Sample records for john smart idaho

  1. Idaho Power Company Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New EnergyIT Power LimitedIdaTech UK JumpIdaho

  2. Smart Grid Savings and Grid Integration of Renewables in Idaho

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWork Force withNonprofit---5---12DOESmartthe 1 Smart Grid

  3. Assistive Human-Machine Interfaces for Smart Homes Armando Roy Delgado, Alexia Robinet, John McGinn, Vic Grout and Rich Picking

    E-Print Network [OSTI]

    Grout, Vic

    Assistive Human-Machine Interfaces for Smart Homes Armando Roy Delgado, Alexia Robinet, John Mc-for-all, Accessibility, Smart homes, Home automation systems, Multi-agent systems, White goods, Embedded systems 1. Introduction: Design aspects of smart homes for an ageing population As a generic concept, home automation

  4. Idaho's Energy Options

    SciTech Connect (OSTI)

    Robert M. Neilson

    2006-03-01T23:59:59.000Z

    This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

  5. Idaho Power- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

  6. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect (OSTI)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01T23:59:59.000Z

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  7. Transport parameter determination and modeling of sodium and strontium plumes at the Idaho National Engineering Laboratory

    E-Print Network [OSTI]

    Londergan, John Thomas

    1987-01-01T23:59:59.000Z

    TRANSPORT PARAMETER DETERMINATION AND MODELING OF SODIUM AND STRONTIUM PLUMES AT THE IDAHO NATIONAL ENGINEERING LABORATORY A Thesis by JOHN THOMAS LONDERGAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject: Geophysics TRANSPORT PARAMETER DETERMINATION AND MODELING OF SODIUM AND STRONTIUM PLUMES AT THE IDAHO NATIONAL ENGINEERING LABORATORY A Thesis by JOHN THOMAS LONDERGAN Approved...

  8. EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to upgrade the Sewer System at the U.S. Department of Energy's Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho.  The...

  9. IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOE’s Idaho site.

  10. Lagrangian air-mass tracking with smart balloons during ACE-2 Randy Johnson

    E-Print Network [OSTI]

    Businger, Steven

    Lagrangian air-mass tracking with smart balloons during ACE-2 Randy Johnson National Oceanic and Atmospheric Administration, Air Resources Laboratory, Field Research Division, Idaho Falls, Idaho 83402 Steven Balloon designed at National Oceanic and Atmospheric Administration, Air Resources Laboratory Field

  11. Independent Oversight Focused Safety Management Evaluation, Idaho...

    Office of Environmental Management (EM)

    Focused Safety Management Evaluation, Idaho National Engineering and Environmental Laboratory - January 2001 Independent Oversight Focused Safety Management Evaluation, Idaho...

  12. Analysis Activities at Idaho National Engineering & Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Analysis Activities at Idaho National Engineering & Environmental Laboratory Analysis Activities at Idaho National Engineering & Environmental Laboratory Presentation on INEENL's...

  13. EA-0845: Expansion of the Idaho National Engineering Laboratory Research Center, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to expand and upgrade facilities at the U.S. Department of Energy's Idaho National Engineering Laboratory Research Center, located in Idaho...

  14. Type A Accident Investigation Board Report on the August 13, 1996, Electrical Shock at TRA-609, Test Reactor Area, Idaho National Engineering Laboratory

    Broader source: Energy.gov [DOE]

    This report is an independent product of an electrical shock accident investigation report board appointed by John M. Wilcynski, Manager, Idaho Operations Office, U.S. Department of Energy.

  15. SAVE THIS | EMAIL THIS | Close 'Smart dust' aims to monitor everything

    E-Print Network [OSTI]

    Lu, Chenyang

    distinguisher, too. A building's thermostat is most likely hard-wired. A smart dust sensor might gaugePowered by SAVE THIS | EMAIL THIS | Close 'Smart dust' aims to monitor everything By John D. Sutter, CNN STORY HIGHLIGHTS 'Smart dust' refers to tiny sensors that would monitor everything on Earth

  16. Smart Cities - Smart Growth

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafely Delivering DOE'sEnergy SmallAwardsSmallSmart Cities -

  17. Smart Grid | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125EnergyIdaho | Department of Energy SmallSmart Grid

  18. John Horst

    Broader source: Energy.gov [DOE]

    John Horst is a Public Affairs Specialist with the Office of Energy Efficiency and Renewable Energy.

  19. John Gerrard

    Broader source: Energy.gov [DOE]

    John Gerrard is the NNSA Assistant Deputy Administrator for the Office of International Material Protection and Cooperation.

  20. Integrated Safety Management Workshop Registration, PIA, Idaho...

    Office of Environmental Management (EM)

    Idaho National Laboratory More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory PIA - INL Education Programs Business...

  1. Smart Lighting Controller!! Smart lighting!

    E-Print Network [OSTI]

    Anderson, Betty Lise

    1! Smart Lighting Controller!! #12;2! Smart lighting! No need to spend energy lighting the room if://blogs.stthomas.edu/realestate/2011/01/24/residential-real-estate-professionals-how-do-you- develop feedback! There is a connection between the output and the input! Therefore forces inputs to same voltage

  2. Technologie Smart metering Technologie Smart metering

    E-Print Network [OSTI]

    Technologie Smart metering Technologie Smart metering 29Bulletin 9/2014 Innovative Dienste mit intelligenten Stromzählern Standby- und Kühlgeräteverbrauch aus Smart-Meter-Daten Smart Meter ermöglichen weit, kommunikationsfähigen Stromzählern, fort. Smart Meter ermöglichen eine effizi- entere Rechnungsstellung, da sie Mess

  3. Idaho_Amsterdam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWind Power - Idaho

  4. Idaho_Arkoosh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWind Power - IdahoMitch

  5. John Dominicis

    Broader source: Energy.gov [DOE]

    As Director, Information Technology Services Office and Chief Information Officer for the Office of Energy Efficiency and Renewable Energy (EERE), John Dominicis collaborates with e-government and...

  6. Idaho Cleanup Contractor Surpasses Significant Safety Milestones

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – For the second time in a little over a year, employees with DOE contractor CH2M-WG Idaho (CWI) supporting EM at the Idaho site have achieved 1 million hours without a recordable injury. They also worked more than 1.7 million hours without a lost work-time injury.

  7. Smart Financing for Smart Cities

    E-Print Network [OSTI]

    Byrd, D.

    2014-01-01T23:59:59.000Z

    -11-29 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Smart Financing Models: Bringing it all together Through Government Based Options Through Rebates & Incentives Through Public Private Partnering Through Revenue Generating... Programs (leveraging 20Confidential Property of Schneider Electric smart technology) ESL-KT-14-11-29 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Government Based Options • Will continue to be the dominant source...

  8. E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory E-IDR (Inventory Disclosure Record) PIA, Idaho...

  9. aquifer idaho national: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and educators from all Idaho state universities; staff 30 Idaho Asphalt Conference October 24, 25, 2012 Attendee List Engineering Websites Summary: 52nd Idaho Asphalt...

  10. Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility...

    Office of Environmental Management (EM)

    Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility August 18, 2011 - 12:00pm Addthis Idaho...

  11. Smart Grid

    E-Print Network [OSTI]

    Haskell,

    2011-01-01T23:59:59.000Z

    -Conditioner, 15min ESL-KT-11-11-22 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 What is Pecan Street Inc. ? A research-oriented smart home demonstration ? that places added interest to residential consumer experiences. ESL-KT-11-11-22 CATEE 2011, Dallas... to 1000 homes ? many with consumer feedback, load controls ? Lab completion ? 100+ electric vehicles ? Smart appliances ? Residential Storage ? LEED Hospital and multi-home systems ? home health, home security ESL-KT-11-11-22 CATEE 2011, Dallas...

  12. EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW)...

  13. John Podesta

    Broader source: Energy.gov [DOE]

     John Podesta is Chair of the Center for American Progress and the Center for American Progress Action Fund. Under his leadership American Progress has become a notable leader in the...

  14. John Deutch

    Broader source: Energy.gov [DOE]

     John M. Deutch is an Institute Professor at the Massachusetts Institute of Technology. Mr. Deutch has been a member of the MIT faculty since 1970, and has served as Chairman of the Department...

  15. Northwest Energy Efficiency Alliance- Smart Water Heat Rebate Program (Idaho)

    Broader source: Energy.gov [DOE]

    The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying...

  16. Idaho - Access Management: Standards and Procedures for Highway...

    Open Energy Info (EERE)

    EncroachmentsPermittingRegulatory GuidanceGuideHandbook Author Idaho Transportation Department Published Idaho Transportation Department, 042001 DOI Not Provided...

  17. Occupational Medical Surveillance System (OMSS) PIA, Idaho National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (OMSS) PIA, Idaho National Laboratory More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System...

  18. CRAD, Engineering - Idaho Accelerated Retrieval Project Phase...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering - Idaho Accelerated Retrieval Project Phase II CRAD, Engineering - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2...

  19. IDAHO WATER USER RECOMMENDATIONS MAINSTEM PLAN

    E-Print Network [OSTI]

    IDAHO WATER USER RECOMMENDATIONS ON THE MAINSTEM PLAN COLUMBIA RIVER BASIN FISH AND WILDLIFE PROGRAM SUBMITTED ON BEHALF OF THE COMMITTEE OF NINE AND THE IDAHO WATER USERS ASSOCIATION JUNE 15, 2001 and Flow Augmentation Policy in the Columbia River Basin #12;1 IDAHO WATER USER RECOMMENDATIONS

  20. Smart Energy 

    E-Print Network [OSTI]

    Morrison, W.

    2012-01-01T23:59:59.000Z

    Smart Energy Presentation The future is best experienced at home. CATEE Conference October 10, 2012 ? 2012 Reliant Proprietary and Confidential Information 1 NRG - Strength in Numbers ? 2012 Reliant Proprietary and Confidential... Information + 2011 ranking by Fortune Magazine; *Since 2000 Reduced emissions by nearly ?* for a cleaner NRG 276 25K 5 50% 2M Place on Fortune 500 and S&P 500 Index company 5th largest in the energy sector+ 20M Generating more than 25,000 MW...

  1. John Christman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for(SC) Jetting intoJohn 'Skip'B.John

  2. Smart Grid Consortium, Response of New York State Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and...

  3. 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its...

  4. CURRICULUM VITAE University of Idaho

    E-Print Network [OSTI]

    : Professor of Fish and Wildlife Resources DEPARTMENT AND CAMPUS ZIP: Fish and Wildlife Resources, 1136 OFFICE and Research Appointments: July 1998-present, Professor, Department of Fish and Wildlife Resources, University of Idaho 1990-June 1998, Associate Professor, Department of Fish and Wildlife Resources, University

  5. Results from the Operational Testing of the Eaton Smart Grid Capable Electric Vehicle Supply Equipment

    SciTech Connect (OSTI)

    Brion Bennett

    2014-10-01T23:59:59.000Z

    The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  6. Sandia Energy - SMART Rotor Video

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Rotor Video Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind Energy Publications Online Abstracts and Reports SMART Rotor Video SMART Rotor...

  7. Smart Home Concepts: Current Trends

    E-Print Network [OSTI]

    Venkatesh, Alladi

    2003-01-01T23:59:59.000Z

    Smart Home Concepts: Current Trends Alladi Venkatesh Ph.D.developments concerning smart home technologies and theirNews (Southern Report): Smart homes and high-tech clothing

  8. SMART Scale

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913| DepartmentSLIDESHOW: SolarSMART

  9. Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariateSite Map Main Menu Aboutsmr SmallSmart

  10. Cost benefit analysis for the implementation of smart metering...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  11. IDAHO RECOVERY ACT SNAPSHOT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SNAPSHOT Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  12. Idaho Falls Power- Residential Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Residential customers with permanently installed electric heat who receive service from the City of Idaho Falls, are eligible for 0% weatherization loans. City Energy Service will conduct an...

  13. Preliminary Notice of Violation, International Isotopes Idaho...

    Broader source: Energy.gov (indexed) [DOE]

    to Work Planning and Control Deficiencies associated with Replacement of Exhaust Ventilation Filters at the Test Reactor Area Hot Cell Facility at the Idaho National...

  14. Enforcement Letter, Lockheed Martin Idaho Technologies Company...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    related to a Repetitive Problem with Instrument Operability at the Idaho National Engineering and Environmental Laboratory On August 4, 1998, the U.S. Department of Energy...

  15. Idaho Power- Irrigation Efficiency Rewards Rebate Program

    Broader source: Energy.gov [DOE]

    Through Idaho Power's Irrigation Efficiency Rewards program, agricultural irrigation customers qualify to receive an incentive for a portion of the cost to install a new, more efficient irrigation...

  16. John Shalf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for(SC) JettingChemistry andPaulSeamanJohn

  17. Smart Grid: Transforming the Electric System

    SciTech Connect (OSTI)

    Widergren, Steven E.

    2010-04-13T23:59:59.000Z

    This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

  18. Battelle Energy Alliance - Idaho National Lab, October 2009

    Broader source: Energy.gov (indexed) [DOE]

    and lead a National University Consortium, as well as the three Idaho research universities of the Idaho University Consortium in support of nuclear research and related...

  19. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Idaho Technologies Company related to Unplanned Internal Radiation Exposures at the Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory,...

  20. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Company related to Work Process Deficiencies at the Test Reactor Area and Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory,...

  1. Department of Energy Designates the Idaho National Laboratory...

    Energy Savers [EERE]

    Department of Energy Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National...

  2. AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus...

    Energy Savers [EERE]

    AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results The Vehicle...

  3. Voluntary Protection Program Onsite Review, IDAHO NATIONAL LABORATORY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IDAHO NATIONAL LABORATORY Battelle Energy Alliance, LLC May 2006 Voluntary Protection Program Onsite Review, IDAHO NATIONAL LABORATORY Battelle Energy Alliance, LLC May 2006 May...

  4. Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

    Office of Environmental Management (EM)

    Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

  5. Idaho County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPoint Hot SpringsIdahoCounty,

  6. Idaho Falls, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQ Storage

  7. Idaho Settlement Agreement Signed at Idaho National Laboratory | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1i f th

  8. Idaho Science, Technology, Engineering and Mathematics Overview

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  9. Idaho Site | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandardsIdaho National Laboratory Advance

  10. Idaho Code | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPoint Hot SpringsIdaho

  11. Idaho_AmericanFallsRockland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWind Power - Idaho Wind

  12. Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)

    SciTech Connect (OSTI)

    Richard Barney Carlson; Don Scoffield; Brion Bennett

    2013-12-01T23:59:59.000Z

    The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  13. Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment

    Broader source: Energy.gov [DOE]

    Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory

  14. Independent Oversight Inspection, Idaho National Laboratory- August 2007

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Programs at the Idaho National Laboratory's Materials and Fuels Complex

  15. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22, 2014 IDAHO FALLS POWER IDAHO FALLS POWER Idaho Falls, Idaho * Locally-owned and operated since 1900 * Largest municipal utility in Idaho * 27,000 metered customers, including...

  16. Smart Schools, Smart Growth: Investing in Education Facilities and Stronger Communities

    E-Print Network [OSTI]

    Bruce Fuller; Jeffrey M. Vincent; Deborah McKoy; Ariel H. Bierbaum

    2009-01-01T23:59:59.000Z

    smart growth principles by fostering a sense of place and buildingbuild from smart growth principles? Building schools nearshare the cost of building new schools. Smart Schools, Smart

  17. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Framework and Roadmap for Smart Grid Interoperability Stan-

  18. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Attack and Detection in Smart Grid,” to appear in IEEE

  19. Be Water Smart 

    E-Print Network [OSTI]

    Swyden, Courtney

    2006-01-01T23:59:59.000Z

    W aterSmart, a water conservation program, uses a unique approach to protect and conserve water quality and quantity in upper Texas Gulf Coast urban landscapes. Part of the Texas Coastal Watershed Program (TCWP), WaterSmart is creating rain... gardens as just one method of demonstrating how water conservation can function in an attractive landscape. In December of 2005, the first demonstration WaterSmart rain garden was established at the Bay Area Courthouse Annex in Clear Lake City...

  20. Be Water Smart

    E-Print Network [OSTI]

    Swyden, Courtney

    2006-01-01T23:59:59.000Z

    W aterSmart, a water conservation program, uses a unique approach to protect and conserve water quality and quantity in upper Texas Gulf Coast urban landscapes. Part of the Texas Coastal Watershed Program (TCWP), WaterSmart is creating rain... gardens as just one method of demonstrating how water conservation can function in an attractive landscape. In December of 2005, the first demonstration WaterSmart rain garden was established at the Bay Area Courthouse Annex in Clear Lake City...

  1. Retrofitting the Streetlights in Boise, Idaho

    ScienceCinema (OSTI)

    Young, Clay; Oliver, LeAnn; Bieter, David; Johnson, Michael; Oldemeyer, Neal

    2013-05-29T23:59:59.000Z

    Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and local quality of life.

  2. Alternative Fuels Data Center: Idaho Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Idaho, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  3. Retrofitting the Streetlights in Boise, Idaho

    Broader source: Energy.gov [DOE]

    Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and...

  4. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  5. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration, Energy, Energy...

  6. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    Data Injection Attacks on Power Grids”, IEEE Transactionson Smart Grid, vol. 2, no. 2, June [21] O. Kosut, L.Data Attacks on Smart Grid State Estimation: Attack

  7. Understanding The Smart Grid

    SciTech Connect (OSTI)

    NONE

    2007-11-15T23:59:59.000Z

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology providers involved in the Smart Grid and provides profiles on them including contact information, company overviews, technology reviews, and key Smart Grid activities.

  8. Memorial John Adams

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Plusieurs orateurs honorent la mémoire de Sir John Adams (1920-1984), ancien DG du Cern et un "homme unique"

  9. RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)

    SciTech Connect (OSTI)

    Kelly Lively; Stephen Johnson; Eric Clarke

    2014-07-01T23:59:59.000Z

    --Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

  10. Building Smart Ci2es & Smart Infrastructures Karl Henrik Johansson

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    11/3/11 1 Building Smart Ci2es & Smart Infrastructures Karl Henrik Johansson #12;11/3/11 2 Smart City Informa2on and Communica2on Technologies Why now Towards Smart Infrastructures Info Web Sensor Web Ac2on Web · Internet · WWW

  11. "Smart" Base Isolation Systems 1 "SMART" BASE ISOLATION SYSTEMS

    E-Print Network [OSTI]

    Johnson, Erik A.

    - and six-degree-of-freedom models of a base-isolated building are used as a testbed in this study. Smart"Smart" Base Isolation Systems 1 "SMART" BASE ISOLATION SYSTEMS J.C. Ramallo1, E.A. Johnson2, Associate Member, ASCE, and B.F. Spencer, Jr3., Member, ASCE ABSTRACT: A "smart" base isolation strategy

  12. Integration of Smart Home Data with Simulated Smart Grid

    E-Print Network [OSTI]

    Collins, Gary S.

    Integration of Smart Home Data with Simulated Smart Grid Introduction Data was generated using The Energy Detective (TED 5000) Data was exported to then to the RTDS Data from the smart home lab from smart home to simulate real-life scenario Real Time Digital Simulator (RTDS) RTDS is a real time

  13. Self-Sensing Spaces: Smart Plugs For Smart Environments

    E-Print Network [OSTI]

    Helal, Abdelsalam

    , we envision a smart space, such as a home, that is capable of sensing the residents and itself a new device requires a significant amount of engineering. A smart home resident for example should not call a technician every time he/she wants to install a new lamp. The smart home #12;2 should be smart

  14. Smart Interfaces superhydrophobe Oberflchen

    E-Print Network [OSTI]

    Kohlenbach, Ulrich

    forschen 24 Smart Interfaces ­ superhydrophobe Oberflächen Superhydrophobe, selbstreinigende-Silica-Hybridteilchen ermöglichen, lang- zeitstabile superhydrophobe Oberflächen einfach herzustellen. Smart Interfaces unten). Blattes runter. Neben der Struktur auf der Mikro- meter-Skala muss das Material, aus dem die

  15. EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

  16. Engineering Smart Houses Boguslaw Pilich

    E-Print Network [OSTI]

    also known as Smart Houses in home environments. A large body of research into Smart Houses has beenEngineering Smart Houses Boguslaw Pilich LYNGBY 2004 MSc THESIS NR. 49/2004 IMM #12;Trykt af IMM and security, which are crucial for presenting different features of Smart Houses. Additionally it is assumed

  17. Smart Buildings: Business Case and Action Plan

    E-Print Network [OSTI]

    Ehrlich, Paul

    2009-01-01T23:59:59.000Z

    from Smart Building strategies: Improved energy efficiencySmart Buildings benefits fall into three categories: Improved energy efficiency1. Achieve Energy Efficiency Mandates. Use Smart Building

  18. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    New England Outlook: Smart Grid is About Consumers,” Apr. [Transmission in the Smart Grid By Kory Walter Hedman ATransmission in the Smart Grid by Kory Walter Hedman Doctor

  19. Sandia Energy - Smart Grid Tools and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Tools and Technology Home Stationary Power Grid Modernization Renewable Energy Integration Smart Grid Tools and Technology Smart Grid Tools and TechnologyTara...

  20. High Water Heating Bills on Lockdown at Idaho Jail | Department...

    Broader source: Energy.gov (indexed) [DOE]

    High Water Heating Bills on Lockdown at Idaho Jail High Water Heating Bills on Lockdown at Idaho Jail August 19, 2010 - 12:05pm Addthis The Blaine County Public Safety Facility...

  1. areas southwestern idaho: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    agency University of Idaho Other university students 34 Michael Kyte, University of Idaho Marshall Comstock, Mayor, City of Moscow 9:00 am 12;12; Kyte, Michael 104 College of...

  2. CRAD, Engineering - Idaho MF-628 Drum Treatment Facility | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering - Idaho MF-628 Drum Treatment Facility CRAD, Engineering - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line...

  3. Idaho: Nez Perce Tribe Energy-Efficient Facilities Upgrade |...

    Energy Savers [EERE]

    Idaho: Nez Perce Tribe Energy-Efficient Facilities Upgrade Idaho: Nez Perce Tribe Energy-Efficient Facilities Upgrade November 8, 2013 - 12:00am Addthis Utilizing 67,000 of EERE's...

  4. Independent Study in Idaho ISI Course BSU Course NOTES

    E-Print Network [OSTI]

    Barrash, Warren

    Independent Study in Idaho ISI Course BSU Course NOTES Updated 03/2012 Boise State University Administration #12;Independent Study in Idaho ISI Course BSU Course NOTES Updated 03/2012 Boise State University

  5. Idaho Power- Rebate Advantage for New Manufactured Homes

    Broader source: Energy.gov [DOE]

    Idaho Power is offering a $1000 sales rebate to customers who purchase a new ENERGY STAR all-electric manufactured home and connect that home to an Idaho Power residential account. In addition, the...

  6. Voluntary Protection Program Onsite Review, Idaho Cleanup Project- October 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Idaho Cleanup Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  7. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31T23:59:59.000Z

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  8. Idaho Site Launches Corrective Actions Before Restarting Waste Treatment Facility

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The Idaho site and its cleanup contractor have launched a series of corrective actions they will complete before safely resuming startup operations at the Integrated Waste Treatment Unit (IWTU) following an incident in June that caused the new waste treatment facility to shut down.

  9. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Julie Braun Williams

    2013-02-01T23:59:59.000Z

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  10. Idaho Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformation AbandonIdaho

  11. Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New EnergyIT Power LimitedIdaTech UK JumpIdahoIdaho:

  12. Smart lighting: New Roles for Light

    E-Print Network [OSTI]

    Salama, Khaled

    Smart lighting: New Roles for Light in the Solid State Lighting World Robert F. Karlicek, Jr. Director, Smart Lighting Engineering Research Center Professor, Electrical, Systems and Computer Lighting · What is Smart Lighting · Technology Barriers to Smart Lighting · Visible Light Communications

  13. Beyond the Replacement Paradigm: Smart Lighting

    E-Print Network [OSTI]

    Salama, Khaled

    Switches · Smart Building & Grid Interfaces · Efficient full spectrum LEDs without droop · Versatile, low - Visible Light Communications Integration of smart fixtures, networked sensors and control systemsBeyond the Replacement Paradigm: Smart Lighting Robert F. Karlicek, Jr. Director, Smart Lighting

  14. Smart Grid Overview

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Overview Ben Kroposki, PhD, PE Director, Energy Systems IntegraLon NaLonal Renewable Energy Laboratory What is t he S mart Grid? and DER Source: NISTEPRI Architecture...

  15. Aggressive Underwriting and Smart Program Delivery | Department...

    Energy Savers [EERE]

    Aggressive Underwriting and Smart Program Delivery Aggressive Underwriting and Smart Program Delivery Presents information about loan underwriting funding approaches and...

  16. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing...

  17. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving...

  18. EA-1050: Test Area North Pool Stabilization Project, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Idaho National Engineering Laboratory's proposal to remove 344 canisters of Three Mile Island core debris and...

  19. HEART SMART NUTRITION Heart Smart Shopping & Label Reading

    E-Print Network [OSTI]

    Lesson 3 HEART SMART NUTRITION Heart Smart Shopping & Label Reading What's the first step in fat. Your goal is to eat a diet lower in saturated fat, trans fat, and cholesterol. The National Heart

  20. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  1. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Lowrey, Diana Lee

    2011-02-01T23:59:59.000Z

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  2. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Lowrey, Diana Lee

    2009-02-01T23:59:59.000Z

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  3. Smart Bolometer: Toward Monolithic Bolometer with Smart Functions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    8 Smart Bolometer: Toward Monolithic Bolometer with Smart Functions Matthieu Denoual1, Olivier de exhibiting smart functions. Uncooled resistive bolometers are the essential constitutive element. It is driven by the environmental and ecological concern to track heat leaks in buildings and to allow

  4. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Usage Smart Grid Smart Grid October 21, 2014 Line workers get hands-on experience with an electrical pole as part of their training. | Photo courtesy of David Weaver....

  5. Session Title Climate Smart Agriculture

    E-Print Network [OSTI]

    Barnes, Elizabeth A.

    Session Title Climate Smart Agriculture Session Date Khosla (moderator) Professor, Soil and Crop Sciences College of Agricultural Climate Smart Agriculture is a multi-disciplinary approach to practice agriculture

  6. DWEA SMART Wind Composites Subgroup

    Broader source: Energy.gov [DOE]

    Monday, February 16, 6:00 PMOpen to all SMART Wind participants: “Dutch Treat” group dinner, RSVP required | Location: TBD

  7. May 28, 2009 Smart Buildings

    E-Print Network [OSTI]

    May 28, 2009 Smart Buildings: Business Case and Action Plan Paul Ehrlich1 and Rick Diamond2 1 of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. #12;Smart Buildings: Business Case Contract No. DE-AC02-05CH11231. GSA Smart Buildings Report Page ii April 8, 2009 #12;Acknowledgements

  8. Designing Water Smart Landscapes Activity

    E-Print Network [OSTI]

    Designing Water Smart Landscapes Activity Objective: Create a water smart home landscape. Materials://aggie-horticulture.tamu.edu/plantanswers/publications/publications.html Draw the plants, using tracing paper. Citizenship Activity Develop a water smart plan for a non generations. Reference For additional assistance with planning your home landscape, refer to "Planning

  9. EIS-0074: Long-Term Management of Defense High-Level Radioactive Wastes Idaho Chemical Processing Plant, Idaho National Engineering Lab, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to analyze the environmental implications of the proposed selection of a strategy for long- term management of the high- level radioactive wastes generated as part of the national defense effort at the Department's Idaho Chemical Processing Plant a t the Idaho National Engineering Laboratory.

  10. PYROPROCESSING PROGRESS AT IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Solbrig, Chuck; B. R. Westphal; Johnson, T.; Li, S.; Marsden, K.; Goff, K. M.

    2007-09-01T23:59:59.000Z

    At the end of May 2007, 830 and 2600 kilograms of EBR-II driver and blanket metal fuel have been treated by a pyroprocess since spent fuel operations began in June 1996. A new metal waste furnace has completed out-of-cell testing and is being installed in the Hot Fuel Examination Facility. Also, ceramic waste process development and qualification is progressing so integrated nuclear fuel separations and high level waste processes will exist at Idaho National Laboratory. These operations have provided important scale-up and performance data on engineering scale operations. Idaho National Laboratory is also increasing their laboratory scale capabilities so new process improvements and new concepts can be tested before implementation at engineering scale. This paper provides an overview of recent achievements and provides the interested reader references for more details.

  11. School of Electronic, Electrical and Computer Engineering Smart electronics, smart devices,

    E-Print Network [OSTI]

    Miall, Chris

    School of Electronic, Electrical and Computer Engineering Smart electronics, smart devices, smart applications of video game engines and mobile devices. Electronic, Electrical and Computer Engineering networks... smart people. Tim Collins, Head of Learning and Teaching School of Electronic, Electrical

  12. Green Energy Workshop Student Posters Smart Communication of Energy Use and Prediction in a Smart Grid

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    and Prediction in a Smart Grid Software Architecture * Saima Aman, Yogesh Simmhan The increasing deployment of smart meters and other sensor technologies in the Smart Grid. This information-rich Smart Grid environment has opened up research opportunities

  13. John A. Owsley

    Broader source: Energy.gov [DOE]

    John A. Owsley serves as the Director of the Tennessee Department of Environment and Conservation’s Division of DOE Oversight. The Division implements the Tennessee Oversight Agreement (TOA)...

  14. John W. Meeker

    Broader source: Energy.gov [DOE]

    As Deputy of Procurement Services for the Golden Field Office in the Office of Energy Efficiency and Renewable Energy (EERE), John directs the procurement activity—both acquisition and financial...

  15. Idaho Chemical Processing Plant Process Efficiency improvements

    SciTech Connect (OSTI)

    Griebenow, B.

    1996-03-01T23:59:59.000Z

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  16. Idaho is the nation's largest producer, packer, and processor of potatoes. Idaho has been the number one potato-producing state for the past 50 years. The

    E-Print Network [OSTI]

    O'Laughlin, Jay

    HIGHLIGHTS Idaho is the nation's largest producer, packer, and processor of potatoes. Idaho has been the number one potato-producing state for the past 50 years. The state's growers produce about 30% of the U.S. potato crop, but the Idaho potato industry is more than potato fields. Idaho frozen

  17. Idaho Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Memo Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  18. Idaho Falls Power- Commercial Energy Conservation Loan Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power is offering a zero interest loan program to qualifying commercial customers to install efficient lighting and other energy conservation measures. The building must receive its...

  19. Idaho Falls Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power offers rebates to eligible customers on energy efficient HVAC measures and weatherization upgrades. Rebates are available on heat pumps, new manufactured homes and insulation....

  20. Idaho Falls Power- Commercial Energy Conservation Rebate Program

    Broader source: Energy.gov [DOE]

    In addition to loan programs, Idaho Falls Power offers rebates for customers meeting certain criteria. An energy audit will inspect the following measures and recommend upgrades as needed:...

  1. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    Matthew Shirk Idaho National Laboratory 16 May 2012 VSS021 This presentation does not contain any proprietary, confidential, or otherwise restricted information INLMIS-12-25036...

  2. Small Business Opportunities at the Idaho National Laboratory...

    Office of Environmental Management (EM)

    - Nuclear Energy Idaho Operations Office Office of Nuclear Energy (NE) Advance nuclear power as a resource capable of meeting the Nation's energy, environmental, and national...

  3. Idaho Operations Office: American Recovery and Reinvestment Act Update

    ScienceCinema (OSTI)

    Provencher, Rick

    2012-06-14T23:59:59.000Z

    An update from Idaho National Laboratory, Rick Provencher addresses the progress that has been made due to the American Recovery and Reinvestment Act.

  4. Technical Qualification Program Self-Assessment Report - Idaho...

    Office of Environmental Management (EM)

    - Idaho Operations Office - 2014 This TQP self-assessment was performed by a review team with extensive assessment experience. The team lead has participated on past TQP...

  5. EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering...

    Energy Savers [EERE]

    03: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs EIS-0203: Spent Nuclear Fuel Management and...

  6. EIS-0290: Idaho National Engineering and Environmental Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    Regarding Remote-Handled Transuranic Waste Identified in the DOE Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental...

  7. Reconnaissance geothermal exploration at Raft River, Idaho from...

    Open Energy Info (EERE)

    exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Reconnaissance geothermal...

  8. Voluntary Protection Program Onsite Review, Idaho National Laboratory- October 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Idaho National Laboratory is continuing to perform at a level deserving DOE-VPP Star recognition.

  9. Curtis Smith, Diego Mandelli, Cristian Rabiti Idaho National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A case study in the interaction of mechanistic and probabilistic safety analysis Curtis Smith, Diego Mandelli, Cristian Rabiti Idaho National Laboratory (INL) RISMC strategic goals...

  10. Idaho Site Closes Out Decontamination and Decommissioning Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    demolish CPP-601, a building used during used nuclear fuel reprocessing at the Idaho Nuclear Technology and Engineering Center. The Engineering Test Reactor vessel is shown...

  11. Idaho Public Utilities Commission Approves Neal Hot Springs Power...

    Open Energy Info (EERE)

    Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities Commission Approves...

  12. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Quality Assurance, Emergency Communications, and other issues at the Idaho National Engineering and Environmental laboratory, (EA-1999-07) On August 18, 1999, the U.S. Department...

  13. Independent Oversight Review of the Idaho National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    DOE-ID DOE Idaho Operations Office DR Damage Ratio DSA Documented Safety Analysis DU Depleted Uranium EBA Evaluation Basis Accident EBE Evaluation Basis Earthquake ECAR...

  14. Once nearly extinct, Idaho sockeye regaining fitness advantage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the wild once more. A newly published analysis by the Idaho Department of Fish and Game and the Northwest Fisheries Science Center shows endangered Snake River...

  15. Freedom of Information and Privacy Act Database PIA, Idaho Operations...

    Office of Environmental Management (EM)

    Office More Documents & Publications PIA - Security Clearance Work Tracking and Budget System TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory...

  16. Occupational Injury & Illness System (01&15) PIA, Idaho National...

    Office of Environmental Management (EM)

    Tracking Database, INL Energy Employees' Occupational Illness Compensation Program Occupational Medicine - Assistant PIA, Idaho National Laboratory VisitDosimBadgeTrckg-PIA.pdf...

  17. Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...

    Office of Environmental Management (EM)

    Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars...

  18. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Lockheed Martin Idaho Technologies Company, related to Unauthorized Disabling of the Seismic Scram Subsystem and Surveillance Deficiencies at the Advanced Test Reactor Critical...

  19. Geothermal investigations in Idaho. Part 1. Geochemistry and...

    Open Energy Info (EERE)

    in Idaho. Part 1. Geochemistry and geologic setting of selected thermal waters Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal investigations...

  20. READY4SmartCities ICT Roadmap and Data Interoperability for Energy Systems in Smart Cities

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    READY4SmartCities ­ ICT Roadmap and Data Interoperability for Energy Systems in Smart Cities and Data Interoperability for Energy Systems in Smart Cities Project Acronym: READY4SmartCities Grant of the Ready4SmartCities project is to support energy data interoperability in the context of SmartCities

  1. Smart Meter Security Infrastructure: Some Observations

    E-Print Network [OSTI]

    Ladkin, Peter B.

    , access Smart Grid nodes via the Smart Meter, or pretend electricity use that is other than the actual use companies must prepare for large scale failure of Smart Grid nodes. There must be fallback strategies if there are no special precautions that isolate Smart Grid nodes from compromised nodes. To clean a compromised Smart

  2. Unlocking the smart grid

    SciTech Connect (OSTI)

    Rokach, Joshua Z.

    2010-10-15T23:59:59.000Z

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  3. APEC Smart Grid Initiative

    SciTech Connect (OSTI)

    Bloyd, Cary N.

    2012-03-01T23:59:59.000Z

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  4. Smart Mobility Dutch Automotive

    E-Print Network [OSTI]

    Franssen, Michael

    Smart Mobility #12;Dutch Automotive Industry 300 companies 45k employees 17B revenue #12;Dutch Automotive Industry Focus area's: · Vehicle efficiency · Cooperative Mobility #12;Freedom, prosperity, fun;Automotive Technology Car as sustainable zero emission vehicles #12;Automotive Technology Electromagnetic car

  5. Carbon smackdown: smart windows

    ScienceCinema (OSTI)

    Delia Milliron

    2010-09-01T23:59:59.000Z

    August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.

  6. Confirmatory radiological survey of the BORAX-V turbine building Idaho National Engineering Laboratory, Idaho Falls, Idaho

    SciTech Connect (OSTI)

    Stevens, G.H.; Coleman, R.L.; Jensen, M.K.; Pierce, G.A. [Oak Ridge National Lab., TN (US); Egidi, P.V.; Mather, S.K. [Oak Ridge Inst. for Science and Education, Grand Junction, CO (United States)

    1993-07-01T23:59:59.000Z

    An independent assessment of the remediation of the BORAX-V (Boiling Water Reactor Experiment) turbine building at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho, was accomplished by the Oak Ridge National Laboratory Pollutant Assessments Group (ORNL/PAG). The purpose of the assessment was to confirm the site`s compliance with applicable Department of Energy guidelines. The assessment included reviews of both the decontamination and decommissioning Plan and data provided from the pre- and post-remedial action surveys and an independent verification survey of the facility. The independent verification survey included determination of background exposure rates and soil concentrations, beta-gamma and gamma radiation scans, smears for detection of removable contamination, and direct measurements for alpha and beta-gamma radiation activity on the basement and mezzanine floors and the building`s interior and exterior walls. Soil samples were taken, and beta-gamma and gamma radiation exposure rates were measured on areas adjacent to the building. Results of measurements on building surfaces at this facility were within established contamination guidelines except for elevated beta-gamma radiation levels located on three isolated areas of the basement floor. Following remediation of these areas, ORNL/PAG reviewed the remedial action contractor`s report and agreed that remediation was effective in removing the source of the elevated direct radiation. Results of all independent soil analyses for {sup 60}Co were below the detection limit. The highest {sup 137}Cs analysis result was 4.6 pCi/g; this value is below the INEL site-specific guideline of 10 pCi/g.

  7. Smart Grid e-Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Smart Grid Task Force Smart Grid e-Forum Smart Grid e-Forum DOE conducted a series of Smart Grid E-Forums to discuss various issues surrounding Smart Grid including...

  8. Smart Buildings: Business Case and Action Plan

    E-Print Network [OSTI]

    Ehrlich, Paul

    2009-01-01T23:59:59.000Z

    Switch Floor 1 GSA Smart Buildings Report April 8, 2009 Pageinto the revised P100 and Smart Building Design GuideIssue revised P100 and Smart Building Design Guide High

  9. Smart Buildings: Business Case and Action Plan

    E-Print Network [OSTI]

    Ehrlich, Paul

    2009-01-01T23:59:59.000Z

    Switch Floor 1 GSA Smart Buildings Report April 8, 2009 PageDE-AC02-05CH11231. GSA Smart Buildings Report April 8, 2009Steve Selkowitz GSA Smart Buildings Report April 8, 2009

  10. Artificial Intelligence for the Smart Grid

    E-Print Network [OSTI]

    Artificial Intelligence for the Smart Grid NICTA is developing technology to automate costs. The Future · Cover more of Smart Grid control (diagnosis, reconfiguration, protection, voltage) products for the Smart Grid. Contact Details: Technical Jussi Rintanen Canberra Research Laboratory Tel

  11. Idaho Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    facing the State of Idaho. These projects addressed a wide range of physical, engineering and social subject to increased nutrient loads in northern Idaho; the regional economic demand for irrigation water Rathdrum Prairie Aquifer Project Basic Information Title: Award No. 04HQAG0205 Initial Model Development

  12. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2007-12-01T23:59:59.000Z

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  13. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    SciTech Connect (OSTI)

    Reiser, Dudley W.

    1986-01-01T23:59:59.000Z

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  14. Almo, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to:Almo, Idaho: Energy Resources Jump to:

  15. Categorical Exclusion Determinations: Idaho | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 CategoricalIdaho Categorical Exclusion Determinations:

  16. Idaho Treatment Group AMWTP Fact Sheet

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on Armed ServicesDepartment of linkof Energy IDAHO

  17. DOE-Idaho's Packaging and Transportation Perspective

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRUJuly3010-94 December 1994 DOE27-99 June 1999Idaho's

  18. Kooskia, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas: Energy ResourcesKooskia, Idaho: Energy

  19. Idaho State Historical Society | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdaho State Board of

  20. Idaho Transportation Department | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdaho State Board

  1. Idaho/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdaho Statesource History

  2. Idaho/Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdaho Statesource

  3. Idaho NPDES Permits Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho

  4. Idaho/Transmission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolid WasteIdahoTransmissionHeader.png Roadmap

  5. Idaho/Transmission/Summary | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolidIdaho‎ | Transmission JumpIdaho, the

  6. Idaho/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolidIdaho‎ | Transmission JumpIdaho,

  7. Moscow, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVistaZephyr) JumpMorro Bay,Moscow, Idaho:

  8. Banks, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: EnergyBagleyBangladesh: EnergyBanks, Idaho:

  9. Meridian, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls,Mccoy GeothermalEnergieprojekte GmbH JumpIdaho:

  10. Council, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core AnalysisCouncil, Idaho: Energy Resources Jump to:

  11. Boise, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotionBoca Del Mar,EnergyBoise, Idaho:

  12. Idaho Power Co (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New EnergyIT Power LimitedIdaTech UK JumpIdaho Power

  13. Smart Domestic Appliances Provide Flexibility for Sustainable...

    Open Energy Info (EERE)

    benefits and difficulties associated with smart grid appliances. The presenter discusses demand response and load management and how users of smart grid can benefit renewable...

  14. Sandia National Laboratories: energy resilient smart grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resilient smart grid Hoboken Hopes To Reduce Power Outages With New 'Smart Grid' System On June 20, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems,...

  15. Sandia National Laboratories: International Smart Grid Action...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Action Network Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration,...

  16. Financing an EnergySmart School

    Office of Energy Efficiency and Renewable Energy (EERE)

    EnergySmart Schools fact sheet on choosing an EnergySmart approach to school construction to increase the number of attractive financing options available.

  17. Roaring Fork Valley- Energy Smart Program (Colorado)

    Broader source: Energy.gov [DOE]

    Residents of Eagle, Pitkin and Gunnison Counties can participate in the Energy Smart Program. The Energy Smart Program helps residents identify, finance, and complete energy improvements in their...

  18. Smart Grid Publications Archive | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    July 2009 The Smart Grid Stakeholder Roundtable Group Perspectives (September 2009) Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A...

  19. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01T23:59:59.000Z

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  20. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    Against Data Injection Attacks on Power Grids”, IEEER. Thomas, and L. Tong, “Malicious Data Attacks on SmartState Estimation: Attack Strategies and Countermeasures,”

  1. PSNH- Municipal Smart Start Program

    Broader source: Energy.gov [DOE]

    Public Service of New Hampshire (PSNH), an electric utility, offers the Smart Start Program to Municipal customers. This program assists municipalities in reducing energy consumption and electric...

  2. Environmental Impacts of Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a substantial number of pollutants. This paper focuses on the particulate and gaseous emission pollutants that are byproducts of electricity generation, and on how the Smart Grid...

  3. Sandia Energy - Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reliability, efficiency, flexibility, and cost effectiveness. Smart-grid features include demand-response capabilities, advanced controls, DER integration, increased situational...

  4. Smart-Grid Security Issues

    SciTech Connect (OSTI)

    Khurana, Himanshu; Hadley, Mark D.; Lu, Ning; Frincke, Deborah A.

    2010-01-29T23:59:59.000Z

    TITLE: Smart-Grid Security Issues (Editorial Material, English) IEEE SECURITY & PRIVACY 8 (1). JAN-FEB 2010. p.81-85 IEEE COMPUTER SOC, LOS ALAMITOS

  5. The John Theorem for Simplex

    E-Print Network [OSTI]

    Lin, Si; Gangsong, Leng

    2010-01-01T23:59:59.000Z

    In this paper, we give a description of the John contact points of a regular simplex. We prove that the John ellipsoid of any simplex is ball if and only if this simplex is regular and that the John ellipsoid of a regular simplex is its inscribed ball.

  6. NREL Smart Grid Projects

    SciTech Connect (OSTI)

    Hambrick, J.

    2012-01-01T23:59:59.000Z

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  7. EA-1954: Resumption of Transient Testing of Nuclear Fuels and Materials at the Idaho National Laboratory, Idaho

    Broader source: Energy.gov [DOE]

    This Environmental Assessment (EA) evaluates U.S. Department of Energy (DOE) activities associated with its proposal to resume testing of nuclear fuels and materials under transient high-power test conditions at the Transient Reactor Test (TREAT) Facility at the Idaho National Laboratory. The State of Idaho and Shoshone-Bannock Tribes are cooperating agencies.

  8. DISTRIBUTION John R. Jones

    E-Print Network [OSTI]

    DISTRIBUTION John R. Jones Qualung aspen is the most widely distributed native North American tree aspen (Populus tremula), has a wider range (Weigle and Frothingham 1911). In the humid East, aspen plateaus. Aspen is one of the most common trees in the interior West, where its range (fig.1)coincides

  9. DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity

    E-Print Network [OSTI]

    DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity: Vol. 2, Privacy and the Smart Grid The Smart Grid Interoperability Panel ­ Smart Grid Cybersecurity Committee #12;DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity: Vol. 2, Privacy and the Smart Grid The Smart Grid

  10. Personal Safety Street Smart Quiz

    E-Print Network [OSTI]

    Thompson, Michael

    STREET SMARTS Personal Safety Street Smart Quiz: 1. What do you do if a stranger grabs you? (A night and you want to get home, you... (A) Call SWHAT 27500 (B) Walk with a drunken (C) Walk home alone (D) Fly home in a cape Stranger like superman 3. Late at night, a stranger stops beside you

  11. Survivable Smart Grid Communication: Smart-Meters Meshes to the Rescue

    E-Print Network [OSTI]

    Tague, Patrick

    Survivable Smart Grid Communication: Smart-Meters Meshes to the Rescue Arjun P. Athreya and Patrick flattening process. This process involves smart-meters and other disaster surviving elements of higher system as a function of outage area, smart-meter density and smart-meter's neighborhood size. The results from

  12. IP for Smart Objects Internet Protocol for Smart Objects (IPSO) Alliance

    E-Print Network [OSTI]

    Dunkels, Adam

    , smart cities, structural health management systems, smart grid and energy management, and transportationIP for Smart Objects Internet Protocol for Smart Objects (IPSO) Alliance White paper #1 Adam, Cisco Systems September 2008 Executive Summary The emerging application space for smart objects requires

  13. Tecnologie ICT per le Smart City Prof. R. Laurini Tecnologie ICT per le Smart City

    E-Print Network [OSTI]

    Laurini, Robert

    Tecnologie ICT per le Smart City Prof. R. Laurini 1 Tecnologie ICT per le Smart City 1 ­ Le smart-fertilization tra ICT e Smart City 4 ­ Problemi emergenti 5 ­ Conclusioni Definizione di Carlo Ratti (MIT) · Una, efficiente, ­ aperta, collaborativa, ­ creativa, digitale ­ e green European Smart Cities · Volendo essere

  14. Smart Phones for the Elders: Boosting the Intelligence of Smart Homes

    E-Print Network [OSTI]

    Helal, Abdelsalam

    Smart Phones for the Elders: Boosting the Intelligence of Smart Homes William Mann, OTR, Ph that adopts the emerging smart phones technology as an effective booster of the utility of smart homes, warnings and calls for help. We also present our smart phone/home architecture and describe our efforts

  15. International Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities and Solutions

    E-Print Network [OSTI]

    Aloul, Fadi

    to be able to communicate with smart meters via a Home Area Network (HAN) facilitating efficient powerInternational Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities is currently evolving into the smart grid. Smart grid integrates the traditional electrical power grid

  16. Networks, smart grids: new model for synchronization

    E-Print Network [OSTI]

    - 1 - Networks, smart grids: new model for synchronization May 21, 2013 Networks of individual scenarios and in smart grid applications. "Smart grid" refers to technology to modernize utility electricity in a volatile smart grid scenario that included fluctuating loads with random power demand, renewable energy

  17. Ambient Telepresence: Colleague Awareness in Smart Environments

    E-Print Network [OSTI]

    Beigl, Michael

    · Building smartness into the things that surround us rather than introducing new smart devices · CollectingAmbient Telepresence: Colleague Awareness in Smart Environments Hans-W. Gellersen and Michael Beigl-located. In this approach, everyday things that people use are augmented with awareness technology, creating a smart

  18. US Army Corps of Engineers PLANNING SMART

    E-Print Network [OSTI]

    US Army Corps of Engineers

    US Army Corps of Engineers PLANNING SMART BUILDING STRONG® SMART Planning Lessons Learned Post Final Feasibility Report Wes Coleman Chief, Office of Water Project Review #12;PLANNING SMART BUILDING STRONG® 3 The Chief's Report Phase #12;PLANNING SMART BUILDING STRONG® 4 Expectations for Final Reports

  19. An Automated Prompting System for Smart Environments

    E-Print Network [OSTI]

    Cook, Diane J.

    the demand for smart health assistance systems. A smart home-based prompting system can enhance based on real data that is collected with volunteer participants in our smart home testbed. Keywords healthcare systems have started gaining popularity. A smart-home based prompting system is one

  20. Contaminant Monitoring Strategy for Henrys Lake, Idaho

    SciTech Connect (OSTI)

    John S. Irving; R. P. Breckenridge

    1992-12-01T23:59:59.000Z

    Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface flows can occur as a result of severe cattle grazing along riparian areas and deltas. Groundwater and springs also feed the lake, and are likely critical for oxygen supply during winter stratification. During the winter of 1991, Henrys Lake experienced low dissolved oxygen levels resulting in large fish kills. It is thought that thick ice cover combined with an increase in nutrient loads created conditions resulting in poor water quality. The Idaho Department of Health and Welfare, DEQ is currently conducting a study to determine the water quality of Henrys Lake, the sources contributing to its deterioration, and potential remedial actions to correct problem areas.

  1. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    SciTech Connect (OSTI)

    Bullock, M.

    1992-04-01T23:59:59.000Z

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  2. International Battery Presentation - Keeping The Lights On: Smart...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Battery Presentation - Keeping The Lights On: Smart Storage for a Smart Grid (July 12, 2011) International Battery Presentation - Keeping The Lights On: Smart Storage...

  3. Advancing the Spatially Enabled Smart Campus, Position Papers

    E-Print Network [OSTI]

    Center for Spatial Studies, UCSB

    2013-01-01T23:59:59.000Z

    we strive to create as “smart” a building as possible bycourse, the smart (cities/campuses/buildings/etc. ) movementSpatially Enabled Smart Campus Jablonski—29 Another building

  4. Future Power Systems 20: The Smart Enterprise, its Objective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise,...

  5. Integrating automated shading and smart glazings with daylight controls

    E-Print Network [OSTI]

    Selkowitz, Stephen; Lee, Eleanor

    2004-01-01T23:59:59.000Z

    Automated Shading and Smart Glazings with Daylight Controlsdaylighting, controls, smart glazing, shading, fielddeveloping switchable “smart glazings” for over a decade and

  6. Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical...

    Energy Savers [EERE]

    Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and...

  7. ORISE: Work Smart Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOENurseResourcesThe Value The U.S. DepartmentWork Smart

  8. Energy Smart Grocer Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS)Laboratory toEnergy-Smart-Grocer-Program

  9. Energy Smart Reserved Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS)LaboratorySmart-Reserved-Power Sign In

  10. SecuritySmart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' MSecuritySmart March 2009

  11. Smart Grid System Report

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWork Force withNonprofit---5---12DOESmartthe 1 Smart

  12. Idaho National Laboratory Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2008-04-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  13. Idaho National Laboratory Research & Development Impacts

    SciTech Connect (OSTI)

    Nicole Stricker

    2015-01-01T23:59:59.000Z

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  14. Idaho National Laboratory Quarterly Performance Analysis

    SciTech Connect (OSTI)

    Lisbeth Mitchell

    2014-11-01T23:59:59.000Z

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  15. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2010-10-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  16. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2012-08-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  17. Idaho National Engineering Laboratory: Annual report, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The INEL underwent a year of transition in 1986. Success with new business initiatives, the prospects of even better things to come, and increased national recognition provided the INEL with a glimpse of its promising and exciting future. Among the highlights were: selection of the INEL as the preferred site for the Special Isotope Separation Facility (SIS); the first shipments of core debris from the Three Mile Island Unit 2 reactor to the INEL; dedication of three new facilities - the Fluorinel Dissolution Process, the Remote Analytical Laboratory, and the Stored Waste Experimental Pilot Plant; groundbreaking for the Fuel Processing Restoration Facility; and the first IR-100 award won by the INEL, given for an innovative machine vision system. The INEL has been assigned project management responsibility for the SDI Office-sponsored Multimegawatt Space Reactor and the Air Force-sponsored Multimegawatt Terrestrial Power Plant Project. New Department of Defense initiatives have been realized in projects involving development of prototype defense electronics systems, materials research, and hazardous waste technology. While some of our major reactor safety research programs have been completed, the INEL continues as a leader in advanced reactor technologies development. In April, successful tests were conducted for the development of the Integral Fast Reactor. Other 1986 highlights included the INEL's increased support to the Office of Civilian Radioactive Waste Management for complying with the Nuclear Waste Policy Act of 1982. Major INEL activities included managing a cask procurement program, demonstrating fuel assembly consolidation, and testing spent fuel storage casks. In addition, the INEL supplied the Tennessee Valley Authority with management and personnel experienced in reactor technology, increased basic research programs at the Idaho Research Center, and made numerous outreach efforts to assist the economies of Idaho communities.

  18. The Vermont-Sandia Smart Grid Partnership Powering the Future: The Vermont Smart Grid and Beyond

    E-Print Network [OSTI]

    Hayden, Nancy J.

    The Vermont-Sandia Smart Grid Partnership Powering the Future: The Vermont Smart Grid and Beyond BURLINGTON SHERATON HOTEL & CONFERENCE CENTER MAY Laboratories 9:10-10:15 a.m. Opening Plenary: The Vermont-Sandia Smart Grid

  19. Smart Power Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Smart Power Laboratory at the Energy Systems Integration Facility. Research at NREL's Smart Power Laboratory in the Energy Systems Integration Facility (ESIF) focuses on the development and integration of smart technologies including the integration of distributed and renewable energy resources through power electronics and smart energy management for building applications. The 5,300 sq. ft. laboratory is designed to be highly flexible and configurable, essential for a large variety of smart power applications that range from developing advanced inverters and power converters to testing residential and commercial scale meters and control technologies. Some application scenarios are: (1) Development of power converters for integration of distributed and renewable energy resources; (2) Development of advanced controls for smart power electronics; (3) Testing prototype and commercially available power converters for electrical interconnection and performance, advanced functionality, long duration reliability and safety; and (4) Hardware-in-loop development and testing of power electronics systems in smart distribution grid models.

  20. Smart Grid Enabled EVSE

    SciTech Connect (OSTI)

    None, None

    2014-10-15T23:59:59.000Z

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  1. Idaho Application for Permit to Convert a Geothermal Injection...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Application for Permit to Convert a Geothermal Injection Well - Form 4003-3 Form Type ApplicationNotice Form...

  2. Idaho Application for Permit to Construct Modify or Maintain...

    Open Energy Info (EERE)

    LibraryAdd to library Legal Document- RegulationRegulation: Idaho Application for Permit to Construct Modify or Maintain an Injection Well - Form 42-39-1Legal Published NA...

  3. Idaho Falls Power- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power's Energy Efficiency Loan Program offers zero interest loans for qualifying customers to purchase and install efficient electric appliances. The program will loan up to 100% of the...

  4. NEZ PERCE SOIL AND WATER CONSERVATION DISTRICT CULDESAC, IDAHO 83524

    E-Print Network [OSTI]

    of Culdesac, McGregor Company, and the Idaho Soil Conservation Commission. In addition, the District has of the wetland and sod bio-logs that are installed our projects. This results in more on-the-ground projects

  5. Mission Need Statement: Idaho Spent Fuel Facility Project

    SciTech Connect (OSTI)

    Barbara Beller

    2007-09-01T23:59:59.000Z

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  6. Idaho Falls Power- Energy Efficient Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power offers zero interest loans to all eligible customers for the purchase and installation of energy efficient heat pumps. The Heat Pump Program applies to heating or cooling in...

  7. Secretary Moniz Announces Travel to Alaska, Idaho, Wyoming, Missouri...

    Broader source: Energy.gov (indexed) [DOE]

    in the Mountain West and emerging opportunities in the President's all-of-the-above energy strategy. He will also tour the Human Systems Simulation Laboratory at the Idaho...

  8. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Company, related to a Radioactive Material Release at the Idaho National Engineering and Environmental Laboratory, (EA-98-04) On June 4, 1998, the U.S. Department of...

  9. Idaho Right-of-Way Encroachment Application and Permit - Other...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Right-of-Way Encroachment Application and Permit - Other Encroachments Form Type ApplicationNotice...

  10. Idaho Power Develops Renewable Integration Tool for More Cost...

    Broader source: Energy.gov (indexed) [DOE]

    developed a Renewables Integration Tool (RIT) that enables grid operators to use wind energy more cost-effectively to serve electricity customers in Idaho and Oregon. The tool was...

  11. Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment

    Broader source: Energy.gov [DOE]

    For the first time in history, workers at the Idaho site achieved success in the initial cleanup of potentially dangerous sodium in a decommissioned nuclear reactor using an innovative treatment...

  12. Idaho National Laboratory FY12 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2013-03-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  13. Idaho National Laboratory's FY11 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2012-03-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

  14. Smart Grid | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here HomeSmart Grid Smart Grid Smart

  15. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  16. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES H/quality assurance programs was conducted.

  17. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Goldberg, Edward S.; Keating, John J.

    1991-08-01T23:59:59.000Z

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

  18. Assessing the Usefulness of Distributed Measurements in the Smart Grid

    E-Print Network [OSTI]

    Framhein, Theodore Anthony

    2012-01-01T23:59:59.000Z

    Kezunovic, M. ; , "Smart Fault Location for Smart Grids,"Smart Grid, IEEE Transactions on , vol.2, no.1, pp.11-22,Measurements in the Smart Grid A thesis submitted in partial

  19. Strategies for smart building realisation

    E-Print Network [OSTI]

    Manivannan, M.

    2012-01-01T23:59:59.000Z

    Smart buildings, as a concept, is now becoming prominent in the vocabulary of Architects, Engineers, Construction contractors, Technology companies, Property developers and the Estate or facility management function within organizations. Public...

  20. 1 Smart Distribution: Coupled Microgrids

    E-Print Network [OSTI]

    R. H. Lasseter

    Abstract-- The distribution system provides major opportunities for smart grid concepts. One way to approach distribution system problems is to rethinking our distribution system to include the integration of high levels of distributed energy resources, using microgrid concepts. Basic objectives

  1. John Timothy Cullinane The Dissertation Committee for John Timothy Cullinane

    E-Print Network [OSTI]

    Rochelle, Gary T.

    Copyright by John Timothy Cullinane 2005 #12;The Dissertation Committee for John Timothy Cullinane certifies that this is the approved version of the following dissertation: Thermodynamics and Kinetics Cullinane, B.S.; M.S. Dissertation Presented to the Faculty of the Graduate School of the University

  2. Friction Stir Welding John Hinch and John Rudge

    E-Print Network [OSTI]

    Rudge, John

    Friction Stir Welding John Hinch and John Rudge September 11, 2002 1 Introduction Friction Stir Welding is an innovative technique for joining two pieces of metal. A rapidly rotating tool is pushed that a good model of friction stir welding should be able to predict - the power, the force, the temperature

  3. John Francis Croix The Dissertation Committee for John Francis Croix

    E-Print Network [OSTI]

    Aziz, Adnan

    Womack #12;Cell and Interconnect Timing Analysis Using Waveforms by John Francis Croix, B.S., M and Interconnect Timing Analysis Using Waveforms Publication No. John Francis Croix, Ph.D. The University of Texas certifies that this is the approved version of the following dissertation: Cell and Interconnect Timing

  4. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    SciTech Connect (OSTI)

    Not Available

    1988-09-01T23:59:59.000Z

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  5. antiretroviral therapy smart: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dienste mit intelligenten Stromzhlern Standby- und Khlgerteverbrauch aus Smart-Meter-Daten Smart Meter ermglichen weit, kommunikationsfhigen...

  6. Deploying Systems Interoperability and Customer Choice within Smart Grid

    E-Print Network [OSTI]

    Ghatikar, Girish

    2014-01-01T23:59:59.000Z

    twiki- sggrid/bin/view/SmartGrid/PriorityActionPlanssggrid/bin/view/SmartGrid/TTMeetingOnPriceCommunications The

  7. V-036: EMC Smarts Network Configuration Manager Database Authenticatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    36: EMC Smarts Network Configuration Manager Database Authentication Bypass Vulnerability V-036: EMC Smarts Network Configuration Manager Database Authentication Bypass...

  8. ECE 437/537 -Smart Grid Catalog Description: Fundamentals of smart power grids. Technology advances in transmission

    E-Print Network [OSTI]

    . · Smart generation. Energy storage. Microgrids. · Substation intelligence. · Transmission systems. PhasorECE 437/537 - Smart Grid Catalog Description: Fundamentals of smart power grids. Technology Cotilla-Sanchez Course content: · Introduction to smart power grids. Technology and policy background

  9. Smart Wire Grid: Resisting Expectations

    ScienceCinema (OSTI)

    Ramsay, Stewart; Lowe, DeJim

    2014-04-09T23:59:59.000Z

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  10. Smart Wire Grid: Resisting Expectations

    SciTech Connect (OSTI)

    Ramsay, Stewart; Lowe, DeJim

    2014-03-03T23:59:59.000Z

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  11. Idaho National Laboratory Site Pollution Prevention Plan

    SciTech Connect (OSTI)

    E. D. Sellers

    2007-03-01T23:59:59.000Z

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively managed by the INL Site P2 Coordinator. Development and maintenance of this overall INL Site plan is ultimately the responsibility of DOE-ID. This plan is applicable to all INL Site contractors except those at the Naval Reactors Facility.

  12. Multiassociative Memory John F. Kolen

    E-Print Network [OSTI]

    Pollack, Jordan B.

    Multiassociative Memory John F. Kolen Jordan B. Pollack The Laboratory for AI Research Department)292-7402 kolen-j@cis.ohio-state.edu pollack@cis.ohio-state.edu Abstract This paper discusses the problem of how Conference of the Cognitive Science Society. August 7-10, 1991. #12;Multiassociative Memory1 John F. Kolen

  13. Multiassociative Memory John F. Kolen

    E-Print Network [OSTI]

    Pollack, Jordan B.

    Multiassociative Memory John F. Kolen Jordan B. Pollack The Laboratory for AI Research Department)292­7402 kolen­j@cis.ohio­state.edu pollack@cis.ohio­state.edu Abstract This paper discusses the problem of how Conference of the Cognitive Science Society. August 7­10, 1991. #12; Multiassociative Memory 1 John F. Kolen

  14. CURRICULUM VITAE JOHN W. SNEDDEN

    E-Print Network [OSTI]

    Yang, Zong-Liang

    1 CURRICULUM VITAE JOHN W. SNEDDEN RESEARCH INTERESTS: Sequence Stratigraphy, sedimentology Systems ­The ExxonMobil Methodology: SEPM Concepts in Sedimentology and Paleontology #9. Snedden, John W Bodies, SEPM Special Concepts in Sedimentology and Paleontology volume, p. 1-12. Snedden, J.W., and R. W

  15. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Jenifer Nordstrom

    2014-02-01T23:59:59.000Z

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Nonroutine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  16. Strontium distribution coefficients of surficial sediment samples from the Idaho National Engineering Laboratory, Idaho

    SciTech Connect (OSTI)

    Liszewski, M.J.; Miller, K.E. [Geological Survey, Idaho Falls, ID (United States); Rosentreter, J.J. [Idaho State Univ., Idaho Falls, ID (United States)

    1997-05-01T23:59:59.000Z

    Strontium distribution coefficients (K{sub d}`s) were measured for 20 surficial sediment samples collected from selected sites at the Idaho national Engineering Laboratory (INEL). The measurements were made to help assess the variability of strontium K{sub d}`s found at the INEL as part of an ongoing investigation of strontium chemical transport properties of surficial and interbedded sediments at the INEL. The investigation is being conducted by the US Geological Survey and Idaho State University in cooperation with the US Department of Energy. Batch experimental techniques wee used to determine K{sub d}`s of surficial sediments using a synthesized aqueous solution representative of wastewater in waste disposal ponds at the INEL. Strontium K{sub d}`s of the 20 surficial sediments ranged from 36 {+-} 1 to 275 {+-} 6 milliliters per gram. These results indicate significant variability in the strontium sorptive capacities of surficial sediments at the INEL. Some of this variability can be attributed to physical and chemical properties of the sediment itself; however, the remainder of the variability may be due to compositional changes in the equilibrated solutions after being mixed with the sediment.

  17. IEEE TRANSACTIONS ON SMART GRID 1 Cognitive Radio Network for the Smart Grid

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    smart meter wireless transmissions in the presence of strong wideband interference. The performanceIEEE Proof W eb Version IEEE TRANSACTIONS ON SMART GRID 1 Cognitive Radio Network for the Smart of applying the next generation wireless technology, cognitive radio network, for the smart grid

  18. Smart Grids: Fact or Fiction? A Discussion of Smart Grids in New Zealand

    E-Print Network [OSTI]

    Hickman, Mark

    May 2013 1 Smart Grids: Fact or Fiction? A Discussion of Smart Grids in New Zealand Dr Allan Miller. Introduction The term `smart grid' is used extensively today, even though there are diverse opinions on what to some extent, and the key questions should not be about what constitutes a `smart grid', but what

  19. EL Program: Smart Grid Program Manager: David Wollman, Smart Grid and Cyber-Physical Systems

    E-Print Network [OSTI]

    EL Program: Smart Grid Program Manager: David Wollman, Smart Grid and Cyber-Physical Systems Program Office, Associate Program Manager: Dean Prochaska, Smart Grid and Cyber- Physical Systems Program [updated August 23, 2013] Summary: This program develops and demonstrates smart grid measurement science

  20. Browse > Journals> Smart Grid, IEEE Transactions ...> Top Accessed Articles 1. Smart Transmission Grid: Vision and Framework

    E-Print Network [OSTI]

    Tennessee, University of

    Browse > Journals> Smart Grid, IEEE Transactions ...> Top Accessed Articles 1. Smart Transmission.2080328 3. A Reliability Perspective of the Smart Grid Moslehi, K. Kumar, R. Page(s): 57 - 64 Digital Object Consumption Scheduling for the Future Smart Grid Mohsenian-Rad, A. Wong, V.W.S. Jatskevich, J. Schober, R

  1. Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

  2. Smart (In-home) Power Scheduling for Demand Response on the Smart Grid

    E-Print Network [OSTI]

    Yener, Aylin

    1 Smart (In-home) Power Scheduling for Demand Response on the Smart Grid Gang Xiong, Chen Chen for the home and produces a demand that is more level over time. Index Terms--Smart grid, power management to control power usage across the home. The EMC may be standalone or embedded either in the smart meter

  3. Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project

    E-Print Network [OSTI]

    customers to choose to control their energy usage ­ Smart meters ­ Home/building/industrial energy controls and displays · Automated home energy use 4 #12;The End-user is the Centerpiece of the Smart Grid 5Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project

  4. Distributed Smart-home Decision-making in a Hierarchical Interactive Smart Grid

    E-Print Network [OSTI]

    Jayaweera, Sudharman K.

    1 Distributed Smart-home Decision-making in a Hierarchical Interactive Smart Grid Architecture Ding of the individual smart-homes to actually achieve the optimal solution derived by the controller under realistic for all smart-homes in the auctioning game, collusive equilibria do exist and can jeopardize

  5. Smart Home in a Box: A Large Scale Smart Home Deployment

    E-Print Network [OSTI]

    Cook, Diane J.

    Smart Home in a Box: A Large Scale Smart Home Deployment Aaron S. CRANDALL a and Diane J. COOK a,1 systems. This work summa- rizes some of the existing works and introduces the Smart Home in a Box (SHiB) Project. The upcoming SHiB Project targets building 100 smart homes in several kinds of living spaces

  6. St John Ambulance Australia Research Scholarships St John Ambulance Australia ("St John") is Australia's leading provider of first aid training,

    E-Print Network [OSTI]

    of first aid kits and equipment. St John runs the ambulance services in Western Australia and the NorthernSt John Ambulance Australia Research Scholarships St John Ambulance Australia ("St John") is Australia's leading provider of first aid training, first aid services at public events and supplier

  7. Development of Advanced Alarm System for SMART

    SciTech Connect (OSTI)

    Jang, Gwi-sook; Seoung, Duk-hyun; Suh, Sang-moon; Lee, Jong-bok; Park, Geun-ok; Koo, In-soo [SMART-P MMIS Department, Korea Atomic Energy Research Institute 150, Duckjin-dong, Yusung-ku, Taejon 305-353 (Korea, Republic of)

    2004-07-01T23:59:59.000Z

    A SMART-Alarm System (SMART-AS) is a new system being developed as part of the SMART (System-integrated Modular Advanced Reactor) project. The SMART-AS employs modern digital technology to implement the alarm functions of the SMART. The use of modern digital technology can provide advanced alarm processing in which new algorithms such as a signal validation, advanced alarm processing logic and other features are applied to improve the control room man-machine interfaces. This paper will describe the design process of the SMART-AS, improving the system reliability and availability using the reliability prediction tool, design strategies regarding the human performance topics associated with a computer-based SMART-AS and the results of the performance analysis using a prototype of the SMART-AS. (authors)

  8. New Partners for Smart Growth Conference

    Broader source: Energy.gov [DOE]

    The New Partners for Smart Growth Conference is the nation's largest smart growth and sustainability conference. The three-day conference is themed, "Practical Tools and Innovative Strategies for Creating Great Communities."

  9. Economic evaluation of smart well technology

    E-Print Network [OSTI]

    Al Omair, Abdullatif A.

    2007-09-17T23:59:59.000Z

    comprehensive review of this technology has been discussed. The possible reservoir environments in which smart well technology could be used and also, the possible benefits that could be realized by utilizing smart well technology has been discussed...

  10. Smart Buildings: Business Case and Action Plan

    E-Print Network [OSTI]

    Ehrlich, Paul

    2009-01-01T23:59:59.000Z

    Switch Floor 1 GSA Smart Buildings Report April 8, 2009 PageDE-AC02-05CH11231. GSA Smart Buildings Report April 8, 2009National Laboratory, Building Intelligence Group and Noblis.

  11. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    S. S. Oren, “Smart flexible just-in-time transmission andFlexible Transmission in the Smart Grid By Kory WalterAll rights reserved. A BSTRACT Flexible Transmission in the

  12. National Smart Water Grid

    SciTech Connect (OSTI)

    Beaulieu, R A

    2009-07-13T23:59:59.000Z

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.

  13. Idaho: basic data for thermal springs and wells as recorded in GEOTHERM, Part A

    SciTech Connect (OSTI)

    Bliss, J.D.

    1983-07-01T23:59:59.000Z

    All chemical data for geothermal fluids in Idaho available as of December 1981 is maintained on GEOTHERM, computerized information system. This report presents summaries and sources of records for Idaho. 7 refs. (ACR)

  14. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah, and Wyoming pursuant to Section 595

  15. PGE: Smart power in store for future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    intentional islanding of the feeder, distribution automation using smart switches, demand response, renewable energy integration and automatic economic dispatch. Building...

  16. Sandia National Laboratories: Smart power infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Security, Materials Science, Partnership, Research & Capabilities, SMART Grid, Systems Engineering, Transmission Grid Integration Increasing consumer power...

  17. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    Planning . 102 vi Transmission Line Maintenance Scheduling 103 Just-in-time Transmission 103 Flexible Transmission in the Smart Grid

  18. Xarxes i Serveis en Smart Cities II Nom de l'assignatura (cat., cast., angl.): Xarxes i Serveis en Smart Cities II, Redes y Servicios en Smart Cities

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Xarxes i Serveis en Smart Cities II 1 Nom de l'assignatura (cat., cast., angl.): Xarxes i Serveis en Smart Cities II, Redes y Servicios en Smart Cities II, Networks and Services in Smart Cities II de diferents tipus d'algoritmes per anàlisis predictiu en smart cities. Analitzar el comportament de

  19. Smart Grid Information Clearinghouse (SGIC)

    SciTech Connect (OSTI)

    Rahman, Saifur

    2014-08-31T23:59:59.000Z

    Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy & regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects, deployment experience (i.e., use cases, lessons learned, cost-benefit analyses and business cases), in-depth information (i.e., standards, technology, cyber security, legislation, education and training and demand response), as well as international information. Section 6.0 summarizes SGIC statistics from the launch of the portal on July 07, 2010 to August 31, 2014. Section 7.0 summarizes publicly available information as a result of this work.

  20. U.S. Department of Energy Idaho National Engineering and Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Program Final...

  1. SMART SCHOOLS SYMPOSIUM 2013 CALIFORNIA ENERGY

    E-Print Network [OSTI]

    California at Davis, University of

    ). #12;SMART SCHOOLS SYMPOSIUM 2013 COMMON QUESTION Question: How many buildings can be coveredSMART SCHOOLS SYMPOSIUM 2013 CALIFORNIA ENERGY COMMISSION Bright Schools Program Karen Perrin, Energy Specialist, Bright Schools Program #12;SMART SCHOOLS SYMPOSIUM 2013 OVERVIEW · What is the Bright

  2. Privacy-Preserving Smart Metering Alfredo Rial

    E-Print Network [OSTI]

    Bernstein, Phil

    Privacy-Preserving Smart Metering Alfredo Rial K.U.Leuven, ESAT/COSIC & IBBT Leuven, Belgium General Terms Security Keywords Billing, Smart metering, Cryptographic Protocol, Verifiable Computing 1 of smart meter data for more accurate forecasting, Permission to make digital or hard copies of all or part

  3. SMART SCHOOLS SYMPOSIUM 2013 ENERGY EFFICIENCY OPPORTUNITIES

    E-Print Network [OSTI]

    California at Davis, University of

    's Population and Households ­ Major Customer Segment ­ Reduced Annual Energy Costs by $4 Million Since 2007 Relationships ­ Targeted Programs · Smart Grid Partners · Dedicated Programs ­ Behavior Modification ­ Solar Sunflower #12;SMART SCHOOLS SYMPOSIUM 2013SMART SCHOOLS SYMPOSIUM 2013 ENERGY EFFICIENCY PROGRAMS · Custom

  4. Cyber Security in Smart Grid Substations

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Cyber Security in Smart Grid Substations Thijs Baars Lucas van den Bemd Michail Theuns Robin van.089 3508 TB Utrecht The Netherlands #12;CYBER SECURITY IN SMART GRID SUBSTATIONS Thijs Baars T.Brinkkemper@uu.nl Abstract. This report describes the state of smart grid security in Europe, specifically the Netherlands

  5. Surrounding Denver Metro Smart Sign Study

    E-Print Network [OSTI]

    Denver, University of

    and the City of Boulder Over the course of the 2000 summer, the smart sign measured over 200,000 vehiclesSurrounding Denver Metro Smart Sign Study Summer 2000 Sponsored by the Regional Air Quality Council emissions (see figure below). The SMART SIGN uses an RSD 3000 detection system so all HC data in this report

  6. Fibra -Principal Vm a as smart cities

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    Fibra - Principal Vêm aí as smart cities Autor: Filipe Santa Bárbara Editora: N.D. Id: 1636658 Data, sendo interdita qualquer reprodução, mesmo que parcial #12;Fibra - Principal Vêm aí as smart cities parcial #12;Fibra - Principal Vêm aí as smart cities Autor: Filipe Santa Bárbara Editora: N.D. Id: 1636649

  7. Enhancing Smart Home Algorithms Using Temporal Relations

    E-Print Network [OSTI]

    Cook, Diane J.

    Enhancing Smart Home Algorithms Using Temporal Relations Vikramaditya R. JAKKULA1 and Diane J COOK School of Electrical Engineering and Computer Science Abstract. Smart homes offer a potential benefit improves the performance of these algorithms and thus enhances the ability of smart homes to monitor

  8. Interleaved Activity Recognition for Smart Home residents

    E-Print Network [OSTI]

    Cook, Diane J.

    Interleaved Activity Recognition for Smart Home residents Geetika Singla and Diane J. Cook1 tasks. With the development of smart environment technologies, at-home automated assistance can allow Washington State University {gsingla,cook}@eecs.wsu.edu Abstract. Smart environments rely on artificial

  9. Industrial application of geothermal energy in Southeast Idaho

    SciTech Connect (OSTI)

    Batdorf, J.A.; McClain, D.W.; Gross, M.; Simmons, G.M.

    1980-02-01T23:59:59.000Z

    Those phosphate related and food processing industries in Southeastern Idaho are identified which require large energy inputs and the potential for direct application of geothermal energy is assessed. The total energy demand is given along with that fractional demand that can be satisfied by a geothermal source of known temperature. The potential for geothermal resource development is analyzed by examining the location of known thermal springs and wells, the location of state and federal geothermal exploration leases, and the location of federal and state oil and gas leasing activity in Southeast Idaho. Information is also presented regarding the location of geothermal, oil, and gas exploration wells in Southeast Idaho. The location of state and federal phosphate mining leases is also presented. This information is presented in table and map formats to show the proximity of exploration and development activities to current food and phosphate processing facilities and phosphate mining activities. (MHR)

  10. Current Reactor Physics Benchmark Activities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    John D. Bess; Margaret A. Marshall; Mackenzie L. Gorham; Joseph Christensen; James C. Turnbull; Kim Clark

    2011-11-01T23:59:59.000Z

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) [1] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) [2] were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

  11. Training Reciprocity Achieves Greater Consistency, Saves Time and Money for Idaho, Other DOE Sites

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – Contracting companies supporting EM’s cleanup program at the Idaho site volunteered to be among the first to use a new DOE training reciprocity program designed to bring more consistency to health and safety training across the complex, reduce redundancy and realize savings and other efficiencies.

  12. Idaho Site’s Cold War Cleanup Takes Center Stage in Publication

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – An association with more than 29,000 members featured an in-depth article on EM’s extensive Cold War legacy cleanup at the Idaho site in the current issue of its publication, The Military Engineer.

  13. Idaho, Navy, DOE agree on shipments to, from INEL

    SciTech Connect (OSTI)

    Tompkins, B.

    1995-12-01T23:59:59.000Z

    This report describes aspects of a legal agreement between the U.S. Navy, the state of Idaho, and the United States Department of Energy (US DOE) regarding shipments of radioactive wastes. The agreement will allow for the shipment of 244 spent fuel shipments from the Fort St Vrain facility in Colorado, if a repository or interim storage facility outside Idaho is open and accepting spent fuel from INEL. The number of shipments to the INEL will be limited to 1133, instead of the 1940 originally planned. The Navy will be allowed 575 total shipments through the year 2035.

  14. Idaho Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdaho Regions National Science Bowl®Idaho

  15. Idaho National Laboratory - WAG-1 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1 Idaho

  16. Idaho National Laboratory - WAG-2 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1 Idaho2

  17. Idaho National Laboratory - WAG-3 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1 Idaho23

  18. Idaho National Laboratory - WAG-4 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1 Idaho234

  19. Evaluation of Machine Guarding pilot course taught in Idaho Falls, Idaho, June 23, 1992--June 25, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1992-10-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, Machine Guarding which was conducted June 23--25 at the Westinghouse Idaho Nuclear Company, in Idaho Falls, Idaho. This class was the fourth pilot course taught. Also, this report summarize the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees` written comments. This class was conducted concurrently with a ``Supervisors Orientation to Occupational Safety in DOE`` class. This allowed the lead instructor to use two experts in the classes without additional cost. The experiment was successful, both from a standpoint of cost and quality. The same format (concurrent classes) will be used at the Nevada test site in October.

  20. Evaluation of Machine Guarding pilot course taught in Idaho Falls, Idaho, June 23, 1992--June 25, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1992-10-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, Machine Guarding which was conducted June 23--25 at the Westinghouse Idaho Nuclear Company, in Idaho Falls, Idaho. This class was the fourth pilot course taught. Also, this report summarize the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees' written comments. This class was conducted concurrently with a Supervisors Orientation to Occupational Safety in DOE'' class. This allowed the lead instructor to use two experts in the classes without additional cost. The experiment was successful, both from a standpoint of cost and quality. The same format (concurrent classes) will be used at the Nevada test site in October.

  1. Electromagnetic pulse (EMP) survey of the Idaho State Emergency Operating Center, Boise, Idaho

    SciTech Connect (OSTI)

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1992-02-01T23:59:59.000Z

    The purpose of this report is to develop an engineering design package to protect the Federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high- altitude electromagnetic pulses (HEMPs). This report was developed specifically for the Idaho State Emergency Operating Center (EOC) in Boise, Idaho. It is highly probable that there will be a heavy dependence upon high-frequency (hf) radio communications for long- haul communications following a nuclear attack on the continental United States, should one occur. To maintain the viability of the FEMA hf radio network during such a situation, steps must be taken to protect the FNARS facilities against the effects of HEMP that are likely to be created in a nuclear confrontation. The solution must than be to reduce HEMP-induced stresses on the system by means of tailored retrofit hardening measures using commercial protection devices when available. It is the intent of this report to define the particular hardening measures that will minimize the susceptibility of system components to HEMP effects. To the extent economically viable, protective actions have been recommended for implementation, along with necessary changes or additions, during the period of the FNARS upgrade program. This report addresses electromagnetic pulse (EMP) effects only and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Any system hardened to withstand the more extreme EMP environment will survive the less severe EMP conditions. The threatening environment will therefore be limited to HEMP situations.

  2. Evaluation of Smart Gun Technologies preliminary report

    SciTech Connect (OSTI)

    Weiss, D.R.

    1996-01-01T23:59:59.000Z

    The Smart Gun Technology Project has a goal to eliminate the capability of an unauthorized user from firing a law enforcement officer`s firearm by implementing {open_quote}smart{close_quote} technologies. Smart technologies are those that can in some manner identify an officer. This report will identify, describe, and grade various technologies as compared to the requirements that were obtained from officers. This report does not make a final recommendation for a smart gun technology, nor does it give the complete design of a smart gun system.

  3. QER - Comment of Dairyland Power Cooperative - FWD by John Richards...

    Energy Savers [EERE]

    - Comment of Dairyland Power Cooperative - FWD by John Richards QER - Comment of Dairyland Power Cooperative - FWD by John Richards From: Richards, John Sent: Tuesday, August 19,...

  4. Smart Thermostats in Residential Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here HomeSmart Grid Smart

  5. SMART POWER TURBINE

    SciTech Connect (OSTI)

    Nirm V. Nirmalan

    2003-11-01T23:59:59.000Z

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

  6. Smart Grid Information Security (IS) Functional Requirement

    E-Print Network [OSTI]

    Ling, Amy Poh Ai

    2011-01-01T23:59:59.000Z

    It is important to implement safe smart grid environment to enhance people's lives and livelihoods. This paper provides information on smart grid IS functional requirement by illustrating some discussion points to the sixteen identified requirements. This paper introduces the smart grid potential hazards that can be referred as a triggering factor to improve the system and security of the entire grid. The background of smart information infrastructure and the needs for smart grid IS is described with the adoption of hermeneutic circle as methodology. Grid information technology and security-s session discusses that grid provides the chance of a simple and transparent access to different information sources. In addition, the transformation between traditional versus smart grid networking trend and the IS importance on the communication field reflects the criticality of grid IS functional requirement identification is introduces. The smart grid IS functional requirements described in this paper are general and ...

  7. EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

    Broader source: Energy.gov [DOE]

    Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

  8. Smart Doorplate WOLFGANG TRUMLER, FARUK BAGCI, JAN PETZOLD, THEO UNGERER

    E-Print Network [OSTI]

    Ungerer, Theo

    }@informatik.uni-augsburg.de Abstract: This paper introduces the vision of smart doorplates within an office building. The doorplates. Introduction Smart buildings represent an important application area of ubiquitous computing that includes context-aware and networked smart appliances. Most smart building technologies are developed for smart

  9. Smart Doorplate WOLFGANG TRUMLER, FARUK BAGCI, JAN PETZOLD, THEO UNGERER

    E-Print Network [OSTI]

    Ungerer, Theo

    }@informatik.uni­augsburg.de Abstract: This paper introduces the vision of smart doorplates within an office building. The doorplates. Introduction Smart buildings represent an important application area of ubiquitous computing that includes context­aware and networked smart appliances. Most smart building technologies are developed for smart

  10. ICT nella Smart City Prof. R. Laurini Maggio 2014

    E-Print Network [OSTI]

    Laurini, Robert

    ICT nella Smart City Prof. R. Laurini Maggio 2014 SK1_SEM - Smart City Manager per Ricercatori nella Smart City Docente: Prof. R. Laurini Professore emerito all'INSA di Lione Fellow del Knowledge preferenze dei clienti orientano le vendite promozionali ICT nella Smart City · 1 ­ Generalità sulle Smart

  11. M2M for Smart Cities Gerd Ascheid

    E-Print Network [OSTI]

    M2M for Smart Cities Gerd Ascheid #12;Agenda What is a "Smart City"? Cellular System based M2M Cities and Communities Source: http://eu-smartcities.eu 3 #12;What Elements Make a City ,,Smart" ? Smart groups 4 #12;Important Topics for Building a Smart City Infrastructure Intelligent Networks Services

  12. CRAD, Radiological Controls- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Radiation Protection Program at the Idaho Accelerated Retrieval Project Phase II.

  13. advanced test idaho reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    test idaho reactor First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 DISPERSAL AND HARVEST OF SAGE GROUSE...

  14. CRAD, Training- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Training Program at the Idaho Accelerated Retrieval Project Phase II.

  15. CRAD, Conduct of Operations- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2006 Commencement of Operations assessment of the Conduct of Operations program at the Idaho Accelerated Retrieval Project Phase II.

  16. CRAD, Fire Protection- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Fire Protection program at the Idaho Accelerated Retrieval Project Phase II.

  17. Water information bulletin No. 30 geothermal investigations in Idaho

    SciTech Connect (OSTI)

    Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

    1980-06-01T23:59:59.000Z

    There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

  18. Successful neural network projects at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Cordes, G.A.

    1991-01-01T23:59:59.000Z

    This paper presents recent and current projects at the Idaho National Engineering Laboratory (INEL) that research and apply neural network technology. The projects are summarized in the paper and their direct application to space reactor power and propulsion systems activities is discussed. 9 refs., 10 figs., 3 tabs.

  19. CRAD, Emergency Management- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Emergency Management program at the Idaho Accelerated Retrieval Project Phase II.

  20. CRAD, Quality Assurance- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Quality Assurance Program at the Idaho Accelerated Retrieval Project Phase II.

  1. Idaho National Laboratory Site Long-Term Stewardship Implementation Plan

    SciTech Connect (OSTI)

    B. E. Olaveson

    2006-07-27T23:59:59.000Z

    The U.S. Department of Energy has established long-term stewardship programs to protect human health and the environment at sites where residual contamination remains after site cleanup. At the Idaho National Laboratory Site, Comprehensive Environmental Response, Compensation, and Liability Act (CERLA) long-term stewardship activities performed under the aegis of regulatory agreements, the Federal Facility Agreement and Consent Order for the Idaho National Laboratory, and state and federal requirements are administered primarily under the direction of the Idaho Cleanup Project. It represents a subset of all on-going environmental activity at the Idaho National Laboratory Site. This plan provides a listing of applicable CERCLA long-term stewardship requirements and their planned and completed implementation goals. It proffers the Long-Term Stewardship Environmental Data Warehouse for Sitewide management of environmental data. This plan will be updated as needed over time, based on input from the U.S. Department of Energy, its cognizant subcontractors, and other local and regional stakeholders.

  2. EECBG Success Story: Boise, Idaho: Saving Money and Reducing Waste

    Broader source: Energy.gov [DOE]

    Thanks to a $1.2 million grant from the Department’s Energy Efficiency and Conservation Block Grant (EECBG) Program, the city of Boise, Idaho, will replace and install 1,450 LED streetlights by the end of this month. The project is projected to save $1.2 million over the next 15 years. Learn more .

  3. CRAD, Occupational Safety & Health- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene Program at the Idaho Accelerated Retrieval Project Phase II.

  4. CRAD, Occupational Safety & Health- Idaho MF-628 Drum Treatment Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene programs at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project.

  5. CRAD, Maintenance- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Maintenance program at the Idaho Accelerated Retrieval Project Phase II.

  6. CRAD, Safety Basis- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Safety Basis at the Idaho Accelerated Retrieval Project Phase II.

  7. CRAD, Criticality Safety- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Criticality Safety program at the Idaho Accelerated Retrieval Project Phase II.

  8. HEART SMART NUTRITION KNOWLEDGE = POWER

    E-Print Network [OSTI]

    Lesson 1 HEART SMART NUTRITION KNOWLEDGE = POWER Know Your Cholesterol Number High blood cholesterol is one of the three major risk factors for heart disease that you can change. The other two risk the disease. Heart disease is the number one killer of women and men in the United States. In 2008, over 16

  9. EAT SMART Sources: Heart Health

    E-Print Network [OSTI]

    -1- EAT SMART Sources: Heart Health American Dietetic Association Complete Food and Nutrition Guide and Promotion; Home and Garden Bulletin Number 252; August 1992. Heart Attach Signs, U.S. Department of Health and Human Services: National Institutes of Heart, Lung, and Blood Institute, NIH Publication No. 01

  10. Idaho National Laboratory (INL) Sitewide Institutional Controls Plan

    SciTech Connect (OSTI)

    W. L. Jolley

    2006-07-27T23:59:59.000Z

    On November 9, 2002, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and the Idaho Department of Environmental Quality approved the Record of Decision Experimental Breeder Reactor-I/Boiling Water Reactor Experiment Area and Miscellaneous Sites, which requires a Sitewide Institutional Controls Plan for the then Idaho National Engineering and Environmental Laboratory (now known as the Idaho National Laboratory). This document, first issued in June 2004, fulfilled that requirement. The revision is needed to provide an update as remedial actions are completed and new areas of concern are found. This Sitewide Institutional Controls Plan is based on guidance in the May 3, 1999, EPA Region 10 Final Policy on the Use of Institutional Controls at Federal Facilities; the September 29, 2000, EPA guidance Institutional Controls: A Site Manager's Guide to Identifying, Evaluating, and Selecting Institutional Controls at Superfund and RCRA Corrective Action Cleanups; and the April 9, 2003, DOE Policy 454.1, "Use of Institutional Controls." These policies establish measures that ensure short- and long-term effectiveness of institutional controls that protect human health and the environment at federal facility sites undergoing remedial action pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or corrective action pursuant to the Resource Conservation and Recovery Act (RCRA). The site-specific institutional controls currently in place at the Idaho National Laboratory are documented in this Sitewide Institutional Controls Plan. This plan is being updated, along with the Idaho National Engineering and Environmental Laboratory Comprehensive Facilities and Land Use Plan, to reflect the progress of remedial activities and changes in CERCLA sites.

  11. Assessment of the Geothermal System Near Stanley, Idaho

    SciTech Connect (OSTI)

    Trent Armstrong; John Welhan; Mike McCurry

    2012-06-01T23:59:59.000Z

    The City of Stanley, Idaho (population 63) is situated in the Salmon River valley of the central Idaho highlands. Due to its location and elevation (6270 feet amsl) it is one of the coldest locales in the continental U.S., on average experiencing frost 290 days of the year as well as 60 days of below zero (oF) temperatures. Because of high snowfall (76 inches on average) and the fact that it is at the terminus of its rural grid, the city also frequently endures extended power outages during the winter. To evaluate its options for reducing heating costs and possible local power generation, the city obtained a rural development grant from the USDA and commissioned a feasibility study through author Roy Mink to determine whether a comprehensive site characterization and/or test drilling program was warranted. Geoscience students and faculty at Idaho State University (ISU), together with scientists from the Idaho Geological Survey (IGS) and Idaho National Laboratory (INL) conducted three field data collection campaigns between June, 2011 and November, 2012 with the assistance of author Beckwith who arranged for food, lodging and local property access throughout the field campaigns. Some of the information collected by ISU and the IGS were compiled by author Mink and Boise State University in a series of progress reports (Makovsky et al., 2011a, b, c, d). This communication summarizes all of the data collected by ISU including data that were compiled as part of the IGS’s effort for the National Geothermal Data System’s (NGDS) data compilation project funded by the Department of Energy and coordinated by the Arizona Geological Survey.

  12. University of Idaho, U.S. Department of Agriculture, and Idaho counties cooperating. To enrich education through diversity, the University of Idaho is an equal opportunity/affirmative action employer and educational institution.

    E-Print Network [OSTI]

    O'Laughlin, Jay

    -based education, not new product updates. Program Outcomes The Burley seminar is attended by over 100 applica education through diversity, the University of Idaho is an equal opportunity/affirmative action employer and educational institution. The Situation Idaho Statue Title 22 Section 34 defines the law for pesticides

  13. file://P:\\Smart Grid\\Smart Grid RFI Policy and Logistical Comme

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status: Tracking No. Comments Due: Submission Type: Page 1 of 2 1182010 file:P:Smart GridSmart Grid RFI Policy and Logistical CommentsDraft Comments for DOE-H... I...

  14. Smart Business StrategySmart Business Strategy Productivity,Innovation,Efficiency

    E-Print Network [OSTI]

    Minnesota, University of

    Smart Business StrategySmart Business Strategy Productivity,Innovation,Efficiency Adeel Lari Target Employers· Identify Target Employers · Marketing and Education· Marketing and Education found commuting was responsible for 98% of each employee's carbon footprint. Working from home 2

  15. Advancing the Spatially Enabled Smart Campus, Position Papers

    E-Print Network [OSTI]

    Center for Spatial Studies, UCSB

    2013-01-01T23:59:59.000Z

    we strive to create as “smart” a building as possible bycourse, the smart (cities/campuses/buildings/etc. ) movementfor building a state-of-the-art, spatially enabled smart

  16. Advancing the Spatially Enabled Smart Campus, Call for Participants

    E-Print Network [OSTI]

    Center for Spatial Studies, UCSB

    2013-01-01T23:59:59.000Z

    environments of cities. Smart city projects are now foundthem. Experiences with smart cities and scenarios from thatcities,” raising similar concerns for a particular kind of popula- tion. Additionally, smart

  17. Smart cities : concepts, perceptions and lessons for planners

    E-Print Network [OSTI]

    Ching, Tuan Yee

    2013-01-01T23:59:59.000Z

    Today, there appears to be a visible trend in the use of the "smart" prefix. For example, cities are branding themselves as, or striving to become "smart" cities. Planners and policy-makers espouse "smart growth". ...

  18. John E. Hasse, Geospatial Research Lab,

    E-Print Network [OSTI]

    ap Executive Summary July 2010 John E. Hasse, Geospatial Research Lab Geospatial Research Laboratory Department of Geography Rowan University 201 Mullica Hill Road Glassboro by John Reiser, GIS specialist for the Rowan Geospatial Research Laboratory. http

  19. John R. Gilbert Professor of Computer Science

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    in computational methods and in distributed sensing and control. Since 2002 he has directed the Combinatorial journals in computational science and applied mathematics. #12;John R. Gilbert Professor of Computer Science University of California, Santa Barbara John Gilbert

  20. Start Smart: Steps to Starting a Business Workshop Registration The Start Smart workshop will cover

    E-Print Network [OSTI]

    Collins, Gary S.

    . ----------------------------------------------------------------------------------------------------------------------------------------------- START SMART REGISTRATION Name Daytime phone Address E-mail address City State Zip Optional: NameStart Smart: Steps to Starting a Business Workshop Registration The Start Smart workshop will cover and mail it with your check* or credit card information to: WSU Tri-Cities Business LINKS 2710 Crimson Way

  1. SmartHG: Energy Demand Aware Open Services for Smart Grid Intelligent Automation

    E-Print Network [OSTI]

    Tronci, Enrico

    solar panels)], for each time slot (say each hour) the DNO price policy defines an interval of energySmartHG: Energy Demand Aware Open Services for Smart Grid Intelligent Automation Enrico Tronci.prodanovic,jorn.gruber, barry.hayes}@imdea.org I. INTRODUCTION The SmartHG project [1], [2] has the goal of developing

  2. Robust Smart Card based Password Authentication Scheme against Smart Card Security Breach

    E-Print Network [OSTI]

    Robust Smart Card based Password Authentication Scheme against Smart Card Security Breach Ding Wang University, Beijing 100871, China 3 Automobile Management Institute of PLA, Bengbu City 233011, China wangdingg@mail.nankai.edu.cn Abstract. As the most prevailing two-factor authentication mechanism, smart

  3. Smart Grid Status and Metrics Report

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Weimar, Mark R.; Kirkham, Harold

    2014-07-01T23:59:59.000Z

    To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

  4. Highly Insulating Residential Windows Using Smart Automated Shading...

    Broader source: Energy.gov (indexed) [DOE]

    Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window...

  5. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    State - Updated November 2011 Recovery Act Selections for Smart Grid Investment Grant Awards - By State - Updated November 2011 List of selections for the Smart Grid Investment...

  6. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    Category Updated November 2011 Recovery Act Selections for Smart Grid Investment Grant Awards - By Category Updated November 2011 List of selections for the Smart Grid Investment...

  7. Addressing Policy and Logistical Challenges to Smart Grid Implementati...

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Implementation: Comments by the Office of the Ohio Consumers' Counsel Addressing Policy and Logistical Challenges to Smart Grid Implementation: Comments by the Office of...

  8. Questions and Answers for the Smart Grid Investment Grant Program...

    Energy Savers [EERE]

    Questions and Answers for the Smart Grid Investment Grant Program: Applicability of Buy American Provision of Section 1605 of the Recovery Act to Projects Under the Smart Grid...

  9. Recovery Act Selections for Smart Grid Invesment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July...

  10. Addressing Policy and Logistical Challenges to Smart Grid Implementati...

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Implementation: Federal Register Notice Volume 75, No. 180 - Sep. 17, 2010 Addressing Policy and Logistical Challenges to Smart Grid Implementation: Federal Register...

  11. Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical...

    Broader source: Energy.gov (indexed) [DOE]

    Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company:...

  12. Davis Bacon Act Applicability to Smart Grid Investment Grant...

    Broader source: Energy.gov (indexed) [DOE]

    Davis Bacon Act Applicability to Smart Grid Investment Grant (SGIG) Program Grants Davis Bacon Act Applicability to Smart Grid Investment Grant (SGIG) Program Grants Letter to...

  13. Presentation to the EAC - Smart Grid Subcommittee Work Plan Status...

    Broader source: Energy.gov (indexed) [DOE]

    Electricity Advisory Committee Smart Grid Subcommittee Work Plan Status Joe Paladino - DOE Wanda Reder - EAC Smart Grid Sub- Committee Chair June 12, 2012 * Considerations: - Build...

  14. Now Available: Pacific Northwest Smart Grid Demonstration Project...

    Energy Savers [EERE]

    Now Available: Pacific Northwest Smart Grid Demonstration Project - Technology Performance Report Volume 1 Now Available: Pacific Northwest Smart Grid Demonstration Project -...

  15. SMART Wind Consortium Composites Subgroup Virtual Meeting: Advanced...

    Energy Savers [EERE]

    SMART Wind Consortium Composites Subgroup Virtual Meeting: Advanced Manufacturing of Wind Turbine Blades SMART Wind Consortium Composites Subgroup Virtual Meeting: Advanced...

  16. Questions and Answers for the Smart Grid Investment Grant Program...

    Energy Savers [EERE]

    Questions and Answers for the Smart Grid Investment Grant Program: Buy American Questions and Answers for the Smart Grid Investment Grant Program: Buy American Additional questions...

  17. City Utilities of Springfield Missouri Comments on Smart Grid...

    Energy Savers [EERE]

    Utilities of Springfield Missouri Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges City Utilities of Springfield Missouri Comments on Smart Grid RFI:...

  18. Vehicle Technologies Office Merit Review 2014: EV-Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV-Smart Grid Research & Interoperability Activities Vehicle Technologies Office Merit Review 2014: EV-Smart Grid Research & Interoperability Activities Presentation given by...

  19. Smart Grid Outreach and Communication Strategy: Next Steps -...

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Outreach and Communication Strategy: Next Steps - EAC Recommendations for DOE Action, approved at the October 15-16, 2012 EAC Meeting. Smart Grid Outreach and...

  20. reEnergize: Building Energy Smart Communities | Department of...

    Energy Savers [EERE]

    reEnergize: Building Energy Smart Communities reEnergize: Building Energy Smart Communities Slides presented in the "What's Working in Residential Energy Efficiency Upgrade...

  1. New York Independent System Operator, Smart Grid RFI: Addressing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Independent System Operator, Smart Grid RFI: Addressing Policy and Logistical Challenges. New York Independent System Operator, Smart Grid RFI: Addressing Policy and Logistical...

  2. Progress Energy draft regarding Smart Grid RFI: Addressing Policy...

    Office of Environmental Management (EM)

    Policy and Logistical Challenges in Implementing Smart Grid Solutions COMMENTS OF THE MICHIGAN PUBLIC SERVICE COMMISSION STAFF TO REQUEST FOR INFORMATION REGARDING SMART GRID...

  3. JOINT DEPARTMENT OF COMMERCE AND DEPARTMENT OF ENERGY SMART CITIES...

    Office of Environmental Management (EM)

    JOINT DEPARTMENT OF COMMERCE AND DEPARTMENT OF ENERGY SMART CITIES - SMART GROWTH BUSINESS DEVELOPMENT MISSION TO CHINA April 12-17, 2015 I. MISSION DESCRIPTION The United States...

  4. Addressing Policy and Logistical Challenges to smart grid Implementati...

    Energy Savers [EERE]

    Addressing Policy and Logistical Challenges to smart grid Implementation: eMeter Response to Department of Energy RFI Addressing Policy and Logistical Challenges to smart grid...

  5. SMART Wind Turbine Rotor: Design and Field Test | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Design and Field Test SMART Wind Turbine Rotor: Design and Field Test This report documents the design, fabrication, and testing of the SMART Wind Turbine Rotor. This work...

  6. V-120: EMC Smarts Network Configuration Manager Java RMI Access...

    Broader source: Energy.gov (indexed) [DOE]

    0: EMC Smarts Network Configuration Manager Java RMI Access Control Flaw Lets Remote Users Gain Full Control V-120: EMC Smarts Network Configuration Manager Java RMI Access Control...

  7. Now Available: Smart Grid Investments Improve Grid Reliability...

    Energy Savers [EERE]

    Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and...

  8. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Office of Environmental Management (EM)

    Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated...

  9. Grid Interaction Tech Team, and International Smart Grid Collaboration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  10. Smart Grid Investment Grant Program (SGIG) Recipient Workshop...

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Investment Grant (SGIG) Kickoff Welcome and Overview: Familiarize SGIG selectees with Grant Award Process. Smart Grid Investment Grant Program (SGIG) Recipient Workshop:...

  11. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...

    Energy Savers [EERE]

    Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid...

  12. Treasury, Energy Announce Guidance for Tax Treatment of Smart...

    Office of Environmental Management (EM)

    Treasury, Energy Announce Guidance for Tax Treatment of Smart Grid Investment Grants Treasury, Energy Announce Guidance for Tax Treatment of Smart Grid Investment Grants March 10,...

  13. Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical...

    Energy Savers [EERE]

    Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges Steffes Corporation...

  14. Questions and Answers for the Smart Grid Investment Grant Program...

    Office of Environmental Management (EM)

    Questions and Answers for the Smart Grid Investment Grant Program: Frequently Asked Questions Questions and Answers for the Smart Grid Investment Grant Program: Frequently Asked...

  15. Austin Energy Dials Down Home Energy Use With Smart Phones |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Austin Energy Dials Down Home Energy Use With Smart Phones Austin Energy Dials Down Home Energy Use With Smart Phones bbrnstoriesaustinenergy9-2-14.jpg Better Buildings...

  16. Smart Grid RFI: Addressing Policy and Logistical Challenges....

    Broader source: Energy.gov (indexed) [DOE]

    of DRSG to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Association of Home Appliance Manufacturers Comments on Smart Grid RFI Addressing Policy and Logistical...

  17. The Future is Here: Smart Home Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future is Here: Smart Home Technology The Future is Here: Smart Home Technology April 9, 2015 3:00PM to 4:30PM EDT...

  18. John Nangle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3 | of EnergyJennyJohnJohansenAprilJohn

  19. John Turner - Research Fellow | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for(SC) JettingChemistryJohn ShalfJohn

  20. Arras User's Manual John B. Smith

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Arras User's Manual TR85-036 1985 John B. Smith The University of North Carolina at Chapel Hill'S MANUAL John B. Smith Department or Computer Science University or North Carolina Chapel Hill, North Carolina 27514 Copyright© 1984 by John B. Smith #12;Starling ARRAS Note for those not using TUCC: The ARRAS

  1. Lead by Example with Smart Energy Management

    SciTech Connect (OSTI)

    Not Available

    2006-07-01T23:59:59.000Z

    The Lead by Example with Smart Energy Management brochure describes FEMP's services, namely financing and acquisition support, technical assistance and policy, and outreach and coordination.

  2. Small Market Advanced Retrofit Transformation Program (SMART...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and government administrators of energy efficiency programs for small- and medium-sized buildings (SMBs). SMART Scale is looking to achieve an average of 20% energy savings per...

  3. ARRA Program Summary: Energy Smart Jobs Program

    E-Print Network [OSTI]

    ARRA Program Summary: Energy Smart Jobs Program Statewide Program (Initially targeting urban 30,000 buildings surveyed, approximately 5,000 will be retrofitted, yielding approximately $40

  4. What is the Smart Grid Anyway

    Broader source: Energy.gov [DOE]

    Presentation covers what is the smart grid at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  5. Sandia National Laboratories: smart-grid technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart-grid technologies New Jersey Transit FutureGrid MOU Signing On October 4, 2013, in Analysis, Energy Surety, Infrastructure Security, Microgrid, Modeling, Modeling & Analysis,...

  6. Value of a Smart Grid System

    Broader source: Energy.gov (indexed) [DOE]

    2 - Section 1: Smart Grid Opportunities Remarkable things happen when economic forces and new technology converge. Consider how the the Internet -- combined with new, affordable...

  7. NV Energy- Energy Smart Schools Program

    Broader source: Energy.gov [DOE]

    The Energy Smart Schools program helps Nevada school districts reduce energy consumption, improve learning environments, and save money by implementing energy efficiency improvements in new and...

  8. Santee Cooper- Smart Energy Loan Program

    Broader source: Energy.gov [DOE]

    Santee Cooper provides low interest loans to residential customers to improve the efficiency of homes through the Smart Energy loan program. Customers can apply for energy efficient improvement...

  9. Sandia National Laboratories: "smart water" infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "smart water" infrastructure Sandians Published in American Chemical Society's Environmental Science & Technology On December 11, 2014, in Analysis, Climate, Energy, Global Climate...

  10. Microsoft Word - Smart Grid Economic Impact Report

    Office of Environmental Management (EM)

    benefits include real estate, wholesale trade, financial services, restaurants, and health care. Smart Grid ARRA investments also supported employment in personal service...

  11. Case Study - EPB Smart Grid Investment Grant

    Office of Environmental Management (EM)

    Smart switches installed in EPB service territory A Smarter Electric Circuit: Electric Power Board of Chattanooga Makes the Switch EPB of Chattanooga, Tennessee, is one of the...

  12. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Office of Environmental Management (EM)

    Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November...

  13. Smart Grid Demonstration Funding Opportunity Announcement DE...

    Broader source: Energy.gov (indexed) [DOE]

    Frequently asked questions about the Smart Grid Demonstration and Energy Storage Funding Opportunity Announcement released as part of the American Recovery and Reinvestment Act,...

  14. Sandia Energy - Experimental Smart Outlet Brings Flexibility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Smart Outlet Brings Flexibility, Resiliency to Grid Architecture Home Energy Assurance Renewable Energy Energy Surety Energy Grid Integration News Energy Efficiency...

  15. What will the Smart Grid Look Like?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and education they need to effectively utilize the new options provided by the Smart Grid. CE includes solutions such as Advanced Metering Infrastructure (AMI), home...

  16. Smart Solar Rooftops - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here HomeSmart Grid Smart GridSmartSmart

  17. Government Program Briefing: Smart Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  18. Government Program Briefing: Smart Metering

    SciTech Connect (OSTI)

    Doris, E.; Peterson, K.

    2011-09-01T23:59:59.000Z

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  19. Geothermal resource assessment of Idaho Springs, Colorado. Resource series 16

    SciTech Connect (OSTI)

    Repplier, F.N.; Zacharakis, T.G.; Ringrose, C.D.

    1982-01-01T23:59:59.000Z

    Located in the Front Range of the Rocky Mountains approximately 30 miles west of Denver, in the community of Idaho Springs, are a series of thermal springs and wells. The temperature of these waters ranges from a low of 68/sup 0/F (20/sup 0/C) to a high of 127/sup 0/F (53/sup 0/C). To define the hydrothermal conditions of the Idaho Springs region in 1980, an investigation consisting of electrical geophysical surveys, soil mercury geochemical surveys, and reconnaissance geological and hydrogeological investigations was made. Due to topographic and cultural restrictions, the investigation was limited to the immediate area surrounding the thermal springs at the Indian Springs Resort. The bedrock of the region is faulted and fractured metamorphosed Precambrian gneisses and schists, locally intruded by Tertiary age plutons and dikes. The investigation showed that the thermal waters most likely are fault controlled and the thermal area does not have a large areal extent.

  20. Idaho National Engineering Laboratory installation roadmap document. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-05-30T23:59:59.000Z

    The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

  1. U.S. hydropower resource assessment for Idaho

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-08-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

  2. Geophysical Investigations of Archaeological Resources in Southern Idaho

    SciTech Connect (OSTI)

    Brenda Ringe Pace; Gail Heath; Clark Scott; Carlan McDaniel

    2005-10-01T23:59:59.000Z

    At the Idaho National Laboratory and other locations across southern Idaho, geophysical tools are being used to discover, map, and evaluate archaeological sites. A variety of settings are being explored to expand the library of geophysical signatures relevant to archaeology in the region. Current targets of interest include: prehistoric archaeological features in open areas as well as lava tube caves, historical structures and activity areas, and emigrant travel paths. We draw from a comprehensive, state of the art geophysical instrumentation pool to support this work. Equipment and facilities include ground penetrating radar, electromagnetic and magnetic sensors, multiple resistivity instruments, advanced positioning instrumentation, state of the art processing and data analysis software, and laboratory facilities for controlled experiments.

  3. Prehistoric Rock Structures of the Idaho National Laboratory

    SciTech Connect (OSTI)

    Brenda R Pace

    2007-04-01T23:59:59.000Z

    Over the past 13,500 years, human populations have lived in and productively utilized the natural resources offered by the cold desert environment of the northeastern Snake River Plain in eastern Idaho. Within an overall framework of hunting and gathering, groups relied on an intimate familiarity with the natural world and developed a variety of technologies to extract the resources that they needed to survive. Useful items were abundant and found everywhere on the landscape. Even the basaltic terrain and the rocks, themselves, were put to productive use. This paper presents a preliminary classification scheme for rock structures built on the Idaho National Laboratory landscape by prehistoric aboriginal populations, including discussions of the overall architecture of the structures, associated artifact assemblages, and topographic placement. Adopting an ecological perspective, the paper concludes with a discussion of the possible functions of these unique resources for the desert populations that once called the INL home.

  4. EIS-0507: Boardman-Hemingway Transmission Line, Oregon and Idaho

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management and the U.S. Forest Service are preparing, with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, an EIS that evaluates the potential environmental impacts of a proposal to construct about 305 miles of 500-kV transmission line from northeast Oregon to southwest Idaho. BPA’s proposed action is to partially fund part the transmission line.

  5. Sustainable Energy Resources for Consumers (SERC) Idaho Highlight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic SafetyGeothermal/Ground-Source Heat Pumps | Department Idaho

  6. Controlling Energy-Efficient Buildings in the Context of Smart Grid: A Cyber Physical System Approach

    E-Print Network [OSTI]

    Maasoumy, Mehdi

    2014-01-01T23:59:59.000Z

    is centered on the role of smart buildings in the context ofdiscuss the role of smart buildings in the emerging smart61]. Introduction Smart buildings today have sophisticated

  7. Simulation, Analysis, and Visualization Abel Sanchez & John Williams

    E-Print Network [OSTI]

    Dasgupta, Dipankar

    industry ­ Tabaco Industry ­ Smart grid ­ Fortune 100 data infrastructure ­ Fraud detection, Commonwealth of Massachusetts ­ Smart cities · High Performance Computing #12;Hacking Tradition At MIT, a "hacker" is someone

  8. Chemical analysis quality assurance at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Hand, R.L.; Anselmo, R.W.; Black, D.B.; Jacobson, J.J.; Lewis, L.C.; Marushia, P.C.; Spraktes, F.W.; Zack, N.R.

    1985-01-01T23:59:59.000Z

    The Idaho Chemical Processing Plant (ICPP) is a uranium reprocessing facility operated by Westinghouse Idaho Nuclear Company for the Department of Energy at the Idaho National Engineering Laboratory (INEL). The chemical analysis support required for the plant processes is provided by a chemical analysis staff of 67 chemists, analysts, and support personnel. The documentation and defense of the chemical analysis data at the ICPP has evolved into a complete chemical analysis quality assurance program with training/qualification and requalification, chemical analysis procedures, records management and chemical analysis methods quality control as major elements. The quality assurance procedures are implemented on a central analytical computer system. The individual features provided by the computer system are automatic method selection for process streams, automation of method calculations, automatic assignment of bias and precision estimates at analysis levels to all method results, analyst specific daily requalification or with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of process stream results for replicate agreement, automatic testing of process results against pre-established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of analysis data plus the results of all statistical testing to the Production Department.

  9. Smart Buildings: Business Case and Action Plan

    SciTech Connect (OSTI)

    Ehrlich, Paul; Diamond, Rick

    2009-04-01T23:59:59.000Z

    General Services Administration (GSA) has been a pioneer in using Smart Building technologies but it has yet to achieve the full benefits of an integrated, enterprise-wide Smart Building strategy. In July 2008, GSA developed an initial briefing memorandum that identified five actions for a Smart Buildings feasibility study: (1) Identify and cluster the major building systems under consideration for a Smart Buildings initiative; (2) Identify GSA priorities for these clusters; (3) Plan for future adoption of Smart Building strategies by identifying compatible hardware; (4) Develop a framework for implementing and testing Smart Building strategies and converged networks; and (5) Document relevant GSA and industry initiatives in this arena. Based on this briefing memorandum, PBS and FAS retained consultants from Lawrence Berkeley National Laboratory, Noblis, and the Building Intelligence Group to evaluate the potential for Smart Buildings within GSA, and to develop this report. The project has included extensive interviews with GSA staff (See Appendix A), a review of existing GSA standards and documents, and an examination of relevant GSA and industry initiatives. Based on interviews with GSA staff and a review of GSA standards and documents, the project team focused on four goals for evaluating how Smart Building technology can benefit GSA: (1) Achieve Energy Efficiency Mandates--Use Smart Building technology as a tool to meet EISA 2007 and EO 13423 goals for energy efficiency. (2) Enhance Property Management--Deploy enterprise tools for improved Operations and Maintenance (O&M) performance and verification. (3) Implement Network as the Fourth Utility--Utilize a converged broadband network to support Smart Building systems and provide GSA clients with connectivity for voice, data and video. (4) Enhance Safety and Security--Harmonize Physical Access Control Systems (PACS) with Smart Building Systems.

  10. Algorithmic Thermodynamics John C. Baez

    E-Print Network [OSTI]

    Tomkins, Andrew

    Algorithmic Thermodynamics John C. Baez Department of Mathematics, University of California in statistical mechanics. This viewpoint allows us to apply many techniques developed for use in thermodynamics and chemical potential. We derive an analogue of the fundamental thermodynamic relation dE = TdS - PdV + µd

  11. Fusion Test Facilities John Sheffield

    E-Print Network [OSTI]

    Fusion Test Facilities John Sheffield ISSE - University of Tennessee FPA meeting Livermore December Stambaugh, and their colleagues #12;Destructive Testing · It is common practice to test engineered components to destruction prior to deployment of a system e.g., - Automobile crash tests - Airplane wing

  12. EA-1901: Kootenai River White Sturgeon and Burbot Hatcheries Project, Bonners Ferry, Boundary County, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal for DOE’s Bonneville Power Administration to support the Kootenai Tribe of Idaho’s construction of a new hatchery on property owned by the Tribe at the confluence of the Moyie and Kootenai Rivers, approximately eight miles upstream from Bonners Ferry, Idaho. The proposed location of the new hatchery facility is currently the site of the Twin Rivers Canyon Resort.

  13. Strontium Distribution Coefficients of Basalt and Sediment Infill Samples from the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect (OSTI)

    M. N. Pace; R. C. Bartholomay (USGS); J. J. Rosentreter (ISU)

    1999-07-01T23:59:59.000Z

    The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting a study to determine and evaluate strontium distribution coefficients (Kds) of subsurface materials at the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose of this study is to aid in assessing the variability of strontium Kds at the INEEL as part of an ongoing investigation of chemical transport of strontium-90 in the Snake River Plain aquifer. Batch experimental techniques were used to determine Kds of six basalt core samples, five samples of sediment infill of vesicles and fractures, and six standard material samples. Analyses of data from these experiments indicate that the Kds of the sediment infill samples are significantly larger than those of the basalt samples. Quantification of such information is essential of furthering the understanding of transport processes of strontium-90 in the Snake River Plain aquifer and in similar environments.

  14. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well...

  15. U.S. Department of Energy Idaho National Engineering and Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Waste HistoryDescription From 1970 through the early 1980's the Idaho National Engineering and Environmental Laboratory (INEEL) accepted over 65,000 cubic meters of...

  16. Voluntary Protection Program Onsite Review, CH2M WG LLC, Idaho Cleanup Project – March 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether CH2M WG LLC, Idaho Cleanup Project is performing at a level deserving DOE-VPP Star recognition.

  17. HEART SMART NUTRITION Be a Lean Machine

    E-Print Network [OSTI]

    Lesson 6 HEART SMART NUTRITION Be a Lean Machine This Heart Smart Nutrition series can help you Heart, Lung and Blood Institute). Physical activity increases your metabolic rate, which helps to burn more calories. Plus it helps the heart and lungs function to full capacity. Exercise also helps raise

  18. HEART SMART NUTRITION Lesson Series Evaluation

    E-Print Network [OSTI]

    HEART SMART NUTRITION Lesson Series Evaluation Please check the appropriate column if you did any of these activities either before or after receiving and reading the HeartSmart Nutrition lessons. Lifestyle Practices/Activities BEFORE Reading Lessons AFTER Reading Lessons Read any heart disease and nutrition information or website

  19. SMART WATER GRID PLAN B TECHNICAL REPORT

    E-Print Network [OSTI]

    Julien, Pierre Y.

    SMART WATER GRID PLAN B TECHNICAL REPORT FALL 2014 PREPARED BY: OLGA MARTYUSHEVA IN PARTIAL of water resources is currently under stress due to climatic changes, and continuous increase in water demand linked to the global population increase. A Smart Water Grid (SWG) is a two-way real time network

  20. SMART SCHOOLS SYMPOSIUM 2013 BENCHMARKING FOR

    E-Print Network [OSTI]

    California at Davis, University of

    SYMPOSIUM 2013 7 Essential Metrics for Schools Create healthy and productive learning environments Indoor Case Study: San Bernardino City USD #12;SMART SCHOOLS SYMPOSIUM 2013 Energy Thermal AcousticsVisual IAQ Acoustics 70 Visual Comfort 61 Indoor Air Quality 77 Energy Thermal AcousticsVisual IAQ HP Grade #12;SMART

  1. SMART SCHOOLS SYMPOSIUM 2013 THE MET SACRAMENTO

    E-Print Network [OSTI]

    California at Davis, University of

    SMART SCHOOLS SYMPOSIUM 2013 THE MET SACRAMENTO Sacramento City Unified School District's First High Performance Renovation #12;SMART SCHOOLS SYMPOSIUM 2013 PRESENTATION OVERVIEW · Who: Sacramento City Unified School District · Where: The Met Sacramento High School ­ 8th/V Streets, Downtown

  2. Smart-card traffic system keeps Singapore

    E-Print Network [OSTI]

    Hunt, Julian

    Smart-card traffic system keeps Singapore in the fast lane Sir -- Recognizing the high economic tariffs from a smart card installed in a slot near the vehicle's windscreen. Infringement is registered. For expressways and approach routes leading to the city, a tiered pricing scheme operates during the peak period

  3. Algorithmic Decision Theory and the Smart Grid

    E-Print Network [OSTI]

    1 Algorithmic Decision Theory and the Smart Grid Fred Roberts Rutgers University #12;2 Algorithmic Conference on ADT ­ probably Belgium in Fall 2013. #12;9 ADT and Smart Grid ·Many of the following ideas and planning dating at least to World War II. ·But: algorithms to speed up and improve real-time decision

  4. Also in this issue: Smart Energy Systems

    E-Print Network [OSTI]

    Also in this issue: Keynote Smart Energy Systems ­ A European Perspective by Ariane Sutor, Siemens, January 2013 Special theme: Smart Energy Systems hal-00850370,version1-6Aug2013 Author manuscript@lippmann.lu) Norway:Truls Gjestland (truls.gjestland@ime.ntnu.no) Poland: Hung Son Nguyen (son@mimuw.edu.pl) Portugal

  5. Job Dislocation Making Smart Financial Choices

    E-Print Network [OSTI]

    Job Dislocation Making Smart Financial Choices after a Job Loss #12;Who We Are FINRA FINRA.workforceatm.org. #12;Job Dislocation MAKING SMART FINANCIAL CHOICES AFTER A JOB LOSS You may not be able to control in the event of unemployment; protect yourself when getting financial advice during a period of job dislocation

  6. 2011 W. Meyer Qualifizierungsbedarf Smart Metering

    E-Print Network [OSTI]

    Ulm, Universität

    1 2011 W. Meyer Qualifizierungsbedarf Smart Metering Qualifizierungsbedarf im Bereich Smart Netze und E - Mobility Willi Meyer Zentrum für Elektro- und Schulungsleiter Informationstechnik Nürnberg #12;2 2011 W. Meyer Alle Angaben wurden mit Sorgfalt und nach bestem Wissen und Gewissen erstellt. Es

  7. ESB Smart Meter Projects (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek42EOPEPODESB Smart Meter

  8. Smart Gun Technology project. Final report

    SciTech Connect (OSTI)

    Weiss, D.R.

    1996-05-01T23:59:59.000Z

    The goal of the Smart Gun Technology project is to eliminate the capability of an unauthorized user form firing a law officer`s firearm by implementing user-recognizing-and-authorizing (or {open_quotes}smart{close_quotes}) surety technologies. This project was funded by the National Institute of Justice. This report lists the findings and results of the project`s three primary objectives. First, to find and document the requirements for a smart firearm technology that law enforcement officers will value. Second, to investigate, evaluate, and prioritize technologies that meet the requirements for a law enforcement officer`s smart firearm. Third, to demonstrate and document the most promising technology`s usefulness in models of a smart firearm.

  9. Video Entity Resolution: Applying ER Techniques for Smart Video Surveillance

    E-Print Network [OSTI]

    Kalashnikov, Dmitri V.

    buildings, smart grid, and so on. In this paper, we focus on smart surveillance systems wherein video improvements on how the building is used. One of the key challenges in building smart surveillance systemsVideo Entity Resolution: Applying ER Techniques for Smart Video Surveillance Liyan Zhang Ronen

  10. Smart Meter Deployment Optimization for Efficient Electrical Appliance State Monitoring

    E-Print Network [OSTI]

    Wang, Yongcai

    appliances in buildings has attracted great attentions for smart, green and sustainable living. Traditional hard, greedy algorithm, approxi- mation ratio, smart building, sensor network I. INTRODUCTION in such buildings, researches in the field of smart building and smart grid are exploring an efficient energy

  11. Optimal Privacy-Preserving Energy Management for Smart Meters

    E-Print Network [OSTI]

    Reisslein, Martin

    Optimal Privacy-Preserving Energy Management for Smart Meters Lei Yang, Xu Chen, Junshan Zhang Abstract--Smart meters, designed for information collection and system monitoring in smart grid, report a tradeoff between the smart meter data privacy and the electricity bill. In general, a major challenge

  12. Security and Smart Metering Sophia Kaplantzis and Y. Ahmet Sekercioglu

    E-Print Network [OSTI]

    Sekercioglu, Y. Ahmet

    Security and Smart Metering Sophia Kaplantzis and Y. Ahmet S¸ekercioglu Department of Electrical the transmission network, to the suppliers back office. It encompasses concepts such as smart metering, smart does this threat translate to smart metering applications? In this article, we focus on the security

  13. Achieving Differential Privacy of Data Disclosure in the Smart Grid

    E-Print Network [OSTI]

    Wang, Yu

    -grained usage data collection. For example, smart metering data could reveal highly accurate real-time home. Index Terms--Smart Grid, Smart Meter, Privacy, Differential Privacy, Data Disclosure I. INTRODUCTION With the rapid development of the advanced meter infras- tructure (AMI) [1] as part of a move to smart grids

  14. The ERC Vision for Smart Spaces Robert F. Karlicek, Jr.

    E-Print Network [OSTI]

    Lü, James Jian-Qiang

    and Biochemical Sensing · Adaptive, self- commissioning installations · Smart Building & Grid InterfacesThe ERC Vision for Smart Spaces Robert F. Karlicek, Jr. Smart Lighting Engineering Research Center Rensselaer Polytechnic Institute #12;Solid State Lighting today · Efficient but NOT SMART · Made primarily

  15. Student Research Abstract: Trustworthy Remote Entities in the Smart Grid

    E-Print Network [OSTI]

    Oxford, University of

    Student Research Abstract: Trustworthy Remote Entities in the Smart Grid Andrew J. Paverd to enhance user privacy by introducing a novel element into the smart grid architecture. The Trustworthy a group of smart meters and the external smart grid entities. The TRE enhances user privacy by providing

  16. Inhabitant Guidance of Smart Environments Parisa Rashidi1

    E-Print Network [OSTI]

    Cook, Diane J.

    . In this paper, we describe a simulation tool that can be used to visualize activity data in a smart home, play in the context of the MavHome smart home. 1 Introduction Since the beginning, people have lived in places in the context of the MavHome smart home environment. 2 The MavHome Smart Home Environment Fig. 1. The Mav

  17. Evaluation of S-101 course ``Supervisors` Orientation to Occupational Safety in DOE`` taught in Idaho Falls, Idaho, June 23, 1992--June 26, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1992-10-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, ``Supervisors` Orientation to Occupational Safety in DOE``, (S-101) which was conducted June 23---26 at Idaho Falls Engineering Laboratory, in Idaho Falls, Idaho. Section 1.1 and 1.2 of this report summarizes the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees` written comments. Numeric course ratings were generally positive and show that the course material and instruction were very effective. Written comments supported the positive numeric ratings. The course content and knowledge gained by the trainees exceeded most of the students` expectations of the course.

  18. Evaluation of S-101 course Supervisors' Orientation to Occupational Safety in DOE'' taught in Idaho Falls, Idaho, June 23, 1992--June 26, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1992-10-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, Supervisors' Orientation to Occupational Safety in DOE'', (S-101) which was conducted June 23---26 at Idaho Falls Engineering Laboratory, in Idaho Falls, Idaho. Section 1.1 and 1.2 of this report summarizes the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees' written comments. Numeric course ratings were generally positive and show that the course material and instruction were very effective. Written comments supported the positive numeric ratings. The course content and knowledge gained by the trainees exceeded most of the students' expectations of the course.

  19. Transmission Power Allocation for Cooperative Relay-BasedNeighborhood Area Networks for Smart Grid

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01T23:59:59.000Z

    cost of consumers in smart buildings, and also balance thecost of consumers in smart buildings. without relay Totalarea networks in smart grid, where the building gateway with

  20. Smart buildings with electric vehicle interconnection as buffer for local renewables?

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    and integrated in smart buildings Is it that simple or doesN ATIONAL L ABORATORY Smart buildings with electric vehicleopportunity employer. Smart buildings with electric vehicle

  1. Smart-Metering for Monitoring Building Power Distribution Network using Instantaneous Phasor Computations of Electrical Signals

    E-Print Network [OSTI]

    K.R., Krishnanand

    2013-01-01T23:59:59.000Z

    Smart-Metering for Monitoring Building Power Distributionimplementable for smart-meters for a building. Eachcontrol node of a building so as to make smart decisions.

  2. Smart-Metering for Monitoring Building Power Distribution Network using Instantaneous Phasor Computations of Electrical Signals

    E-Print Network [OSTI]

    K.R., Krishnanand

    2013-01-01T23:59:59.000Z

    efficient operation of a smart meter network . in IndustrialGood standards for smart meters . in European EnergyHardware development for Smart Meter based innovations . in

  3. Smart buildings with electric vehicle interconnection as buffer for local renewables?

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    N ATIONAL L ABORATORY Smart buildings with electric vehicleopportunity employer. Smart buildings with electric vehicleand integrated in smart buildings Is it that simple or does

  4. Comments of DRSG to DOE Smart Grid RFI: Addressing Policy and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to smart grid Implementation: eMeter Response to Department of Energy RFI Association of Home Appliance Manufacturers Comments on Smart Grid RFI ASHRAE draft regarding Smart Grid...

  5. Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    Signals. ” SGIP NIST Smart Grid Collaboration Site. http://emix/. Last accessed: Open Smart Grid Users Group. “OpenADROpenADR technologies and Smart Grid standards activities.

  6. Smart Grid as a Driver for Energy-Intensive Industries: A Data Center Case Study

    E-Print Network [OSTI]

    Ganti, Venkata

    2014-01-01T23:59:59.000Z

    NIST Framework and Roadmap for Smart Grid InteroperabilityNIST Framework and Roadmap for Smart Grid Interoperability2012. [12] NIST Smart Grid Testing and Certification

  7. Smart antennas based on graphene

    SciTech Connect (OSTI)

    Aldrigo, Martino; Dragoman, Mircea, E-mail: mircea.dragoman@imt.ro [National Institute for Research and Development in Microtechnology (IMT), P.O. Box 38-160, 023573 Bucharest (Romania); Dragoman, Daniela [Physics Faculty, University of Bucharest, P.O. Box MG-11, 077125 Bucharest (Romania)

    2014-09-21T23:59:59.000Z

    We report two configurations of smart graphene antennas, in which either the radiation pattern of the antenna or the backscattering of the periodic metallic arrays is controlled by DC biases that induce metal-insulator reversible transitions of graphene monolayers. Such a transition from a high surface resistance (no bias) to a low surface resistance state (finite bias voltage) causes the radiation pattern of metallic antennas backed with graphene to change dramatically, from omnidirectional to broadside. Moreover, reflectarrays enhance the backscattered field due to the same metal-dielectric transition.

  8. Sandia Energy - Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting and Barrier MitigationSmart

  9. Plug Smart | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation, search Name:PipoPleasantonPlug Smart Jump to:

  10. 738 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 2, JUNE 2012 Utilizing a Smart Grid Monitoring System to Improve

    E-Print Network [OSTI]

    Simões, Marcelo Godoy

    738 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 2, JUNE 2012 Utilizing a Smart Grid Monitoring, Senior Member, IEEE Abstract--The implementation of smart grids will fundamen- tally change the approach that relies upon customer complaints. The monitoring capabilities of a smart grid will allow utilities

  11. IEEE TRANSACTIONS ON SMART GRID, VOL. 1, NO. 1, JUNE 2010 99 Security Technology for Smart Grid Networks

    E-Print Network [OSTI]

    Hu, Fei

    IEEE TRANSACTIONS ON SMART GRID, VOL. 1, NO. 1, JUNE 2010 99 Security Technology for Smart Grid for a smart grid system, including public key infrastructures and trusted computing. Index Terms--Attestation, public key infrastructure (PKI), Su- pervisory Control And Data Acquisition (SCADA), security, smart grid

  12. From Space to Smart Homes: Constraint-Based Planning for Domestic Assistance From Space to Smart Homes: Constraint-Based

    E-Print Network [OSTI]

    Flener, Pierre

    From Space to Smart Homes: Constraint-Based Planning for Domestic Assistance From Space to Smart 2009 1 / 43 #12;From Space to Smart Homes: Constraint-Based Planning for Domestic Assistance Outline 1 to Smart Homes: Constraint-Based Planning for Domestic Assistance Motivation: Contextualized Proactive

  13. Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as the Idaho National Laboratory)

    Broader source: Energy.gov [DOE]

    Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as the Idaho National Laboratory)

  14. Smart Grid Interoperability Maturity Model

    SciTech Connect (OSTI)

    Widergren, Steven E.; Levinson, Alex; Mater, J.; Drummond, R.

    2010-04-28T23:59:59.000Z

    The integration of automation associated with electricity resources (including transmission and distribution automation and demand-side resources operated by end-users) is key to supporting greater efficiencies and incorporating variable renewable resources and electric vehicles into the power system. The integration problems faced by this community are analogous to those faced in the health industry, emergency services, and other complex communities with many stakeholders. To highlight this issue and encourage communication and the development of a smart grid interoperability community, the GridWise Architecture Council (GWAC) created an Interoperability Context-Setting Framework. This "conceptual model" has been helpful to explain the importance of organizational alignment in addition to technical and informational interface specifications for "smart grid" devices and systems. As a next step to building a community sensitive to interoperability, the GWAC is investigating an interoperability maturity model (IMM) based on work done by others to address similar circumstances. The objective is to create a tool or set of tools that encourages a culture of interoperability in this emerging community. The tools would measure status and progress, analyze gaps, and prioritize efforts to improve the situation.

  15. area idaho 1990-93: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    idaho 1990-93 First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Idaho Natural Areas Network: Chuck...

  16. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah, and Wyoming pursuant to Section 595 to, NEPA and Section 401 of the Federal Water Pollution Control Act (33 U.S.C. 1341). #12;

  17. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH environmental assistance to non-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah Act of 1969 (42 U.S.C. 4321-4347; hereinafter "NEPA") and Section 401 of the Federal Water Pollution

  18. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH for providing environmental assistance to non-Federal interests in Idaho, Montana, rural Nevada, New Mexico Pollution Control Act (33 U.S.C. 1341). Compliance with all applicable environmental laws and regulations

  19. A Bibliography of Genealogical Resources at the University of Idaho Library Where to Start Searching

    E-Print Network [OSTI]

    O'Laughlin, Jay

    A Bibliography of Genealogical Resources at the University of Idaho Library Where to Start a subject search of su: Latah County Genealogy. More family histories and general guides to early settlers: Whitman County Genealogy. For many more Idaho Genealogical resources, and also for other states, try

  20. CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho

    SciTech Connect (OSTI)

    Baum, Jeffrey

    2014-03-10T23:59:59.000Z

    This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

  1. CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baum, Jeffrey

    This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

  2. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, T.R.; Lewis, M.G.

    2003-02-20T23:59:59.000Z

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  3. 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Teresa R. Meachum

    2004-02-01T23:59:59.000Z

    The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

  4. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    SciTech Connect (OSTI)

    W. Mahlon Heileson

    2006-10-01T23:59:59.000Z

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  5. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01T23:59:59.000Z

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  6. Atmospheric Mercury near Salmon Falls Creek Reservoir in Southern Idaho

    SciTech Connect (OSTI)

    Michael L. Abbott; Jeffrey J. Einerson

    2007-12-01T23:59:59.000Z

    Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over two-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran mercury analyzers. GEM, RGM, and particulate mercury (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize mercury air concentrations in the southern Idaho area for the first time, estimate mercury dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m-3) and RGM (8.1 ± 5.6 pg m-3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m-3, 3.2 ± 2.9 pg m-3 for GEM, RGM respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m-3). Seasonally-averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s-1 for GEM (spring, summer, fall, and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s-1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 µg m-2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2 – 12 ng m-3) and RGM (50 - 150 pg m-3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicated predominant source directions from the southeast (western Utah, northeastern Nevada) through the southwest (north-central Nevada) with fewer inputs from the northwest (southeastern Oregon and southwestern Idaho).

  7. Shallow faults mapped with seismic reflections: Lost River Fault, Idaho

    E-Print Network [OSTI]

    Mubarik, Ali; Miller, Richard D.; Steeples, Don W.

    1991-09-01T23:59:59.000Z

    stations 132 and 160. Total bedrock dis?lace- ment interpreted along this seismic survey line is approxa- mately 6 m, representing 4 to 6 times more displacement than is observed on either the common offset refraction section or at the surface..., vol. A, U.S. Geological Survey Open-file Report 85-290, 182-194, 1985. Crone, A. J., and M. N. Macbette, Surface faulting accompa- nying the Borah Peak earthquake, central Idaho, Geology, 12, 664-667, 1984. Crone, A. J., M. N. Macbette, M. G...

  8. Amity Elementary School, Boise, Idaho. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The design, predicted system performance, operation and maintenance instructions, and wiring and piping schematic diagrams for the recently installed active/passive solar space and hot water system for the Amity Elementary School in Boise, Idaho, are presented. 370 sq. ft. of single-glazed Solecor collectors supply the domestic hot water system and 1830 sq. ft. of collectors are utilized in the space heating system. Tanks provide hot water storage. The earth-covered school building contains 51,400 gross sq. ft. Component specifications are included. (WHK)

  9. PRIVACY IMPACT ASSESSMENT: IDAHO NATIONAL LABORATORY-TRAIN PIA

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5 Accretion-of-Duties POLICYSpecialistPOlicyIDAHO NATIONAL

  10. EM Highlights Idaho Site's 2014 Accomplishments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EM Highlights Advisory Board ContributionsIdaho

  11. Latah County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy Development JumpLars EnviroLatah County, Idaho:

  12. DOE Honors Idaho Facility with Safety Award | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2Million) Go toHonors Idaho

  13. White Bird, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: Energy Resources Jump to: navigation, search

  14. Caribou County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreen BioEnergy LLCCaribou County, Idaho: Energy

  15. Cassia County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformationMissouri: Energy ResourcesCounty, Idaho: Energy

  16. City of Albion, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,CimaCirisAlbion, Idaho (Utility

  17. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandards forandDepartment ofIdaho National

  18. Idaho Nuclear Technology and Engineering Center Tank Farm Facility |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandards forandDepartment ofIdahoDepartment

  19. Idaho Students Learning Lessons on Energy Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandardsIdaho National Laboratory

  20. Idaho's Advanced Mixed Waste Treatment Project Details 2013

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandardsIdaho NationalAccomplishments |