National Library of Energy BETA

Sample records for job safety analysis

  1. Job Safety

    Office of Environmental Management (EM)

    Job Analysis Template Job Analysis Template Job analysis is the foundation for all assessment and section decisions. This standardized document allows Shared Service Centers (SSCs)/Servicing Human Resources Offices (SHROs) and selecting officials to identify the best person for the job. A sufficient job analysis provides a way to develop this understanding by examining the tasks performed in a job, the competencies required to perform those tasks, and the connection between the tasks and

  2. Safety and Security Policy Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Safety and Health The DOE Headquarters Safety and Health Program provides information, guidelines, documentation, training, and materials pertaining to many aspects of Safety and Health within the HQ buildings. Question concerning the Headquarters Safety and Health Program can be directed to the Industrial Hygiene and Safety Office on 202-586-1005, or via e-mail to HQSafetyandHealth@hq.doe.gov. Information for Department of Energy Headquarters Personnel The Office of Industrial Hygiene

  3. Automated Job Hazards Analysis

    Broader source: Energy.gov [DOE]

    AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.

  4. Department of Energy Job Safety and Health Poster

    Broader source: Energy.gov (indexed) [DOE]

    Job Safety & Health It's the law EMPLOYEES And their Representatives have a right to: * Participate in the worksite safety and health program, including inspections of the site; *...

  5. Table-top job analysis

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The purpose of this Handbook is to establish general training program guidelines for training personnel in developing training for operation, maintenance, and technical support personnel at Department of Energy (DOE) nuclear facilities. TTJA is not the only method of job analysis; however, when conducted properly TTJA can be cost effective, efficient, and self-validating, and represents an effective method of defining job requirements. The table-top job analysis is suggested in the DOE Training Accreditation Program manuals as an acceptable alternative to traditional methods of analyzing job requirements. DOE 5480-20A strongly endorses and recommends it as the preferred method for analyzing jobs for positions addressed by the Order.

  6. FAQS Job Task Analyses - Occupational Safety | Department of Energy

    Energy Savers [EERE]

    Occupational Safety FAQS Job Task Analyses - Occupational Safety FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. PDF icon FAQS JTA - Occupational

  7. Job Safety and Health Poster | Department of Energy

    Energy Savers [EERE]

    Job Safety and Health Poster Job Safety and Health Poster Department of Energy (DOE) Job Safety and Health poster. DOE Order 440.1B Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees and title 10, Code of Federal Regulations (CFR), part 851, Worker Safety and Health Program, both require that a worker safety and health poster be posted in a prominent location to inform employees of their rights and responsibilities. In the past, DOE has

  8. FAQS Job Task Analyses- Nuclear Safety Specialist

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  9. FAQS Job Task Analyses- Criticality Safety

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  10. NREL Job Task Analysis: Quality Control Inspector | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Control Inspector NREL Job Task Analysis: Quality Control Inspector A summary of job task analyses for the position of quality control inspector when evaluating ...

  11. NREL Job Task Analysis: Crew Leader | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crew Leader NREL Job Task Analysis: Crew Leader A summary of job task analyses for the position of crew leader when conducting weatherization work on a residence. PDF icon NREL Job Task Analysis: Crew Leader More Documents & Publications Training Self-Assessment NREL Job Task Analysis: Quality Control Inspector

  12. NREL Job Task Analysis: Energy Auditor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Auditor NREL Job Task Analysis: Energy Auditor A summary of job task analyses for the position of energy auditor when evaluating a residence before and during weatherization work. PDF icon NREL Job Task Analysis: Energy Auditor More Documents & Publications NREL Job Task Analysis: Quality Control Inspector Training Self-Assessment

  13. FAQS Job Task Analyses- DOE Aviation Safety Officer

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  14. FAQS Job Task Analyses- Electrical Systems and Safety Oversight

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  15. FAQS Job Task Analyses- Nuclear Explosive Safety Study

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  16. FAQS Job Task Analyses- Senior Technical Safety Manager

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  17. Employee Job Task Analysis (EJTA) PIA, Richland Operations Office |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Job Task Analysis (EJTA) PIA, Richland Operations Office Employee Job Task Analysis (EJTA) PIA, Richland Operations Office Employee Job Task Analysis (EJTA) PIA, Richland Operations Office PDF icon Employee Job Task Analysis (EJTA) PIA, Richland Operations Office More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System (01&15) PIA, Idaho National Laboratory PIA - GovTrip (DOE data

  18. K Basin safety analysis

    SciTech Connect (OSTI)

    Porten, D.R.; Crowe, R.D.

    1994-12-16

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  19. Job Creation Analysis in the Hydrogen and Fuel Cell Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Creation Analysis in the Hydrogen and Fuel Cell Industry Job Creation Analysis in the Hydrogen and Fuel Cell Industry Presented by Paul Aresta at the Connecticut Center for ...

  20. NREL Job Task Analysis: Retrofit Installer Technician

    Broader source: Energy.gov [DOE]

    A summary of job task analyses for the position of retrofit installer technician when conducting weatherization work on a residence.

  1. Employee Job Task Analysis (EJTA) - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Occupational Health Services > Employee Job Task Analysis (EJTA) Occupational Health Services Behavioral Health Services Beryllium Beryllium-Associated Worker Registry Emergency Preparedness Employee Job Task Analysis (EJTA) Environmental Management System (EMS) Epidemiology/Health Data Analysis Human Reliability Program (HRP) Industrial Rehabilitation & Ergonomics Infection Control & Immunizations Influenza Immunization Program Medical Exam Scheduling Medical Exams Return to Work

  2. NREL Job Task Analysis: Quality Control Inspector

    SciTech Connect (OSTI)

    Kurnik, C.; Woodley, C.

    2011-05-01

    A summary of job task analyses for the position of quality control inspector when evaluating weatherization work that has been done on a residence.

  3. NREL Job Task Analysis: Energy Auditor

    SciTech Connect (OSTI)

    Kurnik, C.; Woodley, C.

    2011-05-01

    A summary of job task analyses for the position of energy auditor when evaluating a residence before and during weatherization work.

  4. CRAD, Facility Safety- Documented Safety Analysis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Documented Safety Analysis.

  5. NREL: Energy Analysis - Jobs and Economic Development Impact (JEDI) Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Printable Version JEDI Fact Sheet The cover of JEDI: Jobs and Economic Development Impacts Model factsheet. PDF 563 KB The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local and state levels. First developed by NREL's WINDExchange program to model wind energy impacts, JEDI has been expanded to analyze biofuels, coal, concentrating solar power,

  6. Technical Standards, Safety Analysis Toolbox Codes - November...

    Office of Environmental Management (EM)

    2003 Technical Standards, Safety Analysis Toolbox Codes - November 2003 November 2003 Software Quality Assurance Plan and Criteria for the Safety Analysis Toolbox Codes Safety...

  7. NREL: Energy Analysis - Jobs and Economic Competitiveness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Policy Impacts Analysis Workforce Development Competitive Advantage Competitve ... Energy Analysis Home Capabilities & Expertise Key Activities Analysis of Project Finance ...

  8. safety analysis report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  9. Job Safety

    Broader source: Energy.gov (indexed) [DOE]

    health poster; Copies of their medical records and records of their exposures to toxic and harmful substances or conditions; and Results of inspections and accident...

  10. Corporate Analysis of DOE Safety Performance

    Broader source: Energy.gov [DOE]

    The Office of Environment, Health, Safety and Security (EHSS), Office of Analysis develops analysis tools and performance dashboards, and conducts analysis of DOE safety performance corporately and on a variety of specific environment, safety and health topics.

  11. Transient Safety Analysis of Fast

    Office of Scientific and Technical Information (OSTI)

    52 Transient Safety Analysis of Fast Spectrum tRu Burning LWRs with Internal Blankets Reactor Concepts Dr. Thomas Downar University of Michigan In collaboration with: Massachusetts Institute of Technology Argonne National Laboratory Thomas Sowinski, Federal POC Temitope Taiwo, Technical POC FINAL REPORT Project Title: Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with Internal Blankets Covering Period: Final Date of Report: January 31, 2015 Recipient: University of Michigan 2355

  12. Events Beyond Design Safety Basis Analysis

    Broader source: Energy.gov [DOE]

    This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis. [Safety Bulletin 2011-01

  13. Safety System Oversight Staffing Analysis - Example | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Oversight Staffing Analysis - Example Safety System Oversight Staffing Analysis - Example Office spreadsheet icon SSO Alternate Staffing Analysis - Example Filled ...

  14. CRAD, Nuclear Safety Delegations for Documented Safety Analysis...

    Broader source: Energy.gov (indexed) [DOE]

    5 Nuclear Safety Delegations for Documented Safety Analysis Approval (EA CRAD 31-09, Rev. 0) This Criteria Review and Approach Document (EA CRAD 31-09, Rev. 0) provides objectives,...

  15. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    SciTech Connect (OSTI)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly evaluated and identified. This document supersedes the seismic classifications, assignments, and computations in ''Seismic Analysis for Preclosure Safety'' (BSC 2004a).

  16. NREL Job Task Analysis: Retrofit Installer Technician (Revised)

    Broader source: Energy.gov [DOE]

    A summary of job task analyses for the position of retrofit installer technician when conducting weatherization work on a residence.

  17. NREL Job Task Analysis: Retrofit Installer Technician (Revised)

    SciTech Connect (OSTI)

    Kurnik, C.; Woodley, C.

    2012-04-01

    A summary of job task analyses for the position of retrofit installer technician when conducting weatherization work on a residence.

  18. Monthly Analysis of Electrical Safety Occurrences - February...

    Broader source: Energy.gov (indexed) [DOE]

    information for information exchange and continual learning. Monthly Analysis of Electrical Safety Occurrences - February 2011 More Documents & Publications Monthly Analysis of...

  19. Safety System Oversight Staffing Analysis (Instructions, Blank...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety System Oversight Staffing Analysis (Instructions, Blank Sheet and Example Sheet) This Staffing Analysis calculation is completed using an Excel worksheet. Information ...

  20. System Safety Common Cause Analysis

    Energy Science and Technology Software Center (OSTI)

    1992-03-10

    The COMCAN fault tree analysis codes are designed to analyze complex systems such as nuclear plants for common causes of failure. A common cause event, or common mode failure, is a secondary cause that could contribute to the failure of more than one component and violates the assumption of independence. Analysis of such events is an integral part of system reliability and safety analysis. A significant common cause event is a secondary cause common tomore » all basic events in one or more minimal cut sets. Minimal cut sets containing events from components sharing a common location or a common link are called common cause candidates. Components share a common location if no barrier insulates any one of them from the secondary cause. A common link is a dependency among components which cannot be removed by a physical barrier (e.g.,a common energy source or common maintenance instructions).« less

  1. Solid waste burial grounds interim safety analysis

    SciTech Connect (OSTI)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  2. Methods and criteria for safety analysis (FIN L2535)

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    In response to the NRC request for a proposal dated October 20, 1992, Westinghouse Savannah River Company (WSRC) submit this proposal to provide contractural assistance for FIN L2535, ``Methods and Criteria for Safety Analysis,`` as specified in the Statement of Work attached to the request for proposal. The Statement of Work involves development of safety analysis guidance for NRC licensees, arranging a workshop on this guidance, and revising NRC Regulatory Guide 3.52. This response to the request for proposal offers for consideration the following advantages of WSRC in performing this work: Experience, Qualification of Personnel and Resource Commitment, Technical and Organizational Approach, Mobilization Plan, Key Personnel and Resumes. In addition, attached are the following items required by the NRC: Schedule II, Savannah River Site - Job Cost Estimate, NRC Form 189, Project and Budget Proposal for NRC Work, page 1, NRC Form 189, Project and Budget Proposal for NRC Work, page 2, Project Description.

  3. A framework for graph-based synthesis, analysis, and visualization of HPC cluster job data.

    SciTech Connect (OSTI)

    Mayo, Jackson R.; Kegelmeyer, W. Philip, Jr.; Wong, Matthew H.; Pebay, Philippe Pierre; Gentile, Ann C.; Thompson, David C.; Roe, Diana C.; De Sapio, Vincent; Brandt, James M.

    2010-08-01

    The monitoring and system analysis of high performance computing (HPC) clusters is of increasing importance to the HPC community. Analysis of HPC job data can be used to characterize system usage and diagnose and examine failure modes and their effects. This analysis is not straightforward, however, due to the complex relationships that exist between jobs. These relationships are based on a number of factors, including shared compute nodes between jobs, proximity of jobs in time, etc. Graph-based techniques represent an approach that is particularly well suited to this problem, and provide an effective technique for discovering important relationships in job queuing and execution data. The efficacy of these techniques is rooted in the use of a semantic graph as a knowledge representation tool. In a semantic graph job data, represented in a combination of numerical and textual forms, can be flexibly processed into edges, with corresponding weights, expressing relationships between jobs, nodes, users, and other relevant entities. This graph-based representation permits formal manipulation by a number of analysis algorithms. This report presents a methodology and software implementation that leverages semantic graph-based techniques for the system-level monitoring and analysis of HPC clusters based on job queuing and execution data. Ontology development and graph synthesis is discussed with respect to the domain of HPC job data. The framework developed automates the synthesis of graphs from a database of job information. It also provides a front end, enabling visualization of the synthesized graphs. Additionally, an analysis engine is incorporated that provides performance analysis, graph-based clustering, and failure prediction capabilities for HPC systems.

  4. DOE's Safety Bulletin No. 2011-01, Events Beyond Design Safety Basis Analysis, March 2011

    Broader source: Energy.gov [DOE]

    This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis.

  5. Hot Cell Facility (HCF) Safety Analysis Report

    SciTech Connect (OSTI)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  6. Autoclave nuclear criticality safety analysis

    SciTech Connect (OSTI)

    D`Aquila, D.M.; Tayloe, R.W. Jr.

    1991-12-31

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  7. HANFORD SAFETY ANALYSIS & RISK ASSESSMENT HANDBOOK (SARAH)

    SciTech Connect (OSTI)

    EVANS, C B

    2004-12-21

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S&M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard.

  8. Volume II - Accident and Operational Safety Analysis Handbook

    Broader source: Energy.gov (indexed) [DOE]

    208-2012 July 2012 DOE HANDBOOK Accident and Operational Safety Analysis Volume II: ... This Department of Energy (DOE) Accident and Operational Safety Analysis Handbook ...

  9. DOE's Safety Bulletin No. 2011-01, Events Beyond Design Safety Basis Analysis, March 2011

    Broader source: Energy.gov [DOE]

    PURPOSE This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis.

  10. Preliminary Analysis of the Jobs and Economic Impacts of 1603 Treasury Grant Program

    Broader source: Energy.gov [DOE]

    This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy (DOE-EERE) to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the §1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of solar photovoltaic (PV) and large wind (greater than 1 MW) projects funded by the §1603 grant program. Through November 10, 2011, the §1603 grant program has provided approximately $9.0 billion in funds to over 23,000 PV and large wind projects, comprising 13.5 GW of electric generating capacity.

  11. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect (OSTI)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  12. Monitoring Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Jobs Monitoring Jobs Monitoring Hopper Batch Jobs See the man pages for more options. The Job Information page has more information on current queue status, completed...

  13. RL-2007EmployeeJobTaskAnalysis(EJTA)PIA.pdf

    Energy Savers [EERE]

    Department of Energy RAMP Contractors Enforcement Letter, WEL-2014-03 - May 21, 2014 RAMP Contractors Enforcement Letter, WEL-2014-03 - May 21, 2014 May 21, 2014 Worker Safety and Health Enforcement Letter issued to Multiple National Nuclear Security Administration Contractors On May 21, 2014, the U.S. Department of Energy (DOE) Office of Independent Enterprise Assessment's Office of Enforcement issued an Enforcement Letter (WEL-2014-03) to Honeywell Federal Manufacturing & Technologies,

  14. FAQS Gap Analysis Qualification Card - Occupational Safety | Department

    Energy Savers [EERE]

    of Energy Occupational Safety FAQS Gap Analysis Qualification Card - Occupational Safety Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard. File Occupational Safety Gap Analysis Qualification Card More Documents & Publications FAQS Gap Analysis Qualification Card - Environmental Restoration FAQS Gap Analysis Qualification Card - Waste Management FAQS Gap Analysis Qualification Card -

  15. K West integrated water treatment system subproject safety analysis document

    SciTech Connect (OSTI)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  16. CRAD, New Nuclear Facility Documented Safety Analysis and Technical...

    Broader source: Energy.gov (indexed) [DOE]

    December 2, 2014 New Nuclear Facility Documented Safety Analysis and Technical Safety Requirements Criteria Review and Approach Document (EA CRAD 31-07, Rev. 0) CRAD, New Nuclear...

  17. SYNTHESIS OF SAFETY ANALYSIS AND FIRE HAZARD ANALYSIS METHODOLOGIES

    SciTech Connect (OSTI)

    Coutts, D

    2007-04-17

    Successful implementation of both the nuclear safety program and fire protection program is best accomplished using a coordinated process that relies on sound technical approaches. When systematically prepared, the documented safety analysis (DSA) and fire hazard analysis (FHA) can present a consistent technical basis that streamlines implementation. If not coordinated, the DSA and FHA can present inconsistent conclusions, which can create unnecessary confusion and can promulgate a negative safety perception. This paper will compare the scope, purpose, and analysis techniques for DSAs and FHAs. It will also consolidate several lessons-learned papers on this topic, which were prepared in the 1990s.

  18. Monitoring Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Jobs Monitoring Jobs Overview Please see the man pages of the commands below for more options. The Job Information page has more information on current queue status, completed jobs, and job summary statistics. Command Description qsub batch_script Submit batch script to queue; returns job_id. qdel job_id Delete job from queue. qhold job_id Place job on hold in queue. qrls job_id Release held job. qalter Change attributes of submitted job. qmove new_queue job_id Move job to a different

  19. Hanford safety analysis and risk assessment handbook (SARAH)

    SciTech Connect (OSTI)

    GARVIN, L.J.

    2003-01-20

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 1,2, and 3 U.S. Department of Energy (DOE) nuclear facilities. SARAH describes currently acceptable methodology for development of a Documented Safety Analysis (DSA) and derivation of technical safety requirements (TSR) based on 10 CFR 830, ''Nuclear Safety Management,'' Subpart B, ''Safety Basis Requirements,'' and provides data to ensure consistency in approach.

  20. Volume II - Accident and Operational Safety Analysis Handbook

    Energy Savers [EERE]

    208-2012 July 2012 DOE HANDBOOK Accident and Operational Safety Analysis Volume II: Operational Safety Analysis Techniques U.S. Department of Energy Washington, D.C. 20585 NOT MEASUREMENT SENSITIVE DOE-HDBK-1208-2012 i ACKNOWLEDGEMENTS This Department of Energy (DOE) Accident and Operational Safety Analysis Handbook was prepared under the sponsorship of the DOE Office of Health Safety and Security (HSS), Office of Corporate Safety Programs, and the Energy Facility Contractors Operating Group

  1. Monitoring Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Jobs Monitoring Jobs This page provides a basic job control and monitoring overview for SLURM. Monitoring Cori Batch Jobs Job control We describe the most commonly used commands to monitor, submit and hold jobs on Cori. For more information please refer to the man pages of these commands. Job Commands Command Description sqs NERSC custom script lists jobs in the queue with job ranking squeue Lists jobs in the queue sinfo Prints queue infinformation about nodes and partitions sbatch

  2. Safety analysis report for packaging upgrade plan

    SciTech Connect (OSTI)

    Kelly, D.L., Westinghouse Hanford

    1996-12-09

    This Safety Analysis Report for Packaging (SARP) Upgrade Plan reflects a SARP upgrade schedule based on the most current program needs. A performance agreement has been assigned, beginning in FY 1997, to update, revise, and/or cancel 20 percent of the existing onsite SARPS, so that 100 percent are reviewed and within current standards by the completion of the Project Hanford Management Contract (five-year period).

  3. CRAD, Nuclear Safety Delegations for Documented Safety Analysis Approval – January 8, 2015 (EA CRAD 31-09, Rev. 0)

    Broader source: Energy.gov [DOE]

    CRAD, Nuclear Safety Delegations for Documented Safety Analysis Approval – January 8, 2015 (EA CRAD 31-09, Rev. 0)

  4. FFTF Final Safety Analysis Report Amendment 82

    SciTech Connect (OSTI)

    DAUTEL, W.A.

    2003-03-01

    This is the Final Safety Analysis Report (FSAR) Amendment 82 for incorporation into the Fast Flux Test Facility (FFTF) FSAR set assigned to you. This page change amendment incorporates changes previously approved by the U.S. Department of Energy, Richland Operations Office. This amendment provides updates to the FSAR to facilitate FFTF shutdown and deactivation. Among the changes are the following: Chapter 11 is updated to describe upgrades to the Solid Waste Cask. Additional fuel handling accidents are added to Chapter 15. Appendix G is revised to clearly identify systems and their safety functions. Appendix H is revised to remove the discussion of material that has been removed from the Interim Storage Area. Appendix I is revised to provide a general description of liquid metal removal from FFTF. Other changes include minor technical updates from the FSAR annual review and editorial and procedure references.

  5. Running Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Also pointers to more NERSC documentations on SLURM. Read More Interactive Jobs Learn how to run interactive jobs on Cori. Read More Batch Jobs SLURM keywords and...

  6. Monitoring Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Jobs Monitoring Jobs Overview Please see the man pages of the commands below for more options. The Job Information page has more information on current queue status,...

  7. Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the 1603Treasury Grant Program

    SciTech Connect (OSTI)

    Steinberg, Daniel; Porro, Gian; Goldberg, Marshall

    2012-04-01

    This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the 1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the 1603 grant program.

  8. Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the 1603 Treasury Grant Program

    SciTech Connect (OSTI)

    Steinberg, Daniel; Porro, Gian; Goldberg, Marshall

    2012-04-09

    This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the 1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the 1603 grant program.

  9. Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the ..Section..1603 Treasury Grant Program

    SciTech Connect (OSTI)

    Steinberg, D.; Porro, G.; Goldberg, M.

    2012-04-01

    This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the Section 1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the Section 1603 grant program.

  10. Safety System Oversight Staffing Analysis - Blank Sheet | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety System Oversight Staffing Analysis - Blank Sheet This Staffing Analysis calculation is completed using an Excel worksheet. Information locations are identified by titles in ...

  11. Monthly Analysis of Electrical Safety Occurrences - January 2011...

    Broader source: Energy.gov (indexed) [DOE]

    information for information exchange and continual learning. Monthly Analysis of Electrical Safety Occurrences - January 2011 More Documents & Publications Monthly Analysis of...

  12. Monthly Analysis of Electrical Safety Occurrences - May 2011...

    Broader source: Energy.gov (indexed) [DOE]

    information for information exchange and continual learning. Monthly Analysis of Electrical Safety Occurrences - May 2011 More Documents & Publications Monthly Analysis of...

  13. Monthly Analysis of Electrical Safety Occurrences - April 2011...

    Broader source: Energy.gov (indexed) [DOE]

    information for information exchange and continual learning. Monthly Analysis of Electrical Safety Occurrences - April 2011 More Documents & Publications Monthly Analysis of...

  14. Monthly Analysis of Electrical Safety Occurrences - March 2011...

    Energy Savers [EERE]

    analysis of March 2011 and past information for information exchange and continual learning. PDF icon Monthly Analysis of Electrical Safety Occurrences - March 2011 More...

  15. Safety analysis report for packaging upgrade plan

    SciTech Connect (OSTI)

    KELLY, D.L.

    1998-11-18

    This Safety Analysis Report for Packaging (SARP) Upgrade Plan reflects a revised SARP upgrade schedule based on the most current program needs. A Project Hanford Management Contract (PHMC) Performance Expectation exists to update, revise, and/or cancel seven onsite SARPS during FY 1999. It is the U.S. Department of Energy's desire that 100% of the SARPs (which existed at the beginning of the PHMC Contract) be upgraded, revised, and/or canceled by the end of the five year contract. This plan is a ''living'' document and is used as a management tool.

  16. 242-A evaporator safety analysis report

    SciTech Connect (OSTI)

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  17. Analysis of Integrated Safety Management at the Activity Level: Work

    Energy Savers [EERE]

    Planning and Control, Final Report | Department of Energy Integrated Safety Management at the Activity Level: Work Planning and Control, Final Report Analysis of Integrated Safety Management at the Activity Level: Work Planning and Control, Final Report May 15, 2013 Presenter: Stephen L. Domotor, Director, Office of Analysis, Office of Health, Safety and Security Topic: On August 28, 2012, the Defense Nuclear Facilities Safety Board (DNFSB or "Board") wrote to the Department of

  18. Monthly Analysis of Electrical Safety Occurrences - January 2012 |

    Energy Savers [EERE]

    Department of Energy 2 Monthly Analysis of Electrical Safety Occurrences - January 2012 January 2012 An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning. The report discusses the quantitative analysis of January 2012 and past information for information exchange and continual learning. PDF icon Monthly Analysis of Electrical Safety Occurrences - January 2012 More

  19. Monthly Analysis of Electrical Safety Occurrences - October 2012 |

    Energy Savers [EERE]

    Department of Energy 2 Monthly Analysis of Electrical Safety Occurrences - October 2012 October 2012 An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning. The report discusses the quantitative analysis of October 2012 and past information for information exchange and continual learning. PDF icon Monthly Analysis of Electrical Safety Occurrences - October 2012 More

  20. Monitoring Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Jobs Monitoring Jobs Monitoring Hopper Batch Jobs See the man pages for more options. The Job Information page has more information on current queue status, completed jobs, ALPS logs and job summary statistics. Job Commands Command Description qsub batch_script Submits batch script to the queue. The output of qsub will be a jobid qdel jobid Deletes a job from the queue qhold jobid Puts a job on hold in the queue. To delete a job from the hopper xfer queue users must add an additional

  1. Monthly Analysis of Electrical Safety Occurrences – February 2013

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  2. Monthly Analysis of Electrical Safety Occurrences – September 2011

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  3. Safety analysis of in-use vehicle wrapping cylinder

    Broader source: Energy.gov [DOE]

    The focus of this presentation is on the security analysis for wrapped cylinders used in vehicles and analyzing safety conditions and environmental effects through testing.

  4. Monthly Analysis of Electrical Safety Occurrences – May 2012

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  5. Monthly Analysis of Electrical Safety Occurrences – April 2013

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  6. CRAD, Documented Safety Analysis Development- April 23, 2013

    Broader source: Energy.gov [DOE]

    Review of Documented Safety Analysis Development for the Hanford Site Waste Treatment and Immobilization Plant (LBL Facilities) (HSS CRAD 45-58, Rev. 0)

  7. Monthly Analysis of Electrical Safety Occurrences – September 2013

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  8. Monthly Analysis of Electrical Safety Occurrences – December 2012

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  9. Monthly Analysis of Electrical Safety Occurrences – July 2011

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  10. Monthly Analysis of Electrical Safety Occurrences – July 2012

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  11. Monthly Analysis of Electrical Safety Occurrences – May 2013

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  12. Monthly Analysis of Electrical Safety Occurrences – June 2011

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  13. Monthly Analysis of Electrical Safety Occurrences – November 2011

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  14. Monthly Analysis of Electrical Safety Occurrences – March 2013

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  15. Monthly Analysis of Electrical Safety Occurrences – August 2012

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  16. Monthly Analysis of Electrical Safety Occurrences – April 2012

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  17. Monthly Analysis of Electrical Safety Occurrences – January 2013

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  18. Monthly Analysis of Electrical Safety Occurrences – October 2011

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  19. Monthly Analysis of Electrical Safety Occurrences – August 2011

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  20. Monthly Analysis of Electrical Safety Occurrences – November 2012

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  1. Monthly Analysis of Electrical Safety Occurrences – June 2013

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  2. Monthly Analysis of Electrical Safety Occurrences – July 2013

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  3. Monthly Analysis of Electrical Safety Occurrences – August 2013

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  4. Monthly Analysis of Electrical Safety Occurrences – February 2012

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  5. Monthly Analysis of Electrical Safety Occurrences – September 2012

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  6. Monthly Analysis of Electrical Safety Occurrences – March 2012

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  7. Monthly Analysis of Electrical Safety Occurrences – June 2012

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  8. Monthly Analysis of Electrical Safety Occurrences – December 2011

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  9. Jobs | Department of Energy

    Energy Savers [EERE]

    Jobs We offer an unequalled variety of opportunities for individuals in a wide range of professional disciplines: from science and engineering to business and program analysis....

  10. Preparation of Documented Safety Analysis for Decommissioning...

    Office of Environmental Management (EM)

    should be addressed to: Office of Nuclear Safety (AU-30) Office of Environment, Health, ... The requirements for power, cooling water, and other external supplies to the ...

  11. Running jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Euclid is a single node system with 48 processors. It supports both multiprocessing (MPI) and multithreading programming models. Interactive Jobs All Euclid jobs are...

  12. Interactive Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Jobs Interactive Jobs Serial Code or Commands Franklin is a massively parallel high-performance computing platform and is intended and designed to run large parallel...

  13. TA-55 Final Safety Analysis Report Comparison Document and DOE Safety Evaluation Report Requirements

    SciTech Connect (OSTI)

    Alan Bond

    2001-04-01

    This document provides an overview of changes to the currently approved TA-55 Final Safety Analysis Report (FSAR) that are included in the upgraded FSAR. The DOE Safety Evaluation Report (SER) requirements that are incorporated into the upgraded FSAR are briefly discussed to provide the starting point in the FSAR with respect to the SER requirements.

  14. Job Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Opportunities CAMD Associate Director - Senior Accelerator Physicist and Group Director

  15. SNF fuel retrieval sub project safety analysis document

    SciTech Connect (OSTI)

    BERGMANN, D.W.

    1999-02-24

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

  16. Safety analysis report for the Waste Storage Facility. Revision 2

    SciTech Connect (OSTI)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  17. Running jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running jobs Running jobs Overview and Basic Description Euclid is a single node system with 48 processors. It supports both multiprocessing (MPI) and multithreading programming models. Interactive Jobs All Euclid jobs are interactive. To launch an MPI job, type in this at the shell prompt: % mpirun -np numprocs executable_name where numprocs is the total number of MPI processes that will be executed. Interactive Usage Policy Due to the dynamic and unpredictable nature of visualization and data

  18. Submitting Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitting Jobs Submitting Jobs Submitting your job If you are submitting your job on Genepool or Phoebe you do NOT need to source any batch settings. The batch environment has been loaded into your path by default. If qsub is not working properly, check to make sure that the uge module is loaded: module load uge If you are submitting a job from an external submit host you need to source the appropriate settings.sh file for Genepool or Phoebe. source

  19. US ITER | Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postings Careers in Fusion Science ITER Jobs Home > Jobs > Careers in Fusion Science Learn More About Working at US ITER and Careers in Fusion Science Jan Berry Takes a Different Path (US ITER Tokamak Cooling Water System Team Leader) Ted Biewer: An International Career in Plasma Diagnostics (Fusion Energy Division, ORNL) video Frank Casella: Assuring Safety and Quality (US ITER Quality Assurance Officer) Kevin Chan: Optimizing Superconducting Strand (US ITER Toroidal Field Coil Conductor

  20. Safety System Oversight Staffing Analysis (Instructions, Blank Sheet and

    Energy Savers [EERE]

    Example Sheet) | Department of Energy Safety System Oversight Staffing Analysis (Instructions, Blank Sheet and Example Sheet) Safety System Oversight Staffing Analysis (Instructions, Blank Sheet and Example Sheet) This Staffing Analysis calculation is completed using an Excel worksheet. Information locations are identified by titles in column or row headings and worksheet locations based on the unmodified blank worksheet. Use caution when making worksheet modifications since changes to the

  1. Safety Analysis Report Update Program: Overview and Phase 1 implementation

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    During FY 1989, the DOE-Oak Ridge Operations (ORO) office formed joint Operating Contractor/DOE-ORO organizations to address safety analysis related issues. The Safety Analysis Report Working Group (SARWG) took on the task of developing a strategy to address the issue of updating SARs to today's standards. The resulting SAR Update Program was approved by the Safety Analysis Report Management Group (SARMG) and on November 6, 1989, was accepted by the senior management of DOE-ORO, and its operating contractors, including Martin Marietta Energy Systems, Inc. This SAR Update Program consists of five phases: Phase 0 -- continued operation evaluations; Phase 1 -- hazard classification and qualitative analysis; Phase 1A -- updated operational safety requirements; Phase 2 -- quantitative accident analysis; and, Phase 3 -- complete DOE-approved SARs. 8 refs., 17 figs., 6 tabs.

  2. CRAD, Preliminary Documented Safety Analysis - July 25, 2014...

    Broader source: Energy.gov (indexed) [DOE]

    4 Preliminary Documented Safety Analysis (IEA CRAD 31-2, REV. 0) This Criteria Review and Approach Document (IEA CRAD 31-2, REV. 0) provides objectives, criteria, and approaches...

  3. Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with...

    Office of Scientific and Technical Information (OSTI)

    The objective of this proposal was to perform a detailed transient safety analysis of the Resource-Renewable BWR (RBWR) core designs using the U.S. NRC TRACEPARCS code system. ...

  4. Preparation Of Nonreactor Nuclear Facility Documented Safety Analysis

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-12

    This Department of Energy (DOE) Standard (STD), DOE-STD-3009-2014, describes a method for preparing a Documented Safety Analysis (DSA) that is acceptable to DOE for nonreactor nuclear facilities.

  5. Using PDSF Job Arrays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Job Arrays Using Job Arrays Job arrays have many advantages, including reduced load on the batch system, faster job submission, and easier job management. If you find...

  6. Exploratory Nuclear Reactor Safety Analysis and Visualization via

    Office of Scientific and Technical Information (OSTI)

    Integrated Topological and Geometric Techniques (Technical Report) | SciTech Connect Technical Report: Exploratory Nuclear Reactor Safety Analysis and Visualization via Integrated Topological and Geometric Techniques Citation Details In-Document Search Title: Exploratory Nuclear Reactor Safety Analysis and Visualization via Integrated Topological and Geometric Techniques A recent trend in the nuclear power engineering field is the implementation of heavily computational and time consuming

  7. Safety analysis approaches or mixed transuranic waste.

    SciTech Connect (OSTI)

    Courtney, J. C.; Dwight, C. C.; Forrester, R. J.; Lehto, M. A.; Pan, Y. C.

    1999-02-10

    Argonne National Laboratory (ANL) has completed a survey of assumptions and techniques used for safety analyses at seven sites that handle or store mixed transuranic (TRU) waste operated by contractors for the US Department of Energy (DOE). While approaches to estimating on-site and off-site consequences of hypothetical accidents differ, there are commonalities in all of the safety studies. This paper identifies key parameters and methods used to estimate the radiological consequences associated with release of waste forms under abnormal conditions. Specific facilities are identified by letters with their safety studies listed in a bibliography rather than as specific references so that similarities and differences are emphasized in a nonjudgmental manner. References are provided for specific parameters used to project consequences associated with compromise of barriers and dispersion of potentially hazardous materials. For all of the accidents and sites, estimated dose commitments are well below guidelines even using highly conservative assumptions. Some of the studies quantified the airborne concentrations of toxic materials; this paper only addresses these analyses briefly, as an entire paper could be dedicated to this subject.

  8. Running Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitting Jobs To Mendel+ How to submit your job to the UGE. Read More Running with Java Solutions to some of the common problems users have with running on Genepool when the...

  9. Running jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jobs may be run on Edison by requesting resources from the batch system. "salloc -p debug -N " is the basic command to request interactive resources. Read More Batch Jobs...

  10. Office of Safety | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Office of Safety Office of Safety NNSA's Asset Management Program Completes First Pilot The...

  11. Interactive Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Jobs Interactive Jobs To run an interactive job on Hopper's compute nodes you must request the number of nodes you want and have the system allocate resources from the pool of free nodes. The following command requests 2 nodes using the interactive queue. hopper% qsub -I -q debug -l mppwidth=48 The -I flag specifies an interactive job. The -q flag specifies the name of the queue and -l mppwidth determines the number of nodes to allocate for your job, but not as you might expect. The

  12. Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batch Jobs Batch Jobs Overview Batch jobs are jobs that run non-interactively under the control of a "batch script," which is a text file containing a number of job directives and Linux commands or utilities. Batch scripts are submitted to the "batch system," where they are queued awaiting free resources. The batch scheduler/resource manager for Cori is SLURM. Bare-bones batch script A very simple SLURM batch script will look like this. #!/bin/bash -l #SBATCH -p regular

  13. Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batch Jobs Batch Jobs Overview Batch jobs are jobs that run non-interactively under the control of a "batch script," which is a text file containing a number of job directives and LINUX commands or utilities. Batch scripts are submitted to the "batch system," where they are queued awaiting free resources on Hopper. The batch system on Hopper is known as "Torque." Bare-Bones Batch Script The simplest Hopper batch script will look something like this. #PBS -q regular

  14. Exploratory Nuclear Reactor Safety Analysis and Visualization...

    Office of Scientific and Technical Information (OSTI)

    methodologies allows a systematic approach to uncertainty ... Second, we enable exploratory analysis for users, where ... Country of Publication: United States Language: English Subject: ...

  15. Safety analysis report for packaging (onsite) steel drum

    SciTech Connect (OSTI)

    McCormick, W.A.

    1998-09-29

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

  16. Corporate Analysis of DOE Safety Performance | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Current Safety Performance Trends The Office of Environment, Health, Safety and Security, ... Strategic Safety Goals Occupational Safety Performance Occurrence Reporting Trends For ...

  17. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  18. Running Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Queues and Policies Monitoring Jobs Using OpenMP with MPI Memory Considerations Runtime Tuning Options Running Large Scale Jobs Trouble Shooting and Error Messages Completed Jobs How Usage Is Charged File Storage and I/O Software and Tools Debugging and profiling Performance and Optimization Cray XE Documentation Cluster Compatibility Mode Hopper, Cray XE6 Carver Jesup Dirac Edison Phase I Euclid - Retired 01/31/2013 Franklin - Retired 04/30/12 Bassi Storage & File Systems Data &

  19. US ITER | Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postings Careers in Fusion Science ITER Jobs Home > Jobs > International Job Postings International ITER Postions International

  20. FFTF Final Safety Analysis Report Amendment 81 [SEC 1 & 2

    SciTech Connect (OSTI)

    DAUTEL, W.A.

    2002-01-10

    Since the last reactor operation of FFTF in March of 1992, the FFTF has either been in a programmatic status of Standby or Shutdown. The facility hazards have decreased markedly. Rather than making extensive Final Safety Analysis Report (FSAR) changes, Appendix G was prepared to reflect the design and operation during Standby or Shutdown. Appendix G describes the application of the entire FSAR for the current configuration, accounting for the natural reduction in hazards and new system configurations associated with Standby/Shutdown. The technical system chapters and the safety analysis chapter of the FSAR describe how the design and operation fulfilled the requirements necessary to support reactor operation; this information is retained for design basis and historical information. This Final Safety Analysis Report (FSAR) is submitted per the requirements of Paragraph 014, Energy Research and Development Administration (ERDA) Manual Chapter 0540, ''Safety of ERDA-Owned Reactors.'' This FSAR and its supporting documentation provide a complete description and safety evaluation of the site, plant design, normal and emergency operations, potential accidents and predicted consequences of such accidents, and the means that will prevent such accidents and/or reduce their consequences to an acceptable level.

  1. Running Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carver's batch system is based on the PBS model, implemented with the Moab scheduler and Torque resource manager. Read More Interactive Jobs There are two types of interactive ...

  2. Interactive Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Jobs Interactive Jobs Interactive Batch Jobs The login nodes on Genepool should not be used for heavy interactive work. These login nodes are shared amoungst all Genepool users so heavy CPU or memory usage will affect other Genepool users. 10 nodes have been reserved on Genepool for high priority and interactive work. Each user can use up to 2 slots at a time in the high priority queue. Use the qlogin command to run jobs interactively. The example below shows how to request an

  3. Analysis of Selected Provisions of the Domestic Manufacturing and Energy Jobs Act of 2010

    Reports and Publications (EIA)

    2010-01-01

    This report responds to a letter dated August 16, 2010, from Janice Mays, Staff Director of the U.S. House of Representatives' Committee on Ways and Means, requesting that the U.S. Energy Information Administration (EIA) analyze several provisions included in the July 26, 2010, discussion draft of the Domestic Manufacturing and Energy Jobs Act of 2010.

  4. Safety analysis of optically ignited explosive and pyrotechnic devices

    SciTech Connect (OSTI)

    Merson, J.A.; Salas, F.J.; Holswade, S.

    1994-05-01

    The future of optical ordnance depends on the acceptance, validation and verification of the stated safety enhancement claims of optical ordnance over existing electrical explosive devices (EED`s). Sandia has been pursuing the development of optical ordnance, with the primary motivation of this effort being the enhancement of explosive safety by specifically reducing the potential of premature detonation that can occur with low energy electrically ignited explosive devices. By using semiconductor laser diodes for igniting these devices, safety improvements can be made without being detrimental to current system concerns since the inputs required for these devices are similar to electrical systems. Laser Diode Ignition (LDI) of the energetic material provides the opportunity to remove the bridgewire and electrically conductive pins from the charge cavity, creating a Faraday cage and thus isolating the explosive or pyrotechnic materials from stray electrical ignition sources. Recent results from our continued study of safety enhancements are presented. The areas of investigation which are presented include: (1) unintended optical source analysis, specifically lightning insensitivity, (2) electromagnetic radiation (EMR) and electrostatic discharge (ESD) insensitivity analysis, and (3) powder safety.

  5. PAT-1 safety analysis report addendum.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Schmale, David T.; Kalan, Robert J.; Akin, Lili A.; Miller, David Russell; Knorovsky, Gerald Albert; Yoshimura, Richard Hiroyuki; Lopez, Carlos; Harding, David Cameron; Jones, Perry L.; Morrow, Charles W.

    2010-09-01

    The Plutonium Air Transportable Package, Model PAT-1, is certified under Title 10, Code of Federal Regulations Part 71 by the U.S. Nuclear Regulatory Commission (NRC) per Certificate of Compliance (CoC) USA/0361B(U)F-96 (currently Revision 9). The purpose of this SAR Addendum is to incorporate plutonium (Pu) metal as a new payload for the PAT-1 package. The Pu metal is packed in an inner container (designated the T-Ampoule) that replaces the PC-1 inner container. The documentation and results from analysis contained in this addendum demonstrate that the replacement of the PC-1 and associated packaging material with the T-Ampoule and associated packaging with the addition of the plutonium metal content are not significant with respect to the design, operating characteristics, or safe performance of the containment system and prevention of criticality when the package is subjected to the tests specified in 10 CFR 71.71, 71.73 and 71.74.

  6. Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety All JLF participants must comply fully with all LLNL safety regulations and procedures by becoming a Registered User of the facility. All JLF participants must complete available LLNL safety training: HS5200-W Laser Safety HS4258-W Beryllium Awareness HS4261-W Lead Awareness HS5220-W Electrical Safety Awareness HS6001-W General Employee Radiological HS4240-W Chemical Safety HS4680-W PPE To access these training modules link here [LTRAIN] from inside LLNL, or here from anywhere. All JLF

  7. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    SciTech Connect (OSTI)

    Linderoth, C.E.

    1984-03-01

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  8. Safety analysis report for packaging (onsite) multicanister overpack cask

    SciTech Connect (OSTI)

    Edwards, W.S.

    1997-07-14

    This safety analysis report for packaging (SARP) documents the safety of shipments of irradiated fuel elements in the MUlticanister Overpack (MCO) and MCO Cask for a highway route controlled quantity, Type B fissile package. This SARP evaluates the package during transfers of (1) water-filled MCOs from the K Basins to the Cold Vacuum Drying Facility (CVDF) and (2) sealed and cold vacuum dried MCOs from the CVDF in the 100 K Area to the Canister Storage Building in the 200 East Area.

  9. Jobs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jobs We offer an unequalled variety of opportunities for individuals in a wide range of professional disciplines: from science and engineering to business and program analysis. Only here will you have access to unlimited career opportunities that impact these issues, while serving your country and enjoying the benefits of a career with the Federal Government. Most Federal job opportunities require personnel to be U.S. citizens. ** However, non-U.S. citizens may apply for some opportunities at

  10. Worker Safety and Health and Nuclear Safety Quarterly Performance Analysis (January - March 2008)

    SciTech Connect (OSTI)

    Kerr, C E

    2009-10-07

    The DOE Office of Enforcement expects LLNL to 'implement comprehensive management and independent assessments that are effective in identifying deficiencies and broader problems in safety and security programs, as well as opportunities for continuous improvement within the organization' and to 'regularly perform assessments to evaluate implementation of the contractor's processes for screening and internal reporting.' LLNL has a self-assessment program, described in ES&H Manual Document 4.1, that includes line, management and independent assessments. LLNL also has in place a process to identify and report deficiencies of nuclear, worker safety and health and security requirements. In addition, the DOE Office of Enforcement expects LLNL to evaluate 'issues management databases to identify adverse trends, dominant problem areas, and potential repetitive events or conditions' (page 14, DOE Enforcement Process Overview, December 2007). LLNL requires that all worker safety and health and nuclear safety noncompliances be tracked as 'deficiencies' in the LLNL Issues Tracking System (ITS). Data from the ITS are analyzed for worker safety and health (WSH) and nuclear safety noncompliances that may meet the threshold for reporting to the DOE Noncompliance Tracking System (NTS). This report meets the expectations defined by the DOE Office of Enforcement to review the assessments conducted by LLNL, analyze the issues and noncompliances found in these assessments, and evaluate the data in the ITS database to identify adverse trends, dominant problem areas, and potential repetitive events or conditions. The report attempts to answer three questions: (1) Is LLNL evaluating its programs and state of compliance? (2) What is LLNL finding? (3) Is LLNL appropriately managing what it finds? The analysis in this report focuses on data from the first quarter of 2008 (January through March). This quarter is analyzed within the context of information identified in previous quarters to include April 2007 through March 2008. The results from analyzing the deficiencies are presented in accordance with the two primary NTS reporting thresholds for WSH and nuclear safety noncompliances: (1) those related to certain events or conditions and (2) those that are management issues. In addition, WSH noncompliances were also analyzed to determine if any fell under the 'other significant condition' threshold. This report also identifies noncompliance topical areas that may have issues that do not meet the NTS reporting threshold but should remain under observation. These are placed on the 'watch list' for continued analysis.

  11. Multifamily Retrofit Project Manager Job/Task Analysis and Report: September 2013

    SciTech Connect (OSTI)

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Retrofit Project Manager JTA identifies and catalogs all of the tasks performed by multifamily retrofit project managers, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  12. Multifamily Quality Control Inspector Job/Task Analysis and Report: September 2013

    SciTech Connect (OSTI)

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Quality Control Inspector JTA identifies and catalogs all of the tasks performed by multifamily quality control inspectors, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  13. Multifamily Energy Auditor Job/Task Analysis and Report: September 2013

    SciTech Connect (OSTI)

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Energy Auditor JTA identifies and catalogs all of the tasks performed by multifamily energy auditors, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  14. Multifamily Building Operator Job/Task Analysis and Report: September 2013

    SciTech Connect (OSTI)

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Building Operator JTA identifies and catalogs all of the tasks performed by multifamily building operators, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  15. DOE-HDBK-1076-94; DOE Handbook Table-Top Job Analysis

    Office of Environmental Management (EM)

    ... With proper coordination between management, the ... needed &26; the entry-level criteria &26; and the safety concerns. ... EACH ITEM ON CHECKLIST . . . . . . . . . . . . ...

  16. Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that run non-interactively under the control of a "batch script," which is a text file (shell script) containing a number of job directives and LINUX commands. Batch scripts are...

  17. Interactive Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the user's home directory. As a batch job, it has default values for batch queue (debug), number of nodes allocated (1), ppncores per node (1), wall time limit (30 minutes),...

  18. Interactive Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The following command requests 2 nodes using the interactive queue. hopper% qsub -I -q debug -l mppwidth48 The -I flag specifies an interactive job. The -q flag specifies the...

  19. Interactive Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commonly used options and more can also be found in the TorqueMoab vs. SLURM Comparisons ... serves the same purpose as MOABTorque, acting as a resource manager and job scheduler. ...

  20. EIA: Jobs

    Gasoline and Diesel Fuel Update (EIA)

    Jobs at the Energy Information Administration en-us Tue, 09 Feb 2016 21:23:11 EST EIA logo http:www.eia.govglobalimageslogoseialogo250.png http:www.eia.gov US Energy...

  1. Safety analysis report for packaging (onsite) sample pig transport system

    SciTech Connect (OSTI)

    MCCOY, J.C.

    1999-03-16

    This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document.

  2. Evaluation of safety assessment methodologies in Rocky Flats Risk Assessment Guide (1985) and Building 707 Final Safety Analysis Report (1987)

    SciTech Connect (OSTI)

    Walsh, B.; Fisher, C.; Zigler, G.; Clark, R.A.

    1990-11-09

    FSARs. Rockwell International, as operating contractor at the Rocky Flats plant, conducted a safety analysis program during the 1980s. That effort resulted in Final Safety Analysis Reports (FSARs) for several buildings, one of them being the Building 707 Final Safety Analysis Report, June 87 (707FSAR) and a Plant Safety Analysis Report. Rocky Flats Risk Assessment Guide, March 1985 (RFRAG85) documents the methodologies that were used for those FSARs. Resources available for preparation of those Rocky Flats FSARs were very limited. After addressing the more pressing safety issues, some of which are described below, the present contractor (EG&G) intends to conduct a program of upgrading the FSARs. This report presents the results of a review of the methodologies described in RFRAG85 and 707FSAR and contains suggestions that might be incorporated into the methodology for the FSAR upgrade effort.

  3. CRAD, New Nuclear Facility Documented Safety Analysis and Technical Safety Requirements- December 2, 2014 (EA CRAD 31-07, Rev. 0)

    Broader source: Energy.gov [DOE]

    New Nuclear Facility Documented Safety Analysis and Technical Safety Requirements Criteria Review and Approach Document (EA CRAD 31-07, Rev. 0)

  4. Job/Task Analysis: Enhancing the Commercial Building Workforce Through the Development of Foundational Materials; Preprint

    SciTech Connect (OSTI)

    Studer, D.; Kemkar, S.

    2012-09-01

    For many commercial building operation job categories, industry consensus has not been reached on the knowledge, skills, and abilities that practitioners should possess. The goal of this guidance is to help streamline the minimum competencies taught or tested by organizations catering to building operations and maintenance personnel while providing a basis for developing and comparing new and existing training programs in the commercial building sector. The developed JTAs will help individuals identify opportunities to enhance their professional skills, enable industry to identify an appropriately skilled workforce, and allow training providers to ensure that they are providing the highest quality product possible.

  5. safety

    National Nuclear Security Administration (NNSA)

    contractor at the Nevada National Security Site, has been recognized by the Department of Energy for excellence in occupational safety and health protection. National Nuclear...

  6. Thermohydraulic and Safety Analysis for CARR Under Station Blackout Accident

    SciTech Connect (OSTI)

    Wenxi Tian; Suizheng Qiu; Guanghui Su; Dounan Jia [Xi'an Jiaotong University, 28 Xianning Road, Xi'an 710049 (China); Xingmin Liu - China Institute of Atomic Energy

    2006-07-01

    A thermohydraulic and safety analysis code (TSACC) has been developed using Fortran 90 language to evaluate the transient thermohydraulic behaviors and safety characteristics of the China Advanced Research Reactor(CARR) under Station Blackout Accident(SBA). For the development of TSACC, a series of corresponding mathematical and physical models were considered. Point reactor neutron kinetics model was adopted for solving reactor power. All possible flow and heat transfer conditions under station blackout accident were considered and the optional models were supplied. The usual Finite Difference Method (FDM) was abandoned and a new model was adopted to evaluate the temperature field of core plate type fuel element. A new simple and convenient equation was proposed for the resolution of the transient behaviors of the main pump instead of the complicated four-quadrant model. Gear method and Adams method were adopted alternately for a better solution to the stiff differential equations describing the dynamic behaviors of the CARR. The computational result of TSACC showed the enough safety margin of CARR under SBA. For the purpose of Verification and Validation (V and V), the simulated results of TSACC were compared with those of Relap5/Mdo3. The V and V result indicated a good agreement between the results by the two codes. Because of the adoption of modular programming techniques, this analysis code is expected to be applied to other reactors by easily modifying the corresponding function modules. (authors)

  7. Webinar: DOE Launches JOBS and Economic Impacts of Fuel Cells (JOBS FC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Model | Department of Energy Launches JOBS and Economic Impacts of Fuel Cells (JOBS FC) Analysis Model Webinar: DOE Launches JOBS and Economic Impacts of Fuel Cells (JOBS FC) Analysis Model Below is the text version of the webinar titled, "DOE Launches JOBS and Economic Impacts of Fuel Cells (JOBS FC) Analysis Model," originally presented on May 22, 2012. In addition to this text version of the audio, you can access the presentation slides. Allison Aman: All right, thanks

  8. Running Grid Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    support job submission via Grid interfaces. Remote job submission is based on Globus GRAM. Jobs can be submitted either to the fork jobmanager (default) which will fork and...

  9. DOE's Approach to Nuclear Facility Safety Analysis and Management

    Broader source: Energy.gov [DOE]

    Presenter: Dr. James O'Brien, Director, Office of Nuclear Safety, Office of Health, Safety and Security, US Department of Energy

  10. NUSAR: N Reactor Updated Safety Analysis Report, Amendment 21

    SciTech Connect (OSTI)

    Smith, G L

    1989-12-01

    The enclosed pages are Amendment 21 of the N Reactor Updated Safety Analysis Report (NUSAR). NUSAR, formerly UNI-M-90, was revised by 18 amendments that were issued by UNC Nuclear Industries, the contractor previously responsible for N Reactor operations. As of June 1987, Westinghouse Hanford Company (WHC) acquired the operations and engineering contract for N Reactor and other facilities at Hanford. The document number for NUSAR then became WHC-SP-0297. The first revision was issued by WHC as Amendment 19, prepared originally by UNC. Summaries of each of the amendments are included in NUSAR Section 1.1.

  11. Application of coupled codes for safety analysis and licensing issues

    SciTech Connect (OSTI)

    Langenbuch, S.; Velkov, K.

    2006-07-01

    An overview is given on the development and the advantages of coupled codes which integrate 3D neutron kinetics into thermal-hydraulic system codes. The work performed within GRS by coupling the thermal-hydraulic system code ATHLET and the 3D neutronics code QUABOX/CUBBOX is described as an example. The application of the coupled codes as best-estimate simulation tools for safety analysis is discussed. Some examples from German licensing practices are given which demonstrate how the improved analytical methods of coupled codes have contributed to solve licensing issues related to optimized and more economical use of fuel. (authors)

  12. Functional Area Qualification Standard Job Task Analyses | Department of

    Energy Savers [EERE]

    Energy Job Task Analyses Functional Area Qualification Standard Job Task Analyses DOE Aviation Manager DOE Aviation Safety Officer Chemical Processing Civil/Structural Engineering Confinement Ventilation and Process Gas Treatment Construction Management Criticality Safety Deactivation and Decommissioning Electrical Systems and Safety Oversight Emergency Management Environmental Compliance Environmental Restoration Facility Representative Fire Protection Engineering General Technical Base

  13. Running Jobs Efficiently

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Running Jobs Efficiently Running Jobs Efficiently Job Efficiency A job's efficiency is the ratio of its CPU time to the actual time it took to run, i.e., cputime ...

  14. Canister storage building (CSB) safety analysis report phase 3: Safety analysis documentation supporting CSB construction

    SciTech Connect (OSTI)

    Garvin, L.J.

    1997-04-28

    The Canister Storage Building (CSB) will be constructed in the 200 East Area of the U.S. Department of Energy (DOE) Hanford Site. The CSB will be used to stage and store spent nuclear fuel (SNF) removed from the Hanford Site K Basins. The objective of this chapter is to describe the characteristics of the site on which the CSB will be located. This description will support the hazard analysis and accident analyses in Chapter 3.0. The purpose of this report is to provide an evaluation of the CSB design criteria, the design's compliance with the applicable criteria, and the basis for authorization to proceed with construction of the CSB.

  15. US ITER | Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postings Careers in Fusion Science ITER Jobs Home > Jobs > US ITER Positions US ITER Positions US

  16. Hopper Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Size Charts Hopper Job Size Charts Fractional Jobs The following charts show the fraction of hours used on Hopper in each of five job-core-size bins: 2014 Usage by Job Size Chart 2013 2012 2011 Large Jobs The following charts show the fraction of hours used on Hopper by jobs using greater than 16,384 cores: 2014 2013 2012 Usage by Job Size Chart 2011 Last edited: 2016-05-02 09:20:42

  17. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  18. Documented Safety Analysis for the B695 Segment

    SciTech Connect (OSTI)

    Laycak, D

    2008-09-11

    This Documented Safety Analysis (DSA) was prepared for the Lawrence Livermore National Laboratory (LLNL) Building 695 (B695) Segment of the Decontamination and Waste Treatment Facility (DWTF). The report provides comprehensive information on design and operations, including safety programs and safety structures, systems and components to address the potential process-related hazards, natural phenomena, and external hazards that can affect the public, facility workers, and the environment. Consideration is given to all modes of operation, including the potential for both equipment failure and human error. The facilities known collectively as the DWTF are used by LLNL's Radioactive and Hazardous Waste Management (RHWM) Division to store and treat regulated wastes generated at LLNL. RHWM generally processes low-level radioactive waste with no, or extremely low, concentrations of transuranics (e.g., much less than 100 nCi/g). Wastes processed often contain only depleted uranium and beta- and gamma-emitting nuclides, e.g., {sup 90}Sr, {sup 137}Cs, or {sup 3}H. The mission of the B695 Segment centers on container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. The B695 Segment is used for storage of radioactive waste (including transuranic and low-level), hazardous, nonhazardous, mixed, and other waste. Storage of hazardous and mixed waste in B695 Segment facilities is in compliance with the Resource Conservation and Recovery Act (RCRA). LLNL is operated by the Lawrence Livermore National Security, LLC, for the Department of Energy (DOE). The B695 Segment is operated by the RHWM Division of LLNL. Many operations in the B695 Segment are performed under a Resource Conservation and Recovery Act (RCRA) operation plan, similar to commercial treatment operations with best demonstrated available technologies. The buildings of the B695 Segment were designed and built considering such operations, using proven building systems, and keeping them as simple as possible while complying with industry standards and institutional requirements. No operations to be performed in the B695 Segment or building system are considered to be complex. No anticipated future change in the facility mission is expected to impact the extent of safety analysis documented in this DSA.

  19. Integrated deterministic and probabilistic safety analysis for safety assessment of nuclear power plants

    SciTech Connect (OSTI)

    Di Maio, Francesco; Zio, Enrico; Smith, Curtis; Rychkov, Valentin

    2015-07-06

    The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs and activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).

  20. Integrated deterministic and probabilistic safety analysis for safety assessment of nuclear power plants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Di Maio, Francesco; Zio, Enrico; Smith, Curtis; Rychkov, Valentin

    2015-07-06

    The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs andmore » activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).« less

  1. Idaho National Engineering Laboratory (INEL) Environmental Restoration Program (ERP), Baseline Safety Analysis File (BSAF). Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-20

    This document was prepared to take the place of a Safety Evaluation Report since the Baseline Safety Analysis File (BSAF)and associated Baseline Technical Safety Requirements (TSR) File do not meet the requirements of a complete safety analysis documentation. Its purpose is to present in summary form the background of how the BSAF and Baseline TSR originated and a description of the process by which it was produced and approved for use in the Environmental Restoration Program.The BSAF is a facility safety reference document for INEL environmental restoration activities including environmental remediation of inactive waste sites and decontamination and decommissioning (D&D) of surplus facilities. The BSAF contains safety bases common to environmental restoration activities and guidelines for performing and documenting safety analysis. The common safety bases can be incorporated by reference into the safety analysis documentation prepared for individual environmental restoration activities with justification and any necessary revisions. The safety analysis guidelines in BSAF provide an accepted method for hazard analysis; analysis of normal, abnormal, and accident conditions; human factors analysis; and derivation of TSRS. The BSAF safety bases and guidelines are graded for environmental restoration activities.

  2. Documented Safety Analysis for the Waste Storage Facilities March 2010

    SciTech Connect (OSTI)

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  3. Hazard screening application guide. Safety Analysis Report Update Program

    SciTech Connect (OSTI)

    1992-06-01

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

  4. Documented Safety Analysis for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  5. Using Job Arrays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Job Arrays Using Job Arrays Job arrays have many advantages, including reduced load on the batch system, faster job submission, and easier job management. If you find yourself submitting thousands of jobs at a time you should use job arrays. However, the UGE documentation is somewhat lacking and arrays do make job submission more complicated. Below is a description of how UGE job arrays work: Job arrays can be submitted from the command line with the -t option to qsub, e.g.,: qsub -t

  6. Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    SciTech Connect (OSTI)

    Diamond, D. J.; Baek, J. S.; Hanson, A. L.; Cheng, L-Y; Brown, N.; Cuadra, A.

    2015-01-30

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.

  8. Planning Document for an NBSR Conversion Safety Analysis Report

    SciTech Connect (OSTI)

    Diamond D. J.; Baek J.; Hanson, A.L.; Cheng, L-Y.; Brown, N.; Cuadra, A.

    2013-09-25

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the National Bureau of Standards Reactor (NBSR). The NBSR is a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a planning document for the conversion Safety Analysis Report (SAR) that would be submitted to, and approved by, the Nuclear Regulatory Commission (NRC) before the reactor could be converted.This report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis herein is on the SAR chapters that require significant changes as a result of conversion, primarily Chapter 4, Reactor Description, and Chapter 13, Safety Analysis. The document provides information on the proposed design for the LEU fuel elements and identifies what information is still missing. This document is intended to assist ongoing fuel development efforts, and to provide a platform for the development of the final conversion SAR. This report contributes directly to the reactor conversion pillar of the GTRI program, but also acts as a boundary condition for the fuel development and fuel fabrication pillars.

  9. Community Power Works: Good Jobs, Green Jobs Conference | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Works: Good Jobs, Green Jobs Conference Community Power Works: Good Jobs, Green Jobs ... to Extend Program Reach Contractor Quality Assurance and Home Performance with Energy Star

  10. CRAD, Preliminary Documented Safety Analysis- July 25, 2014 (IEA CRAD 31-2, REV. 0)

    Broader source: Energy.gov [DOE]

    This Criteria Review and Approach Document (IEA CRAD 31-2, REV. 0) provides objectives, criteria, and approaches for reviewing Nuclear Facility Preliminary Documented Safety Analysis.

  11. Job Arrays on Genepool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Arrays Job Arrays on Genepool Job Arrays Job arrays have many advantages, including reduced load on UGE, faster job submission, and easier job management. If you find yourself submitting thousands of jobs at a time that are largely identical, you should use job arrays. For example, if you have many different data sets, but want to run the same program on all of the data sets, you can either use Perl to generate one script for each data set, or you can use a job array with a single script.

  12. Criticality safety analysis on fissile materials in Fukushima reactor cores

    SciTech Connect (OSTI)

    Liu, Xudong; Lemaitre-Xavier, E.; Ahn, Joonhong; Hirano, Fumio

    2013-07-01

    The present study focuses on the criticality analysis for geological disposal of damaged fuels from Fukushima reactor cores. Starting from the basic understanding of behaviors of plutonium and uranium, a scenario sequence for criticality event is considered. Due to the different mobility of plutonium and uranium in geological formations, the criticality safety is considered in two parts: (1) near-field plutonium system and (2) far-field low enriched uranium (LEU) system. For the near-field plutonium system, a mathematical analysis for pure-solute transport was given, assuming a particular buffer material and waste form configuration. With the transport and decay of plutonium accounted, the critical mass of plutonium was compared with the initial load of a single canister. Our calculation leads us to the conclusion that our system with the initial loading being the average mass of plutonium in an assembly just before the accident is very unlikely to become critical over time. For the far-field LEU system, due to the uncertainties in the geological and geochemical conditions, calculations were made in a parametric space that covers the variation of material compositions and different geometries. Results show that the LEU system could not remain sub-critical within the entire parameter space assumed, although in the iron-rich rock, the neutron multiplicity is significantly reduced.

  13. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    SciTech Connect (OSTI)

    John D. Bess; J. Blair Briggs; David W. Nigg

    2009-11-01

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  14. Packaging Review Guide for Reviewing Safety Analysis Reports for Packagings

    SciTech Connect (OSTI)

    DiSabatino, A; Biswas, D; DeMicco, M; Fisher, L E; Hafner, R; Haslam, J; Mok, G; Patel, C; Russell, E

    2007-04-12

    This Packaging Review Guide (PRG) provides guidance for Department of Energy (DOE) review and approval of packagings to transport fissile and Type B quantities of radioactive material. It fulfills, in part, the requirements of DOE Order 460.1B for the Headquarters Certifying Official to establish standards and to provide guidance for the preparation of Safety Analysis Reports for Packagings (SARPs). This PRG is intended for use by the Headquarters Certifying Official and his or her review staff, DOE Secretarial offices, operations/field offices, and applicants for DOE packaging approval. This PRG is generally organized at the section level in a format similar to that recommended in Regulatory Guide 7.9 (RG 7.9). One notable exception is the addition of Section 9 (Quality Assurance), which is not included as a separate chapter in RG 7.9. Within each section, this PRG addresses the technical and regulatory bases for the review, the manner in which the review is accomplished, and findings that are generally applicable for a package that meets the approval standards. This Packaging Review Guide (PRG) provides guidance for DOE review and approval of packagings to transport fissile and Type B quantities of radioactive material. It fulfills, in part, the requirements of DOE O 460.1B for the Headquarters Certifying Official to establish standards and to provide guidance for the preparation of Safety Analysis Reports for Packagings (SARPs). This PRG is intended for use by the Headquarters Certifying Official and his review staff, DOE Secretarial offices, operations/field offices, and applicants for DOE packaging approval. The primary objectives of this PRG are to: (1) Summarize the regulatory requirements for package approval; (2) Describe the technical review procedures by which DOE determines that these requirements have been satisfied; (3) Establish and maintain the quality and uniformity of reviews; (4) Define the base from which to evaluate proposed changes in scope and requirements of reviews; and (5) Provide the above information to DOE organizations, contractors, other government agencies, and interested members of the general public. This PRG was originally published in September 1987. Revision 1, issued in October 1988, added new review sections on quality assurance and penetrations through the containment boundary, along with a few other items. Revision 2 was published October 1999. Revision 3 of this PRG is a complete update, and supersedes Revision 2 in its entirety.

  15. Jobs | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About » Jobs Safety and Security Policy (SSP) SSP Home About Staff Organization Chart .pdf file (103KB) Jobs Frequently Used Resources NEPA Documents Continuity of Operations (COOP) Implementation Plan Contact Information Safety and Security Policy U.S. Department of Energy SC-31/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-6800 F: (301) 903-7047 More Information » About Jobs Print Text Size: A A A Subscribe FeedbackShare Page Current Open Federal Positions

  16. A risk-informed approach to safety margins analysis

    SciTech Connect (OSTI)

    Curtis Smith; Diego Mandelli

    2013-07-01

    The Risk Informed Safety Margins Characterization (RISMC) Pathway is a systematic approach developed to characterize and quantify safety margins of nuclear power plant structures, systems and components. The model has been tested on the Advanced Test Reactor (ATR) at Idaho National Lab.

  17. Monitoring and Managing Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jobs Monitoring and Managing Jobs Monitoring and Managing Batch Jobs These are some basic commands for monitoring and modifiying batch jobs while they're queued or running. NERSC has developed a new tool for monitoring and viewing the state of batch jobs for genepool called qs. Please read about Monitoring jobs with qs Action How to do it Comment Get a listing of your jobs and their states qs -u If you skip the -u option, you'll get all the jobs on Genepool/Phoebe. qstat -u user_name If you skip

  18. Edison Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reports » Edison Job Size Charts Edison Job Size Charts Fraction of Hours Used per Job Size Note: Interactive charts with current and past Cori and Edison data are now available on MyNERSC This chart shows the fraction of hours used on Edison in each of 5 job-core-size bins. 2015 Usage by Job Size Chart 2014 Fraction of Hours Used by Big Jobs This chart shows the fraction of hours used on Edison by jobs using 16,384 or more cores. 2015 Usage by Job Size Chart 2014 Last edited: 2016-04-21

  19. Submitting Jobs To Mendel+

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jobs To Mendel+ Submitting Jobs To Mendel+ New compute nodes ("Mendel+") have been installed at NERSC's new CRT building, and they are available for JGI staff. This document...

  20. Submitting Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Job Steps and Dependencies There is a qsub option -W dependdependencylist or a Torque Keyword PBS -W dependdependencylist for job dependencies. The most commonly used ...

  1. Running Jobs Intermittently Slow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    happen to jobs having inputoutput on global file systems (project, globalhomes, globalscratch2). It could also happen to aplications using shared libraries, or CCM jobs...

  2. Current Job Openings | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employment Opportunities Directory Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Contact Us Business Operations Careers/ Human Resources Employment Opportunities Directory Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Current Job Openings Engineering Head, Engineering Department Position Summary: The Head of Engineering is responsible for planning and

  3. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    SciTech Connect (OSTI)

    1995-09-01

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: {sm_bullet} Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) {sm_bullet} Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as {open_quotes}low{close_quotes} hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with {open_quotes}moderate{close_quotes} or {open_quotes}high{close_quotes} hazard classifications.

  4. New Methods and Tools to Perform Safety Analysis within RISMC

    SciTech Connect (OSTI)

    Diego Mandelli; Curtis Smith; Cristian Rabiti; Andrea Alfonsi; Robert Kinoshita; Joshua Cogliati

    2013-11-01

    The Risk Informed Safety Margins Characterization (RISMC) Pathway uses a systematic approach developed to characterize and quantify safety margins of nuclear power plant structures, systems and components. What differentiates the RISMC approach from traditional probabilistic risk assessment (PRA) is the concept of safety margin. In PRA, a safety metric such as core damage frequency (CDF) is generally estimated using static fault-tree and event-tree models. However, it is not possible to estimate how close we are to physical safety limits (say peak clad temperature) for most accident sequences described in the PRA. In the RISMC approach, what we want to understand is not just the frequency of an event like core damage, but how close we are (or not) to this event and how we might increase our safety margin through margin management strategies in a Dynamic PRA (DPRA) fashion. This paper gives an overview of methods that are currently under development at the Idaho National Laboratory (INL) with the scope of advance the current state of the art of dynamic PRA.

  5. Jobs Calculator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jobs Calculator Jobs Calculator Office spreadsheet icon owip_jobs_calculator_v11-0.xls More Documents & Publications WPN 10-14: Calculation of Job Creation through DOE Recovery Act Funding Progress Report Template Job Counting Guidelines

  6. STEP Intern Job Description

    Broader source: Energy.gov [DOE]

    STEP Intern Job Description, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  7. Submitting PDSF Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitting PDSF Jobs Submitting PDSF Jobs Univa Grid Engine (UGE) is the batch system used at PDSF. This is a fork of the Sun Grid Engine (SGE). PDSF batch jobs have a 1 day wallclock limit. If your job attempts to run beyond the wallclock limit UGE will kill it. The total number of jobs (running, pending or otherwise) for all users is limited to 30,000 and the number of jobs a single user can have at any one time is limited to 5000. Since PDSF is a shared facility any jobs that are detrimental

  8. Static-stress analysis of dual-axis safety vessel

    SciTech Connect (OSTI)

    Bultman, D.H.

    1992-11-01

    An 8-ft-diameter safety vessel, made of HSLA-100 steel, is evaluated to determine its ability to contain the quasi-static residual pressure from a high-explosive (HE) blast. The safety vessel is designed for use with the Dual-Axis Radiographic Hydrotest (DARHT) facility being developed at Los Alamos National Laboratory. A smaller confinement vessel fits inside the safety vessel and contains the actual explosion, and the safety vessel functions as a second layer of containment in the unlikely case of a confinement vessel leak. The safety vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, and the Welding Research Council Bulletin, WRC107. Combined stresses that result from internal pressure and external loads on nozzles are calculated and compared to the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzle components are adequately designed for a static pressure of 830 psi, plus the maximum expected external loads. Shell stresses at the shellto-nozzle interface, produced from external loads on the nozzles, were less than 700 psi. The maximum combined stress resulting from the internal pressure plus external loads was 17,384 psi, which is significantly less than the allowable stress of 42,375 psi for HSLA-100 steel.

  9. Job Hazards Analysis Communication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Provide alternate content for browsers that do not support scripting or for those that have scripting disabled. Alternate HTML content should be placed here. This content...

  10. Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with Internal

    Office of Scientific and Technical Information (OSTI)

    Blankets (Technical Report) | SciTech Connect Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with Internal Blankets Citation Details In-Document Search Title: Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with Internal Blankets The objective of this proposal was to perform a detailed transient safety analysis of the Resource-Renewable BWR (RBWR) core designs using the U.S. NRC TRACE/PARCS code system. This project involved the same joint team that has performed the

  11. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    SciTech Connect (OSTI)

    Carbajo, Juan; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Schmidt, Rodney Cannon; Thomas, Justin; Wei, Tom; Sofu, Tanju; Ludewig, Hans; Tobita, Yoshiharu; Ohshima, Hiroyuki; Serre, Frederic

    2011-06-01

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the experienced user-base and the experimental validation base was decaying away quickly.

  12. Safety of natural gas dual-fueled vehicles: Addendum to safety analysis of natural gas vehicles transiting highway tunnels

    SciTech Connect (OSTI)

    Shaaban, S.H.; Zalak, V.M. )

    1991-01-01

    A safety analysis was performed to assess the relative hazard of vehicles containing both compressed natural gas (CNG) and gasoline, referred to as dual-fueled vehicles, compared to the hazard of a dedicated CNG vehicle. This study expands upon previous work that examined the safety of CNG vehicles transiting highway tunnels. The approach was to examine operational data, test results and to perform thermal analyses to determine if there are any synergistic effects where the total consequences of fuel release might be greater than the sum of the two fuels released separately. This study concluded that a dual-fueled vehicle poses a slightly greater risk than a dedicated CNG vehicle; however, this marginal increase in risk is small and is within the bounds of risk posed by gasoline-powered vehicles. 4 refs.

  13. Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-12-12

    he purpose of this DOE Standard is to establish guidance for the preparation and review of hazard categorization and accident analyses techniques as required in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  14. Monitoring and Managing Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring and Managing Jobs Monitoring and Managing Jobs Commonly Used Commands Action How to do it Comment Get a summary of all batch jobs sgeusers Shows a tally of all jobs for all users including their states. This is a script that parses the output of qstat and is maintained by PDSF staff (located in /common/usg/bin). Do "sgeusers -h" for usage info. Get a listing of your jobs and their states qstat -u user_name If you skip the -u option, you'll get all the jobs on PDSF. Get

  15. US ITER | Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US ITER Jobs ABOUT US ITER | WHY FUSION? | DOING BUSINESS WITH US ITER | MEDIA CORNER | JOBS | CONTACT US US Job Postings International Job Postings Careers in Fusion Science ITER Jobs Home > US ITER Jobs Be a Part of Something Big! US ITER is a Department of Energy multi-laboratory project that executes the US contributions to ITER for the US. The US is a non-host partner in the seven-member international collaboration between the United States, China, India, Japan, Korea, Russia, and the

  16. Running Jobs Intermittently Slow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs Intermittently Slow Running Jobs Intermittently Slow October 2, 2014 Symptom: User jobs are seeing intermittent slowness, jobs can run very slow in certain stages or appear hung. This could happen to jobs having input/output on global file systems (/project, /global/homes, /global/scratch2). It could also happen to aplications using shared libraries, or CCM jobs on any Hopper file systems. The slowness is identified to be related to DVS/GPFS issues, the cause of slownwss yet

  17. Submitting Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitting Batch Jobs Submitting Batch Jobs Overview A batch job is the most common way users run production applications on NERSC machines. Carver's batch system is based on the PBS model, implemented with the Moab scheduler and Torque resource manager. Typically, the user submits a batch script to the batch system. This script specifies, at the very least, how many nodes and cores the job will use, how long the job will run, and the name of the application to run. The job will advance in the

  18. Submitting Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitting Batch Jobs Submitting Batch Jobs Debug Jobs Short jobs requesting less than 30 minutes and requiring 512 nodes (2,048 cores) or fewer can run in the debug queue. From 5am-6pm Pacific Time, 256 nodes are reserved for debugging and interactive use. See also, running Interactive Jobs. Sample Batch Scripts The following batch script requests 8 cores on 2 nodes with a 10 minute wall clock limit in the debug queue. Torque directive lines tell the batch system how to run a job and begin with

  19. Jobs and Economic Impacts Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Technical Publications » Jobs and Economic Impacts Reports Jobs and Economic Impacts Reports Find analysis reports about jobs and other economic impacts resulting from fuel cell deployment in transportation and early market applications. Economic Impacts Associated with Commercializing Fuel Cell Electric Vehicles in California: An Analysis of the California Road Map Using the JOBS H2 Model (Argonne National Laboratory, December 2014) Economic Impact of Fuel Cell

  20. Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis

    SciTech Connect (OSTI)

    Smith, Curtis L; Mandelli, Diego; Zhegang Ma

    2014-11-01

    As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.

  1. Oak Ridge National Laboratory site data for safety-analysis report

    SciTech Connect (OSTI)

    Fitzpatrick, F.C.

    1982-12-01

    The Oak Ridge National Laboratory site data contained herein were compiled in support of the United States Department of Energy (USDOE) Oak Ridge Operations Office Order OR 5481.1. That order sets forth assignment of responsibilities for safety analysis and review responsibilities and provides guidance relative to the content and format of safety analysis reports. The information presented in this document is intended for use by reference in individual safety analysis reports where applicable to support accident analyses or the establishment of design bases of significance to safety, and it is applicable only to Oak Ridge National Laboratory facilities in Bethel and Melton Valleys. This information includes broad descriptions of the site characteristics, radioactive waste handling and monitoring practices, and the organization and operating policies at Oak Ridge National Laboratory. The historical background of the Laboratory is discussed briefly and the overall physical situation of the facilities is described in the following paragraphs.

  2. ACCIDENT ANALYSES & CONTROL OPTIONS IN SUPPORT OF THE SLUDGE WATER SYSTEM SAFETY ANALYSIS

    SciTech Connect (OSTI)

    WILLIAMS, J.C.

    2003-11-15

    This report documents the accident analyses and nuclear safety control options for use in Revision 7 of HNF-SD-WM-SAR-062, ''K Basins Safety Analysis Report'' and Revision 4 of HNF-SD-SNF-TSR-001, ''Technical Safety Requirements - 100 KE and 100 KW Fuel Storage Basins''. These documents will define the authorization basis for Sludge Water System (SWS) operations. This report follows the guidance of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', for calculating onsite and offsite consequences. The accident analysis summary is shown in Table ES-1 below. While this document describes and discusses potential control options to either mitigate or prevent the accidents discussed herein, it should be made clear that the final control selection for any accident is determined and presented in HNF-SD-WM-SAR-062.

  3. Running Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2016-04-29 11:34:43

  4. Running Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 13:59:48...

  5. Pending Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pending Jobs by Group Pending Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 14:00:14...

  6. Monitoring jobs with qs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    running, shown in HHHH:MM:SS (hours : minutes : seconds) STARTSUBTIME The start time stamp (for jobs in *r,t states), the submission time stamp (for jobs in *qw states) TASK If...

  7. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2010-10-25

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

  8. All Job Postings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All Job Postings /careers/_assets/images/careers-icon.jpg All Job Postings Explore the multiple dimensions of a career at Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. JOBS LISTED BY MOST RECENT Postdetonation Nuclear Forensics Research Technologist (Research Technologist 2) Job Number: IRC49470 Organization: XTD-NTA/Nuclear Threat Assessment Posted: Fri, 13 May 2016 ADEM QPA Support (QPA

  9. Green Jobs Training Center

    Broader source: Energy.gov [DOE]

    Provides an overview of the training available through the Green Jobs Training Center including certification courses and the apprenticeship program.

  10. Using Job Arrays on Carver

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Arrays on Carver Using Job Arrays on Carver Job Arrays Job arrays are a way to submit many jobs using only 1 batch submission script. The term task arrays is often used in documentation for what are called job arrays below. The behavior of the different jobs of the array can be controlled by the different values of the PBS_ARRAYID environment variable for each job in the array. Job Array Example This is an example of a job array that will run several different jobs on the Carver serial

  11. FAQS Gap Analysis Qualification Card – Nuclear Explosive Safety Study

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  12. FAQS Gap Analysis Qualification Card – Nuclear Safety Specialist

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  13. FAQS Gap Analysis Qualification Card – Senior Technical Safety Manager

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  14. FAQS Gap Analysis Qualification Card – Criticality Safety

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  15. Running Jobs Efficiently

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization » Running Jobs Efficiently Running Jobs Efficiently Job Efficiency A job's efficiency is the ratio of its CPU time to the actual time it took to run, i.e., cputime / walltime. A good efficiency at PDSF might be 70% or higher. Certainly an efficiency of less than 50% is indicative of some sort of problem with the job. The most common reason for low efficiency is slow IO reading data from disk but other factors, such as loading software, also can contribute. To see the efficiency for

  16. Office of Environmental Protection, Sustainability Support, and Corporate Safety Analysis

    Broader source: Energy.gov [DOE]

    The Office of Environmental Protection, Sustainability Support and Analysis establishes environmental protection requirements and expectations for the Department to ensure protection of workers and the public and protection of the environment from the hazards associated with all Department operations.

  17. RISMC advanced safety analysis working plan: FY2015 - FY2019. Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Szilard, Ronaldo H; Smith, Curtis L

    2014-09-01

    In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: (1) A value proposition (“why is this important?”) that will make the case for stakeholder’s use of the ASAP research and development (R&D) products; (2) An identification of likely end users and pathway to adoption of enhanced tools by the end-users; (3) A proposed set of practical and achievable “use case” demonstrations; (4) A proposed plan to address ASAP verification and validation (V&V) needs; and (5) A proposed schedule for the multi-year ASAP.

  18. ARIES-ACT1 Safety Design and Analysis

    SciTech Connect (OSTI)

    Humrickhouse, Paul W.; Merrill, Brad J.

    2014-01-01

    ARIES-ACT1 (Advanced and Conservative Tokamak) is a 1000-MW(electric) tokamak design featuring advanced plasma physics and divertor and blanket engineering. Some relevant features include an advanced SiC blanket with PbLi as coolant and breeder; a helium-cooled steel structural ring and tungsten divertors; a thin-walled, helium-cooled vacuum vessel; and a room-temperature, water-cooled shield outside the vacuum vessel. We consider here some safety aspects of the ARIES-ACT1 design and model a series of design-basis and beyond-design-basis accidents with the MELCOR code modified for fusion. The presence of multiple coolants (PbLi, helium, and water) makes possible a variety of such accidents. We consider here a loss-of-flow accident caused by a long-term station blackout (LTSBO), an ex-vessel helium break into the cryostat, and a beyond-design-basis accident in which a LTSBO is aggravated by a loss-of-coolant accident in ARIES-ACT1's ultimate decay heat removal system, the water-cooled shield. In the design-basis accidents, we find that the secondary confinement boundaries are not challenged, and the structural integrity of in-vessel components is not threatened by high temperatures or pressures; decay heat can be passively removed.

  19. An advanced deterministic method for spent fuel criticality safety analysis

    SciTech Connect (OSTI)

    DeHart, M.D.

    1998-01-01

    Over the past two decades, criticality safety analysts have come to rely to a large extent on Monte Carlo methods for criticality calculations. Monte Carlo has become popular because of its capability to model complex, non-orthogonal configurations or fissile materials, typical of real world problems. Over the last few years, however, interest in determinist transport methods has been revived, due shortcomings in the stochastic nature of Monte Carlo approaches for certain types of analyses. Specifically, deterministic methods are superior to stochastic methods for calculations requiring accurate neutron density distributions or differential fluxes. Although Monte Carlo methods are well suited for eigenvalue calculations, they lack the localized detail necessary to assess uncertainties and sensitivities important in determining a range of applicability. Monte Carlo methods are also inefficient as a transport solution for multiple pin depletion methods. Discrete ordinates methods have long been recognized as one of the most rigorous and accurate approximations used to solve the transport equation. However, until recently, geometric constraints in finite differencing schemes have made discrete ordinates methods impractical for non-orthogonal configurations such as reactor fuel assemblies. The development of an extended step characteristic (ESC) technique removes the grid structure limitations of traditional discrete ordinates methods. The NEWT computer code, a discrete ordinates code built upon the ESC formalism, is being developed as part of the SCALE code system. This paper will demonstrate the power, versatility, and applicability of NEWT as a state-of-the-art solution for current computational needs.

  20. Risk-Informed Safety Margin Characterization (RISMC): Integrated Treatment of Aleatory and Epistemic Uncertainty in Safety Analysis

    SciTech Connect (OSTI)

    R. W. Youngblood

    2010-10-01

    The concept of “margin” has a long history in nuclear licensing and in the codification of good engineering practices. However, some traditional applications of “margin” have been carried out for surrogate scenarios (such as design basis scenarios), without regard to the actual frequencies of those scenarios, and have been carried out with in a systematically conservative fashion. This means that the effectiveness of the application of the margin concept is determined in part by the original choice of surrogates, and is limited in any case by the degree of conservatism imposed on the evaluation. In the RISMC project, which is part of the Department of Energy’s “Light Water Reactor Sustainability Program” (LWRSP), we are developing a risk-informed characterization of safety margin. Beginning with the traditional discussion of “margin” in terms of a “load” (a physical challenge to system or component function) and a “capacity” (the capability of that system or component to accommodate the challenge), we are developing the capability to characterize probabilistic load and capacity spectra, reflecting both aleatory and epistemic uncertainty in system response. For example, the probabilistic load spectrum will reflect the frequency of challenges of a particular severity. Such a characterization is required if decision-making is to be informed optimally. However, in order to enable the quantification of probabilistic load spectra, existing analysis capability needs to be extended. Accordingly, the INL is working on a next-generation safety analysis capability whose design will allow for much more efficient parameter uncertainty analysis, and will enable a much better integration of reliability-related and phenomenology-related aspects of margin.

  1. Safety & Occupational Health Specialist | Department of Energy

    Energy Savers [EERE]

    & Occupational Health Specialist Safety & Occupational Health Specialist Submitted by admin on Sat, 2015-10-17 00:14 Job Summary Organization Name Department Of Energy Agency...

  2. Office of Infrastructure Planning & Analysis | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Office of Infrastructure Planning & Analysis Office of Infrastructure Planning & Analysis...

  3. Station Blackout: A case study in the interaction of mechanistic and probabilistic safety analysis

    SciTech Connect (OSTI)

    Curtis Smith; Diego Mandelli; Cristian Rabiti

    2013-11-01

    The ability to better characterize and quantify safety margins is important to improved decision making about nuclear power plant design, operation, and plant life extension. As research and development (R&D) in the light-water reactor (LWR) Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway R&D is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario.

  4. Safety analysis report for the TRUPACT-II shipping package (condensed version). Volume 1, Rev. 14

    SciTech Connect (OSTI)

    1994-10-01

    The condensed version of the TRUPACT-II Contact Handled Transuranic Waste Safety Analysis Report for Packaging (SARP) contains essential material required by TRUPACT-II users, plus additional contents (payload) information previously submitted to the U.S. Nuclear Regulatory Commission. All or part of the following sections, which are not required by users of the TRUPACT-II, are deleted from the condensed version: (i) structural analysis, (ii) thermal analysis, (iii) containment analysis, (iv) criticality analysis, (v) shielding analysis, and (vi) hypothetical accident test results.

  5. LESSONS LEARNED IN DEVELOPMENT OF THE HANFORD SWOC MASTER DOCUMENTED SAFETY ANALYSIS (MDSA) & IMPLEMENTATION VALIDATION REVIEW (IVR)

    SciTech Connect (OSTI)

    MORENO, M.R.

    2004-04-02

    DOE set clear expectations on a cost-effective approach for achieving compliance with the Nuclear Safety Management requirements (20 CFR 830, Nuclear Safety Rule), which ensured long-term benefit to Hanford, via issuance of a nuclear safety strategy in February 2003. To facilitate implementation of these expectations, tools were developed to streamline and standardize safety analysis and safety document development with the goal of a shorter and more predictable DOE approval cycle. A Hanford Safety Analysis and Risk Assessment Handbook (SARAH) was approved to standardize methodologies for development of safety analyses. A Microsoft Excel spreadsheet (RADIDOSE) was approved for the evaluation of radiological consequences for accident scenarios often postulated at Hanford. Standard safety management program chapters were approved for use as a means of compliance with the programmatic chapters of DOE-STD-3009, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports''. An in-process review was developed between DOE and the Contractor to facilitate DOE approval and provide early course correction. The new Documented Safety Analysis (DSA) developed to address the operations of four facilities within the Solid Waste Operations Complex (SWOC) necessitated development of an Implementation Validation Review (IVR) process. The IVR process encompasses the following objectives: safety basis controls and requirements are adequately incorporated into appropriate facility documents and work instructions, facility personnel are knowledgeable of controls and requirements, and the DSA/TSR controls have been implemented. Based on DOE direction and safety analysis tools, four waste management nuclear facilities were integrated into one safety basis document. With successful completion of implementation of this safety document, lessons-learned from the in-process review, safety analysis tools and IVR process were documented for future action and consideration at other DOE sites.

  6. Running Large Scale Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Large Scale Jobs Running Large Scale Jobs Users face various challenges with running and scaling large scale jobs on peta-scale production systems. For example, certain applications may not have enough memory per core, the default environment variables may need to be adjusted, or I/O dominates run time. This page lists some available programming and run time tuning options and tips users can try on their large scale applications on Hopper for better performance. Try different compilers

  7. Monitoring jobs with qs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jobs » Monitoring jobs with qs Monitoring jobs with qs qs is an alternative tool to the SGE-provided qstat for querying the queue status developed at NERSC. qs provides an enhanced user interface designed to make it easier to see resource requests, utilization, and job position in the queue. qs provides a centralized web-service that can be queried using either the provided "qs" client, or by HTTP connection to the qs server. qs reports data from a cached copy of the genepool UGE

  8. K Basin sludge packaging design criteria (PDC) and safety analysis report for packaging (SARP) approval plan

    SciTech Connect (OSTI)

    Brisbin, S.A.

    1996-03-06

    This document delineates the plan for preparation, review, and approval of the Packaging Design Crieteria for the K Basin Sludge Transportation System and the Associated on-site Safety Analysis Report for Packaging. The transportation system addressed in the subject documents will be used to transport sludge from the K Basins using bulk packaging.

  9. Job Safety and Health Poster in Spanish

    Broader source: Energy.gov [DOE]

    Deben tener acceso a: Las publicaciones de seguridad y salud del Departamento de Energa; El programa de seguridad y salud en su lugar de trabajo; Este aviso de seguridad y salud; Copias de su historial mdico y registros de su exposicin a sustancias o condiciones txicas y peligrosas; y Resultados de inspecciones e investigaciones de accidentes. 2014

  10. Job Safety Health Poster Spanish 09042014.docx

    Office of Environmental Management (EM)

    Es la Ley Empleados y sus Representantes tienen derecho a: Participar en el programa de seguridad y salud del lugar de trabajo, incluyendo las inspecciones que se realicen;...

  11. Community Power Works: Good Jobs, Green Jobs Conference | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Works: Good Jobs, Green Jobs Conference Community Power Works: Good Jobs, Green Jobs Conference A presentation given by Community Power Works at the Good Jobs, Green Jobs Conference. PDF icon Community Power Works More Documents & Publications Community Power Works Better Buildings Conference Spotlight on Seattle, Washington: Community Partnerships Work to Extend Program Reach Contractor Quality Assurance and Home Performance with Energy Star

  12. NREL Report Highlights Positive Economic Impact and Job Creation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL Report Highlights Positive Economic Impact and Job Creation from 1603 Renewable ... From both perspectives, the program has been a huge success. NREL's analysis estimates ...

  13. Advances in coupled safety modeling using systems analysis and high-fidelity methods.

    SciTech Connect (OSTI)

    Fanning, T. H.; Thomas, J. W.; Nuclear Engineering Division

    2010-05-31

    The potential for a sodium-cooled fast reactor to survive severe accident initiators with no damage has been demonstrated through whole-plant testing in EBR-II and FFTF. Analysis of the observed natural protective mechanisms suggests that they would be characteristic of a broad range of sodium-cooled fast reactors utilizing metal fuel. However, in order to demonstrate the degree to which new, advanced sodium-cooled fast reactor designs will possess these desired safety features, accurate, high-fidelity, whole-plant dynamics safety simulations will be required. One of the objectives of the advanced safety-modeling component of the Reactor IPSC is to develop a science-based advanced safety simulation capability by utilizing existing safety simulation tools coupled with emerging high-fidelity modeling capabilities in a multi-resolution approach. As part of this integration, an existing whole-plant systems analysis code has been coupled with a high-fidelity computational fluid dynamics code to assess the impact of high-fidelity simulations on safety-related performance. With the coupled capabilities, it is possible to identify critical safety-related phenomenon in advanced reactor designs that cannot be resolved with existing tools. In this report, the impact of coupling is demonstrated by evaluating the conditions of outlet plenum thermal stratification during a protected loss of flow transient. Outlet plenum stratification was anticipated to alter core temperatures and flows predicted during natural circulation conditions. This effect was observed during the simulations. What was not anticipated, however, is the far-reaching impact that resolving thermal stratification has on the whole plant. The high temperatures predicted at the IHX inlet due to thermal stratification in the outlet plenum forces heat into the intermediate system to the point that it eventually becomes a source of heat for the primary system. The results also suggest that flow stagnation in the intermediate system is possible, raising questions about the effectiveness of the intermediate decay heat removal systems in the design that was evaluated. Existing tools do not predict flow stagnation. This work has demonstrated that with a proper coupling approach, a high-fidelity CFD tool can be used to resolve the important flow and temperature distributions throughout a plant while still maintaining the whole-plant safety analysis capabilities of a systems analysis code.

  14. Automated Hazard Analysis

    Energy Science and Technology Software Center (OSTI)

    2003-06-26

    The Automated Hazard Analysis (AHA) application is a software tool used to conduct job hazard screening and analysis of tasks to be performed in Savannah River Site facilities. The AHA application provides a systematic approach to the assessment of safety and environmental hazards associated with specific tasks, and the identification of controls regulations, and other requirements needed to perform those tasks safely. AHA is to be integrated into existing Savannah River site work control andmore » job hazard analysis processes. Utilization of AHA will improve the consistency and completeness of hazard screening and analysis, and increase the effectiveness of the work planning process.« less

  15. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    SciTech Connect (OSTI)

    1994-10-01

    This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.

  16. Hanford Health and Safety Expo Highlights Safety at Home, Work

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – At the Hanford Site, the commitment to safety extends beyond workers and the job site to the community. Promoting the overall importance of health and safety at both home and work was the focus of the annual Health & Safety EXPO (EXPO), held in Pasco, Wash., May 9-11.

  17. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    SciTech Connect (OSTI)

    Shedrow, C.B.

    1999-11-29

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

  18. An object-oriented approach to risk and reliability analysis : methodology and aviation safety applications.

    SciTech Connect (OSTI)

    Dandini, Vincent John; Duran, Felicia Angelica; Wyss, Gregory Dane

    2003-09-01

    This article describes how features of event tree analysis and Monte Carlo-based discrete event simulation can be combined with concepts from object-oriented analysis to develop a new risk assessment methodology, with some of the best features of each. The resultant object-based event scenario tree (OBEST) methodology enables an analyst to rapidly construct realistic models for scenarios for which an a priori discovery of event ordering is either cumbersome or impossible. Each scenario produced by OBEST is automatically associated with a likelihood estimate because probabilistic branching is integral to the object model definition. The OBEST methodology is then applied to an aviation safety problem that considers mechanisms by which an aircraft might become involved in a runway incursion incident. The resulting OBEST model demonstrates how a close link between human reliability analysis and probabilistic risk assessment methods can provide important insights into aviation safety phenomenology.

  19. Transferring Data from Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transferring Data from Batch Jobs Transferring Data from Batch Jobs Examples Once you are set up for automatic authentication (see HPSS Passwords) you can access HPSS within batch...

  20. Using Carver for PDSF jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announcements and Meetings Cluster Statistics Getting help Group Pages Using Carver for PDSF jobs PDSF Completed Jobs Genepool Testbeds Retired Systems Storage & File Systems Data...

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, supersedes DOE O 420.1C.

  2. Final safety analysis report for the Galileo Mission: Volume 1, Reference design document

    SciTech Connect (OSTI)

    Not Available

    1988-05-01

    The Galileo mission uses nuclear power sources called Radioisotope Thermoelectric Generators (RTGs) to provide the spacecraft's primary electrical power. Because these generators contain nuclear material, a Safety Analysis Report (SAR) is required. A preliminary SAR and an updated SAR were previously issued that provided an evolving status report on the safety analysis. As a result of the Challenger accident, the launch dates for both Galileo and Ulysses missions were later rescheduled for November 1989 and October 1990, respectively. The decision was made by agreement between the DOE and the NASA to have a revised safety evaluation and report (FSAR) prepared on the basis of these revised vehicle accidents and environments. The results of this latest revised safety evaluation are presented in this document (Galileo FSAR). Volume I, this document, provides the background design information required to understand the analyses presented in Volumes II and III. It contains descriptions of the RTGs, the Galileo spacecraft, the Space Shuttle, the Inertial Upper Stage (IUS), the trajectory and flight characteristics including flight contingency modes, and the launch site. There are two appendices in Volume I which provide detailed material properties for the RTG.

  3. MODEL 9977 B(M)F-96 SAFETY ANALYSIS REPORT FOR PACKAGING

    SciTech Connect (OSTI)

    Abramczyk, G; Paul Blanton, P; Kurt Eberl, K

    2006-05-18

    This Safety Analysis Report for Packaging (SARP) documents the analysis and testing performed on and for the 9977 Shipping Package, referred to as the General Purpose Fissile Package (GPFP). The performance evaluation presented in this SARP documents the compliance of the 9977 package with the regulatory safety requirements for Type B packages. Per 10 CFR 71.59, for the 9977 packages evaluated in this SARP, the value of ''N'' is 50, and the Transport Index based on nuclear criticality control is 1.0. The 9977 package is designed with a high degree of single containment. The 9977 complies with 10 CFR 71 (2002), Department of Energy (DOE) Order 460.1B, DOE Order 460.2, and 10 CFR 20 (2003) for As Low As Reasonably Achievable (ALARA) principles. The 9977 also satisfies the requirements of the Regulations for the Safe Transport of Radioactive Material--1996 Edition (Revised)--Requirements. IAEA Safety Standards, Safety Series No. TS-R-1 (ST-1, Rev.), International Atomic Energy Agency, Vienna, Austria (2000). The 9977 package is designed, analyzed and fabricated in accordance with Section III of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, 1992 edition.

  4. Job Launch Command: aprun

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aprun Job Launch Command: aprun You must use the aprun command to launch jobs on the Hopper compute nodes. Use it for serial, MPI, OpenMP, UPC, and hybrid MPI/OpenMP or hybrid MPI/CAF jobs. You should view the MAN pages for aprun on Hopper or you can see them here. Basic aprun Options OPTION DESCRIPTION -n Number of MPI tasks. -N (Optional) Number of tasks per Hopper Node. Default is 24. -d (Optional) Depth, or number of threads, per MPI task. Use this very important option in addition to

  5. Vehicle Technologies Program - Jobs in Advanced Vehicle Technologies (Green Jobs)

    SciTech Connect (OSTI)

    2010-05-01

    Transformation of the U.S. transportation sector will secure existing jobs and create new opportunities.

  6. A probabilistic safety analysis of UF{sub 6} handling at the Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Boyd, G.J.; Lewis, S.R.; Summitt, R.L.

    1991-12-31

    A probabilistic safety study of UF{sub 6} handling activities at the Portsmouth Gaseous Diffusion Plant has recently been completed. The analysis provides a unique perspective on the safety of UF{sub 6} handling activities. The estimated release frequencies provide an understanding of current risks, and the examination of individual contributors yields a ranking of important plant features and operations. Aside from the probabilistic results, however, there is an even more important benefit derived from a systematic modeling of all operations. The integrated approach employed in the analysis allows the interrelationships among the equipment and the required operations to be explored in depth. This paper summarizes the methods used in the study and provides an overview of some of the technical insights that were obtained. Specific areas of possible improvement in operations are described.

  7. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report. Revision 3

    SciTech Connect (OSTI)

    Herborn, D.I.

    1993-11-01

    Westinghouse Hanford Company (WHC) is the Integrating Contractor for the Hanford Waste Vitrification Plant (HWVP) Project, and as such is responsible for preparation of the HWVP Preliminary Safety Analysis Report (PSAR). The HWVP PSAR was prepared pursuant to the requirements for safety analyses contained in US Department of Energy (DOE) Orders 4700.1, Project Management System (DOE 1987); 5480.5, Safety of Nuclear Facilities (DOE 1986a); 5481.lB, Safety Analysis and Review System (DOE 1986b) which was superseded by DOE order 5480-23, Nuclear Safety Analysis Reports, for nuclear facilities effective April 30, 1992 (DOE 1992); and 6430.lA, General Design Criteria (DOE 1989). The WHC procedures that, in large part, implement these DOE requirements are contained in WHC-CM-4-46, Nonreactor Facility Safety Analysis Manual. This manual describes the overall WHC safety analysis process in terms of requirements for safety analyses, responsibilities of the various contributing organizations, and required reviews and approvals.

  8. Running Jobs.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Moab - Scheduler ALPS Job Launch aprun arguments run done STDOUT STDERR February 1, 2010 ... Moab, ALPS all participate. % qsub -I -l mppwidth24 -l walltime30:00 Hopper % qsub -I -l ...

  9. IT Job Shadow Day

    Broader source: Energy.gov [DOE]

    IT Job Shadow Day aims to educate and engage high school students in a variety of information technology careers within the federal government. Participating students will shadow federal technology professionals at federal workplaces.

  10. Jobs at the National Labs

    Broader source: Energy.gov [DOE]

    Search for jobs, internships and educational programs at the Department of Energy's National Laboratories.

  11. Jobs and Economic Development Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project objective: Develop models to estimate jobs and economic impacts from geothermal project development and operation.

  12. Find Jobs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jobs Find Jobs Clean energy jobs can be found in the public, private, and nonprofit sectors and can range from entry-level to professional positions in a wide range of fields. This section can help you familiarize yourself with different types of green energy jobs as you begin your search for a job that meets your interests and skills. EERE Career Opportunities EERE Career Opportunities Energy Efficency and Renewable Energy, the DOE office leading the nation's effort to enhance energy efficiency

  13. Jobs | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jobs Management OM Home About Organization Chart .pdf file (23KB) Director Biography Staff Jobs Program Direction and Analysis Human Resources Advisory Office Administration Contact Information Management U.S. Department of Energy SC-48/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 More Information » About Jobs Print Text Size: A A A Subscribe FeedbackShare Page Current Open Federal Positions The Office of Management is located in Germantown, MD. All open federal positions

  14. Final safety analysis report for the Galileo Mission: Volume 2, Book 2: Accident model document: Appendices

    SciTech Connect (OSTI)

    Not Available

    1988-12-15

    This section of the Accident Model Document (AMD) presents the appendices which describe the various analyses that have been conducted for use in the Galileo Final Safety Analysis Report II, Volume II. Included in these appendices are the approaches, techniques, conditions and assumptions used in the development of the analytical models plus the detailed results of the analyses. Also included in these appendices are summaries of the accidents and their associated probabilities and environment models taken from the Shuttle Data Book (NSTS-08116), plus summaries of the several segments of the recent GPHS safety test program. The information presented in these appendices is used in Section 3.0 of the AMD to develop the Failure/Abort Sequence Trees (FASTs) and to determine the fuel releases (source terms) resulting from the potential Space Shuttle/IUS accidents throughout the missions.

  15. Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis

    SciTech Connect (OSTI)

    Farmer, Mitchell T.; Bunt, R.; Corradini, M.; Ellison, Paul B.; Francis, M.; Gabor, John D.; Gauntt, R.; Henry, C.; Linthicum, R.; Luangdilok, W.; Lutz, R.; Paik, C.; Plys, M.; Rabiti, Cristian; Rempe, J.; Robb, K.; Wachowiak, R.

    2015-01-31

    The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy’s (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affect reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).

  16. Safety analysis report for packaging a DOT 7A specification container for tritiated liquid wastes

    SciTech Connect (OSTI)

    Alford, E.

    1980-08-01

    This Safety Analysis Report for Packaging (SARP) was prepared in accordance with ERDA (DOE) Appendix 5201 for DOE/ALO review and approval of packaging of tritiated liquid wastes to be shipped from Sandia National Laboratories, Livermore, (SNLL) California. This report presents information pertinent to the construction of tritiated liquid waste shipping containers. It contains design and development considerations, explains tests and evaluations required to prove the container can withstand normal transportation conditions, and demonstrates that the Sandia container-and-radioactive-material shipment package is in compliance with DOE and Department of Transportation (DOT) safety requirements. An internal review of this SARP has been performed in compliance with the ERDA (DOE) Manual, 5201 Appendix V.

  17. Criticality Safety Analysis Of As-loaded Spent Nuclear Fuel Casks

    SciTech Connect (OSTI)

    Banerjee, Kaushik; Scaglione, John M

    2015-01-01

    The final safety analysis report (FSAR) or the safety analysis report (SAR) for a particular spent nuclear fuel (SNF) cask system documents models and calculations used to demonstrate that a system meets the regulatory requirements under all normal, off-normal, and accident conditions of spent fuel storage, and normal and accident conditions of transportation. FSAR/SAR calculations and approved content specifications are intended to be bounding in nature to certify cask systems for a variety of fuel characteristics with simplified SNF loading requirements. Therefore, in general, loaded cask systems possess excess and uncredited criticality margins (i.e., the difference between the licensing basis and the as-loaded calculations). This uncredited margin could be quantified by employing more detailed cask-specific evaluations that credit the actual as-loaded cask inventory, and taking into account full (actinide and fission product) burnup credit. This uncredited criticality margin could be potentially used to offset (1) uncertainties in the safety basis that needs to account for the effects of system aging during extended dry storage prior to transportation, and (2) increases in SNF system reactivity over a repository performance period (e.g., 10,000 years or more) as the system undergoes degradation and internal geometry changes. This paper summarizes an assessment of cask-specific, as-loaded criticality margins for SNF stored at eight reactor sites (215 loaded casks were analyzed) under fully flooded conditions to assess the margins available during transportation after extended storage. It is observed that the calculated keff margin varies from 0.05 to almost 0.3 keff for the eight selected reactor sites, demonstrating that significant uncredited safety margins are present. In addition, this paper evaluates the sufficiency of this excess margin in applications involving direct disposal of currently loaded SNF casks.

  18. Criticality Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Nuclear Safety » Criticality Safety Criticality Safety Nuclear Safety Basis The Nuclear Facility Safety Program establishes and maintains the DOE requirements for nuclear criticality safety. The DOE detailed requirements for criticality safety are contained in Section 4.3 of the DOE Order 420.1,Facility Safety. Criticality safety requirements are based on the documented safety analysis required by 10 CFR 830, Subpart B. Related Links 10 CFR 830, Nuclear Safety Management American

  19. Franklin Completed Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Completed Jobs Franklin Completed Jobs Select a time period Show jobs that completed after Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 @ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

  20. Frequency agile laser safety & hazard analysis for the Sandia Remote Sensing System LIDAR.

    SciTech Connect (OSTI)

    Augustoni, Arnold L.

    2009-05-01

    A laser safety and hazard analysis was performed for the Raytheon Frequency Agile Laser (FAL) to be used with the Sandia Remote Sensing System (SRSS) B-70 Trailer based on the 2007 version of the American National Standards Institute's (ANSI) Standard 136.1, for Safe Use of Lasers and the 2005 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. The B-70 SRSS LIDAR system is a portable platform, which is used to perform laser interaction experiments and tests at various national test sites.

  1. Safety Analysis Report for Packaging: The unirradiated fuel shipping container USA/9853/AF

    SciTech Connect (OSTI)

    Not Available

    1991-10-18

    The HFBR Unirradiated Fuel Shipping Container was designed and fabricated at the Oak Ridge National Laboratory in 1978 for the transport of fuel for the High Flux Beam Reactor (HFBR) for Brookhaven National Laboratory. The package has been evaluated analytically, as well as the comparison to tests on similar packages, to demonstrate compliance with the applicable regulations governing packages in which radioactive and fissile materials are transported. The contents of this Safety Analysis Report for Packaging (SARP) are based on Regulatory Guide 7.9 (proposed Revision 2 - May 1986), 10 CFR Part 71, DOE Order 1540.2, DOE Order 5480.3, and 49 CFR Part 173.

  2. Breach and safety analysis of spills over water from large liquefied natural gas carriers.

    SciTech Connect (OSTI)

    Hightower, Marion Michael; Luketa-Hanlin, Anay Josephine; Attaway, Stephen W.

    2008-05-01

    In 2004, at the request of the Department of Energy, Sandia National Laboratories (Sandia) prepared a report, ''Guidance on the Risk and Safety Analysis of Large Liquefied Natural Gas (LNG) Spills Over Water''. That report provided framework for assessing hazards and identifying approaches to minimize the consequences to people and property from an LNG spill over water. The report also presented the general scale of possible hazards from a spill from 125,000 m3 o 150,000 m3 class LNG carriers, at the time the most common LNG carrier capacity.

  3. Running Interactive Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Batch Jobs Running Interactive Batch Jobs You cannot login to the PDSF batch nodes directly but you can run an interactive session on a batch node using either qlogin or qsh. This can be useful if you are doing something that is potentially disruptive or if the interactive nodes are overloaded. qlogin will give you an interactive session in the same window as your original session on PDSF, however, you must have your ssh keys in place. You can do this locally on PDSF by following

  4. Running Jobs with Shifter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Docker » Running Jobs with Shifter Running Jobs with Shifter Shifter functionality at NERSC is undergoing rapid development and is an experimental service. Usage will change over time, we will do our best to keep the documentation up to date, but there may be inconsistencies. The easiest way to use shifter is via Docker. You can create a Docker image with your desired software and operating system. Please keep in mind that root is squashed on shifter images, so the software should be installed

  5. Job Launch Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Launch Overview Job Launch Overview Overview and Basic Description Franklin has three basic types of nodes. Compute Nodes The 9,572 compute nodes each have a quad-core 2.3 GHz Opteron processor and 8 GB of memory shared by the 4 cores. The compute nodes run a restricted low-overhead operating system optimized for high performance computing. This OS supports only a limited number of system calls and UNIX commands, and does not officially support user-created dynamic-load libraries. A single

  6. Job Logs & Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Queue Status Queue Wait Times Completed Batch Jobs Completed Parallel Jobs Usage Reports Benchmark Monitoring Application Performance Training & Tutorials Software Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov

  7. Preliminary Safety Analysis Report (PSAR), The NSLS 200 MeV Linear Electron Accelerator

    SciTech Connect (OSTI)

    Blumberg, L.N.; Ackerman, A.I.; Dickinson, T.; Heese, R.N.; Larson, R.A.; Neuls, C.W.; Pjerov, S.; Sheehan, J.F.

    1993-06-15

    The radiological, fire and electrical hazards posed by a 200 MeV electron Linear Accelerator, which the NSLS Department will install and commission within a newly assembled structure, are addressed in this Preliminary Safety Analysis Report. Although it is clear that this accelerator is intended to be the injector for a future experimental facility, we address only the Linac in the present PSAR since neither the final design nor the operating characteristics of the experimental facility are known at the present time. The fire detection and control system to be installed in the building is judged to be completely adequate in terms of the marginal hazard presented - no combustible materials other than the usual cabling associated with such a facility have been identified. Likewise, electrical hazards associated with power supplies for the beam transport magnets and accelerator components such as the accelerator klystrons and electron gun are classified as marginal in terms of potential personnel injury, cost of equipment lost, program downtime and public impact perceptions as defined in the BNL Environmental Safety and Health Manual and the probability of occurrence is deemed to be remote. No unusual features have been identified for the power supplies or electrical distribution system, and normal and customary electrical safety standards as practiced throughout the NSLS complex and the Laboratory are specified in this report. The radiation safety hazards are similarly judged to be marginal in terms of probability of occurrence and potential injury consequences since, for the low intensity operation proposed - a factor of 25 less than the maximum Linac capability specified by the vendor - the average beam power is only 0.4 watts. The shielding specifications given in this report will give adequate protection to both the general public and nonradiation workers in areas adjacent to the building as well as radiation workers within the controlled access building.

  8. Weighted Running Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weighted Running Jobs by Group Weighted Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2016-04-29 11:34:54

  9. Access, Compiling and Running Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access Compiling and Running Jobs Access, Compiling and Running Jobs Access Dirac Dirac can be accessed by logging into carver.nersc.gov. Compile To compile your code, you need to...

  10. Using Job Arrays on Carver

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This is an example of a job array that will run several different jobs on the Carver serial queue. You can control the working directory, executable name, input file, output...

  11. Usage by Job Size Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage by Job Size Table Usage by Job Size Table page loading animation Usage Query Interface System All Hopper Edison Cori Carver Planck Matgen Franklin Hopper 1 Magellan Dirac...

  12. Demonstration of emulator-based Bayesian calibration of safety analysis codes: Theory and formulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yurko, Joseph P.; Buongiorno, Jacopo; Youngblood, Robert

    2015-05-28

    System codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very accurately. New information from tests or operating experience is incorporated into safety codes by a process known as calibration, which reduces uncertainty in the output of the code and thereby improves its support for decision-making. The work reported here implements several improvements on classic calibration techniques afforded by modern analysis techniques. The key innovation has come from development of code surrogate model (or code emulator) construction and prediction algorithms. Use of a fast emulator makes the calibration processes used here withmore » Markov Chain Monte Carlo (MCMC) sampling feasible. This study uses Gaussian Process (GP) based emulators, which have been used previously to emulate computer codes in the nuclear field. The present work describes the formulation of an emulator that incorporates GPs into a factor analysis-type or pattern recognition-type model. This “function factorization” Gaussian Process (FFGP) model allows overcoming limitations present in standard GP emulators, thereby improving both accuracy and speed of the emulator-based calibration process. Calibration of a friction-factor example using a Method of Manufactured Solution is performed to illustrate key properties of the FFGP based process.« less

  13. Regulatory/backfit analysis for the resolution of Unresolved Safety Issue A-44, Station Blackout

    SciTech Connect (OSTI)

    Rubin, A.M.

    1988-06-01

    Station blackout is the complete loss of alternating current (ac) electric power to the essential and nonessential buses in a nuclear power plant; it results when both offsite power and the onsite emergency ac power systems are unavailable. Because many safety systems required for reactor core decay heat removal and containment heat removal depend on ac power, the consequences of a station blackout could be severe. Because of the concern about the frequency of loss of offsite power, the number of failures of emergency diesel generators, and the potentially severe consequences of a loss of all ac power, ''Station Blackout'' was designated as Unresolved Safety Issue (USI) A-44. This report presents the regulatory/backfit analysis for USI A-44. It includes (1) a summary of the issue, (2) the recommended technical resolution, (3) alternative resolutions considered by the Nuclear Regulatory Commission (NRC) staff, (4) an assessment of the benefits and costs of the recommended resolution, (5) the decision rationale, (6) the relationship between USI A-44 and other NRC programs and requirements, and (7) a backfit analysis demonstrating that the resolution of USI A-44 complies with the backfit rule (10 CFR 50.109).

  14. Demonstration of emulator-based Bayesian calibration of safety analysis codes: Theory and formulation

    SciTech Connect (OSTI)

    Yurko, Joseph P.; Buongiorno, Jacopo; Youngblood, Robert

    2015-05-28

    System codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very accurately. New information from tests or operating experience is incorporated into safety codes by a process known as calibration, which reduces uncertainty in the output of the code and thereby improves its support for decision-making. The work reported here implements several improvements on classic calibration techniques afforded by modern analysis techniques. The key innovation has come from development of code surrogate model (or code emulator) construction and prediction algorithms. Use of a fast emulator makes the calibration processes used here with Markov Chain Monte Carlo (MCMC) sampling feasible. This study uses Gaussian Process (GP) based emulators, which have been used previously to emulate computer codes in the nuclear field. The present work describes the formulation of an emulator that incorporates GPs into a factor analysis-type or pattern recognition-type model. This “function factorization” Gaussian Process (FFGP) model allows overcoming limitations present in standard GP emulators, thereby improving both accuracy and speed of the emulator-based calibration process. Calibration of a friction-factor example using a Method of Manufactured Solution is performed to illustrate key properties of the FFGP based process.

  15. More Than Just a Job

    Broader source: Energy.gov [DOE]

    Jane Johnston came to Argonne National Laboratory for a job funded through the Recovery Act, and found supportive colleagues.

  16. Los Alamos National Laboratory corregated metal pipe saw facility preliminary safety analysis report. Volume I

    SciTech Connect (OSTI)

    1990-09-19

    This Preliminary Safety Analysis Report addresses site assessment, facility design and construction, and design operation of the processing systems in the Corrugated Metal Pipe Saw Facility with respect to normal and abnormal conditions. Potential hazards are identified, credible accidents relative to the operation of the facility and the process systems are analyzed, and the consequences of postulated accidents are presented. The risk associated with normal operations, abnormal operations, and natural phenomena are analyzed. The accident analysis presented shows that the impact of the facility will be acceptable for all foreseeable normal and abnormal conditions of operation. Specifically, under normal conditions the facility will have impacts within the limits posted by applicable DOE guidelines, and in accident conditions the facility will similarly meet or exceed the requirements of all applicable standards. 16 figs., 6 tabs.

  17. Probabilistic risk analysis toward cost-effective 3S (safety, safeguards, security) implementation

    SciTech Connect (OSTI)

    Suzuki, Mitsutoshi; Mochiji, Toshiro

    2014-09-30

    Probabilistic Risk Analysis (PRA) has been introduced for several decades in safety and nuclear advanced countries have already used this methodology in their own regulatory systems. However, PRA has not been developed in safeguards and security so far because of inherent difficulties in intentional and malicious acts. In this paper, probabilistic proliferation and risk analysis based on random process is applied to hypothetical reprocessing process and physical protection system in nuclear reactor with the Markov model that was originally developed by the Proliferation Resistance and Physical Protection Working Group (PRPPWG) in Generation IV International Framework (GIF). Through the challenge to quantify the security risk with a frequency in this model, integrated risk notion among 3S to pursue the cost-effective installation of those countermeasures is discussed in a heroic manner.

  18. Program Direction and Analysis Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  19. Running Jobs under SLURM on Babbage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs under SLURM on Babbage Running Jobs under SLURM on Babbage Overview SLURM (Simple Linux Utility For Resource Management) batch scheduler is used on Babbage. Basically SLURM job commands are: salloc (ask nodes for interactive job) sbatch: submit a batch job scancel: delete a queued or running job squeue: check queued jobs sinfo: check queue configuration More details on on SLURM keywords, job control and monitoring commands, etc. can be found at the SLURM Introduction (with links to

  20. Safety analysis of high pressure 3He-filled micro-channels for thermal neutron detection.

    SciTech Connect (OSTI)

    Ferko, Scott M.; Galambos, Paul C.; Derzon, Mark Steven; Renzi, Ronald F.

    2008-11-01

    This document is a safety analysis of a novel neutron detection technology developed by Sandia National Laboratories. This technology is comprised of devices with tiny channels containing high pressure {sup 3}He. These devices are further integrated into large scale neutron sensors. Modeling and preliminary device testing indicates that the time required to detect the presence of special nuclear materials may be reduced under optimal conditions by several orders of magnitude using this approach. Also, these devices make efficient use of our {sup 3}He supply by making individual devices more efficient and/or extending the our limited {sup 3}He supply. The safety of these high pressure devices has been a primary concern. We address these safety concerns for a flat panel configuration intended for thermal neutron detection. Ballistic impact tests using 3 g projectiles were performed on devices made from FR4, Silicon, and Parmax materials. In addition to impact testing, operational limits were determined by pressurizing the devices either to failure or until they unacceptably leaked. We found that (1) sympathetic or parasitic failure does not occur in pressurized FR4 devices (2) the Si devices exhibited benign brittle failure (sympathetic failure under pressure was not tested) and (3) the Parmax devices failed unacceptably. FR4 devices were filled to pressures up to 4000 + 100 psig, and the impacts were captured using a high speed camera. The brittle Si devices shattered, but were completely contained when wrapped in thin tape, while the ductile FR4 devices deformed only. Even at 4000 psi the energy density of the compressed gas appears to be insignificant compared to the impact caused by the incoming projectile. In conclusion, the current FR4 device design pressurized up to 4000 psi does not show evidence of sympathetic failure, and these devices are intrinsically safe.

  1. Safety analysis -- 200 Area Savannah River Plant, F-Canyon Operations. Supplement 4

    SciTech Connect (OSTI)

    Beary, M.M.; Collier, C.D.; Fairobent, L.A.; Graham, R.F.; Mason, C.L.; McDuffee, W.T.; Owen, T.L.; Walker, D.H.

    1986-02-01

    The F-Canyon facility is located in the 200 Separations Area and uses the Purex process to recover plutonium from reactor-irradiated uranium. The irradiated uranium is normally in the form of solid or hollow cylinders called slugs. These slugs are encased in aluminum cladding and are sent to the F-Canyon from the Savannah River Plant (SRP) reactor areas or from the Receiving Basin for Offsite Fuels (RBOF). This Safety Analysis Report (SAR) documents an analysis of the F-Canyon operations and is an update to a section of a previous SAR. The previous SAR documented an analysis of the entire 200 Separations Area operations. This SAR documents an analysis of the F-Canyon and is one of a series of documents for the Separations Area as specified in the Savannah River Implementation Plans. A substantial amount of the information supporting the conclusions of this SAR is found in the Systems Analysis. Some F-Canyon equipment has been updated during the time between the Systems Analysis and this SAR and a complete description of this equipment is included in this report. The primary purpose of the analysis was to demonstrate that the F-Canyon can be operated without undue risk to onsite or offsite populations and to the environment. In this report, risk is defined as the expected frequency of an accident, multiplied by the resulting radiological consequence in person-rem. The units of risk for radiological dose are person-rem/year. Maximum individual exposure values have also been calculated and reported.

  2. Radiological Safety Analysis Computer (RSAC) Program Version 7.2 Users Manual

    SciTech Connect (OSTI)

    Dr. Bradley J Schrader

    2010-10-01

    The Radiological Safety Analysis Computer (RSAC) Program Version 7.2 (RSAC-7) is the newest version of the RSAC legacy code. It calculates the consequences of a release of radionuclides to the atmosphere. A user can generate a fission product inventory from either reactor operating history or a nuclear criticality event. RSAC-7 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for inhalation, air immersion, ground surface, ingestion, and cloud gamma pathways. RSAC-7 can be used as a tool to evaluate accident conditions in emergency response scenarios, radiological sabotage events and to evaluate safety basis accident consequences. This users manual contains the mathematical models and operating instructions for RSAC-7. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-7. This program was designed for users who are familiar with radiological dose assessment methods.

  3. Regulatory analysis for the resolution of Unresolved Safety Issue A-44, Station Blackout. Draft report

    SciTech Connect (OSTI)

    Rubin, A.M.

    1986-01-01

    ''Station Blackout'' is the complete loss of alternating current (ac) electric power to the essential and nonessential buses in a nuclear power plant; it results when both offsite power and the onsite emergency ac power systems are unavailable. Because many safety systems required for reactor core decay heat removal and containment heat removal depend on ac power, the consequences of a station blackout could be severe. Because of the concern about the frequency of loss of offsite power, the number of failures of emergency diesel generators, and the potentially severe consequences of a loss of all ac power, ''Station Blackout'' was designated as Unresolved Safety Issue (USI) A-44. This report presents the regulatory analysis for USI A-44. It includes: (1) a summary of the issue, (2) the proposed technical resolution, (3) alternative resolutions considered by the Nuclear Regulatory Commission (NRC) staff, (4) an assessment of the benefits and costs of the recommended resolution, (5) the decision rationale, and (6) the relationship between USI A-44 and other NRC programs and requirements.

  4. The Oak Ridge Research Reactor: Safety analysis: Volume 2, Supplement 3

    SciTech Connect (OSTI)

    Cook, D.H.; Hamrick, T.P.

    1987-06-29

    The Oak Ridge Research Reactor (ORR) was constructed in the mid 1950s. Since it is an older facility, the issue of life-limiting conditions or material deterioration resulting from prolonged exposure to the normal operating environment is an item that should be addressed in the safety analysis for the ORR. Life-limiting conditions were considered in the original design of ORR; but due to the limited data that were available at that time on material performance in research reactors, various studies were completed during the first 10 years of operation at ORR to verify the applicable life-limiting parameters. Based on today's knowledge of life limiting conditions and the previous 30 years of operating experience at the ORR facility, the three specific areas of concern are addressed in this supplement: (1) embrittlement of the structures due to radiation damage, which is described in Section 2; (2) fatigue due to the effects of both thermal cycling and vibration, which is addressed in Section 3; and (3) the effects of corrosion on the integrity of the primary system, which is described in Section 4. The purpose of this document is to provide a review of the applicable safety studies which have been performed, and to state the status of the ORR with regard to embrittlement, fatigue (due to thermal cycling and vibration), and corrosion.

  5. Ensemble_Jobs.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Submission on the Blue Gene/Q: The Right Tool For The Job Paul R ich, A LCF May 1 9, 2 015 Overview § Defini:ons § Picking t he r ight t ype o f j ob § Basic s cript m ode j ob : ps § Ensemble s cript j ob : ps Argonne L eadership C ompu:ng F acility 2 Definitions and Disambiguation § Cobalt J ob --- --- A j ob s ubmiKed t o C obalt v ia q sub. S hows u p i n qstat. § Blue G ene J ob --- --- A t ask r un o n t he B lue G ene c ompute n odes v ia runjob. § Script J

  6. Training Worksheet Job Aid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Worksheet Job Aid Maintained by Corporate Education, Development & Training (CEDT) Purchase Order A. General Awareness Sandia-Specific Training - Initial and Refresher Training Program/ Hazards Title Course Number Annual Counterintelligence Training Members of the Workforce who process, or have access to information. CI100 Annual Integrated Cyber and Information Security Training All members of the SNL workforce who create and process Sandia information are required to complete

  7. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    SciTech Connect (OSTI)

    1994-10-01

    This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.

  8. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    SciTech Connect (OSTI)

    1994-10-01

    This document is the third volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of appendices C through U of the report

  9. Safety analysis report for packaging (onsite) decontaminated equipment self-container

    SciTech Connect (OSTI)

    Boehnke, W.M.

    1998-09-29

    The purpose of this Safety Analysis Report for Packaging (SARP) is to demonstrate that specific decontaminated equipment can be safely used as its own self-container. As a Decontaminated Equipment Self-Container (also referred to as a self-container), no other packaging, such as a burial box, would be required to transport the equipment onsite. The self-container will consist of a piece of equipment or apparatus which has all readily removable interior contamination removed, all of its external openings sealed, and all external surfaces decontaminated to less than 2000 dpm/100 cm for gamma-emitting radionuclides and less than 220 dpm/100 CM2 for alpha-emitting radionuclides.

  10. The Radiological Safety Analysis Computer Program (RSAC-5) user`s manual. Revision 1

    SciTech Connect (OSTI)

    Wenzel, D.R.

    1994-02-01

    The Radiological Safety Analysis Computer Program (RSAC-5) calculates the consequences of the release of radionuclides to the atmosphere. Using a personal computer, a user can generate a fission product inventory from either reactor operating history or nuclear criticalities. RSAC-5 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated through the inhalation, immersion, ground surface, and ingestion pathways. RSAC+, a menu-driven companion program to RSAC-5, assists users in creating and running RSAC-5 input files. This user`s manual contains the mathematical models and operating instructions for RSAC-5 and RSAC+. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-5 and RSAC+. These programs are designed for users who are familiar with radiological dose assessment methods.

  11. Office of Enterprise Assessments Review of the Hanford Site Sludge Treatment Project Engineered Container Retrieval and Transfer System Preliminary Documented Safety Analysis, Revision 00 - April 2015

    Office of Environmental Management (EM)

    Hanford Site Sludge Treatment Project Engineered Container Retrieval and Transfer System Preliminary Documented Safety Analysis, Revision 00 April 2015 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy Table of Contents Acronyms ................................................................................................................................. iii Executive Summary

  12. JOBS FC 1.1 (JOBS and economic impacts of Fuel Cells)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of FC deployment (JOBS and economic impacts of Fuel Cells) * JOBS FC is a user-friendly spreadsheet- based tool that calculates direct, indirect and induced job creation, ...

  13. American Jobs Creation Act of 2004 (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    The American Jobs Creation Act of 2004 was signed into law on October 22, 2004. Most of the 650 pages of the Act are related to tax legislation. Provisions pertaining to energy are detailed in this analysis.

  14. Methodology assessment and recommendations for the Mars science laboratory launch safety analysis.

    SciTech Connect (OSTI)

    Sturgis, Beverly Rainwater; Metzinger, Kurt Evan; Powers, Dana Auburn; Atcitty, Christopher B.; Robinson, David B; Hewson, John C.; Bixler, Nathan E.; Dodson, Brian W.; Potter, Donald L.; Kelly, John E.; MacLean, Heather J.; Bergeron, Kenneth Donald; Bessette, Gregory Carl; Lipinski, Ronald J.

    2006-09-01

    The Department of Energy has assigned to Sandia National Laboratories the responsibility of producing a Safety Analysis Report (SAR) for the plutonium-dioxide fueled Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) proposed to be used in the Mars Science Laboratory (MSL) mission. The National Aeronautic and Space Administration (NASA) is anticipating a launch in fall of 2009, and the SAR will play a critical role in the launch approval process. As in past safety evaluations of MMRTG missions, a wide range of potential accident conditions differing widely in probability and seventy must be considered, and the resulting risk to the public will be presented in the form of probability distribution functions of health effects in terms of latent cancer fatalities. The basic descriptions of accident cases will be provided by NASA in the MSL SAR Databook for the mission, and on the basis of these descriptions, Sandia will apply a variety of sophisticated computational simulation tools to evaluate the potential release of plutonium dioxide, its transport to human populations, and the consequent health effects. The first step in carrying out this project is to evaluate the existing computational analysis tools (computer codes) for suitability to the analysis and, when appropriate, to identify areas where modifications or improvements are warranted. The overall calculation of health risks can be divided into three levels of analysis. Level A involves detailed simulations of the interactions of the MMRTG or its components with the broad range of insults (e.g., shrapnel, blast waves, fires) posed by the various accident environments. There are a number of candidate codes for this level; they are typically high resolution computational simulation tools that capture details of each type of interaction and that can predict damage and plutonium dioxide release for a range of choices of controlling parameters. Level B utilizes these detailed results to study many thousands of possible event sequences and to build up a statistical representation of the releases for each accident case. A code to carry out this process will have to be developed or adapted from previous MMRTG missions. Finally, Level C translates the release (or ''source term'') information from Level B into public risk by applying models for atmospheric transport and the health consequences of exposure to the released plutonium dioxide. A number of candidate codes for this level of analysis are available. This report surveys the range of available codes and tools for each of these levels and makes recommendations for which choices are best for the MSL mission. It also identities areas where improvements to the codes are needed. In some cases a second tier of codes may be identified to provide supporting or clarifying insight about particular issues. The main focus of the methodology assessment is to identify a suite of computational tools that can produce a high quality SAR that can be successfully reviewed by external bodies (such as the Interagency Nuclear Safety Review Panel) on the schedule established by NASA and DOE.

  15. Exploratory Nuclear Reactor Safety Analysis and Visualization via Integrated Topological and Geometric Techniques

    SciTech Connect (OSTI)

    Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer; Diego Mandelli; Michael Pernice; Robert Nourgaliev

    2013-10-01

    A recent trend in the nuclear power engineering field is the implementation of heavily computational and time consuming algorithms and codes for both design and safety analysis. In particular, the new generation of system analysis codes aim to embrace several phenomena such as thermo-hydraulic, structural behavior, and system dynamics, as well as uncertainty quantification and sensitivity analyses. The use of dynamic probabilistic risk assessment (PRA) methodologies allows a systematic approach to uncertainty quantification. Dynamic methodologies in PRA account for possible coupling between triggered or stochastic events through explicit consideration of the time element in system evolution, often through the use of dynamic system models (simulators). They are usually needed when the system has more than one failure mode, control loops, and/or hardware/process/software/human interaction. Dynamic methodologies are also capable of modeling the consequences of epistemic and aleatory uncertainties. The Monte-Carlo (MC) and the Dynamic Event Tree (DET) approaches belong to this new class of dynamic PRA methodologies. The major challenges in using MC and DET methodologies (as well as other dynamic methodologies) are the heavier computational and memory requirements compared to the classical ET analysis. This is due to the fact that each branch generated can contain time evolutions of a large number of variables (about 50,000 data channels are typically present in RELAP) and a large number of scenarios can be generated from a single initiating event (possibly on the order of hundreds or even thousands). Such large amounts of information are usually very difficult to organize in order to identify the main trends in scenario evolutions and the main risk contributors for each initiating event. This report aims to improve Dynamic PRA methodologies by tackling the two challenges mentioned above using: 1) adaptive sampling techniques to reduce computational cost of the analysis and 2) topology-based methodologies to interactively visualize multidimensional data and extract risk-informed insights. Regarding item 1) we employ learning algorithms that aim to infer/predict simulation outcome and decide the coordinate in the input space of the next sample that maximize the amount of information that can be gained from it. Such methodologies can be used to both explore and exploit the input space. The later one is especially used for safety analysis scopes to focus samples along the limit surface, i.e. the boundaries in the input space between system failure and system success. Regarding item 2) we present a software tool that is designed to analyze multi-dimensional data. We model a large-scale nuclear simulation dataset as a high-dimensional scalar function defined over a discrete sample of the domain. First, we provide structural analysis of such a function at multiple scales and provide insight into the relationship between the input parameters and the output. Second, we enable exploratory analysis for users, where we help the users to differentiate features from noise through multi-scale analysis on an interactive platform, based on domain knowledge and data characterization. Our analysis is performed by exploiting the topological and geometric properties of the domain, building statistical models based on its topological segmentations and providing interactive visual interfaces to facilitate such explorations.

  16. Processes and Procedures for Application of CFD to Nuclear Reactor Safety Analysis

    SciTech Connect (OSTI)

    Richard W. Johnson; Richard R. Schultz; Patrick J. Roache; Ismail B. Celik; William D. Pointer; Yassin A. Hassan

    2006-09-01

    Traditionally, nuclear reactor safety analysis has been performed using systems analysis codes such as RELAP5, which was developed at the INL. However, goals established by the Generation IV program, especially the desire to increase efficiency, has lead to an increase in operating temperatures for the reactors. This increase pushes reactor materials to operate towards their upper temperature limits relative to structural integrity. Because there will be some finite variation of the power density in the reactor core, there will be a potential for local hot spots to occur in the reactor vessel. Hence, it has become apparent that detailed analysis will be required to ensure that local hot spots do not exceed safety limits. It is generally accepted that computational fluid dynamics (CFD) codes are intrinsically capable of simulating fluid dynamics and heat transport locally because they are based on first principles. Indeed, CFD analysis has reached a fairly mature level of development, including the commercial level. However, CFD experts are aware that even though commercial codes are capable of simulating local fluid and thermal physics, great care must be taken in their application to avoid errors caused by such things as inappropriate grid meshing, low-order discretization schemes, lack of iterative convergence and inaccurate time-stepping. Just as important is the choice of a turbulence model for turbulent flow simulation. Turbulence models model the effects of turbulent transport of mass, momentum and energy, but are not necessarily applicable for wide ranges of flow types. Therefore, there is a well-recognized need to establish practices and procedures for the proper application of CFD to simulate flow physics accurately and establish the level of uncertainty of such computations. The present document represents contributions of CFD experts on what the basic practices, procedures and guidelines should be to aid CFD analysts to obtain accurate estimates of the flow and energy transport as applied to nuclear reactor safety. However, it is expected that these practices and procedures will require updating from time to time as research and development affect them or replace them with better procedures. The practices and procedures are categorized into five groups. These are: 1.Code Verification 2.Code and Calculation Documentation 3.Reduction of Numerical Error 4.Quantification of Numerical Uncertainty (Calculation Verification) 5.Calculation Validation. These five categories have been identified from procedures currently required of CFD simulations such as those required for publication of a paper in the ASME Journal of Fluids Engineering and from the literature such as Roache [1998]. Code verification refers to the demonstration that the equations of fluid and energy transport have been correctly coded in the CFD code. Code and calculation documentation simply means that the equations and their discretizations, etc., and boundary and initial conditions used to pose the fluid flow problem are fully described in available documentation. Reduction of numerical error refers to practices and procedures to lower numerical errors to negligible or very low levels as is reasonably possible (such as avoiding use of first-order discretizations). The quantification of numerical uncertainty is also known as calculation verification. This means that estimates are made of numerical error to allow the characterization of the numerical

  17. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    SciTech Connect (OSTI)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stable state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.

  18. Documented Safety Analysis Addendum for the Neutron Radiography Reactor Facility Core Conversion

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2009-05-01

    The Neutron Radiography Reactor Facility (NRAD) is a Training, Research, Isotope Production, General Atomics (TRIGA) reactor which was installed in the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) in the mid 1970s. The facility provides researchers the capability to examine both irradiated and non-irradiated materials in support of reactor fuel and components programs through non-destructive neutron radiography examination. The facility has been used in the past as one facet of a suite of reactor fuels and component examination facilities available to researchers at the INL and throughout the DOE complex. The facility has also served various commercial research activities in addition to the DOE research and development support. The reactor was initially constructed using Fuel Lifetime Improvement Program (FLIP)- type highly enriched uranium (HEU) fuel obtained from the dismantled Puerto Rico Nuclear Center (PRNC) reactor. In accordance with international non-proliferation agreements, the NRAD core will be converted to a low enriched uranium (LEU) fuel and will continue to utilize the PRNC control rods, control rod drives, startup source, and instrument console as was previously used with the HEU core. The existing NRAD Safety Analysis Report (SAR) was created and maintained in the preferred format of the day, combining sections of both DOE-STD-3009 and Nuclear Regulatory Commission Regulatory Guide 1.70. An addendum was developed to cover the refueling and reactor operation with the LEU core. This addendum follows the existing SAR format combining required formats from both the DOE and NRC. This paper discusses the project to successfully write a compliant and approved addendum to the existing safety basis documents.

  19. Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water.

    SciTech Connect (OSTI)

    Wellman, Gerald William; Melof, Brian Matthew; Luketa-Hanlin, Anay Josephine; Hightower, Marion Michael; Covan, John Morgan; Gritzo, Louis Alan; Irwin, Michael James; Kaneshige, Michael Jiro; Morrow, Charles W.

    2004-12-01

    While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

  20. The SAS4A/SASSYS-1 Safety Analysis Code System

    Energy Science and Technology Software Center (OSTI)

    2012-01-31

    SAS4A/SASSYS-1 is a software simulation tool used to perform deterministic safety analysis of anticipated events as well as design basis and beyond design basis accidents for advanced nuclear reactors. This software can be used to assess the safety of a prescribed reactor design, but it cannot be used to configure a design to meet targeted performance objectives. Detailed, mechanistic models of steady-state and transient thermal,hydraulic, kinetic, and mechanical phenomena are employed to describe the responsemore » of the reactor core, the reactor primary and secondary coolant loops, the reactor control and protection systems and the balance-of-plant to accidents caused by changes in coolantflow, oss of heat rejection, or reactivity insertion. The consequences of single and double-fault accidents can be modeled, including fuel and coolant heating, fuel and cladding mechanical behavior, core reactivity feedbacks, coolant loop performance including natural circulation, and decay heat removal. Analyses are typically terminated upon demonstration of reactor and plant shutdown to permanently coolable conditions or upon violation of design basis margins. The objective of the analysis is to quantify accident consequences as measured by the transient behavior of system performance parameters, such as fuel and cladding temperatures, reactivity, and cladding strain. Originally developed for analysis of sodium cooled reactors with oxide fuel clad by stainless steel, the models In SAS4A/SASSYS-1 were subsequently extended and specialized to metallic fuel clad with advanced alloys and to several other coolant options including lead and LBE. METHOD OF SOLUTION: Each subassembly in the reactor core is represented with single or multiple-pin models. One channel represents one or more fuel pins and many channels are employed for a whole-core representation. Heat transfer in each pin is modeled with a two-dimensional (r/z) heat conduction equation. Single and two-phase coolant thermal-hydraulics are simulated with a unique, one-dimensional (axial) multiple-bubble liquid metal boiling model. The transient fuel and cladding mechanical oehavior models are integrated with fission product production,release, and transport models. UNIQUE FEATURES: The physical models in SAS4AJSASSYS-1 are highly detailed 1umerical representations of reactor accident conditions based on extensive laboratory and test reactor results. The models are specialized to liquid metal (sodium) cooled fast reactors with oxide or metallic fuel clad with stainless steel.« less

  1. Theoretical Division Current Job Openings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PADSTE » ADTSC » T » Job Openings Theoretical Division Job Openings Explore the multiple dimensions of a career at Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Click in the Job Number to be directed to the description/application page. Postdoc Positions IRC49276 Theoretical and Computational Fluid Dynamics IRC49630 ACME Global Climate Model IRC49351 Mathematical/Computational Modeling

  2. Billboard: Stay on the job | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stay on the job Billboard: Stay on the job 105,000 casualties so far. Stay on the job

  3. DOE Updates JOBS and Economic Impacts of Fuel Cells (JOBS FC1...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updates JOBS and Economic Impacts of Fuel Cells (JOBS FC1.1) Model DOE Updates JOBS and Economic Impacts of Fuel Cells (JOBS FC1.1) Model Download the presentation slides from the ...

  4. JOBS FC 1.0 (JOBS and Economic Impacts of Fuel Cells) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JOBS FC 1.0 (JOBS and Economic Impacts of Fuel Cells) JOBS FC 1.0 (JOBS and Economic Impacts of Fuel Cells) Download presentation slides from the May 22, 2012, Fuel Cell ...

  5. JOBS Models: JOBS FC (Fuel Cells) and JOBS H2 (Hydrogen)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Attributes & Strengths The two JOBS models use input-output methodology to estimate economic impacts associated with expenditures on fuel cells and related infrastructure, and ...

  6. Pantex Plant final safety analysis report, Zone 4 magazines. Staging or interim storage for nuclear weapons and components: Issue D

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This Safety Analysis Report (SAR) contains a detailed description and evaluation of the significant environmental, safety, and health (ES&H) issues associated with the operations of the Pantex Plant modified-Richmond and steel arch construction (SAC) magazines in Zone 4. It provides (1) an overall description of the magazines, the Pantex Plant, and its surroundings; (2) a systematic evaluations of the hazards that could occur as a result of the operations performed in these magazines; (3) descriptions and analyses of the adequacy of the measures taken to eliminate, control, or mitigate the identified hazards; and (4) analyses of potential accidents and their associated risks.

  7. Safety analysis report for the TRUPACT-II shipping package (condensed version). Volume 2, Rev. 14

    SciTech Connect (OSTI)

    1994-10-01

    This appendix determines the effective G values for payload shipping categories of contact handled transuranic (CH-TRU) waste materials, based on the radiolytic G values for waste materials that are discussed in detail in Appendix 3.6.8 of the Safety Analysis Report for the TRUPACT-II Shipping Package. The effective G values take into account self-absorption of alpha decay energy inside particulate contamination and the fraction of energy absorbed by nongas-generating materials. As described in Appendix 3.6.8, an effective G value, G{sub eff}, is defined by: G{sub eff} - {Sigma}{sub M} (F{sub M} x G{sub M}) F{sub M}-fraction of energy absorbed by material maximum G value for a material where the sum is over all materials present inside a waste container. The G value itself is determined primarily by the chemical properties of the material and its temperature. The value of F is determined primarily by the size of the particles containing the radionuclides, the distribution of radioactivity on the various materials present inside the waste container, and the stopping distance of alpha particles in air, in the waste materials, or in the waste packaging materials.

  8. Overview of New Tools to Perform Safety Analysis: BWR Station Black Out Test Case

    SciTech Connect (OSTI)

    D. Mandelli; C. Smith; T. Riley; J. Nielsen; J. Schroeder; C. Rabiti; A. Alfonsi; Cogliati; R. Kinoshita; V. Pasucci; B. Wang; D. Maljovec

    2014-06-01

    Dynamic Probabilistic Risk Assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP, MELCOR) with simulation controller codes (e.g., RAVEN, ADAPT). While system simulator codes accurately model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic, operating procedures) and stochastic (e.g., component failures, parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by: 1) sampling values of a set of parameters from the uncertainty space of interest (using the simulation controller codes), and 2) simulating the system behavior for that specific set of parameter values (using the system simulator codes). For complex systems, one of the major challenges in using DPRA methodologies is to analyze the large amount of information (i.e., large number of scenarios ) generated, where clustering techniques are typically employed to allow users to better organize and interpret the data. In this paper, we focus on the analysis of a nuclear simulation dataset that is part of the Risk Informed Safety Margin Characterization (RISMC) Boiling Water Reactor (BWR) station blackout (SBO) case study. We apply a software tool that provides the domain experts with an interactive analysis and visualization environment for understanding the structures of such high-dimensional nuclear simulation datasets. Our tool encodes traditional and topology-based clustering techniques, where the latter partitions the data points into clusters based on their uniform gradient flow behavior. We demonstrate through our case study that both types of clustering techniques complement each other in bringing enhanced structural understanding of the data.

  9. Final safety analysis report for the Galileo mission: Volume 3 (Book 2), Nuclear risk analysis document: Appendices: Revision 1

    SciTech Connect (OSTI)

    Not Available

    1989-01-25

    It is the purpose of the NRAD to provide an analysis of the range of potential consequences of accidents which have been identified that are associated with the launching and deployment of the Galileo mission spacecraft. The specific consequences analyzed are those associated with the possible release of radioactive material (fuel) of the Radioisotope Thermoelectric Generators (RTGs). They are in terms of radiation doses to people and areas of deposition of radioactive material. These consequence analyses can be used in several ways. One way is to identify the potential range of consequences which might have to be dealt with if there were to be an accident with a release of fuel, so as to assure that, given such an accident, the health and safety of the public will be reasonably protected. Another use of the information, in conjunction with accident and release probabilities, is to estimate the risks associated with the mission. That is, most space launches occur without incident. Given an accident, the most probable result relative to the RTGs is complete containment of the radioactive material. Only a small fraction of accidents might result in a release of fuel and subsequent radiological consequences. The combination of probability with consequence is risk, which can be compared to other human and societal risks to assure that no undue risks are implied by undertaking the mission. Book 2 contains eight appendices.

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  12. NREL: Jobs and Economic Development Impacts (JEDI) Models - About JEDI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine & Hydrokinetic Power Model Analysis JEDI Jobs and Economic Development Impact Models Printable Version About JEDI Marine & Hydrokinetic Power Model The Jobs and Economic Development Impacts (JEDI) Marine and Hydrokinetic (MHK) model allows users to estimate economic development impacts from MHK power generation projects. The basic user interface for the MHK model is the same as for all other JEDI models. Results are provided in the same format as other JEDI models allowing for

  13. Safety & Occupational Health Manager | Department of Energy

    Office of Environmental Management (EM)

    Safety & Occupational Health Manager Safety & Occupational Health Manager Submitted by admin on Sat, 2016-05-21 00:15 Job Summary Organization Name Department Of Energy Agency SubElement Western Area Power Administration Locations Bismarck, North Dakota Huron, South Dakota Announcement Number WAPA-16-DE-165 Job Summary (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration, Upper Great Plains Region, Safety Office (B0700). One

  14. Corporate Gray Job Fair | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corporate Gray Job Fair Corporate Gray Job Fair April 21, 2016 9:00AM to 12:30PM EDT Springfield, VA

  15. Benefits Summary - Temporary Job Classification | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temporary Job Classification Download a summary of benefits offered to employees in the temporary job classification (at least 6 months term and 20 hoursweek). PDF icon 2015 Long...

  16. 10 CFR 851 Construction Safety Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    851 Construction Safety Program 10 CFR 851 Construction Safety Program June 16, 2015 Presenter: Bob Legard and Pete Wells, HAMMER Training Center, Richland, WA Topics Covered: DOE safety statistics 851 overview Employee rights Contractor responsibilities 851 challenges PDF icon 10 CFR 851 Construction Safety Program More Documents & Publications Job Safety and Health Poster Focus Group Meeting (Topical Meeting) 10 CFR 851 Worker Safety and Health Program Frequently Asked Questions - Updated

  17. Webinar: An Analysis of AWEA’s Safety Data Report 2015

    Broader source: Energy.gov [DOE]

    The American Wind Energy Association (AWEA) collects safety data in the wind industry and produces a report annually. The intent of the report is to help companies benchmark themselves against...

  18. Statistical Analysis of Occupational Safety Data of Voluntary Protection Program (VPP) and Non-VPP Sites

    Broader source: Energy.gov [DOE]

    The Voluntary Protection Program (VPP) was originally developed by Occupational Safety and Health Administration (OSHA) in 1982 to foster greater ownership of safety and health in the workplace. The Department of Energy (DOE) adopted VPP in 1992; currently 23 sites across the DOE complex participate in the program. As its name implies, it is a voluntary program; i.e. not required by laws or regulations.

  19. Annex D-200 Area Interim Storage Area Final Safety Analysis Report [FSAR] [Section 1 & 2

    SciTech Connect (OSTI)

    CARRELL, R D

    2002-07-16

    The 200 Area Interim Storage Area (200 Area ISA) at the Hanford Site provides for the interim storage of non-defense reactor spent nuclear fuel (SNF) housed in aboveground dry cask storage systems. The 200 Area ISA is a relatively simple facility consisting of a boundary fence with gates, perimeter lighting, and concrete and gravel pads on which to place the dry storage casks. The fence supports safeguards and security and establishes a radiation protection buffer zone. The 200 Area ISA is nominally 200,000 ft{sup 2} and is located west of the Canister Storage Building (CSB). Interim storage at the 200 Area ISA is intended for a period of up to 40 years until the materials are shipped off-site to a disposal facility. This Final Safety Analysis Report (FSAR) does not address removal from storage or shipment from the 200 Area ISA. Three different SNF types contained in three different dry cask storage systems are to be stored at the 200 Area ISA, as follows: (1) Fast Flux Test Facility Fuel--Fifty-three interim storage casks (ISC), each holding a core component container (CCC), will be used to store the Fast Flux Test Facility (FFTF) SNF currently in the 400 Area. (2) Neutron Radiography Facility (NRF) TRIGA'--One Rad-Vault' container will store two DOT-6M3 containers and six NRF TRIGA casks currently stored in the 400 Area. (3) Commercial Light Water Reactor Fuel--Six International Standards Organization (ISO) containers, each holding a NAC-I cask4 with an inner commercial light water reactor (LWR) canister, will be used for commercial LWR SNF from the 300 Area. An aboveground dry cask storage location is necessary for the spent fuel because the current storage facilities are being shut down and deactivated. The spent fuel is being transferred to interim storage because there is no permanent repository storage currently available.

  20. Energy Department creates Jobs Strategy Council to Focus on Job...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "The energy sector has created tens of thousands of good-paying jobs that lay the foundation for long-term careers and provide a major opportunity for social mobility in ...

  1. Access, Compiling and Running Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access Compiling and Running Jobs Access, Compiling and Running Jobs Access Dirac Dirac can be accessed by logging into carver.nersc.gov. Compile To compile your code, you need to land on a dirac compute node 1st: qsub -q dirac_reg -l nodes=1 -l walltime=00:30:00 -I After you are inside the job, you can load the necessary module for compile: module unload pgi module unload openmpi module unload cuda module load gcc-sl6 module load openmpi-gcc-sl6 module load cuda Now you can compile your code.

  2. Environment/Health/Safety (EHS): Personal Protective Equipment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EHS Occupational Safety Safety Group Home Electrical Safety Ergonomics ISM Occupational Safety Group Organization Personal Protective Equipment (PPE) Injury Review & Analysis...

  3. Nuclear Safety Regulatory Framework

    Energy Savers [EERE]

    Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 Atomic Energy Act 1954 Energy Reorganization Act 1974 DOE Act 1977 Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural Rules ISMS-QA; Operating Experience; Metrics and Analysis Cross Cutting

  4. Construction Safety Advisory Committee- Membership Roster

    Broader source: Energy.gov [DOE]

    CSAC members shall consist of DOE and DOE contractor employees whose normal job duties include program management or operational direction of construction safety. Members shall be nominated by their management based on their construction safety expertise and on the needs of the committee.

  5. FAQS Qualification Card – Nuclear Safety Specialist

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  6. FAQS Qualification Card- Aviation Safety Officer

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  7. FAQS Qualification Card – Criticality Safety

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  8. 2015 National Solar Jobs Census

    Broader source: Energy.gov [DOE]

    The Solar Foundation's National Solar Jobs Census 2015 is the sixth annual edition of current employment, trends, and projected growth in the U.S. solar industry. Given this industry's rapid...

  9. National Solar Jobs Census 2014

    Broader source: Energy.gov [DOE]

    The Solar Foundation’s National Solar Jobs Census 2014 is the fifth annual update of current employment, trends, and projected growth in the U.S. solar industry. Data for Census 2014 is derived...

  10. Manufacturing means jobs ? Mike Arms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Means Jobs - Mike Arms Mike Arms and I usually meet and say hello at the East Tennessee Economic Council meetings each Friday morning at 7:30 a.m. This unique meeting...

  11. FAQS Job Task Analyses- DOE Aviation Manager

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  12. FAQS Job Task Analyses- Technical Program Manager

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  13. FAQS Job Task Analyses- Weapons Quality Assurance

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  14. FAQS Job Task Analyses- Facility Representative

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  15. FAQS Job Task Analyses- Quality Assurance

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  16. FAQS Job Task Analyses- Radiation Protection

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  17. FAQS Job Task Analyses- General Technical Base

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  18. FAQS Job Task Analyses- Chemical Processing

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  19. FAQS Job Task Analyses- Fire Protection Engineering

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  20. FAQS Job Task Analyses- Emergency Management

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  1. FAQS Job Task Analyses- Technical Training

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  2. FAQS Job Task Analyses- Environmental Compliance

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  3. FAQS Job Task Analyses- Industrial Hygiene

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  4. Geothermal Jobs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Jobs Geothermal Jobs The Forrestal Building, located at L'Enfant Plaza in Washington, D.C., serves as headquarters for the United States Department of Energy. The Geothermal Technologies Office is located within. The Forrestal Building, located at L'Enfant Plaza in Washington, D.C., serves as headquarters for the United States Department of Energy. The Geothermal Technologies Office is located within. Check back for opportunities within the DOE Office of Energy Efficiency and

  5. DOE Updates JOBS and Economic Impacts of Fuel Cells (JOBS FC1.1) Model |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Updates JOBS and Economic Impacts of Fuel Cells (JOBS FC1.1) Model DOE Updates JOBS and Economic Impacts of Fuel Cells (JOBS FC1.1) Model Download the presentation slides from the Fuel Cell Technologies Program webinar, "DOE Updates JOBS and Economic Impacts of Fuel Cells (JOBS FC1.1) Model," held on December 11, 2012. PDF icon DOE Updates JOBS and Economic Impacts of Fuel Cells (JOBS FC1.1) Model Webinar Slides More Documents & Publications JOBS FC 1.0

  6. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Home MSDS Search MSDS Help Safety Training and Tests Contact Links LSU Campus Safety Glossary Radiation Safety Manual Radiation Safety Test NOTE: All Training and Testing Material is for LSU CAMD Users ONLY! **Please allow two weeks for your badge to be processed.** Regulations and Hierarchy The CAMD Safety Officer reports to two separate individuals regarding safety. These are the Radiation Safety Officer for the University, and the Campus Safety Officer in all other matters. Thus safety

  7. Accounting - What happened with that job?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accounting - What happened with that job? Accounting - What happened with that job? On genepool there are three options for accessing information on your past jobs: Genepool completed jobs webpage (genepool only) The UGE provided tool: qacct (genepool or phoebe) The NERSC provided tool: qqacct - Query Queue Accounting data (genepool or phoebe) Everytime a job is completed - either failed or successful, the UGE batch system writes an entry into its accounting logs. These accounting logs contain a

  8. FAQS Job Task Analyses - Deactivation and Decommissioning

    Office of Environmental Management (EM)

    Energy Civil/Structural Engineering FAQS Job Task Analyses - Civil/Structural Engineering FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. PDF

  9. Bioindustry Creates Green Jobs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioindustry Creates Green Jobs Bioindustry Creates Green Jobs Energy from abundant, renewable, domestic biomass can reduce U.S. dependence on oil, lower impacts on climate, and stimulate jobs and economic growth. PDF icon bioenergy_green_jobs_factsheet_2013.pdf More Documents & Publications Growing America's Energy Future Green Jobs in the U.S. Bioeconomy Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil

  10. US ITER | Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frank Casella US ITER Quality Assurance, Environmental, Safety and Health and Licensing Support Manager Tell us about your background Frank Casella Frank Casella I was born in Brooklyn, New York, but grew up in northern New Hampshire, where I went to high school. I attended Colgate University and then joined the Navy. I trained for the nuclear power program and specifically for nuclear submarines, and then spent four years on a nuclear sub. What were you doing before you came to US ITER? After I

  11. Analysis of safety precautions for coal and gas outburst-hazardous strata

    SciTech Connect (OSTI)

    Hudecek, V.

    2008-09-15

    The author analyses coal and gas outbursts and generalizes the available data on the approaches to solving the problematics of these gas-dynamic events in the framework of Czech Republic Grant 'Estimate of the Safety Precautions for Coal and Gas Outburst Hazardous Strata'.

  12. Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10

    Broader source: Energy.gov [DOE]

    Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is...

  13. JOBS FC 1.0 (JOBS and economic impacts of Fuel Cells)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JOBS FC uses input-output approach to model deployment 2 JOBS FC is a user-friendly spreadsheet-based tool that calculates direct, indirect and induced job creation, ...

  14. CRAD, Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities

    Broader source: Energy.gov [DOE]

    These guidelines and criteria provide a consistent overall framework for assessment of the processes that are currently in place to ensure that the software being used in the safety analysis and design of the SSCs in defense nuclear facilities is adequate. These reviews will be conducted only on software that is currently in use, not on software that was previously used as part of a safety analysis and design process.

  15. Jobs and Renewable Energy Project

    SciTech Connect (OSTI)

    Sterzinger, George

    2006-12-19

    Early in 2002, REPP developed the Jobs Calculator, a tool that calculates the number of direct jobs resulting from renewable energy development under RPS (Renewable Portfolio Standard) legislation or other programs to accelerate renewable energy development. The calculator is based on a survey of current industry practices to assess the number and type of jobs that will result from the enactment of a RPS. This project built upon and significantly enhanced the initial Jobs Calculator model by (1) expanding the survey to include other renewable technologies (the original model was limited to wind, solar PV and biomass co-firing technologies); (2) more precisely calculating the economic development benefits related to renewable energy development; (3) completing and regularly updating the survey of the commercially active renewable energy firms to determine kinds and number of jobs directly created; and (4) developing and implementing a technology to locate where the economic activity related to each type of renewable technology is likely to occur. REPP worked directly with groups in the State of Nevada to interpret the results and develop policies to capture as much of the economic benefits as possible for the state through technology selection, training program options, and outreach to manufacturing groups.

  16. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory TRU Californium Shipping Container

    SciTech Connect (OSTI)

    Box, W.D.; Shappert, L.B.; Seagren, R.D.; Klima, B.B.; Jurgensen, M.C.; Hammond, C.R.; Watson, C.D.

    1980-01-01

    An analytical evaluation of the Oak Ridge National Laboratory TRU Californium Shipping Container was made in order to demonstrate its compliance with the regulations governing off-site shipment of packages that contain radioactive material. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of this evaluation demonstrate that the container complies with the applicable regulations.

  17. FACT SHEET: Department of Energy's Jobs Strategy Council | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACT SHEET: Department of Energy's Jobs Strategy Council FACT SHEET: Department of Energy's Jobs Strategy Council PDF icon FACT SHEET: Department of Energy's Jobs Strategy Council...

  18. Running Jobs Helen He NERSC User Engagement Group" New User Training"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helen He NERSC User Engagement Group" " New User Training" March 21, 2016 Jobs at NERSC * Most are parallel jobs (10s to 100,000+ cores) * Also a number of "serial" jobs - Typically "pleasantly parallel" simula2on or data analysis * Produc>on runs execute in batch mode * Our batch scheduler is SLURM (na>ve) * Debug jobs are supported for up to 30 minutes * Typically run >mes are a few to 10s of hours - Each machine has different limits - Limits are

  19. Economic Impacts Associated With Commercializing Fuel Cell Electric Vehicles in California: An Analysis of the California Road Map Using the JOBS H2 Model

    Broader source: Energy.gov [DOE]

    Report by Argonne National Laboratory summarizing an analysis of the economic impacts associated with commercializing fuel cell electric vehicles (FCEVs) in California.

  20. Transferring Data from Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transferring Data from Batch Jobs Transferring Data from Batch Jobs Examples Once you are set up for automatic authentication (see HPSS Passwords) you can access HPSS within batch scripts. You can add the following lines at the end of your batch script. HSI will accept one-line commands on the HSI command line, e.g., hsi put filename HSI, ftp and pftp read from the standard input (stdin) and a list of commands can be placed in a text file (script) and redirected into the given utility, e.g., htp

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  2. Safety and Occupational Health Specialist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety and Occupational Health Specialist Safety and Occupational Health Specialist Submitted by admin on Tue, 2016-05-10 18:01 Job Summary Organization Name Department Of Energy Agency SubElement Department of Energy Locations Freeport, Texas Announcement Number DOE-SE-16-SP-00072-DE Job Summary This position is located in the Office of the Assistant Project Manager for Maintenance and Operations, Site Operations and Maintenance Division, Bryan Mound Site, located in Freeport, Texas. The

  3. Technical Letter Report: Evaluation and Analysis of a Few International Periodic Safety Review Summary Reports

    SciTech Connect (OSTI)

    Chopra, Omesh K.; Diercks, Dwight R.; Ma, David Chia-Chiun; Garud, Yogendra S.

    2013-12-17

    At the request of the United States (U.S.) government, the International Atomic Energy Agency (IAEA) assembled a team of 20 senior safety experts to review the regulatory framework for the safety of operating nuclear power plants in the United States. This review focused on the effectiveness of the regulatory functions implemented by the NRC and on its commitment to nuclear safety and continuous improvement. One suggestion resulting from that review was that the U.S. Nuclear Regulatory Commission (NRC) incorporate lessons learned from periodic safety reviews (PSRs) performed in other countries as an input to the NRC’s assessment processes. In the U.S., commercial nuclear power plants (NPPs) are granted an initial 40-year operating license, which may be renewed for additional 20-year periods, subject to complying with regulatory requirements. The NRC has established a framework through its inspection, and operational experience processes to ensure the safe operation of licensed nuclear facilities on an ongoing basis. In contrast, most other countries do not impose a specific time limit on the operating licenses for NPPs, they instead require that the utility operating the plant perform PSRs, typically at approximately 10-year intervals, to assure continued safe operation until the next assessment. The staff contracted with Argonne National Laboratory (Argonne) to perform a pilot review of selected translated PSR assessment reports and related documentation from foreign nuclear regulatory authorities to identify any potential new regulatory insights regarding license renewal-related topics and NPP operating experience (OpE). A total of 14 PSR assessment documents from 9 countries were reviewed. For all of the countries except France, individual reports were provided for each of the plants reviewed. In the case of France, three reports were provided that reviewed the performance assessment of thirty-four 900-MWe reactors of similar design commissioned between 1978 and 1988. All of the reports reviewed were the regulator’s assessment of the PSR findings rather than the original PSR report, and all but one were English translations from the original language. In these reviews, it was found that most of the countries base their regulatory guidance to some extent (and often to a large extent) on U.S. design codes and standards, NRC regulatory guidance, and U.S. industry guidance. In addition, many of the observed operational technical issues and OpE events reported for U.S. reactors are also cited in the PSR reports. The PSR reports also identified a number of potential technical material/component performance issues and OpE events that are not commonly reported for U.S. plants.

  4. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  5. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  6. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office`s program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  7. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  8. Statistical Analysis of the Worker Engagement Survey Administered at the Worker Safety and Security Team Festival

    SciTech Connect (OSTI)

    Davis, Adam Christopher

    2015-08-25

    The Worker Safety and Security Team (WSST) at Los Alamos National Laboratory holds an annual festival, WSST-fest, to engage workers and inform them about safety- and securityrelated matters. As part of the 2015 WSST-fest, workers were given the opportunity to participate in a survey assessing their engagement in their organizations and work environments. A total of 789 workers participated in the 23-question survey where they were also invited, optionally, to identify themselves, their organization, and to give open-ended feedback. The survey consisted of 23 positive statements (i.e. “My organization is a good place to work.”) with which the respondent could express a level of agreement. The text of these statements are provided in Table 1. The level of agreement corresponds to a 5-level Likert scale ranging from “Strongly Disagree” to “Strongly Agree.” In addition to assessing the overall positivity or negativity of the scores, the results were partitioned into several cohorts based on the response meta-data (self-identification, comments, etc.) to explore trends. Survey respondents were presented with the options to identify themselves, their organizations and to provide comments. These options suggested the following questions about the data set.

  9. Running Jobs under SLURM on Babbage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More details on on SLURM keywords, job control and monitoring commands, etc. can be found at the SLURM Introduction (with links to Monitoring Jobs under SLURM and MoabTorque to ...

  10. Geothermal Development Job Types and Impacts

    Broader source: Energy.gov [DOE]

    Development of geothermal power plants and direct-use applications creates a variety of jobs. And the resulting job creation and economic activity within the geothermal industry positively impacts...

  11. An overview of modeling methods for thermal mixing and stratification in large enclosures for reactor safety analysis

    SciTech Connect (OSTI)

    Haihua Zhao; Per F. Peterson

    2010-10-01

    Thermal mixing and stratification phenomena play major roles in the safety of reactor systems with large enclosures, such as containment safety in current fleet of LWRs, long-term passive containment cooling in Gen III+ plants including AP-1000 and ESBWR, the cold and hot pool mixing in pool type sodium cooled fast reactor systems (SFR), and reactor cavity cooling system behavior in high temperature gas cooled reactors (HTGR), etc. Depending on the fidelity requirement and computational resources, 0-D steady state models (heat transfer correlations), 0-D lumped parameter based transient models, 1-D physical-based coarse grain models, and 3-D CFD models are available. Current major system analysis codes either have no models or only 0-D models for thermal stratification and mixing, which can only give highly approximate results for simple cases. While 3-D CFD methods can be used to analyze simple configurations, these methods require very fine grid resolution to resolve thin substructures such as jets and wall boundaries. Due to prohibitive computational expenses for long transients in very large volumes, 3-D CFD simulations remain impractical for system analyses. For mixing in stably stratified large enclosures, UC Berkeley developed 1-D models basing on Zubers hierarchical two-tiered scaling analysis (HTTSA) method where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. This paper will present an overview on important thermal mixing and stratification phenomena in large enclosures for different reactors, major modeling methods and their advantages and limits, potential paths to improve simulation capability and reduce analysis uncertainty in this area for advanced reactor system analysis tools.

  12. Assessment of the Value, Impact, and Validity of the Jobs and Economic Development Impacts (JEDI) Suite of Models

    SciTech Connect (OSTI)

    Billman, L.; Keyser, D.

    2013-08-01

    The Jobs and Economic Development Impacts (JEDI) models, developed by the National Renewable Energy Laboratory (NREL) for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), use input-output methodology to estimate gross (not net) jobs and economic impacts of building and operating selected types of renewable electricity generation and fuel plants. This analysis provides the DOE with an assessment of the value, impact, and validity of the JEDI suite of models. While the models produce estimates of jobs, earnings, and economic output, this analysis focuses only on jobs estimates. This validation report includes an introduction to JEDI models, an analysis of the value and impact of the JEDI models, and an analysis of the validity of job estimates generated by JEDI model through comparison to other modeled estimates and comparison to empirical, observed jobs data as reported or estimated for a commercial project, a state, or a region.

  13. WINDExchange: Jobs and Economic Development Impact Models

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Jobs and Economic Development Impacts Model Resources & Tools Siting Jobs and Economic Development Impact Models JEDI: Jobs and Economic Development Impacts Model Fact Sheet PDF The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation at the local and state levels. Based on

  14. Job Counting Guidelines | Department of Energy

    Energy Savers [EERE]

    Mission » Recovery Act » Job Counting Guidelines Job Counting Guidelines The following updated definitions and guidelines are intended to provide EM Recovery Act sites with information to collect and report timely and accurate full-time equivalent and cumulative head-count data for both monthly and quarterly jobs data calls. These revised guidelines supersede the previous monthly jobs data reporting definitions and guidelines dated February 9, 2010. These revised guidelines remain consistent

  15. Cobalt Job Control | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reservations Cobalt Job Control How to Queue a Job Running Jobs FAQs Queuing and Running on BG/Q Systems Data Transfer Debugging & Profiling Performance Tools & APIs Software & Libraries IBM References Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] Cobalt Job Control The queuing system used at ALCF is Cobalt. Cobalt has two ways to queue a run: the basic method and

  16. An analysis of tank and pump pit flammable gas data in support of saltwater pumping safety basis simplification

    SciTech Connect (OSTI)

    MCCAIN, D.J.

    2000-07-26

    Hanford Site high-level waste tanks are interim stabilized by pumping supernatant and interstitial waste liquids to double-shell tanks (DSTs) through a saltwell pump (SWP). The motor to this SWP is located atop the tank, inside a pump pit. A pumping line extends down from the pump motor into the well area, located in the salt/sludge solids in the tank below. Pumping of these wastes is complicated by the fact that some of the wastes generate and retain potentially hazardous amounts of hydrogen, nitrous oxide, and ammonia. Monitoring of flammable gas concentrations during saltwell pumping activities has shown that one effect of pumping is acceleration in the release of accumulated hydrogen. A second effect is that of a temporarily increased hydrogen concentration in both the dome space and pump pit. There is a safety concern that the hydrogen concentration during saltwell pumping activities might approach the lower flammability limit (LFL) in either the tank dome space or the pump pit. The current Final Safety Analysis Report (FSAR) (CHG 2000) for saltwell pumping requires continuous flammable gas monitoring in both the pump pit and the tank vapor space during saltwell pumping. The FSAR also requires that portable exhauster fans be available by most of the passively ventilated tanks to be saltwell pumped in the event that additional air flow is required to dilute the headspace concentration of flammable gases to acceptable levels. The first objective of this analysis is to review the need for an auxiliary exhauster. Since the purpose of the exhauster is to diffuse unacceptably high flammable gas concentrations, discovery of an alternate method of accomplishing the same task may provide cost savings. The method reviewed is that of temporarily stopping the saltwell pumps. This analysis also examines the typical hydrogen concentration peaks and the rates of increase in hydrogen levels already witnessed in tanks during saltwell pumping activities. The historical data show that these rates and maximum concentrations are so low as to make it unlikely that the LFL concentration would ever be approached. The second objective of this analysis is to review the data provided by two separate flammable gas measurement systems on each tank being saltwell pumped to see if there is an unnecessary redundancy. Eliminating redundant measurement systems would provide cost savings if the quality of data and resultant margin of safety during saltwell pumping activity are not compromised.

  17. WIPP Documents - Nuclear Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Safety DOE/WIPP-07-3372, Revision 4 WIPP Documented Safety Analysis Approved November 2013 The Documented Safety Analysis addresses all hazards (both radiological and nonradiological) and the controls necessary to provide adequate protection to the public, workers, and the environment. The WIPP DSA demonstrates the extent to which the Waste Isolation Pilot Plant can be operated safely with respect to workers, the public, and the environment. DOE/WIPP-07-3373, Revision 4 WIPP Technical

  18. Energy Department creates Jobs Strategy Council to Focus on Job Growth in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Economy | Department of Energy creates Jobs Strategy Council to Focus on Job Growth in Energy Economy Energy Department creates Jobs Strategy Council to Focus on Job Growth in Energy Economy January 23, 2015 - 11:02am Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov Energy Department creates Jobs Strategy Council to Focus on Job Growth in Energy Economy WASHINGTON - Today, Secretary Moniz announced the creation of the Jobs Strategy Council (JSC), an initiative focused on

  19. Job Safety and Health Poster Spanish | Department of Energy

    Office of Environmental Management (EM)

    Spanish Departamento de Energa (DOE) de Seguridad en el Trabajo y el cartel de la Salud. Programa DOE Order 440.1B de Proteccin del Trabajador para DOE (Incluyendo la...

  20. Ensemble Jobs for Better Throughput | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ensemble Jobs for Better Throughput Ensemble Jobs for Better Throughput Ensemble Jobs for Better Throughput at the ALCF Want better throughput for your small (<8K node) jobs? Ensemble jobs may hold the key. Ensemble jobs are ideal for users whose workloads include multiple small jobs (<8K nodes) that are suitable to run concurrently. During our interactive videoconference, you will: learn which job submission type is best for your specific workload gain hands-on experience setting up an

  1. RDS - A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    SciTech Connect (OSTI)

    Salim, Mohd Faiz; Roslan, Ridha; Ibrahim, Mohd Rizal Mamat

    2014-02-12

    Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.

  2. Expanded Safety Fest 2015 set for September | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expanded Safety Fest 2015 set for September Expanded Safety Fest 2015 set for September August 21, 2015 - 1:35pm Addthis Oak Ridge, Tennessee - Safer workplaces result in safer communities. Why? Because workers who learn safe practices on the job take them home and into their communities. In Oak Ridge, once a year, an event is held to ensure safer communities by offering free safety classes to anyone who registers. For the fourth consecutive year, the Oak Ridge Business Safety Partnership

  3. FAQS Qualification Card - Occupational Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualification Card - Occupational Safety FAQS Qualification Card - Occupational Safety A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area,

  4. Integrated Safety & Environmental Management System | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Integrated Safety & Environmental Management System How do you plan for SAFETY in your job? In an effort to provide a formal and organized process to manage all aspects of Environment, Safety and Health (ES&H) issues at its laboratories, the DOE developed the Integrated Safety and Environmental Management System (ISEMS). In short, it's a process that allows people (such as staff and Users) at all levels to plan, perform, assess and improve their implementation

  5. 2015 Annual Workforce Analysis and Staffing Plan Report- Chief of Nuclear Safety

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  6. 2014 Annual Workforce Analysis and Staffing Plan Report- Chief of Nuclear Safety

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  7. 2014 Annual Workforce Analysis and Staffing Plan Report- Office of Environment, Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  8. 2010 Annual Workforce Analysis and Staffing Plan Report- Office of Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  9. 2013 Annual Workforce Analysis and Staffing Plan Report- Office of Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  10. 2011 Annual Workforce Analysis and Staffing Plan Report- Office of Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  11. 2012 Annual Workforce Analysis and Staffing Plan Report- Office of Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  12. 2015 Annual Workforce Analysis and Staffing Plan Report- Office of Environment, Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  13. 2012 Annual Workforce Analysis and Staffing Plan Report- Chief of Nuclear Safety

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  14. 2013 Annual Workforce Analysis and Staffing Plan Report- Chief of Nuclear Safety

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  15. 2010 Annual Workforce Analysis and Staffing Plan Report- Chief of Nuclear Safety

    Office of Energy Efficiency and Renewable Energy (EERE)

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  16. 2011 Annual Workforce Analysis and Staffing Plan Report- Chief of Nuclear Safety

    Office of Energy Efficiency and Renewable Energy (EERE)

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  17. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    SciTech Connect (OSTI)

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-30

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo{sup 99} used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 10{sup 6} cm{sup −1}) in a tube, their delta reactivities are the still within safety limits; however, for 7.9542 g and 8.838 g (× 10{sup 6} cm{sup −1}) the limits were exceeded.

  18. Structure-Soil-Structure Interaction Effects: Seismic Analysis of Safety-Related Collocated Structures

    Office of Environmental Management (EM)

    STRUCTURE-SOIL- STRUCTURE INTERACTION AT SRS Structural Mechanics - SRS October 25, 2011 1 Objective Determination of Structure Soil Structure Interaction (SSSI) effects, if any between large and more massive Process Building (PB) and Exhaust Fan Building (EFB). Results of the SSSI analysis were compared with those from Soil Structure Interaction (SSI) analysis of the individual buildings, for the following parameters: * In-structure floor response spectra (ISRS) * Transfer functions * Relative

  19. An advanced deterministic method for spent-fuel criticality safety analysis

    SciTech Connect (OSTI)

    DeHart, M.D.

    1998-09-01

    Over the past two decades, criticality safety analysts have come to rely to a large extent on Monte Carlo methods for criticality calculations. Monte Carlo has become popular because of its capability to model complex, nonorthogonal configurations or fissile materials, typical of real-world problems. In the last few years, however, interest in determinist transport methods has been revived, due to shortcomings in the stochastic nature of Monte Carlo approaches for certain types of analyses. Specifically, deterministic methods are superior to stochastic methods for calculations requiring accurate neutron density distributions or differential fluxes. Although Monte Carlo methods are well suited for eigenvalue calculations, they lack the localized detail necessary to assess uncertainties and sensitivities important in determining a range of applicability. Monte Carlo methods are also inefficient as a transport solution for multiple-pin depletion methods. Discrete ordinates methods have long been recognized as one of the most rigorous and accurate approximations used to solve the transport equation. However, until recently, geometric constrains in finite differencing schemes have made discrete ordinates methods impractical for nonorthogonal configurations such as reactor fuel assemblies. The development of an extended step characteristic (ESC) technique removes the grid structure limitation of traditional discrete ordinates methods. The NEWT computer code, a discrete ordinates code built on the ESC formalism, is being developed as part of the SCALE code system. This paper demonstrates the power, versatility, and applicability of NEWT as a state-of-the-art solution for current computational needs.

  20. Initial Requirements for Gas-Cooled Fast Reactor (GFR) System Design, Performance, and Safety Analysis Models

    SciTech Connect (OSTI)

    Kevan D. Weaver; Thomas Y. C. Wei

    2004-08-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  1. Implementation of Revision 19 of the TRUPACT-II Safety Analysis Report at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    D'Amico, E.; O'Leary, J.; Bell, S.; Djordjevic, S.; Givens, C,; Shokes, T.; Thompson, S.; Stahl, S.

    2003-02-25

    The U.S. Nuclear Regulatory Commission on July 27, 2001 approved Revision 19 of the TRUPACT-II Safety Analysis Report (SAR) and the associated TRUPACT-II Authorized Methods for Payload Control (TRAMPAC). Key initiatives in Revision 19 included matrix depletion, unlimited mixing of shipping categories, a flammability assessment methodology, and an alternative methodology for the determination of flammable gas generation rates. All U.S. Department of Energy (DOE) sites shipping transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) were required to implement Revision 19 methodology into their characterization and waste transportation programs by May 20, 2002. An implementation process was demonstrated by the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado. The three-part process used by RFETS included revision of the site-specific TRAMPAC, an evaluation of the contact-handled TRU waste inventory against the regulations in Revision 19, and design and development of software to facilitate future inventory analyses.

  2. A Comparison of Modifications to MELCOR versions 1.8.2 and 1.8.6 for ITER Safety Analysis

    SciTech Connect (OSTI)

    B. J. Merrill; P. W. Humrickhouse

    2010-06-01

    During the Engineering Design Activity of the International Thermonuclear Experimental Reactor (ITER), the MELCOR 1.8.2 code was selected as one of several codes to be used to perform ITER safety analyses [1]. MELCOR was chosen because it has the capability of predicting coolant pressure, temperature, mass flow rate, and radionuclide and aerosol transport in nuclear facilities and reactor cooling systems. MELCOR can also predict structural temperatures (e.g. first wall, blanket, divertor, and vacuum vessel) resulting from energy produced by radioactive decay heat and/or chemical reactions (oxidation). The Idaho National Laboratory (INL) Fusion Safety Program (FSP) made fusion specific modifications to the MELCOR 1.8.2 code [2-6], including models for water freezing, air condensation, beryllium, carbon, and tungsten oxidation in steam and air environments, flow boiling in coolant loops, and radiation in enclosures, that allowed MELCOR to assess the thermal hydraulic response of ITER cooling systems and the transport of radionuclides as aerosols during accident conditions. Recently, the ITER International Organization (IO) used a “pedigreed” version of MELCOR 1.8.2 [7] to perform accident analyses for ITER’s “Rapport Préliminaire de Sûreté” (Report Preliminary on Safety - RPrS). The MELCOR thermal-hydraulics code [8] is currently under development at the Sandia National Laboratory (SNL) for the US Nuclear Regulatory Commission (NRC). MELCOR is used to model the progression of severe accidents in light water fission reactors. Because MELCOR has undergone many improvements between version 1.8.2 and 1.8.6, the INL FSP decided to introduce fusion modifications into MELCOR 1.8.6, and thereby produce a version of MELCOR 1.8.6 with similar capabilities to the pedigreed version of MELCOR 1.8.2 used for the ITER RPrS. We have applied this version of MELCOR 1.8.6 to the same set of problems used in the MELCOR 1.8.2 pedigree analysis [7]. Section 2 describes a non-regression analysis that involves comparing the results from the modified version of MELCOR 1.8.6 against those predicted by the original, unmodified version of MELCOR 1.8.6. The purpose of this non-regression analysis is to demonstrate that the modifications made to the MELCOR 1.8.6 code do not drastically alter the intended functions of the MELCOR base code, and if they do to explain why the departure occurs and if the change is needed. The analysis was performed using the demonstration problem that came with the MELCOR 1.8.6 source distribution. Section 3 makes a comparison between the pedigreed version of MELCOR 1.8.2 and the new modified version of MELCOR 1.8.6 on a set of accident problems used by the ITER Joint Central Team (JCT) in the Generic Site Safety Report (GSSR) [9]. Finally, in section 4, the two versions of the code are compared on a series of developmental test problems described in the change documents [2-4, 6].

  3. Health & Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health & Safety Health & Safety1354608000000Health & SafetySome of these resources are LANL-only and will require Remote Access.NoQuestions? 667-5809library@lanl.gov Health &...

  4. Nuclear Industry Job Descriptions Boilermaker

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Incident Team NNSA houses the Nuclear Incident Team (NIT), which is responsible for deploying assets at the request of coordinating agencies in response to a nuclear or radiological incident. The NIT's mission is to coordinate NNSA assets for deployment, continually monitor deployment activities, and provide situational awareness of activities to NNSA management. The NIT is staffed and fully operational within two hours of notification

    Industry Job Descriptions Boilermaker Skilled craft who

  5. Current Jobs | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Openings "The education of young people in science is at least as important, maybe more so, than the research itself." - Glenn Seaborg Argonne National Laboratory does not have any CO-OP positions open at this time. Positions get posted on an as-needed basis. Please check back frequently for future opportunities. Additional Resources FAQ CO-OP Fact Sheet

  6. Safety, Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security Safety, Security The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 We do not compromise safety for personal, programmatic, or operational reasons. Safety: we integrate safety, security, and environmental concerns into every step of our

  7. CSB Investigations and Safety Culture | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    from occurring again. Analysis of Safety Systems CSB Investigations and Safety Culture More Documents & Publications Nuclear Safety Workshop Summary Operating Experience...

  8. Mixed-oxide fuel decay heat analysis for BWR LOCA safety evaluation

    SciTech Connect (OSTI)

    Chiang, R. T.

    2013-07-01

    The mixed-oxide (MOX) fuel decay heat behavior is analyzed for Boiling Water Reactor (BWR) Loss of Coolant Accident (LOCA) safety evaluation. The physical reasoning on why the decay heat power fractions of MOX fuel fission product (FP) are significantly lower than the corresponding decay heat power fractions of uranium-oxide (UOX) fuel FP is illustrated. This is primarily due to the following physical phenomena. -The recoverable energies per fission of plutonium (Pu)-239 and Pu-241 are significantly higher than those of uranium (U)-235 and U-238. Consequently, the fission rate required to produce the same amount of power in MOX fuel is significantly lower than that in UOX fuel, which leads to lower subsequent FP generation rate and associated decay heat power in MOX fuel than those in UOX fuel. - The effective FP decay energy per fission of Pu-239 is significantly lower than the corresponding effective FP decay energy per fission of U-235, e.g., Pu-239's 10.63 Mega-electron-Volt (MeV) vs. U-235's 12.81 MeV at the cooling time 0.2 second. This also leads to lower decay heat power in MOX fuel than that in UOX fuel. The FP decay heat is shown to account for more than 90% of the total decay heat immediately after shutdown. The FP decay heat results based on the American National Standard Institute (ANSI)/American Nuclear Society (ANS)-5.1-1979 standard method are shown very close to the corresponding FP decay heat results based on the ANSI/ANS-5.1-2005 standard method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method are shown very close to but mostly slightly lower than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1971 method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method or the ANSI/ANS-5.1-1971 method are shown significantly larger than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1979 standard method or the ANSI/ANS-5.1-2005 standard method. (authors)

  9. Full-length high-temperature severe fuel damage test No. 2. Final safety analysis

    SciTech Connect (OSTI)

    Hesson, G.M.; Lombardo, N.J.; Pilger, J.P.; Rausch, W.N.; King, L.L.; Hurley, D.E.; Parchen, L.J.; Panisko, F.E.

    1993-09-01

    Hazardous conditions associated with performing the Full-Length High- Temperature (FLHT). Severe Fuel Damage Test No. 2 experiment have been analyzed. Major hazards that could cause harm or damage are (1) radioactive fission products, (2) radiation fields, (3) reactivity changes, (4) hydrogen generation, (5) materials at high temperature, (6) steam explosion, and (7) steam pressure pulse. As a result of this analysis, it is concluded that with proper precautions the FLHT- 2 test can be safely conducted.

  10. Jobs and Economic Development Impacts from Small Wind: JEDI Model in the Works (Presentation)

    SciTech Connect (OSTI)

    Tegen, S.

    2012-06-01

    This presentation covers the National Renewable Energy Laboratory's role in economic impact analysis for wind power Jobs and Economic Development Impacts (JEDI) models, JEDI results, small wind JEDI specifics, and a request for information to complete the model.

  11. Technical Review Report for the Safety Analysis Report for Packaging Model 9977 S-SARP-G-00001 Revision 2

    SciTech Connect (OSTI)

    DiSabatino, A; Hafner, R; West, M

    2007-10-04

    This Technical Review Report (TRR) summarizes the review findings for the Safety Analysis Report for Packaging (SARP) for the Model 9977 B(M)F-96 shipping container. The content analyzed for this submittal is Content Envelope C.1, Heat Sources, in assemblies of Radioisotope Thermoelectric Generators or food-pack cans. The SARP under review, i.e., S-SARP-G-00001, Revision 2 (August 2007), was originally referred to as the General Purpose Fissile Material Package. The review presented in this TRR was performed using the methods outlined in Revision 3 of the Department of Energy's (DOE's) Packaging Review Guide (PRG) for Reviewing Safety Analysis Reports for Packages. The format of the SARP follows that specified in Revision 2 of the Nuclear Regulatory Commission's, Regulatory Guide 7.9, i.e., Standard Format and Content of Part 71 Applications for Approval of Packages for Radioactive Material. Although the two documents are similar in their content, they are not identical. Formatting differences have been noted in this TRR, where appropriate. The Model 9977 Package is a 35-gallon drum package design that has evolved from a family of packages designed by DOE contractors at the Savannah River Site. The Model 9977 Package design includes a single, 6-inch diameter, stainless steel pressure vessel containment system (i.e., the 6CV) that was designed and fabricated in accordance with Section III, Subsection NB, of the American Society of Mechanical Engineers Boiler & Pressure Vessel Code. The earlier package designs, i.e., the Model 9965, 9966, 9967 and 9968 Packages, were originally designed and certified in the 1980s. In the 1990s, updated package designs that incorporated design features consistent with new safety requirements, based on International Atomic Energy Agency guidelines, were proposed. The updated package designs were the Model 9972, 9973, 9974 and 9975 Packages, respectively. The Model 9975 Package was certified by the Packaging Certification Program, under the Office of Safety Management and Operations. Differences between the Model 9975 Package and the Model 9977 Package include: (1) The lead shield present in the Model 9975 Package is absent in the Model 9977 Package; (2) The Model 9975 Package has eight allowable contents, while the Model 9977 Package has a single allowable content. (3) The 6CV of the Model 9977 Package is similar in design to the outer Containment Vessel of the Model 9975 Package that also incorporates a 5-inch Containment Vessel as the inner Containment Vessel. (4) The Model 9975 Package uses a Celotex{reg_sign}-based impact limiter while the Model 9977 Package uses Last-A-Foam{reg_sign}, a polyurethane foam, for the impact limiter. (5) The Model 9975 Package has two Containment Vessels, while the Model 9977 Package has a single Containment Vessel.

  12. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  13. Electrical Safety Occurrences | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    requested by the Electrical Safety Community for information exchange and continual learning. August 16, 2011 Monthly Analysis of Electrical Safety Occurrences - July 2011 An...

  14. Electrical Safety Occurrences | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    requested by the Electrical Safety Community for information exchange and continual learning. October 29, 2013 Monthly Analysis of Electrical Safety Occurrences - September 2013...

  15. Development of safety analysis codes and experimental validation for a very high temperature gas-cooled reactor Final report

    SciTech Connect (OSTI)

    Chang Oh

    2006-03-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-of-coolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of toxic gasses (CO and CO2) and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. Research Objectives As described above, a pipe break may lead to significant fuel damage and fission product release in the VHTR. The objectives of this Korean/United States collaboration were to develop and validate advanced computational methods for VHTR safety analysis. The methods that have been developed are now available to provide improved understanding of the VHTR during accidents.

  16. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01

    To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

  17. The role of SASSYS-1 in LMR (Liquid Metal Reactor) safety analysis

    SciTech Connect (OSTI)

    Dunn, F.E.; Wei, T.Y.C.

    1988-01-01

    The SASSYS-1 liquid metal reactor systems analysis computer code is currently being used as the principal tool for analysis of reactor plant transients in LMR development projects. These include the IFR and EBR-II Projects at Argonne National Laboratory, the FFTF project at Westinghouse-Hanford, the PRISM project at General Electric, the SAFR project at Rockwell International, and the LSPB project at EPRI. The SASSYS-1 code features a multiple-channel thermal-hydraulics core representation coupled with a point kinetics neutronics model with reactivity feedback, all combined with detailed one-dimensional thermal-hydraulic models of the primary and intermediate heat transport systems, including pipes, pumps, plena, valves, heat exchangers and steam generators. In addition, SASSYS-1 contains detailed models for active and passive shutdown and emergency heat rejection systems and a generalized plant control system model. With these models, SASSYS-1 provides the capability to analyze a wide range of transients, including normal operational transients, shutdown heat removal transients, and anticipated transients without scram events. 26 refs., 16 figs.

  18. FAQS Qualification Card – Nuclear Explosive Safety Study

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  19. FAQS Qualification Card- Electrical Systems and Safety Oversight

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  20. FAQS Qualification Card – Safety Software Quality Assurance

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  1. FAQS Qualification Card – Senior Technical Safety Manager

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  2. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    SciTech Connect (OSTI)

    TOMASZEWSKI, T.A.

    2000-04-25

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  3. Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of California Executive Assistant, Office of the President, UC URS Corporation RELATED NEWS Top 10 science stories of the year From supercomputers and climate modeling, to...

  4. jobs

    National Nuclear Security Administration (NNSA)

    2%2A en Management and Budget http:nnsa.energy.govaboutusouroperationsmanagementandbudget

    P...

  5. Jobs

    Office of Science (SC) Website

    Home » How to Apply Community College Internships (CCI) CCI Home Eligibility Benefits Participant Obligations How to Apply Selecting a Host DOE Laboratory Recommender Information Application Selection Process and Notification Key Dates Frequently Asked Questions Contact WDTS Home How to Apply Print Text Size: A A A FeedbackShare Page Application is now open. Applications are due May 31, 2016 at 5:00 PM ET. Access to the online application system is available here External link . Application

  6. jobs

    National Nuclear Security Administration (NNSA)

    2%2A en Management and Budget http:www.nnsa.energy.govaboutusouroperationsmanagementandbudget

  7. Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

    SciTech Connect (OSTI)

    Enercon Services, Inc.

    2011-03-14

    Enercon Services, Inc. (ENERCON) was requested under Task Order No.2 to identify scientific and technical data needed to benchmark and justify Full Burnup Credit, which adds 16 fission products and 4 minor actinides1 to Actinide-Only burnup credit. The historical perspective for Full Burnup Credit is discussed, and interviews of organizations participating in burnup credit activities are summarized as a basis for identifying additional data needs and making recommendation. Input from burnup credit participants representing two segments of the commercial nuclear industry is provided. First, the Electric Power Research Institute (EPRI) has been very active in the development of Full Burnup Credit, representing the interests of nuclear utilities in achieving capacity gains for storage and transport casks. EPRI and its utility customers are interested in a swift resolution of the validation issues that are delaying the implementation of Full Burnup Credit [EPRI 2010b]. Second, used nuclear fuel storage and transportation Cask Vendors favor improving burnup credit beyond Actinide-Only burnup credit, although their discussion of specific burnup credit achievements and data needs was limited citing business sensitive and technical proprietary concerns. While Cask Vendor proprietary items are not specifically identified in this report, the needs of all nuclear industry participants are reflected in the conclusions and recommendations of this report. In addition, Oak Ridge National Laboratory (ORNL) and Sandia National Laboratory (SNL) were interviewed for their input into additional data needs to achieve Full Burnup Credit. ORNL was very open to discussions of Full Burnup Credit, with several telecoms and a visit by ENERCON to ORNL. For many years, ORNL has provided extensive support to the NRC regarding burnup credit in all of its forms. Discussions with ORNL focused on potential resolutions to the validation issues for the use of fission products. SNL was helpful in ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost compared to the acquisition of equivalent experimental data. ENERCON concludes that even with the costs of code data library updating, the use of S/U analysis methodologies could be accomplished on a shorter schedule and a lower cost than the gathering of sufficient experimental data. ENERCON estimates of the costs of an updated S/U computer code and data suite are $5M to $10M with a schedule of two to three years. Recent ORNL analyses using the S/U analysis method show that the bias and uncertainty values for fission product cross sections are smaller than previously expected. This result is confirmed by a similar EPRI approach using different data and computer codes. ENERCON also found that some issues regarding the implementation of burnup credit appear to have been successfully resolved especially the axial burnup profile issue and the depletion parameter issue. These issues were resolved through data gathering activities at the Yucca Mountain Project and ORNL.

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  9. EERE Job Vacancies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Job Vacancies EERE Job Vacancies Photo of James Forrestal Building in downtown Washington, D.C., headquarters of the U.S. Department of Energy. Do you want to build your career while changing America? EERE, the U.S. Department of Energy office leading the nation's effort to enhance energy efficiency and develop renewable energy technologies, is searching for enthusiastic, driven and committed professionals to fill the following vacant positions. To apply for a job, follow the instructions

  10. Job Seekers - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Seekers About HPMC OMS Contact Us Directions Event Calendar Hours of Operation How We Compare Job Seekers Notice of Privacy Practices Patient Rights & Responsibilities Frequently Asked Questions Job Seekers Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Search the links below for positions available to interested candidates. Candidates selected for positions with HPMC Occupational Medical Services are hired and employed by either HPM Corporation or

  11. Jobs & Internships | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jobs & Internships Jobs & Internships Jobs & Internships Our Pledge We at the Department of Energy, Office of Environmental Management pledge to make every effort to seek out, employ, develop and retain the most talented, diverse and inclusive workforce possible. We understand that by having a diverse and inclusive workforce we strengthen our organization and increase our ability to adapt to change. We pledge to continue to strive toward creating and sustaining a work environment

  12. Webinar: DOE Updates JOBS and Economic Impacts of Fuel Cells (JOBS FC1.1) Model

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, DOE Updates JOBS and Economic Impacts of Fuel Cells (JOBS FC1.1) Model, originally presented on December 11, 2012.

  13. Job and Output Benefits of Stationary Fuel Cells (JOBS FC): An...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Job and Output Benefits of Stationary Fuel Cells (JOBS FC): An Economic Impact Tool Developed for USDOE Presented at the Technology Transition Corporation and U.S. Department of ...

  14. Job and Output Benefits of Stationary Fuel Cells (JOBS FC): An...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USDOE Marianne Mintz Argonne National Lab 2 2 What is JOBS FC? JOBS FC is a user friendly model that can be used to show the economic benefits of near- to mid-term fuel cell ...

  15. Ensemble Jobs for Better Throughput - Videoconference | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ensemble Jobs for Better Throughput - Videoconference Event Sponsor: Argonne National Laboratory Start Date: Sep 24 2015 - 1:00pm BuildingRoom: Online Videoconference Location:...

  16. LANL sponsors Recovery Act Job Fair

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sponsors Recovery Act Job Fair October 30, 2009 Nearly 500 seek positions, from laborers to project managers Los Alamos, New Mexico, October 30, 2009-Nearly 500 job seekers turned out for a Los Alamos National Laboratory-sponsored job fair near Española, New Mexico, on Thursday. The job fair was aimed at filling current and future positions with subcontractors working on environmental cleanup under the American Recovery and Reinvestment Act, as well as other Lab work. Ten of the Lab's prime

  17. Energy Jobs: Chemist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jobs: Chemist Energy Jobs: Chemist October 15, 2014 - 12:51pm Addthis Sarah Chinn is a staff chemist and group leader at Lawrence Livermore National Lab. | Photo courtesy of LLNL. Sarah Chinn is a staff chemist and group leader at Lawrence Livermore National Lab. | Photo courtesy of LLNL. Allison Lantero Allison Lantero Digital Content Specialist, Office of Public Affairs #EnergyJobs Throughout the month of October we'll be profiling various #EnergyJobs on Energy.gov as well as on Facebook and

  18. Savannah River Remediation, College Create Job Opportunities...

    Office of Environmental Management (EM)

    Remediation, College Create Job Opportunities for Graduates Savannah River Remediation, ... "With ongoing missions at the Savannah River Site and construction at Plant Vogtle and ...

  19. Electrical Safety Occurrences | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Safety Occurrences Electrical Safety Occurrences June 26, 2014 Monthly Analysis of Electrical Safety Occurrences - April 2013 An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning. October 29, 2013 Monthly Analysis of Electrical Safety Occurrences - September 2013 An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by

  20. Lift truck safety review

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  1. Evolution of CMS Workload Management Towards Multicore Job Support

    SciTech Connect (OSTI)

    Perez-Calero Yzquierdo, A.; Hernández, J. M.; Khan, F. A.; Letts, J.; Majewski, K.; Rodrigues, A. M.; McCrea, A.; Vaandering, E.

    2015-12-23

    The successful exploitation of multicore processor architectures is a key element of the LHC distributed computing system in the coming era of the LHC Run 2. High-pileup complex-collision events represent a challenge for the traditional sequential programming in terms of memory and processing time budget. The CMS data production and processing framework is introducing the parallel execution of the reconstruction and simulation algorithms to overcome these limitations. CMS plans to execute multicore jobs while still supporting singlecore processing for other tasks difficult to parallelize, such as user analysis. The CMS strategy for job management thus aims at integrating single and multicore job scheduling across the Grid. This is accomplished by employing multicore pilots with internal dynamic partitioning of the allocated resources, capable of running payloads of various core counts simultaneously. An extensive test programme has been conducted to enable multicore scheduling with the various local batch systems available at CMS sites, with the focus on the Tier-0 and Tier-1s, responsible during 2015 of the prompt data reconstruction. Scale tests have been run to analyse the performance of this scheduling strategy and ensure an efficient use of the distributed resources. This paper presents the evolution of the CMS job management and resource provisioning systems in order to support this hybrid scheduling model, as well as its deployment and performance tests, which will enable CMS to transition to a multicore production model for the second LHC run.

  2. FAQS Job Task Analyses Form | Department of Energy

    Energy Savers [EERE]

    Form FAQS Job Task Analyses Form Step 1, Identify and evaluate tasks; Step 2, Identify and evaluate competencies; and Step 3, Evaluate linkage between tasks and competencies. File FAQS Job Task Analyses Form More Documents & Publications FAQS Job Task Analyses - Emergency Management FAQS Job Task Analyses - Environmental Compliance FAQS Job Task Analyses - Chemical Processing

  3. Job Analysis Template | Department of Energy

    Energy Savers [EERE]

    Jill Clough-Johnston About Us Jill Clough-Johnston - Brookhaven Science Associates Small Business Liaison Officer Most Recent by Jill Clough-Johnston Small Business Standouts at Brookhaven National Laboratory November 1

    Jim Ahlgrimm About Us Jim Ahlgrimm - Wind Testing Infrastructure Manager Jim Ahlgrimm Jim Ahlgrimm has been a manager in the U.S. Department of Energy Wind and Water Power Technologies Office since 2002. He is responsible for the planning and budgeting of wind turbine test

  4. NREL Job Task Analysis: Energy Auditor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 1: Demonstrating Professional Energy Auditor Conduct Task 1: Establish client ... techniques * The program Skill in: * Communication * Listening * Presenting information * ...

  5. NREL Job Task Analysis: Quality Control Inspector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * Discuss missed opportunities with the auditor Knowledge of: * Basic building science * ... Various diagnostic tests Skill In: * Communication * Being diplomatic * Observation * ...

  6. NREL Job Task Analysis: Crew Leader

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Task 8: Conduct interior and exterior visual home inspection review with crew in order ... for a particular task * Safely use basic hand and power tools * Use a basic first ...

  7. Technical Review Report for the Model 9975-96 Package Safety Analysis Report for Packaging (S-SARP-G-00003, Revision 0, January 2008)

    SciTech Connect (OSTI)

    West, M

    2009-05-22

    This Technical Review Report (TRR) documents the review, performed by the Lawrence Livermore National Laboratory (LLNL) Staff, at the request of the U.S. Department of Energy (DOE), on the Safety Analysis Report for Packaging, Model 9975, Revision 0, dated January 2008 (S-SARP-G-00003, the SARP). The review includes an evaluation of the SARP, with respect to the requirements specified in 10 CFR 71, and in International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1. The Model 9975-96 Package is a 35-gallon drum package design that has evolved from a family of packages designed by DOE contractors at the Savannah River Site. Earlier package designs, i.e., the Model 9965, the Model 9966, the Model 9967, and the Model 9968 Packagings, were originally designed and certified in the early 1980s. In the 1990s, updated package designs that incorporated design features consistent with the then newer safety requirements were proposed. The updated package designs at the time were the Model 9972, the Model 9973, the Model 9974, and the Model 9975 Packagings, respectively. The Model 9975 Package was certified by the Packaging Certification Program, under the Office of Safety Management and Operations. The safety analysis of the Model 9975-85 Packaging is documented in the Safety Analysis Report for Packaging, Model 9975, B(M)F-85, Revision 0, dated December 2003. The Model 9975-85 Package is certified by DOE Certificate of Compliance (CoC) package identification number, USA/9975/B(M)F-85, for the transportation of Type B quantities of uranium metal/oxide, {sup 238}Pu heat sources, plutonium/uranium metals, plutonium/uranium oxides, plutonium composites, plutonium/tantalum composites, {sup 238}Pu oxide/beryllium metal.

  8. Gradual degradation of concrete fiber containers and preliminary Safety analysis for the Slovak near-surface repository

    SciTech Connect (OSTI)

    Duran, Juraj

    2007-07-01

    Available in abstract form only. Full text of publication follows: National Radioactive Waste Repository will be used for safe disposal of low and intermediate-level radioactive wastes in Mochovce, Slovak Republic. The Preliminary Safety Analysis Report (PSAR) has developed a conceptual model that strongly overestimated radiological exposures for the Normal Evolution Scenario (NES). Radioactive waste management required additional measures for safe disposal of radioactive waste to minimize the potential consequence to the workers and the public. Use of Fiber Reinforced Containers (FRC) is proposed to enhance the performance of the potential repository for safe disposal of radioactive waste and reduce the probability of exposure. This paper contains the description of models, methods, results from experimental measurements and input data, which were used for probabilistic calculations of the lifetime FRC. The Cumulative Distribution Function (CDF) for the FRC lifetime was used to modify the conceptual model for NES. The model assumed gradual degradation of the FRC and gradual intrusion of water to the repository volume. These assumptions are in contrary to the ones in the PSAR that assumed instantaneous degradation of the FRC and instantaneous fill-up of the repository volume. The model showed that the new assumptions resulted in less radiological consequences, which allows for final design modifications of the repository. (author)

  9. Jobs and Economic Development Impacts (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative provides information on the Jobs and Economic Development Benefits model. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the Jobs and Economic Development Benefits model section on the Wind Powering America website.

  10. ENERGY EFFICIENCY: Savings, Jobs, and Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY EFFICIENCY: Savings, Jobs, and Competitiveness www.eere.energy.gov DOE Priorities Savings Economy Jobs Environment Competiveness Accelerating progress across technology pipeline Growing energy efficiency industry - adoption at scale Growing clean energy manufacturing Energy Efficiency: Top Priority Energy Resource www.eere.energy.gov * Technologies * Materials * Processes * Driving Demand * Building performance information * Quality workforce * Financing solutions * Energy savings

  11. A Look Back at the Nuclear Safety Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Workshop A Look Back at the Nuclear Safety Workshop June 16, 2011 - 2:59pm Addthis Glenn Podonsky Glenn Podonsky Director, Independent Enterprise Assessments As the Department's Chief Health, Safety and Security Officer, my job is to make sure that we continue to enhance and improve the safety of the Energy Department's nuclear facilities. That is why, in response to the March accident at the Fukushima Daiichi nuclear complex, the Department hosted a Nuclear Safety Workshop to

  12. Job Scheduling Policies on Cooley | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Max. running jobs per user: 10 Max. node-hours (queued and running): 1488 Priority: FIFO -- (jobs are run in order, with small, short jobs run on any otherwise-free nodes) In...

  13. Webinar: DOE Updates JOBS and Economic Impacts of Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: DOE Updates JOBS and Economic Impacts of Fuel Cells (JOBS FC1.1) Model Above is the video recording for the webinar, "DOE Updates JOBS and Economic Impacts of Fuel Cells ...

  14. Careers - Jobs - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Career Opportunities Job Openings Join our team of professionals who provide comprehensive, reliable data, analysis, and forecasts to industry, government, media, academia, and the American public. Starting General Schedule salaries range from $43,057 to $126,245, however, executives can earn upwards of $183,300. We are searching for candidates who qualify as: Mathematical Statisticians Survey Statisticians Industry Economists Operations Research Analysts Engineers Who Qualifies? While we prefer

  15. NREL: Jobs and Economic Development Impacts (JEDI) Models - About JEDI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Model CSP Model The Jobs and Economic Development Impacts (JEDI) Concentrating Solar Power (CSP) model allows users to estimate economic development impacts from CSP projects. JEDI CSP has default information that can be utilized to run a generic impacts analysis assuming industry averages. Model users are encouraged to enter as much project-specific data as possible. Download the JEDI CSP Model Printable Version JEDI Home About JEDI Biofuels Models Coal Model

  16. NREL: Jobs and Economic Development Impacts (JEDI) Models - About JEDI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaics Model Photovoltaics Model The Jobs and Economic Development Impacts (JEDI) Photovoltaics (PV) model allows users to estimate economic development impacts from PV projects. JEDI PV has default information that can be utilized to run a generic impacts analysis assuming industry averages. Model users are encouraged to enter as much project-specific data as possible. The PV JEDI model is designed for use on a PC and has very limited functionality on a Mac. However, this model is

  17. Safety Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Safety Orientation April, 2015 Atmospheric Radiation Measurement Climate Research ... with operations at the Atmospheric Radiation Measurement Climate Research Facility...

  18. Biological Safety

    Broader source: Energy.gov [DOE]

    The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  20. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  2. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  3. Nuclear Safety Analysis Reports

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-04-30

    Cancels DOE O 5481.1B; paragraphs 7b(3), 7e(3) & 8c of DOE O 5480.6; and 51, 7b(3), 7b(4), 7e(3), 8a & 8h of DOE O 5480.5.

  4. Jobs and Economic Development from New Transmission and Generation in Wyoming

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2011-03-01

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  5. Jobs and Economic Development from New Transmission and Generation in Wyoming

    SciTech Connect (OSTI)

    Lantz, Eric; Tegen, Suzanne

    2011-03-31

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  6. Pedigree Analysis of the MELCOR 1.8.2 Code to be Used for ITER’s Report Preliminary on Safety

    SciTech Connect (OSTI)

    Richard L. Moore; Brad J. Merrill

    2007-06-01

    This report documents the pedigree analysis of the MELCOR 1.8.2 code to be used for ITER’s Report Preliminary on Safety. To pedigree the code the process involved four steps. First, taking the modified MELCOR 1.8.2 code used by the ITER Joint Central Team (JCT) for analyses in previous ITER Safety Assessments and compared the FORTRAN code of this version line-by-line to the original 1.8.2 version of MELCOR. The second step was a non-regression analysis which involves comparing the results from the pedigreed version against those predicted by the original, unmodified version of MELCOR 1.8.2. The third step involved comparing the pedigreed version results to results from the MELCOR version used by the ITER JCT for the Generic Site Safety Report (GSSR) against a set of accident problems analyzed for the safety report. The fourth and final step involved a comparison between the pedigreed version of the code and the developmental test problems cited in the change documents referenced in this report. The results from the pedigree process are described in this report.

  7. Safety Analysis Report for Packaging (SARP): Model AL-M1 nuclear packaging (DOE C of C No. USA/9507/BLF)

    SciTech Connect (OSTI)

    Coleman, H.L.; Whitney, M.A.; Williams, M.A.; Alexander, B.M.; Shapiro, A.

    1987-11-24

    This Safety Analysis Report for Packaging (SARP) satisfies the request of the US Department of Energy for a formal safety analysis of the shipping container identified as USA/9507/BLF, also called AL-M1, configuration 5. This report makes available to all potential users the technical information and the limits pertinent to the construction and use of the shipping containers. It includes discussions of structural integrity, thermal resistance, radiation shielding and radiological safety, nuclear criticality safety, and quality control. A complete physical and technical description of the package is presented. The package consists of an inner container centered within an insulated steel drum. The configuration-5 package contains tritiated water held on sorbent material. There are two other AL-M1 packages, designated configurations 1 and 3. These use the same insulated outer drum, but licensing of these containers will not be addressed in this SARP. Design and development considerations, the tests and evaluations required to prove the ability of the container to withstand normal transportation conditions, and the sequence of four hypothetical accident conditions (free drop, puncture, thermal, and water immersion) are discussed. Tables, graphs, dimensional sketches, photographs, technical references, loading and shipping procedures, Monsanto Research Corporation-Mound experience in using the containers, and a copy of the DOE/OSD/ALO Certificate of Compliance are included.

  8. DOE Jobs Online (Hiring Manager), Office of Human Capitol Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jobs Online (Hiring Manager), Office of Human Capitol Management Innovation and Solutions DOE Jobs Online (Hiring Manager), Office of Human Capitol Management Innovation and ...

  9. Statement by Energy Secretary Ernest Moniz on 2013 Solar Jobs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 Solar Jobs Census Statement by Energy Secretary Ernest Moniz on 2013 Solar Jobs Census ... class"field-item odd">Data courtesy of National Renewable Energy Lab. ...

  10. FAQS Job Task Analyses - Safeguards and Security General Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Security General Technical Base FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a...

  11. Smart Grid Cybersecurity: Job Performance Model Report and Phase...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cybersecurity: Job Performance Model Report and Phase 1 Overview (August 2012) Smart Grid Cybersecurity: Job Performance Model Report and Phase 1 Overview (August 2012) In the ...

  12. Jobs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Jobs Human Resources and Administration (HRA) HRA Home About Director Biography Organization Chart .pdf file (26KB) Jobs Human Resources Administration SC Correspondence Control...

  13. Offshore Wind Jobs and Economic Development Impacts in the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jobs and Economic Development Impacts in the United States: Four Regional Scenarios Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional ...

  14. Jobs | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jobs New Brunswick Laboratory (NBL) NBL Home About Organization Chart .pdf file (269KB) Points of Contact (POCs) History Directions Jobs Programs Certified Reference Materials ...

  15. EnergyWorks KC's Training Programs Provide Job Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EnergyWorks KC's Training Programs Provide Job Opportunities for Local Workers EnergyWorks KC's Training Programs Provide Job Opportunities for Local Workers The logo for ...

  16. Comparison of Integrated Safety Analysis (ISA) and Probabilistic Risk Assessment (PRA) for Fuel Cycle Facilities, 2/17/11

    Broader source: Energy.gov [DOE]

    During the 580th meeting of the Advisory Committee on Reactor Safeguards (ACRS), February10-12, 2011, we reviewed the staff’s white paper, “A Comparison of Integrated Safety Analysisand...

  17. SU-E-T-248: Near Real-Time Analysis of Radiation Delivery and Imaging, Accuracy to Ensure Patient Safety

    SciTech Connect (OSTI)

    Wijesooriya, K; Seitter, K; Desai, V; Read, P; Larner, J

    2014-06-01

    Purpose: To develop and optimize an effective software method for comparing planned to delivered control point machine parameters for all VARIAN TrueBeam treatments so as to permit (1) assessment of a large patient pool throughout their treatment course to quantify treatment technique specific systematic and random uncertainty of observables, (2) quantify the site specific daily imaging shifts required for target alignment, and (3) define tolerance levels for mechanical parameters and imaging parameters based on statistical analysis data gathered, and the dosimetric impact of variations. Methods: Treatment and imaging log files were directly compared to plan parameters for Eclipse and Pinnacle planned treatments via 3D, IMRT, control point, RapidArc, and electrons. Each control point from all beams/arcs (7984) for all fractions (1940) of all patients treated over six months were analyzed. At each control point gantry angle, collimator angle, couch angle, jaw positions, MLC positions, MU were compared. Additionally per-treatment isocenter shifts were calculated. Results were analyzed as a whole in treatment type subsets: IMRT, 3D, RapidArc; and in treatment site subsets: brain, chest/mediastinum, esophagus, H and N, lung, pelvis, prostate. Results: Daily imaging isocenter shifts from initial external tattoo alignment were dependent on the treatment site with < 0.5 cm translational shifts for H and N, Brain, and lung SBRT, while pelvis, esophagus shifts were ?1 cm. Mechanical delivery parameters were within tolerance levels for all sub-beams. The largest variations were for RapidArc plans: gantry angle 0.110.12,collimator angle 0.000.00, jaw positions 0.480.26, MLC leaf positions 0.660.08, MU 0.140.34. Conclusion: Per-control point validation reveals deviations between planned and delivered parameters. If used in a near real-time error checking system, patient safety can be improved by equipping the treatment delivery system with additional forcing functions which by-pass human error avenues.

  18. Safety analysis report: packages. GPHS shipping package supplement 2 to the PISA shipping package (packaging of fissile and other radioactive materials). Final report

    SciTech Connect (OSTI)

    Chalfant, G. G.

    1981-06-01

    Safety Analysis Report DPST-78-124-1 is amended to permit shipment of 6 General Purpose Heat Source (GPHS) capsules (max.). Each capsule contains an average of 2330 curies of /sup 238/Pu, and each pair of capsules is contained in a welded stainless steel primary containment vessel, all of which are doubly contained in a flanged secondary containment vessel. This is in addition to the forms discussed in DPST-78-124-1 and Supplement 1.

  19. Recreation and jobs in the Glen Canyon Dam region

    SciTech Connect (OSTI)

    Douglas, A.J.; Harpman, D.A.

    1995-12-31

    Natural resource economists have estimated the nonmarket benefits provided by streamflows in several recent research papers. The current paper also examines the economic implications of water based recreational activities. The analysis uses a software package and database called IMPLAN to estimate the jobs impacts of expenditures for recreation trips to the Lee`s Ferry reach on the Colorado River. The discussion describes the basic input-output model and water based recreation activities at the Lee`s Ferry reach. Non-resident river recreation trip expenditures to the Glen Canyon Dam region generate 585 jobs. The estimates presented here add further credence and policy weight to the premise that the outdoor recreation sector of the economy is relatively labor intensive.

  20. Our Jobs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Our Jobs Job Types NNSA's workforce is comprised of a diverse and dynamic blend of individuals. We are a staff of top-performing program and technical experts with unbounded potential, a dedication to public service and a commitment to the stewardship of the nation's important nuclear security assets. If this description appeals to you, check out the job categories we have listed below. Opportunities for Students Would you like to get a head start on your career and gain hands-on experience