National Library of Energy BETA

Sample records for johns-saint helens number

  1. CX-004263: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    L0295 - Saint Johns-Saint Helens Number 1 Interconnection ProjectCX(s) Applied: B4.6Date: 10/15/2010Location(s): Columbia County, OregonOffice(s): Bonneville Power Administration

  2. Yun (Helen) He

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as strategies to improve IO performance. Wendy Hwa-Chun Lin, Yun (Helen) He, and Woo-Sun Yang, "Franklin Job Completion Analysis", Cray User Group 2010 Proceedings, Edinburgh,...

  3. Yun (Helen) He

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The Hopper XE6 system, NERSC's first peta-flop system with ... Oakland, CA, February 15, 2013, Zhengji Zhao, Yun (Helen) ...gradesslidesfinal.pdf (pdf: 227 KB) James M. Craw, Nicholas ...

  4. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings This case study describes how the Boise Inc. ...

  5. Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 2000...

    Open Energy Info (EERE)

    Home Exploration Activity: Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 2000) Exploration Activity Details Location Mt St Helens Area Exploration Technique...

  6. Compound and Elemental Analysis At Mt St Helens Area (Shevenell...

    Open Energy Info (EERE)

    Exploration Activity: Compound and Elemental Analysis At Mt St Helens Area (Shevenell & Goff, 2000) Exploration Activity Details Location Mt St Helens Area Exploration Technique...

  7. Geothermometry At Mt St Helens Area (Shevenell & Goff, 1995)...

    Open Energy Info (EERE)

    St Helens Area (Shevenell & Goff, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Mt St Helens Area (Shevenell & Goff,...

  8. Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 1995...

    Open Energy Info (EERE)

    Home Exploration Activity: Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details Location Mt St Helens Area Exploration Technique...

  9. Compound and Elemental Analysis At Mt St Helens Area (Shevenell...

    Open Energy Info (EERE)

    Exploration Activity: Compound and Elemental Analysis At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details Location Mt St Helens Area Exploration Technique...

  10. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings This case study describes how the Boise Inc. paper mill in St. Helens, Oregon, achieved annual savings of approximately 154,000 MMBtu and more than $1 million. This was accomplished after receiving a DOE energy assessment and implementing recommendations to improve the efficiency of its steam system. PDF icon Boise Inc. St. Helens Paper

  11. Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995)...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details...

  12. Aeromagnetic Survey At Mt St Helens Area (Towle, 1983) | Open...

    Open Energy Info (EERE)

    structure of Mount St. Helens in more detail. Electrical and electromagnetic methods would be especially useful in determining the actual electrical conductivity of...

  13. LWA-0006- In the Matter of Helen Gaidine Oglesbee

    Broader source: Energy.gov [DOE]

    This Decision involves a whistleblower complaint filed by Helen Gaidine Oglesbee (Oglesbee) under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708. Oglesbee has...

  14. Running Jobs Helen He NERSC User Engagement Group" New User Training"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helen He NERSC User Engagement Group" " New User Training" March 21, 2016 Jobs at NERSC * Most are parallel jobs (10s to 100,000+ cores) * Also a number of "serial" jobs - Typically "pleasantly parallel" simula2on or data analysis * Produc>on runs execute in batch mode * Our batch scheduler is SLURM (na>ve) * Debug jobs are supported for up to 30 minutes * Typically run >mes are a few to 10s of hours - Each machine has different limits - Limits are

  15. Nazim Bharmal Anthony Slingo Jeff Settle Gary Robinson Helen White

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RADAGAST: measured and calculated divergences over Niamey Nazim Bharmal Anthony Slingo Jeff Settle Gary Robinson Helen White Philosophy 3. Use MODIS products to characterise the surface heterogeneity. 1. Measure the TOA radiances every 15 min from Geostationary Earth Radiation Budget (GERB). * Edwards-Slingo RT code used to calculate consistent flux components. * Or, use measurements to calculate divergences (see White et al.) 2. Measure surface fluxes and atmospheric state using the ARM Mobile

  16. Richard Gerber Helen He, Zhengji Zhao, Chris Daley NUG Monthly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helen He, Zhengji Zhao, Chris Daley NUG Monthly Meeting --- 1 --- NUG M onthly M ee-ng October 2 , 2 014 Agenda * Hopper and Edison Status Updates * ERCAP ( Alloca-ons) U pdate * Queue C ommiIee T opics * NUGEX Elec-ons * NUG 2 015 M ee-ng P lanning * Mini---Seminar: S teps t o i mprove t he p erformance o f a h ydrodynamics a pplica-on o n t he I ntel M IC architecture --- 2 --- Edison Update" Zhengji Zhao, User Services --- 3 --- Edison Updates * 9/25 7 :30 P DT --- 9 /28 1 :30 P DT D IMM

  17. LWA-0006- Deputy Secretary Decision- In the Matter of Helen Gaidine Oglesbee

    Broader source: Energy.gov [DOE]

    This is an appeal by complainant Helen Gaidine Oglesbee of an Initial Agency Decision by an Office of Hearings and Appeals ("OHA") Hearing Officer. Following two days of hearings, the Hearing...

  18. Dr Helen Kerch | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Helen Kerch Materials Sciences and Engineering (MSE) Division MSE Home About Staff What's New Research Areas Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Staff Dr. Helen Kerch Print Text Size: A A A FeedbackShare Page Kerch Team Lead Scattering and Instrumentation Sciences Materials Sciences and Engineering Division Office of Basic Energy Sciences SC-22.2/Germantown Building, Rm F-411 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C.

  19. Helen T. Edwards, 1986 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helen T. Edwards, 1986 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1980's Helen T. Edwards, 1986 Print Text Size: A A A FeedbackShare Page Physics: For her leadership

  20. Carbonyl sulfide and carbon disulfide from the eruptions of Mount St. Helens

    SciTech Connect (OSTI)

    Rasmussen, R.A.; Khalil, M.A.K.; Dalluge, R.W.; Penkett, S.A.; Jones, B.

    1982-01-01

    Ash from the massive 18 May 1980 eruption of Mount St. Helens readily gave off large amounts of carbonyl sulfide and carbon disulfide gases at room temperature. These findings suggest that the sulfur that enhances the Junge sulfate layer in the stratosphere after volcanic eruptions could be carried directly to the upper atmosphere as carbonyl sulfide and carbon disulfide adsorbed on ash particles from major volcanic eruptions.

  1. Evaluation of radon progeny from Mount St. Helens eruptions. Final report

    SciTech Connect (OSTI)

    Lepel, E.A.; Olsen, K.B.; Thomas, V.W.; Eichner, F.N.

    1982-09-01

    A network of twelve monitoring sites around Mount St. Helens was established to evaluate possible short-lived radioactivity in the fallen ash. Seven sites were located near major population centers of Washington and Oregon, and five sites were located within 80 km of the volcano. Each site monitored the radioactivity present by the use of thermoluminescent dosimeters which recorded the total exposure to radioactivity over the exposure period. Eruptions occurring on July 22, August 7, and October 16 to 18, 1980 were monitored. No statistically significant quantities of measurable radon daughters were observed.

  2. Franklin XT4 to Hopper XE6 Katie Antypas and Helen He NERSC User Services Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transitioning Users from Franklin XT4 to Hopper XE6 Katie Antypas and Helen He NERSC User Services Group May 23-26, CUG 2011 2 Outline * Introduction * Hopper Early User Program * Effectively Using 24 Cores Per Node * I/O Performance * Bugs Found and Fixed * Error Messages * User Feedback * Ongoing Issues * Summary 3 Franklin and Hopper Franklin: Cray XT4 * 9,532 nodes, 38,128 cores * ~32 TFlop/s sustained * 356 TFlop/s peak Hopper: * Phase 1: Cray XT5, 668 nodes, 5,344 cores * Phase 2: Cray

  3. Magmatic model for the Mount St. Helens blast of May 18, 1980

    SciTech Connect (OSTI)

    Eichelberger, J.C.; Hayes, D.B.

    1982-09-10

    Analytical and numerical solutions to the hydrodynamic equations of motion, constrained by physical properties of juvenile ejecta in the Mount St. Helens blast deposit, were used to investigate magmatic conditions required to produce the initial devastating blast phase of the eruption of May 18, 1980. Evidence that the blast was magmatic includes equivalence in volume of juvenile blast ejecta to preeruption inflation of the cone, substantial vesicularity of this ejecta, and continued vesiculation of large juvenile clasts after eruption. Observed or inferred ejecta velocities of 100 to 250 m/s are shown to require 0.2 to 0.7 wt% water vapor preexisting in magma unloaded by a landslide 200 to 900 m thick. These conditions imply total magmatic water contents of 0.7 to 1.7 wt%, respectively. Such low required water content suggests that volcanic blasts may be regarded as a normal consequence of magma intrusion into an unstable edifice.

  4. Helen He!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NUG Meeting, 10/08/2015 Nested OpenMP OpenMP Execution Model * Fork and Join Model - Master thread forks new threads at the beginning of parallel regions. - Mul6ple threads share work in parallel. - Threads join at the end of the parallel regions. - 2 - Hopper/Edison Compute Nodes - 3 - * Hopper: NERSC Cray XE6, 6,384 nodes, 153,126 cores. * 4 NUMA domains per node, 6 cores per NUMA domain. * Edison: NERSC Cray XC30, 5,576 nodes, 133,824 cores. * 2 NUMA domains per node, 12 cores per NUMA

  5. Four-year prospective study of the respiratory effects of volcanic ash from Mt. St. Helens

    SciTech Connect (OSTI)

    Buist, A.S.; Vollmer, W.M.; Johnson, L.R.; Bernstein, R.S.; McCamant, L.E.

    1986-04-01

    This report describes the 4-yr follow-up of 712 loggers exposed over an extended period to varying levels of fresh volcanic ash from the 1980 eruptions of Mt. St. Helens. Concerns related to the irritant effect the ash might have on the airways and also to its fibrogenic potential if exposures were intense and continued over many years. Our subjects were divided into 3 groups: high, low, and no exposure. Baseline testing was begun in June 1980, 1 month after the major eruption, and follow-up testing continued on an annual basis through 1984; 88% of the loggers have been tested at least 3 times. Analysis of lung function data showed that a significant, exposure-related decline in FEV1 occurred during the first year after the eruption. The decline was short-lived, however, and by 1984 the differences between exposure groups were no longer significant. Self-reported symptoms of cough, phlegm, and wheeze showed a similar pattern. No ash-related changes were seen in chest roentgenograms taken in 1980 and in 1984. Our findings are consistent with the hypothesis that the inhaled ash caused mucus hypersecretion and/or airway inflammation that reversed when the exposure levels decreased. The ash levels to which the loggers were exposed were low compared with permissible occupational levels for nuisance dusts, but generally higher than the total suspended particulate levels permissible in ambient air.

  6. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3023307 Name: Madeleine Brown Organization: nJa Address: --- -------- -------- -- Country: Phone Number: United States Fax Number: n/a E-mail: --- -------- --------_._------ --- Reasonably Describe Records Description: Please send me a copy of the emails and records relating to the decision to allow the underage son of Bill Gates to tour Hanford in June 2010. Please also send the emails and records that justify the Department of Energy to prevent other minors from visiting B Reactor. Optional

  7. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1074438 Name: Gayle Cooper Organization: nla Address: _ Country: United States Phone Number: Fax Number: nla E-mail: . ~===--------- Reasonably Describe Records Description: Information pertaining to the Department of Energy's cost estimate for reinstating pension benefit service years to the Enterprise Company (ENCO) employees who are active plan participants in the Hanford Site Pension Plan. This cost estimate was an outcome of the DOE's Worker Town Hall Meetings held on September 17-18, 2009.

  8. (Document Number)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A TA-53 TOUR FORM/RADIOLOGICAL LOG (Send completed form to MS H831) _____________ _____________________________ _________________________________ Tour Date Purpose of Tour or Tour Title Start Time and Approximate Duration ___________________________ ______________ _______________________ _________________ Tour Point of Contact/Requestor Z# (if applicable) Organization/Phone Number Signature Locations Visited: (Check all that apply, and list any others not shown. Prior approval must be obtained

  9. Number | Open Energy Information

    Open Energy Info (EERE)

    Property:NumOfPlants Property:NumProdWells Property:NumRepWells Property:Number of Color Cameras Property:Number of Devices Deployed Property:Number of Plants included in...

  10. Helen He, NERSC!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oct 20, 2015, Cray Quarterly Meeting! CCE/8.4.0 Beta Feedback from NERSC Users CCE/8.4.0 Beta Program * NERSC par*cipated the beta program to help improving the quality of the Cray's official CCE release. * Beta program dura*on: July 20 - Aug 14 (later extended to Sept 24, when CCE/8.4.0 was officially released) * CCE/8.4.0.215 installed on Edison on July 22. However license was not available un*l July 30. * No*fied 90 users who have used CCE this year. Collected feedback. * CCE/8.4.0.219

  11. Yun (Helen) He, NERSC!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC! Mar 23, 2015 OpenMP Basics and MPI/OpenMP Scaling --- 1 --- Outline * Introduc)ons t o O penMP * Features i n O penMP 3 .1 * What's n ew i n O penMP 4 .0 * Adding O penMP t o y our c ode u sing C ray R eveal * Hybrid M PI/OpenMP S caling --- 2 --- Introductions to OpenMP --- 3 --- Common Architectures * Shared M emory A rchitecture - Mul)ple C PUs s hare g lobal m emory, c ould h ave l ocal c ache - Uniform M emory A ccess ( UMA) - Typical S hared M emory P rogramming M odel: O penMP,

  12. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  13. Big Numbers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Numbers Big Numbers May 16, 2011 This article has some numbers in it. In principle, numbers are just language, like English or Japanese. Nevertheless, it is true that not everyone is comfortable or facile with numbers and may be turned off by too many of them. To those people, I apologize that this article pays less attention to maximizing the readership than some I do. But sometimes it's just appropriate to indulge one's self, so here goes. When we discuss the performance of some piece of

  14. California Natural Gas Number of Commercial Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers California Number of Natural ...

  15. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  16. ALARA notes, Number 8

    SciTech Connect (OSTI)

    Khan, T.A.; Baum, J.W.; Beckman, M.C.

    1993-10-01

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

  17. Modular redundant number systems

    SciTech Connect (OSTI)

    1998-05-31

    With the increased use of public key cryptography, faster modular multiplication has become an important cryptographic issue. Almost all public key cryptography, including most elliptic curve systems, use modular multiplication. Modular multiplication, particularly for the large public key modulii, is very slow. Increasing the speed of modular multiplication is almost synonymous with increasing the speed of public key cryptography. There are two parts to modular multiplication: multiplication and modular reduction. Though there are fast methods for multiplying and fast methods for doing modular reduction, they do not mix well. Most fast techniques require integers to be in a special form. These special forms are not related and converting from one form to another is more costly than using the standard techniques. To this date it has been better to use the fast modular reduction technique coupled with standard multiplication. Standard modular reduction is much more costly than standard multiplication. Fast modular reduction (Montgomery`s method) reduces the reduction cost to approximately that of a standard multiply. Of the fast multiplication techniques, the redundant number system technique (RNS) is one of the most popular. It is simple, converting a large convolution (multiply) into many smaller independent ones. Not only do redundant number systems increase speed, but the independent parts allow for parallelization. RNS form implies working modulo another constant. Depending on the relationship between these two constants; reduction OR division may be possible, but not both. This paper describes a new technique using ideas from both Montgomery`s method and RNS. It avoids the formula problem and allows fast reduction and multiplication. Since RNS form is used throughout, it also allows the entire process to be parallelized.

  18. Minnesota Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  19. Minnesota Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  20. Minnesota Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  1. Connecticut Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  2. Connecticut Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  3. Maine Natural Gas Number of Residential Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  4. California Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  5. California Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  6. New Jersey Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) New Jersey Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  7. Kentucky Natural Gas Number of Industrial Consumers (Number of...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  8. Oregon Natural Gas Number of Industrial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  9. Louisiana Natural Gas Number of Industrial Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  10. Wyoming Natural Gas Number of Industrial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  11. New Hampshire Natural Gas Number of Industrial Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  12. Nevada Natural Gas Number of Industrial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  13. Maryland Natural Gas Number of Industrial Consumers (Number of...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  14. Massachusetts Natural Gas Number of Industrial Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  15. Michigan Natural Gas Number of Industrial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  16. Ohio Natural Gas Number of Industrial Consumers (Number of Elements...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  17. Mississippi Natural Gas Number of Industrial Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  18. New York Natural Gas Number of Industrial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) New York Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  19. Montana Natural Gas Number of Industrial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  20. Missouri Natural Gas Number of Industrial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  1. Maine Natural Gas Number of Industrial Consumers (Number of Elements...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  2. North Carolina Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  3. Pennsylvania Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  4. North Dakota Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  5. Nebraska Natural Gas Number of Industrial Consumers (Number of...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  6. Arizona Natural Gas Number of Residential Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  7. Arizona Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  8. Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens: a terrestrial monopole

    SciTech Connect (OSTI)

    Kanamori, H.; Given, J.W.

    1982-07-10

    Long-period (100 to 260 s) Love and Rayleigh waves excited by the eruption of Mount St. Helens on May 18, 1980, and recorded by ID, SRO, and ASRO stations were analyzed to determine the mechanism of the eruption. The amplitude radiation patterns of both Rayleigh and Love waves are two lobed with nodal direction in E5/sup 0/S for Rayleigh waves and in N5/sup 0/E for Love waves. These radiation patterns preclude any double-couple mechanism. The radiation pattern, the initial phase, the relatively large amplitude ratio of Love to Rayleigh waves and the existence of clear nodes in the radiation patterns of fundamental mode and higher-mode Rayleigh waves suggest that the source is represented by an almost horizontal (less than 15/sup 0/ from the horizontal) single force pointed toward S5/sup 0/W. The surface wave spectra fall off very rapidly at periods shorter than 75 s suggesting a very slow source process. Although the details of the source time history could not be determined, a smooth bell-shaped time function: f/sub 0/s(t) = (1/2)f/sub 0/(1-cos( (t)/(tau) ..pi..)) for 0< or =t< or =2tau and f/sub 0/s(t) = 0 for t> or =2tau, with tau = 75 s is considered appropriate on the basis of comparison between synthetic and observed seismograms and of the shape of the source spectrum. The peak value of the force f/sub 0/ is about 10/sup 18/ dynes. The tailing end of the source time function could not be resolved, and some overshoot may be added. The magnitude and the time history of the force can be explained by a northward landslide followed by a lateral blast observed at the time of the eruption. Two distinct events about 110 apart can be identified on body wave and short-period surface wave records. The first event may correspond to the earthquake which triggered the landslide and the lateral blast. The second event appears to correspond to a second large earthquake and explosion which took place about 2 minutes after the first earthquake.

  9. Number

    Office of Legacy Management (LM)

    H. E, Stokinger Be: Trip Report - Mayvood Chemical Works A trip vas made Nednesday, August 24th vith Messrs. Robert W ilson and George Sprague to the Mayvood Chemical Forks, ...

  10. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Number of Natural Gas Industrial

  11. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Number of Natural Gas

  12. Compendium of Experimental Cetane Numbers

    SciTech Connect (OSTI)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  13. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  14. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016

  15. Utah Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 551 627 550 1990's 1,508 631 783 345 252 713 923 3,379 3,597 3,625 2000's 3,576 3,535 949 924 312 191 274 278 313 293 2010's 293 286 302 323 328 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  16. Vermont Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 22 21 14 1990's 15 13 18 20 24 23 27 30 36 37 2000's 38 36 38 41 43 41 35 37 35 36 2010's 38 36 38 13 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  17. West Virginia Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 463 208 211 1990's 182 198 159 197 191 192 182 173 217 147 2000's 207 213 184 142 137 145 155 114 109 101 2010's 102 94 97 95 92 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  18. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  19. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  20. Florida Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 575 552 460 1990's 452 377 388 433 481 515 517 561 574 573 2000's 520 518 451 421 398 432 475 467 449 607 2010's 581 630 507 528 520 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  1. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  2. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-27

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  3. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-05

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  4. Rhode Island Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Rhode Island Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,128 16,096 16,924 1990's 17,765 18,430 18,607 21,178 21,208 21,472 21,664 21,862 22,136 22,254 2000's 22,592 22,815 23,364 23,270 22,994 23,082 23,150 23,007 23,010 22,988 2010's 23,049 23,177 23,359 23,742 23,934 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  5. Rhode Island Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Rhode Island Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 180,656 185,861 190,796 1990's 195,100 196,438 197,926 198,563 200,959 202,947 204,259 212,777 208,208 211,097 2000's 214,474 216,781 219,769 221,141 223,669 224,320 225,027 223,589 224,103 224,846 2010's 225,204 225,828 228,487 231,763 233,786 - = No Data Reported; -- = Not

  6. South Carolina Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,414 37,075 38,856 1990's 39,904 39,999 40,968 42,191 45,487 47,293 48,650 50,817 52,237 53,436 2000's 54,794 55,257 55,608 55,909 56,049 56,974 57,452 57,544 56,317 55,850 2010's 55,853 55,846 55,908 55,997 56,172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  7. South Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,256 1,273 1,307 1990's 1,384 1,400 1,568 1,625 1,928 1,802 1,759 1,764 1,728 1,768 2000's 1,715 1,702 1,563 1,574 1,528 1,535 1,528 1,472 1,426 1,358 2010's 1,325 1,329 1,435 1,452 1,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. South Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 302,321 313,831 327,527 1990's 339,486 344,763 357,818 370,411 416,773 412,259 426,088 443,093 460,141 473,799 2000's 489,340 501,161 508,686 516,362 527,008 541,523 554,953 570,213 561,196 565,774 2010's 570,797 576,594 583,633 593,286 604,743 - = No Data Reported; -- = Not

  9. South Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,480 12,438 12,771 1990's 13,443 13,692 14,133 16,523 15,539 16,285 16,880 17,432 17,972 18,453 2000's 19,100 19,378 19,794 20,070 20,457 20,771 21,149 21,502 21,819 22,071 2010's 22,267 22,570 22,955 23,214 23,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  10. South Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 - = No Data Reported; -- = Not

  11. Tennessee Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Tennessee Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 77,104 81,159 84,040 1990's 88,753 89,863 91,999 94,860 97,943 101,561 103,867 105,925 109,772 112,978 2000's 115,691 118,561 120,130 131,916 125,042 124,755 126,970 126,324 128,007 127,704 2010's 127,914 128,969 130,139 131,091 131,001 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  12. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Tennessee Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,206 2,151 2,555 1990's 2,361 2,369 2,425 2,512 2,440 2,393 2,306 2,382 5,149 2,159 2000's 2,386 2,704 2,657 2,755 2,738 2,498 2,545 2,656 2,650 2,717 2010's 2,702 2,729 2,679 2,581 2,595 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  13. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 534,882 565,856 599,042 1990's 627,031 661,105 696,140 733,363 768,421 804,724 841,232 867,793 905,757 937,896 2000's 969,537 993,363 1,009,225 1,022,628 1,037,429 1,049,307 1,063,328 1,071,756 1,084,102 1,083,573 2010's 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 - = No Data Reported; -- =

  14. Texas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 294,879 284,013 270,227 1990's 268,181 269,411 292,990 297,516 306,376 325,785 329,287 332,077 320,922 314,598 2000's 315,906 314,858 317,446 320,786 322,242 322,999 329,918 326,812 324,671 313,384 2010's 312,277 314,041 314,811 314,036 317,217 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,852 4,427 13,383 1990's 13,659 13,770 5,481 5,823 5,222 9,043 8,796 5,339 5,318 5,655 2000's 11,613 10,047 9,143 9,015 9,359 9,136 8,664 11,063 5,568 8,581 2010's 8,779 8,713 8,953 8,525 8,406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Texas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,155,948 3,166,168 3,201,316 1990's 3,232,849 3,274,482 3,285,025 3,346,809 3,350,314 3,446,120 3,501,853 3,543,027 3,600,505 3,613,864 2000's 3,704,501 3,738,260 3,809,370 3,859,647 3,939,101 3,984,481 4,067,508 4,156,991 4,205,412 4,248,613 2010's 4,288,495 4,326,156 4,370,057 4,424,103 4,469,282 -

  17. Utah Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,329 32,637 32,966 1990's 34,697 35,627 36,145 37,816 39,183 40,101 40,107 40,689 42,054 43,861 2000's 47,201 47,477 50,202 51,063 51,503 55,174 55,821 57,741 59,502 60,781 2010's 61,976 62,885 63,383 64,114 65,134 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Utah Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 414,020 418,569 432,377 1990's 453,023 455,649 467,664 484,438 503,583 523,622 562,343 567,786 588,364 609,603 2000's 641,111 657,728 660,677 678,833 701,255 743,761 754,554 778,644 794,880 810,442 2010's 821,525 830,219 840,687 854,389 869,052 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Vermont Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,447 2,698 2,768 1990's 2,949 3,154 3,198 3,314 3,512 3,649 3,790 3,928 4,034 4,219 2000's 4,316 4,416 4,516 4,602 4,684 4,781 4,861 4,925 4,980 5,085 2010's 5,137 5,256 5,535 5,441 5,589 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Vermont Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,553 16,616 16,920 1990's 18,300 19,879 20,468 21,553 22,546 23,523 24,383 25,539 26,664 27,931 2000's 28,532 29,463 30,108 30,856 31,971 33,015 34,081 34,937 35,929 37,242 2010's 38,047 38,839 39,917 41,152 42,231 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  1. Virginia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 54,071 54,892 61,012 1990's 63,751 67,997 69,629 70,161 72,188 74,690 77,284 78,986 77,220 80,500 2000's 84,646 84,839 86,328 87,202 87,919 90,577 91,481 93,015 94,219 95,704 2010's 95,401 96,086 96,503 97,499 98,741 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Virginia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 877 895 895 1990's 929 1,156 1,101 2,706 2,740 2,812 2,822 2,391 2,469 2,984 2000's 1,749 1,261 1,526 1,517 1,217 1,402 1,256 1,271 1,205 1,126 2010's 1,059 1,103 1,132 1,132 1,123 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  3. Virginia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 550,318 573,731 601,906 1990's 622,883 651,203 664,500 690,061 721,495 753,003 789,985 812,866 847,938 893,887 2000's 907,855 941,582 982,521 996,564 1,029,389 1,066,302 1,085,509 1,101,863 1,113,016 1,124,717 2010's 1,133,103 1,145,049 1,155,636 1,170,161 1,183,894 - = No Data Reported; -- = Not

  4. Washington Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Washington Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,365 56,487 55,231 1990's 58,148 60,887 63,391 65,810 68,118 70,781 73,708 75,550 77,770 80,995 2000's 83,189 84,628 85,286 87,082 93,559 92,417 93,628 95,615 97,799 98,965 2010's 99,231 99,674 100,038 100,939 101,730 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  5. Washington Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,355 3,564 3,365 1990's 3,428 3,495 3,490 3,448 3,586 3,544 3,587 3,748 3,848 4,040 2000's 4,007 3,898 3,928 3,775 3,992 3,489 3,428 3,630 3,483 3,428 2010's 3,372 3,353 3,338 3,320 3,355 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. Washington Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 392,469 413,008 425,624 1990's 458,013 492,189 528,913 565,475 604,315 638,603 673,357 702,701 737,208 779,104 2000's 813,319 841,617 861,943 895,800 926,510 966,199 997,728 1,025,171 1,047,319 1,059,239 2010's 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 - = No Data Reported; -- = Not

  7. West Virginia Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,283 33,192 33,880 1990's 32,785 32,755 33,289 33,611 33,756 36,144 33,837 33,970 35,362 35,483 2000's 41,949 35,607 35,016 35,160 34,932 36,635 34,748 34,161 34,275 34,044 2010's 34,063 34,041 34,078 34,283 34,339 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  8. West Virginia Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 351,024 349,765 349,347 1990's 349,673 350,489 352,463 352,997 352,929 353,629 358,049 362,432 359,783 362,292 2000's 360,471 363,126 361,171 359,919 358,027 374,301 353,292 347,433 347,368 343,837 2010's 344,131 342,069 340,256 340,102 338,652 - = No Data Reported; -- = Not

  9. Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,760 99,157 102,492 1990's 106,043 109,616 112,761 115,961 119,788 125,539 129,146 131,238 134,651 135,829 2000's 140,370 144,050 149,774 150,128 151,907 155,109 159,074 160,614 163,026 163,843 2010's 164,173 165,002 165,657 166,845 167,901 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,411 7,218 7,307 1990's 7,154 7,194 7,396 7,979 7,342 6,454 5,861 8,346 9,158 9,756 2000's 9,630 9,864 9,648 10,138 10,190 8,484 5,707 5,999 5,969 6,396 2010's 6,413 6,376 6,581 6,677 7,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  11. Wisconsin Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,054,347 1,072,585 1,097,514 1990's 1,123,557 1,151,939 1,182,834 1,220,500 1,253,333 1,291,424 1,324,570 1,361,348 1,390,068 1,426,909 2000's 1,458,959 1,484,536 1,514,700 1,541,455 1,569,719 1,592,621 1,611,772 1,632,200 1,646,644 1,656,614 2010's 1,663,583 1,671,834 1,681,001 1,692,891

  12. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  13. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  14. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 - = No Data Reported; -- = Not Applicable; NA =

  15. Colorado Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 109,770 110,769 112,004 1990's 112,661 113,945 114,898 115,924 115,994 118,502 121,221 123,580 125,178 129,041 2000's 131,613 134,393 136,489 138,621 138,543 137,513 139,746 141,420 144,719 145,624 2010's 145,460 145,837 145,960 150,145 150,235 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 896 923 976 1990's 1,018 1,074 1,108 1,032 1,176 1,528 2,099 2,923 3,349 4,727 2000's 4,994 4,729 4,337 4,054 4,175 4,318 4,472 4,592 4,816 5,084 2010's 6,232 6,529 6,906 7,293 7,823 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Colorado Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 925 942,571 955,810 970,512 1990's 983,592 1,002,154 1,022,542 1,044,699 1,073,308 1,108,899 1,147,743 1,183,978 1,223,433 1,265,032 2000's 1,315,619 1,365,413 1,412,923 1,453,974 1,496,876 1,524,813 1,558,911 1,583,945 1,606,602 1,622,434 2010's 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581 -

  18. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,709 2,818 2,908 1990's 3,061 2,921 2,923 2,952 3,754 3,705 3,435 3,459 3,441 3,465 2000's 3,683 3,881 3,716 3,625 3,470 3,437 3,393 3,317 3,196 3,138 2010's 3,063 3,062 3,148 4,454 4,217 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  19. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Florida Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Florida Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 41 42,376 43,178 43,802 1990's 43,674 45,012 45,123 47,344 47,851 46,459 47,578 48,251 46,778 50,052 2000's 50,888 53,118 53,794 55,121 55,324 55,479 55,259 57,320 58,125 59,549 2010's 60,854 61,582 63,477 64,772 67,460 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  2. Florida Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 442 444,848 446,690 452,544 1990's 457,648 467,221 471,863 484,816 497,777 512,365 521,674 532,790 542,770 556,628 2000's 571,972 590,221 603,690 617,373 639,014 656,069 673,122 682,996 679,265 674,090 2010's 675,551 679,199 686,994 694,210 703,535 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Georgia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Georgia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 94 98,809 102,277 106,690 1990's 108,295 109,659 111,423 114,889 117,980 120,122 123,200 123,367 126,050 225,020 2000's 128,275 130,373 128,233 129,867 128,923 128,389 127,843 127,832 126,804 127,347 2010's 124,759 123,454 121,243 126,060 122,573 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Georgia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3,034 3,144 3,079 1990's 3,153 3,124 3,186 3,302 3,277 3,261 3,310 3,310 3,262 5,580 2000's 3,294 3,330 3,219 3,326 3,161 3,543 3,053 2,913 2,890 2,254 2010's 2,174 2,184 2,112 2,242 2,481 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Georgia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,190 1,237,201 1,275,128 1,308,972 1990's 1,334,935 1,363,723 1,396,860 1,430,626 1,460,141 1,495,992 1,538,458 1,553,948 1,659,730 1,732,865 2000's 1,680,749 1,737,850 1,735,063 1,747,017 1,752,346 1,773,121 1,726,239 1,793,650 1,791,256 1,744,934 2010's 1,740,587 1,740,006 1,739,543 1,805,425

  6. Hawaii Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Hawaii Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,896 2,852 2,842 1990's 2,837 2,786 2,793 3,222 2,805 2,825 2,823 2,783 2,761 2,763 2000's 2,768 2,777 2,781 2,804 2,578 2,572 2,548 2,547 2,540 2,535 2010's 2,551 2,560 2,545 2,627 2,789 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. Hawaii Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,502 28,761 28,970 1990's 29,137 29,701 29,805 29,984 30,614 30,492 31,017 30,990 30,918 30,708 2000's 30,751 30,794 30,731 30,473 26,255 26,219 25,982 25,899 25,632 25,466 2010's 25,389 25,305 25,184 26,374 28,919 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Idaho Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,482 18,454 18,813 1990's 19,452 20,328 21,145 21,989 22,999 24,150 25,271 26,436 27,697 28,923 2000's 30,018 30,789 31,547 32,274 33,104 33,362 33,625 33,767 37,320 38,245 2010's 38,506 38,912 39,202 39,722 40,229 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Idaho Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 104,824 111,532 113,898 1990's 113,954 126,282 136,121 148,582 162,971 175,320 187,756 200,165 213,786 227,807 2000's 240,399 251,004 261,219 274,481 288,380 301,357 316,915 323,114 336,191 342,277 2010's 346,602 350,871 353,963 359,889 367,394 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Illinois Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,460 20,015 25,161 1990's 25,991 26,489 27,178 27,807 25,788 25,929 29,493 28,472 28,063 27,605 2000's 27,348 27,421 27,477 26,698 29,187 29,887 26,109 24,000 23,737 23,857 2010's 25,043 23,722 23,390 23,804 23,829 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Illinois Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,170,364 3,180,199 3,248,117 1990's 3,287,091 3,320,285 3,354,679 3,388,983 3,418,052 3,452,975 3,494,545 3,521,707 3,556,736 3,594,071 2000's 3,631,762 3,670,693 3,688,281 3,702,308 3,754,132 3,975,961 3,812,121 3,845,441 3,869,308 3,839,438 2010's 3,842,206 3,855,942 3,878,806 3,838,120

  13. Indiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Indiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 116,571 119,458 122,803 1990's 124,919 128,223 129,973 131,925 134,336 137,162 139,097 140,515 141,307 145,631 2000's 148,411 148,830 150,092 151,586 151,943 159,649 154,322 155,885 157,223 155,615 2010's 156,557 161,293 158,213 158,965 159,596 - = No Data Reported; -- = Not Applicable; NA = Not

  14. Indiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,497 5,696 6,196 1990's 6,439 6,393 6,358 6,508 6,314 6,250 6,586 6,920 6,635 19,069 2000's 10,866 9,778 10,139 8,913 5,368 5,823 5,350 5,427 5,294 5,190 2010's 5,145 5,338 5,204 5,178 5,098 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  15. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267

  16. Iowa Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Iowa Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 80,797 81,294 82,549 1990's 83,047 84,387 85,325 86,452 86,918 88,585 89,663 90,643 91,300 92,306 2000's 93,836 95,485 96,496 96,712 97,274 97,767 97,823 97,979 98,144 98,416 2010's 98,396 98,541 99,113 99,017 99,182 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Kansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 861,092 - = No Data Reported; -- = Not Applicable; NA = Not

  2. New Hampshire Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) New Hampshire Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 8,831 9,159 10,237 1990's 10,521 11,088 11,383 11,726 12,240 12,450 12,755 13,225 13,512 13,932 2000's 14,219 15,068 15,130 15,047 15,429 16,266 16,139 16,150 41,332 16,937 2010's 16,645 17,186 17,758 17,298 17,421 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. New Hampshire Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,078 61,969 64,059 1990's 65,310 67,991 69,356 70,938 72,656 74,232 75,175 77,092 78,786 80,958 2000's 82,813 84,760 87,147 88,170 88,600 94,473 94,600 94,963 67,945 96,924 2010's 95,361 97,400 99,738 98,715 99,146 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  4. North Carolina Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 56,191 60,663 63,562 1990's 68,088 70,207 72,647 76,386 80,739 84,041 93,504 97,629 100,251 104,294 2000's 107,566 107,656 102,505 107,506 105,163 109,205 111,127 112,092 111,868 113,630 2010's 113,900 115,609 117,155 118,257 120,111 - = No Data Reported; -- = Not Applicable; NA =

  5. North Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435,826 472,928 492,821 1990's 520,140 539,321 575,096 607,388 652,307 678,147 699,159 740,013 777,805 815,908 2000's 858,004 891,227 905,816 953,732 948,283 992,906 1,022,430 1,063,871 1,095,362 1,102,001 2010's 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 - = No Data

  6. North Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,905 12,104 12,454 1990's 12,742 12,082 12,353 12,650 12,944 13,399 13,789 14,099 14,422 15,050 2000's 15,531 15,740 16,093 16,202 16,443 16,518 16,848 17,013 17,284 17,632 2010's 17,823 18,421 19,089 19,855 20,687 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  7. North Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 83,517 84,059 84,643 1990's 85,646 87,880 89,522 91,237 93,398 95,818 97,761 98,326 101,930 104,051 2000's 105,660 106,758 108,716 110,048 112,206 114,152 116,615 118,100 120,056 122,065 2010's 123,585 125,392 130,044 133,975 137,972 - = No Data Reported; -- = Not Applicable; NA =

  8. Ohio Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,601 219,257 225,347 1990's 233,075 236,519 237,861 240,684 245,190 250,223 259,663 254,991 258,076 266,102 2000's 269,561 269,327 271,160 271,203 272,445 277,767 270,552 272,555 272,899 270,596 2010's 268,346 268,647 267,793 269,081 269,758 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 -

  10. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,063 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Oregon Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Pennsylvania Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 - = No Data Reported; -- = Not

  16. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547

  17. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 760,131 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  20. Louisiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 952,079 946,970 934,472 1990's 934,007 936,423 940,403 941,294 945,387 957,558 945,967 962,786 962,436 961,925 2000's 964,133 952,753 957,048 958,795 940,400 905,857 868,353 879,612 886,084 889,570 2010's 893,400 897,513 963,688 901,635 899,378 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maine Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,435 3,731 3,986 1990's 4,250 4,455 4,838 4,979 5,297 5,819 6,414 6,606 6,662 6,582 2000's 6,954 6,936 7,375 7,517 7,687 8,178 8,168 8,334 8,491 8,815 2010's 9,084 9,681 10,179 11,415 11,810 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 - = No Data Reported; -- = Not

  4. Massachusetts Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Massachusetts Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 84,636 93,005 92,252 1990's 85,775 88,746 85,873 102,187 92,744 104,453 105,889 107,926 108,832 113,177 2000's 117,993 120,984 122,447 123,006 125,107 120,167 126,713 128,965 242,693 153,826 2010's 144,487 138,225 142,825 144,246 139,556 - = No Data Reported; -- = Not Applicable;

  5. Massachusetts Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,082,777 1,100,635 1,114,920 1990's 1,118,429 1,127,536 1,137,911 1,155,443 1,179,869 1,180,860 1,188,317 1,204,494 1,212,486 1,232,887 2000's 1,278,781 1,283,008 1,295,952 1,324,715 1,306,142 1,297,508 1,348,848 1,361,470 1,236,480 1,370,353 2010's 1,389,592 1,408,314 1,447,947

  6. Michigan Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Michigan Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 178,469 185,961 191,474 1990's 195,766 198,890 201,561 204,453 207,629 211,817 214,843 222,726 224,506 227,159 2000's 230,558 225,109 247,818 246,123 246,991 253,415 254,923 253,139 252,382 252,017 2010's 249,309 249,456 249,994 250,994 253,127 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,452,554 2,491,149 2,531,304 1990's 2,573,570 2,609,561 2,640,579 2,677,085 2,717,683 2,767,190 2,812,876 2,859,483 2,903,698 2,949,628 2000's 2,999,737 3,011,205 3,110,743 3,140,021 3,161,370 3,187,583 3,193,920 3,188,152 3,172,623 3,169,026 2010's 3,152,468 3,153,895 3,161,033 3,180,349

  8. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 50,238 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  9. Mississippi Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 444,423 - = No Data Reported; -- = Not

  10. Missouri Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Missouri Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,711 97,939 99,721 1990's 105,164 117,675 125,174 125,571 132,378 130,318 133,445 135,553 135,417 133,464 2000's 133,969 135,968 137,924 140,057 141,258 142,148 143,632 142,965 141,529 140,633 2010's 138,670 138,214 144,906 142,495 143,024 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,180,546 1,194,985 1,208,523 1990's 1,213,305 1,211,342 1,220,203 1,225,921 1,281,007 1,259,102 1,275,465 1,293,032 1,307,563 1,311,865 2000's 1,324,282 1,326,160 1,340,726 1,343,614 1,346,773 1,348,743 1,353,892 1,354,173 1,352,015 1,348,781 2010's 1,348,549 1,342,920 1,389,910 1,357,740

  12. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 - = No Data Reported; -- = Not Applicable; NA = Not

  14. Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nebraska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,707 61,365 60,377 1990's 60,405 60,947 61,319 60,599 62,045 61,275 61,117 51,661 63,819 53,943 2000's 55,194 55,692 56,560 55,999 57,087 57,389 56,548 55,761 58,160 56,454 2010's 56,246 56,553 56,608 58,005 57,191 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Nebraska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400,218 403,657 406,723 1990's 407,094 413,354 418,611 413,358 428,201 427,720 439,931 444,970 523,790 460,173 2000's 475,673 476,275 487,332 492,451 497,391 501,279 499,504 494,005 512,013 512,551 2010's 510,776 514,481 515,338 527,397 522,408 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Nevada Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nevada Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18,294 18,921 19,924 1990's 20,694 22,124 22,799 23,207 24,521 25,593 26,613 27,629 29,030 30,521 2000's 31,789 32,782 33,877 34,590 35,792 37,093 38,546 40,128 41,098 41,303 2010's 40,801 40,944 41,192 41,710 42,338 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  19. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  2. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 66 67,648 68,612 69,540 1990's 70,808 72,565 74,268 75,842 77,670 79,474 81,348 83,596 86,243 88,924 2000's 91,297 93,896 97,077 100,404 104,360 108,401 112,269 115,500 119,039 120,124 2010's 121,166 121,736 122,983 124,411 126,416 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. Wyoming Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,342 15,093 14,012 1990's 13,767 14,931 15,064 15,315 15,348 15,580 17,036 15,907 16,171 16,317 2000's 16,366 16,027 16,170 17,164 17,490 17,904 18,016 18,062 19,286 19,843 2010's 19,977 20,146 20,387 20,617 20,894 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Wyoming Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113,175 112,126 113,129 1990's 113,598 113,463 114,793 116,027 117,385 119,544 131,910 125,740 127,324 127,750 2000's 129,274 129,897 133,445 135,441 137,434 140,013 142,385 143,644 152,439 153,062 2010's 153,852 155,181 157,226 158,889 160,896 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Verification Challenges at Low Numbers

    SciTech Connect (OSTI)

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-06-01

    Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  6. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identification of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for...

  7. Developing and Enhancing Workforce Training Programs: Number...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing and Enhancing Workforce Training Programs: Number of Projects by State Developing and Enhancing Workforce Training Programs: Number of Projects by State Map of the ...

  8. Climate Zone Number 5 | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400...

  9. ARM - Measurement - Cloud particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume...

  10. Low Mach Number Models in Computational Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ann Almgren Low Mach Number Models in Computational Astrophysics February 4, 2014 Ann Almgren. Berkeley Lab Downloads Almgren-nug2014.pdf | Adobe Acrobat PDF file Low Mach Number...

  11. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  12. Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  13. Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  14. Helen He! NERSC User Services Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using the Cray perftools-lite Performance Measurement Tool --- 1 --- October 1 0, 2 013 * A s implified a nd e asy t o u se v ersion o f t he C rayPat performance m easurement a nd a nalysis t ool. * Provides b asic p erformance a nalysis i nfo a utoma@cally w ith simple steps. * Users can decide whether to use full perCools v ersion aCerwards. What is Perftools-lite 2 Outputs from Perftools-lite * In s tdout, basic informa@on from the default "sample_profile" o p@on: - execu)on ) me -

  15. Helen He! NERSC User Services Group!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 10, 2014! Babbage: the Intel Many Core (MIC) Testbed System at NERSC First Message * Babbage can help you to prepare for Cori regarding thread scalability (hybrid MPI/OpenMP implementa=on) and vectoriza=on. * Performance on Babbage will be significantly worse than Cori. However, using Babbage can expose boGlenecks and weaknesses in your code for improvement. - 2 - Outline * Knights Corner (KNC) architecture and programming considera=ons * System configura=ons and programming environment *

  16. Helen He! NERSC User Services Group!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group! ! Feb 3, 2014! NUG 2014 Performance Analysis Tools and Cray Reveal Outline * Performance A nalysis T ools: b rief i ntroduc6ons - IPM - Allinea M AP - Cray p er/ools a nd p er/ools---lite * Cray R eveal: a t ool t o h elp a dding OpenMP --- 2 --- Performance Analysis Tools --- 3 --- IPM (Integrated Performance Monitoring) * IPM i s a p ortable h igh l evel p rofiling t ool, v ery l ow o verhead. * Reports: h ardware c ounter d ata, M PI f unc6on 6 mings, a nd m emory u sage, ... *

  17. Helen He, NERSC! NERSC User Group Meeting!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information 10 Annual Conference Helsinki, Finland, June 11, 2010 Multilingual WorldWideScience.org Ceremony featuring Walter Warnick, Richard Boulderstone, Tony Hey, Wu Yishan, Institute of Scientific and Technical Information of China - ISTIC, Yuri Arskiy, All-Russian Institute of Scientific and Technical Information - VINITI

    NERSC User Group Meeting! March 23, 2016 Advanced OpenMP and CESM Case Study Outline * Background * What's New in OpenMP 4.0 and 4.5 * Nested OpenMP * CESM MG2

  18. Helen He! NERSC User Services Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    --- Suggested OpenMP directives --- 1 4 --- Save the directives --- 1 5 --- Save d irec@ves t o the o riginal fi le Extensive "Help" topics in Reveal --- 1 6 --- Reveal helps to...

  19. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  20. Compendium of Experimental Cetane Number Data

    SciTech Connect (OSTI)

    Murphy, M. J.; Taylor, J. D.; McCormick, R. L.

    2004-09-01

    In this report, we present a compilation of reported cetane numbers for pure chemical compounds. The compiled database contains cetane values for 299 pure compounds, including 156 hydrocarbons and 143 oxygenates. Cetane number is a relative ranking of fuels based on the amount of time between fuel injection and ignition. The cetane number is typically measured either in a combustion bomb or in a single-cylinder research engine. This report includes cetane values from several different measurement techniques - each of which has associated uncertainties. Additionally, many of the reported values are determined by measuring blending cetane numbers, which introduces significant error. In many cases, the measurement technique is not reported nor is there any discussion about the purity of the compounds. Nonetheless, the data in this report represent the best pure compound cetane number values available from the literature as of August 2004.

  1. Mo Year Report Period: EIA ID NUMBER:

    U.S. Energy Information Administration (EIA) Indexed Site

    Mo Year Report Period: EIA ID NUMBER: http:www.eia.govsurveyformeia14instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https:...

  2. LANL Site By The Numbers August 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    By the Numbers The Los Alamos National Laboratory (LANL) was established in 1943 as Site Y of the Manhattan Project for a single purpose: to design and build an atomic bomb. ...

  3. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identification of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for the products (equipment, components and/or materials) and if applicable the nonproprietary associated installation/maintenance documentation that will be shipped from the United States to the ITER International Organization in Cadarache, France or to ITER Members worldwide on behalf of the Company. In rare

  4. Stockpile Stewardship Quarterly Volume 1, Number 4

    National Nuclear Security Administration (NNSA)

    1, Number 4 * February 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 1, Number 4 Inside this Issue 2 Applying Advanced Simulation Models to Neutron Tube Ion Extraction 3 Advanced Optical Cavities for Subcritical and Hydrodynamic Experiments 5 Progress Toward Ignition on the National Ignition Facility 7 Commissioning URSA Minor: The First LTD-Based Accelerator for Radiography 8 Publication

  5. California Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) California Natural ...

  6. Probing lepton number violation on three frontiers

    SciTech Connect (OSTI)

    Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

    2013-12-30

    Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

  7. New Mexico Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    560,479 559,852 570,637 561,713 572,224 614,313 1987-2014 Sales 559,825 570,592 561,652 572,146 614,231 1997-2014 Transported 27 45 61 78 82 1997-2014 Commercial Number of...

  8. Minnesota Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    423,703 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 1987-2014 Sales 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 1997-2014 Commercial Number of Consumers 131,801 132,163 ...

  9. The 17 GHz active region number

    SciTech Connect (OSTI)

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Gimnez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  10. Connecticut Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    489,349 490,185 494,970 504,138 513,492 522,658 1986-2014 Sales 489,380 494,065 503,241 512,110 521,460 1997-2014 Transported 805 905 897 1,382 1,198 1997-2014 Commercial Number of...

  11. Climate Zone Number 1 | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 1 is defined as Very Hot - Humid(1A) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C Dry(1B) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C...

  12. The New Element Curium (Atomic Number 96)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; James, R. A.; Ghiorso, A.

    1948-00-00

    Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

  13. North Carolina Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,102,001 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1987-2014 Sales 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1997-2014 Commercial Number of Consumers 113,630...

  14. Washington Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    059,239 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1987-2014 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1997-2014 Commercial Number of Consumers 98,965 99,231...

  15. Kansas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    855,454 853,842 854,730 854,800 858,572 861,092 1987-2014 Sales 853,842 854,730 854,779 858,546 861,066 1997-2014 Transported 0 0 21 26 26 2004-2014 Commercial Number of Consumers...

  16. Sensitivity in risk analyses with uncertain numbers.

    SciTech Connect (OSTI)

    Tucker, W. Troy; Ferson, Scott

    2006-06-01

    Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.

  17. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number

    Gasoline and Diesel Fuel Update (EIA)

    of Elements) Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 2 3 3 3 1 1 0 0 0 0 2001 0 0 0 0 2 2 0 0 0 0 0 0 2002 2 2 2 2 2 2 2 2 2 2 2 1 2003 0 0 2 2 2 2 2 2

  18. Volume, Number of Shipments Surpass Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shatters records in first year of accelerated shipping effort October 3, 2012 Los Alamos National Laboratory shatters records in first year of accelerated shipping effort Volume, Number of Shipments Surpass Goals LOS ALAMOS, NEW MEXICO, October 3, 2012-In the first year of an effort to accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP), Los Alamos National Laboratory shattered its own record with 59 more shipments than planned, and became one of the largest

  19. Stockpile Stewardship Quarterly, Volume 2, Number 1

    National Nuclear Security Administration (NNSA)

    1 * May 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 1 Inside this Issue 2 LANL and ANL Complete Groundbreaking Shock Experiments at the Advanced Photon Source 3 Characterization of Activity-Size-Distribution of Nuclear Fallout 5 Modeling Mix in High-Energy-Density Plasma 6 Quality Input for Microscopic Fission Theory 8 Fiber Reinforced Composites Under Pressure: A Case Study in

  20. U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number

    U.S. Energy Information Administration (EIA) Indexed Site

    of Elements) Acquifers Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49 2000's 49 39 38 43 43 44 44 43 43 43 2010's 43 43 44 47 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Number of

  1. Table B14. Number of Establishments in Building, Number of Buildings, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Number of Establishments in Building, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Number of Establishments in Building" ,,"One","Two to Five","Six to Ten","Eleven to Twenty","More than Twenty","Currently Unoccupied" "All Buildings ................",4657,3528,688,114,48,27,251 "Building Floorspace" "(Square Feet)" "1,001 to 5,000

  2. U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 615 717 624 481 563 655 728 848 NA 787 2010's 774

  3. Property:NumberOfLEDSTools | Open Energy Information

    Open Energy Info (EERE)

    Name NumberOfLEDSTools Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLEDSTools&oldid322418" Feedback Contact needs updating Image...

  4. Savannah River Site Cleanup By the Numbers | Department of Energy

    Office of Environmental Management (EM)

    Site Cleanup By the Numbers Savannah River Site Cleanup By the Numbers Savannah River Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites ...

  5. ARM Evaluation Product : Droplet Number Concentration Value-Added...

    Office of Scientific and Technical Information (OSTI)

    Evaluation Product : Droplet Number Concentration Value-Added Product Title: ARM Evaluation Product : Droplet Number Concentration Value-Added Product Cloud droplet number ...

  6. Property:Number of Plants Included in Planned Estimate | Open...

    Open Energy Info (EERE)

    Number of Plants Included in Planned Estimate Jump to: navigation, search Property Name Number of Plants Included in Planned Estimate Property Type String Description Number of...

  7. Property:Number of Color Cameras | Open Energy Information

    Open Energy Info (EERE)

    Color Cameras Jump to: navigation, search Property Name Number of Color Cameras Property Type Number Pages using the property "Number of Color Cameras" Showing 25 pages using this...

  8. OMB Control Number: 1910-5165

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Number: 1910-5165 Expires: 04/30/2015 SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT Please submit the Semi-Annual Davis-Bacon Enforcement Report in the Performance and Accountability for Grants in Energy (PAGE) system. If you do not have access to the PAGE system, please submit this form to DBAEnforcementReports@hq.doe.gov. The following questions regarding enforcement activity (Davis-Bacon and Related Acts) by this Agency are required by 29 CFR, Part 5.7(b), and Department of Labor, All Agency

  9. The New Element Berkelium (Atomic Number 97)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; Thompson, S. G.; Ghiorso, A.

    1950-04-26

    An isotope of the element with atomic number 97 has been discovered as a product of the helium-ion bombardment of americium. The name berkelium, symbol Bk, is proposed for element 97. The chemical separation of element 97 from the target material and other reaction products was made by combinations of precipitation and ion exchange adsorption methods making use of its anticipated (III) and (IV) oxidation states and its position as a member of the actinide transition series. The distinctive chemical properties made use of in its separation and the equally distinctive decay properties of the particular isotope constitute the principal evidence for the new element.

  10. OMB Control Number: 1910-5165

    Energy Savers [EERE]

    OMB Control Number: 1910-5165 Expires: xx/xx/201x SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT Please submit this Semi-Annual Davis-Bacon Enforcement Report to your site DOE/NNSA Contractor Human Resource Division (CHRD) Office. If you do not have a DOE/NNSA CHRD Office, please submit the report to: DBAEnforcementReports@hq.doe.gov. The following questions regarding enforcement activity (Davis-Bacon and Related Acts) by this Agency are required by 29 CFR, Part 5.7(b), and Department of Labor, All

  11. Health Code Number (HCN) Development Procedure

    SciTech Connect (OSTI)

    Petrocchi, Rocky; Craig, Douglas K.; Bond, Jayne-Anne; Trott, Donna M.; Yu, Xiao-Ying

    2013-09-01

    This report provides the detailed description of health code numbers (HCNs) and the procedure of how each HCN is assigned. It contains many guidelines and rationales of HCNs. HCNs are used in the chemical mixture methodology (CMM), a method recommended by the department of energy (DOE) for assessing health effects as a result of exposures to airborne aerosols in an emergency. The procedure is a useful tool for proficient HCN code developers. Intense training and quality assurance with qualified HCN developers are required before an individual comprehends the procedure to develop HCNs for DOE.

  12. Feb01_tribenotes

    Office of Environmental Management (EM)

    6, 2001 Portland, Oregon Participants: Richard Arnold (Las Vegas Indian Center), Helen Belencan (DOEEM- 22), ... no fixed numbers yet. The budget process would have to be ...

  13. The New Element Californium (Atomic Number 98)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; Thompson, S. G.; Street, K. Jr.; Ghiroso, A.

    1950-06-19

    Definite identification has been made of an isotope of the element with atomic number 98 through the irradiation of Cm{sup 242} with about 35-Mev helium ions in the Berkeley Crocker Laboratory 60-inch cyclotron. The isotope which has been identified has an observed half-life of about 45 minutes and is thought to have the mass number 244. The observed mode of decay of 98{sup 244} is through the emission of alpha-particles, with energy of about 7.1 Mev, which agrees with predictions. Other considerations involving the systematics of radioactivity in this region indicate that it should also be unstable toward decay by electron capture. The chemical separation and identification of the new element was accomplished through the use of ion exchange adsorption methods employing the resin Dowex-50. The element 98 isotope appears in the eka-dysprosium position on elution curves containing berkelium and curium as reference points--that is, it precedes berkelium and curium off the column in like manner that dysprosium precedes terbium and gadolinium. The experiments so far have revealed only the tripositive oxidation state of eka-dysprosium character and suggest either that higher oxidation states are not stable in aqueous solutions or that the rates of oxidation are slow. The successful identification of so small an amount of an isotope of element 98 was possible only through having made accurate predictions of the chemical and radioactive properties.

  14. South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 1990's 54 54 38 47 55 56 61 60 59 60 2000's 71 68 69 61 61 69 69 71 71 89 2010's 102 100 95 65 68 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  15. Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 700 1990's 690 650 600 505 460 420 2000's 380 350 400 430 280 400 330 305 285 310 2010's 230 210 212 1,089 1,024 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  16. Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 1990's 356 373 382 385 390 372 370 372 185 300 2000's 280 300 225 240 251 316 316 43 45 51 2010's 50 40 40 34 36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  17. North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 61 1990's 103 100 104 101 104 99 108 104 99 96 2000's 94 95 100 117 117 148 200 200 194 196 2010's 188 239 211 200 200 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016

  18. Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18 1990's 19 16 16 18 19 17 18 17 15 19 2000's 17 20 18 15 15 15 14 18 21 24 2010's 26 24 27 26 28 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  19. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 1990's 111 110 112 113 104 100 102 141 148 99 2000's 152 170 165 195 224 227 231 239 261 261 2010's 269 277 185 159 170 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016

  20. THE SUN MAKES YOU NUMBER ONE!

    Office of Scientific and Technical Information (OSTI)

    SUN MAKES YOU NUMBER ONE! (A S to ry From th e S3TEC Team) Hi friend! W here did you get the energy to make that lunch? Oh no! x H ow will I i°l be first now? the sun! Why, I got it from the same place as all the life around us.. M atter is also made of balls of energy. You see, light from the sun is made of balls of energy that move very fast. The sun's energy makes this food hot- and it / can make your little-car go forward! / W hen the fast-moving light balls knock into the matter balls,

  1. Hawaii Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 1 1 1 1 1 1 1 1 1 1 1 1 2014 1 1 1 1 1 1 1 1 1 1 1 1 2015 0 0 0 0 0 1 1 1 1 1 1 1 2016 1 1

    25,466 25,389 25,305 25,184 26,374 28,919 1987-2014 Sales 25,389 25,305 25,184 26,374 28,919 1998-2014 Commercial Number of Consumers 2,535 2,551 2,560 2,545 2,627 2,789 1987-2014 Sales 2,551 2,560 2,545 2,627 2,789 1998-2014 Average Consumption per Consumer

  2. Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 48,609 1990's 50,867 47,615 46,298 47,101 48,654 54,635 53,816 56,747 58,736 58,712 2000's 60,577 63,704 65,779 68,572 72,237 74,827 74,265 76,436 87,556 93,507 2010's 95,014 100,966 96,617 97,618 98,279 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. U.S. Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) U.S. Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,013,040 4,124,745 4,168,048 1990's 4,236,280 4,357,252 4,409,699 4,464,906 4,533,905 4,636,500 4,720,227 4,761,409 5,044,497 5,010,189 2000's 5,010,817 4,996,446 5,064,384 5,152,177 5,139,949 5,198,028 5,273,379 5,308,785 5,444,335 5,322,332 2010's 5,301,576 5,319,817 5,356,397 5,372,522 5,418,986 - =

  4. U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 262,483 1990's 269,790 276,987 276,014 282,152 291,773 298,541 301,811 310,971 316,929 302,421 2000's 341,678 373,304 387,772 393,327 406,147 425,887 440,516 452,945 476,652 493,100 2010's 487,627 514,637 482,822 484,994 514,786 - = No Data Reported; -- = Not Applicable; NA

  5. U.S. Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) U.S. Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 195,544 199,041 225,346 1990's 218,341 216,529 209,616 209,666 202,940 209,398 206,049 234,855 226,191 228,331 2000's 220,251 217,026 205,915 205,514 209,058 206,223 193,830 198,289 225,044 207,624 2010's 192,730 189,301 189,372 192,288 192,135 - = No Data Reported; -- = Not Applicable; NA = Not

  6. U.S. Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) U.S. Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 47,710,444 48,474,449 49,309,593 1990's 50,187,178 51,593,206 52,331,397 52,535,411 53,392,557 54,322,179 55,263,673 56,186,958 57,321,746 58,223,229 2000's 59,252,728 60,286,364 61,107,254 61,871,450 62,496,134 63,616,827 64,166,280 64,964,769 65,073,996 65,329,582 2010's 65,542,345 65,940,522

  7. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 834 1990's 822 913 1,006 1,061 1,303 1,127 1,339 1,475 1,643 1,978 2000's 4,178 4,601 3,005 3,220 3,657 4,092 4,858 5,197 5,578 5,774 2010's 6,075 6,469 6,900 7,030 7,275 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  8. Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 752 1990's 819 886 1,153 1,426 1,470 1,671 1,671 2,046 2,388 2,752 2000's 3,051 3,521 3,429 3,506 3,870 4,132 5,179 5,735 6,426 7,303 2010's 7,470 7,903 7,843 7,956 7,961 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  9. West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 36,240 1990's 37,500 37,800 38,250 33,716 39,830 36,144 35,148 31,000 39,072 36,575 2000's 42,475 42,000 45,000 46,203 47,117 49,335 53,003 48,215 49,364 50,602 2010's 52,498 56,813 50,700 54,920 60,000 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  10. Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,830 1990's 2,952 2,780 3,500 3,500 3,500 3,988 4,020 3,700 3,900 3,650 2000's 4,000 4,825 6,755 7,606 3,460 3,462 3,814 4,773 5,592 6,314 2010's 7,397 8,388 8,538 9,843 10,150 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,125 1990's 5,741 5,562 5,912 6,372 7,056 7,017 8,251 12,433 13,838 13,838 2000's 22,442 22,117 23,554 18,774 16,718 22,691 20,568 22,949 25,716 27,021 2010's 28,813 30,101 32,000 32,468 38,346 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  12. District of Columbia Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) District of Columbia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 14,683 11,370 11,354 1990's 11,322 11,318 11,206 11,133 11,132 11,089 10,952 10,874 10,658 12,108 2000's 11,106 10,816 10,870 10,565 10,406 10,381 10,410 9,915 10,024 10,288 2010's 9,879 10,050 9,771 9,963 10,049 - = No Data Reported; -- = Not Applicable; NA = Not

  13. District of Columbia Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) District of Columbia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 134 130,748 134,758 134,837 1990's 136,183 136,629 136,438 135,986 135,119 135,299 135,215 134,807 132,867 137,206 2000's 138,252 138,412 143,874 136,258 138,134 141,012 141,953 142,384 142,819 143,436 2010's 144,151 145,524 145,938 146,712 147,877 - = No Data Reported; --

  14. Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,310 1990's 1,307 1,334 1,333 1,336 1,348 1,347 1,367 1,458 1,479 1,498 2000's 1,502 1,533 1,545 2,291 2,386 2,321 2,336 2,350 525 563 2010's 620 914 819 921 895 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  15. Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,935 1990's 16,980 17,948 18,400 19,472 19,365 22,020 21,388 21,500 21,000 17,568 2000's 15,206 15,357 16,957 17,387 18,120 18,946 19,713 19,713 17,862 21,243 2010's 22,145 25,758 24,697 23,792 24,354 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  16. New Jersey Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) New Jersey Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 200,387 206,261 212,496 1990's 217,548 215,408 212,726 215,948 219,061 222,632 224,749 226,714 234,459 232,831 2000's 243,541 212,726 214,526 223,564 223,595 226,007 227,819 230,855 229,235 234,125 2010's 234,158 234,721 237,602 236,746 240,083 - = No Data Reported; -- = Not Applicable; NA = Not

  17. New Jersey Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) New Jersey Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,869,903 1,918,185 1,950,165 1990's 1,982,136 2,005,020 2,032,115 2,060,511 2,089,911 2,123,323 2,147,622 2,193,629 2,252,248 2,245,904 2000's 2,364,058 2,466,771 2,434,533 2,562,856 2,582,714 2,540,283 2,578,191 2,609,788 2,601,051 2,635,324 2010's 2,649,282 2,659,205 2,671,308 2,686,452

  18. New Mexico Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) New Mexico Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 36,444 36,940 36,960 1990's 38,026 38,622 40,312 40,166 39,846 38,099 37,796 38,918 42,067 43,834 2000's 44,164 44,306 45,469 45,491 45,961 47,745 47,233 48,047 49,235 48,846 2010's 48,757 49,406 48,914 50,163 55,689 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  19. New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,087 1990's 17,124 20,021 18,040 20,846 23,292 23,510 24,134 27,421 28,200 26,007 2000's 33,948 35,217 35,873 37,100 38,574 40,157 41,634 42,644 44,241 44,784 2010's 44,748 32,302 28,206 27,073 27,957 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. New Mexico Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,703 1,668 1,653 1990's 1,407 1,337 141 152 1,097 1,065 1,365 1,366 1,549 1,482 2000's 1,517 1,875 1,356 1,270 1,164 988 1,062 470 383 471 2010's 438 360 121 123 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  1. New Mexico Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 348,759 356,192 361,521 1990's 369,451 379,472 389,063 397,681 409,095 421,896 428,621 443,167 454,065 473,375 2000's 479,894 485,969 496,577 498,852 509,119 530,277 533,971 547,512 556,905 560,479 2010's 559,852 570,637 561,713 572,224 614,313 - = No Data Reported; -- = Not Applicable; NA = Not

  2. New York Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 262,859 270,218 285,031 1990's 281,717 310,941 315,974 298,020 301,499 308,760 315,855 314,613 348,694 352,026 2000's 361,524 363,913 367,440 386,479 367,597 376,566 397,737 393,997 373,798 375,603 2010's 377,416 378,005 379,396 381,228 389,889 - = No Data Reported; -- = Not Applicable; NA = Not

  3. New York Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,304 1990's 5,525 5,737 5,906 5,757 5,884 6,134 6,208 5,731 5,903 6,422 2000's 5,775 5,913 6,496 5,878 5,781 5,449 5,985 6,680 6,675 6,628 2010's 6,736 6,157 7,176 6,902 7,119 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. New York Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,810,577 3,839,952 3,859,413 1990's 3,917,354 4,472,005 4,522,274 3,990,564 4,008,868 4,030,702 4,048,166 4,077,385 4,117,307 4,150,731 2000's 4,162,450 4,243,130 4,258,205 4,218,180 4,199,456 4,232,374 4,315,203 4,379,937 4,303,342 4,308,592 2010's 4,335,006 4,353,668 4,364,169 4,387,456

  5. Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34,450 1990's 34,586 34,760 34,784 34,782 34,731 34,520 34,380 34,238 34,098 33,982 2000's 33,897 33,917 34,593 33,828 33,828 33,735 33,945 34,416 34,416 34,963 2010's 34,931 46,717 35,104 32,664 32,967 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  6. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 27,443 1990's 24,547 28,216 28,902 29,118 29,121 29,733 29,733 29,734 30,101 21,790 2000's 21,507 32,672 33,279 34,334 35,612 36,704 38,060 38,364 41,921 43,600 2010's 44,000 41,238 40,000 39,776 40,070 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  7. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 30,000 1990's 30,300 31,000 31,000 31,100 31,150 31,025 31,792 32,692 21,576 23,822 2000's 36,000 40,100 40,830 42,437 44,227 46,654 49,750 52,700 55,631 57,356 2010's 44,500 54,347 55,136 53,762 70,400 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  8. Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,700 1990's 2,607 2,802 2,890 3,075 2,940 2,918 2,990 3,071 3,423 3,634 2000's 3,321 4,331 4,544 4,539 4,971 5,751 6,578 6,925 7,095 7,031 2010's 6,059 6,477 6,240 5,754 5,754 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  9. U.S. Natural Gas Number of Commercial Consumers - Transported (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Commercial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 220,655 410,695 2000's 433,944 464,412 475,420 489,324 495,586 499,402 539,557 2010's 716,692 763,597 837,652 881,196 885,257 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  10. U.S. Natural Gas Number of Industrial Consumers - Sales (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 262,483 1990's 269,790 276,987 276,014 282,152 291,773 298,541 301,811 310,971 316,929 302,421 2000's 341,678 373,304 387,772 393,327 406,147 425,887 440,516 452,945 476,652 493,100 2010's 487,627 514,637 482,822 484,994 514,786 - = No Data Reported; -- = Not Applicable; NA

  11. U.S. Natural Gas Number of Industrial Consumers - Transported (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Industrial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49,014 71,281 2000's 75,826 64,052 62,738 62,698 57,672 59,773 58,760 2010's 63,611 64,749 67,551 69,164 69,953 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  12. U.S. Natural Gas Number of Residential Consumers - Sales (Number of

    Gasoline and Diesel Fuel Update (EIA)

    (Number of Elements) U.S. Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 47,710,444 48,474,449 49,309,593 1990's 50,187,178 51,593,206 52,331,397 52,535,411 53,392,557 54,322,179 55,263,673 56,186,958 57,321,746 58,223,229 2000's 59,252,728 60,286,364 61,107,254 61,871,450 62,496,134 63,616,827 64,166,280 64,964,769 65,073,996 65,329,582 2010's 65,542,345 65,940,522 66,375,134 66,812,393

  13. U.S. Natural Gas Number of Residential Consumers - Transported (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Residential Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 252,783 801,264 2,199,519 2000's 2,978,319 3,576,181 3,839,809 4,055,781 3,971,337 3,829,303 4,037,233 2010's 5,274,697 5,531,680 6,364,411 6,934,929 7,005,081 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  14. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,701 1990's 2,362 3,392 3,350 3,514 3,565 3,526 4,105 4,156 4,171 4,204 2000's 4,359 4,597 4,803 5,157 5,526 5,523 6,227 6,591 6,860 6,913 2010's 7,026 7,063 6,327 6,165 6,118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  15. Property:NEPA SerialNumber | Open Energy Information

    Open Energy Info (EERE)

    SerialNumber Jump to: navigation, search Property Name NEPA SerialNumber Property Type String This is a property of type String. Pages using the property "NEPA SerialNumber"...

  16. Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  17. Missouri Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  18. Michigan Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  19. Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  20. Mississippi Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  1. Maryland Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  2. Louisiana Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  3. Property:OutagePhoneNumber | Open Energy Information

    Open Energy Info (EERE)

    OutagePhoneNumber Jump to: navigation, search Property Name OutagePhoneNumber Property Type String Description An outage hotline or 24-hour customer service number Note: uses...

  4. Property:NumberOfLowEmissionDevelopmentStrategiesExample | Open...

    Open Energy Info (EERE)

    issionDevelopmentStrategiesExample Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLowEmissionDevelopmentStrategiesExample&oldid326472...

  5. Property:NumberOfLowEmissionDevelopmentStrategiesExamples | Open...

    Open Energy Info (EERE)

    sionDevelopmentStrategiesExamples Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLowEmissionDevelopmentStrategiesExamples&oldid323715...

  6. Property:NumberOfResourceAssessments | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfResourceAssessments&oldid31439...

  7. Energy Technology Engineering Center (ETEC) Cleanup By the Numbers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Engineering Center (ETEC) Cleanup By the Numbers Energy Technology Engineering Center (ETEC) Cleanup By the Numbers Energy Technology Engineering Center (ETEC) ...

  8. Property:Number of Plants included in Capacity Estimate | Open...

    Open Energy Info (EERE)

    Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

  9. Local Energy Assurance Planning: Map of States with Number of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States with Number of Cities Selected Local Energy Assurance Planning: Map of States with Number of Cities Selected Map of the United States identifying the States with cities ...

  10. Project Registration Number Assignments (Active) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Active) Project Registration Number Assignments (Active) As of: May 2016 Provides a table of Project Registration Number Assignments (Active) PDF icon Project Registration Number Assignment (Active) More Documents & Publications All Active DOE Technical Standards Document Project Registration Number Assignments (Completed

  11. Project Registration Number Assignments (Completed) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Completed) Project Registration Number Assignments (Completed) As of: May 2016 Provides a table of Project Registration Number Assignments (Completed) PDF icon Project Registration Number Assignments (Completed) More Documents & Publications All Active DOE Technical Standards Document Project Registration Number Assignments (Active

  12. Export support of renewable energy industries. Task number 1, deliverable number 3. Final report

    SciTech Connect (OSTI)

    1998-01-14

    The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on task coordination and effectiveness.

  13. Export support of renewable energy industries, grant number 1, deliverable number 3. Final report

    SciTech Connect (OSTI)

    1998-01-14

    The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on grant coordination and effectiveness.

  14. Phone Numbers for Beam Lines and Other Services | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Phone Numbers for Beam Lines and Other Services The local area code for SSRL is 650. All numbers listed below should be dialed as 650-926-xxxx from other area codes. When calling an onsite location from within SSRL simply dial the 4-digit extension. When calling an offsite number within the 650 area code dial, dial 9 plus the 7-digit number. To call a number in another area code dial 9-1-area code - phone number. Beam Lines Beam Line Extension 1-4 5214 1-5 5215 2-1 5221

  15. Property:ASHRAE 169 Climate Zone Number | Open Energy Information

    Open Energy Info (EERE)

    5 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 + Adams County, Colorado ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adams County,...

  16. ARM Evaluation Product : Droplet Number Concentration Value-Added Product

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer Evaluation Product : Droplet Number Concentration Value-Added Product Title: ARM Evaluation Product : Droplet Number Concentration Value-Added Product Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo

  17. Social Security Number Reduction Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Social Security Number Reduction Project Social Security Number Reduction Project The document below provides information regarding acceptable uses of the Social Security Number (SSN). PDF icon Baseline Inventory.pdf More Documents & Publications DOE Guidance on the Use of the SSN Manchester Software 1099 Reporting PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory

  18. Heavy pair production currents with general quantum numbers in

    Office of Scientific and Technical Information (OSTI)

    dimensionally regularized nonrelativistic QCD (Journal Article) | SciTech Connect Heavy pair production currents with general quantum numbers in dimensionally regularized nonrelativistic QCD Citation Details In-Document Search Title: Heavy pair production currents with general quantum numbers in dimensionally regularized nonrelativistic QCD We discuss the form and construction of general color singlet heavy particle-antiparticle pair production currents for arbitrary quantum numbers, and

  19. West Valley Demonstration Project Site Cleanup By the Numbers | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy West Valley Demonstration Project Site Cleanup By the Numbers West Valley Demonstration Project Site Cleanup By the Numbers West Valley Demonstration Project Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste

  20. Moab Site Cleanup By the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moab Site Cleanup By the Numbers Moab Site Cleanup By the Numbers Moab Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an underground repository Available for Download PDF icon Moab Site Cleanup By the

  1. ORISE: Report shows number of health physics degrees for 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    report shows number of health physics degrees increased for graduates, decreased for undergraduates in 2010 Decreased number of B.S. degrees remains higher than levels in the early 2000 FOR IMMEDIATE RELEASE Dec. 20, 2011 FY12-09 OAK RIDGE, Tenn.-The number of health physics graduate degrees increased for both master's and doctoral candidates in 2010, but decreased for bachelor's degrees, says a report released this year by the Oak Ridge Institute for Science and Education. The ORISE report,

  2. Oak Ridge Site Cleanup By the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Site Cleanup By the Numbers Oak Ridge Site Cleanup By the Numbers Oak Ridge Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an underground repository Available for Download PDF icon Oak Ridge Site

  3. Idaho Site Cleanup By the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Site Cleanup By the Numbers Idaho Site Cleanup By the Numbers Idaho Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an underground repository Available for Download PDF icon Idaho Site Cleanup By the

  4. Paducah Site Cleanup By the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paducah Site Cleanup By the Numbers Paducah Site Cleanup By the Numbers Paducah Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an underground repository Available for Download PDF icon Paducah Site Cleanup

  5. Portsmouth Site Cleanup By the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portsmouth Site Cleanup By the Numbers Portsmouth Site Cleanup By the Numbers Portsmouth Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an underground repository Available for Download PDF icon Portsmouth

  6. Savannah River National Laboratory By the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory By the Numbers Savannah River National Laboratory By the Numbers Savannah River National Laboratory By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an underground repository Available for Download PDF

  7. Hanford Site Cleanup By the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanford Site Cleanup By the Numbers Hanford Site Cleanup By the Numbers Hanford Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an underground repository Available for Download PDF icon Hanford Site Cleanup

  8. Developing and Enhancing Workforce Training Programs: Number of Projects by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State | Department of Energy Developing and Enhancing Workforce Training Programs: Number of Projects by State Developing and Enhancing Workforce Training Programs: Number of Projects by State Map of the United States showing the location of Workforce Training Projects, funded through the American Recovery and Reinvestment Act PDF icon Developing and Enhancing Workforce Training Programs: Number of Projects by State More Documents & Publications Workforce Development Wind Projects

  9. Quark-Gluon Plasma Model and Origin of Magic Numbers

    SciTech Connect (OSTI)

    Ghahramany, N.; Ghanaatian, M.; Hooshmand, M.

    2008-04-21

    Using Boltzman distribution in a quark-gluon plasma sample it is possible to obtain all existing magic numbers and their extensions without applying the spin and spin-orbit couplings. In this model it is assumed that in a quark-gluon thermodynamic plasma, quarks have no interactions and they are trying to form nucleons. Considering a lattice for a central quark and the surrounding quarks, using a statistical approach to find the maximum number of microstates, the origin of magic numbers is explained and a new magic number is obtained.

  10. Dependence of Band Renormalization Effect on the Number of Copper...

    Office of Scientific and Technical Information (OSTI)

    Dependence of Band Renormalization Effect on the Number of Copper-oxide Layers in Tl-based Copper-oxide Superconductor using Angle-resolved Photoemission Spectroscopy Citation ...

  11. Number of NERSC Users and Projects Through the Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users and Projects Through the Years Careers Visitor Info Web Policies Home About Usage and User Demographics Users and Projects Through the Years Number of NERSC Users ...

  12. MENTEE QUESTIONNAIRE Name: Title: Email: Office Phone Number...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title: Email: Office Phone Number: Office Address: Why are you interested in the mentoring program? (This information will be included with the invitation to your potential...

  13. Request for Proposals Number RHB-5-52483

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 National Renewable Energy Laboratory Managed and Operated by the Alliance for Sustainable Energy, LLC Request for Proposals Number RHB-5-52483 "Subsurface Utility Engineering...

  14. Modeling the Number of Ignitions Following an Earthquake: Developing...

    Office of Environmental Management (EM)

    Developing Prediction Limits for Overdispersed Count Data Authors: Elizabeth J. Kelly and Raymond N. Tell PDF icon Modeling the Number of Ignitions Following an Earthquake:...

  15. Temporary EPA ID Number Request | Open Energy Information

    Open Energy Info (EERE)

    Temporary EPA ID Number RequestLegal Abstract A developer that may "generate hazardous waste only from an episodic event" may instead apply for a temporary hazardous waste...

  16. Crosswalk of Directives Numbering System - DOE Directives, Delegations,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Requirements Crosswalk of Directives Numbering System by Website Administrator PDF document icon CROSWLK-3-27-2014.pdf - PDF document, 132 KB (135996 bytes

  17. Dependence of Band Renormalization Effect on the Number of Copper...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: Submitted to Physical Review Letters; Journal Volume: 103; Journal Issue: 6 ...

  18. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) State...

  19. Fact #803: November 11, 2013 Average Number of Transmission Gears...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Average Number of Gears for New Light Vehicles, Model Years 1979-2012 Model Year Average Number of Gears 1979 3.3 1980 3.5 1981 3.5 1982 3.6 1983 3.7 1984 3.7 1985 3.8 1986 3.8 ...

  20. Table B10. Employment Size Category, Number of Buildings, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Employment Size Category, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Number of Workers" ,,"Fewer than 5 Workers","5 to 9 Workers","10 to 19 Workers","20 to 49 Workers","50 to 99 Workers","100 to 249 Workers","250 or More Workers" "All Buildings ................",4657,2376,807,683,487,174,90,39 "Building Floorspace" "(Square

  1. Mailing Addresses and Information Numbers for Operations, Field, and Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offices | Department of Energy About Energy.gov » Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Name Telephone Number U.S. Department of Energy Ames Site Office 111 TASF, Iowa State University Ames, Iowa 50011 515-294-9557 U.S. Department of Energy Argonne Site Office 9800 S. Cass Avenue Argonne, IL 60439 630-252-2000 U.S. Department of Energy Berkeley Site Office Berkeley

  2. Semi-device-independent random-number expansion without entanglement

    SciTech Connect (OSTI)

    Li Hongwei; Yin Zhenqiang; Wu Yuchun; Zou Xubo; Wang Shuang; Chen Wei; Guo Guangcan; Han Zhengfu

    2011-09-15

    By testing the classical correlation violation between two systems, true random numbers can be generated and certified without applying classical statistical method. In this work, we propose a true random-number expansion protocol without entanglement, where the randomness can be guaranteed only by the two-dimensional quantum witness violation. Furthermore, we only assume that the dimensionality of the system used in the protocol has a tight bound, and the whole protocol can be regarded as a semi-device-independent black-box scenario. Compared with the device-independent random-number expansion protocol based on entanglement, our protocol is much easier to implement and test.

  3. Helen He, David Turner, Richard Gerber NUG Monthly Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Turner, Richard Gerber NUG Monthly Meeting --- 1 --- NUG M onthly M ee-ng July 1 0, 2 014 Zhengji Zhao " NERSC User Services Group" " NUG Monthly 2014 " July 10, 2014 Edison Issues Since the 6/25 upgrade Upgrades on Edison on 6/25 (partial list) * Maintenance/Configura-on M odifica-ons - set C DT 1 .16 t o d efault * Upgrades on Edison login nodes - SLES 1 1 S P3 - BCM 6 .1 - ESM---XX---3.0.0 - ESL---XC---2.2.0 * Upgrades on main frame - Sonexion u pdate_cs.1.3.1---007

  4. Yun (Helen) He, Alice Koniges, Richard Gerber, Katie Antypas!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alice Koniges, Richard Gerber, Katie Antypas! ! OpenMPCon, Sept 28-30, 2015 Using OpenMP at NERSC Outline * NERSC a nd o ur n ew s ystem - Why M PI + O penMP i s p referred * OpenMP u sage a t N ERSC * What d o w e t ell u sers a bout O penMP s caling - Process a nd t hread a ffinity - Scaling : ps - Tools f or O penMP * Case s tudies o f u sing a nd t uning M PI/OpenMP performance --- 2 --- NERSC and our new system --- 3 --- What is NERSC/LBNL * NaAonal E nergy R esearch S cienAfic C ompuAng

  5. Richard Gerber, Lisa Gerhardt, Harvey Wasserman, Helen He, Scott...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... A ugust - Problem i denJfied a s T orqueMoab b atch s cheduler b ecomes o ut o f s ync with t he A LPS ( the C ray A pplicaJon L evel P lacement S cheduler) r eservaJon status. ...

  6. Richard Gerber, Helen He, Zhengji Zhao, David Turner NUG Monthly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9:50 T hu N ov 1 3 --- 5 --- Maintenance: November 11, 2014 * Carver - Torque 5 .0.1 - Moab 8 .0 - Issues * Jobs s ubmied b etween 0 2:00 a nd 1 9:00 W ed N ov 1 2 t hat u sed ...

  7. Hopper* Suren Byna, Prabhat, Andrew Uselton, David Knaak, Helen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reconnection, Turbulence * Accurate 3D simulation requires O(10 12 ) particles VPIC: BIG Data * 2 Trillion particles simulated o checkpointrestart * 1 Trillion electrons used for ...

  8. Mike Stewart and Helen He NERSC User Services Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    first swap to the corresponding PrgEnv. * Then use compiler wrappers: - ftn for Fortran codes - cc for C codes - CC for C++ codes * The wrappers can find the proper system...

  9. Hydrothermal Circulation At Mount St Helens Determined By Self...

    Open Energy Info (EERE)

    and modulated on short time scales by surface recharge. Authors Paul A. Bedrosian, Martyn J. Unsworth and Malcolm J. S. Johnston Published Journal Journal of Volcanology and...

  10. Evolution Of Hydrothermal Waters At Mount St Helens, Washington...

    Open Energy Info (EERE)

    sheets, yet have thus far been largely undocumented. Authors Lisa Shevenell and Fraser Goff Published Journal Journal of Volcanology and Geothermal Research, 1995 DOI Not Provided...

  11. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 ) content on three boiler stacks and recovering waste heat from the whitewater process. ... Feedwater Heat Recovery Exchanger Using Boiler Blowdown-The mill had a heat exchanger ...

  12. Mt St Helens Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    -122.04050509296 Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  13. Mt St Helens Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  14. Modeling the Number of Ignitions Following an Earthquake: Developing...

    Office of Environmental Management (EM)

    the likelihood of various fire scenarios. The first component of the approach is a statistical model to predict the number of ignitions for a new earthquake event. This model is...

  15. Property:NumberOfUsers | Open Energy Information

    Open Energy Info (EERE)

    property "NumberOfUsers" Showing 25 pages using this property. (previous 25) (next 25) H HOMER + 578 + HOMER + 14 + HOMER + 1 + HOMER + 34 + HOMER + 6 + HOMER + 68 + HOMER + 89...

  16. Number of NERSC Users and Projects Through the Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users and Projects Through the Years Careers Visitor Info Web Policies Home » About » Usage and User Demographics » Users and Projects Through the Years Number of NERSC Users and Projects Through the Years These numbers exclude staff and vendor accounts. Year Number of Users Number of Projects 2014 5,950 846 2013 5.191 768 2012 4,659 728 2011 4,934 641 2010 4,294 540 2009 3,731 506 2008 3,271 464 2007 3,111 404 2006 2,978 385 2005 2,677 348 2004 2,416 347 2003 2,323 318 2002 2,594 337 2001

  17. "Utility Characteristics",,,,,,"Number AMR- Automated Meter Reading...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Served - AMI (MWh)" "Year","Month","Utility Number","Utility Name","State","Data ... 2013,1,27058,"High West Energy, Inc","CO","Final",611,19,270,".",900,"."...

  18. Property:Buildings/ReportNumber | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type String. Pages using the property "BuildingsReportNumber" Showing 2 pages using this property. G General Merchandise 50%...

  19. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 13 4 23 12...

  20. Truly Random Number Generator Promises Stronger Encryption Across All

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Devices, Cloud Truly Random Number Generator Promises Stronger Encryption Across All Devices, Cloud Truly Random Number Generator Promises Stronger Encryption Across All Devices, Cloud Whitewood Encryption Systems, launched in summer 2015, introduces NetRandom, providing truly random quantum encryption. March 4, 2016 Whitewood Encryption Systems, launched in summer 2015, introduces NetRandom, providing truly random quantum encryption. They were awarded a third patent arising from Los ALamos

  1. Video: Recovery Act by the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act by the Numbers Video: Recovery Act by the Numbers February 17, 2016 - 11:30am Addthis Watch this video to learn how the Recovery Act helped jumpstart America's clean energy economy. | Video by Simon Edelman and graphics by Carly Wilkins, Energy Department. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs Simon Edelman Simon Edelman Chief Creative Officer Carly Wilkins Carly Wilkins Multimedia Designer MORE ON THE RECOVERY ACT MAP: Learn about the impact

  2. INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers February 19, 2016 - 11:53am Addthis Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs Watch our CO2 drop dramatically compared to other countries in this interactive Curious about the total amount of carbon we emit into the atmosphere? Compare countries from around the globe using this tool. If

  3. Conducting Your Annual VPP Self-Evaluation by the Numbers

    Energy Savers [EERE]

    VPP Annual Self-Evaluation: By the Numbers Presented to: 25 th National VPPPA Conference August 26, 2009 San Antonio, Texas Presented by: Jack Griffith HNF-42179 CHPRC0907-38 VPP Annual Self-evaluation: By the Numbers Who is Jack Griffith: - Hanford Atomic Metal Trades Council Union Safety / Site VPP representative - 32-year member of United Brotherhood of Carpenters - Member and officer of Local 2403 Carpenters and Millwrights - Life member of Harley Owners Group - Certified Motorcycle Safety

  4. NNSA Achievements: 2015 by the Numbers | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Achievements: 2015 by the Numbers VIDEO: 2015 by the numbers How did we perform this year? What did we accomplish? NNSA's nuclear security enterprise - including its laboratories, production facilities, and sites - provides unique technical solutions to solve the national security challenges of today and the future. In 2015, in addition to the Stockpile Stewardship and Management Plan and Prevent, Counter, and Respond - A Strategic Plan to Reduce Global Nuclear Threats, NNSA

  5. Treatment of the intrinsic Hamiltonian in particle-number nonconserving

    Office of Scientific and Technical Information (OSTI)

    theories (Journal Article) | SciTech Connect Treatment of the intrinsic Hamiltonian in particle-number nonconserving theories Citation Details In-Document Search Title: Treatment of the intrinsic Hamiltonian in particle-number nonconserving theories Authors: Hergert, H. ; Roth, R. Publication Date: 2009-11-01 OSTI Identifier: 1209398 Type: Published Article Journal Name: Physics Letters. Section B Additional Journal Information: Journal Volume: 682; Journal Issue: 1; Journal ID: ISSN

  6. INTERSTELLAR SONIC AND ALFVENIC MACH NUMBERS AND THE TSALLIS DISTRIBUTION

    SciTech Connect (OSTI)

    Tofflemire, Benjamin M.; Burkhart, Blakesley; Lazarian, A.

    2011-07-20

    In an effort to characterize the Mach numbers of interstellar medium (ISM) magnetohydrodynamic (MHD) turbulence, we study the probability distribution functions (PDFs) of spatial increments of density, velocity, and magnetic field for 14 ideal isothermal MHD simulations at a resolution of 512{sup 3}. In particular, we fit the PDFs using the Tsallis function and study the dependency of the fit parameters on the compressibility and magnetization of the gas. We find that the Tsallis function fits PDFs of MHD turbulence well, with fit parameters showing sensitivities to the sonic and Alfven Mach numbers. For three-dimensional density, column density, and Position-Position-Velocity data, we find that the amplitude and width of the PDFs show a dependency on the sonic Mach number. We also find that the width of the PDF is sensitive to the global Alfvenic Mach number especially in cases where the sonic number is high. These dependencies are also found for mock observational cases, where cloud-like boundary conditions, smoothing, and noise are introduced. The ability of Tsallis statistics to characterize the sonic and Alfvenic Mach numbers of simulated ISM turbulence points to it being a useful tool in the analysis of the observed ISM, especially when used simultaneously with other statistical techniques.

  7. IMPACT OF CAPILLARY AND BOND NUMBERS ON RELATIVE PERMEABILITY

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2002-09-30

    Recovery and recovery rate of oil, gas and condensates depend crucially on their relative permeability. Relative permeability in turn depends on the pore structure, wettability and flooding conditions, which can be represented by a set of dimensionless groups including capillary and bond numbers. The effect of flooding conditions on drainage relative permeabilities is not well understood and is the overall goal of this project. This project has three specific objectives: to improve the centrifuge relative permeability method, to measure capillary and bond number effects experimentally, and to develop a pore network model for multiphase flows. A centrifuge has been built that can accommodate high pressure core holders and x-ray saturation monitoring. The centrifuge core holders can operate at a pore pressure of 6.9 MPa (1000 psi) and an overburden pressure of 17 MPa (2500 psi). The effect of capillary number on residual saturation and relative permeability in drainage flow has been measured. A pore network model has been developed to study the effect of capillary numbers and viscosity ratio on drainage relative permeability. Capillary and Reynolds number dependence of gas-condensate flow has been studied during well testing. A method has been developed to estimate relative permeability parameters from gas-condensate well test data.

  8. Energy By The Numbers: Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    By The Numbers: Recovery Act Energy By The Numbers: Recovery Act Addthis America is now a world leader in clean energy. But how did we get there? One key reason is the Recovery Act of 2009, a historic investment to revitalize the economy during the worst financial crisis since the Great Depression. This investment created millions of jobs -- including thousands of clean energy jobs in sectors that never even existed before. For example, in 2009 there was not a single utility-scale photovoltaic

  9. Table B15. Number of Establishments in Building, Floorspace, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Number of Establishments in Building, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Number of Establishments in Building" ,,"One","Two to Five","Six to Ten","Eleven to Twenty","More than Twenty","Currently Unoccupied" "All Buildings ................",67338,43343,10582,3574,3260,4811,1769 "Building Floorspace" "(Square Feet)" "1,001

  10. Table B8. Year Constructed, Number of Buildings, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    B8. Year Constructed, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Year Constructed" ,,"1919 or Before","1920 to 1945","1946 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999" "All Buildings ................",4657,419,499,763,665,774,846,690 "Building Floorspace" "(Square Feet)" "1,001 to 5,000

  11. Treatability study Number PDC-1-O-T. Final report

    SciTech Connect (OSTI)

    1998-04-22

    Los Alamos National Laboratory provided treatability study samples from four waste streams, designated Stream {number_sign}1, Stream {number_sign}3, Stream {number_sign}6, and Stream {number_sign}7. Stream {number_sign}1 consisted of one 55-gallon drum of personal protective equipment (PPE), rags, and neutralizing agent (bicarbonate) generated during the cleanup of a sodium dichromate solution spill. Stream {number_sign}3 was one 55-gallon drum of paper, rags, lab utensils, tools, and tape from the decontamination of a glovebox. The sample of Stream {number_sign}6 was packaged in three 30-gallon drums and a 100 ft{sup 3} wooden box. It consisted of plastic sheeting, PPE, and paper generated from the cleanup of mock explosive (barium nitrate) from depleted uranium parts. Stream {number_sign}7 was scrap metal (copper, stainless and carbon steel joined with silver solder) from the disassembly of gas manifolds. The objective of the treatability study is to determine: (1) whether the Perma-Fix stabilization/solidification process can treat the waste sample to meet Land Disposal Restrictions and the Waste Acceptance Criteria for LANL Technical Area 54, Area G, and (2) optimum loading and resulting weight and volume of finished waste form. The stabilized waste was mixed into grout that had been poured into a lined drum. After each original container of waste was processed, the liner was closed and a new liner was placed in the same drum on top of the previous closed liner. This allowed an overall reduction in waste volume but kept waste segregated to minimize the amount of rework in case analytical results indicated any batch did not meet treatment standards. Samples of treated waste from each waste stream were analyzed by Perma-Fix Analytical Services to get a preliminary approximation of TCLP metals. Splits of these samples were sent to American Environmental Network`s mixed waste analytical lab in Cary, NC for confirmation analysis. Results were all below applicable limits.

  12. Method for rapidly determining a pulp kappa number using spectrophotometry

    DOE Patents [OSTI]

    Chai, Xin-Sheng; Zhu, Jun Yong

    2002-01-01

    A system and method for rapidly determining the pulp kappa number through direct measurement of the potassium permanganate concentration in a pulp-permanganate solution using spectrophotometry. Specifically, the present invention uses strong acidification to carry out the pulp-permanganate oxidation reaction in the pulp-permanganate solution to prevent the precipitation of manganese dioxide (MnO.sub.2). Consequently, spectral interference from the precipitated MnO.sub.2 is eliminated and the oxidation reaction becomes dominant. The spectral intensity of the oxidation reaction is then analyzed to determine the pulp kappa number.

  13. Survey of lepton number violation via effective operators

    SciTech Connect (OSTI)

    Gouvea, Andre de; Jenkins, James [Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2008-01-01

    We survey 129 lepton number violating effective operators, consistent with the minimal standard model gauge group and particle content, of mass dimension up to and including 11. Upon requiring that each one radiatively generates the observed neutrino masses, we extract an associated characteristic cutoff energy scale which we use to calculate other observable manifestations of these operators for a number of current and future experimental probes, concentrating on lepton number violating phenomena. These include searches for neutrinoless double-beta decay and rare meson, lepton, and gauge boson decays. We also consider searches at hadron/lepton collider facilities in anticipation of the CERN LHC and the future ILC. We find that some operators are already disfavored by current data, while more are ripe to be probed by next-generation experiments. We also find that our current understanding of lepton mixing disfavors a subset of higher dimensional operators. While neutrinoless double-beta decay is the most promising signature of lepton number violation for the majority of operators, a handful is best probed by other means. We argue that a combination of constraints from various independent experimental sources will help to pinpoint the ''correct'' model of neutrino mass, or at least aid in narrowing down the set of possibilities.

  14. Energy Intensity and Carbon Intensity by the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intensity and Carbon Intensity by the Numbers Energy Intensity and Carbon Intensity by the Numbers

  15. Quarkyonic Matter and Quark Number Scaling of Elliptic Flow

    SciTech Connect (OSTI)

    Csernai, L. P.; Zschocke, S.; Horvat, Sz.; Cheng Yun; Mishustin, I. N.

    2011-05-23

    The constituent quark number scaling of elliptic flow is studied in a non-equilibrium hadronization and freeze-out model with rapid dynamical transition from ideal, deconfined and chirally symmetric Quark Gluon Plasma, to final non-interacting hadrons. In this transition a Bag model of constituent quarks is considered, where the quarks gain constituent quark mass while the background Bag-field breaks up and vanishes. The constituent quarks then recombine into simplified hadron states, while chemical, thermal and flow equilibrium break down one after the other. In this scenario the resulting temperatures and flow velocities of baryons and mesons are different. Using a simplified few source model of the elliptic flow, we are able to reproduce the constituent quark number scaling, with assumptions on the details of the non-equilibrium processes.

  16. Table B6. Building Size, Number of Buildings, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    B6. Building Size, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings ","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,001 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings

  17. Total number of longwall faces drops below 50

    SciTech Connect (OSTI)

    Fiscor, S.

    2009-02-15

    For the first time since Coal Age began its annual Longwall Census the number of faces has dropped below 50. A total of five mines operate two longwall faces. CONSOL Energy remains the leader with 12 faces. Arch Coal operates five longwall mines; Robert E. Murray owns five longwall mines. West Virginia has 13 longwalls, followed by Pennsylvania (8), Utah (6) and Alabama (6). A detailed table gives for each longwall installation, the ownership, seam height, cutting height, panel width and length, overburden, number of gate entries, depth of cut, model of equipment used (shearer, haulage system, roof support, face conveyor, stage loader, crusher, electrical controls and voltage to face). 2 tabs., 1 photo.

  18. Maria Goeppert Mayer, the Nuclear Shell Structure, and Magic Numbers

    Office of Scientific and Technical Information (OSTI)

    Maria Goeppert-Mayer, the Nuclear Shell Model, and Magic Numbers Resources with Additional Information Maria Goeppert-Mayer Courtesy Argonne National Laboratory While working at Argonne National Laboratory (ANL) in 1948, physicist Maria Goeppert-Mayer developed the explanation of how neutrons and protons within atomic nuclei are structured. Called the "nuclear shell model," her work explains why the nuclei of some atoms are more stable than others and why some elements have many

  19. FINAL MECHANICAL EXAMINATION FORM PS-6 Pressure System Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MECHANICAL EXAMINATION FORM PS-6 Pressure System Number: Pressure System Name: Design Authority: CHECK IF COMPLETE, N/A IF NOT APPLICABLE: Materials, components and products meet specifications and the requirements of engineering design Applicable procedures for assembly, glue bonding, etc. Assembly of threaded, bolted and other joints conforms to Code and engineering design Alignment, supports and/or cold spring meet engineering design Dimensional checks of components and materials meet Code

  20. Detailed Chemical Kinetic Reaction Mechanisms for Primary Reference Fuels for Diesel Cetane Number and Spark-Ignition Octane Number

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2010-03-03

    For the first time, a detailed chemical kinetic reaction mechanism is developed for primary reference fuel mixtures of n-hexadecane and 2,2,4,4,6,8,8-heptamethyl nonane for diesel cetane ratings. The mechanisms are constructed using existing rules for reaction pathways and rate expressions developed previously for the primary reference fuels for gasoline octane ratings, n-heptane and iso-octane. These reaction mechanisms are validated by comparisons between computed and experimental results for shock tube ignition and for oxidation under jet-stirred reactor conditions. The combined kinetic reaction mechanism contains the submechanisms for the primary reference fuels for diesel cetane ratings and submechanisms for the primary reference fuels for gasoline octane ratings, all in one integrated large kinetic reaction mechanism. Representative applications of this mechanism to two test problems are presented, one describing fuel/air autoignition variations with changes in fuel cetane numbers, and the other describing fuel combustion in a jet-stirred reactor environment with the fuel varying from pure 2,2,4,4,6,8,8-heptamethyl nonane (Cetane number of 15) to pure n-hexadecane (Cetane number of 100). The final reaction mechanism for the primary reference fuels for diesel fuel and gasoline is available on the web.

  1. Alaska Maximum Number of Active Crews Engaged in Three-Dimensional...

    Gasoline and Diesel Fuel Update (EIA)

    Three-Dimensional Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Three-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar...

  2. Other Contracting Authority NNSA ORGANIZATION HCA LIMIT PHONE NUMBER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other Contracting Authority NNSA ORGANIZATION HCA LIMIT PHONE NUMBER NNSA HQ, NA-63, Deputy Director, Office of Acquisition and Supply Management Barbara H. Stearrett > $25M 202-586-7439 NNSA Service Center, Associate Director, Office of Business Services, Albuquerque, NM Donald J. Garcia < or equal to $25M 505-845-5878 Site offices do not have any HCA authority. NNSA SITE OFFICE CO NAME PHONE M&O CONTRACTOR NAME Bettis/Knolls Atomic Power Laboratory Mark Dickinson 202-781-6237 Bechtel

  3. Number of Customers by State by Sector, 1990-2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Customers by State by Sector, 1990-2014" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2014,"AK","Total Electric Industry",281438,51017,1287,0,"NA",333742 2014,"AL","Total Electric Industry",2169790,360901,7236,0,"NA",2537927 2014,"AR","Total Electric

  4. Quantum Statistical Testing of a Quantum Random Number Generator

    SciTech Connect (OSTI)

    Humble, Travis S

    2014-01-01

    The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the opera- tion of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.

  5. In Archive} Re: Number of ships at JBC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Re: Number of ships at JBC Jeffrey Galan to: Maxcine Maxted 07/31/2015 06:02 PM Cc: Michael Dunsmuir History: This message has been forwarded. Archive: This message is being viewed in an archive. Hey Maxine, I spoke to my Joint Base Charleston contact and he told me that JBC gets an average of 8-10 vessels a year at Wharf Alpha and 35-45 vessels base wide. Jeff Galan Program Manager U.S.-Origin Nuclear Material Removal Program Office of Material Management and Minimization National Nuclear

  6. Numberical studies of the radiant flash pyrolysis of cellulose

    SciTech Connect (OSTI)

    Kothari, V.; Antal, M.J. Jr.

    1983-01-01

    When biomass particles are heated very rapidly (>1000/sup 0/ C/s) in an oxygen free environment, they undergo pyrolysis with the formation of little or no char. If concentrated solar energy is used to rapidly heat the particles their temperature may exceed that of the surrounding gaseous environment by several hundred degrees Celsius when pyrolysis occurs. This ''two temperature'' effect gives rise to the formation of high yields of syrups from the pyrolyzing biomass. Numberical exploration of the combined effects of heat and mass transfer on the radiative flash pyrolysis phenonmena are described in this paper. (5 tables, 8 figs, 12 refs.)

  7. Site: Contract Name: Contractor: Contract Number: Contract Type:

    Office of Environmental Management (EM)

    Contractor: Contract Number: Contract Type: Total Estimated Contract Cost: Contract Base Period: Contract Option Period: Minimum Fee Maximum Fee Performance Period Fee Available Fee Earned FY2011 $6,190,992 $5,779,687 FY2012 $16,380,944 $14,173,044 FY2013 $16,972,816 $12,693,413 FY2014 $15,520,007 $13,207,526 FY2015 $14,269,197 $10,503,998 FY2016 Base Period $24,350,863 March 29, 2016- September 30, 2017 $28,251,114 October 1, 2017- September 30, 2018 $18,834,076 October 1, 2018- September 30,

  8. Constituent quark scaling violation due to baryon number transport

    SciTech Connect (OSTI)

    Dunlop J. C.; Lisa, M.A., Sorensen, P.

    2011-10-31

    In ultrarelativistic heavy-ion collisions at {radical}s{sub NN} {approx} 200 GeV, the azimuthal emission anisotropy of hadrons with low and intermediate transverse momentum (p{sub T} {approx}< 4 GeV/c) displays an intriguing scaling. In particular, the baryon (meson) emission patterns are consistent with a scenario in which a bulk medium of flowing quarks coalesces into three-quark (two-quark) 'bags.' While a full understanding of this number-of-constituent-quark (NCQ) scaling remains elusive, it is suggestive of a thermalized bulk system characterized by colored dynamical degrees of freedom - a quark-gluon plasma (QGP). In this scenario, one expects the scaling to break down as the central energy density is reduced below the QGP formation threshold; for this reason, NCQ-scaling violation searches are of interest in the energy scan program at the Relativistic Heavy Ion Collider. However, as {radical}s{sub NN} is reduced, it is not only the initial energy density that changes; there is also an increase in the net baryon number at midrapidity, as stopping transports entrance-channel partons to midrapidity. This phenomenon can result in violations of simple NCQ scaling. Still in the context of the quark coalescence model, we describe a specific pattern for the breakdown of the scaling that includes different flow strengths for particles and their antipartners. Related complications in the search for recently suggested exotic phenomena are also discussed.

  9. Finite Mach number spherical shock wave, application to shock ignition

    SciTech Connect (OSTI)

    Vallet, A.; Ribeyre, X.; Tikhonchuk, V.

    2013-08-15

    A converging and diverging spherical shock wave with a finite initial Mach number M{sub s0} is described by using a perturbative approach over a small parameter M{sub s}{sup ?2}. The zeroth order solution is the Guderley's self-similar solution. The first order correction to this solution accounts for the effects of the shock strength. Whereas it was constant in the Guderley's asymptotic solution, the amplification factor of the finite amplitude shock ?(t)?dU{sub s}/dR{sub s} now varies in time. The coefficients present in its series form are iteratively calculated so that the solution does not undergo any singular behavior apart from the position of the shock. The analytical form of the corrected solution in the vicinity of singular points provides a better physical understanding of the finite shock Mach number effects. The correction affects mainly the flow density and the pressure after the shock rebound. In application to the shock ignition scheme, it is shown that the ignition criterion is modified by more than 20% if the fuel pressure prior to the final shock is taken into account. A good agreement is obtained with hydrodynamic simulations using a Lagrangian code.

  10. ARM Evaluation Product : Droplet Number Concentration Value-Added Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura

    2014-05-15

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al. (2009) have implemented a method, based on Boers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions.

  11. Message passing with a limited number of DMA byte counters

    DOE Patents [OSTI]

    Blocksome, Michael; Chen, Dong; Giampapa, Mark E.; Heidelberger, Philip; Kumar, Sameer; Parker, Jeffrey J.

    2011-10-04

    A method for passing messages in a parallel computer system constructed as a plurality of compute nodes interconnected as a network where each compute node includes a DMA engine but includes only a limited number of byte counters for tracking a number of bytes that are sent or received by the DMA engine, where the byte counters may be used in shared counter or exclusive counter modes of operation. The method includes using rendezvous protocol, a source compute node deterministically sending a request to send (RTS) message with a single RTS descriptor using an exclusive injection counter to track both the RTS message and message data to be sent in association with the RTS message, to a destination compute node such that the RTS descriptor indicates to the destination compute node that the message data will be adaptively routed to the destination node. Using one DMA FIFO at the source compute node, the RTS descriptors are maintained for rendezvous messages destined for the destination compute node to ensure proper message data ordering thereat. Using a reception counter at a DMA engine, the destination compute node tracks reception of the RTS and associated message data and sends a clear to send (CTS) message to the source node in a rendezvous protocol form of a remote get to accept the RTS message and message data and processing the remote get (CTS) by the source compute node DMA engine to provide the message data to be sent.

  12. ARM Evaluation Product : Droplet Number Concentration Value-Added Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al. (2009) have implemented a method, based on Boers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions.

  13. U.S. Maximum Number of Active Crews Engaged in Seismic Surveying...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb...

  14. Heaviest Nuclei: New Element with Atomic Number 117

    ScienceCinema (OSTI)

    Oganessian, Yuri [Flerov Laboratory of Nuclear Reactions, Russia and Joint Institute for Nuclear Research

    2010-09-01

    One of the fundamental outcomes of the nuclear shell model is the prediction of the 'stability islands' in the domain of the hypothetical super heavy elements. The talk is devoted to the experimental verification of these predictions - the synthesis and study of both the decay and chemical properties of the super heavy elements. The discovery of a new chemical element with atomic number Z=117 is reported. The isotopes 293117 and 294117 were produced in fusion reactions between 48Ca and 249Bk. Decay chains involving 11 new nuclei were identified by means of the Dubna gas-filled recoil separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z =111, validating the concept of the long sought island of enhanced stability for heaviest nuclei.

  15. Axial asymmetry, finite particle number and the IBA

    SciTech Connect (OSTI)

    Casten, R.F.

    1984-01-01

    Although the IBA-1 contains no solutions corresponding to a rigid triaxial shape, it does contain an effective asymmetry. This arises from zero point motion in a ..gamma..-soft potential leading to a non-zero mean or rms ..gamma... Three aspects of this feature will be discussed: (1) The relation between IBA-1 calculations and the corresponding ..gamma... This point is developed in the context of the Consistent Q Formalism (CQF) of the IBA. (2) The dependence of this asymmetry on boson number, N, and the exploitation of this dependence to set limits on both the relative and absolute values of N for deformed nuclei. (3) The relation between this asymmetry and the triaxiality arising from the introduction of cubic terms into the IBA Hamiltonian. Various observables will be inspected in order both to determine their sensitivity to these two structural features and to explore empirical ways of distinguishing which origin of asymmetry applies in any given nucleus. 16 references.

  16. Level repulsion, nuclear chaos, and conserved quantum numbers

    SciTech Connect (OSTI)

    Garrett, J.D.

    1993-12-01

    A statistical analysis of the distribution of level spacings for states with the same spin and parity is described in which the average spacing is calculated for the total ensemble. Though the resulting distribution of level spacings for states of deformed nuclei with Z = 62 - 75 and A = 155 - 185 is the closest to that of a Poisson distribution yet obtained for nuclear levels, significant deviations are observed for small level spacings. Many, but not all, of the very closely-spaced levels have K-values differing by several units. The analysis of level spacings in {sup 157}Ho indicate that considerable caution should be excerised when drawing conclusions from such an analysis for a single deformed nucleus, since the sizable number of spacings that can be obtained from a few rotational bands are not all independent.

  17. Projection techniques as methods of particle-number symmetry restoration

    SciTech Connect (OSTI)

    Oudih, M. R.; Fellah, M.; Allal, N. H.; Benhamouda, N. [Laboratoire de Physique Theorique, Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria, and Centre de Recherche Nucleaire d'Alger - COMENA, BP 399, Alger-Gare, Algiers (Algeria)

    2007-10-15

    The accuracy of the variation before (VBP) and after (VAP) particle-number projection methods, the Lipkin-Nogami (LN) prescription, and the projected Lipkin-Nogami (PLN) method have been studied using two exactly solvable models. It is shown that the VBP and the LN methods are rather dubious not only in a weak pairing regime, but also in strong pairing for the evaluation of quantities other than the ground state energy. The PLN method provides good results for the ground and the excited state energies, but it must be used with caution for the occupation probabilities and the observables that strongly depend on it. It seems that the VAP is the only suitable method for a global description of the nuclear properties.

  18. Site: Contract Name: Contractor: Contract Number: Contract Type:

    Office of Environmental Management (EM)

    Number: Contract Type: Total Estimated Contract Cost: Contract Base Period: Contract Option Periods: Minimum Fee Maximum Fee Performance Period Fee Available Fee Earned FY2009/2010 $22,386,342 $19,332,431 FY2011 $26,164,766 $23,956,349 FY2012 $21,226,918 $19,099,251 FY2013 $21,030,647 $19,352,402 FY2014 $18,986,489 $16,518,626 FY2015 $21,043,816 $18,776,345 FY2016 $21,017,439 FY2017 Cumulative Fee $151,856,417 $117,035,404 $151,856,417 EM Contractor Fee Richland Operations Office - Richland, WA

  19. Site: Contract Name: Contractor: Contract Number: Contract Type:

    Office of Environmental Management (EM)

    Number: Contract Type: Total Estimated Contract Cost: Contract Base Period: Contract Option Period: Minimum Fee Target Fee Maximum Fee Performance Period Fee Available (N/A) Fee Earned (Equals 10% of Target) FY2005 $223,991 FY2006 $1,548,986 FY2007 $1,170,889 FY2008 $1,270,755 FY2009 $1,567,325 FY2010 $2,374,992 FY2011 $2,498,835 FY2012 $1,440,273 FY2013 $1,595,460 FY2014 $33,113,257 FY2015 $1,546,386 FY2016 $2,553,927 Cumulative Fee $50,905,075 N/A EM Contractor Fee Richland Operations Office -

  20. Kubo relations and radiative corrections for lepton number washout

    SciTech Connect (OSTI)

    Bdeker, Dietrich; Laine, M. E-mail: laine@itp.unibe.ch

    2014-05-01

    The rates for lepton number washout in extensions of the Standard Model containing right-handed neutrinos are key ingredients in scenarios for baryogenesis through leptogenesis. We relate these rates to real-time correlation functions at finite temperature, without making use of any particle approximations. The relations are valid to quadratic order in neutrino Yukawa couplings and to all orders in Standard Model couplings. They take into account all spectator processes, and apply both in the symmetric and in the Higgs phase of the electroweak theory. We use the relations to compute washout rates at next-to-leading order in g, where g denotes a Standard Model gauge or Yukawa coupling, both in the non-relativistic and in the relativistic regime. Even in the non-relativistic regime the parametrically dominant radiative corrections are only suppressed by a single power of g. In the non-relativistic regime radiative corrections increase the washout rate by a few percent at high temperatures, but they are of order unity around the weak scale and in the relativistic regime.

  1. Search for baryon number violation in top-quark decays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chatrchyan, Serguei

    2014-02-20

    A search for baryon number violation (BNV) in top-quark decays is performed using pp collisions produced by the LHC at sqrt(s) = 8 TeV. The top-quark decay considered in this search results in one light lepton (muon or electron), two jets, but no neutrino in the final state. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.5 inverse femtobarns. The event selection is optimized for top quarks produced in pairs, with one undergoing the BNV decay and the other the standard model hadronic decay to three jets. No significant excessmore » of events over the expected yield from standard model processes is observed. The upper limits at 95% confidence level on the branching fraction of the BNV top-quark decay are calculated to be 0.0016 and 0.0017 for the muon and the electron channels, respectively. Assuming lepton universality, an upper limit of 0.0015 results from the combination of the two channels. These limits are the first that have been obtained on a BNV process involving the top quark.« less

  2. Alaska Maximum Number of Active Crews Engaged in Two-Dimensional...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Two-Dimensional Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Two-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr...

  3. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Three-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in Three-Dimensional Seismic Surveying (Number of...

  4. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Four-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in Four-Dimensional Seismic Surveying (Number of...

  5. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Two-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in Two-Dimensional Seismic Surveying (Number of Elements)...

  6. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Two-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in Two-Dimensional Seismic Surveying (Number of Elements)...

  7. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Four-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in Four-Dimensional Seismic Surveying (Number of...

  8. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged...

    Gasoline and Diesel Fuel Update (EIA)

    Three-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in Three-Dimensional Seismic Surveying (Number of...

  9. Fact #649: November 15, 2010 Number of New Light Vehicle Dealerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: November 15, 2010 Number of New Light Vehicle Dealerships Continues to Shrink Fact 649: November 15, 2010 Number of New Light Vehicle Dealerships Continues to Shrink The number ...

  10. DOCUMENT RELEASE FORM S (1) Document Number: RPP-RPT-42296

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FORM S (1) Document Number: RPP-RPT-42296 (2) Revision Number: 0 (3) Effective Date: 04122010 (4) Document Type: EQ Digital Image El Hard copy (a) Number of pages (including the...

  11. U.S. Lower 48 States Onshore Maximum Number of Active Crews Engaged...

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Lower 48 States Onshore Maximum Number of Active Crews Engaged in Seismic Surveying...

  12. U.S. Lower 48 States Offshore Maximum Number of Active Crews...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Offshore Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Lower 48 States Offshore Maximum Number of Active Crews Engaged in Seismic Surveying...

  13. ORISE: Number of health physics degrees granted in 2013 has increased...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Number of health physics degrees granted in 2013 has increased for undergraduates, ... OAK RIDGE, Tenn.-The number of college students graduating with majors in health physics ...

  14. Los Alamos National Laboratory Site Cleanup By the Numbers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Los Alamos National Laboratory Site Cleanup By the Numbers Los Alamos National Laboratory Site Cleanup By the Numbers Status of the Los Alamos Cleanup Activities as of May 2016 PDF icon LANL-Site-By-The-Numbers-May-2016.pdf More Documents & Publications Los Alamos National Laboratory Site Cleanup By the Numbers Los Alamos National Laboratory Site Cleanup By the Numbers Audit Report: IG-0793 CX-010905: Categorical Exclusion Determination

  15. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (USDOE) to submit the 200 Area National Priority List (NPL) Remedial InvestigationFeasibility Study (RIFS) Work Plans to complete the Investigation of Past-Practice Units by...

  16. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    piping, valve pits, diversion boxes, vaults, inactive miscellaneous underground storage tanks IMUST etc.), contaminated soils, and contaminated groundwater. The process...

  17. Section Number:

    Energy Savers [EERE]

    QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant to the contract clause entitled, "Laws, Regulations, and DOE Directives," the following list of directives is applicable to this contract. List A Pursuant to the contract clause entitled, "Laws, Regulations, and DOE Directives," the Contractor shall comply with the requirements of applicable Federal, State, and local laws and regulations, unless relief has been granted in writing by the appropriate

  18. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Date Approved Disapproved L. Hoffman, Ecology Interim Director Date Approved Disapproved Tri-Party...

  19. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the M-016 Series Milestones Description/Justification of Change The Hanford Federal Facility Agreement and Consent Order (TPA) contains commitments for the U.S.

  20. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E KEY INDIVIDUALS U.S. Environmental Protection Agency Region 10 Washington State Department of Ecology U.S. Department of Energy, Richland Operations Executive Managers Program Manager for the Hanford Project Office (509) 376-6865 Program Manager for the Nuclear Waste Program (509) 372-7950 Assistant Manager for the Central Plateau (509) 373-9971 Assistant Manager for the Office of River Protection, Waste Treatment and Immobilization Plant (509) 372-3864 Assistant Manager for the Office of

  1. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tank Space Evaluation and Milestone M-46-01 for Ecology concurrence of Additional Tank Acquisition and incorporates those requirements into modifications pursuant to Milestone...

  2. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Date: M-16-04-04 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. May 27, 2004 Originator: K. A. Klein Phone:...

  3. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plateau 376-7435 Class of Change I - Signatories X II - Executive Manager III - Project Manager Change Title Modify Tri-Party Agreement Milestone Series M-015 in...

  4. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plateau 376-7435 Class of Change X I - Signatories II - Executive Manager III - Project Manager Change Title Modify Tri-Party Agreement Milestone Series M-020 in...

  5. Report Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... In this geometry, the assemblies are modeled homogenously, except for the XX09 assembly which is explicitly modeled. EBR-II was a small, highly enriched, sodium-cooled fast reactor ...

  6. Docket No. EERE-2011-BT-NOA-0067 and RIN Number 1904-AC52 Ex...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and RIN Number 1904-AC52 Ex parte Communication Docket No. EERE-2011-BT-NOA-0067 and RIN Number 1904-AC52 Ex parte Communication This memorandum for the record provides a ...

  7. Ex Parte Communication Docket Number EERE-2008-BT-STD-005 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number EERE-2008-BT-STD-005 Ex Parte Communication Docket Number EERE-2008-BT-STD-005 ... EERE- 2008-BT-STD-0005, RIN 1904-AB57 Ex parte communication DOE Meeting of June 13, 2012 ...

  8. Property:NEPA LeadAgencyDocNumber | Open Energy Information

    Open Energy Info (EERE)

    LeadAgencyDocNumber Jump to: navigation, search Property Name NEPA LeadAgencyDocNumber Property Type String This is a property of type String. Pages using the property "NEPA...

  9. Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing

    Broader source: Energy.gov [DOE]

    The number of franchised new light vehicle dealerships peaked in 1949 with more than 49,000 dealers. By 2012, the number is less than half of that – 17,540 dealers.

  10. PRESSURE RELIEF DEVICE DATA SHEET FORM PS-5 Pressure System Number: Date:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELIEF DEVICE DATA SHEET FORM PS-5 Pressure System Number: Date: Pressure System Name: Pressure Vessel Number (if Applicable): Device installed directly on vessel?: __Yes __No Code: System Fluid: Code Year: Fluid State: Fluid Category: RELIEF DEVICE DATA Device Type ___Safety Relief Valve ____Rupture Disk ___Other (specify) Certification Type: ___ASME ___CE/PED ___Other (specify) Manufacturer Rated Flow Capacity: Part Number Converted Flow Capacity: Serial Number Set Pressure Inspection/Test

  11. U.S. Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Seismic Surveying (Number of Elements) Onshore Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 435 512 417 343 455 511 600 710 NA 663 2010's 616

  12. Picosecond pulses produced by mode locking a Nd:glass laser with Kodak dye number26

    SciTech Connect (OSTI)

    Schiller, N.H.; Foresti, M.; Alfano, R.R.

    1985-05-01

    Kodak dye number26 was used to generate picosecond laser pulses by mode locking a Nd:glass laser. The intensity profiles and characteristics of the pulses were compared with those of pulses emitted using dyes number5 and number9860.

  13. Search for baryon-number and lepton-number violating decays of $Lambda$ hyperons using the CLAS detector at Jefferson Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McCracken, Michael E.

    2015-10-09

    We present a search for ten baryon-number violating decay modes of $\\Lambda$ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state ($\\Lambda \\rightarrow m \\ell$) and conserve either the sum or the difference of baryon and lepton number ($B \\pm L$). The tenth decay mode ($\\Lambda \\rightarrow \\bar{p}\\pi^+$) represents a difference in baryon number of two units and no difference in lepton number. We observe no significant signal and set upper limits on the branching fractions of these reactions in the range $(4-200)\\times 10^{-7}$moreat the $90\\%$ confidence level.less

  14. Search for baryon-number and lepton-number violating decays of $Lambda$ hyperons using the CLAS detector at Jefferson Laboratory

    SciTech Connect (OSTI)

    McCracken, Michael E.

    2015-10-09

    We present a search for ten baryon-number violating decay modes of $\\Lambda$ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state ($\\Lambda \\rightarrow m \\ell$) and conserve either the sum or the difference of baryon and lepton number ($B \\pm L$). The tenth decay mode ($\\Lambda \\rightarrow \\bar{p}\\pi^+$) represents a difference in baryon number of two units and no difference in lepton number. We observe no significant signal and set upper limits on the branching fractions of these reactions in the range $(4-200)\\times 10^{-7}$ at the $90\\%$ confidence level.

  15. Search for baryon-number and lepton-number violating decays of Λ hyperons using the CLAS detector at Jefferson Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McCracken, Michael E.

    2015-10-09

    We present a search for ten baryon-number violating decay modes of Λ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state (Λ → mΙ) and conserve either the sum or the difference of baryon and lepton number (Β ± L). The tenth decay mode (Λ → p¯π+) represents a difference in baryon number of two units and no difference in lepton number. Furthermore, we observe no significant signal and set upper limits on the branching fractions of these reactions in the range (4 –more » 200) x 107 at the 90% confidence level.« less

  16. Using Hyper-Dual Numbers To Construct Parameterized Reduced-Order Models.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Using Hyper-Dual Numbers To Construct Parameterized Reduced-Order Models. Citation Details In-Document Search Title: Using Hyper-Dual Numbers To Construct Parameterized Reduced-Order Models. Abstract not provided. Authors: Brake, Matthew Robert ; Fike, Jeffrey A. ; Topping, Sean D. Publication Date: 2014-10-01 OSTI Identifier: 1242114 Report Number(s): SAND2014-19346C 540913 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation:

  17. Evalution of long-term surface-retrieved cloud-droplet number concentration

    Office of Scientific and Technical Information (OSTI)

    with in situ aircraft observations (Journal Article) | SciTech Connect Evalution of long-term surface-retrieved cloud-droplet number concentration with in situ aircraft observations Citation Details In-Document Search Title: Evalution of long-term surface-retrieved cloud-droplet number concentration with in situ aircraft observations A new cloud-droplet number concentration (NDROP) value added product (VAP) has been produced at the Atmospheric Radiation Measurement (ARM) Southern Great

  18. Truly Random Number Generator Promises Stronger Encryption Across All Devices, Cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Truly Random Number Generator Promises Stronger Encryption Across All Devices, Cloud March 4, 2016 SAN FRANCISCO, RSA Conference -- In light of yet another SSL vulnerability this week, any improvements to the underpinnings of encryption would be welcome. One weakness of encryption algorithms -- one that simply increasing from 128-bit to 256-bit can't solve -- is that they are based on pseudo-random number generators; not truly random number generators. Whitewood Encryption Systems, which

  19. Waste Isolation Pilot Plant (WIPP) Site Cleanup By the Numbers | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy (WIPP) Site Cleanup By the Numbers Waste Isolation Pilot Plant (WIPP) Site Cleanup By the Numbers Waste Isolation Pilot Plant (WIPP) Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an

  20. Los Alamos National Laboratory Site Cleanup By the Numbers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Laboratory Site Cleanup By the Numbers Los Alamos National Laboratory Site Cleanup By the Numbers Los Alamos National Laboratory Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an underground

  1. Sensitivity of a global climate model to the critical Richardson number in

    Office of Scientific and Technical Information (OSTI)

    the boundary layer parameterization (Journal Article) | SciTech Connect Sensitivity of a global climate model to the critical Richardson number in the boundary layer parameterization Citation Details In-Document Search Title: Sensitivity of a global climate model to the critical Richardson number in the boundary layer parameterization The critical bulk Richardson number (Ricr) is an important parameter in planetary boundary layer (PBL) parameterization schemes used in many climate models.

  2. Nevada National Security Site Cleanup By the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada National Security Site Cleanup By the Numbers Nevada National Security Site Cleanup By the Numbers Nevada National Security Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an underground repository

  3. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Scott Stafford

    Broader source: Energy.gov [DOE]

    Commenter: Scott Stafford 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  4. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Scott Yundt

    Broader source: Energy.gov [DOE]

    Commenter: Scott Yundt 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  5. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- William R. Kleem

    Broader source: Energy.gov [DOE]

    Commenter: William R. Kleem 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  6. U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Number of Elements) Depleted Fields Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 335 2000's 336 351 340 318 320 320 322 326 324 331 2010's 331 329 330 332 333 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  7. U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Number of Elements) Salt Caverns Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 29 2000's 28 28 29 30 30 30 31 31 34 35 2010's 37 38 40 40 39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  8. Modeling the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data

    Broader source: Energy.gov [DOE]

    Modeling the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data Elizabeth J. Kelly and Raymond N. Tell

  9. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Marc Kolanz

    Broader source: Energy.gov [DOE]

    Commenter: Marc Kolanz 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  10. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- John Walter

    Broader source: Energy.gov [DOE]

    Commenter: John Walter 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  11. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Reginald Gaylord

    Broader source: Energy.gov [DOE]

    Commenter: Reginald Gaylord 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  12. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Jamie Stalker

    Broader source: Energy.gov [DOE]

    Commenter: Jamie Stalker 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  13. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Mark Fisher

    Broader source: Energy.gov [DOE]

    Commenter: Mark Fisher 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  14. Rooftop Solar Challenge Award Number: DE-EE0000549 Project Period

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Rooftop Solar Challenge Award Number: DE-EE0000549 Project Period December 1, 2011 ... Policy September 30, 2013 Arizona Rooftop Solar Challenge Final Report Table of Contents ...

  15. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Susan Leckband

    Broader source: Energy.gov [DOE]

    Commenter: Susan Leckband 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  16. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Joseph Herndon

    Broader source: Energy.gov [DOE]

    Commenter: Joseph Herndon 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  17. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Pete Stafford

    Broader source: Energy.gov [DOE]

    Commenter: Pete Stafford 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  18. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- J. Chris Cantwell

    Broader source: Energy.gov [DOE]

    Commenter: J. Chris Cantwell 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  19. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Anoop Agrawal

    Broader source: Energy.gov [DOE]

    Commenter: Anoop Agrawal 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  20. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Cameron Anderson

    Broader source: Energy.gov [DOE]

    Commenter: Cameron Anderson 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  1. Bad Estimates as a Function of Exceeding the MCNP Random Number Stride

    SciTech Connect (OSTI)

    Booth, Thomas E.

    2014-05-05

    Examples of bad MCNP estimates resulting from exceeding the MCNP random number stride are given for a simple infinite medium problem.

  2. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Timothy Bolden

    Broader source: Energy.gov [DOE]

    Commenter: Timothy Bolden 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  3. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Bret Moscon

    Broader source: Energy.gov [DOE]

    Commenter: Bret Moscon 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  4. Award Number: Federal Non-Federal Federal Non-Federal Total

    Office of Environmental Management (EM)

    B - Budget Categories Catalog of Federal Domestic Assistance Number Grant Program Function or Activity Estimated Unobligated Funds e. Supplies i. Total Direct Charges (sum of...

  5. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Curtis Valle

    Broader source: Energy.gov [DOE]

    Commenter: Curtis Valle 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  6. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Troy Bodily

    Broader source: Energy.gov [DOE]

    Commenter: Troy Bodily 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  7. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Steven Jahn

    Broader source: Energy.gov [DOE]

    Commenter: Steven Jahn 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  8. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Paul A. Schulte

    Broader source: Energy.gov [DOE]

    Commenter: Paul A. Schulte 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  9. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Kenneth Meyer

    Broader source: Energy.gov [DOE]

    Commenter: Kenneth Meyer 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  10. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Cheryl Floreen

    Broader source: Energy.gov [DOE]

    Commenter: Cheryl Floreen 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  11. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Richard L. Dickson

    Broader source: Energy.gov [DOE]

    Commenter: Richard L. Dickson 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  12. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Jim Withers

    Broader source: Energy.gov [DOE]

    Commenter: Jim Withers 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  13. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Mario Moreno

    Broader source: Energy.gov [DOE]

    Commenter: Mario Moreno 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  14. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Ed Kvartek

    Broader source: Energy.gov [DOE]

    Commenter: Ed Kvartek 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  15. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Thomas W. Morris

    Broader source: Energy.gov [DOE]

    Commenter: Thomas W. Morris 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  16. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Thomas Peterson

    Broader source: Energy.gov [DOE]

    Commenter: Thomas Peterson 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  17. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Michael Brisson

    Broader source: Energy.gov [DOE]

    Commenter: Michael Brisson 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  18. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Mark Strauch

    Broader source: Energy.gov [DOE]

    Commenter: Mark Strauch 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  19. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Roby Enge

    Broader source: Energy.gov [DOE]

    Commenter: Roby Enge 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  20. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Faye Vleger

    Broader source: Energy.gov [DOE]

    Commenter: Faye Vleger 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  1. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Terry Vaughn

    Broader source: Energy.gov [DOE]

    Commenter: Terry Vaughn 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  2. Table A55. Number of Establishments by Total Inputs of Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity ... Industry","Total(b)","Bed Boilers","Heat Recovery","Turbines","Heat Recovery","Processes",...

  3. Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (NOPR) for Energy Conservation Standards for Battery Chargers and External Power Supplies, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57. PDF icon ...

  4. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Four-Dimensional Seismic Surveying (Number of Elements) Four-Dimensional Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 9 NA 0 2010's 0

  5. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Three-Dimensional Seismic Surveying (Number of Elements) Three-Dimensional Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 88 101 79 45 47 61 64 83 NA 87 2010's 99

  6. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Two-Dimensional Seismic Surveying (Number of Elements) Two-Dimensional Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 69 98 105 81 47 72 52 40 NA 36 2010's 52

  7. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Four-Dimensional Seismic Surveying (Number of Elements) Four-Dimensional Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 10 12 0 1 0 0 0 0 NA 0 2010's 0

  8. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Three-Dimensional Seismic Surveying (Number of Elements) Three-Dimensional Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 383 422 320 252 354 424 541 667 NA 642 2010's 602

  9. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Two-Dimensional Seismic Surveying (Number of Elements) Two-Dimensional Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 40 78 96 90 101 87 59 40 NA 21 2010's 13

  10. Effect of gravity on three-dimensional coordination number distribution in liquid phase sintered microstructures

    SciTech Connect (OSTI)

    Tewari, A.; Gokhale, A.M.; Gereman, R.M.

    1999-10-08

    Gravity affects microstructural evolution when a liquid phase is present during sintering. The effect of gravity on the three-dimensional coordination number distribution of tungsten grains in liquid phase sintered heavy alloy specimens is quantitatively characterized. A combination of montage serial sectioning, digital image processing, and unbiased stereological sampling procedures is used to estimate the coordination number distribution in three-dimensional microstructures. The microgravity environment decreases the mean coordination number. However, hardly any isolated grains are observed in the specimens, liquid phase sintered in a microgravity environment. The effect of microgravity on the coordination numbers mainly resides in its effect on the mean coordination number. In all specimens, there is a strong correlation between grain size and coordination number, which can be expressed as [D{sub c}/{bar D}]{sup 2} = C/C{sub 0} where C{sub 0} is the mean coordination number, {bar D} the global average size of the tungsten grains, and D{sub c} the average size of only those grains which have coordination number C.

  11. Federal Offshore--Gulf of Mexico Natural Gas Number of Gas and Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Condensate Wells (Number of Elements) Gulf of Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Federal Offshore--Gulf of Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 NA 2000's NA 3,271 3,245 3,039 2,781 2,123 2,419 2,552 1,527 1,984 2010's 1,852 1,559 1,474 1,146 1,400 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  12. By the Numbers: 2015 at the Department of Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    By the Numbers: 2015 at the Department of Energy By the Numbers: 2015 at the Department of Energy Addthis The Energy Department was hard at work in 2015, and we've got the numbers to prove it. This year we were involved in two major international agreements: the historic nuclear deal that blocks Iran's four pathways to a nuclear bomb, and the COP21 agreement -- a major milestone in the fight against climate change. Our carbon capture and storage projects removed their 10 millionth metric ton of

  13. Regulation of chloroplast number and DNA synthesis in higher plants. Final report, August 1995--August 1996

    SciTech Connect (OSTI)

    Mullet, J.E.

    1997-06-17

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focused on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The research focused on the isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  14. Request for Proposals (RFP) Number DE-RP36-07GO97036: Alliance Prime

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contract No. DE-AC36-08GO28308, through modification 1033 | Department of Energy Request for Proposals (RFP) Number DE-RP36-07GO97036: Alliance Prime Contract No. DE-AC36-08GO28308, through modification 1033 Request for Proposals (RFP) Number DE-RP36-07GO97036: Alliance Prime Contract No. DE-AC36-08GO28308, through modification 1033 Request for Proposals (RFP) Number DE-RP36-07GO97036: Alliance Prime Contract No. DE-AC36-08GO28308, through modification 1033. PDF icon Part I: Amendment of

  15. Ultrahigh-pressure polyamorphism in GeO 2 glass with coordination number >6

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | DOE PAGES Ultrahigh-pressure polyamorphism in GeO 2 glass with coordination number >6 This content will become publicly available on September 29, 2016 Title: Ultrahigh-pressure polyamorphism in GeO 2 glass with coordination number >6 Authors: Kono, Yoshio ; Kenney-Benson, Curtis ; Ikuta, Daijo ; Shibazaki, Yuki ; Wang, Yanbin ; Shen, Guoyin Publication Date: 2016-03-14 OSTI Identifier: 1241555 Grant/Contract Number: FG02-99ER45775; NA0001974 Type: Published Article

  16. By the Numbers: 2015 at the Energy Department | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    By the Numbers: 2015 at the Energy Department By the Numbers: 2015 at the Energy Department December 30, 2015 - 9:35am Addthis Watch some of the Energy Department's highlights from 2015. | Video by Simon Edelman and Carly Wilkins, Energy Department Simon Edelman Simon Edelman Chief Creative Officer Allison Lantero Allison Lantero Digital Content Specialist, Office of Public Affairs The Energy Department was hard at work in 2015, and we've got the numbers to prove it. This year we were involved

  17. Award Number: Federal Non-Federal Federal Non-Federal Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    i. Total Direct Charges (sum of 6a-6h) Grant Program, Function or Activity Object Class ... Catalog of Federal Domestic Assistance Number Grant Program Function or Activity Estimated ...

  18. Supplement Number 3 to the Operating Plan of Mirant Potomac River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 to the Operating Plan of Mirant Potomac River, LLC Supplement Number 3 to the Operating Plan of Mirant Potomac River, LLC Docket No. EO-05-01:Pursuant to Section 202(c) of the ...

  19. Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011

    Broader source: Energy.gov [DOE]

    In 2001 there were only 2 hybrid models for consumers to choose from. Ten years later, the number of hybrid models available to consumers has increased to 29 models. Between the 2010 and 2011 model...

  20. Fact #718: March 12, 2012 Number of Flex-Fuel Models Offered Increased in 2011

    Broader source: Energy.gov [DOE]

    General Motors (GM), Ford, and Chrysler have produced many different models of flex-fuel vehicles (cars and light trucks) over the last five years. In 2011, the number of models offered by those...

  1. Alaska Maximum Number of Active Crews Engaged in Three-Dimensional...

    Gasoline and Diesel Fuel Update (EIA)

    Three-Dimensional Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 9 2 11 6...

  2. Multi-bit quantum random number generation by measuring positions of arrival photons

    SciTech Connect (OSTI)

    Yan, Qiurong; Zhao, Baosheng; Liao, Qinghong; Zhou, Nanrun

    2014-10-15

    We report upon the realization of a novel multi-bit optical quantum random number generator by continuously measuring the arrival positions of photon emitted from a LED using MCP-based WSA photon counting imaging detector. A spatial encoding method is proposed to extract multi-bits random number from the position coordinates of each detected photon. The randomness of bits sequence relies on the intrinsic randomness of the quantum physical processes of photonic emission and subsequent photoelectric conversion. A prototype has been built and the random bit generation rate could reach 8 Mbit/s, with random bit generation efficiency of 16 bits per detected photon. FPGA implementation of Huffman coding is proposed to reduce the bias of raw extracted random bits. The random numbers passed all tests for physical random number generator.

  3. Fact #874: May 25, 2015 Number of Electric Stations and Electric Charging Units Increasing

    Broader source: Energy.gov [DOE]

    There are more electric stations than any other alternative fuel (10,710 stations). The number of charging units is of particular importance for electric vehicles due to the length of time it takes...

  4. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 (Continued) 1993 Household and 1994 Vehicle Characteristics RSE Column Factor:...

  5. Fact #851 December 15, 2014 The Average Number of Gears used in Transmissions Continues to Rise

    Broader source: Energy.gov [DOE]

    The number of gears in a transmission affects a vehicle's fuel economy and performance. The more gears a vehicle has, the more time the engine spends within an optimal operating range while the...

  6. Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink

    Broader source: Energy.gov [DOE]

    In 1993 there were more than 200,000 refueling stations on our nation's roadways. The number of stations has been decreasing almost every year since then. By 2012, there were just over 150,000...

  7. ORISE report shows number of health physics Ph.D.s declined in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE report shows number of health physics Ph.D.s declined in 2009 FOR IMMEDIATE RELEASE June 15, 2010 FY10-37 OAK RIDGE, Tenn.-Health physics undergraduate degrees increased...

  8. Fact #649: November 15, 2010 Number of New Light Vehicle Dealerships Continues to Shrink

    Broader source: Energy.gov [DOE]

    The number of new light vehicle dealerships has been decreasing since the late 1980s. The rate of decline has increased dramatically from 2005 to 2009, nearly matching the decline of the early 1990...

  9. Supplement Number 5 to the Operating Plan of Mirant Potomac River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 to the Operating Plan of Mirant Potomac River, LLC in Compliance with Order No. 202-05-03 Supplement Number 5 to the Operating Plan of Mirant Potomac River, LLC in Compliance ...

  10. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationHousehold Vehicles Energy Consumption 1994 43 Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994...

  11. ORISE: Contact information for REAC/TS - phone numbers, e-mail

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Radiation Emergency Assistance CenterTraining Site staff contact information Emergency Number 865.576.1005 (Ask for REACTS) Nicholas Dainiak, M.D., FACP Medical and...

  12. Supplement Number 2 to the Operating Plan of Mirant Potomac River...

    Energy Savers [EERE]

    2 to the Operating Plan of Mirant Potomac River, LLC Supplement Number 2 to the Operating Plan of Mirant Potomac River, LLC Docket No. EO-05-01. Order No. 202-05-03: Pursuant to...

  13. Fast reconnection in high-Lundquist-number plasmas due to the plasmoid Instability

    SciTech Connect (OSTI)

    Bhattacharjee, A.; Huang Yimin; Yang, H.; Rogers, B.

    2009-11-15

    Thin current sheets in systems of large size that exceed a critical value of the Lundquist number are unstable to a super-Alfvenic tearing instability, referred to hereafter as the plasmoid instability. The scaling of the growth rate of the most rapidly growing plasmoid instability with respect to the Lundquist number is shown to follow from the classical dispersion relation for tearing modes. As a result of this instability, the system realizes a nonlinear reconnection rate that appears to be weakly dependent on the Lundquist number, and larger than the Sweet-Parker rate by nearly an order of magnitude (for the range of Lundquist numbers considered). This regime of fast reconnection is realizable in a dynamic and highly unstable thin current sheet, without requiring the current sheet to be turbulent.

  14. Table B16. Multibuilding Facilities, Number of Buildings and Floorspace, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Multibuilding Facilities, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,"Total Floorspace (million square feet)" ,"All Buildings","Buildings on Multibuilding Facilities",,"All Buildings","Buildings on Multibuilding Facilities" ,,"All Buildings","With Central Physical Plant",,"All Buildings","With Central Physical Plant" "All Buildings

  15. Table B19. Energy End Uses, Number of Buildings and Floorspace, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Energy End Uses, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,,"Total Floorspace (million square feet)" ,"All Buildings","Energy Used For (more than one may apply)",,,,,"All Buildings","Energy Used For (more than one may apply)" ,,"Space Heating","Cooling","Water Heating","Cooking","Manufact-uring",,"Space

  16. Table B27. Cooking Energy Sources, Number of Buildings and Floorspace, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Cooking Energy Sources, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Cooking","Cooking Energy Sources (more than one may apply)",,,"All Buildings","All Buildings with Cooking","Cooking Energy Sources (more than one may apply)" ,,,"Electricity","Natural

  17. Ex Parte Communication Docket number EERE-2014-BT-STD-0031 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy number EERE-2014-BT-STD-0031 Ex Parte Communication Docket number EERE-2014-BT-STD-0031 On Wednesday March 23, 2016, representatives of the American Gas Association (AGA) and the Natural Resources Defense Council (NRDC) spoke by telephone with representatives of the Department of Energy (DOE) to discuss energy conservation standards for residential furnaces. PDF icon Ex Parte Furnace Meeting Memo 24Mar2015 More Documents & Publications ISSUANCE 2015-10-15: Energy

  18. ORISE: Number of health physics degrees granted in 2013 has increased for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undergraduates, declined for graduates Number of health physics degrees granted in 2013 has increased for undergraduates, declined for graduates Enrollment data suggests current trend likely to continue in 2014 and 2015 FOR IMMEDIATE RELEASE April 1, 2014 FY14-18 OAK RIDGE, Tenn.-The number of college students graduating with majors in health physics has increased slightly for bachelor's degrees, but decreased for both master's and doctoral candidates. The report, titled Health Physics

  19. Ultrahigh-pressure polyamorphism in GeO 2 glass with coordination number >6

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Ultrahigh-pressure polyamorphism in GeO 2 glass with coordination number >6 Citation Details In-Document Search Title: Ultrahigh-pressure polyamorphism in GeO 2 glass with coordination number >6 Authors: Kono, Yoshio ; Kenney-Benson, Curtis ; Ikuta, Daijo ; Shibazaki, Yuki ; Wang, Yanbin ; Shen, Guoyin Publication Date: 2016-03-14 OSTI Identifier: 1249225 Resource Type: Journal Article Resource Relation: Journal Name: Proceedings of the National

  20. A multichain polymer slip-spring model with fluctuating number of

    Office of Scientific and Technical Information (OSTI)

    entanglements for linear and nonlinear rheology (Journal Article) | SciTech Connect A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology Citation Details In-Document Search This content will become publicly available on December 15, 2016 Title: A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology Authors: Ramírez-Hernández, Abelardo [1] ; Peters, Brandon L. [2] ;