Philip (Naperville, IL); Kalina, Dale G. (Naperville, IL)

    1986-01-01

    A process for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.

  8. Influence of microorganisms on the oxidation state distribution of multivalent actinides under anoxic conditions

    SciTech Connect (OSTI)

    Reed, Donald Timothy; Borkowski, Marian; Lucchini, Jean - Francois; Ams, David; Richmann, M. K.; Khaing, H.; Swanson, J. S.

    2010-12-10

    The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.

  9. Development and validation of process models for minor actinide separations processes using centrifugal contactors

    SciTech Connect (OSTI)

    Fox, O.D.; Carrott, M.J.; Gaubert, E.; Maher, C.J.; Mason, C.; Taylor, R.J.; Woodhead, D.A.

    2007-07-01

    As any future spent fuel treatment facility is likely to be based on intensified solvent extraction equipment it is important to understand the chemical and mass transfer kinetics of the processes involved. Two candidate minor actinide separations processes have been examined through a programme of modeling and experimental work to illustrate some of the issues to address in turning these technologies in to fully optimized processes suitable for industrialization. (authors)

  10. Trivalent Lanthanide/Actinide Separation Using Aqueous-Modified TALSPEAK Chemistry

    SciTech Connect (OSTI)

    Travis S. Grimes; Richard D. Tillotson; Leigh R. Martin

    2014-05-01

    TALSPEAK is a liquid/liquid extraction process designed to separate trivalent lanthanides (Ln3+) from minor actinides (MAs) Am3+ and Cm3+. Traditional TALSPEAK organic phase is comprised of a monoacidic dialkyl bis(2-ethylhexyl)phosphoric acid extractant (HDEHP) in diisopropyl benzene (DIPB). The aqueous phase contains a soluble aminopolycarboxylate diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) in a concentrated (1.0-2.0 M) lactic acid (HL) buffer with the aqueous acidity typically adjusted to pH 3.0. TALSPEAK balances the selective complexation of the actinides by DTPA against the electrostatic attraction of the lanthanides by the HDEHP extractant to achieve the desired trivalent lanthanide/actinide group separation. Although TALSPEAK is considered a successful separations scheme, recent fundamental studies have highlighted complex chemical interactions occurring in the aqueous and organic phases during the extraction process. Previous attempts to model the system have shown thermodynamic models do not accurately predict the observed extraction trends in the p[H+] range 2.5-4.8. In this study, the aqueous phase is modified by replacing the lactic acid buffer with a variety of simple and longer-chain amino acid buffers. The results show successful trivalent lanthanide/actinide group separation with the aqueous-modified TALSPEAK process at pH 2. The amino acid buffer concentrations were reduced to 0.5 M (at pH 2) and separations were performed without any effect on phase transfer kinetics. Successful modeling of the aqueous-modified TALSPEAK process (p[H+] 1.6-3.1) using a simplified thermodynamic model and an internally consistent set of thermodynamic data is presented.

  11. In-Situ Production of Microbial Pigments for Metal and Actinide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Immobilization - Energy Innovation Portal In-Situ Production of Microbial Pigments for Metal and Actinide Immobilization Unique in-situ method shown to dramatically reduce the mobility of contaminants in the soil without need for excavation Savannah River National Laboratory Contact SRNL About This Technology The stimulation of melanin production by subsurface bacteria offers a means to accelerate the immobilization rates of metal and radionuclide contaminants in the subsurface, even at low

  12. NUCLEAR ENERGY UNIVERSITY PROGRAMS Improved Fission Neutron Data Base for Active Interrogation of Actinides

    National Nuclear Security Administration (NNSA)

    NUCLEAR ENERGY UNIVERSITY PROGRAMS Improved Fission Neutron Data Base for Active Interrogation of Actinides PI: Pozzi, Sara - University of Michigan Project Number: 09-414 Initiative/Campaign: IRR Collaborators: Czirr, J. Bart - Photogenics Haight, Robert - Los Alamos National Laboratory Kovash, Michael - University of Kentucky Tsvetkov, Pavel - Texas A&M University Abstract This project will develop an innovative neutron detection system for active interrogation measurements. Many active

  13. Radiolytic Degradation in Lanthanide/Actinide Separation Ligands–NOPOPO: Radical Kinetics and Efficiencies Determinations

    SciTech Connect (OSTI)

    Katy L. Swancutt; Stephen P. Mezyk; Richard D. Tillotson; Sylvie Pailloux; Manab Chakravarty; Robert T. Paine; Leigh R. Martin

    2011-07-01

    Trivalent lanthanide/actinide separations from used nuclear fuel occurs in the presence radiation fields that degrades the extraction ligands and solvents. Here we have investigated the stability of a new ligand for lanthanide/actinide separation; 2,6-bis[(di(2-ethylhexyl)phosphino)methyl] pyridine N,P,P-trioxide, TEH(NOPOPO). The impact of {gamma}-radiolysis on the distribution ratios for actinide (Am) and Lanthanide (Eu) extraction both in the presence and absence of an acidic aqueous phase by TEH(NOPOPO) was determined. Corresponding reaction rate constants for the two major radicals, hydroxyl and nitrate, were determined for TEH(NOPOPO) in the aqueous phase, with room temperature values of (3.49 {+-} 0.10) x 10{sup 9} and (1.95 {+-} 0.15) x 10{sup 8} M{sup -1} s{sup -1}, respectively. The activation energy for this reaction was found to be 30.2 {+-} 4.1 kJ mol{sup -1}. Rate constants for two analogues (2-methylphosphonic acid pyridine N,P-dioxide and 2,6-bis(methylphosphonic acid) pyridine N,P,P-trioxide) were also determined to assist in determining the major reaction pathways.

  14. JOWOG 22/2 - Actinide Chemical Technology (July 9-13, 2012)

    SciTech Connect (OSTI)

    Jackson, Jay M.; Lopez, Jacquelyn C.; Wayne, David M.; Schulte, Louis D.; Finstad, Casey C.; Stroud, Mary Ann; Mulford, Roberta Nancy; MacDonald, John M.; Turner, Cameron J.; Lee, Sonya M.

    2012-07-05

    The Plutonium Science and Manufacturing Directorate provides world-class, safe, secure, and reliable special nuclear material research, process development, technology demonstration, and manufacturing capabilities that support the nation's defense, energy, and environmental needs. We safely and efficiently process plutonium, uranium, and other actinide materials to meet national program requirements, while expanding the scientific and engineering basis of nuclear weapons-based manufacturing, and while producing the next generation of nuclear engineers and scientists. Actinide Process Chemistry (NCO-2) safely and efficiently processes plutonium and other actinide compounds to meet the nation's nuclear defense program needs. All of our processing activities are done in a world class and highly regulated nuclear facility. NCO-2's plutonium processing activities consist of direct oxide reduction, metal chlorination, americium extraction, and electrorefining. In addition, NCO-2 uses hydrochloric and nitric acid dissolutions for both plutonium processing and reduction of hazardous components in the waste streams. Finally, NCO-2 is a key team member in the processing of plutonium oxide from disassembled pits and the subsequent stabilization of plutonium oxide for safe and stable long-term storage.

  15. Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms - Final Report

    SciTech Connect (OSTI)

    Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandra

    2001-03-01

    The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials.

  16. Double Shock Experiments and Reactive Flow Modeling of High Pressure...

    Office of Scientific and Technical Information (OSTI)

    Double Shock Experiments and Reactive Flow Modeling of High Pressure LX-17 Detonation Reaction Product States Citation Details In-Document Search Title: Double Shock Experiments ...

  17. Ultrafast kinetics subsequent to shock compression in an oxygen...

    Office of Scientific and Technical Information (OSTI)

    to shock compression in an oxygen-balanced mixture of nitromethane and hydrogen peroxide Citation Details In-Document Search Title: Ultrafast kinetics subsequent to shock ...

  18. Ultrafast kinetics subsequent to shock in an unreacted, oxygen...

    Office of Scientific and Technical Information (OSTI)

    shock in an unreacted, oxygen balanced mixture of nitromethane and hydrogen peroxide Citation Details In-Document Search Title: Ultrafast kinetics subsequent to shock in an ...

  19. Grazing collisions of gravitational shock waves and entropy production...

    Office of Scientific and Technical Information (OSTI)

    Grazing collisions of gravitational shock waves and entropy production in heavy ion collisions Citation Details In-Document Search Title: Grazing collisions of gravitational shock ...

  20. Ultrafast Laser Diagnostics for Studies of Shock Initiation in...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast Laser Diagnostics for Studies of Shock Initiation in Energetic Materials. Citation Details In-Document Search Title: Ultrafast Laser Diagnostics for Studies of Shock ...

  1. Ultrafast laser diagnostics for studies of shock initiation in...

    Office of Scientific and Technical Information (OSTI)

    for studies of shock initiation in energetic materials. Citation Details In-Document Search Title: Ultrafast laser diagnostics for studies of shock initiation in energetic ...

  2. Molecular shock response of explosives: electronic absorption spectroscopy

    SciTech Connect (OSTI)

    Mcgrne, Shawn D; Moore, David S; Whitley, Von H; Bolme, Cindy A; Eakins, Daniel E

    2009-01-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the question of the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference from the shock front as well as broadband increased absorption. Relation to shock initiation hypotheses and the need for time dependent absorption data (future experiments) is briefly discussed.

  3. Ultrafast Shock Initiation of Exothermic Chemistry in Hydrogen...

    Office of Scientific and Technical Information (OSTI)

    Shock Initiation of Exothermic Chemistry in Hydrogen Peroxide Citation Details In-Document Search Title: Ultrafast Shock Initiation of Exothermic Chemistry in Hydrogen Peroxide ...

  4. Ultrafast Shock Initiation of Exothermic Chemistry in Hydrogen...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Ultrafast Shock Initiation of Exothermic Chemistry in Hydrogen Peroxide Citation Details In-Document Search Title: Ultrafast Shock Initiation of Exothermic...

  5. Thermal shock resistance ceramic insulator

    DOE Patents [OSTI]

    Morgan, Chester S. (Oak Ridge, TN); Johnson, William R. (Maynardville, TN)

    1980-01-01

    Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.

  6. The technical and economic impact of minor actinide transmutation in a sodium fast reactor

    SciTech Connect (OSTI)

    Gautier, G. M.; Morin, F.; Dechelette, F.; Sanseigne, E.; Chabert, C.

    2012-07-01

    Within the frame work of the French National Act of June 28, 2006 pertaining to the management of high activity, long-lived radioactive waste, one of the proposed processes consists in transmuting the Minor Actinides (MA) in the radial blankets of a Sodium Fast Reactor (SFR). With this option, we may assess the additional cost of the reactor by comparing two SFR designs, one with no Minor Actinides, and the other involving their transmutation. To perform this exercise, we define a reference design called SFRref, of 1500 MWe that is considered to be representative of the Reactor System. The SFRref mainly features a pool architecture with three pumps, six loops with one steam generator per loop. The reference core is the V2B core that was defined by the CEA a few years ago for the Reactor System. This architecture is designed to meet current safety requirements. In the case of transmutation, for this exercise we consider that the fertile blanket is replaced by two rows of assemblies having either 20% of Minor Actinides or 20% of Americium. The assessment work is performed in two phases. - The first consists in identifying and quantifying the technical differences between the two designs: the reference design without Minor Actinides and the design with Minor Actinides. The main differences are located in the reactor vessel, in the fuel handling system and in the intermediate storage area for spent fuel. An assessment of the availability is also performed so that the impact of the transmutation can be known. - The second consists in making an economic appraisal of the two designs. This work is performed using the CEA's SEMER code. The economic results are shown in relative values. For a transmutation of 20% of MA in the assemblies (S/As) and a hypothesis of 4 kW allowable for the washing device, there is a large external storage demanding a very long cooling time of the S/As. In this case, the economic impact may reach 5% on the capital part of the Levelized Unit Electricity Cost (LUEC). A diminished concentration at 10% of MA, reduces the size of the external storage and the cooling time of the assemblies becomes compatible with the management of the irradiated fuel. Even with a low allowable power for the washing device, the economic impact on the capital cost is less than 2.5%. (authors)

  7. DIFFUSIVE SHOCK ACCELERATION SIMULATIONS OF RADIO RELICS

    SciTech Connect (OSTI)

    Kang, Hyesung; Ryu, Dongsu; Jones, T. W. E-mail: ryu@canopus.cnu.ac.kr

    2012-09-01

    Recent radio observations have identified a class of structures, so-called radio relics, in clusters of galaxies. The radio emission from these sources is interpreted as synchrotron radiation from GeV electrons gyrating in {mu}G-level magnetic fields. Radio relics, located mostly in the outskirts of clusters, seem to associate with shock waves, especially those developed during mergers. In fact, they seem to be good structures to identify and probe such shocks in intracluster media (ICMs), provided we understand the electron acceleration and re-acceleration at those shocks. In this paper, we describe time-dependent simulations for diffusive shock acceleration at weak shocks that are expected to be found in ICMs. Freshly injected as well as pre-existing populations of cosmic-ray (CR) electrons are considered, and energy losses via synchrotron and inverse Compton are included. We then compare the synchrotron flux and spectral distributions estimated from the simulations with those in two well-observed radio relics in CIZA J2242.8+5301 and ZwCl0008.8+5215. Considering that CR electron injection is expected to be rather inefficient at weak shocks with Mach number M {approx}< a few, the existence of radio relics could indicate the pre-existing population of low-energy CR electrons in ICMs. The implication of our results on the merger shock scenario of radio relics is discussed.

  8. A merger shock in A2034

    SciTech Connect (OSTI)

    Owers, Matt S.; Couch, Warrick J.; Hopkins, Andrew M.; Nulsen, Paul E. J.; Ma, Cheng-Jiun; David, Laurence P.; Forman, William R.; Jones, Christine; Van Weeren, Reinout J.

    2014-01-10

    We present a 250 ks Chandra observation of the cluster merger A2034 with the aim of understanding the nature of a sharp edge previously characterized as a cold front. The new data reveal that the edge is coherent over a larger opening angle and is significantly more bow-shock-shaped than previously thought. Within ?27° about the axis of symmetry of the edge, the density, temperature, and pressure drop abruptly by factors of 1.83{sub ?0.08}{sup +0.09}, 1.85{sub ?0.41}{sup +0.41}, and 3.4{sub ?0.7}{sup +0.8}, respectively. This is inconsistent with the pressure equilibrium expected of a cold front and we conclude that the edge is a shock front. We measure a Mach number M=1.59{sub ?0.07}{sup +0.06} and corresponding shock velocity v {sub shock} ? 2057 km s{sup –1}. Using spectra collected at the MMT with the Hectospec multi-object spectrograph, we identify 328 spectroscopically confirmed cluster members. Significantly, we find a local peak in the projected galaxy density associated with a bright cluster galaxy that is located just ahead of the nose of the shock. The data are consistent with a merger viewed within ?23° of the plane of the sky. The merging subclusters are now moving apart along a north-south axis approximately 0.3 Gyr after a small impact parameter core passage. The gas core of the secondary subcluster, which was driving the shock, appears to have been disrupted by the merger. Without a driving 'piston,' we speculate that the shock is dying. Finally, we propose that the diffuse radio emission near the shock is due to the revival of pre-existing radio plasma that has been overrun by the shock.

  9. Nonequilibrium volumetric response of shocked polymers

    SciTech Connect (OSTI)

    Clements, B E

    2009-01-01

    Polymers are well known for their non-equilibrium deviatoric behavior. However, investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities remind us that the volumetric behavior also exhibits a non-equilibrium response. Experiments supporting the notion of a non-equilibrium volumetric behavior will be summarized. Following that discussion, a continuum-level theory is proposed that will account for both the equilibrium and non-equilibrium response. Upon finding agreement with experiment, the theory is used to study the relaxation of a shocked polymer back towards its shocked equilibrium state.

  10. Joint BioEnergy Institute

    SciTech Connect (OSTI)

    Keasling, Jay; Simmons, Blake; Tartaglino, Virginia; Baidoo, Edward; Kothari, Ankita

    2015-06-15

    The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center dedicated to developing advanced biofuels—liquid fuels derived from the solar energy stored in plant biomass that can replace gasoline, diesel and jet fuels.

  11. Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life Bhr Configurations: Designs, Advantages and Limitations

    SciTech Connect (OSTI)

    Dr. Pavel V. Tsvetkov

    2009-05-20

    This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.

  12. Operating Experience Level 3, Electrical Safety: Shocks

    Broader source: Energy.gov [DOE]

    OE-3: 2015-03 This Operating Experience Level 3 (OE-3) document provides information about a safety concern related to electrical shocks workers have received while performing work at Department of Energy (DOE) facilities.

  13. Device for absorbing mechanical shock

    DOE Patents [OSTI]

    Newlon, Charles E. (Knoxville, TN)

    1980-01-01

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  14. Understanding the anisotropic initiation sensitivity of shocked

    Office of Scientific and Technical Information (OSTI)

    pentaerythritol tetranitrate (PETN) single crystals (Journal Article) | SciTech Connect Understanding the anisotropic initiation sensitivity of shocked pentaerythritol tetranitrate (PETN) single crystals Citation Details In-Document Search Title: Understanding the anisotropic initiation sensitivity of shocked pentaerythritol tetranitrate (PETN) single crystals Authors: Kim, K ; Fried, L E ; Yoh, J Publication Date: 2013-08-27 OSTI Identifier: 1212825 Report Number(s): LLNL-JRNL-643055 DOE

  15. Multiple shock initiation of LX-17

    SciTech Connect (OSTI)

    Tarver, C.M.; Cook, T.M.; Urtiew, P.A.; Tao, W.C.

    1993-07-01

    The response of the insensitive TATB-based high explosive LX-17 to multiple shock impacts is studied experimentally in a four inch gas gun using embedded manganin gauges and numerically using the ignition and growth reactive flow model of shock initiation and detonation. Pressure histories are reported for LX-17 cylinders which are subjected to sustained shock pulses followed by secondary compressions from shocks reflected from metal discs attached to the backs of the explosive targets. These measured and calculated pressure histories show that the threshold for hot spot growth in LX-17 is 7 GPa, that LX-17 can be dead pressed at slightly lower pressures, and that the reaction rates behind reflected shocks increase greatly as the impedance of the metal increases. A study of the response of LX-17 to the collision of two reacting, diverging shocks forming a Mach stem wave inside the LX-17 charge demonstrated that this interaction can result in a high pressure region of sufficient size and strength to cause detonation under certain conditions.

  16. United States and France Sign Joint Statement on Civil Liability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and France Sign Joint Statement on Civil Liability for Nuclear Damage United States and France Sign Joint Statement on Civil Liability for Nuclear Damage PDF icon Joint Statement ...

  17. Digital Sofcell Digital Ultracap joint venture | Open Energy...

    Open Energy Info (EERE)

    Ultracap joint venture Jump to: navigation, search Name: Digital Sofcell - Digital Ultracap joint venture Product: Digital Sofcell will joint venture with Digital Ultracap to...

  18. CLEERS Coordination & Joint Development of Benchmark Kinetics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR CLEERS Coordination & Development of Catalyst Process Kinetic...

  19. Magnetocrystalline Anisotropy in UMn2Ge2 and Related Mn-based Actinide Ferromagnets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Parker, David S; Mandrus, D.; Ghimire, N J; Baumbach, Ryan; Singleton, John; Thompson, J.D.; Bauer, Eric D.; Li, Ling; Singh, David J

    2015-01-01

    We present magnetization isotherms in pulsed magnetic fields up to 62 Tesla, supported by first principles calculations, demonstrating a huge uniaxial magnetocrystalline anisotropy energy - approximately 20 MJ/m3 - in UMn2Ge2. This large anisotropy results from the extremely strong spin-orbit coupling affecting the uranium 5 f electrons, which in the calculations exhibit a substantial orbital moment exceeding 2 Bohr magnetons. We also find from theoretical calculations that a number of isostructural Mn-actinide compounds are expected to have similarly large anisotropy.

  20. Actinide extraction from simulated and irradiated spent nuclear fuel using TBP solutions in HFC-134a

    SciTech Connect (OSTI)

    Shadrin, A.; Babain, V.; Kamachev, V.; Murzin, A.; Shafikov, D.; Dormidonova, A.

    2008-07-01

    It was demonstrated that solutions of TBP-nitric acid adduct in liquid Freon HFC-134a (1.2 MPa, 25 deg. C) allowed for recovery of uranium with nearly the same effectiveness as supercritical CO{sub 2} at 30 MPa. At nearly quantitative recovery of U and Pu, a DF of ca. 10 can be attained on dissolution and extraction of simulated SNF samples. The possibility of recovery of actinides contained in cakes produced by oxide conversion of simulated and irradiated SNF with solutions of TBP and DBE in Freon HFC-134a was shown. (authors)

  1. Lanthanide and actinide doped glasses as reference standards for dye doped systems

    SciTech Connect (OSTI)

    Pope, E.J.A.; Hentschel, A.

    1996-12-31

    Organic dye molecules are well known to be subject to chemical and optical bleaching damage, temperature instability, and other forms of optical degradation. Currently recognized methods of referencing rely upon fluorescent salt solutions, such as quinine sulfate. In this paper, optically-active lanthanide and actinide doped gel-glasses are compared as reference standards for dye doped polymers. Samples are subjected to continuous illumination by 254 nm UV radiation. While dye-doped polymers exhibited approximately 65 percent decline in fluorescence intensity after 96 hours of irradiation, glass samples and glass powder in resin showed no decline in fluorescence intensities.

  2. Detection limits for actinides in a monochromatic, wavelength-dispersive x-ray fluorescence instrument

    SciTech Connect (OSTI)

    Collins, Michael L [Los Alamos National Laboratory; Havrilla, George J [Los Alamos National Laboratory

    2009-01-01

    Recent developments in x-ray optics have made it possible to examine the L x-rays of actinides using doubly-curved crystals in a bench-top device. A doubly-curved crystal (DCC) acts as a focusing monochromatic filter for polychromatic x-rays. A Monochromatic, Wavelength-Dispersive X-Ray Fluorescence (MWDXRF) instrument that uses DCCs to measure Cm and Pu in reprocessing plant liquors was proposed in 2007 by the authors at Los Alamos National Laboratory. A prototype design of this MWDXRF instrument was developed in collaboration with X-ray Optical Systems Inc. (XOS), of East Greenbush, New York. In the MWDXRF instrument, x-rays from a Rhodium-anode x-ray tube are passed through a primary DCC to produce a monochromatic beam of 20.2-keV photons. This beam is focused on a specimen that may contain actinides. The 20.2-keV interrogating beam is just above the L3 edge of Californium; each actinide (with Z = 90 to 98) present in the specimen emits characteristic L x-rays as the result of L3-shell vacancies. In the LANL-XOS prototype MWDXRf, these x-rays enter a secondary DCC optic that preferentially passes 14.961-keV photons, corresponding to the L-alpha-1 x-ray peak of Curium. In the present stage of experimentation, Curium-bearing specimens have not been analyzed with the prototype MWDXRF instrument. Surrogate materials for Curium include Rubidium, which has a K-beta-l x-ray at 14.961 keV, and Yttrium, which has a K-alpha-1 x-ray at 14.958 keV. In this paper, the lower limit of detection for Curium in the LANL-XOS prototype MWDXRF instrument is estimated. The basis for this estimate is described, including a description of computational models and benchmarking techniques used. Detection limits for other actinides are considered, as well as future safeguards applications for MWDXRF instrumentation.

  3. Micro-Analysis of Actinide Minerals for Nuclear Forensics and Treaty Verification

    SciTech Connect (OSTI)

    M. Morey, M. Manard, R. Russo, G. Havrilla

    2012-03-22

    Micro-Raman spectroscopy has been demonstrated to be a viable tool for nondestructive determination of the crystal phase of relevant minerals. Collecting spectra on particles down to 5 microns in size was completed. Some minerals studied were weak scatterers and were better studied with the other techniques. A decent graphical software package should easily be able to compare collected spectra to a spectral library as well as subtract out matrix vibration peaks. Due to the success and unequivocal determination of the most common mineral false positive (zircon), it is clear that Raman has a future for complementary, rapid determination of unknown particulate samples containing actinides.

  4. Research and development joint ventures

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Three panels made up of members of Congress and representatives of research and high technology industries testified at a hearing held to consider H.R. 1952 and H.R. 3393, both bills dealing with joint venture policies that diminish US competitiveness. The bills are designed to eliminate disincentives stemming from antitrust concerns about joint research and development (R and D) activities and to encourage private investment in R and D. The witnesses were asked to evaluate and compare the potential of these bills to overcome institutional barriers and to stimulate capital formation. Three appendices with statements from the National Association of Manufacturers, the Semiconductor Industry Association, and the Institute of Electrical and Electronics Engineers submitted for the record follow the testimony of the eight witnesses. (DCK)

  5. Intermetallic Layers in Soldered Joints

    Energy Science and Technology Software Center (OSTI)

    1998-12-10

    ILAG solves the one-dimensional partial differential equations describing the multiphase, multicomponent, solid-state diffusion-controlled growth of intermetallic layers in soldered joints. This software provides an analysis capability for materials researchers to examine intermetallic growth mechanisms in a wide variety of defense and commercial applications involving both traditional and advanced materials. ILAG calculates the interface positions of the layers, as well as the spatial distribution of constituent mass fractions, and outputs the results at user-prescribed simulation times.

  6. Metal-ceramic joint assembly

    DOE Patents [OSTI]

    Li, Jian (New Milford, CT)

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  7. Joint DOE-Rosatom Statement

    Office of Environmental Management (EM)

    Joint Statement on the U.S. - Russian Excess Weapon-grade Plutonium Disposition Program The U.S. Department of Energy (DOE) and the Federal Atomic Energy Agency, Russian Federation (Rosatom), as the Executive Agents for the implementation of the 2000 Plutonium Management and Disposition Agreement, hereby reaffirm their commitment to implementing the 2000 Agreement and effective and transparent disposition of 34 metric tons each of weapon- grade plutonium designated as no longer required for

  8. Separation of lanthanides from trivalent actinides, the role of aqueous-phase soft-donor complexing agents

    SciTech Connect (OSTI)

    Nilsson, Mikael; Hoch, Cortney; Meier, G. Patrick; Nash, Kenneth L.

    2008-07-01

    Closing the nuclear fuel cycle to reduce storage volumes and times requires advanced separation processes, among which is the separation of trivalent actinides from lanthanides that are present in the waste. A proven system is TALSPEAK, utilizing polyamino-carboxylates for this group separation. However, the narrow pH range these molecules require complicates their use. Soft-donor molecules that may complex actinides at low pH have been investigated. Results indicate that, although DTPA gives the best selectivity, all molecules tested showed preference for americium. The solubility of some reagents at low pH suggests the need for further development. (authors)

  9. Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels

    SciTech Connect (OSTI)

    Morgan, Dane; Yang, Yong Austin

    2013-10-28

    The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-{Np,Am}, leaving Cm for later study. The overall objectives of this project are to: Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels; and, Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling.

  10. Method for the recovery of actinide elements from nuclear reactor waste

    DOE Patents [OSTI]

    Horwitz, E. Philip; Delphin, Walter H.; Mason, George W.

    1979-01-01

    A process for partitioning and recovering actinide values from acidic waste solutions resulting from reprocessing of irradiated nuclear fuels by adding hydroxylammonium nitrate and hydrazine to the waste solution to adjust the valence of the neptunium and plutonium values in the solution to the +4 oxidation state, thus forming a feed solution and contacting the feed solution with an extractant of dihexoxyethyl phosphoric acid in an organic diluent whereby the actinide values, most of the rare earth values and some fission product values are taken up by the extractant. Separation is achieved by contacting the loaded extractant with two aqueous strip solutions, a nitric acid solution to selectively strip the americium, curium and rare earth values and an oxalate solution of tetramethylammonium hydrogen oxalate and oxalic acid or trimethylammonium hydrogen oxalate to selectively strip the neptunium, plutonium and fission product values. Uranium values remain in the extractant and may be recovered with a phosphoric acid strip. The neptunium and plutonium values are recovered from the oxalate by adding sufficient nitric acid to destroy the complexing ability of the oxalate, forming a second feed, and contacting the second feed with a second extractant of tricaprylmethylammonium nitrate in an inert diluent whereby the neptunium and plutonium values are selectively extracted. The values are recovered from the extractant with formic acid.

  11. DOC-DOE Joint China Mission Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint China Mission Statement DOC-DOE Joint China Mission Statement DOC-DOE Joint China Mission Statement PDF icon DOC-DOE Joint China Mission Statement More Documents &...

  12. Shock sensitivity of IHE at elevated temperatures

    SciTech Connect (OSTI)

    Urtiew, P.A.; Cook, T.M.; Maienschein, J.L.; Tarver, C.M.

    1993-06-01

    Insensitive high explosives (IHE`s) based on triamino-trinitrobenzene (TATB) have been demonstrated to be very insensitive to shock, thermal, friction and other stimuli. Hazard scenarios can involve more than one stimulus, such as heating followed by fragment impact (shock). The shock sensitivity of the IHE`s LX-17 and PBX-9502 preheated to a temperature (250{degree}C) just below thermal runaway is quantitatively studied using embedded manganin pressure gauges. The thermal expansion of TATB to 250{degree}C is measured to determine the state of the explosive prior to shock initiation. LX-17 and PBX-9502 are found to be significantly more sensitive at 250{degree}C than at lower temperatures, but still less sensitive than ambient temperature HMX-based explosives. An ignition and growth reactive flow computer model of the shock initiation of hot IHE is developed to allow predictions of the response of hot IHE to impact scenarios which can not be tested directly.

  13. Temperature measurements of shocked silica aerogel foam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Falk, K.; McCoy, C. A.; Fryer, C. L.; Greeff, C. W.; Hungerford, A. L.; Montgomery, D. S.; Schmidt, D. W.; Sheppard, D. G.; Williams, J. R.; Boehly, T. R.; et al

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s correspondingmore » to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.« less

  14. Analytical model for fast-shock ignition

    SciTech Connect (OSTI)

    Ghasemi, S. A. Farahbod, A. H.; Sobhanian, S.

    2014-07-15

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ?4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ?0.3??micron and the shock ignitor energy weight factor about 0.25.

  15. Joint Environmental Management System (EMS) Declaration of Conformance...

    Energy Savers [EERE]

    Services Environmental Management System Joint Environmental Management System (EMS) Declaration of Conformance Joint Environmental Management System (EMS) Declaration of...

  16. Shock compression of low-density foams

    SciTech Connect (OSTI)

    Holmes, N.C.

    1993-07-01

    Shock compression of very low density micro-cellular materials allows entirely new regimes of hot fluid states to be investigated experimentally. Using a two-stage light-gas gun to generate strong shocks, temperatures of several eV are readily achieved at densities of roughly 0.5--1 g/cm{sup 3} in large, uniform volumes. The conditions in these hot, expanded fluids are readily found using the Hugoniot jump conditions. We will briefly describe the basic methodology for sample preparation and experimental measurement of shock velocities. We present data for several materials over a range of initial densities. This paper will explore the applications of these methods for investigations of equations of state and phase diagrams, spectroscopy, and plasma physics. Finally, we discus the need for future work on these and related low-density materials.

  17. Joint Center for Artificial Photosynthesis

    ScienceCinema (OSTI)

    Koval, Carl; Lee, Kenny; Houle, Frances; Lewis, Nate

    2013-12-19

    The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

  18. Actinide Corroles: Synthesis and Characterization of Thorium(IV) and Uranium(IV) bis(-chloride) Dimers

    SciTech Connect (OSTI)

    Ward, Ashleigh L.; Buckley, Heather L.; Gryko, Daniel T.; Lukens, Wayne W.; Arnold, John

    2013-12-01

    The first synthesis and structural characterization of actinide corroles is presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesised and characterized by single-crystal X-ray diffraction, UV-Visible spectroscopy, variable-temperature 1H NMR, ESI mass spectrometry and cyclic voltammetry.

  19. The Thermodynamic Properties of the f-Elements and their Compounds. Part 2. The Lanthanide and Actinide Oxides

    SciTech Connect (OSTI)

    Konings, Rudy J. M. Beneš, Ondrej; Kovács, Attila; Manara, Dario; Sedmidubský, David; Gorokhov, Lev; Iorish, Vladimir S.; Yungman, Vladimir; Shenyavskaya, E.; Osina, E.

    2014-03-15

    A comprehensive review of the thermodynamic properties of the oxide compounds of the lanthanide and actinide elements is presented. The available literature data for the solid, liquid, and gaseous state have been analysed and recommended values are presented. In case experimental data are missing, estimates have been made based on the trends in the two series, which are extensively discussed.

  20. Magnetohydrodynamic structure of a plasmoid in fast reconnection in low-beta plasmas: Shock-shock interactions

    SciTech Connect (OSTI)

    Zenitani, Seiji

    2015-03-15

    The shock structure of a plasmoid in magnetic reconnection in low-beta plasmas is investigated by two-dimensional magnetohydrodynamic simulations. Using a high-accuracy code with unprecedented resolution, shocks, discontinuities, and their intersections are resolved and clarified. Contact discontinuities emanate from triple-shock intersection points, separating fluids of different origins. Shock-diamonds inside the plasmoid appear to decelerate a supersonic flow. New shock-diamonds and a slow expansion fan are found inside the Petschek outflow. A sufficient condition for the new shock-diamonds and the relevance to astrophysical jets are discussed.

  1. Shock-to-Detonation Transition simulations

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2015-07-14

    Shock-to-detonation transition (SDT) experiments with embedded velocity gauges provide data that can be used for both calibration and validation of high explosive (HE) burn models. Typically, a series of experiments is performed for each HE in which the initial shock pressure is varied. Here we describe a methodology for automating a series of SDT simulations and comparing numerical tracer particle velocities with the experimental gauge data. Illustrative examples are shown for PBX 9502 using the HE models implemented in the xRage ASC code at LANL.

  2. RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH

    SciTech Connect (OSTI)

    Maxwell, S.; Jones, V.

    2009-05-27

    A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are split between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead. Multiple vacuum box locations may be set-up to supply several ICP-MS units with purified sample fractions such that a high sample throughput may be achieved, while still allowing for rapid measurement of short-lived actinides by alpha spectrometry.

  3. The Sandia MEMS passive shock sensor : FY08 design summary. ...

    Office of Scientific and Technical Information (OSTI)

    passive shock sensor : FY08 design summary. Citation Details In-Document Search Title: The Sandia MEMS passive shock sensor : FY08 design summary. This report summarizes design and...

  4. Collisionless Weibel shocks: Full formation mechanism and timing

    SciTech Connect (OSTI)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Stockem, A. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal); Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Narayan, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51 Cambridge, Massachusetts 02138 (United States); Silva, L. O. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal)

    2014-07-15

    Collisionless shocks in plasmas play an important role in space physics (Earth's bow shock) and astrophysics (supernova remnants, relativistic jets, gamma-ray bursts, high energy cosmic rays). While the formation of a fluid shock through the steepening of a large amplitude sound wave has been understood for long, there is currently no detailed picture of the mechanism responsible for the formation of a collisionless shock. We unravel the physical mechanism at work and show that an electromagnetic Weibel shock always forms when two relativistic collisionless, initially unmagnetized, plasma shells encounter. The predicted shock formation time is in good agreement with 2D and 3D particle-in-cell simulations of counterstreaming pair plasmas. By predicting the shock formation time, experimental setups aiming at producing such shocks can be optimised to favourable conditions.

  5. SHOCK EMERGENCE IN SUPERNOVAE: LIMITING CASES AND ACCURATE APPROXIMATIONS

    SciTech Connect (OSTI)

    Ro, Stephen; Matzner, Christopher D.

    2013-08-10

    We examine the dynamics of accelerating normal shocks in stratified planar atmospheres, providing accurate fitting formulae for the scaling index relating shock velocity to the initial density and for the post-shock acceleration factor as functions of the polytropic and adiabatic indices which parameterize the problem. In the limit of a uniform initial atmosphere, there are analytical formulae for these quantities. In the opposite limit of a very steep density gradient, the solutions match the outcome of shock acceleration in exponential atmospheres.

  6. Kinetic Simulations of Particle Acceleration at Shocks (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Kinetic Simulations of Particle Acceleration at Shocks Citation Details In-Document Search Title: Kinetic Simulations of Particle Acceleration at Shocks Collisionless shocks are mediated by collective electromagnetic interactions and are sources of non-thermal particles and emission. The full particle-in-cell approach and a hybrid approach are sketched, simulations of collisionless shocks are shown using a multicolor presentation. Results for SN 1006, a case involving ion

  7. Shock compression of precompressed deuterium (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Shock compression of precompressed deuterium Citation Details In-Document Search Title: Shock compression of precompressed deuterium Here we report quasi-isentropic dynamic compression and thermodynamic characterization of solid, precompressed deuterium over an ultrafast time scale (< 100 ps) and a microscopic length scale (< 1 {micro}m). We further report a fast transition in shock wave compressed solid deuterium that is consistent with the ramp to shock transition, with a

  8. Shock wave absorber having a deformable liner

    DOE Patents [OSTI]

    Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

    1983-08-26

    This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

  9. Joint Outreach Task Group Calendar: September 2013

    Broader source: Energy.gov [DOE]

    Joint Outreach Task Group (JOTG)has created a monthly calendar of community events to facilitate interagency and community involvement in these events. September 2013

  10. Joint Convention | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Joint Convention U.S. Leads Fifth International Review Meeting on the Safety of Spent Fuel and Radioactive Waste Management at the IAEA VIENNA, AUSTRIA - Today, representatives...

  11. CLEERS Coordination & Joint Development of Benchmark Kinetics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR Emissions Control for Lean Gasoline Engines NH3 generation...

  12. CLEERS Coordination & Joint Development of Benchmark Kinetics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Catalyst Process Kinetic Data CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR Functionality of Commercial NOx Storage-Reduction Catalysts...

  13. High-temperature brazed ceramic joints

    DOE Patents [OSTI]

    Jarvinen, Philip O.

    1986-01-01

    High-temperature joints formed from metallized ceramics are disclosed wherein the metal coatings on the ceramics are vacuum sputtered thereon.

  14. Shock initiation sensitivity of PETN: A steric hindrance model

    SciTech Connect (OSTI)

    Dick, J.J.

    1991-01-01

    In this report, shock initiation sensitivity of PETN crystals is discussed. A new molecular model for shock sensitivity in crystalline solids is proposed in terms of steric hindrance to edge dislocation motion. This model is successful in predicting the relative shock sensitivities of the four PETN orientations studied, especially at low stresses. (JL)

  15. Minor Actinide Recycle in Sodium Cooled Fast Reactors Using Heterogeneous Targets

    SciTech Connect (OSTI)

    Samuel Bays; Pavel Medvedev; Michael Pope; Rodolfo Ferrer; Benoit Forget; Mehdi Asgari

    2009-04-01

    This paper investigates the plausible design of transmutation target assemblies for minor actinides (MA) in Sodium Fast Reactors (SFR). A heterogeneous recycling strategy is investigated, whereby after each reactor pass, un-burned MAs from the targets are blended with MAs produced by the driver fuel and additional MAs from Spent Nuclear Fuel (SNF). A design iteration methodology was adopted for customizing the core design, target assembly design and matrix composition design. The overall design was constrained against allowable peak or maximum in-core performances. While respecting these criteria, the overall design was adjusted to reduce the total number of assemblies fabricated per refueling cycle. It was found that an inert metal-hydride MA-Zr-Hx target matrix gave the highest transmutation efficiency, thus allowing for the least number of targets to be fabricated per reactor cycle.

  16. Progress of nitride fuel cycle research for transmutation of minor actinides

    SciTech Connect (OSTI)

    Arai, Yasuo; Akabori, Mitsuo; Minato, Kazuo

    2007-07-01

    Recent progress of nitride fuel cycle research for transmutation of MA is summarized. Preparation of MA-bearing nitride pellets, such as (Np,Am)N, (Am,Pu)N and (Np,Pu,Am,Cm)N, was carried out. Irradiation behavior of U-free nitride fuel was investigated by the irradiation test of (Pu,Zr)N and PuN+TiN fuels, in which ZrN and TiN were added as a possible diluent material. Further, pyrochemical process of spent nitride fuel was developed by electrorefining in a molten chloride salt and subsequent re-nitridation of actinides in liquid Cd cathode electro-deposits. Nitride fuel cycle for transmutation of MA has been demonstrated in a laboratory scale by the experimental study with MA and Pu. (authors)

  17. Fabrication of advanced oxide fuels containing minor actinide for use in fast reactors

    SciTech Connect (OSTI)

    Miwa, Shuhei; Osaka, Masahiko; Tanaka, Kosuke; Ishi, Yohei; Yoshimochi, Hiroshi; Tanaka, Kenya

    2007-07-01

    R and D of advanced fuel containing minor actinide for use in fast reactors is described related to the composite fuel with MgO matrix. Fabrication tests of MgO composite fuels containing Am were done by a practical process that could be adapted to the presently used commercial manufacturing technology. Am-containing MgO composite fuels having good characteristics, i.e., having no defects, a high density, a homogeneous dispersion of host phase, were obtained. As related technology, burn-up characteristics of a fast reactor core loaded with the present MgO composite fuel were also analyzed, mainly in terms of core criticality. Furthermore, phase relations of MA oxide which was assumed to be contained in MgO matrix fuel were experimentally investigated. (authors)

  18. GANEX: Adaptation of the DIAMEX-SANEX Process for the Group Actinide Separation

    SciTech Connect (OSTI)

    Miguirditchian, M.; Chareyre, L.; Heres, X.; Hill, C.; Baron, P.; Masson, M.

    2007-07-01

    The DIAMEX-SANEX process using the solvent HDEHP/DMDOHEMA/TPH was adapted to manage the separation of neptunium and plutonium along with americium and curium in the second cycle of the GANEX process. Distribution ratios of Np and Pu depending on their initial oxidation states, actinide/lanthanide separation factor and loading capacity of the solvent were measured after batch experiments in order to verify the behaviour of Np and Pu in this process and check their impact on the hydrodynamics. Results show that after some experimental optimizations, the group separation seems possible using this process. A demonstrative test will be carried out on a high active feed in 2008 at CEA Marcoule. (authors)

  19. Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions

    DOE Patents [OSTI]

    Lupinetti, Anthony J. (Los Alamos, NM); Garcia, Eduardo (Los Alamos, NM); Abney, Kent D. (Los Alamos, NM)

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

  20. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    SciTech Connect (OSTI)

    Kenneth L. Nash; Sue B. Clark; Gregg Lumetta

    2009-09-23

    With increased application of MOX fuels and longer burnup times for conventional fuels, higher concentrations of the transplutonium actinides Am and Cm (and even heavier species like Bk and Cf) will be produced. The half-lives of the Am isotopes are significantly longer than those of the most important long-lived, high specific activity lanthanides or the most common Cm, Bk and Cf isotopes, thus the greatest concern as regards long-term radiotoxicity. With the removal and transmutation of Am isotopes, radiation levels of high level wastes are reduced to near uranium mineral levels within less than 1000 years as opposed to the time-fram if they remain in the wastes.

  1. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    SciTech Connect (OSTI)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  2. Method for digesting spent ion exchange resins and recovering actinides therefrom using microwave radiation

    DOE Patents [OSTI]

    Maxwell, III, Sherrod L. (Aiken, SC); Nichols, Sheldon T. (Augusta, GA)

    1999-01-01

    The present invention relates to methods for digesting diphosphonic acid substituted cation exchange resins that have become loaded with actinides, rare earth metals, or heavy metals, in a way that allows for downstream chromatographic analysis of the adsorbed species without damage to or inadequate elution from the downstream chromatographic resins. The methods of the present invention involve contacting the loaded diphosphonic acid resin with concentrated oxidizing acid in a closed vessel, and irradiating this mixture with microwave radiation. This efficiently increases the temperature of the mixture to a level suitable for digestion of the resin without the use of dehydrating acids that can damage downstream analytical resins. In order to ensure more complete digestion, the irradiated mixture can be mixed with hydrogen peroxide or other oxidant, and reirradiated with microwave radiation.

  3. Dynamical approach to heavy-ion induced fusion using actinide target

    SciTech Connect (OSTI)

    Aritomo, Y.; Hagino, K.; Chiba, S.; Nishio, K.

    2012-10-20

    To treat heavy-ion reactions using actinide target nucleus, we propose a model which takes into account the coupling to the collective states of interacting nuclei in the penetration of the Coulomb barrier and the dynamical evolution of nuclear shape from the contact configuration. A fluctuation-dissipation model (Langevin equation) was applied in the dynamical calculation, where effect of nuclear orientation at the initial impact on the prolately deformed target nucleus was considered. Using this model, we analyzed the experimental data for the mass distribution of fission fragments (MDFF) in the reaction of {sup 36}S+{sup 238}U at several incident energies. Fusion-fission, quasifission and deep-quasi-fission are separated as different trajectories on the potential energy surface. We estimated the fusion cross section of the reaction.

  4. Mechanical environmental transport of actinides and ¹³?Cs from an arid radioactive waste disposal site

    SciTech Connect (OSTI)

    Snow, Mathew S.; Clark, Sue B.; Morrison, Samuel S.; Watrous, Matthew G.; Olson, John E.; Snyder, Darin C.

    2015-10-01

    Particulate transport represents an important mechanism for actinides and fission products at the Earth's surface; soil samples taken in the early 1970's near the Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) provide a case study for examining the mechanisms and characteristics of actinide transport under arid conditions. Transuranic waste was disposed via shallow land burial at the SDA until shortly after a flooding event that occurred in 1969. In this study we analyze soils collected in the early 1970's for ¹³?Cs, ²?¹Am, and Pu using a combination of radiometric and mass spectrometric techniques. Two distinct ²??Pu/²³?Pu isotopic ratios are observed for contamination from the SDA, with values ranging from at least 0.059 to 0.069. ²?¹Am concentrations are observed to increase only slightly in 0-4 cm soils over the ~40 year period since soil sampling, contrary to Markham's previous hypothesis that ²?¹Pu is principally associated with the 0-4 cm soil fractions (Markham 1978). The lack of statistical difference in ²?¹Am/²³??²??Pu ratios with depth suggests mechanical transport and mixing discrete contaminated particles under arid conditions. Occasional samples beyond the northeastern corner are observed to contain anomalously high Pu concentrations with corresponding low ²??Pu/²³?Pu atoms ratios, suggesting the occurrence of "hot particles;" application of a background Pu subtraction results in calculated Pu atom ratios for the "hot particles" which are statistically similar to those observed in the northeastern corner. Taken together, our data suggests that flooding resulted in mechanical transport of contaminated particles into the area between the SDA and the flood containment dike in the northeastern corner, following which subsequent contamination spreading resulted from wind transport of discrete particles.

  5. Comparison of actinide production in traveling wave and pressurized water reactors

    SciTech Connect (OSTI)

    Osborne, A.G.; Smith, T.A.; Deinert, M.R.

    2013-07-01

    The geopolitical problems associated with civilian nuclear energy production arise in part from the accumulation of transuranics in spent nuclear fuel. A traveling wave reactor is a type of breed-burn reactor that could, if feasible, reduce the overall production of transuranics. In one possible configuration, a cylinder of natural or depleted uranium would be subjected to a fast neutron flux at one end. The neutrons would transmute the uranium, producing plutonium and higher actinides. Under the right conditions, the reactor could become critical, at which point a self-stabilizing fission wave would form and propagate down the length of the reactor cylinder. The neutrons from the fission wave would burn the fissile nuclides and transmute uranium ahead of the wave to produce additional fuel. Fission waves in uranium are driven largely by the production and fission of {sup 239}Pu. Simulations have shown that the fuel burnup can reach values greater than 400 MWd/kgIHM, before fission products poison the reaction. In this work we compare the production of plutonium and minor actinides produced in a fission wave to that of a UOX fueled light water reactor, both on an energy normalized basis. The nuclide concentrations in the spent traveling wave reactor fuel are computed using a one-group diffusion model and are verified using Monte Carlo simulations. In the case of the pressurized water reactor, a multi-group collision probability model is used to generate the nuclide quantities. We find that the traveling wave reactor produces about 0.187 g/MWd/kgIHM of transuranics compared to 0.413 g/MWd/kgIHM for a pressurized water reactor running fuel enriched to 4.95 % and burned to 50 MWd/kgIHM. (authors)

  6. Analysis of incident-energy dependence of delayed neutron yields in actinides

    SciTech Connect (OSTI)

    Nasir, Mohamad Nasrun bin Mohd Metorima, Kouhei Ohsawa, Takaaki Hashimoto, Kengo

    2015-04-29

    The changes of delayed neutron yields (?{sub d}) of Actinides have been analyzed for incident energy up to 20MeV using realized data of precursor after prompt neutron emission, from semi-empirical model, and delayed neutron emission probability data (P{sub n}) to carry out a summation method. The evaluated nuclear data of the delayed neutron yields of actinide nuclides are still uncertain at the present and the cause of the energy dependence has not been fully understood. In this study, the fission yields of precursor were calculated considering the change of the fission fragment mass yield based on the superposition of fives Gaussian distribution; and the change of the prompt neutrons number associated with the incident energy dependence. Thus, the incident energy dependent behavior of delayed neutron was analyzed.The total number of delayed neutron is expressed as ?{sub d}=?Y{sub i} • P{sub ni} in the summation method, where Y{sub i} is the mass yields of precursor i and P{sub ni} is the delayed neutron emission probability of precursor i. The value of Y{sub i} is derived from calculation of post neutron emission mass distribution using 5 Gaussian equations with the consideration of large distribution of the fission fragments. The prompt neutron emission ?{sub p} increases at higher incident-energy but there are two different models; one model says that the fission fragment mass dependence that prompt neutron emission increases uniformly regardless of the fission fragments mass; and the other says that the major increases occur at heavy fission fragments area. In this study, the changes of delayed neutron yields by the two models have been investigated.

  7. High temperature ceramic/metal joint structure

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ)

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  8. Simulations of Turbulent Flows with Strong Shocks and Density Variations

    SciTech Connect (OSTI)

    Zhong, Xiaolin

    2012-12-13

    In this report, we present the research efforts made by our group at UCLA in the SciDAC project ���¢��������Simulations of turbulent flows with strong shocks and density variations���¢�������. We use shock-fitting methodologies as an alternative to shock-capturing schemes for the problems where a well defined shock is present. In past five years, we have focused on development of high-order shock-fitting Navier-Stokes solvers for perfect gas flow and thermochemical non-equilibrium flow and simulation of shock-turbulence interaction physics for very strong shocks. Such simulation has not been possible before because the limitation of conventional shock capturing methods. The limitation of shock Mach number is removed by using our high-order shock-fitting scheme. With the help of DOE and TeraGrid/XSEDE super computing resources, we have obtained new results which show new trends of turbulence statistics behind the shock which were not known before. Moreover, we are also developing tools to consider multi-species non-equilibrium flows. The main results are in three areas: (1) development of high-order shock-fitting scheme for perfect gas flow, (2) Direct Numerical Simulation (DNS) of interaction of realistic turbulence with moderate to very strong shocks using super computing resources, and (3) development and implementation of models for computation of mutli-species non-quilibrium flows with shock-fitting codes.

  9. Shock wave absorber having apertured plate

    DOE Patents [OSTI]

    Shin, Yong W. (Western Springs, IL); Wiedermann, Arne H. (Chicago Heights, IL); Ockert, Carl E. (Vienna, VA)

    1985-01-01

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  10. Shock wave absorber having apertured plate

    DOE Patents [OSTI]

    Shin, Y.W.; Wiedermann, A.H.; Ockert, C.E.

    1983-08-26

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  11. Introduction to Plasma Dynamo, Reconnection and Shocks

    SciTech Connect (OSTI)

    Intrator, Thomas P.

    2012-08-30

    In our plasma universe, most of what we can observe is composed of ionized gas, or plasma. This plasma is a conducting fluid, which advects magnetic fields when it flows. Magnetic structure occurs from the smallest planetary to the largest cosmic scales. We introduce at a basic level some interesting features of non linear magnetohydrodynamics (MHD). For example, in our plasma universe, dynamo creates magnetic fields from gravitationally driven flow energy in an electrically conducting medium, and conversely magnetic reconnection annihilates magnetic field and accelerates particles. Shocks occur when flows move faster than the local velocity (sonic or Alfven speed) for the propagation of information. Both reconnection and shocks can accelerate particles, perhaps to gigantic energies, for example as observed with 10{sup 20} eV cosmic rays.

  12. Modeling shock initiation in Composition B

    SciTech Connect (OSTI)

    Murphy, M.J.; Lee, E.L.; Weston, A.M.; Williams, A.E.

    1993-05-01

    A hydrodynamic modeling study of the shock initiation behavior of Composition B explosive was performed using the {open_quotes}Ignition and Growth of Reaction in High Explosive{close_quotes} model developed at the Lawrence Livermore National Laboratory. The HE (heterogeneous explosives) responses were computed using the CALE and DYNA2D hydrocodes and then compared to experimental results. The data from several standard shock initiation and HE performance experiments was used to determine the parameters required for the model. Simulations of the wedge tests (pop plots) and failure diameter tests were found to be sufficient for defining the ignition and growth parameters used in the two term version of the computational model. These coefficients were then applied in the response analysis of several Composition B impact initiation experiments. A description of the methodology used to determine the coefficients and the resulting range of useful application of the ignition and growth of reaction model is described.

  13. Transportation Shock and Vibration Literature Review

    SciTech Connect (OSTI)

    Maheras, Steven J.; Lahti, Erik A.; Ross, Steven B.

    2013-06-06

    This report fulfills the M4 milestone M4FT-13OR08220112, "Report Documenting Experimental Activities." The purpose of this report is to document the results of a literature review conducted of studies related to the vibration and shock associated with the normal conditions of transport for rail shipments of used nuclear fuel from commercial light-water reactors. As discussed in Adkins (2013), the objective of this report is to determine if adequate data exist that would enable the impacts of the shock and vibration associated with the normal conditions of transport on commercial light-water reactor used nuclear fuel shipped in current generation rail transportation casks to be realistically modeled.

  14. Partitioning of trivalent actinides from a Purex raffinate using a TODGA-based solvent-extraction process

    SciTech Connect (OSTI)

    Modolo, G.; Vijgen, H.; Malmbeck, R.; Magnusson, D.; Sorel, C.

    2008-07-01

    A TODGA/TBP process has been developed to separate trivalent actinides from a PUREX raffinate using a mixture of tetraoctyl-diglycolamide (TODGA) and tributylphosphate (TBP). Batch extraction experiments allowed us to choose and optimize the composition of the organic extractant and the aqueous feed solutions. With the aid of computer-code calculations, a countercurrent process has been developed, and an optimized flowsheet has been tested with a spiked feed solution and finally with a genuine PUREX raffinate. The results of the two tests were very promising, demonstrating that more than 99.9% of the trivalent actinides are extracted, and very high decontamination factors are obtained to the non-lanthanide fission products. Co-extracted ruthenium (10% during spiked test, 18% during hot test) is less efficiently back-extracted and therefore requires further process development. (authors)

  15. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOE Patents [OSTI]

    Zaitsev, Boris N. (St. Petersburg, RU); Esimantovskiy, Vyacheslav M. (St. Petersburg, RU); Lazarev, Leonard N. (St. Petersburg, RU); Dzekun, Evgeniy G. (Ozersk, RU); Romanovskiy, Valeriy N. (St. Petersburg, RU); Todd, Terry A. (Aberdeen, ID); Brewer, Ken N. (Arco, ID); Herbst, Ronald S. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID)

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  16. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    SciTech Connect (OSTI)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  17. U.S.-Brazil Strategic Energy Dialogue Joint Report | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dialogue Joint Report U.S.-Brazil Strategic Energy Dialogue Joint Report PDF icon First Joint Report to Presidents on U.S.-Brazil Strategic Energy Dialogue.pdf More Documents &...

  18. Scanned_Joint_Declaration_(English).pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    English).pdf ScannedJointDeclaration(English).pdf PDF icon ScannedJointDeclaration(English).pdf More Documents & Publications Joint Statement by Energy Ministers of G8, The ...

  19. U.S.-Japan Joint Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -Japan Joint Statement U.S.-Japan Joint Statement U.S.-Japan Joint Statement prepared as part of the International Partnership for a Hydrogen Economy PDF icon usjapanstatementre...

  20. Sealed joint structure for electrochemical device

    DOE Patents [OSTI]

    Tucker, Michael C; Jacobson, Craig P; De Jonghe, Lutgard C; Visco, Steven J

    2013-05-21

    Several members make up a joint in a high-temperature electrochemical device, wherein the various members perform different functions. The joint is useful for joining multiple cells (generally tubular modules) of an electrochemical device to produce a multi-cell segment-in-series stack for a solid oxide fuel cell, for instance. The joint includes sections that bond the joining members to each other; one or more seal sections that provide gas-tightness, and sections providing electrical connection and/or electrical insulation between the various joining members. A suitable joint configuration for an electrochemical device has a metal joint housing, a first porous electrode, a second porous electrode, separated from the first porous electrode by a solid electrolyte, and an insulating member disposed between the metal joint housing and the electrolyte and second electrode. One or more brazes structurally and electrically connects the first electrode to the metal joint housing and forms a gas tight seal between the first electrode and the second electrode.

  1. Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields

    SciTech Connect (OSTI)

    Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

    2011-07-01

    In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

  2. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect (OSTI)

    Connie Reichert

    2005-09-01

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  3. United States and Czech Republic Establish a Joint Civil Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Czech Republic Establish a Joint Civil Nuclear Cooperation Center in Prague United States and Czech Republic Establish a Joint Civil Nuclear Cooperation Center in Prague June 12, ...

  4. New Report Describes Joint Opportunities for Natural Gas and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel Cell Vehicle Markets New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel Cell Vehicle...

  5. Ryazan Metal Ceramics Instrumentation Plant Joint Stock Co RMCIP...

    Open Energy Info (EERE)

    Ryazan Metal Ceramics Instrumentation Plant Joint Stock Co RMCIP JSC Jump to: navigation, search Name: Ryazan Metal Ceramics Instrumentation Plant Joint Stock Co (RMCIP JSC) Place:...

  6. Tianjin Lishen Battery Joint stock Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Lishen Battery Joint stock Co Ltd Jump to: navigation, search Name: Tianjin Lishen Battery Joint-stock Co Ltd Place: Tianjin, Tianjin Municipality, China Zip: 300384 Product:...

  7. 2013 Progress Report -- DOE Joint Genome Institute (Program Document...

    Office of Scientific and Technical Information (OSTI)

    Program Document: 2013 Progress Report -- DOE Joint Genome Institute Citation Details In-Document Search Title: 2013 Progress Report -- DOE Joint Genome Institute In October 2012, ...

  8. Joint inversion of electrical and seismic data for Fracture char...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char. ...

  9. Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attendees List Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Attendees List Attendee list from the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May...

  10. Joint Venture Established Between Russian Weapons Plant And the...

    National Nuclear Security Administration (NNSA)

    Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Library Press Releases Joint Venture Established Between Russian Weapons Plant ... Joint Venture Established...

  11. International Power Girasolar joint company | Open Energy Information

    Open Energy Info (EERE)

    search Name: International Power Girasolar joint company Sector: Solar Product: Joint venture announced between US IPWG and Netherlands-headquartered Girasolar, to...

  12. Comparison of Joint Modeling Approaches Including Eulerian Sliding...

    Office of Scientific and Technical Information (OSTI)

    In all cases the sliding interfaces are tracked explicitly without homogenization or blending the joint and block response into an average response. In general, rock joints will ...

  13. Joint Global Change Research Institute | Open Energy Information

    Open Energy Info (EERE)

    solutions. Joint Institute staff bring decades of experience and expertise to bear in science, technology, economics, and policy. "The Joint Global Change Research Institute...

  14. DOE Joint Solid-State Lighting Roundtables on Science Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Joint Solid-State Lighting Roundtables on Science Challenges DOE Joint Solid-State Lighting Roundtables on Science Challenges PDF icon 2014BES-EEREroundtables...

  15. Joint Statement of Intent Concerning the Arak Heavy Water Reactor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Intent Concerning the Arak Heavy Water Reactor Research Reactor Modernization Project under the Joint Comprehensive Plan of Action Joint Statement of Intent Concerning the Arak ...

  16. National Report Joint Convention on the Safety of Spent Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report Joint Convention on the Safety of Spent Fuel Management...

  17. United States -Japan Joint Nuclear Energy Action Plan | Department...

    Office of Environmental Management (EM)

    -Japan Joint Nuclear Energy Action Plan United States -Japan Joint Nuclear Energy Action Plan President Bush of the United States and Prime Minister Koizumi of Japan have both...

  18. Joint Implementation Network (JIN) | Open Energy Information

    Open Energy Info (EERE)

    2.2 JIN Programs 3 References About Joint Implementation Network (JIN) was established in 1995 as knowledge centre for climate change policy issues in general and the concept of...

  19. Joint Genome Institute's Automation Approach and History

    SciTech Connect (OSTI)

    Roberts, Simon

    2006-07-05

    Department of Energy/Joint Genome Institute (DOE/JGI) collaborates with DOE national laboratories and community users, to advance genome science in support of the DOE missions of clean bio-energy, carbon cycling, and bioremediation.

  20. Safety Monitor Joint Working Group (JWG) Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 th Meeting of the Joint Working Group of the U.S.-Japan Coordinating Committee of Fusion Energy on Safety in Inter-Institutional Collaborations (U.S.-Japan Safety Monitoring...

  1. Application of extraction chromatography to actinide decontamination of hydrochloric acid effluent streams

    SciTech Connect (OSTI)

    Schulte, L.D.; McKee, S.D.; Salazar, R.R.

    1996-05-01

    Extraction chromatography is under development as a method to lower actinide activity levels in effluent steams. Successful application of this technique for radioactive liquid waste treatment would provide a low activity feed stream for HCl recycle, reduce the loss of radioactivity to the environment in aqueous effluents, and would lower the quantity and reduce the hazard of the associated solid waste. The extraction of Pu and Am from HCl solutions was examined for several commercial and laboratory-produced sorbed resin materials. Inert supports included silica and polymer beads of differing mesh sizes. The support material was coated with either n-octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (O-CMPO) or di-(4-t-butylphenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (D-CMPO) as an extractant, and using either tributyl phosphate (TBP) or diamyl amylphosphonate (DAAP) as a diluent. Solutions tested were effluent streams generated by ion exchange and solvent extraction recovery of Pu. A finer mesh silica support material demonstrated advantages in removal of trivalent Am in some tests, but also showed a tendency toward plugging and channeling as column sizes and flow rates were increased. Larger bead sizes showed better physical properties as the process was scaled up to removal of gram quantities of Am from large effluent volumes. The ratio of extractant to diluent also appeared to play a role in the retention of Am. In direct comparative studies, when loaded on identical supports and diluent conditions, D-CMPO demonstrated better Am retention than O-CMPO from HCl process effluents.

  2. Hollow-fiber supported liquid membrane (HFSLM) for the separation of lanthanides and actinides

    SciTech Connect (OSTI)

    Mohapatra, P.K.; Ansari, S.A.; Bhattacharyya, A.; Manchanda, V.K.; Patil, C.B.

    2008-07-01

    The transport behavior of Nd(III) was investigated using hollow-fiber supported liquid membranes (HFSLM) from an acidic feed solution using N,N,N',N'-tetraoctyl-diglycolamide (TODGA) in normal paraffinic hydrocarbon (NPH) as the carrier. Near quantitative transport (>99%) of Nd(III) from 500 mL of feed containing 1 g/L Nd in 3.5 M HNO{sub 3} was possible in about 45 minutes. Quantitative transport time increased when the volume or Nd(III ) concentration in the feed was increased. The liquid membrane had excellent stability as indicated by eight consecutive runs that gave consistent transport rates. The HFSLM data using Cyanex- 301 in n-dodecane as carrier extractant for the lanthanide-actinide separation with the feed solution 1 M NaNO{sub 3} at pH 3.5 and stripping solution 0.01 M EDTA at a pH 3.5 were promising. (authors)

  3. Improving the actinides recycling in closed fuel cycles, a major step towards nuclear energy sustainability

    SciTech Connect (OSTI)

    Poinssot, C.; Grandjean, S.; Masson, M.; Bouillis, B.; Warin, D.

    2013-07-01

    Increasing the sustainability of nuclear energy is a longstanding road that requires a stepwise approach to successively tackle the following 3 objectives. First of all, optimize the consumption of natural resource to preserve them for future generations and hence guarantee the energetic independence of the countries (no uranium ore is needed anymore). The current twice-through cycle of Pu implemented by France, UK, Japan and soon China is a first step in this direction and already allows the development and optimization of the relevant industrial processes. It also allows a major improvement regarding the conditioning of the ultimate waste in a durable and robust nuclear glass. Secondly, the recycling of americium could be an interesting option for the future with the deployment of FR fleet to save the repository resource and optimize its use by allowing a denser disposal. It would limit the burden towards the future generations and the need for additional repositories before several centuries. Thirdly, the recycling of the whole minor actinides inventory could be an interesting option for the far-future for strongly decreasing the waste long-term toxicity, down to a few centuries. It would bring the waste issue back within the human history, which should promote its acceptance by the social opinion.

  4. Approach for Validating Actinide and Fission Product Compositions for Burnup Credit Criticality Safety Analyses

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina; Wagner, John C

    2014-01-01

    This paper describes a depletion code validation approach for criticality safety analysis using burnup credit for actinide and fission product nuclides in spent nuclear fuel (SNF) compositions. The technical basis for determining the uncertainties in the calculated nuclide concentrations is comparison of calculations to available measurements obtained from destructive radiochemical assay of SNF samples. Probability distributions developed for the uncertainties in the calculated nuclide concentrations were applied to the SNF compositions of a criticality safety analysis model by the use of a Monte Carlo uncertainty sampling method to determine bias and bias uncertainty in effective neutron multiplication factor. Application of the Monte Carlo uncertainty sampling approach is demonstrated for representative criticality safety analysis models of pressurized water reactor spent fuel pool storage racks and transportation packages using burnup-dependent nuclide concentrations calculated with SCALE 6.1 and the ENDF/B-VII nuclear data. The validation approach and results support a recent revision of the U.S. Nuclear Regulatory Commission Interim Staff Guidance 8.

  5. CHARACTERIZATION OF DAMPING IN BOLTED LAP JOINTS

    SciTech Connect (OSTI)

    C. MALONEY; D. PEAIRS; ET AL

    2000-08-01

    The dynamic response of a jointed beam was measured in laboratory experiments. The data were analyzed and the system was mathematically modeled to establish plausible representations of joint damping behavior. Damping is examined in an approximate, local linear framework using log decrement and half power bandwidth approaches. in addition, damping is modeled in a nonlinear framework using a hybrid surface irregularities model that employs a bristles-construct. Experimental and analytical results are presented.

  6. Effect of microvoids on the shock initiation of PETN

    SciTech Connect (OSTI)

    Maienschein, J.L.; Urtiew, P.A.; Garcia, F.; Chandler, J.B.

    1998-07-01

    We demonstrate that the introduction of microvoids as glass microballoons sensitizes high-density solvent-pressed PETN to shock initiation. At input pressures ranging from 1.4{endash}2.0 GPa, shock propagation velocities are higher and run distances to detonation are shorter for PETN sensitized by microballoons. By selecting the size and density of microballoons, we can therefore study the effect of void size and density on shock initiation by hot spots. {copyright} {ital 1998 American Institute of Physics.}

  7. Effect of microvoids on the shock initiation of PETN

    SciTech Connect (OSTI)

    Maienschein, J.L.; Urtiew, P.A.; Garcia, F.; Chandler, J.B.

    1996-07-01

    We demonstrate that the introduction of microvoids as glass microballoons sensitizes high-density solvent-pressed PETN to shock initiation. At input pressures ranging from 1.4-2.0 GPa, shock propagation velocities are higher and run distances to detonation are shorter for PETN sensitized by microballoons. By selecting the size and density of microballoons, we can therefore study the effect of void size and density on shock initiation by hot spots.

  8. Comparison of Hydrocode Simulations with Measured Shock Wave Velocities

    SciTech Connect (OSTI)

    Hixson, R. S.; Veeser, L. R.

    2014-11-30

    We have conducted detailed 1- and 2-dimensional hydrodynamics calculations to assess the quality of simulations commonly made to understand various shock processes in a sample and to design shock experiments. We began with relatively simple shock experiments, where we examined the effects of the equation of state and the viscoplastic strength models. Eventually we included spallation in copper and iron and a solid-solid phase transformation in iron to assess the quality of the damage and phase transformation simulations.

  9. The Sandia MEMS Passive Shock Sensor : dormancy and aging. (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect The Sandia MEMS Passive Shock Sensor : dormancy and aging. Citation Details In-Document Search Title: The Sandia MEMS Passive Shock Sensor : dormancy and aging. This report presents the results of an aging experiment that was established in FY09 and completed in FY10 for the Sandia MEMS Passive Shock Sensor. A total of 37 packages were aged at different temperatures and times, and were then tested after aging to determine functionality. Aging temperatures were

  10. Critical condition in gravitational shock wave collision and heavy ion

    Office of Scientific and Technical Information (OSTI)

    collisions (Journal Article) | SciTech Connect Critical condition in gravitational shock wave collision and heavy ion collisions Citation Details In-Document Search Title: Critical condition in gravitational shock wave collision and heavy ion collisions In this paper, we derive a critical condition for matter equilibration in heavy ion collisions using a holographic approach. Gravitational shock waves with infinite transverse extension are used to model an infinite nucleus. We construct the

  11. Thermal shock resistance ceramic insulator (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Thermal shock resistance ceramic insulator Citation Details In-Document Search Title: Thermal shock resistance ceramic insulator Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor

  12. The Sandia MEMS Passive Shock Sensor : FY08 failure analysis...

    Office of Scientific and Technical Information (OSTI)

    analysis activities. Citation Details In-Document Search Title: The Sandia MEMS Passive Shock Sensor : FY08 failure analysis activities. You are accessing a document from the...

  13. The Sandia MEMS Passive Shock Sensor : FY08 failure analysis...

    Office of Scientific and Technical Information (OSTI)

    analysis activities. Citation Details In-Document Search Title: The Sandia MEMS Passive Shock Sensor : FY08 failure analysis activities. No abstract prepared. Authors: Walraven,...

  14. Kinetic Simulations of Particle Acceleration at Shocks (Conference...

    Office of Scientific and Technical Information (OSTI)

    and electron DSA is efficient at oblique shocks. Authors: Caprioli, Damiano 1 ; Guo, Fan 2 + Show Author Affiliations Princeton University Los Alamos National Laboratory...

  15. Vorticity dynamics after the shock–turbulence interaction

    SciTech Connect (OSTI)

    Livescu, Daniel; Ryu, Jaiyoung

    2015-07-23

    In this article, the interaction of a shock wave with quasi-vortical isotropic turbulence (IT) represents a basic problem for studying some of the phenomena associated with high speed flows, such as hypersonic flight, supersonic combustion and Inertial Confinement Fusion (ICF). In general, in practical applications, the shock width is much smaller than the turbulence scales and the upstream turbulent Mach number is modest. In this case, recent high resolution shock-resolved Direct Numerical Simulations (DNS) (Ryu and Livescu, J Fluid Mech 756, R1, 2014) show that the interaction can be described by the Linear Interaction Approximation (LIA). Using LIA to alleviate the need to resolve the shock, DNS post-shock data can be generated at much higher Reynolds numbers than previously possible. Here, such results with Taylor Reynolds number approximately 180 are used to investigate the changes in the vortical structure as a function of the shock Mach number, Ms, up to Ms = 10. It is shown that, as Ms increases, the shock interaction induces a tendency towards a local axisymmetric state perpendicular to the shock front, which has a profound influence on the vortex-stretching mechanism and divergence of the Lamb vector and, ultimately, on the flow evolution away from the shock.

  16. Coherent THz electromagnetic radiation emission as a shock wave...

    Office of Scientific and Technical Information (OSTI)

    electromagnetic radiation emission as a shock wave diagnostic and probe of ultrafast phase transformations Citation Details In-Document Search Title: Coherent THz...

  17. Ultrafast kinetics subsequent to shock compression in an oxygen...

    Office of Scientific and Technical Information (OSTI)

    subsequent to shock compression in an oxygen-balanced mixture of nitromethane and hydrogen peroxide Citation Details In-Document Search Title: Ultrafast kinetics subsequent to...

  18. The Sandia MEMS Passive Shock Sensor : dormancy and aging. (Technical...

    Office of Scientific and Technical Information (OSTI)

    INSTRUMENTATION; AGING; SENSORS; SHOCK WAVES; PERFORMANCE TESTING; MICROELECTRONIC CIRCUITS Word Cloud More Like This Full Text preview image File size NAView Full Text View...

  19. Hot spot-derived shock initiation phenomena in heterogeneous...

    Office of Scientific and Technical Information (OSTI)

    microm diameter silica samples at high shock input pressures, indicating that the influence of hot spots on the initiation process was minimal under these conditions....

  20. Update on the Sandia MEMS Passive Shock Sensor. (Conference)...

    Office of Scientific and Technical Information (OSTI)

    on the Sandia MEMS Passive Shock Sensor. Abstract not provided. Authors: Mitchell, John Anthony ; Gustafson, Carl Publication Date: 2008-03-01 OSTI Identifier: 1145847 Report...

  1. Hot spot-derived shock initiation phenomena in heterogeneous...

    Office of Scientific and Technical Information (OSTI)

    microm diameter silica samples at high shock input pressures, indicating that the influence of hot spots on the initiation process was minimal under these conditions. ...

  2. Magnetic fields in relativistic collisionless shocks

    SciTech Connect (OSTI)

    Santana, Rodolfo; Kumar, Pawan [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Barniol Duran, Rodolfo, E-mail: santana@astro.as.utexas.edu, E-mail: pk@astro.as.utexas.edu, E-mail: rbarniol@phys.huji.ac.il [Racah Institute for Physics, The Hebrew University, Jerusalem 91904 (Israel)

    2014-04-10

    We present a systematic study on magnetic fields in gamma-ray burst (GRB) external forward shocks (FSs). There are 60 (35) GRBs in our X-ray (optical) sample, mostly from Swift. We use two methods to study ? {sub B} (fraction of energy in magnetic field in the FS): (1) for the X-ray sample, we use the constraint that the observed flux at the end of the steep decline is ? X-ray FS flux; (2) for the optical sample, we use the condition that the observed flux arises from the FS (optical sample light curves decline as ?t {sup –1}, as expected for the FS). Making a reasonable assumption on E (jet isotropic equivalent kinetic energy), we converted these conditions into an upper limit (measurement) on ? {sub B} n {sup 2/(p+1)} for our X-ray (optical) sample, where n is the circumburst density and p is the electron index. Taking n = 1 cm{sup –3}, the distribution of ? {sub B} measurements (upper limits) for our optical (X-ray) sample has a range of ?10{sup –8}-10{sup –3} (?10{sup –6}-10{sup –3}) and median of ?few × 10{sup –5} (?few × 10{sup –5}). To characterize how much amplification is needed, beyond shock compression of a seed magnetic field ?10 ?G, we expressed our results in terms of an amplification factor, AF, which is very weakly dependent on n (AF?n {sup 0.21}). The range of AF measurements (upper limits) for our optical (X-ray) sample is ?1-1000 (?10-300) with a median of ?50 (?50). These results suggest that some amplification, in addition to shock compression, is needed to explain the afterglow observations.

  3. Predictions of pure liquid shock Hugoniots

    SciTech Connect (OSTI)

    Hobbs, M.L.; Baer, M.R.

    1998-06-01

    Determination of product species and associated equations-of-state (EOS) for energetic materials such as pyrotechnics with complex elemental compositions remains a major unsolved problem. Although, empirical EOS models may be calibrated to replicate detonation conditions within experimental variability (5--10%), different states, e.g. expansion, may produce significant discrepancy with data if the basic form of the EOS model is incorrect. A more physically realistic EOS model based on intermolecular potentials, such as the Jacobs Cowperthwaite Zwisler (JCZ3) EOS, is needed to predict detonation states as well as expanded states. Predictive capability for any EOS requires a large species data base composed of a wide variety of elements. Unfortunately, only 20 species have known exponential 6 (EXP 6) molecular force constants which are used in the JCZ3-EOS. Of these 20 species, only 10 have been adequately compared to experimental data such as molecular scattering or shock Hugoniot data. Since data in the strongly repulsive region of the molecular potential is limited, alternative methods must be found to deduce force constants for a larger number of species. The objective of the present study is to determine JCZ3 product species force constants using corresponding state theory. Intermolecular potential parameters were obtained for a variety of gas species using a simple corresponding states technique with critical volume and critical temperature. A more complex, four parameter corresponding state method with shape and polarity corrections was also used to obtain intermolecular potential parameters. Both corresponding state methods were used to predict shock Hugoniot data obtained from pure liquids. The simple corresponding state method is shown to give adequate agreement with shock Hugoniot data.

  4. 2010_Nuclear_Security_Joint_Statement.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    _Nuclear_Security_Joint_Statement.pdf 2010_Nuclear_Security_Joint_Statement.pdf PDF icon 2010_Nuclear_Security_Joint_Statement.pdf More Documents & Publications United States and France Sign Joint Statement on Civil Liability for Nuclear Damage US-Japan_NuclearEnergyActionPlan.pdf Before the Senate Armed Services Committee

  5. DOE - NNSA/NFO -- Photo Library JASPER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JASPER NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Photo Library - JASPER The Joint Actinide Shock Physics Experimental Research Facility plays an integral role in the testing of the nation's nuclear weapons stockpile by providing a method to generate and measure data pertaining to the properties of materials (radioactive chemical elements) at high shock pressures, temperatures and strain rates. Instructions: Click the photograph THUMBNAIL to view the photograph details Click

  6. Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping

    SciTech Connect (OSTI)

    Permana, Sidik; Novitrian,; Waris, Abdul; Ismail; Suzuki, Mitsutoshi; Saito, Masaki

    2014-09-30

    Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissile material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.

  7. Handbook on dynamics of jointed structures.

    SciTech Connect (OSTI)

    Ames, Nicoli M.; Lauffer, James P.; Jew, Michael D.; Segalman, Daniel Joseph; Gregory, Danny Lynn; Starr, Michael James; Resor, Brian Ray

    2009-07-01

    The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided.

  8. Local structure in solid solutions of stabilised zirconia with actinide dioxides (UO{sub 2}, NpO{sub 2})

    SciTech Connect (OSTI)

    Walter, Marcus; Somers, Joseph; Bouexiere, Daniel; Rothe, Joerg

    2011-04-15

    The local structure of (Zr,Lu,U)O{sub 2-x} and (Zr,Y,Np)O{sub 2-x} solid solutions has been investigated by extended X-ray absorption fine structure (EXAFS). Samples were prepared by mixing reactive (Zr,Lu)O{sub 2-x} and (Zr,Y)O{sub 2-x} precursor materials with the actinide oxide powders, respectively. Sintering at 1600 {sup o}C in Ar/H{sub 2} yields a fluorite structure with U(IV) and Np(IV). As typical for stabilised zirconia the metal-oxygen and metal-metal distances are characteristic for the different metal ions. The bond lengths increase with actinide concentration, whereas highest adaptation to the bulk stabilised zirconia structure was observed for U---O and Np---O bonds. The Zr---O bond shows only a slight increase from 2.14 A at 6 mol% actinide to 2.18 A at infinite dilution in UO{sub 2} and NpO{sub 2}. The short interatomic distance between Zr and the surrounding oxygen and metal atoms indicate a low relaxation of Zr with respect to the bulk structure, i.e. a strong Pauling behaviour. -- Graphical abstract: Metal-oxygen bond distances in (Zr,Lu,U)O{sub 2-x} solid solutions with different oxygen vacancy concentrations (Lu/Zr=1 and Lu/Zr=0.5). Display Omitted Research Highlights: {yields} EXAFS indicates high U and Np adaption to the bulk structure of stabilised zirconia. {yields} Zr---O bond length is 2.18 A at infinite Zr dilution in UO{sub 2} and NpO{sub 2}. {yields} Low relaxation (strong Pauling behaviour) of Zr explains its low solubility in UO{sub 2}.

  9. Qualification of the Joints for the ITER Central Solenoid

    SciTech Connect (OSTI)

    Martovetsky, N; Berryhill, A; Kenney, S

    2011-09-01

    The ITER Central Solenoid has 36 interpancake joints, 12 bus joints, and 12 feeder joints in the magnet. The joints are required to have resistance below 4 nOhm at 45 kA at 4.5 K. The US ITER Project Office developed two different types of interpancake joints with some variations in details in order to find a better design, qualify the joints, and establish a fabrication process. We built and tested four samples of the sintered joints and two samples with butt-bonded joints (a total of eight joints). Both designs met the specifications. Results of the joint development, test results, and selection of the baseline design are presented and discussed in the paper. The ITER Central Solenoid (CS) consists of six modules. Each module is composed of six wound hexapancakes and one quadrapancake. The multipancakes are connected electrically and hydraulically by in-line interpancake joints. The joints are located at the outside diameter (OD) of the module. Cable in conduit conductor (CICC) high-current joints are critical elements in the CICC magnets. In addition to low resistivity, the CS joints must fit a space envelope equivalent to the regular conductor cross section and must have low hydraulic impedance and enough structural strength to withstand the hoop and compressive forces during operation, including cycling. This paper is the continuation of the work reported on the intermodule joints.

  10. Shock wave convergence in water with parabolic wall boundaries

    SciTech Connect (OSTI)

    Yanuka, D.; Shafer, D.; Krasik, Ya.

    2015-04-28

    The convergence of shock waves in water, where the cross section of the boundaries between which the shock wave propagates is either straight or parabolic, was studied. The shock wave was generated by underwater electrical explosions of planar Cu wire arrays using a high-current generator with a peak output current of ?45?kA and rise time of ?80?ns. The boundaries of the walls between which the shock wave propagates were symmetric along the z axis, which is defined by the direction of the exploding wires. It was shown that with walls having a parabolic cross section, the shock waves converge faster and the pressure in the vicinity of the line of convergence, calculated by two-dimensional hydrodynamic simulations coupled with the equations of state of water and copper, is also larger.

  11. The boundary effects of the shock wave dispersion in discharges

    SciTech Connect (OSTI)

    Markhotok, A.; Popovic, S.; Vuskovic, L.

    2008-03-15

    Interaction of shock waves with a weakly ionized gas generated by discharges has been studied. An additional thermal mechanism of the shock wave dispersion on the boundary between a neutral gas and discharge has been proposed [A. Markhotok, S. Popovic, and L. Vuskovic, Proceedings of the 15th International Conference on Atomic Processes in Plasmas, March 19-22, 2007 (NIST, Gaitersburg, MD, 2007)]. This mechanism can explain a whole set of thermal features of the shock wave-plasma interaction, including acceleration of the shock wave, broadening or splitting of the deflection signals and its consecutive restoration. Application has been made in the case of a shock wave interacting with a laser induced plasma. The experimental observations support well the results of calculation based on this model.

  12. Shock-ignition relevant experiments with planar targets on OMEGA

    SciTech Connect (OSTI)

    Hohenberger, M.; Hu, S. X.; Anderson, K. S.; Boehly, T. R.; Sangster, T. C.; Seka, W.; Stoeckl, C.; Yaakobi, B.; Theobald, W.; Lafon, M.; Nora, R.; Fusion Science Center, University of Rochester, Rochester, New York 14623 ; Betti, R.; Meyerhofer, D. D.; Fusion Science Center, University of Rochester, Rochester, New York 14623; Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14627 ; Casner, A.; Fratanduono, D. E.; Ribeyre, X.; Schurtz, G.

    2014-02-15

    We report on laser-driven, strong-shock generation and hot-electron production in planar targets in the presence of a pre-plasma at shock-ignition (SI) relevant laser and pre-plasma conditions. 2-D simulations reproduce the shock dynamics well, indicating ablator shocks of up to 75 Mbar have been generated. We observe hot-electron temperatures of ?70?keV at intensities of 1.4?×?10{sup 15}?W/cm{sup 2} with multiple overlapping beams driving the two-plasmon decay instability. When extrapolated to SI-relevant intensities of ?10{sup 16}?W/cm{sup 2}, the hot electron temperature will likely exceed 100?keV, suggesting that tightly focused beams without overlap are better suited for launching the ignitor shock.

  13. Fabrication and Pre-irradiation Characterization of a Minor Actinide and Rare Earth Containing Fast Reactor Fuel Experiment for Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Timothy A. Hyde

    2012-06-01

    The United States Department of Energy, seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter lived fission products, thereby decreasing the volume of material requiring disposal and reducing the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository. This transmutation of the long lived actinides plutonium, neptunium, americium and curium can be accomplished by first separating them from spent Light Water Reactor fuel using a pyro-metalurgical process, then reprocessing them into new fuel with fresh uranium additions, and then transmuted to short lived nuclides in a liquid metal cooled fast reactor. An important component of the technology is developing actinide-bearing fuel forms containing plutonium, neptunium, americium and curium isotopes that meet the stringent requirements of reactor fuels and materials.

  14. Synergistic extraction of trivalent lanthanides and actinides from acidic chloride media by tetra(n-octyl)diglycolamide

    SciTech Connect (OSTI)

    McAlister, D.R.; Horwitz, E. Philip

    2008-07-01

    Ferric chloride has been found to induce a significant synergistic enhancement of the extraction of trivalent lanthanides and actinides by tetra(n-octyl)diglycolamide (TODGA) from acidic chloride media. In this manuscript, results of a thorough investigation of the TODGA-HCl-Fe(III) system using solvent-extraction experiments designed to elucidate the stoichiometry of the synergistic species will be described. Results for Ac(III), Am(III), Eu(III), Pm(III), Y(III), Th(IV), Pu(IV), and U(VI) will be discussed. (authors)

  15. Thermal analysis for fuel handling system for sodium cooled reactor considering minor actinide-bearing metal fuel.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The Advanced Burner Reactor (ABR) is one of the components of the Global Nuclear Energy Partnership (GNEP) used to close the fuel cycle. ABR is a sodium-cooled fast reactor that is used to consume transuranic elements resulting from the reprocessing of light water reactor spent nuclear fuel. ABR-1000 [1000 MW(thermal)] is a fast reactor concept created at Argonne National Laboratory to be used as a reference concept for various future trade-offs. ABR-1000 meets the GNEP goals although it uses what is considered base sodium fast reactor technology for its systems and components. One of the considerations of any fast reactor plant concept is the ability to perform fuel-handling operations with new and spent fast reactor fuel. The transmutation fuel proposed as the ABR fuel has a very little experience base, and thus, this paper investigates a fuel-handling concept and potential issues of handling fast reactor fuel containing minor actinides. In this study, two thermal analyses supporting a conceptual design study on the ABR-1000 fuel-handling system were carried out. One analysis investigated passive dry spent fuel storage, and the other analysis investigated a fresh fuel shipping cask. Passive dry storage can be made suitable for the ABR-1000 spent fuel storage with sodium-bonded metal fuel. The thermal analysis shows that spent fast reactor fuel with a decay heat of 2 kW or less can be stored passively in a helium atmosphere. The 2-kW value seems to be a reasonable and practical level, and a combination of reasonably-sized in-sodium storage followed by passive dry storage could be a candidate for spent fuel storage for the next-generation sodium-cooled reactor with sodium-bonded metal fuel. Requirements for the shipping casks for minor actinide-bearing fuel with a high decay heat level are also discussed in this paper. The shipping cask for fresh sodium-cooled-reactor fuel should be a dry type to reduce the reaction between residual moisture on fresh fuel and the sodium coolant. The cladding temperature requirement is maintained below the creep temperature limit to avoid any damage before core installation. The thermal analysis shows that a helium gas-filled cask can accommodate ABR-1000 fresh minor actinide-bearing fuel with 700-W decay heat. The above analysis results revealed the overall requirement for minor actinide-bearing metal fuel handling. The information is thought to be helpful in the design of the ABR-1000 and future sodium-cooled-reactor fuel-handling system.

  16. Atomistic Calculations of the Effect of Minor Actinides on Thermodynamic and Kinetic Properties of UO{sub 2{+-}x}

    SciTech Connect (OSTI)

    Deo, Chaitanya; Adnersson, Davis; Battaile, Corbett; uberuaga, Blas

    2012-10-30

    The team will examine how the incorporation of actinide species important for mixed oxide (MOX) and other advanced fuel designs impacts thermodynamic quantities of the host UO{sub 2} nuclear fuel and how Pu, Np, Cm and Am influence oxygen mobility. In many cases, the experimental data is either insufficient or missing. For example, in the case of pure NpO2, there is essentially no experimental data on the hyperstoichiometric form it is not even known if hyperstoichiometry NpO{sub 2{+-}x} is stable. The team will employ atomistic modeling tools to calculate these quantities

  17. Thermal-Hydraulic Analyses of Transients in an Actinide-Burner Reactor Cooled by Forced Convection of Lead Bismuth

    SciTech Connect (OSTI)

    Davis, Cliff Bybee

    2003-09-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and the Massachusetts Institute of Technology (MIT) are investigating the suitability of lead or lead–bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The current analysis evaluated a pool type design that relies on forced circulation of the primary coolant, a conventional steam power conversion system, and a passive decay heat removal system. The ATHENA computer code was used to simulate various transients without reactor scram, including a primary coolant pump trip, a station blackout, and a step reactivity insertion. The reactor design successfully met identified temperature limits for each of the transients analyzed.

  18. ESnet, CENIC ESnet Announce Joint Cybersecurity Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESnet, CENIC Announce Joint Cybersecurity Initiative News & Publications ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us Media Jon Bashor, jbashor@lbl.gov, +1 510 486 5849 or Media@es.net Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net ESnet, CENIC Announce Joint

  19. Flash photolysis-shock tube studies

    SciTech Connect (OSTI)

    Michael, J.V.

    1993-12-01

    Even though this project in the past has concentrated on the measurement of thermal bimolecular reactions of atomic species with stable molecules by the flash or laser photolysis-shock tube (FP- or LP-ST) method using atomic resonance absorption spectrometry (ARAS) as the diagnostic technique, during the past year the authors have concentrated on studies of the thermal decompositions of selected chlorocarbon molecules. These studies are necessary if the degradation of chlorine containing organic molecules by incineration are to be understood at the molecular level. Clearly, destruction of these molecules will not only involve abstraction reactions, when possible, but also thermal decomposition followed by secondary reactions of the initially formed atoms and radicals. Studies on the thermal decomposition of CH{sub 3}Cl are complete, and the curve-of-growth for Cl-atom atomic resonance absorption has been determined. The new thermal decomposition studies are similar to those already reported for CH{sub 3}Cl.

  20. High Bandwidth Differential Amplifier for Shock Experiments

    SciTech Connect (OSTI)

    Ross, P. W., Tran, V., Chau, R.

    2012-04-30

    We developed a high bandwidth differential amplifier for gas gun shock experiments/applications. The circuit has a bandwidth > 1 GHz, and is capable of measuring signals of ?1.5 V with a common mode rejection of 250 V. Conductivity measurements of gas gun targets are measured by flowing high currents through the targets. The voltage is measured across the target using a technique similar to a four-point probe. Because of the design of the current source and load, the target voltage is approximately 250 V relative to ground. Since the expected voltage change in the target is < 1 V, the differential amplifier must have a large common mode rejection. High pass filters suppress internal ringing of operational amplifiers. Results of bench tests are shown.

  1. Microsoft Word - Glovebox revise _6_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DAF Upgrades Facilitate JASPER Mission The Device Assembly Facility (DAF) at the Nevada Test Site (NTS) recently has undergone an upgrade that will enhance the site's stockpile stewardship role. The DAF has been fitted with the capability to assemble targets for the Joint Actinide Shock Physics Experimental Research (JASPER) facility. Previously targets were assembled at Lawrence Livermore National Laboratory (LLNL) and shipped to NTS for testing. Richard Higgs, program leader of the Joint

  2. Injection of ?-like suprathermal particles into diffusive shock acceleration

    SciTech Connect (OSTI)

    Kang, Hyesung; Petrosian, Vahé; Ryu, Dongsu; Jones, T. W. E-mail: vahe@stanford.edu E-mail: twj@msi.umn.edu

    2014-06-20

    We consider a phenomenological model for the thermal leakage injection in the diffusive shock acceleration (DSA) process, in which suprathermal protons and electrons near the shock transition zone are assumed to have the so-called ?-distributions produced by interactions of background thermal particles with pre-existing and/or self-excited plasma/MHD waves or turbulence. The ?-distribution has a power-law tail, instead of an exponential cutoff, well above the thermal peak momentum. So there are a larger number of potential seed particles with momentum, above that required for participation in the DSA process. As a result, the injection fraction for the ?-distribution depends on the shock Mach number much less severely compared to that for the Maxwellian distribution. Thus, the existence of ?-like suprathermal tails at shocks would ease the problem of extremely low injection fractions, especially for electrons and especially at weak shocks such as those found in the intracluster medium. We suggest that the injection fraction for protons ranges 10{sup –4}-10{sup –3} for a ?-distribution with 10 ? ? {sub p} ? 30 at quasi-parallel shocks, while the injection fraction for electrons becomes 10{sup –6}-10{sup –5} for a ?-distribution with ? {sub e} ? 2 at quasi-perpendicular shocks. For such ? values the ratio of cosmic ray (CR) electrons to protons naturally becomes K {sub e/p} ? 10{sup –3}-10{sup –2}, which is required to explain the observed ratio for Galactic CRs.

  3. Nature of the wiggle instability of galactic spiral shocks

    SciTech Connect (OSTI)

    Kim, Woong-Tae; Kim, Yonghwi; Kim, Jeong-Gyu, E-mail: wkim@astro.snu.ac.kr, E-mail: kimyh@astro.snu.ac.kr, E-mail: jgkim@astro.snu.ac.kr [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-07-01

    Gas in disk galaxies interacts nonlinearly with an underlying stellar spiral potential to form galactic spiral shocks. While numerical simulations typically show that spiral shocks are unstable to wiggle instability (WI) even in the absence of magnetic fields and self-gravity, its physical nature has remained uncertain. To clarify the mechanism behind the WI, we conduct a normal-mode linear stability analysis and nonlinear simulations assuming that the disk is isothermal and infinitesimally thin. We find that the WI is physical, originating from the generation of potential vorticity at a deformed shock front, rather than Kelvin-Helmholtz instabilities as previously thought. Since gas in galaxy rotation periodically passes through the shocks multiple times, the potential vorticity can accumulate successively, setting up a normal mode that grows exponentially with time. Eigenfunctions of the WI decay exponentially downstream from the shock front. Both shock compression of acoustic waves and a discontinuity of shear across the shock stabilize the WI. The wavelength and growth time of the WI depend on the arm strength quite sensitively. When the stellar-arm forcing is moderate at 5%, the wavelength of the most unstable mode is about 0.07 times the arm-to-arm spacing, with the growth rate comparable to the orbital angular frequency, which is found to be in good agreement with the results of numerical simulations.

  4. Explosively driven air blast in a conical shock tube

    SciTech Connect (OSTI)

    Stewart, Joel B. Pecora, Collin

    2015-03-15

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goal was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.

  5. Wide temperature range seal for demountable joints

    DOE Patents [OSTI]

    Sixsmith, H.; Valenzuela, J.A.; Nutt, W.E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof. 6 figures.

  6. Wide temperature range seal for demountable joints

    DOE Patents [OSTI]

    Sixsmith, Herbert (Norwich, VT); Valenzuela, Javier A. (Grantham, NH); Nutt, William E. (Enfield, NH)

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof.

  7. Joint with application in electrochemical devices

    DOE Patents [OSTI]

    Weil, K Scott [Richland, WA; Hardy, John S [Richland, WA

    2010-09-14

    A joint for use in electrochemical devices, such as solid oxide fuel cells (SOFCs), oxygen separators, and hydrogen separators, that will maintain a hermetic seal at operating temperatures of greater than 600.degree. C., despite repeated thermal cycling excess of 600.degree. C. in a hostile operating environment where one side of the joint is continuously exposed to an oxidizing atmosphere and the other side is continuously exposed to a wet reducing gas. The joint is formed of a metal part, a ceramic part, and a flexible gasket. The flexible gasket is metal, but is thinner and more flexible than the metal part. As the joint is heated and cooled, the flexible gasket is configured to flex in response to changes in the relative size of the metal part and the ceramic part brought about by differences in the coefficient of thermal expansion of the metal part and the ceramic part, such that substantially all of the tension created by the differences in the expansion and contraction of the ceramic and metal parts is absorbed and dissipated by flexing the flexible gasket.

  8. SiC Schottky Diode Detectors for Measurement of Actinide Concentrations from Alpha Activities in Molten Salt Electrolyte

    SciTech Connect (OSTI)

    Windl, Wolfgang; Blue, Thomas

    2013-01-28

    In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 {degrees}C, in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multi scale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multi scale model consists of ab initio modeling to understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.

  9. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    SciTech Connect (OSTI)

    Hobbs, D. T.; Shehee, T. C.

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of AmIII. Experimental findings indicated that CeIII, NpV, and RuII are oxidized by peroxydisulfate, but there are no indications that the presence of CeIII, NpV, and RuII affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.

  10. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    SciTech Connect (OSTI)

    Hobbs, D. T.; Shehee, T. C.

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of AmIII. Experimental findings indicated that CeIII, NpV, and RuII are oxidized by peroxydisulfate, but there are no indications that the presence of CeIII, NpV, and RuII affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.

  11. Ion acoustic shocks in magneto rotating Lorentzian plasmas

    SciTech Connect (OSTI)

    Hussain, S.; Akhtar, N.; Hasnain, H.

    2014-12-15

    Ion acoustic shock structures in magnetized homogeneous dissipative Lorentzian plasma under the effects of Coriolis force are investigated. The dissipation in the plasma system is introduced via dynamic viscosity of inertial ions. The electrons are following the kappa distribution function. Korteweg-de Vries Burger (KdVB) equation is derived by using reductive perturbation technique. It is shown that spectral index, magnetic field, kinematic viscosity of ions, rotational frequency, and effective frequency have significant impact on the propagation characteristic of ion acoustic shocks in such plasma system. The numerical solution of KdVB equation is also discussed and transition from oscillatory profile to monotonic shock for different plasma parameters is investigated.

  12. The Sandia MEMS passive shock sensor : FY07 maturation activities.

    SciTech Connect (OSTI)

    Houston, Jack E.; Blecke, Jill; Mitchell, John Anthony; Wittwer, Jonathan W.; Crowson, Douglas A.; Clemens, Rebecca C.; Walraven, Jeremy Allen; Epp, David S.; Baker, Michael Sean

    2008-08-01

    This report describes activities conducted in FY07 to mature the MEMS passive shock sensor. The first chapter of the report provides motivation and background on activities that are described in detail in later chapters. The second chapter discusses concepts that are important for integrating the MEMS passive shock sensor into a system. Following these two introductory chapters, the report details modeling and design efforts, packaging, failure analysis and testing and validation. At the end of FY07, the MEMS passive shock sensor was at TRL 4.

  13. Properties of Fluid Deuterium Under Double-Shock Compression to Several Mbar

    SciTech Connect (OSTI)

    Boehly, T.R.; Hicks, D.G.; Celliers, P.M.; Collins, T.J.B.; Earley, R.; Eggert, J.H.; Jacobs-Perkins, D.; Moon, S.J.; Vianello, E.; Meyerhofer, D.D.; Collins, G.W.

    2004-08-24

    The compressibility of fluid deuterium up to several Mbar has been probed using laser-driven shock waves reflected from a quartz anvil. Combining high-precision (~1%) shock velocity measurements with the double-shock technique, where differences in equation of state (EOS) models are magnified, has allowed better discrimination between theoretical predictions in the second-shock regime.

  14. United States and France Sign Joint Statement on Civil Liability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    France Sign Joint Statement on Civil Liability for Nuclear Damage United States and France Sign Joint Statement on Civil Liability for Nuclear Damage August 29, 2013 - 1:36pm ...

  15. Introduction to Using NERSC for the Joint Genome Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Introduction to Using NERSC for the Joint Genome Institute May 2, 2011 jgi logo sm NERSC Training Event 1:00-5:00 p.m. PDT May 2, 2011 Joint Genome Institute, 2800 Mitchell...

  16. Tianjin B M Science Technology Joint Stock Ltd | Open Energy...

    Open Energy Info (EERE)

    Science Technology Joint Stock Ltd Jump to: navigation, search Name: Tianjin B&M Science & Technology Joint Stock, Ltd Place: China Product: China-based maker of cathode material...

  17. Fourth National Report for the Joint Convention on the Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Fourth National Report for the Joint Convention on the Safety of Spent...

  18. Second National Report for the Joint Convention on the Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Second National Report for the Joint Convention on the Safety of Spent...

  19. Third National Report for the Joint Convention on the Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Third National Report for the Joint Convention on the Safety of Spent...

  20. Fifth National Report for the Joint Convention on the Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management Fifth National Report for the Joint Convention on the Safety of Spent...

  1. Photochemical route to actinide-transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes

    SciTech Connect (OSTI)

    Ward, Ashleigh; Lukens, Wayne; Lu, Connie; Arnold, John

    2014-04-01

    A series of actinide-transition metal heterobimetallics has been prepared, featuring thorium, uranium and cobalt. Complexes incorporating the binucleating ligand N[-(NHCH2PiPr2)C6H4]3 and Th(IV) (4) or U(IV) (5) with a carbonyl bridged [Co(CO)4]- unit were synthesized from the corresponding actinide chlorides (Th: 2; U: 3) and Na[Co(CO)4]. Irradiation of the isocarbonyls with ultraviolet light resulted in the formation of new species containing actinide-metal bonds in good yields (Th: 6; U: 7); this photolysis method provides a new approach to a relatively rare class of complexes. Characterization by single-crystal X-ray diffraction revealed that elimination of the bridging carbonyl is accompanied by coordination of a phosphine arm from the N4P3 ligand to the cobalt center. Additionally, actinide-cobalt bonds of 3.0771(5) and 3.0319(7) for the thorium and uranium complexes, respectively, were observed. The solution state behavior of the thorium complexes was evaluated using 1H, 1H-1H COSY, 31P and variable-temperature NMR spectroscopy. IR, UV-Vis/NIR, and variable-temperature magnetic susceptibility measurements are also reported.

  2. Shock sensitivity of LX 04 at elevated temperatures

    SciTech Connect (OSTI)

    Urtiew, P.A.; Tarver, C.M.; Gorbes, J.W.; Garcia, G.

    1997-07-01

    Hazard scenarios can involve multiple stimuli, such as heating followed by fragment impact (shock). The shock response of LX-04 (85 weight % HMX and 15 weight % Viton binder) preheated to temperatures hear 170C is studied in a 10.2 cm bore diameter gas gun using embedded manganin pressure gauges. The pressure histories at various depths in the LX-04 targets and the run distances to detonation at several input shock pressures are measured and compared to those obtained in ambient temperature LX-04. The hot LX-04 is significantly more shock sensitive than ambient LX-04. Ignition and Growth reactive flow models are developed for ambient and hot LX-04 to allow predictions of impact scenarios that a can not be tested directly.

  3. Interaction between Supersonic Disintegrating Liquid Jets and Their Shock Waves

    SciTech Connect (OSTI)

    Im, Kyoung-Su; Cheong, Seong-Kyun; Liu, X.; Wang Jin; Lai, M.-C.; Tate, Mark W.; Ercan, Alper; Renzi, Matthew J.; Schuette, Daniel R.; Gruner, Sol M.

    2009-02-20

    We used ultrafast x radiography and developed a novel multiphase numerical simulation to reveal the origin and the unique dynamics of the liquid-jet-generated shock waves and their interactions with the jets. Liquid-jet-generated shock waves are transiently correlated to the structural evolution of the disintegrating jets. The multiphase simulation revealed that the aerodynamic interaction between the liquid jet and the shock waves results in an intriguing ambient gas distribution in the vicinity of the shock front, as validated by the ultrafast x-radiography measurements. The excellent agreement between the data and the simulation suggests the combined experimental and computational approach should find broader applications in predicting and understanding dynamics of highly transient multiphase flows.

  4. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    SciTech Connect (OSTI)

    Mcgrane, Shawn David [Los Alamos National Laboratory; Bolme, Cindy B [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2010-01-01

    Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

  5. On Numerical Considerations for Modeling Reactive Astrophysical Shocks

    SciTech Connect (OSTI)

    Papatheodore, Thomas L; Messer, Bronson

    2014-01-01

    Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds (and associated quantities) is to prohibit burning inside the numerically broadened shock (Fryxell et al. 1989). We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that, in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. (1989). In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly-resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in Type Ia supernovae.

  6. Ultrafast kinetics subsequent to shock in an unreacted, oxygen...

    Office of Scientific and Technical Information (OSTI)

    subsequent to shock in an unreacted, oxygen balanced mixture of nitromethane and hydrogen peroxide Armstrong, M R; Zaug, J M; Grant, C D; Crowhurst, J C; Bastea, S 75...

  7. Microbial Genomics Data from the DOE Joint Genome Institute (JGI)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    As of March 2008, The Joint Genome Institute has released 296 Prokaryotic microbial sites, with 216 in finished status.

  8. Seismic Capacity of Threaded, Brazed, and Grooved Pipe Joints

    Office of Environmental Management (EM)

    SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011 Motivation * Understand the behavior and failure mode of common joints under extreme lateral loads * Static and shake table tests conducted of pressurized - Threaded, - Brazed, - Mechanical joints Static Testing o Pressurized spool to 150 psi o Steady downward force applied while recording deflections o Grooved clamped mech. joints * 16 tests

  9. Russian Health Studies Program - Joint Coordinating Committee for Radiation

    Energy Savers [EERE]

    Effects Research (JCCRER) | Department of Energy Joint Coordinating Committee for Radiation Effects Research (JCCRER) Russian Health Studies Program - Joint Coordinating Committee for Radiation Effects Research (JCCRER) Joint Coordinating Committee for Radiation Effects Research (JCCRER) All About the Joint Coordinating Committee for Radiation Effects Research What is the JCCRER? Why is it important? DOE's Russian Health Studies Program Principal Areas of Cooperation Under the JCCRER

  10. Comments of the Joint Center for Political and Economic Studies |

    Office of Environmental Management (EM)

    Department of Energy Joint Center for Political and Economic Studies Comments of the Joint Center for Political and Economic Studies The Media and Technology Institute and the Climate Change Initiative at the Joint Center for Political and Economic Studies ("Joint Center")1 respectfully submit these comments in response to the United States Department of Energy's ("DoE") Request for Information regarding its implementation of the Smart Grid provisions of Federal

  11. Lessons Learned from Characterization, Performance Assessment, and EPA Regulatory Review of the 1996 Actinide Source Term for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Larson, K.W.; Moore, R.C.; Nowak, E.J.; Papenguth, H.W.; Jow, H.

    1999-03-22

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for the permanent disposal of transuranic waste from defense activities. In 1996, the DOE submitted the Title 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant (CCA) to the US Environmental Protection Agency (EPA). The CCA included a probabilistic performance assessment (PA) conducted by Sandia National Laboratories to establish compliance with the quantitative release limits defined in 40 CFR 191.13. An experimental program to collect data relevant to the actinide source term began around 1989, which eventually supported the 1996 CCA PA actinide source term model. The actinide source term provided an estimate of mobile dissolved and colloidal Pu, Am, U, Th, and Np concentrations in their stable oxidation states, and accounted for effects of uncertainty in the chemistry of brines in waste disposal areas. The experimental program and the actinide source term included in the CCA PA underwent EPA review lasting more than 1 year. Experiments were initially conducted to develop data relevant to the wide range of potential future conditions in waste disposal areas. Interim, preliminary performance assessments and actinide source term models provided insight allowing refinement of experiments and models. Expert peer review provided additional feedback and confidence in the evolving experimental program. By 1995, the chemical database and PA predictions of WIPP performance were considered reliable enough to support the decision to add an MgO backfill to waste rooms to control chemical conditions and reduce uncertainty in actinide concentrations, especially for Pu and Am. Important lessons learned through the characterization, PA modeling, and regulatory review of the actinide source term are (1) experimental characterization and PA should evolve together, with neither activity completely dominating the other, (2) the understanding of physical processes required to develop conceptual models is greater than can be represented in PA models, (3) experimentalists should be directly involved in model and parameter abstraction and simplification for PA, and (4) external expert review should be incorporated early in a project to increase confidence long before regulatory reviews begin.

  12. Ethane-xenon mixtures under shock conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; Cochrane, Kyle Robert; Flicker, Dawn G.

    2015-04-22

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, themore » DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.« less

  13. Ethane-xenon mixtures under shock conditions

    SciTech Connect (OSTI)

    Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; Cochrane, Kyle Robert; Flicker, Dawn G.

    2015-04-22

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, the DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.

  14. Dust acoustic shock waves in two temperatures charged dusty grains

    SciTech Connect (OSTI)

    El-Shewy, E. K.; Abdelwahed, H. G.; Elmessary, M. A.

    2011-11-15

    The reductive perturbation method has been used to derive the Korteweg-de Vries-Burger equation and modified Korteweg-de Vries-Burger for dust acoustic shock waves in a homogeneous unmagnetized plasma having electrons, singly charged ions, hot and cold dust species with Boltzmann distributions for electrons and ions in the presence of the cold (hot) dust viscosity coefficients. The behavior of the shock waves in the dusty plasma has been investigated.

  15. Gigabar Spherical Shock Generation on the OMEGA Laser (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Gigabar Spherical Shock Generation on the OMEGA Laser Citation Details In-Document Search Title: Gigabar Spherical Shock Generation on the OMEGA Laser Authors: Nora, R. ; Theobald, W. ; Betti, R. ; Marshall, F. J. ; Michel, D. T. ; Seka, W. ; Yaakobi, B. ; Lafon, M. ; Stoeckl, C. ; Delettrez, J. ; Solodov, A. A. ; Casner, A. ; Reverdin, C. ; Ribeyre, X. ; Vallet, A. ; Peebles, J. ; Beg, F. N. ; Wei, M. S. Publication Date: 2015-01-27 OSTI Identifier: 1180892 Grant/Contract

  16. Grazing collisions of gravitational shock waves and entropy production in

    Office of Scientific and Technical Information (OSTI)

    heavy ion collisions (Journal Article) | SciTech Connect Grazing collisions of gravitational shock waves and entropy production in heavy ion collisions Citation Details In-Document Search Title: Grazing collisions of gravitational shock waves and entropy production in heavy ion collisions AdS/CFT correspondence is now widely used for the study of strongly coupled plasmas, such as those produced in ultrarelativistic heavy ion collisions at the Relativistic Heavy Ion Collider. While properties

  17. Hot spot-derived shock initiation phenomena in heterogeneous nitromethane

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Hot spot-derived shock initiation phenomena in heterogeneous nitromethane Citation Details In-Document Search Title: Hot spot-derived shock initiation phenomena in heterogeneous nitromethane The addition of solid silica particles to gelled nitromethane offers a tractable model system for interrogating the role of impedance mismatches as one type of hot spot 'seed' on the initiation behaviors of explosive formulations. Gas gun-driven plate impact

  18. Ultrafast kinetics subsequent to shock in an unreacted, oxygen balanced

    Office of Scientific and Technical Information (OSTI)

    mixture of nitromethane and hydrogen peroxide (Conference) | SciTech Connect kinetics subsequent to shock in an unreacted, oxygen balanced mixture of nitromethane and hydrogen peroxide Citation Details In-Document Search Title: Ultrafast kinetics subsequent to shock in an unreacted, oxygen balanced mixture of nitromethane and hydrogen peroxide Authors: Armstrong, M R ; Zaug, J M ; Grant, C D ; Crowhurst, J C ; Bastea, S Publication Date: 2014-06-24 OSTI Identifier: 1149544 Report Number(s):

  19. Critical condition in gravitational shock wave collision and heavy ion

    Office of Scientific and Technical Information (OSTI)

    collisions (Journal Article) | DOE PAGES Critical condition in gravitational shock wave collision and heavy ion collisions « Prev Next » Title: Critical condition in gravitational shock wave collision and heavy ion collisions Authors: Lin, Shu ; Shuryak, Edward Publication Date: 2011-02-23 OSTI Identifier: 1099912 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 83; Journal Issue: 4; Journal ID: ISSN 1550-7998 Publisher:

  20. Development of spectral interferometry for shock characterization in

    Office of Scientific and Technical Information (OSTI)

    energetic materials. (Conference) | SciTech Connect Development of spectral interferometry for shock characterization in energetic materials. Citation Details In-Document Search Title: Development of spectral interferometry for shock characterization in energetic materials. Abstract not provided. Authors: Kohl, Ian Thomas ; Farrow, Darcie ; Jilek, Brook Anton ; Kearney, Sean Patrick ; Urayama, Junji Publication Date: 2013-10-01 OSTI Identifier: 1115160 Report Number(s): SAND2013-8884C 477234

  1. Critical condition in gravitational shock wave collision and heavy ion

    Office of Scientific and Technical Information (OSTI)

    collisions (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Critical condition in gravitational shock wave collision and heavy ion collisions Citation Details In-Document Search Title: Critical condition in gravitational shock wave collision and heavy ion collisions Authors: Lin, Shu ; Shuryak, Edward Publication Date: 2011-02-23 OSTI Identifier: 1099912 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information:

  2. Ultrafast kinetics subsequent to shock in an unreacted, oxygen balanced

    Office of Scientific and Technical Information (OSTI)

    mixture of nitromethane and hydrogen peroxide (Conference) | SciTech Connect kinetics subsequent to shock in an unreacted, oxygen balanced mixture of nitromethane and hydrogen peroxide Citation Details In-Document Search Title: Ultrafast kinetics subsequent to shock in an unreacted, oxygen balanced mixture of nitromethane and hydrogen peroxide × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and

  3. Coherent THz electromagnetic radiation emission as a shock wave diagnostic

    Office of Scientific and Technical Information (OSTI)

    and probe of ultrafast phase transformations (Conference) | SciTech Connect Conference: Coherent THz electromagnetic radiation emission as a shock wave diagnostic and probe of ultrafast phase transformations Citation Details In-Document Search Title: Coherent THz electromagnetic radiation emission as a shock wave diagnostic and probe of ultrafast phase transformations We present the first experimental observations of terahertz frequency radiation emitted when a terahertz frequency acoustic

  4. Shock Desensitization Experiments and Reactive Flow Modeling on

    Office of Scientific and Technical Information (OSTI)

    Self-Sustaining LX-17 Detonation Waves (Conference) | SciTech Connect Shock Desensitization Experiments and Reactive Flow Modeling on Self-Sustaining LX-17 Detonation Waves Citation Details In-Document Search Title: Shock Desensitization Experiments and Reactive Flow Modeling on Self-Sustaining LX-17 Detonation Waves Authors: Vandersall, K S ; Garcia, F ; Tarver, C M ; Fried, L E Publication Date: 2014-06-24 OSTI Identifier: 1169869 Report Number(s): LLNL-CONF-656218

  5. Thermal shock resistance ceramic insulator (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Thermal shock resistance ceramic insulator Citation Details In-Document Search Title: Thermal shock resistance ceramic insulator × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the

  6. Ultrafast Laser Diagnostics for Studies of Shock Initiation in Energetic

    Office of Scientific and Technical Information (OSTI)

    Materials. (Conference) | SciTech Connect Ultrafast Laser Diagnostics for Studies of Shock Initiation in Energetic Materials. Citation Details In-Document Search Title: Ultrafast Laser Diagnostics for Studies of Shock Initiation in Energetic Materials. Abstract not provided. Authors: Farrow, Darcie ; Kearney, Sean Patrick ; Jilek, Brook Anton ; Urayama, Junji ; Kohl, Ian Thomas Publication Date: 2013-06-01 OSTI Identifier: 1115245 Report Number(s): SAND2013-5254C 478660 DOE Contract Number:

  7. Ultrafast kinetics subsequent to shock in an unreacted, oxygen balanced

    Office of Scientific and Technical Information (OSTI)

    mixture of nitromethane and hydrogen peroxide (Conference) | SciTech Connect kinetics subsequent to shock in an unreacted, oxygen balanced mixture of nitromethane and hydrogen peroxide Citation Details In-Document Search Title: Ultrafast kinetics subsequent to shock in an unreacted, oxygen balanced mixture of nitromethane and hydrogen peroxide Authors: Armstrong, M R ; Zaug, J M ; Grant, C D ; Crowhurst, J C ; Bastea, S Publication Date: 2014-06-24 OSTI Identifier: 1149544 Report Number(s):

  8. Ultrafast laser diagnostics for studies of shock initiation in energetic

    Office of Scientific and Technical Information (OSTI)

    materials. (Conference) | SciTech Connect laser diagnostics for studies of shock initiation in energetic materials. Citation Details In-Document Search Title: Ultrafast laser diagnostics for studies of shock initiation in energetic materials. Abstract not provided. Authors: Farrow, Darcie ; Kearney, Sean Patrick ; Urayama, Junji ; Jilek, Brook Anton ; Kohl, Ian Thomas Publication Date: 2013-02-01 OSTI Identifier: 1116107 Report Number(s): SAND2013-1409C 480122 DOE Contract Number:

  9. Ultrafast observation of shocked states in a precompressed material

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Ultrafast observation of shocked states in a precompressed material Citation Details In-Document Search Title: Ultrafast observation of shocked states in a precompressed material Authors: Armstrong, M R ; Crowhurst, J C ; Bastea, S ; Zaug, J M Publication Date: 2010-07-08 OSTI Identifier: 1117984 Report Number(s): LLNL-JRNL-442472 DOE Contract Number: W-7405-ENG-48 Resource Type: Journal Article Resource Relation: Journal Name: Journal of Applied Physics,

  10. Joint Working Group for Fusion Safety | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Operations Careers/ Human Resources Directory Environment, Safety & Health Environmental Management System Joint Working Group for Fusion Safety Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Contact Us Business Operations Careers/ Human Resources Directory Environment, Safety & Health Environmental Management System Joint Working Group for Fusion Safety Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Joint

  11. U.S.-European Union Joint Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -European Union Joint Statement U.S.-European Union Joint Statement U.S.-European Union Joint Statement prepared as part of the International Partnership for a Hydrogen Economy PDF icon us_eu_hydrogen_summit_statement.pdf More Documents & Publications Microsoft Word - Document1 International Partnerships for the Hydrogen Economy Fact Sheet International Partnerships for the Hydrogen Economy Fact Sheet

  12. Joint Environmental Management System (EMS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint Environmental Management System (EMS) Joint Environmental Management System (EMS) Joint Environmental Management System (EMS) The environmental management system (EMS) has two areas of focus: environmental compliance and environmental sustainability. The environmental compliance aspect of the EMS consists of regulatory compliance and monitoring programs that implement federal, state, local, and tribal requirements; agreements; and permits under the Legacy Management contract. The

  13. Adhesive joint and composites modeling in SIERRA.

    SciTech Connect (OSTI)

    Ohashi, Yuki; Brown, Arthur A.; Hammerand, Daniel Carl; Adolf, Douglas Brian; Chambers, Robert S.; Foulk, James W., III

    2005-11-01

    Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.

  14. Plasma Emission at Shocks by the Eigenmode-Antenna Mechanism

    SciTech Connect (OSTI)

    Malaspina, David M.; Ergun, Robert E.; Cairns, Iver H.

    2009-11-11

    Planetary bow shocks, interplanetary shocks, and other heliospheric shocks are remotely observable at radio frequencies due to plasma emission. In this process, shocks are a source of energetic electron beams which excite electrostatic plasma oscillations (Langmuir waves) near the shock. Langmuir waves are then converted into electromagnetic emission at the local plasma frequency (f{sub p}) and its harmonic (2f{sub p}). While the production of electron beams by shocks and the subsequent generation of Langmuir waves are well understood, the mechanism which converts electrostatic Langmuir waves into electromagnetic radiation at f{sub p} and 2f{sub p} remains a subject of debate. A conversion mechanism is presented based on the idea that a substantial fraction of Langmuir waves are localized as eigenmodes of ambient plasma density fluctuations. Thus localized, the f{sub p} and 2f{sub p} currents associated with Langmuir waves radiate as antennas. Evidence, in the form of observations from the STEREO and WIND spacecraft, is presented for the localization of Langmuir waves by density structures and for radio frequency emission by the eigenmode-antenna mechanism.

  15. SHOCK HEATING OF THE MERGING GALAXY CLUSTER A521

    SciTech Connect (OSTI)

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-02-10

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 {+-} 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  16. LDRD joint computational/experimental project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LDRD joint computational/experimental project - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  17. Sub-photospheric, radiation-mediated shocks in gamma-ray bursts: Multiple shock emission and the band spectrum

    SciTech Connect (OSTI)

    Keren, Shai; Levinson, Amir, E-mail: Levinson@wise.tau.ac.il [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-07-10

    We compute the time-integrated, thermal emission produced by a series of radiation-mediated shocks that emerge from the photosphere of a gamma-ray burst outflow. We show that for a sufficiently broad distribution of shock strengths, the overall shape of the time-integrated spectral energy distribution below the peak is a power law, ?E{sub ?}??{sup ?}, with a slope of 1 < ? < 2. A substructure in the spectral energy distribution (SED) can also be produced in this model for certain choices of the shock train distribution. In particular, we demonstrate that our model can reproduce the double-peak SED observed in some bursts, in events where a strong shock is followed by a sequence of sufficiently weaker ones.

  18. Feasibility of actinide separation from UREX-like raffinates using a combination of sulfur- and oxygen-donor extractants

    SciTech Connect (OSTI)

    Zalupski, P.R.; Peterman, D.R.; Riddle, C.L.

    2013-07-01

    A synergistic combination of bis(o-trifluoromethylphenyl)dithios-phosphinic acid and trioctylphosphine oxide has been recently shown to selectively remove uranium, neptunium, plutonium and americium from aqueous environment containing up to 0.5 M nitric acid and 5.5 g/l fission products. Here the feasibility of performing this complete actinide recovery from aqueous mixtures is forecasted for a new organic formulation containing sulfur donor extractant of modified structure based on Am(III) and Eu(III) extraction data. A mixture of bis(bis-m,m-trifluoromethyl)phenyl)-dithios-phosphinic acid and TOPO in toluene enhances the extraction performance, accomplishing Am/Eu differentiation in aqueous mixtures up to 1 M nitric acid. The new organic recipe is also less susceptible to oxidative damage resulting from radiolysis. (authors)

  19. Feasibility of actinide separation from UREX-like raffinates using a combination of sulfur- and oxygen-donor extractants

    SciTech Connect (OSTI)

    Peter R. Zalupski; Dean R. Peterman; Catherine L. Riddle

    2013-09-01

    A synergistic combination of bis(o-trifluoromethylphenyl)dithiosphosphinic acid and trioctylphosphine oxide has been recently shown to selectively remove uranium, neptunium, plutonium and americium from aqueous environment containing up to 0.5 M nitric acid and 5.5 g/L fission products. Here the feasibility of performing this complete actinide recovery from aqueous mixtures is forecasted for a new organic formulation containing sulfur donor extractant of modified structure based on Am(III) and Eu(III) extraction data. A mixture of bis(bis-m,m-trifluoromethyl)phenyl)-dithiosphosphinic acid and TOPO in toluene enhances the extraction performance, accomplishing Am/Eu differentiation in aqueous mixtures up to 1 M nitric acid. The new organic recipe is also less susceptible to oxidative damage resulting from radiolysis.

  20. Mechanical environmental transport of actinides and ¹³⁷Cs from an arid radioactive waste disposal site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Snow, Mathew S.; Clark, Sue B.; Morrison, Samuel S.; Watrous, Matthew G.; Olson, John E.; Snyder, Darin C.

    2015-10-01

    Particulate transport represents an important mechanism for actinides and fission products at the Earth's surface; soil samples taken in the early 1970's near the Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) provide a case study for examining the mechanisms and characteristics of actinide transport under arid conditions. Transuranic waste was disposed via shallow land burial at the SDA until shortly after a flooding event that occurred in 1969. In this study we analyze soils collected in the early 1970's for ¹³⁷Cs, ²⁴¹Am, and Pu using a combination of radiometric and mass spectrometric techniques. Two distinct ²⁴⁰Pu/²³⁹Pu isotopic ratiosmore » are observed for contamination from the SDA, with values ranging from at least 0.059 to 0.069. ²⁴¹Am concentrations are observed to increase only slightly in 0-4 cm soils over the ~40 year period since soil sampling, contrary to Markham's previous hypothesis that ²⁴¹Pu is principally associated with the 0-4 cm soil fractions (Markham 1978). The lack of statistical difference in ²⁴¹Am/²³⁹⁺²⁴⁰Pu ratios with depth suggests mechanical transport and mixing discrete contaminated particles under arid conditions. Occasional samples beyond the northeastern corner are observed to contain anomalously high Pu concentrations with corresponding low ²⁴⁰Pu/²³⁹Pu atoms ratios, suggesting the occurrence of "hot particles;" application of a background Pu subtraction results in calculated Pu atom ratios for the "hot particles" which are statistically similar to those observed in the northeastern corner. Taken together, our data suggests that flooding resulted in mechanical transport of contaminated particles into the area between the SDA and the flood containment dike in the northeastern corner, following which subsequent contamination spreading resulted from wind transport of discrete particles.« less

  1. NON-RELATIVISTIC RADIATION MEDIATED SHOCK BREAKOUTS. III. SPECTRAL PROPERTIES OF SUPERNOVA SHOCK BREAKOUT

    SciTech Connect (OSTI)

    Sapir, Nir; Waxman, Eli [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Katz, Boaz [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2013-09-01

    The spectrum of radiation emitted following shock breakout from a star's surface with a power-law density profile {rho}{proportional_to}x{sup n} is investigated. Assuming planar geometry, local Compton equilibrium, and bremsstrahlung emission as the dominant photon production mechanism, numerical solutions are obtained for the photon number density and temperature profiles as a function of time for hydrogen-helium envelopes. The temperature solutions are determined by the breakout shock velocity v{sub 0} and the pre-shock breakout density {rho}{sub 0} and depend weakly on the value of n. Fitting formulae for the peak surface temperature at breakout as a function of v{sub 0} and {rho}{sub 0} are provided, with T{sub peak} approx. 9.44 exp [12.63(v{sub 0}/c){sup 1/2}] eV, and the time dependence of the surface temperature is tabulated. The time integrated emitted spectrum is a robust prediction of the model, determined by T{sub peak} and v{sub 0} alone and insensitive to details of light travel time or slight deviations from spherical symmetry. Adopting commonly assumed progenitor parameters, breakout luminosities of Almost-Equal-To 10{sup 45} erg s{sup -1} and Almost-Equal-To 10{sup 44} erg s{sup -1} in the 0.3-10 keV band are expected for blue supergiant (BSG) and red supergiant (RSG)/He-WR progenitors, respectively (T{sub peak} is well below the band for RSGs, unless their radius is {approx}10{sup 13} cm). >30 detections of SN 1987A-like (BSG) breakouts are expected over the lifetime of ROSAT and XMM-Newton. An absence of such detections would imply either that the typical parameters assumed for BSG progenitors are grossly incorrect or that their envelopes are not hydrostatic. The observed spectrum and duration of XRF 080109/SN 2008D are in tension with a non-relativistic breakout from a stellar surface interpretation.

  2. DOE-EERC jointly sponsored research program

    SciTech Connect (OSTI)

    Hendrikson, J.G.; Sondreal, E.A.

    1999-09-01

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC21-93MC30098 funded through the Office of Fossil Energy and administered at the Federal Energy Technology Center (FETC) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy and Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying efficient, nonpolluting energy technologies that can compete effectively in meeting market demands for clean fuels, chemical feedstocks, and electricity in the 21st century. The objective of the JSRP was to advance the deployment of advanced technologies for improving energy efficiency and environmental performance through jointly sponsored research on topics that would not be adequately addressed by the private sector alone. Examples of such topics include the barriers to hot-gas cleaning impeding the deployment of high-efficiency power systems and the search for practical means for sequestering CO{sub 2} generated by fossil fuel combustion. The selection of particular research projects was guided by a combination of DOE priorities and market needs, as provided by the requirement for joint venture funding approved both by DOE and the private sector sponsor. The research addressed many different energy resource and related environmental problems, with emphasis directed toward the EERC's historic lead mission in low-rank coals (LRCs), which represent approximately half of the U.S. coal resources in the conterminous states, much larger potential resources in Alaska, and a major part of the energy base in the former U.S.S.R., East Central Europe, and the Pacific Rim. The Base and JSRP agreements were tailored to the growing awareness of critical environmental issues, including water supply and quality, air toxics (e.g., mercury), fine respirable particulate matter (PM{sub 2.5}), and the goal of zero net CO{sub 2} emissions.

  3. Impurity-doped optical shock, detonation and damage location sensor

    DOE Patents [OSTI]

    Weiss, J.D.

    1995-02-07

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack. 8 figs.

  4. Impurity-doped optical shock, detonation and damage location sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    1995-01-01

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack.

  5. Numeric spectral radiation hydrodynamic calculations of supernova shock breakouts

    SciTech Connect (OSTI)

    Sapir, Nir; Halbertal, Dorri [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2014-12-01

    We present here an efficient numerical scheme for solving the non-relativistic one-dimensional radiation-hydrodynamics equations including inelastic Compton scattering, which is not included in most codes and is crucial for solving problems such as shock breakout. The devised code is applied to the problems of a steady-state planar radiation mediated shock (RMS) and RMS breakout from a stellar envelope. The results are in agreement with those of a previous work on shock breakout, in which Compton equilibrium between matter and radiation was assumed and the 'effective photon' approximation was used to describe the radiation spectrum. In particular, we show that the luminosity and its temporal dependence, the peak temperature at breakout, and the universal shape of the spectral fluence derived in this earlier work are all accurate. Although there is a discrepancy between the spectral calculations and the effective photon approximation due to the inaccuracy of the effective photon approximation estimate of the effective photon production rate, which grows with lower densities and higher velocities, the difference in peak temperature reaches only 30% for the most discrepant cases of fast shocks in blue supergiants. The presented model is exemplified by calculations for supernova 1987A, showing the detailed evolution of the burst spectrum. The incompatibility of the stellar envelope shock breakout model results with observed properties of X-ray flashes (XRFs) and the discrepancy between the predicted and observed rates of XRFs remain unexplained.

  6. Safety Monitor Joint Working Group (JWG) Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 th Meeting of the Joint Working Group of the U.S.-Japan Coordinating Committee of Fusion Energy on Safety in Inter-Institutional Collaborations (U.S.-Japan Safety Monitoring Program) Meeting in Japan, July 29-August 2, 2013 Submitted: October 16, 2013 Respectfully submitted to: Barry Sullivan Program Manager - ES&H U.S. DOE - Office of Fusion Energy Sciences Professor Kiyohiko Nishimura Head of Division for Health and Safety Management National Institute for Fusion Science Prepared by: Lee

  7. Joint Center for Energy Storage Research

    SciTech Connect (OSTI)

    Eric Isaacs

    2012-11-30

    The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

  8. GALEX AND PAN-STARRS1 DISCOVERY OF SN IIP 2010aq: THE FIRST FEW DAYS AFTER SHOCK BREAKOUT IN A RED SUPERGIANT STAR

    SciTech Connect (OSTI)

    Gezari, S.; Huber, M. E.; Grav, T.; Rest, A.; Narayan, G.; Forster, K.; Neill, J. D.; Martin, D. C.; Valenti, S.; Smartt, S. J.; Chornock, R.; Berger, E.; Soderberg, A. M.; Mattila, S.; Kankare, E.; Burgett, W. S.; Chambers, K. C.; Dombeck, T.; Heasley, J. N.; Hodapp, K. W.

    2010-09-01

    We present the early UV and optical light curve of Type IIP supernova (SN) 2010aq at z = 0.0862, and compare it to analytical models for thermal emission following SN shock breakout in a red supergiant star. SN 2010aq was discovered in joint monitoring between the Galaxy Evolution Explorer (GALEX) Time Domain Survey (TDS) in the NUV and the Pan-STARRS1 Medium Deep Survey (PS1 MDS) in the g, r, i, and z bands. The GALEX and Pan-STARRS1 observations detect the SN less than 1 day after the shock breakout, measure a diluted blackbody temperature of 31, 000 {+-} 6000 K 1 day later, and follow the rise in the UV/optical light curve over the next 2 days caused by the expansion and cooling of the SN ejecta. The high signal-to-noise ratio of the simultaneous UV and optical photometry allows us to fit for a progenitor star radius of 700 {+-} 200R {sub sun}, the size of a red supergiant star. An excess in UV emission two weeks after shock breakout compared with SNe well fitted by model atmosphere-code synthetic spectra with solar metallicity is best explained by suppressed line blanketing due to a lower metallicity progenitor star in SN 2010aq. Continued monitoring of PS1 MDS fields by the GALEX TDS will increase the sample of early UV detections of Type II SNe by an order of magnitude and probe the diversity of SN progenitor star properties.

  9. Joint statement of the European Commission's Joint Research Centre and the

    National Nuclear Security Administration (NNSA)

    United States Department of Energy's National Nuclear Security Administration regarding the reduction of excess nuclear material | National Nuclear Security Administration statement of the European Commission's Joint Research Centre and the United States Department of Energy's National Nuclear Security Administration regarding the reduction of excess nuclear material | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile

  10. Shock-induced synthesis of high temperature superconducting materials

    DOE Patents [OSTI]

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  11. Laser beam temporal and spatial tailoring for laser shock processing

    DOE Patents [OSTI]

    Hackel, Lloyd (Livermore, CA); Dane, C. Brent (Livermore, CA)

    2001-01-01

    Techniques are provided for formatting laser pulse spatial shape and for effectively and efficiently delivering the laser energy to a work surface in the laser shock process. An appropriately formatted pulse helps to eliminate breakdown and generate uniform shocks. The invention uses a high power laser technology capable of meeting the laser requirements for a high throughput process, that is, a laser which can treat many square centimeters of surface area per second. The shock process has a broad range of applications, especially in the aerospace industry, where treating parts to reduce or eliminate corrosion failure is very important. The invention may be used for treating metal components to improve strength and corrosion resistance. The invention has a broad range of applications for parts that are currently shot peened and/or require peening by means other than shot peening. Major applications for the invention are in the automotive and aerospace industries for components such as turbine blades, compressor components, gears, etc.

  12. Frequency shift measurement in shock-compressed materials

    DOE Patents [OSTI]

    Moore, David S. (Los Alamos, NM); Schmidt, Stephen C. (Los Alamos, NM)

    1985-01-01

    A method for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the shock front advancing through the sample, thereby minimizing adverse effects of refraction.

  13. EVAPORATION OF ICY PLANETESIMALS DUE TO BOW SHOCKS

    SciTech Connect (OSTI)

    Tanaka, Kyoko K.; Yamamoto, Tetsuo; Tanaka, Hidekazu [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan)] [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Miura, Hitoshi [Department of Earth Sciences, Tohoku University, Sendai 980-8578 (Japan)] [Department of Earth Sciences, Tohoku University, Sendai 980-8578 (Japan); Nagasawa, Makiko; Nakamoto, Taishi [Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)] [Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)

    2013-02-20

    We present the novel concept of evaporation of planetesimals as a result of bow shocks associated with planetesimals orbiting with supersonic velocities relative to the gas in a protoplanetary disk. We evaluate the evaporation rates of the planetesimals based on a simple model describing planetesimal heating and evaporation by the bow shock. We find that icy planetesimals with radius {approx}>100 km evaporate efficiently even outside the snow line in the stage of planetary oligarchic growth, where strong bow shocks are produced by gravitational perturbations from protoplanets. The obtained results suggest that the formation of gas giant planets is suppressed owing to insufficient accretion of icy planetesimals onto the protoplanet within the {approx}<5 AU disk region.

  14. Collisionless shock experiments with lasers and observation of Weibel instabilitiesa)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, H. -S.; Huntington, C. M.; Fiuza, F.; Drake, R. P.; Froula, D. H.; Gregori, G.; Koenig, M.; Kugland, N. L.; Kuranz, C. C.; Lamb, D. Q.; et al

    2015-05-13

    Astrophysical collisionless shocks are common in the universe, occurring in supernova remnants, gamma ray bursts, and protostellar jets. They appear in colliding plasma flows when the mean free path for ion-ion collisions is much larger than the system size. It is believed that such shocks could be mediated via the electromagnetic Weibel instability in astrophysical environments without preexisting magnetic fields. Here, we present laboratory experiments using high-power lasers and investigate the dynamics of high-Mach-number collisionless shock formation in two interpenetrating plasma streams. Our recent proton-probe experiments on Omega show the characteristic filamentary structures of the Weibel instability that are electromagneticmore »in nature with an inferred magnetization level as high as ~1% These results imply that electromagnetic instabilities are significant in the interaction of astrophysical conditions.« less

  15. Collisionless shock experiments with lasers and observation of Weibel instabilities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, H. -S.; Huntington, C. M.; Fiuza, F.; Drake, R. P.; Froula, D. H.; Gregori, G.; Koenig, M.; Kugland, N. L.; Kuranz, C. C.; Lamb, D. Q.; et al

    2015-05-13

    Astrophysical collisionless shocks are common in the universe, occurring in supernova remnants, gamma ray bursts, and protostellar jets. They appear in colliding plasma flows when the mean free path for ion-ion collisions is much larger than the system size. It is believed that such shocks could be mediated via the electromagnetic Weibel instability in astrophysical environments without preexisting magnetic fields. Here, we present laboratory experiments using high-power lasers and investigate the dynamics of high-Mach-number collisionless shock formation in two interpenetrating plasma streams. Our recent proton-probe experiments on Omega show the characteristic filamentary structures of the Weibel instability that are electromagneticmore » in nature with an inferred magnetization level as high as ~1% These results imply that electromagnetic instabilities are significant in the interaction of astrophysical conditions.« less

  16. Collisionless shock experiments with lasers and observation of Weibel instabilities

    SciTech Connect (OSTI)

    Park, H. -S.; Huntington, C. M.; Fiuza, F.; Drake, R. P.; Froula, D. H.; Gregori, G.; Koenig, M.; Kugland, N. L.; Kuranz, C. C.; Lamb, D. Q.; Levy, M. C.; Li, C. K.; Meinecke, J.; Morita, T.; Petrasso, R. D.; Pollock, B. B.; Remington, B. A.; Rinderknecht, H. G.; Rosenberg, M.; Ross, J. S.; Ryutov, D. D.; Sakawa, Y.; Spitkovsky, A.; Takabe, H.; Turnbull, D. P.; Tzeferacos, P.; Weber, S. V.; Zylstra, A. B.

    2015-05-13

    Astrophysical collisionless shocks are common in the universe, occurring in supernova remnants, gamma ray bursts, and protostellar jets. They appear in colliding plasma flows when the mean free path for ion-ion collisions is much larger than the system size. It is believed that such shocks could be mediated via the electromagnetic Weibel instability in astrophysical environments without preexisting magnetic fields. Here, we present laboratory experiments using high-power lasers and investigate the dynamics of high-Mach-number collisionless shock formation in two interpenetrating plasma streams. Our recent proton-probe experiments on Omega show the characteristic filamentary structures of the Weibel instability that are electromagnetic in nature with an inferred magnetization level as high as ~1% These results imply that electromagnetic instabilities are significant in the interaction of astrophysical conditions.

  17. Validation of Minor Actinide Cross Sections by Studying Samples Irradiated for 492 Days at the Dounreay Prototype Fast Reactor - I: Radiochemical Analysis

    SciTech Connect (OSTI)

    Shinohara, N. [Japan Atomic Energy Research Institute (Japan); Kohno, N. [Japan Atomic Energy Research Institute (Japan); Nakahara, Y. [Japan Atomic Energy Research Institute (Japan); Tsujimoto, K. [Japan Atomic Energy Research Institute (Japan); Sakurai, T. [Japan Atomic Energy Research Institute (Japan); Mukaiyama, T. [Japan Atomic Energy Research Institute (Japan); Raman, S. [Oak Ridge National Laboratory (United States)

    2003-06-15

    Actinide samples irradiated in the Dounreay Prototype Fast Reactor for 492 effective full-power days were analyzed at Japan Atomic Energy Research Institute by radiochemical methods to measure the isotopic compositions of the fission products (molybdenum, zirconium, and neodymium isotopes) and of the actinides (uranium, neptunium, plutonium, americium, curium, and californium isotopes). In this first of two companion papers, procedures used for chemical analyses and the analyzed data are presented. There is good agreement between the current results and previous results obtained at Oak Ridge National Laboratory. Therefore, these analytical results could serve as a benchmark for future calculations and validation of nuclear data libraries. Such a validation is attempted in the companion paper.

  18. Ultrafast Shock Initiation of Exothermic Chemistry in Hydrogen Peroxide

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Shock Initiation of Exothermic Chemistry in Hydrogen Peroxide Citation Details In-Document Search Title: Ultrafast Shock Initiation of Exothermic Chemistry in Hydrogen Peroxide Authors: Armstrong, M R ; Zaug, J M ; Goldman, N ; Crowhurst, J C ; Howard, W M ; Carter, J A ; Kashgarian, M ; Chesser, J M ; Barbee, T W ; Bastea, S Publication Date: 2012-06-17 OSTI Identifier: 1202899 Report Number(s): LLNL-JRNL-605214 DOE Contract Number: DE-AC52-07NA27344

  19. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Cell Technologies and Advanced Manufacturing Webinar Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Download the presentation slides from the "Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar" held November 20, 2012. PDF icon Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar Slides More Documents & Publications Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout to

  20. Science On Tap - From Trinity to Artificial Joints

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science On Tap - From Trinity to Artificial Joints Science On Tap - From Trinity to Artificial Joints WHEN: Jul 16, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, New Mexico 87544, USA SPEAKER: Nathaniel Morgan, Los Alamos National Laboratory CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Science on Tap series Event Description From Trinity to artificial joints: How computational mathematics has transformed our world.

  1. Development of the bus joint for the ITER Central Solenoid

    SciTech Connect (OSTI)

    Martovetsky, Nicolai N; Irick, David Kim; Kenney, Steven J

    2013-01-01

    The terminations of the Central Solenoid (CS) modules are connected to the bus extensions by joints located outside the CS in the gap between the CS and Torodial Field (TF) assemblies. These joints have very strict space limitations. Low resistance is a common requirement for all ITER joints. In addition, the CS bus joints will experience and must be designed to withstand significant variation in the magnetic field of several tenths of a Tesla per second during initiation of plasma. The joint resistance is specified to be less than 4 nOhm. The joints also have to be soldered in the field and designed with the possibility to be installed and dismantled in order to allow cold testing in the cold test facility. We have developed coaxial joints that meet these requirements and have demonstrated the feasibility to fabricate and assemble them in the vertical configuration. We introduced a coupling cylinder with superconducting strands soldered to the surface of the cable that can be installed in the ITER assembly hall and at the Cold Test Facility. This cylinder serves as a transition area between the CS module and the bus extension. We made two racetrack samples and tested four bus joints in our Joint Test Apparatus. Resistance of the bus joints was measured by a decay method and by a microvoltmeter; the value of the current was measured by the Hall probes. This measurement method was verified in the previous tests. The resistance of the joints varied insignificantly from 1.5 to 2 nOhm. One of the challenges associated with a soldered joint is the inability to use corrosive chemicals that are difficult to clean. This paper describes our development work on cable preparation, chrome removal, compaction, soldering, and final assembly and presents the test results.

  2. Secretary Bodman, Director Rumyantsev Issue Joint Statement on Bratislava

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Security Initiatives | Department of Energy Bodman, Director Rumyantsev Issue Joint Statement on Bratislava Nuclear Security Initiatives Secretary Bodman, Director Rumyantsev Issue Joint Statement on Bratislava Nuclear Security Initiatives November 9, 2005 - 2:20pm Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel Bodman and Russian Federal Atomic Energy Agency Director, Aleksandr Rumyantsev today released a joint statement on the status of the Bratislava Nuclear Security

  3. Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Agenda |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Agenda Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Agenda Agenda for the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 PDF icon deliv_analysis_agenda.pdf More Documents & Publications Hydrogen Delivery Analysis Models Hydrogen Delivery Analysis Plus Meeting: DTT, STT, HPTT, Other Analysts, Invited Guests Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Attendees List

  4. Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Attendees

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    List | Department of Energy Attendees List Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Attendees List Attendee list from the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 PDF icon deliv_analysis_attendees.pdf More Documents & Publications DOE and FreedomCAR and Fuel Partnership Analysis Workshop Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Agenda DOE and FreedomCAR and Fuel Partnership Analysis Workshop

  5. OMB and CEQ Joint Memorandum on Environmental Collaboration and Conflict

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resolution | Department of Energy OMB and CEQ Joint Memorandum on Environmental Collaboration and Conflict Resolution OMB and CEQ Joint Memorandum on Environmental Collaboration and Conflict Resolution This Office of Management and Budget (OMB) and Council on Environmental Quality (CEQ) joint memorandum expands and builds on the November 28, 2005, Environmental Conflict Resolution (ECR) Memorandum, directing departments and agencies to increase the appropriate and effective use of

  6. Electrical Detector for Liquid Lithium Leaks Around Demountable Pipe Joints

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab Electrical Detector for Liquid Lithium Leaks Around Demountable Pipe Joints This system is designed to detect leaks of liquid lithium from around demountable pipe joints. Demountable pipe joints such as vacuum fittings are likely spots for a leak in any system transporting fluids. Since liquid lithium reacts with air, water, concrete and other common materials, it is important to quickly detect a leak. The system will partially contain the leak and is designed

  7. Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploration | Department of Energy Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon mellors_peer2013.pdf More Documents & Publications track 2: hydrothermal | geothermal 2015 peer review

  8. Joint Trade Mission to China | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint Trade Mission to China Joint Trade Mission to China Trade Mission Begins Trade Mission Begins The joint trade mission began in Beijing, and will also make stops in Shanghai and Guangzhou. Read more Green Buildings Green Buildings How American Businesses are leading the way in green building technology in Shanghai and around the world. Read more Top 3 Things Top 3 Things Deputy Secretary Sherwood-Randall spoke at Microsoft's Beijing Campus. These were the top 3 things from her speech. Read

  9. Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Hydrogen Delivery Analysis Models Hydrogen Delivery Analysis Plus Meeting: DTT, STT, HPTT, Other Analysts, Invited Guests Joint Meeting on Hydrogen...

  10. ORISE: Providing Support to the DOE Joint Information Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Information Center (JIC) ORISE supports DOE's Oak Ridge Office by managing crisis communication facility for drills, exercises and emergencies In the event of an emergency,...

  11. Joint Genome Institute Progress Report 2002-2005

    SciTech Connect (OSTI)

    Gilbert, David

    2005-10-03

    Progress report covering activities at the DOE-Joint Genome Institute in Walnut Creek, California for the period 2002-2005.

  12. El Salvador-Joint Programme on Resource Efficient and Cleaner...

    Open Energy Info (EERE)

    (RECP) in Developing and Transition Countries Jump to: navigation, search Name El Salvador-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and...

  13. SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS | Department

    Office of Environmental Management (EM)

    of Energy SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS Seismic Capacity of Threaded, Brazed and Grooved Pipe Joints Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011 PDF icon Seismic Capacity of Threaded, Brazed and Grooved Pipe Joints More Documents & Publications FY2015 Status Report: CIRFT Testing of High-Burnup Used Nuclear Fuel Rods from Pressurized Water Reactor and

  14. Joint transmission system projects to improve system reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    County PUD, 425-783-8444 Joint transmission system projects to improve system reliability First major regional electric grid improvements in decades prepare the area for the...

  15. Science On Tap - From Trinity to Artificial Joints

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    artificial human joints, and biological implants, using MRI scanning software, radiation therapy and even creating cartoons is all done using computational mathematics. The world...

  16. Montana Joint Application for Proposed Work in Montana's Streams...

    Open Energy Info (EERE)

    Notice Form Topic JOINT APPLICATION FOR PROPOSED WORK IN MONTANA'S STREAMS, WETLANDS, FLOODPLAINS, AND OTHER WATER BODIES Organization Montana Department of Natural...

  17. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration This document...

  18. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration; Appendix Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration; Appendix...

  19. Berkeley India Joint Leadership on Energy and Environment | Open...

    Open Energy Info (EERE)

    of pathways and approaches for reducing the emissions of greenhouse gases while pursuing sustainable economic development. The Berkeley India Joint Leadership on Energy and...

  20. Joint Meeting on Hydrogen Delivery Modeling and Analysis, May...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Analysis, May 8-9, 2007, Discussion Session Highlights, Comments, and Action Items Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007, Discussion...

  1. The PDV Velocity History and Shock Arrival Time Analyzer

    Energy Science and Technology Software Center (OSTI)

    2006-08-29

    This software allows the user to analyze heterodyne beat signals generated when a Doppler-shifted laser light interacts with un-shifted laser light. The software analyzes the data in a joint time frequency domain to extract instantaneous velocity.

  2. Validation of Minor Actinide Cross Sections by Studying Samples Irradiated for 492 Days at the Dounreay Prototype Fast Reactor - II: Burnup Calculations

    SciTech Connect (OSTI)

    Tsujimoto, K. [Japan Atomic Energy Research Institute (Japan); Kohno, N. [Japan Atomic Energy Research Institute (Japan); Shinohara, N. [Japan Atomic Energy Research Institute (Japan); Sakurai, T. [Japan Atomic Energy Research Institute (Japan); Nakahara, Y. [Japan Atomic Energy Research Institute (Japan); Mukaiyama, T. [Japan Atomic Energy Research Institute (Japan); Raman, S. [Oak Ridge National Laboratory (United States)

    2003-06-15

    To evaluate neutron cross-section data of minor actinides (MAs), separated actinide samples and dosimetry samples were irradiated at the Dounreay Prototype Fast Reactor for 492 effective full-power days. Irradiated samples were analyzed both at Oak Ridge National Laboratory and at Japan Atomic Energy Research Institute (JAERI). This independent duplication has resulted in the generation of reliable radiochemical analysis data. Based on the burnup calculations of major actinide ({sup 235}U and {sup 239}Pu) and dosimetry samples, the neutron flux distribution and the flux level were adjusted at the locations where MA samples were irradiated. The burnup calculations were carried out for MAs using the determined flux distribution and flux level. The calculated results were compared with the experimental data. A brief description of sample preparation and irradiation and a detailed discussion of radiochemical analysis at JAERI are given in a companion paper. The current paper discusses the burnup calculations and the validation of MA cross-section data in evaluated nuclear data libraries.

  3. Joint Institute for Nanoscience Annual Report 2004

    SciTech Connect (OSTI)

    Baer, Donald R.; Campbell, Charles

    2005-02-01

    Due to the inherently interdisciplinary nature of nanoscience and nanotechnology, research in this arena is often significantly enhanced through creative cooperative activities. The Joint Institute for Nanoscience (JIN) is a venture of the University of Washington (UW) and Pacific Northwest National Laboratory (PNNL) to encourage and enhance high impact and high quality nanoscience and nanotechnology research that leverages the strengths and capabilities of both institutions, and to facilitate education in these areas. This report summarizes JIN award activities that took place during fiscal year 2004 and provides a historical list of JIN awardees, their resulting publications, and JIN-related meetings. Major portions of the JIN efforts and resources are dedicated to funding graduate students and postdoctoral research associates to perform research in collaborations jointly directed by PNNL staff scientists and UW professors. JIN fellowships are awarded on the basis of applications that include research proposals. They have been very successful in expanding collaborations between PNNL and UW, which have led to many excellent joint publications and presentations and enhanced the competitiveness of both institutions for external grant funding. JIN-based interactions are playing a significant role in creating new research directions and reshaping existing research programs at both the UW and PNNL. The JIN also co-sponsors workshops on Nanoscale Science and Technology, four of which have been held in Seattle and one in Richland. In addition to involving PNNL staff in various UW nanoscience courses and seminars, a National Science Foundation grant, Development of UW-PNL Collaborative Curriculums in Nano-Science and Technology, has allowed the development of three intensive short courses that are taught by UW faculty, PNNL staff, and faculty from other institutions, including Washington State University, the University of Idaho, Stanford University, and the University of Alaska. The JIN agreement recognizes that cooperation beyond UW and PNNL is highly valuable. Starting in early 2003, efforts were initiated to form a regional communication link called the Northwest Nanoscience and Nanotechnology Network (N4). In concept, N4 is a tool to encourage communication and help identify regional resources and nanoscience and technology activities.

  4. Soft X-ray Shock Loading and Momentum Coupling in Meteorite and...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Soft X-ray Shock Loading and Momentum Coupling in Meteorite and Planetary Materials. Citation Details In-Document Search Title: Soft X-ray Shock Loading and ...

  5. Jointly Sponsored Research Program Energy Related Research

    SciTech Connect (OSTI)

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental impacts associated with energy production and utilization. This report summarizes the accomplishments of the JSR Program.

  6. Joint Institute for Nanoscience Annual Report 2003

    SciTech Connect (OSTI)

    Baer, Donald R.; Campbell, Charles

    2004-02-01

    The Joint Institute for Nanoscience (JIN) is a cooperative venture of the University of Washington and Pacific Northwest National Laboratory to encourage and enhance high-impact and high-quality nanoscience and nanotechnology of all types. This first annual report for the JIN summarizes activities beginning in 2001 and ending at the close of fiscal year 2003 and therefore represents somewhat less than two years of activities. Major portions of the JIN resources are dedicated to funding graduate students and postdoctoral research associates to perform research in collaborations jointly directed by Pacific Northwest National Laboratory (PNNL) staff scientists and University of Washington (UW) professors. These fellowships were awarded on the basis of applications that included research proposals. JIN co-sponsors an annual Nanoscale Science and Technology Workshop held in Seattle. In addition to involving PNNL staff in various UW nanoscience courses and seminars, a National Science Foundation grant Development of UW-PNL Collaborative Curriculums in Nano-Science and Technology has allowed the development of three intensive short courses that are taught by UW faculty, PNNL staff, and faculty from other institutions, including Washington State University, the University of Idaho, Stanford University, and the University of Alaska. The initial JIN agreement recognized that expansion of cooperation beyond UW and PNNL would be highly valuable. Starting in early 2003, efforts were initiated to form a regional communication link called the Northwest Nanoscience and Nanotechnology Network (N?). In concept, N? is a tool to encourage communication and help identify regional resources and nanoscience and technology activities.

  7. Microenergetic shock initiation studies on deposited films of PETN.

    SciTech Connect (OSTI)

    Long, Gregory T.; Knepper, Robert; Jones, David Alexander; Brundage, Aaron L.; Trott, Wayne Merle; Wixom, Ryan R.; Tappan, Alexander Smith

    2009-07-01

    Films of the high explosive PETN (pentaerythritol tetranitrate) up to 500-{micro}m thick have been deposited through physical vapor deposition, with the intent of creating well-defined samples for shock-initiation studies. PETN films were characterized with surface profilometry, scanning electron microscopy, x-ray diffraction, and focused ion beam nanotomography. These high-density films were subjected to strong shocks in both the in-plane and out-of-plane orientations. Initiation behavior was monitored with high-speed framing and streak camera photography. Direct initiation with a donor explosive (either RDX with binder, or CL-20 with binder) was possible in both orientations, but with the addition of a thin aluminum buffer plate (in-plane configuration only), initiation proved to be difficult due to the attenuated shock and the high density of the PETN films. Mesoscale models of microenergetic samples were created using the shock physics code CTH and compared with experimental results. The results of these experiments will be discussed in the context of small sample geometry, deposited film morphology, and density.

  8. Enlisting CFD to fight hammer shock in jets

    SciTech Connect (OSTI)

    Miller, D.N.; Hamstra, J.W.

    1997-03-01

    This article describes how computational fluid dynamics can predict inlet hammer-shock loads for advanced tactical aircraft, a complex and costly task that has left existing methods grounded. The current strategy for tactical-aircraft development is directed toward reducing life-cycle cost with little or no compromise to aircraft performance. This strategy may be extended down to the component level, where the goal of future engine-inlet designs is to maintain aeroperformance and survivability while structural weight is reduced, thereby lowering costs. To address these goals, new design methods must evolve to minimize weight yet maintain necessary margins of structural safety. The ultimate loads for inlet structures are set by the peak pressures associated with hammer shocks induced by engine surge. Existing techniques for predicting peak pressure load are based on an empirical approach using flight-test data from F-111 jets, and have proven adequate for the F-016 normal-shock inlet (NSI). Current inlet designs differ significantly, however, featuring serpentine inlet ducts, swept aperture shapes, and composite structural materials. Consequently, a new approach is required to predict inlet hammer-shock loads for advanced inlets.

  9. JET ROTATION DRIVEN BY MAGNETOHYDRODYNAMIC SHOCKS IN HELICAL MAGNETIC FIELDS

    SciTech Connect (OSTI)

    Fendt, Christian

    2011-08-10

    In this paper, we present a detailed numerical investigation of the hypothesis that a rotation of astrophysical jets can be caused by magnetohydrodynamic (MHD) shocks in a helical magnetic field. Shock compression of the helical magnetic field results in a toroidal Lorentz force component that will accelerate the jet material in the toroidal direction. This process transforms magnetic angular momentum (magnetic stress) carried along the jet into kinetic angular momentum (rotation). The mechanism proposed here only works in a helical magnetic field configuration. We demonstrate the feasibility of this mechanism by axisymmetric MHD simulations in 1.5 and 2.5 dimensions using the PLUTO code. In our setup, the jet is injected into the ambient gas with zero kinetic angular momentum (no rotation). We apply different dynamical parameters for jet propagation such as the jet internal Alfven Mach number and fast magnetosonic Mach number, the density contrast of the jet to the ambient medium, and the external sonic Mach number of the jet. The mechanism we suggest should work for a variety of jet applications, e.g., protostellar or extragalactic jets, and internal jet shocks (jet knots) or external shocks between the jet and the ambient gas (entrainment). For typical parameter values for protostellar jets, the numerically derived rotation feature looks consistent with the observations, i.e., rotational velocities of 0.1%-1% of the jet bulk velocity.

  10. TRANSMISSION AND EMISSION OF SOLAR ENERGETIC PARTICLES IN SEMI-TRANSPARENT SHOCKS

    SciTech Connect (OSTI)

    Kocharov, Leon; Usoskin, Ilya; Laitinen, Timo; Vainio, Rami

    2014-06-01

    While major solar energetic particle (SEP) events are associated with coronal mass ejection (CME)-driven shocks in solar wind, accurate SEP measurements reveal that more than one component of energetic ions exist in the beginning of the events. Solar electromagnetic emissions, including nuclear gamma-rays, suggest that high-energy ions could also be accelerated by coronal shocks, and some of those particles could contribute to SEPs in interplanetary space. However, the CME-driven shock in solar wind is thought to shield any particle source beneath the shock because of the strong scattering required for the diffusive shock acceleration. In this Letter, we consider a shock model that allows energetic particles from the possible behind-shock source to appear in front of the shock simultaneously with SEPs accelerated by the shock itself. We model the energetic particle transport in directions parallel and perpendicular to the magnetic field in a spherical shock expanding through the highly turbulent magnetic sector with an embedded quiet magnetic tube, which makes the shock semi-transparent for energetic particles. The model energy spectra and time profiles of energetic ions escaping far upstream of the shock are similar to the profiles observed during the first hour of some gradual SEP events.

  11. The Effects of Radiation Chemistry on Solvent Extraction 4. Separation of the Trivalent Actinides and Considerations for Radiation-Resistant Solvent Systems

    SciTech Connect (OSTI)

    Bruce J. Mincher; Giuseppe Modolo; Stephen P. Mezyk

    2010-07-01

    The separation of the minor actinides from dissolved nuclear fuel is one of the more formidable challenges associated with the design of the advanced fuel cycle. The partitioning of americium and its transmutation in fast reactor fuel would reduce high-level-waste long-term storage requirements by as much as two orders of magnitude. However, the lanthanides have very similar chemistry. They also have large neutron capture cross sections and poor metal alloy properties and thus they can not be incorporated into fast reactor fuel. A separation amenable to currently existing aqueous solvent extraction processes is therefore desired, and research is underway in Europe, Asia and the USA toward this end. Current concepts for this final separation rely on the use of soft-donor nitrogen or sulfur-containing ligands that favor complexation with the 5f orbitals of the actinides. In the USA, the most developed process is the TALSPEAK (Trivalent Actinide Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes) process, based upon the competition between bis(2-ethylhexyl)phosphoric acid (HDEHP) in the organic phase and lactate-buffered diethylenetriamine pentaacetic acid (DTPA) in the aqueous phase. In Europe and Japan, current investigation is focused on the BTP diamide mixtures or dithiophosphinic acids. Any process eventually adopted must be robust under conditions of high-radiation dose-rates and acid hydrolysis. The effects of irradiation on solvent extraction formulations may result in: 1) decreased ligand concentrations resulting in lower metal distribution ratios, 2) decreased selectivity due to the generation of ligand radiolysis products that are complexing agents, 3) decreased selectivity due to the generation of diluent radiolysis products that are complexing agents, and 4) altered solvent performance due to films, precipitates, and increased viscocity. Many of the ligands associated with minor actinide/lanthanide separations are relatively new. Unlike their predecessors, many have been designed with radiation chemical principals in mind. The evolution of the BTPs and diamides show attention to these details, and a series of structural modifications have evolved that are meant to address them. In this fourth and final part in the series we report on the radiation chemistry of the minor actinide separations processes. We also provide a summary of the general radiolysis reactions that have implications for all ligand and diluent systems.

  12. EVIDENCE FOR A SHOCK IN INTERSTELLAR PLASMA: VOYAGER 1

    SciTech Connect (OSTI)

    Burlaga, L. F. [NASA Goddard Space Flight Center, Code 673, Greenbelt, MD 20771 (United States); Ness, N. F. [Institute for Astrophysics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Gurnett, D. A.; Kurth, W. S., E-mail: lburlagahsp@verizon.net, E-mail: nfnudel@yahoo.com, E-mail: donald-gurnett@uiowa.edu, E-mail: william-kurth@uiowa.edu [University of Iowa, Iowa City, IA 52242 (United States)

    2013-11-20

    Voyager 1 (V1) observed electron plasma oscillations preceding a jump by a factor of 1.4 in the magnetic field intensity B near the end of 2012. The frequency of the electron plasma oscillations gives an electron density n{sub e}  = 0.05 cm{sup –3}, which implies that V1 was immersed in plasma from the interstellar medium. The last day on which plasma oscillations were observed is day 332, 2012, and the jump in the B was centered on day 335, 2012 after a data gap in the wave data. The close association between the electron plasma oscillations and the jump in B suggests a causal connection, such as that frequently observed between electron plasma oscillations and interplanetary shocks at 1 AU. Based on the observed parameters and the smooth profile of B(t), the jump in B appears to be associated with a weak, subcritical, laminar, low beta, quasi-perpendicular, resistive, collisionless shock. However, the width of the jump is of the order of 10{sup 4} times that expected for such a stationary shock at 1 AU. The large width of the jump in B might be the result of differences between the structure of shocks in the interstellar medium and the plasma near 1 AU. Alternatively, the subcritical resistive shock might have decayed during a few days after producing the plasma waves, leaving a broad profile in B(t) without significantly changing ambient parameters. Another possibility is that the jump in B is a pressure wave.

  13. Shock initiation experiments on ratchet grown PBX 9502

    SciTech Connect (OSTI)

    Gustavsen, Richard L; Thompson, Darla G; Olinger, Barton W; Deluca, Racci; Bartram, Brian D; Pierce, Timothy H; Sanchez, Nathaniel J

    2010-01-01

    This study compares the shock initiation behavior of PBX 9502 pressed to less than nominal density (nominal density is 1.890 {+-} 0.005 g/cm{sup 3}) with PBX 9502 pressed to nominal density and then ''ratchet grown'' to low density. PBX 9502 is an insensitive plastic bonded explosive consisting of 95 weight % dry-aminated tri-amino-tri-nitro-benzene (TATB) and 5 weight % Kel-F 800 plastic binder. ''Ratchet growth'' - an irreversible increase in specific volume - occurs when an explosive based on TATB is temperature cycled. The design of our study is as follows: PBX 9502, all from the same lot, received the following four treatments. Samples in the first group were pressed to less than nominal density. These were not ratchet grown and used as a baseline. Samples in the second group were pressed to nominal density and then ratchet grown by temperature cycling 30 times between -54 C and +80 C. Samples in the final group were pressed to nominal density and cut into 100 mm by 25.4 mm diameter cylinders. During thermal cycling the cylinders were axially constrained by a 100 psi load. Samples for shock initiation experiments were cut perpendicular (disks) and parallel (slabs) to the axial load. The four sample groups can be summarized with the terms pressed low, ratchet grown/no load, axial load/disks, and axial load/slabs. All samples were shock initiated with nearly identical inputs in plate impact experiments carried out on a gas gun. Wave profiles were measured after propagation through 3, 4, 5, and 6 mm of explosive. Side by side comparison of wave profiles from different samples is used as a measure of relative sensitivity. All reduced density samples were more shock sensitive than nominal density PBX 9502. Differences in shock sensitivity between ratchet grown and pressed to low density PBX 9502 were small, but the low density pressings are slightly more sensitive than the ratchet grown samples.

  14. Carrier-mediated transport of actinide ions using supported liquid membranes containing TODGA as the carrier extractant

    SciTech Connect (OSTI)

    Panja, S.; Dakshinamoorthy, A.; Munshi, S.K.; Dey, P.K.; Mohapatra, P.K.; Manchanda, V.K.

    2008-07-01

    The transport behavior of Pu{sup 3+} under varying reducing conditions was investigated from a feed containing 3.0 M HNO{sub 3} into a receiver phase containing 0.1 M HNO{sub 3} using TODGA (N,N,N',N' - tetraoctyl-diglycolamide) as the carrier ligand. A mixture of 0.2 M hydroxyl ammonium nitrate and 0.2 M hydrazinium nitrate (used in the feed as the reducing agent) has been found to be effective for quantitative (>99%) transport of the trivalent Pu in about 3 h. Transport of trivalent plutonium in 3 h (>99%) was higher as compared to that of the tetravalent plutonium (94%), though their D values followed an opposite trend. The permeability coefficient (P) of Pu{sup 3+} was (4.63 {+-} 0.26) x 10{sup -3} cm/s as compared to (2.10 {+-} 0.14) x 10{sup -3} cm/s for Pu{sup 4+} and (3.67 {+-} 0.06) x 10{sup -3} cm/s Am{sup 3+}. P values of trivalent actinide ions such as Am{sup 3+}, Pu{sup 3+}, and Cm{sup 3+} are compared with their distribution data. (authors)

  15. Theoretical Prediction of Am(III)/Eu(III) Selectivity to Aid the Design of Actinide-Lanthanide Separation Agents

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bryantsev, Vyacheslav S.; Hay, Benjamin P.

    2015-03-20

    Selective extraction of minor actinides from lanthanides is a critical step in the reduction of radiotoxicity of spent nuclear fuels. However, the design of suitable ligands for separating chemically similar 4f- and 5f-block trivalent metal ions poses a significant challenge. Furthermore, first-principles calculations should play an important role in the design of new separation agents, but their ability to predict metal ion selectivity has not been systematically evaluated. We examine the ability of several density functional theory methods to predict selectivity of Am(III) and Eu(III) with oxygen, mixed oxygen–nitrogen, and sulfur donor ligands. The results establish a computational method capablemore » of predicting the correct order of selectivities obtained from liquid–liquid extraction and aqueous phase complexation studies. To allow reasonably accurate predictions, it was critical to employ sufficiently flexible basis sets and provide proper account of solvation effects. The approach is utilized to estimate the selectivity of novel amide-functionalized diazine and 1,2,3-triazole ligands.« less

  16. EM's Acting Assistant Secretary Selected to Lead Joint Convention

    Broader source: Energy.gov [DOE]

    The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) selected David Huizenga, Acting Assistant Secretary for the Office of Environmental Management, as the President for the Fifth Review Meeting of the Parties.

  17. Joint Fuel Cell Bus Workshop Summary Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Bus Workshop Summary Report Joint Fuel Cell Bus Workshop Summary Report Presentation at DOE & DOT Joint Fuel Cell Bus Workshop, June 7, 2010 PDF icon buswksp10_summary.pdf More Documents & Publications Fuel Cell Bus Workshop HybriDrive Propulsion System Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current Status

  18. Majorana Demonstrator Bolted Joint Mechanical and Thermal Analysis

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Reid, Douglas J.; Fast, James E.

    2012-06-01

    The MAJORANA DEMONSTRATOR is designed to probe for neutrinoless double-beta decay, an extremely rare process with a half-life in the order of 1026 years. The experiment uses an ultra-low background, high-purity germanium detector array. The germanium crystals are both the source and the detector in this experiment. Operating these crystals as ionizing radiation detectors requires having them under cryogenic conditions (below 90 K). A liquid nitrogen thermosyphon is used to extract the heat from the detectors. The detector channels are arranged in strings and thermally coupled to the thermosyphon through a cold plate. The cold plate is joined to the thermosyphon by a bolted joint. This circular plate is housed inside the cryostat can. This document provides a detailed study of the bolted joint that connects the cold plate and the thermosyphon. An analysis of the mechanical and thermal properties of this bolted joint is presented. The force applied to the joint is derived from the torque applied to each one of the six bolts that form the joint. The thermal conductivity of the joint is measured as a function of applied force. The required heat conductivity for a successful experiment is the combination of the thermal conductivity of the detector string and this joint. The thermal behavior of the joint is experimentally implemented and analyzed in this study.

  19. Scanned_Joint_Declaration_(Italian).pdf | Department of Energy

    Energy Savers [EERE]

    Italian).pdf Scanned_Joint_Declaration_(Italian).pdf PDF icon Scanned_Joint_Declaration_(Italian).pdf More Documents & Publications FTCP Face to Face Meeting - March 30, 2010 Introducción al Conocimiento de Energía Energy Education Resources in Spanish Get Current: Switch on Clean Energy Coloring Book

  20. Remote controlled vacuum joint closure mechanism

    DOE Patents [OSTI]

    Doll, David W. (San Diego, CA); Hager, E. Randolph (La Jolla, CA)

    1986-01-01

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange.

  1. The institutional needs of joint implementation projects

    SciTech Connect (OSTI)

    Watt, E.; Sathaye, J.; Buen, O. de; Masera, O.; Gelil, I.A.; Ravindranath, N.H.; Zhou, D.; Li, J.; Intarapravich, D.

    1995-10-21

    In this paper, the authors discuss options for developing institutions for joint implementation (JI) projects. They focus on the tasks which are unique to JI projects or require additional institutional needs--accepting the project by the host and investor countries and assessing the project`s greenhouse gas (GHG) emission reduction or sequestration--and they suggest the types of institutions that would enhance their performance. The evaluation is based on four sets of governmental and international criteria for JI projects, the experiences of ten pilot JI projects, and the perspectives of seven collaborating authors from China, Egypt, India, Mexico, and Thailand, who interviewed relevant government and non-government staff involved in JI issue assessment in their countries. After examining the roles for potential JI institutions, they present early findings arguing for a decentralized national JI structure, which includes: (1) national governmental panels providing host country acceptance of proposed JI projects; (2) project parties providing the assessment data on the GHG reduction or sequestration for the projects; (3) technical experts calculating these GHG flows; (4) certified verification teams checking the GHG calculations; and (5) members of an international JI Secretariat training and certifying the assessors, as well as resolving challenges to the verifications. 86 refs.

  2. Proceedings of the Third International Workshop on Jointed Structures.

    SciTech Connect (OSTI)

    Starr, Michael James; Brake, Matthew Robert; Segalman, Daniel Joseph; Bergman, Lawrence A.; Ewins, David J.

    2013-08-01

    The Third International Workshop on Jointed Structures was held from August 16th to 17th, 2012, in Chicago Illinois, following the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Thirty two researchers from both the United States and international locations convened to discuss the recent progress of mechanical joints related research and associated efforts in addition to developing a roadmap for the challenges to be addressed over the next five to ten years. These proceedings from the workshop include the minutes of the discussions and follow up from the 2009 workshop [1], presentations, and outcomes of the workshop. Specifically, twelve challenges were formulated from the discussions at the workshop, which focus on developing a better understanding of uncertainty and variability in jointed structures, incorporating high fidelity models of joints in simulations that are tractable/efficient, motivating a new generation of researchers and funding agents as to the importance of joint mechanics research, and developing new insights into the physical phenomena that give rise to energy dissipation in jointed structures. The ultimate goal of these research efforts is to develop a predictive model of joint mechanics.

  3. JASPER Reaches Shot 125 Milestone; Future Looks Bright for More Growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JASPER Reaches Shot 125 Milestone; Future Looks Bright for More Growth The Joint Actinide Shock Physics Research (JASPER) facility at the Nevada National Security Site (NNSS) features more than just one of the most powerful gas guns on the planet - it has quickly become an integral part of the Stockpile Stewardship program for the data it provides. Scientists from the National Laboratories use JASPER to conduct experiments, or "shots," that subject materials to extreme pressures and

  4. Independent Activity Report, Nevada National Security Site - April 2011 |

    Office of Environmental Management (EM)

    Department of Energy April 2011 Independent Activity Report, Nevada National Security Site - April 2011 April 2011 Nevada National Security Site Operational Readiness Review for the Joint Actinide Shock Physics Experimental Research Facility Restart Pre-visit [HIAR-NNSS-2011-04-28] This Independent Activity Report documents an oversight activity conducted by Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations April 25-28, 2011, at the Nevada

  5. Annual Site Environmental Report

    National Nuclear Security Administration (NNSA)

    support this mission include the U1a Facility, Big Explosives Experimental Facility (BEEF), and Joint Actinide Shock Physics Experimental Research (JASPER) Facility. Other NTS activities include demilitarization activities, controlled spills of hazardous material at the Hazardous Materials Spill Center (HSC), remediation of industrial sites, processing of waste destined for the Waste Isolation Pilot Plant (WIPP), disposal of radioactive and mixed waste, and environmental research. In addition

  6. Characterization of Fuel-Cladding Bond Strength Using Laser Shock

    SciTech Connect (OSTI)

    James A. Smith; David L. Cottle; Barry H. Rabin

    2014-04-01

    This paper describes new laser-based capabilities for characterization of fuel-cladding bond strength in nuclear fuels, and presents preliminary results obtained from studies on as-fabricated monolithic fuel consisting of uranium-10 wt.% molybdenum alloys clad in 6061 aluminum by hot isostatic pressing. Two complementary experimental methods are employed, laser-shock testing and laser-ultrasonic imaging. Measurements are spatially localized, non-contacting and require minimum specimen preparation, and are therefore ideally suited for applications involving radioactive materials, including irradiated materials. The theoretical principles and experimental approaches employed in characterization of nuclear fuel plates are described. The ability to measure layer thicknesses, elastic properties of the constituents, and the location and nature of laser-shock induced debonds is demonstrated, and preliminary bond strength measurement results are discussed.

  7. Enhanced densification under shock compression in porous silicon

    SciTech Connect (OSTI)

    Lane, J. Matthew; Thompson, Aidan Patrick; Vogler, Tracy

    2014-10-27

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. The mechanism driving this behavior was not completely determined. We present evidence from atomistic simulation that pure silicon belongs to this anomalous class of materials and demonstrate the associated mechanisms responsible for the effect in porous silicon. Atomistic response indicates that local shear strain in the neighborhood of collapsing pores catalyzes a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.

  8. Shock compression experiments on Lithium Deuteride single crystals.

    SciTech Connect (OSTI)

    Knudson, Marcus D.; Desjarlais, Michael P.; Lemke, Raymond W.

    2014-10-01

    S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between ~200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to ~900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

  9. Solitary and shock waves in magnetized electron-positron plasma

    SciTech Connect (OSTI)

    Lu, Ding; Li, Zi-Liang; Abdukerim, Nuriman; Xie, Bai-Song

    2014-02-15

    An Ohm's law for electron-positron (EP) plasma is obtained. In the framework of EP magnetohydrodynamics, we investigate nonrelativistic nonlinear waves' solutions in a magnetized EP plasma. In the collisionless limit, quasistationary propagating solitary wave structures for the magnetic field and the plasma density are obtained. It is found that the wave amplitude increases with the Mach number and the Alfvén speed. However, the dependence on the plasma temperature is just the opposite. Moreover, for a cold EP plasma, the existence range of the solitary waves depends only on the Alfvén speed. For a hot EP plasma, the existence range depends on the Alfvén speed as well as the plasma temperature. In the presence of collision, the electromagnetic fields and the plasma density can appear as oscillatory shock structures because of the dissipation caused by the collisions. As the collision frequency increases, the oscillatory shock structure becomes more and more monotonic.

  10. Enhanced densification under shock compression in porous silicon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lane, J. Matthew; Thompson, Aidan Patrick; Vogler, Tracy

    2014-10-27

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. The mechanism driving this behavior was not completely determined. We present evidence from atomistic simulation that pure silicon belongs to this anomalous class of materials and demonstrate the associated mechanisms responsible for the effect in porous silicon. Atomistic response indicates that local shear strain in the neighborhood of collapsing pores catalyzes a local solid-solid phase transformation even when bulk pressures are below the thermodynamicmore » phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.« less

  11. Frequency shift measurement in shock-compressed materials

    DOE Patents [OSTI]

    Moore, D.S.; Schmidt, S.C.

    1984-02-21

    A method is disclosed for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the stock front advancing through the sample, thereby minimizing adverse effects of refraction.

  12. Shock formation and the ideal shape of ramp compression waves

    SciTech Connect (OSTI)

    Swift, D C; Kraus, R G; Loomis, E; Hicks, D G; McNaney, J M; Johnson, R P

    2008-05-29

    We derive expressions for shock formation based on the local curvature of the flow characteristics during dynamic compression. Given a specific ramp adiabat, calculated for instance from the equation of state for a substance, the ideal nonlinear shape for an applied ramp loading history can be determined. We discuss the region affected by lateral release, which can be presented in compact form for the ideal loading history. Example calculations are given for representative metals and plastic ablators. Continuum dynamics (hydrocode) simulations were in good agreement with the algebraic forms. Example applications are presented for several classes of laser-loading experiment, identifying conditions where shocks are desired but not formed, and where long duration ramps are desired.

  13. Properties of Ni-Al under shock loading

    SciTech Connect (OSTI)

    Koskelo, A. C.; McClellan, K. J.; Brooks, J. D.; Paisley, Dennis L.; Swift, D. C.

    2002-01-01

    New models for the dynamic response of materials will be based increasingly on better understanding and representation of processes occurring at the microstructural level. These developments require advances in diagnostics and models which can be applied explicitly to microstructural response. Various phenomena occur at the microstructural level which are generally ignored or averaged out in continuum-level models. One example of such 'irregular hydrodynamics' is the roughness imparted to a shock wave as it propagates through a polycrystalline material. We have developed imaging techniques to study spatial variations in shock propagation through polycrystalline materials. In order to interpret spatially-resolved data from polycrystal samples, we need to compare with simulations which represent the microstructure. Here we describe work undertaken to develop a model of the dynamic response of individual grains. The material chosen was Ni-Al alloy, because it exhibits a relatively large degree of elastic anisotropy, and it is relatively easy to manufacture.

  14. Inelastic X-ray Scattering from Shocked Liquid Deuterium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Regan, S. P.; Falk, K.; Gregori, G.; Radha, P. B.; Hu, S. X.; Boehly, T. R.; Crowley, B.; Glenzer, S. H.; Landen, O.; Gericke, D. O.; et al

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×1023 cm-3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  15. Simulation and Analysis of Converging Shock Wave Test Problems

    SciTech Connect (OSTI)

    Ramsey, Scott D.; Shashkov, Mikhail J.

    2012-06-21

    Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.

  16. Jets reveal cerium's shocked strength | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jets reveal cerium's shocked strength By Vic Comello * January 27, 2016 Tweet EmailPrint Recent synchrotron advances and the development of dynamic compression platforms have created the ability to investigate extreme states of matter on short timescales at X-ray beamlines using shockwaves generated by impact systems. That's how scientists learned that surface protrusions called "jets," formed after shockwaves passed through cerium metal, could provide insight into the yield stress of

  17. LANL Shock Tube Kathy Prestridge Extreme Fluids Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Header image FLUID DYNAMICS at Los Alamos Extreme Fluids Team in Physics Division home the team research publications pictures diversity contact The Extreme Fluids Team On the P-23 Extreme Fluids Team at Los Alamos National Laboratory, we apply high-resolution diagnostics to study fluid dynamics problems in extreme environments, such as shock-driven mixing, multiphase flows, and variable-density turbulence. The team is composed of Los Alamos staff, postdocs, and students. EXPERIMENTAL FACILITIES

  18. US, Russian Federation Sign Joint Statement on Reactor Conversion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy US, Russian Federation Sign Joint Statement on Reactor Conversion US, Russian Federation Sign Joint Statement on Reactor Conversion June 26, 2012 - 12:00pm Addthis News Media Contact (202) 586-4940 This release is cross-posted from NNSA.energy.gov. MOSCOW - The U.S. and Russian Federation jointly announced today that the first stage of work defined in the Implementing Agreement between the Russian State Corporation for Atomic Energy (Rosatom) and the Department of Energy

  19. Ultrasonic inspection of polyethylene butt-fussion joints

    SciTech Connect (OSTI)

    House, L.J.; Day, R.A.

    1982-01-01

    Researchers investigated nondestructive pulse-echo, pitch-catch, and spectroscopic ultrasonic methods for determining voids and inclusions, lack of bond, and inadequate fusion in heat-fused polyethylene butt joints in 4-in. gas distribution pipe. The pulse-echo method, using a 2.25-MHz, cylindrically focused transducer, provided the best sensitivity to the joint defects, detecting flaws as small as 0.014 in. in diameter. No correlation was established between the ultrasonic spectroscopy results and the cohesive strength of incompletely fused joints in the 1.2-3.2 MHz frequency range.

  20. Introduction to Using NERSC for the Joint Genome Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Introduction to Using NERSC for the Joint Genome Institute May 2, 2011 jgi logo sm NERSC Training Event 1:00-5:00 p.m. PDT May 2, 2011 Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA Introduction to Using NERSC Richard Gerber, NERSC User Services Group Shane Canon, NERSC Technology Integration Group This half-day training will enable new users from the Joint Genome Institute to get connected and running jobs at NERSC. We will cover NERSC computational and storage systems,