Sample records for joaquin county california

  1. EIS-0496: San Luis Transmission Project, Alameda, Merced, San Joaquin and Stanislaus Counties, California

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration, with the Bureau of Reclamation as a cooperating agency, is preparing a joint EIS and environmental impact report (under the California Environmental Quality Act) to evaluate the potential environmental impacts of the proposed interconnection of certain San Luis Unit facilities to Western’s Central Valley Project Transmission System.

  2. 2001-2002 Wet Season Branchiopod Survey Report, Lawrence Livermore National Laboratory, Site 300, Alameda and San Joaquin Counties, California

    SciTech Connect (OSTI)

    Weber, W; Woollett, J

    2004-11-16T23:59:59.000Z

    Condor County Consulting on behalf of Lawrence Livermore National Laboratory (LLNL) has performed wet season surveys for listed branchiopods at Site 300, located in eastern Alameda County and western San Joaquin County. LLNL is collecting information for the preparation of an EIS covering ongoing explosives testing and related activities on Site 300. Related activities include maintenance of fire roads and annual control burns of approximately 607 hectares (1500 acres). Control burns typically take place on the northern portion of the site. Because natural branchiopod habitat is sparse on Site 300, it is not surprising that listed branchiopods were not observed during this 2001-2002 wet season survey. Although the site is large, a majority of it has topography and geology that precludes the formation of static seasonal pools. Even the relatively gentle topography of the northern half of the site contains few areas where water pools for more than two weeks. The rock outcrops found on the site did not provide suitable habitat for listed branchiopods. Most of the habitat available to branchiopods on the site is puddles that form in roadbeds and dry quickly. The one persistent pool on the site, the larger of the two modified vernal pools and the only one to fill this season, is occupied by two branchiopod species that require long-lived pools to reach maturity. In short, there is little habitat available on the site for branchiopods and most of the habitat present is generally too short-lived to support the branchiopod species that do occur at Site 300.

  3. Serologic survey for disease in endangered San Joaquin kit fox, Vulpes macrotis mutica, inhabiting the Elk Hills Naval Petroleum Reserve, Kern County, California

    SciTech Connect (OSTI)

    McCue, P.M.; O'Farrell, T.P.

    1986-07-01T23:59:59.000Z

    Serum from endangered San Joaquin kit foxes, Vulpes macrotis mutica, and sympatric wildlife inhabiting the Elk Hills Petroleum Reserve, Kern County, and Elkhorn Plain, San Luis Obispo County, California, was collected in 1981 to 1982 and 1984, and tested for antibodies against 10 infectious disease pathogens. Proportions of kit fox sera containing antibodies against diseases were: canine parvovirus, 100% in 1981 to 1982 and 67% in 1984; infectious canine hepatitis, 6% in 1981 to 1982 and 21% in 1984; canine distemper, 0 in 1981 to 1982 and 14% in 1984; tularemia, 8% in 1981 to 1982 and 31% in 1984; Brucella abortus, 8% in 1981 to 1982 and 3% in 1984; Brucella canis, 14% in 1981 to 1982 and 0 in 1984; toxoplasmosis, 6% in 1981 to 1982; coccidioidomycosis, 3% in 1981 to 1982; and plague and leptospirosis, 0 in 1981 to 1982. High population density, overlapping home ranges, ability to disperse great distances, and infestation by ectoparasites were cited as possible factors in the transmission and maintenance of these diseases in kit fox populations.

  4. Biological assessment: possible impacts of exploratory drilling in sections 8B and 18H, Naval Petroleum Reserve No. 2, Kern County, California on the endangered San Joaquin kit fox, blunt-nosed leopard lizard, and other sensitive species

    SciTech Connect (OSTI)

    O'Farrell, T.P.; Sauls, M.L.

    1982-07-01T23:59:59.000Z

    The U.S. Department of Energy proposes to drill exploratory wells on two sections, 8B and 18H, within Naval Petroleum Reserve No. 2 in western Kern County, California. The proposed sites are thought to provide habitat for the endangered San Joaquin kit fox and blunt-nosed leopard lizard, as well as two sensitive species: the giant kangaroo rat and San Joaquin antelope ground squirrel. The objective was to assess the possible impacts of the exploratory drilling on these species and their essential habitats. Although 23 potential San Joaquin kit fox den sites were found during surveys of a total of 512 ha (1280 acres) surrounding both well sites, no burrows were closer than 30 m from proposed disturbance, and most were over 200 m away. Two blunt-nosed leopard lizards were observed on private land within 8B, one was observed on private land in 18H, and two were seen on DOE portions of 18H. No evidence of blunt-nosed leopard lizards was gathered in the immediate vicinity of either proposed well site. Although 5 ha of habitat will be disturbed, there is no evidence to indicate any of the species has burrows on-site that will be lost during land clearing. Loss of habitat will be mitigated during the cleanup and restoration phases when disturbed areas will be revegetated. Increased traffic, human activities, noise and ground vibration levels, as well as illumination throughout the night, may disturb the fauna. However, these species have adapted to intensive human disturbances on Elk Hills without obvious negative effects. The short duration of the project should allow any displaced animals to return to the sites after drilling ceases.

  5. DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM IN THE SAN JOAQUIN VALLEY, CALIFORNIA

    E-Print Network [OSTI]

    DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM IN THE SAN JOAQUIN VALLEY, CALIFORNIA A thesis read Documentation of a Tornadic Supercell Thunderstorm in the San Joaquin Valley, California ___________________________________________ Erwin Seibel Professor of Oceanography #12;iv DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM

  6. Landslide oil field, San Joaquin Valley, California

    SciTech Connect (OSTI)

    Collins, B.P.; March, K.A.; Caballero, J.S.; Stolle, J.M.

    1988-03-01T23:59:59.000Z

    The Landslide field, located at the southern margin of the San Joaquin basin, was discovered in 1985 by a partnership headed by Channel Exploration Company, on a farm out from Tenneco Oil Company. Initial production from the Tenneco San Emidio 63X-30 was 2064 BOPD, making landslide one of the largest onshore discoveries in California during the past decade. Current production is 7100 BOPD from a sandstone reservoir at 12,500 ft. Fifteen wells have been drilled in the field, six of which are water injectors. Production from the Landslide field occurs from a series of upper Miocene Stevens turbidite sandstones that lie obliquely across an east-plunging structural nose. These turbidite sandstones were deposited as channel-fill sequences within a narrowly bounded levied channel complex. Both the Landslide field and the larger Yowlumne field, located 3 mi to the northwest, comprise a single channel-fan depositional system that developed in the restricted deep-water portion of the San Joaquin basin. Information from the open-hole logs, three-dimensional surveys, vertical seismic profiles, repeat formation tester data, cores, and pressure buildup tests allowed continuous drilling from the initial discovery to the final waterflood injector, without a single dry hole. In addition, the successful application of three-dimensional seismic data in the Landslide development program has helped correctly image channel-fan anomalies in the southern Maricopa basin, where data quality and severe velocity problems have hampered previous efforts. New exploration targets are currently being evaluated on the acreage surrounding the Landslide discovery and should lead to an interesting new round of drilling activity in the Maricopa basin.

  7. Sustainability of irrigated agriculture in the San Joaquin Valley, California

    E-Print Network [OSTI]

    Vrugt, Jasper A.

    productivity and sustainability. Currently, there is a good understanding of the fundamental soil hydrological scale and at the long term, so that the sustainability of alternative management strategies canSustainability of irrigated agriculture in the San Joaquin Valley, California Gerrit Schoups* , Jan

  8. Agricultural Losses from Salinity in California’s Sacramento-San Joaquin Delta

    E-Print Network [OSTI]

    Medellín-Azuara, Josué; Howitt, Richard E.; Hanak, Ellen; Lund, Jay R.; Fleenor, William E.

    2014-01-01T23:59:59.000Z

    hydrodynamic and salinity transport modeling of the Sacramento–San Joaquinhydrodynamic and salinity transport modeling to provide irriga- tion water salinity levels for various locations in California’s Sacramento–San Joaquinhydrodynamic, water salinity, and eco- nomic models can provide insights into controversial management issues. KEY WORDS Sacramento–San Joaquin

  9. EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California

    Broader source: Energy.gov [DOE]

    DOE is preparing this EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California.

  10. Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento–San Joaquin River Basin, California

    E-Print Network [OSTI]

    Sickman, James O.; DiGiorgio, Carol L.; Lee Davisson, M.; Lucero, Delores M.; Bergamaschi, Brian

    2010-01-01T23:59:59.000Z

    peat soils, Sacramento–San Joaquin Delta, California: implications for drinking-water quality. Water-Resources

  11. EA-1697: San Joaquin Valley Right-of-Way Project, California

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of right-of-way maintenance (including facility inspection and repair, vegetation management, and equipment upgrades for transmission lines and associated rights-or-way, access roads, substations, and a maintenance facility) in the San Joaquin Valley in California.

  12. Santa Barbara County, California Data Dashboard | Department...

    Broader source: Energy.gov (indexed) [DOE]

    The data dashboard for Santa Barbara County, California, a partner in the Better Buildings Neighborhood Program. Santa Barbara County Data Dashboard More Documents & Publications...

  13. Agricultural Losses from Salinity in California’s Sacramento-San Joaquin Delta

    E-Print Network [OSTI]

    Medellín-Azuara, Josué; Howitt, Richard E.; Hanak, Ellen; Lund, Jay R.; Fleenor, William E.

    2014-01-01T23:59:59.000Z

    hydrodynamic and salinity transport modeling of the Sacramento–San Joaquin Delta: sea level rise and water diversion effects.

  14. Organic Carbon and Disinfection Byproduct Precursor Loads from a Constructed, Non-Tidal Wetland in California's Sacramento–San Joaquin Delta

    E-Print Network [OSTI]

    Fleck, Jacob A.; Fram, Miranda S.; Fujii, Roger

    2007-01-01T23:59:59.000Z

    peat soils, Sacramento-San Joaquin Delta, California: Implications for drinking-water quality: U.S. Geological Survey Water-Resources

  15. Bottom-up, decision support system development : a wetlandsalinity management application in California's San Joaquin Valley

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.

    2006-05-10T23:59:59.000Z

    Seasonally managed wetlands in the Grasslands Basin ofCalifornia's San Joaquin Valley provide food and shelter for migratorywildfowl during winter months and sport for waterfowl hunters during theannual duck season. Surface water supply to these wetland contain saltwhich, when drained to the San Joaquin River during the annual drawdownperiod, negatively impacts downstream agricultural riparian waterdiverters. Recent environmental regulation, limiting discharges salinityto the San Joaquin River and primarily targeting agricultural non-pointsources, now addresses return flows from seasonally managed wetlands.Real-time water quality management has been advocated as a means ofmatching wetland return flows to the assimilative capacity of the SanJoaquin River. Past attempts to build environmental monitoring anddecision support systems to implement this concept have failed forreasons that are discussed in this paper. These reasons are discussed inthe context of more general challenges facing the successfulimplementation of environmental monitoring, modelling and decisionsupport systems. The paper then provides details of a current researchand development project which will ultimately provide wetland managerswith the means of matching salt exports with the available assimilativecapacity of the San Joaquin River, when fully implemented. Manipulationof the traditional wetland drawdown comes at a potential cost to thesustainability of optimal wetland moist soil plant habitat in thesewetlands - hence the project provides appropriate data and a feedback andresponse mechanism for wetland managers to balance improvements to SanJoaquin River quality with internally-generated information on the healthof the wetland resource. The author concludes the paper by arguing thatthe architecture of the current project decision support system, whencoupled with recent advances in environmental data acquisition, dataprocessing and information dissemination technology, holds significantpromise to address some of the problems described earlier in the paperthat have limited past efforts to improve Basin water qualitymanagement.

  16. Biological assessment: possible impacts of exploratory drilling in Section 18B, Naval Petroleum Reserve No. 2, Kern County, California on the endangered San Joaquin kit fox, blunt-nosed leopard lizard, and other sensitive species

    SciTech Connect (OSTI)

    O'Farrell, T.P.

    1981-11-01T23:59:59.000Z

    The proposed site is thought to provide habitat for the endangered an Joaquin kit fox and blunt-nosed leopard lizard, as well as the giant kangaroo rat and San Joaquin antelope ground squirrel. The objective of this study was to assess the possible impacts of the exploratory drilling on these species and their essential habitats. The proposed project will have four phases: (1) surveying; (2) site preparation; (3) drilling, logging, and testing; and (4) cleanup and restoration. During site preparation approximately 1.5 acres of vegetation and surface soils will be removed for an access road and well pad. During a 20-day drilling, logging, and testing phase, there will be increased vehicular traffic, human activities, noise and ground vibrations, and illumination during the night. Although 1.5 acres of habitat will be disturbed, there is no evidence to indicate any of the species has burrows on-site that will be lost during land clearing. Loss of habitat will be mitigated during the cleanup and restoration phases when disturbed areas will be revegetated. Increased traffic, human activities, noise and ground vibration levels, as well as illumination throughout the night, may disturb the fauna. However, these species have adapted to intensive human disturbances on Elk Hills without obvious negative effects. The most direct threat to the species is the possibility that they might be killed by vehicles. Since the project poses so few threats to individual endangered or sensitive species, and since minor habitat disturbances will be mitigated during a restoration program, it is unlikely that completion of the project jeopardizes the continued existence of any of the species or their essential habitats. (ERB)

  17. Santa Barbara County, California Summary of Reported Data | Department...

    Broader source: Energy.gov (indexed) [DOE]

    data reported by Better Buildings Neighborhood Program partner Santa Barbara County, California. Santa Barbara County, California Summary of Reported Data More Documents &...

  18. Biological assessment of the effects of petroleum production at maximum efficient rate, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California, on the endangered San Joaquin kit fox, Vulpes macrotis mutica

    SciTech Connect (OSTI)

    O'Farrell, T.P.; Harris, C.E.; Kato, T.T.; McCue, P.M.

    1986-06-01T23:59:59.000Z

    Between 1980 and 1986 DOE sponsored field studies to gather sufficient information to determine the status of the species on Naval Petroleum Reserve-1 and to evaluate the possible effects of MER. Transect surveys were conducted in 1979 and 1984 to document the distribution and relative density of fox dens. Radiotelemetry studies were initiated to provide information on reproductive success, den use patterns, responses to petroleum field activities, food habits, movement patterns and home ranges, and sources and rates of mortality. Techniques for conducting preconstruction surveys to minimize possible negative effects of MER activities on foxes plus a habitat restoration program were developed and implemented. DOE determined during this biological assessment that the construction projects and operational activities necessary to achieve and sustain MER may have adversely affected the San Joaquin kit fox and its habitat. However, the direct, indirect, and cumulative effects of MER will not jeopardize the continued existence of the species because: (1) results of the extensive field studies did not provide evidence that MER effected negative changes in relative abundance, reproductive success, and dispersal of the species; (2) a successful policy of conducting preconstruction surveys to protect kit fox, their dens, and portions of their habitat was initiated; (3) the Secretary of the Interior did not designate critical habitat; (4) a habitat restoration plan was developed and implemented; (5) a monitoring program was implemented to periodically assess the status of kit fox; (6) a coyote control program was established with FWS to reduce predation on fox; and (7) administrative policies to reduce vehicle speeds, contain oil spills, restrict off-road vehicle (ORV) travel, and to prohibit hunting, trapping, livestock grazing, and agricultural activities, were maintained to protect kit fox.

  19. A Crescent from the Southern San Joaquin Valley, California

    E-Print Network [OSTI]

    Sutton, Mark Q.

    1989-01-01T23:59:59.000Z

    was discovered in the Elk Hills, California. approximatelyis lacking. THE ELK HILLS CRESCENT The crescent (Figs. 2 andFig. 3. Photograph of the Elk Hills crescent. The specimen

  20. Foraminifera and paleoenvironments in the Etchegoin and lower San Joaquin Formations, west-central San Joaquin valley, California

    SciTech Connect (OSTI)

    Lagoe, M.B.; Tenison, J.A.; Buehring, R. (Univ. of Texas, Austin (United States))

    1991-02-01T23:59:59.000Z

    The Etchegoin and San Joaquin formations preserve a rich stratigraphic record of paleoenvironments, deposition, and tectonics during the late Miocene-Pliocene development of the San Joaquin basin. The distribution of foraminifera within these formations can help constrain this record, which includes final filling of the basin, facies responses to sea level changes, and active movement on the San Andreas fault system. The distribution of foraminifera in core samples is analyzed from seven wells along the west-central San joaquin basin - four from Buena Vista oil field, one from western Elk Hills oil field, and two from an area just south of South Belridge oil field. A model of modern, shallow- to marginal-marine foraminiferal biofacies is used to interpret the Etchegoin-San Joaquin faunal distributions. This modern model distinguishes marsh, tidal channel, intertidal, lagoonal, littoral, and shallow sublittoral environments. Ongoing work calibrating this foraminiferal record to the lithologic and macrofossil records in addition to interpreted depositional systems within these formations will further define relationships between paleoenvironments, relative sea level, and tectonics.

  1. On the temperature dependence of organic reactivity, nitrogen oxides, ozone production, and the impact of emission controls in San Joaquin Valley, California

    E-Print Network [OSTI]

    Pusede, S. E.

    The San Joaquin Valley (SJV) experiences some of the worst ozone air quality in the US, frequently exceeding the California 8 h standard of 70.4 ppb. To improve our understanding of trends in the number of ozone violations ...

  2. San Joaquin County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY)Project JumpSan FranciscoWind Farm

  3. California's County and City Environmental Health Services Delivery System

    E-Print Network [OSTI]

    Riverside County Department of Public Health Office of Industrial Hygiene Johns Hopkins University, California Department of Industrial Relations Robin Hook, California Department of Health Services Anne

  4. Clewlow, Wells, and Pastron. eds: The Archaeology of Oak Park, Ventura County, California, Vols 1 and 2; and Clewlow, Whitley, eds.: The Archaeology of Oak Park, Ventura County, California, Vol. 3

    E-Print Network [OSTI]

    Tartaglia, Louis James

    1980-01-01T23:59:59.000Z

    Archaeology of Oak Park, Ventura County, California. VolumesArchaeology of Oak Park, Ventura County, California. VolumePrehistoric Chumash Sites in Ventura County, California (

  5. Archaeological Investigations in Northern San Diego County, California: Frey Creek

    E-Print Network [OSTI]

    True, D. L; Waugh, G.

    1981-01-01T23:59:59.000Z

    and material. FREY CREEK Fig. 14. Artifacts recovered fromCounty, California: Frey Creek D. L. TRUE G. WAUGH S URVEYSand material. FREY CREEK Table 11 ARTIFACT DISTRIBUTION,

  6. Design and implementation of an emergency environmental responsesystem to protect migrating salmon in the lower San Joaquin River,California

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.; Jacobs, Karl C.

    2006-01-30T23:59:59.000Z

    In the past decade tens of millions of dollars have beenspent by water resource agencies in California to restore the nativesalmon fishery in the San Joaquin River and its major tributaries. Anexcavated deep water ship channel (DWSC), through which the river runs onits way to the Bay/Delta and Pacific Ocean, experiences episodes of lowdissolved oxygen which acts as a barrier to anadromous fish migration anda threat to the long-term survival of the salmon run. An emergencyresponse management system is under development to forecast theseepisodes of low dissolved oxygen and to deploy measures that will raisedissolved oxygen concentrations to prevent damage to the fisheryresource. The emergency response management system has been designed tointeract with a real-time water quality monitoring network and is servedby a comprehensive data management and forecasting model toolbox. TheBay/Delta and Tributaries (BDAT) Cooperative Data Management System is adistributed, web accessible database that contains terabytes ofinformation on all aspects of the ecology of the Bay/Delta and upperwatersheds. The complexity of the problem dictates data integration froma variety of monitoring programs. A unique data templating system hasbeen constructed to serve the needs of cooperating scientists who wish toshare their data and to simplify and streamline data uploading into themaster database. In this paper we demonstrate the utility of such asystem in providing decision support for management of the San JoaquinRiver fishery. We discuss how the system might be expanded to havefurther utility in coping with other emergencies and threats to watersupply system serving California's costal communities.

  7. Feldspar diagenesis in the Yowlumne sandstone, Kern County, California

    E-Print Network [OSTI]

    Pike, John David

    1981-01-01T23:59:59.000Z

    FELDSPAR DIAGENESIS IN THE YOWLUMNE SANDSTONE& KERN COUNTY& CALIFORNIA A Thesis by JOHN DAVID PIKE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1981 Major Subject: Geology FELDSPAR DIAGENESIS IN THE YOWLUMNE SANDSTONE, KERN COUNTY, CALIFORNIA A Thesis by JOHN DAVID PIKE Approved as to style and content by: (Chairman of Committee) ( mber) (Me er) (He'a' of Dep rtment) December...

  8. PEAT ACCRETION HISTORIES DURING THE PAST 6000 YEARS IN MARSHES OF THE SACRAMENTO - SAN JOAQUIN DELTA, CALIFORNIA, USA

    SciTech Connect (OSTI)

    Drexler, J Z; de Fontaine, C S; Brown, T A

    2009-07-20T23:59:59.000Z

    Peat cores were collected in 4 remnant marsh islands and 4 drained, farmed islands throughout the Sacramento - San Joaquin Delta of California in order to characterize the peat accretion history of this region. Radiocarbon age determination of marsh macrofossils at both marsh and farmed islands showed that marshes in the central and western Delta started forming between 6030 and 6790 cal yr BP. Age-depth models for three marshes were constructed using cubic smooth spline regression models. The resulting spline fit models were used to estimate peat accretion histories for the marshes. Estimated accretion rates range from 0.03 to 0.49 cm yr{sup -1} for the marsh sites. The highest accretion rates are at Browns Island, a marsh at the confluence of the Sacramento and San Joaquin rivers. Porosity was examined in the peat core from Franks Wetland, one of the remnant marsh sites. Porosity was greater than 90% and changed little with depth indicating that autocompaction was not an important process in the peat column. The mean contribution of organic matter to soil volume at the marsh sites ranges from 6.15 to 9.25% with little variability. In contrast, the mean contribution of inorganic matter to soil volume ranges from 1.40 to 8.45% with much greater variability, especially in sites situated in main channels. These results suggest that marshes in the Delta can be viewed as largely autochthonous vs. allochthonous in character. Autochthonous sites are largely removed from watershed processes, such as sediment deposition and scour, and are dominated by organic production. Allochthonous sites have greater fluctuations in accretion rates due to the variability of inorganic inputs from the watershed. A comparison of estimated vertical accretion rates with 20th century rates of global sea-level rise shows that currently marshes are maintaining their positions in the tidal frame, yet this offers little assurance of sustainability under scenarios of increased sea-level rise in the future.

  9. Wildlife management plan, Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    O'Farrell, T.P.; Scrivner, J.H.

    1987-01-01T23:59:59.000Z

    Under the Naval Petroleum Act of 1976, Congress directed the Secretary of the Navy and subsequently the Secretary of Energy, to produce petroleum products from Naval Petroleum Reserve No. 1 (NPR-1) in Kern County, California, at the maximum efficient rate consistent with sound engineering practices. Because of the presence of two endangered species and the quality, quantity, and contiguous nature of habitat on NPR-1, the area is unique and management of its resources deserves special attention. The purpose of this wildlife management plan is to: (1) draw together specific information on NPR-1 wildlife resources; (2) suggest management goals that could be implemented, which if achieved, would result in diverse, healthy wildlife populations; and (3) reinitiate cooperative agreements between the US Department of Energy (DOE) and other conservation organizations regarding the management of wildlife on NPR-1. NPR-1 supports an abundant and diverse vertebrate fauna. Twenty-five mammalian, 92 avian, eight reptilian, and two amphibian species have been observed on Elk Hills. Of these, three are endangered (San Joaquin kit fox, Vulpes macrotis mutica; giant kangaroo rat, Dipodomys ingens; blunt-nosed leopard lizard, Gambelia silus). Nine vertebrates, six invertebrates, and four plant species known to occur or suspected of occurring on Elk Hills are potential candidates for listing. A major objective of this management plan is to minimize the impact of petroleum development activities on the San Joaquin kit fox, giant kangaroo rat, blunt-nosed leopard lizard, and their essential habitats. This will mainly be achieved by monitoring the status of these species and their habitat and by restoring disturbed habitats. In general, management policies designed to benefit the above three species and other species of concern will also benefit other wildlife inhabiting NPR-1.

  10. Los Angeles County- Commercial PACE (California)

    Broader source: Energy.gov [DOE]

    Businesses in Los Angeles County may be eligible for the county's Property Assessed Clean Energy (PACE) program. PACE programs allow businesses to finance energy and water efficiency projects which...

  11. San Diego County- Wind Regulations (California)

    Broader source: Energy.gov [DOE]

    The County of San Diego has established zoning guidelines for wind turbine systems of varying sizes in the unincorporated areas of San Diego County. Wind turbine systems can be classified as small,...

  12. Onion Seed Production in California

    E-Print Network [OSTI]

    Bradford, Kent

    Onion Seed Production in California RONALD E. VOSS, Cooperative Extension Vegetable Specialist Center, Imperial Valley. P R O D U C T I O N A R E A S A N D S E A S O N S Commercial seed production. The Sacramento Valley (particularly Colusa County) and the San Joaquin Valley are also significant production

  13. Santa Clara County- Zoning Ordinance (California)

    Broader source: Energy.gov [DOE]

    Santa Clara County's Zoning Ordinance includes standards for wind and solar structures for residential, agricultural, and commercial uses.

  14. Reproduction of the San Joaquin kit fox (Vulpes velox macrotis) on Camp Roberts Army National Guard Training Site, California

    SciTech Connect (OSTI)

    Spencer, K A; Berry, W H; Standley, W G; O`Farrell, T P

    1992-09-01T23:59:59.000Z

    The reproduction of a San Joaquin kit fox population (Vulpes velox macrotis) was investigated at Camp Roberts Army National Guard Training Site, California, from November 1988 through September 1991. Of 38 vixens radiocollared prior to parturition, 12 (32%) were successful in raising pups from conception to the point where pups were observed above ground. No yearling vixens were known tb be reproductively active. The mean litter size during 1989 - 1991 was 3.0 (n = 21, SE = 0.28) and ranged from one to six pups. Both the proportion of vixens successfully raising pups and the mean litter size observed at Camp Roberts during this study were lower than those reported at other locations. Sex ratios of kit fox pups were male biased two of the three years, but did not differ statistically from 1:1 throughout the study. Whelping was estimated to occur between February 15 and March 5. Results of this study support previous reports that kit foxes are primarily monogamous, although one case of polygamy may have occurred. Both the proportion of dispersing radiocollared juveniles (26%) and the mean dispersal distance (5.9 km) of juveniles at Camp Roberts appeared low compared to other locations.

  15. Energy Upgrade California in Los Angeles County, Loan Loss Reserve Fund Agreement

    Broader source: Energy.gov [DOE]

    Energy Upgrade California in Los Angeles County, Loan Loss Reserve Fund Agreement. Example of loan loss reserve agreement.

  16. Stevens and earlier miocene turbidite sandstones, southern San Joaquin Valley, California

    SciTech Connect (OSTI)

    Webb, G.W.

    1981-03-01T23:59:59.000Z

    A thick marine turbidite succession, dominantly coarse sandstone, underlies the southern part of the San Joaquin Valley. Sands are pebbly to fine grained, commonly poorly sorted, quartzose to arkosic, and are interbedded with dark shales bearing deep-water foraminifers. Graded bedding is common and, with the depths of 2000 to 6000 ft (610 to 1830 m) implied by the fauna, is taken to indicate a turbidity-current origin for most of the sands. The upper, middle, and lower Miocene turbidite section was revealed by extensive coring at Paloma, and is similar to the more widespread and oil and gas productive upper Miocene Stevens sandstone. The central-basin Stevens was deposited as channel sands on deep-sea fans derived from several discrete troughs or canyons on the eastern and southeastern margin of the basin prior to their burial by prograding Santa Margarita sand. Sand channels and lobes in the Bakersfield arch area were controlled locally by compaction structures. The rising Paloma anticline deflected Stevens sands for a time and the very last sands were guided also by incipient folds on the outer Bakersfield arch. Coarse Stevens conglomerates and sands shed from the emergent Temblor Range were deflected by the Buena Vista Hills, Elk Hills, and other anticlinal shoals and were deposited in intervening gaps as thick oil-productive channel sands. They merge with sands from the east side in flowing axially into the distal northwestern basin. Facies recognized in the subsurface include a meander-channel facies developed in the prograded muddy slope area upstream from the massive braided-sand facies.

  17. America's Job Center of California Formerly "California One-Stop Career Centers" Sorted by County and City

    E-Print Network [OSTI]

    America's Job Center of California Formerly "California One-Stop Career Centers" Sorted by County and City As of July 1, 2014, this listing of the America's Job Center of California (AJCC) will no longer be available. To locate an AJCC office near you, use the EDD Office Locator. #12;Alameda County America's Job

  18. Reproduction of the San Joaquin kit fox on Naval Petroleum Reserve No. 1, Elk Hills, California: 1980-1985

    SciTech Connect (OSTI)

    Zoellick, B.W.; O'Farrell, T.P.; McCue, P.M.; Harris, C.E.; Kato, T.T.

    1987-01-01T23:59:59.000Z

    Reproduction of the San Joaquin kit fox (Vulpes macrotis mutica) was studied in areas of petroleum development and areas relatively undisturbed by development on and adjacent to Elk Hills Naval Petroleum Reserve No. 1 (NPR-1), California from 1980-1985. Pregnancy rates of adults did not differ between habitats (93 to 100%), but the yearling pregnancy rate in developed habitat (56%) was lower than the adult rates and the yearling rate for undeveloped habitat (100%). Mean corpora lutea and placental scar counts did not differ between undeveloped and developed habitats, but adults had greater corpora lutea and placental scar counts than yearlings. Litter sizes averaged 4.1 and 4.4 for undeveloped and developed habitats respectively from 1980-1985 and did not differ between years or habitats. Mean number of litters observed per square mile during 1980-1985 did not differ between undeveloped (0.34) and developed habitats (0.29). The percentage of all females successfully raising pups in developed habitat declined significantly from 1980-1985 in comparison with the percent success of females in undeveloped habitat. Numbers of litters per square mile in developed habitat also declined significantly after 1981. The sex ratio of pups trapped in developed habitat was skewed towards males during the decline in litters produced per square mile from 1982-1985, but the ratio of males to females in undeveloped habitat did not differ from 1:1 during this time. The decline in some measures of reproductive success in developed habitat after 1981 coincided with a decrease in black-tailed jackrabbit and desert cottontail numbers on the NPR-1 study area. The decreased reproductive success of foxes in developed habitat after 1981 may have resulted from habitat degradation caused by oil field production activities, declining lagomorph numbers, or other unknown causes. 49 refs., 7 figs., 8 tabs.

  19. EIS-0479: North-of-the-Delta Offstream Storage Project, Sacramento-San Joaquin Delta, California

    Broader source: Energy.gov [DOE]

    The North-of-the-Delta Offstream Storage (NODOS) Investigation is a Feasibility Study being performed by the California Department of Water Resources and the Bureau of Reclamation, pursuant to the CALFED Bay-Delta Program Programmatic EIS/EIR Record of Decision. The NODOS Investigation is evaluating potential offstream surface water storage projects in the upper Sacramento River Basin that could improve water supply for agricultural, municipal, and industrial, and environmental uses. If the project is implemented, DOE’s Western Area Power Administration, a cooperating agency, could provide power to project facilities and could market hydropower generated by the project.

  20. Butte County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleigh County,BuschButte County,

  1. EA-1957: Cabin Creek Biomass Facility, Placer County, California

    Broader source: Energy.gov [DOE]

    DOE is proposing to provide funding to Placer County, California to construct and operate a two-megawatt wood-to-energy biomass facility at the Eastern Regional Materials Recovery Facility (MRF) and Landfill in unincorporated Placer County. The wood?to?energy biomass facility would use a gasification technology. The fuel supply for the proposed project would be solely woody biomass, derived from a variety of sources including hazardous fuels residuals, forest thinning and harvest residuals, and Wildland Urban Interface sourced waste materials from residential and commercial property defensible space clearing and property management activities. NOTE: After review of a final California Environmental Quality Act Environmental Impact Report, DOE has determined that preparation of an EA is not necessary. The propsed action fits within DOE's categorical exclusion B5.20. Therefore, this EA is cancelled.

  2. EIS-0431: Hydrogen Energy California's Project, Kern County, California

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to provide financial assistance for the construction and operation of Hydrogen Energy California's LLC project, which would produce and sell electricity, carbon dioxide and fertilizer. DOE selected this project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative program.

  3. Los Angeles County, California | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for annuclearOfficial Dr.ofCounty,

  4. San Diego County, California | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department ofDepartment of Energy SamplingDiego County,

  5. Summary and evaluation of the coyote control program on Naval Petroleum Reserve No. 1, Kern County, California, 1987

    SciTech Connect (OSTI)

    Scrivner, J.H.

    1987-09-01T23:59:59.000Z

    For the third consecutive year (1987) the US Department of Energy (DOE) funded a coyote (Canis latrans) control program in an attempt to reduce coyote predation on the endangered San Joaquin kit fox (Vulpes macrotis mutica) on Naval Petroleum Reserve No. 1 (NPR-1, Elk Hills) in Kern County, California. During approximately 8 weeks of control activities, personnel from the US Department of Agriculture, Division of Animal Damage Control (ADC), removed 16 adult coyotes: 14 were trapped, 2 were shot. Data were gathered on standard measurements, weights, ages, and reproductive condition. No kit foxes were accidently trapped. Based on the results of canid scent-station surveys, the coyote population on NPR-1 declined and the kit fox population was relatively stable. Recommendations were made to conduct the 1987/1988 coyote control program between December 1987 and February 1988, use helicopters for aerial gunning and locating coyote dens, and develop a cooperative agreement between DOE, ADC, US Fish and Wildlife Service, Bureau of Land Management, and the California Department of Fish and Game to conduct the coyote control program on lands surrounding NPR-1 owned by DOE and others. 8 refs., 2 figs., 2 tabs.

  6. Geology of Superior Ridge uranium deposits, Ventura County, California

    SciTech Connect (OSTI)

    Dickinson, K.A.; Leventhal, J.S.

    1988-03-01T23:59:59.000Z

    Epigenetic uranium deposits with potential commercial value have been found in the lower part of the upper Eocene to lower Miocene Sespe Formation near Ojai, in Ventura County, California. This report describes the geological and geochemical setting of these deposits and postulates a model for their origin. Several uranium deposits are located on Superior Ridge, a topographic high about 3 miles long located just south of White Ledge Peak and 6 to 9 miles west of Ojai (Photo 1). A single uranium deposit on Laguna Ridge is located about 3 miles south of Superior Ridge, and was included with the Superior Ridge deposits in the White Ledge Peak district. A few small deposits are known to exist in other parts of Ventura County. A preliminary model for uranium mineralization in the Sespe Formation postulated that the organic material necessary for concentrating the uranium by chemical reduction or precipitation originated as terrestrial humic acid or humate.

  7. Alameda County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60Alameda County, California: Energy Resources

  8. Mendocino County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°,Meeteetse,Illinois:Mendocino County, California:

  9. Monterey County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy Resources Jump to:

  10. Fresno County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° ShowCounty, California: Energy Resources Jump to:

  11. Redistricting California: An Evaluation of the Citizens Commission Final Plans

    E-Print Network [OSTI]

    Kogan, Vladimir; McGhee, Eric

    2012-01-01T23:59:59.000Z

    San Joaquin Palmdale Ventura County Fullerton RiversideObispo Palmdale Redlands Ventura County Corona RiversideKings Santa Barbara Palmdale Ventura County San Bernardino

  12. Five-year resurvey for endangered species on Naval Petroleum Reserve No. 1, (Elk Hills), Kern County, California

    SciTech Connect (OSTI)

    Otten, M.R.M.; O`Farrell, T.P.; Briden, L.E.

    1992-06-01T23:59:59.000Z

    A transect survey of Naval Petroleum Reserve No. 1 (NPR-1), Kern County, California, was conducted between July 3 and August 5, 1989 to determine the distribution and relative density of endangered species and other wildlife. Results were compared with other reported results, particularly the 1979 and 1984 surveys of NPR-1. A total of 589.8 miles of transects were walked through approximately 47,235 acres in all or parts of 81 sections. Of the 516 San Joaquin kit fox dens observed, 496 were typical subterranean dens and 20 were atypical dens in man-made structures. Estimated den density was 36.7 {plus_minus} 4.1 per square mile; and relative den density was 10.5/1,000 acres for all of NPR-1. Characteristics of typical kit fox dens were comparable to characteristics reported for other studies, except mean number of entrances per den, which was lower. Observers counted a total of 300 dens previously marked with an identification sign, 191 of which contained at least one complete entrance and would have been observed without a sign. Relative densities of preferred kit fox prey, black-toiled jackrabbits (40.1/1,000 acres) and desert cottontails (14.1/1,000 acres), were lower than previously recorded. Five blunt-nosed leopard lizards were observed along the southwest and northeast perimeter of the Reserve. Most of the 59 giant kangaroo rat burrow systems were observed in the flat terrain along the northeast and south perimeters of the Reserve. San Joaquin antelope squirrels were observed in the central and western parts of NPR- 1. A total of 73 antelope squirrels were observed, and the relative density was 1.511,000 acres. A total.of 30 possible environmental hazards were observed during transect surveys. Most of these were oil and water leaks of small size and appeared to pose little risk to endangered species. Results of this survey indicate that NPR-1 is supporting less wildlife than it did during either the 1979 or 1984 surveys.

  13. Five-year resurvey for endangered species on Naval Petroleum Reserve No. 1, (Elk Hills), Kern County, California

    SciTech Connect (OSTI)

    Otten, M.R.M.; O'Farrell, T.P.; Briden, L.E.

    1992-06-01T23:59:59.000Z

    A transect survey of Naval Petroleum Reserve No. 1 (NPR-1), Kern County, California, was conducted between July 3 and August 5, 1989 to determine the distribution and relative density of endangered species and other wildlife. Results were compared with other reported results, particularly the 1979 and 1984 surveys of NPR-1. A total of 589.8 miles of transects were walked through approximately 47,235 acres in all or parts of 81 sections. Of the 516 San Joaquin kit fox dens observed, 496 were typical subterranean dens and 20 were atypical dens in man-made structures. Estimated den density was 36.7 [plus minus] 4.1 per square mile; and relative den density was 10.5/1,000 acres for all of NPR-1. Characteristics of typical kit fox dens were comparable to characteristics reported for other studies, except mean number of entrances per den, which was lower. Observers counted a total of 300 dens previously marked with an identification sign, 191 of which contained at least one complete entrance and would have been observed without a sign. Relative densities of preferred kit fox prey, black-toiled jackrabbits (40.1/1,000 acres) and desert cottontails (14.1/1,000 acres), were lower than previously recorded. Five blunt-nosed leopard lizards were observed along the southwest and northeast perimeter of the Reserve. Most of the 59 giant kangaroo rat burrow systems were observed in the flat terrain along the northeast and south perimeters of the Reserve. San Joaquin antelope squirrels were observed in the central and western parts of NPR- 1. A total of 73 antelope squirrels were observed, and the relative density was 1.511,000 acres. A total.of 30 possible environmental hazards were observed during transect surveys. Most of these were oil and water leaks of small size and appeared to pose little risk to endangered species. Results of this survey indicate that NPR-1 is supporting less wildlife than it did during either the 1979 or 1984 surveys.

  14. Agriculture, irrigation, and drainage on the west side of the San Joaquin Valley, California: Unified perspective on hydrogeology, geochemistry and management

    SciTech Connect (OSTI)

    Narasimhan, T.N.; Quinn, N.W.T.

    1996-03-01T23:59:59.000Z

    The purpose of this report is to provide a broad understanding of water-related issues of agriculture and drainage on the west side of the San Joaquin Valley. To this end, an attempt is made to review available literature on land and water resources of the San Joaquin Valley and to generate a process-oriented framework within which the various physical-, chemical-, biological- and economic components of the system and their interactions are placed in mutual perspective.

  15. angeles county california: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of California, Los Angeles California Energy Commission STAFF FINAL REPORT THE ELECTRIC PROGRAM INVESTMENT CHARGE: PROPOSED 201214 TRIENNIAL INVESTMENT PLAN Appendices A-E...

  16. Appendixes 159 160 Simulation of Ground-Water/Surface-Water Flow in the Santa ClaraCalleguas Ground-Water Basin, Ventura County, California

    E-Print Network [OSTI]

    ­Calleguas Ground-Water Basin, Ventura County, California APPENDIX 1: DOCUMENTATION AND DESCRIPTION OF THE DIGITAL-Water/Surface-Water Flow in the Santa Clara­Calleguas Ground-Water Basin, Ventura County, California Figure A.1.2. Location-Water Basin, Ventura County, California Figure A1.4. Location of USGS_GWMODEL coverage. PacificOcean VENTURACO

  17. Environment of deposition of the Yowlumne sandstone: internal morphology and rock properties, Kern County, California 

    E-Print Network [OSTI]

    Royo, Gilberto Rafael

    1986-01-01T23:59:59.000Z

    Pherson, 1978; Berg, 1986) (Figure 1). In the southern and western parts of the basin the sandstone is replaced by cherty shales in which isolated sandstone bodies form excellent reservoirs. Table 1. Stratigraphic section in the Yowlumne area, Kern County...ENVIRONMENT OF DEPOSITION OF THE YOWLUMNE SANDSTONE: INTERNAL MORPHOLOGY AND ROCK PROPERTIES, KERN COUNTY, CALIFORNIA A Thesis by GILBERTO RAFAEL ROYO Submitted to the Graduate College of Texas A8M University in partial fulfillment...

  18. Two Milling Stone Inventories from Northern San Diego County, California

    E-Print Network [OSTI]

    True, D. L; Beemer, Eleanor

    1982-01-01T23:59:59.000Z

    1982). Two Milling Stone Inventories from Northern San DiegoRincon 301. MILLING STONE INVENTORIES FROM SAN DIEGO COUNTYRincon 301. MILLING STONE INVENTORIES FROM SAN DIEGO COUNTY

  19. alameda county california: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program has attracted attention around the world. Prices in Californias competitive wholesale electricity market increased by 500 % between the second half of 1999 and the second...

  20. Paleo-reconstruction of shelf-slope margin along San Emigdio Mountains, southern San Joaquin Valley, California

    SciTech Connect (OSTI)

    Butler, K.R.

    1988-03-01T23:59:59.000Z

    Deformation along the San Emigdio Mountains, California, is characterized by large overthrust sheets that carried Eocene through Miocene nonmarine to shallow marine strata over their deeper marine equivalents. The Pleito thrust has at least 20,000 ft of throw and is the major structural feature of this overthrust belt. The upper plate of the Pleito thrust carries an extensively exposed block of three prograding sequences and, along strike, partially exposes the shelf-slope boundaries of these units. Equivalent changes are observed in the subsurface beneath the overthrust. Total crustal shortening along this region ranges from 25 to 50%, with most of the shortening taken up by the Pleito thrust. The thrust has a low-angle, ramp-and-glide configuration, but on the south, the strata eventually extend downward into basement. The northern boundary to the deformation belt is the White Wolf and Pioneer fold and thrust structures. These features form a transfer zone, where one structure ends and the other feature begins. The amplitude of these folds can be up to 10,000 ft from crest to trough. Because of the large overthrust of the Pleito thrust, reservoir rocks are found up to 7 mi south of the fault's surface trace in the lower plate. The buried strata lie south and west of producing fields along the White Wolf fault and the Tejon embayment. The complicated stratigraphic changes combined with the thrust-belt structures require retrodeformable crustal profiles to take into account the facies distributions to model the hydrocarbon potential of this lightly explored province.

  1. Results of preconstruction surveys used as a management technique for conserving endangered species and their habitats on Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    SciTech Connect (OSTI)

    Kato, T.T.; O'Farrell, T.P.; Johnson, J.W.

    1985-08-01T23:59:59.000Z

    In 1976 an intensive program of petroleum production at maximum efficient rate was initiated on the US Department of Energy's (DOE) Naval Petroleum Reserve No. 1 (Elk Hills) in western Kern County, California. In a Biological Opinion required by the Endangered Species Act, the US Fish and Wildlife Service concluded that proposed construction and production activities may jeopardize the continued existence of the endangered San Joaquin kit fox, Vulpes macrotis mutica, and the blunt-nosed leopard lizard, Gambelia silus, inhabiting the Reserve. DOE committed itself to carrying out a compensation/mitigation plan to offset impacts of program activities on endangered species and their habitats. One compensation/mitigation strategy was to develop and implement preconstruction surveys to assess potential conflicts between proposed construction activities, and endangered species and their critical habitats, and to propose reasonable and prudent alternatives to avoid conflicts. Between 1980 and 1984, preconstruction surveys were completed for 296 of a total of 387 major construction projects encompassing 3590 acres. Fewer than 22% of the projects potentially conflicted with conservation of endangered species, and most conflicts were easily resolved by identifying sensitive areas that required protection. Only 8% of the projects received minor modification in their design or locations to satisfy conservation needs, and only three projects had to be completely relocated. No projects were cancelled or delayed because of conflicts with endangered species, and costs to conduct preconstruction surveys were minimal. 27 refs., 9 figs., 2 tabs.

  2. EIS-0416: Ivanpah Solar Electric Generating System, San Bernardino County, California

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to support a proposal from Solar Partners I, II, IV, and VIII, limited liability corporations formed by BrightSource Energy (BrightSource), to construct and operate a solar thermal electric generating facility in San Bernardino County, California on BLM Land.

  3. Budget Strategy: A Survey of California County Governments

    E-Print Network [OSTI]

    Sun, Jinping

    2010-01-01T23:59:59.000Z

    counties (17.6%) reported budget saving strategies and itD. Straussman. 1981. Budget Control Is Alive and Well: Caseal Association of State Budget Of?cers. National Governors

  4. 2002-2003 Wet Season Branchiopod Survey Report, Lawrence Livermore National Laboratory, Site 300, Alameda and San Joaquin Counties, California

    SciTech Connect (OSTI)

    Weber, W; Woollett, J

    2004-11-16T23:59:59.000Z

    Condor Country Consulting conducted surveys for listed branchiopods in the 2002-2003 wet season to complete requirements of the Guidelines (USFWS 1996) used to determine the distribution of federally-listed branchiopods within the study area. The first survey was performed during the previous wet season (2001-2002). The 2002-2003 wet season survey, combined with the previous season's survey, is intended to provide LLNL with information that will assist them in determining the effects of the proposed action on federally listed branchiopods and provide information useful in the preparation of the associated environmental documentation. It is also expected to satisfy the survey requirements of the USFWS. For the purpose of this report, the term branchiopod refers specifically to phyllopodous branchiopods and not cladocerans. Fairy shrimp, tadpole shrimp, and clam shrimp are all categorized as phyllopodous branchiopods and are currently the only members of the Class Branchiopoda that contain species that are listed under the federal Endangered Species Act. Although cladocerans are branchiopods and were found on the site, they are only referred to by the Order in this report because they are not the target species of this study.

  5. EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence...

  6. Placer County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S A JumpPiute County, Utah:

  7. Plumas County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S APlataformaTexas:PlotWattPlumas County,

  8. Thrust faulting in Temblor Range, Kern County, California

    SciTech Connect (OSTI)

    Simonson, R.R.

    1991-02-01T23:59:59.000Z

    Surface and subsurface studies confirm the presence of overthrusting in the Temblor Range between Gonyer Canyon and Recruit Pass. In the subsurface, three wells have penetrated the Cree fault, the Hudbay Cree' No. 1 (7,300 ft), the Frantzen Oil Company Cree' No. 1 (5,865 ft) and the Arco Cree Fee' 1A well (5,915 ft). Below the fault, 25 to 35{degree} of westerly dips on the west flank of the sub-thrust Phelps anticline are encountered. The McDonald section below the fault is comprised of siliceous fractured shale which contains live oil and gas showings. A drill-stem test of the interval from 8,247 to 8,510 ft in the Frantzen well resulted in a recovery of 1,200 ft clean 34{degree} oil and 40 MCF per day gas. The shut in pressure was 3,430 lb, which is a normal hydrostatic pressure common to the producing structures in the southern San Joaquin Valley. The equivalent of this interval has produced over 7,000 bbl of oil in the Arco Cree' 1A well. The Arco Cree Fee' No. 1A well crossed the axis of the Phelps Anticline as indicated by good dipmeter and bottomed in Lower Zemorrian at 14,512 ft total depth. This well was not drilled deep enough to reach the Point of Rocks Sand and did not test the gas showings in the lower Miocene section. In the Gonyer Canyon area, subsurface evidence indicated conditions are similar to those in the Cree area because a large structure is present below a thrust fault. It is believed that significant accumulations will be found beneath thrust faults in the eastern part of the Temblor Range where conditions are similar to those that were instrumental in forming fields such as the Elk Hills, B. V. Hills, Belgian Anticline and others.

  9. Environmental justice implications of arsenic contamination in Californiażs San Joaquin Valley: a cross-sectional, cluster-design examining exposure and compliance in community drinking water systems

    E-Print Network [OSTI]

    Balazs, Carolina L; Morello-Frosch, Rachel; Hubbard, Alan E; Ray, Isha

    2012-01-01T23:59:59.000Z

    implications of arsenic contamination in California’s SanHealth Impacts. In Water contamination and health. Edited byimplications of arsenic contamination in California’s San

  10. County of Los Angeles, California | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007) |of Los Angeles, California

  11. Environment of deposition of the Yowlumne sandstone: internal morphology and rock properties, Kern County, California

    E-Print Network [OSTI]

    Royo, Gilberto Rafael

    1986-01-01T23:59:59.000Z

    . This is of utmost importance when enhanced oil recovery methods are necessary to maximize production. The Yowlumne field in Kern County, California, has been a chal- lenge for geologists and engineers since its discovery in 1974. The field has been extensively.../25 428/30 45/27 863/9 11440 aInformation from California Division of Oil and Gas. Kelly Bushing elevation. cProduction; BOPD = barrels of oil per day, BW = Barrels of water per day, NA = Not Available. dDepth of oil-water contact; estimated from...

  12. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  13. The effects of composition and bedding on log response, Yowlumne sandstone, Kern County, California

    E-Print Network [OSTI]

    Fortner, David William

    1988-01-01T23:59:59.000Z

    southwest of Bakersfield (Figures 3 and 4). Stratigraphy The Yowlumne sandstone is Upper Miocene (Mohnian) in age and is found as an isolated, lenticular body of sand within the Antelope Shale member of the Monterey Formation (Table 1) . Upper Miocene...THE EFFECTS OF COMPOSITION AND BEDDING ON LOG RESPONSE, YOWLUMNE SANDSTONE, KERN COUNTY, CALIFORNIA A Thesis by DAVID WILLIAM FORTNER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  14. Influence of early Miocene tectonism on Miocene deposystems, Tejon area, Kern County, California

    SciTech Connect (OSTI)

    Hirst, B.M.

    1986-04-01T23:59:59.000Z

    The Tejor area, located in the southeastern end of the San Joaquin Valley of California, provides an excellent opportunity to study earliest Miocene tectonics and their subsequent control on Miocene deposystems in the east slope setting. Abundant outcrop and subsurface control, correlative time markers (including volcanic units and micropaleontologic reports), and a relatively mild overprinting by recent structuring facilitated this 3-year study. Late Zemorrian through early Saucesian (22 Ma) volcanic flows and eruptives covered the area while coincident tensional faulting caused the Zemorrian-age Vedder shelf-slope system to collapse. A horst-and-graben basin system resulted, with a narrow serrated shelf along the eastern margin. Onset of Saucesian deposition was dominated by conglomeratic turbidites spilling into silled basin depocenters. The clastic load included typical Sierran-derived material and volcanic detritus from the prior flows. Rugged sea floor relief controlled channel courses and sediment thickness. Turbidite deposition continued through the earliest Mohnian. The early Saucesian sea flow topography exerted progressively less effect on channel courses, while influence from previous channel buildups increased. Clastic sorting improved with time as the shelf matured and the slope gradient decreased, and clean reservoir channel sands were deposited in meanderlike patterns. This sequence of events is critical to working the structural and stratigraphic hydrocarbon potential of the Tejon area. Zemorrian Vedder and Eocene-age production is associated with paleohorst blocks (e.g., Tejon North oil field and Tunis Creek pool of the Tejon Hills oil field).

  15. Madera County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECO AugerMaanGeorgia:Macy'sCounty,

  16. Santa Barbara County, California: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasinSandusky,Sanpete County,Information

  17. Kern County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington: Energy ResourcesAerospaceKern County,

  18. Kings County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington:Kimble County, Texas:and QueenKingmanKings

  19. Los Angeles County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) Wind Farm Jump1 Jump to:LoriaCounty,

  20. San Diego County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY)Project Jump to:SamsungSan Diego County,

  1. Glenn County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo, Maryland: EnergyOhio:Glenn County,

  2. Marin County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana,Maries County, Missouri:Marin

  3. Mariposa County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,JemezMissouri: Energy Resources JumpMariposa County,

  4. Tehama County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:HoldingsTechint Spa JumpTVC JumpTeels MarshTehama County,

  5. Napa County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy ResourcesOceanNanostellar Inc JumpNapa County,

  6. Tuolumne County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (UtilityTri-StateTucson Estates,Tumwater,inCounty,

  7. Ventura County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya Fibres Pvt Ltd VFPLVentura County,

  8. Colusa County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York:Governor s(RedirectedColusa Biomass EnergyCounty,

  9. Lassen County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy Development JumpLars Enviro JumpLasCalifornia:

  10. Inyo County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to:IESInterval DataCalifornia: Energy

  11. Humboldt County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to:Would

  12. Hydrogeologic investigation of Coso Hot Springs, Inyo County, California.

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:ProjectPrograms | OpenVentures

  13. Del Norte County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNewDeafDeerDel Aire, California:Norte

  14. Contra Costa County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSC

  15. Trinity County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (UtilityTri-State Electric MemberEnergyChangeCalifornia:

  16. Habitat restoration on naval petroleum reserves in Kern County, California

    SciTech Connect (OSTI)

    Anderson, D.C. [EG& G Energy Measurements, Inc., Tupman, CA (United States)

    1990-12-31T23:59:59.000Z

    One of several task performed under contract to the Department of Energy (DOE) by EG & G Energy Measurements as part of the endangered species program is the restoration of abandoned well pads, roads, pipelines and soil borrow sites resulting from oil and gas production activities on Naval Petroleum Reserves in California (NPRC). Naval Petroleum Reserves in California is located in the Elk Hills approximately 30 miles southwest of Bakersfield in the rain shadow of the coastal range. Annual precipitation is approximately five inches. Reclamation of disturbed habitat on NPRC began with research plots and test trials in the early 1980s. Full scale reclamation began in 1985 and has continued through the 1989 planting season. Almost 700 acres have been revegetated, which represents over 1,200 sites distributed over the 47,250 acres of NPRC and averaging less than .75 acre in size. Monitoring of the sites began in 1987 to establish reclamation success and evaluate reclamation techniques. Reclamation objectives include the improvement of wildlife habitat for four endangered species living on NPRC, and the protection of the soils from wind and water erosion on the disturbed sites.

  17. EIS-0439: Rice Solar Energy Project, Riverside County, California

    Broader source: Energy.gov [DOE]

    This environmental review was prepared by DOE’s Western Area Power Administration with the Department of the Interior’s Bureau of Land Management (BLM) as a cooperating agency. This EIS evaluates the environmental impacts of the Rice Solar Energy Project, a 150-megawatt solar concentrating electric powerplant proposed to be constructed on private land in the Sonoran Desert. DOE’s Western Area Power Administration actions under this proposal include building and operating a new substation to interconnect the solar project to Western’s transmission system. DOE may also use this EIS as part of its decision whether to issue a Federal loan guarantee to support the proposal. BLM’s actions under this proposal includes amending California Desert Conservation Area Plan to designate a new corridor for a 161-kV transmission line, which would facilitate the development of solar energy on private lands.

  18. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California

    SciTech Connect (OSTI)

    Czarnecki, J.B.

    1997-12-31T23:59:59.000Z

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the U.S. Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition.

  19. Geohydrology and evapotranspiration at Franklin Lake Playa, Inyo County, California

    SciTech Connect (OSTI)

    NONE

    1990-12-01T23:59:59.000Z

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the US Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition. 72 refs., 59 figs., 26 tab.

  20. Significant results of deep drilling at Elk Hills, Kern County, California

    SciTech Connect (OSTI)

    Fishburn, M.D. (Dept. of Energy, Elk Hills, CA (USA))

    1990-05-01T23:59:59.000Z

    Naval Petroleum Reserve 1 (Elk Hills) is located in the southwestern San Joaquin basin one of the most prolific oil-producing areas in the US. Although the basin is in a mature development stage, the presence of favorable structures and high-quality source rocks continue to make the deeper parts of the basin, specifically Elk Hills, an inviting exploration target. Of the three deep tests drilled by the US Department of Energy since 1976, significant geologic results were achieved in two wells. Well 987-25R reached low-grade metamorphic rock at 18,761 ft after penetrating over 800 ft of salt below the Eocene Point of Rocks Sandstone. In well 934-29R, the deepest well in California, Cretaceous sedimentary rocks were encountered at a total depth of 24,426 ft. In well 934-29R several major sand units were penetrated most of which encountered significant gas shows. Minor amounts of gas with no water were produced below 22,000 ft. In addition, production tests at 17,000 ft produced 46{degree} API gravity oil. Geochemical analysis of cores and cuttings indicated that the potential for hydrocarbon generation exists throughout the well and is significant because the possibility of hydrocarbon production exists at a greater depth than previously expected. A vertical seismic profile in the well indicated that basement at this location is at approximately 25,500 ft. Successful drilling of well 934-29R was attributed to the use of an oil-based mud system. The well took 917 days to drill, including 9,560 rotating hr with 134 bits. Bottom-hole temperature was 431{degree}F and pressures were approximately 18,000 psi. The high overburden pressure at 24,000 ft created drilling problems that ultimately led to the termination of drilling at 24,426 ft.

  1. Review of Vedder pool development, Kern River field, Kern County, California

    SciTech Connect (OSTI)

    Condon, M.W.

    1986-07-01T23:59:59.000Z

    The Kern River field is located on the east side of the San Joaquin Valley, just north of Bakersfield, California. Since its discovery in 1899, the field has produced over 1 billion bbl of heavy oil from the Kern River Formation. It was not until 1981 that light oil was discovered from a deeper zone, the Vedder formation. The discovery well, Getty Oil Company WD-1 Apollo, encountered 40 ft of net oil sand within the third Vedder sand and was completed on pump for an initial production of 100 bbl of 40.5/sup 0/ API oil and 200 MCDGD. As suggested by its name, WD-1 Apollo was drilled as a water-water injection wells. However, a detailed subsurface study of the field suggested the possibility of a trap within the Vedder formation. The originally proposed location of WD-1 Apollo was then moved to test the proposal. The trap is a series of intersecting, up-to-the-basin normal faults trending west and northwest. These faults have dropped impermeable silty zones within the Vedder formation against the productive Vedder sands. Since the completion of WD-1 Apollo, nine other wells have been drilled within this pool, extending production over 1 mi to the southeast. One of the first of the extension wells, Getty Oil Company 73X Central Point, located approximately 600 ft southeast of WD-1 Apollo, established production from the second Vedder sand. This well was completed flowing 300 b/d of 32/sup 0/ API oil and 1000 MCFGD through a 16/64-in. choke. Through December 1985, Texaco (Getty Oil) produced more than 250,000 bbl of oil and 350,000 mcf of gas combined from the second and third Vedder sands from 2.5 net wells. Although attempts to find other such Vedder pools have met with limited success, there is still the potential for many to exist, given proper structural closure, as seen in the Apollo pool.

  2. Los Angeles County, California, Summary of Reported Data From July 1, 2010 - September 30, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos Angeles County, California,

  3. Local energy initiatives: a second look. A survey of cities and counties, California 1981

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    The 1981 Local Energy Initiatives survey documents continued momentum at the local level to reduce energy costs and boost reliance on alternative, renewable energy sources. California Cities and Counties have designed and implemented cost-effective, environmentally sound energy practices in internal management and resource development, and in the fields of planning, land use, transportation, and education. In California, a clear shift has been made in energy use. Leadership has moved from the federal to state and local levels. Local officials deserve much of the credit for what California has accomplished so far; our energy initiatives are pacing similar activity nationwide. Recent projections by the California Energy Commission reaffirm the urgency of continued local government involvement in alternative energy development. The Energy Commission's biennial report, charts an overall decline in energy end-use consumption, and a primary energy supply mix that relies more heavily on wind, geothermal, biomass, solar, and hydroelectric power. CEC maintains that California's 0.3 percent annual decline in energy consumption corresponds to increased efficiency through conservation and not to deprivation. On the supply side, the Commission's report predicts that renewable energy sources will supply 22 percent of California's energy needs by 2000; today that share is only 5 percent. In electrical generation, the renewable share will grow from 23 percent of total generation in 1979 to 72 percent in 2000. The one certainty in the Energy Commission's 20-year energy projection is that the energy mix will be different in 2000. It is a question of whether we will control our energy problems or allow ourselves to be controlled by them. Described here are replicable examples of how we can make our future more secure and, in so doing, protect the economic and environmental well-being of our communities. This may be the hardest and most rewarding task facing local government.

  4. Mitigation action plan sale of Naval Petroleum Reserve No. 1 (Elk Hills) Kern County, California

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    Naval Petroleum Reserve No. 1 (NPR-1, also called {open_quotes}Elk Hills{close_quotes}), a Federally-owned oil and gas production field in Kern County, California, was created by an Executive Order issued by President Taft on September 2, 1912. He signed another Executive Order on December 13, 1912, to establish Naval Petroleum Reserve No. 2 (NPR-2), located immediately south of NPR-1 and containing portions of the town of Taft, California. NPR-1 was not developed until the 1973-74 oil embargo demonstrated the nation`s vulnerability to oil supply interruptions. Following the embargo, Congress passed the Naval Petroleum Reserves Production Act of 1976 which directed that the reserve be explored and developed to its fall economic potential at the {open_quotes}maximum efficient rate{close_quotes} (MER) of production. Since Elk Hills began full production in 1976, it has functioned as a commercial operation, with total revenues to the Federal government through FY 1996 of $16.4 billion, compared to total exploration, development and production costs of $3.1 billion. In February 1996, Title 34 of the National Defense Authorization Act for Fiscal Year 1996 (P.L. 104-106), referred to as the Elk Hills Sales Statute, directed the Secretary of Energy to sell NPR-1 by February 10, 1998.The Secretary was also directed to study options for enhancing the value of the other Naval Petroleum and Oil Shale Reserve properties such as NPR-2, located adjacent to NPR-1 in Kern County- Naval Petroleum Reserve No. 3 (NPR-3) located in Natrona County, Wyoming; Naval Oil Shale Reserves No. 1 and No. 3 (NOSR-1 and NOSR-3) located in Garfield County, Colorado; and Naval Oil Shale Reserve No. 2 (NOSR-2) located in Uintah and Carbon Counties, Utah. The purpose of these actions was to remove the Federal government from the inherently non-Federal function of operating commercial oil fields while making sure that the public would obtain the maximum value from the reserves.

  5. Results of analyses of fur samples from the San Joaquin Kit Fox and associated soil and water samples from the Naval Petroleum Reserve No. 1, Tupman, California

    SciTech Connect (OSTI)

    Suter, G.W. II; Rosen, A.E.; Beauchamp, J.J. [Oak Ridge National Lab., TN (United States); Kato, T.T. [EG and G Energy Measurements, Inc., Tupman, CA (United States)

    1992-12-01T23:59:59.000Z

    The purpose of this study was to determine whether analysis of the elemental content of fur from San Joaquin kit foxes (Vulpes macrotis mutica) and of water and soil from kit fox habitats could be used to make inferences concerning the cause of an observed decline in the kit fox population on Naval Petroleum Reserve No. 1 (NPR-1). Fur samples that had been collected previously from NPR-1, another oil field (NPR-2), and two sites with no oil development were subjected to neutron activation analysis. In addition, soil samples were collected from the home ranges of individual foxes from undisturbed portions of major soil types on NPR-1 and from wastewater samples were collected from tanks and sumps and subjected to neutron activation analysis. Most elemental concentrations in fur were highest at Camp Roberts and lowest on the undeveloped portions of NPR-I. Fur concentrations were intermediate on the developed oil fields but were correlated with percent disturbance and with number of wells on NPR-1 and NPR-2. The fact that most elements covaried across the range of sites suggests that some pervasive source such as soil was responsible. However, fur concentrations were not correlated with soft concentrations. The kit foxes on the developed portion of NPR-1 did not have concentrations of elements in fur relative to other sites that would account for the population decline in the early 1980s. The oil-related elements As, Ba, and V were elevated in fox fur from oil fields, but only As was sufficiently elevated to suggest a risk of toxicity in individual foxes. However, arsenic concentrations suggestive of sublethal toxicity were found in only 0.56% of foxes from developed oil fields, too few to account for a population decline.

  6. Identification of environmental issues: Hybrid wood-geothermal power plant, Wendel-Amedee KGRA, Lassen County, California: First phase report

    SciTech Connect (OSTI)

    Not Available

    1981-08-14T23:59:59.000Z

    The development of a 55 MWe power plant in Lassen County, California, has been proposed. The proposed power plant is unique in that it will utilize goethermal heat and wood fuel to generate electrical power. This report identifies environmental issues and constraints which may impact the proposed hybrid wood-geothermal power plant. (ACR)

  7. EIS-0158-S2: Supplemental Environmental Impact Statement Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement, the supplement to DOE/EIS-0158, to analyze the environmental and socioeconomic impacts of the sale of Naval Petroleum Reserve No. 1 in Kern County, California to Occidental Petroleum Corporation.

  8. Reproductive patterns of San Joaquin kit fox. [Vulpes macrotis mutica

    SciTech Connect (OSTI)

    Evans, B.G.; O'Farrell, T.P.; McCue, P.; Kato, T.

    1982-01-01T23:59:59.000Z

    Populations of the endangered San Joaquin kit fox, Vulpes macrotis mutica, are known to occur on the Naval Petroleum Reserve No. 1 (NPR-1) in Elk Hills, California. In order to ascertain that the maximization of oil production and associated human activities do not jeopardize the continued existence of the kit fox or its essential habitat the reproductive patterns of the kit fox were investigated. (ACR)

  9. Study of the influential leaders, power structure, community decisions, and geothermal energy development in Imperial County, California

    SciTech Connect (OSTI)

    Butler, E.W.; Hall, C.H.; Pick, J.B.

    1980-04-01T23:59:59.000Z

    The economy of Imperial County, California, is now dominated by agriculture, but economic studies indicate that the emerging geothermal sector could grow to a size comparable to that of agriculture. The purpose of this study is to discover the kind of power structure operating in Imperial County, the influential leaders, the source of their power, their probable reactions to geothermal development, and the possible effects geothermal development will have on the power structure. Several social science research methods are used to identify the influential leaders and to describe the power structure in Imperial County. An analysis of the opinions of leadership and the public shows the likely response to geothermal development. The power structure analysis, combined with forecasts of the economic effects of geothermal development, indicates the ways in which the power structure itself may change.

  10. PDC bits find application in San Joaquin Valley

    SciTech Connect (OSTI)

    Fox, J.P.; Wood, J.E.

    1984-04-01T23:59:59.000Z

    Polycrystalline diamond compact (PDC) bits have been successfully and economically used to drill sand and shale sections in the oilfields of the Southern San Joaquin Valley of California. ''Successful'' refers to reducing the number of days to drill a well by four to six days, and ''Economical'' refers to reducing the cost per foot for the sand and shale intervals drilled with PDC bits. Enhancements of design variables including variations in back rake and side rake angles, and improved selection (numbers and sizes) of nozzles have helped PDC bits be economical in the Southern San Joaquin Valley. In addition to conventional vertical wells, PDC bits used in conjunction with mud motors and steering tools have also been successfully used to directionally drill wells in this area.

  11. Olig sand, shallow oil zone, Elk Hills Field, Kern County, California: General reservoir study

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    The Olig Sand Reservoirs, classified as part of the Shallow Oil Zone, were studied and evaluated. The reservoirs are located in Section 30R, T30S, R23E and Section 24Z, T30S, R22E, M.D.B. and M., all in Elk Hills Oil Field, Naval Petroleum Reserve No. 1, Kern County, California. The three productive reservoirs studied cover an area of 255 acres, and originally contained 3311 MMCF of gas condensate in 4292 acre-feet of sand. The main reservoir, Fault Block I in Section 30R, has been on production since 1982 and is largely depleted. The reservoirs around wells 324-30R and 385-24Z should still be in a virgin state. They can be depleted either through those wells, when their service as Stevens Zone producers is completed, or by twin well replacements drilled specifically as Olig Sand completions. Thirty-six exhibits have been included to present basic data and study results in a manner that will enhance the readers's understanding of the reservoirs. These exhibits include six maps in the M-series, six sections in the S-Series, and fourteen figures in the F-Series, as well as ten tables. The Appendix includes miscellaneous basic data such as well logs, core analyses, pressure measurements, and well tests. The Calculations Section of the report develops and explains the analytical methods used to define well productivity, determine reserves, and schedule future production of those reserves. Although no MER recommendations have been made for these gas condensate reservoirs, recommended depletion schemes and schedules are presented. These schemes include one eventual recompletion and one new well to maximize present worth of these reservoirs which carry proved reserves of 289 MMCF and probable reserves of 853 MMCF, effective August 1, 1986. In addition, potential future testing is earmarked for wells 322-30R and 344-30R. 11 refs., 14 figs., 10 tabs.

  12. Location of odor sources and the affected population in Imperial County, California

    SciTech Connect (OSTI)

    Hahn, J.L.

    1981-08-01T23:59:59.000Z

    This report is divided into four sections. The first two sections contain general background information on Imperial County. The third section is a general discussion of odor sources in Imperial County, and the fourth maps the specific odor sources, the expected areas of perception, and the affected populations. this mapping is done for the Imperial Valley and each of the four Imperial County KGRA's (Known Geothermal Resource Areas) where odor from the development of the geothermal energy may affect population.

  13. Design and installation of continuous flow and water qualitymonitoring stations to improve water quality forecasting in the lower SanJoaquin River

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.

    2007-01-20T23:59:59.000Z

    This project deliverable describes a number ofstate-of-the-art, telemetered, flow and water quality monitoring stationsthat were designed, instrumented and installed in cooperation with localirrigation water districts to improve water quality simulation models ofthe lower San Joaquin River, California. This work supports amulti-disciplinary, multi-agency research endeavor to develop ascience-based Total Maximum Daily Load for dissolved oxygen in the SanJoaquin River and Stockton Deep Water Ship Channel.

  14. Final Scientific / Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California

    SciTech Connect (OSTI)

    Layman Energy Associates, Inc.

    2006-08-15T23:59:59.000Z

    With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and interpretation of remote sensing imagery such as aerial and satellite photographs; acquisition, quality control and interpretation of gravity data; and acquisition, quality control and interpretation of resistivity data using state of the art magnetotelluric (MT) methods. The results of this exploratory program have allowed LEA to develop a structural and hydrologic interpretation of the Truckhaven geothermal resource which can be used to guide subsequent exploratory drilling and resource development. Of primary significance, is the identification of an 8 kilometer-long, WNW-trending zone of low resistivity associated with geothermal activity in nearby wells. The long axis of this low resistivity zone is inferred to mark a zone of faulting which likely provides the primary control on the distribution of geothermal resources in the Truckhaven area. Abundant cross-faults cutting the main WNW-trending zone in its western half may indicate elevated fracture permeability in this region, possibly associated with thermal upwelling and higher resource temperatures. Regional groundwater flow is inferred to push thermal fluids from west to east along the trend of the main low resistivity zone, with resource temperatures likely declining from west to east away from the inferred upwelling zone. Resistivity mapping and well data have also shown that within the WNW-trending low resistivity zone, the thickness of the Plio-Pleistocene sedimentary section above granite basement ranges from 1,900–2,600 meters. Well data indicates the lower part of this sedimentary section is sand-rich, suggesting good potential for a sediment-hosted geothermal reservoir in porous sands, similar to other fields in the region such as Heber and East Mesa. Sand porosity may remain higher in the eastern portion of the low resistivity zone. This is based on its location hydrologically downstream of the probable area of thermal upwelling, intense fracture development, and associated pore-filling hydrothermal mineral deposition to the west.

  15. Contaminant Concentrations in Fish SacramentoSan Joaquin Delta

    E-Print Network [OSTI]

    of Fish and Game) arranged for age determination of largemouth bass. Henry Lee (U.S. EPA) reviewed a draftContaminant Concentrations in Fish from the Sacramento­San Joaquin Delta and Lower San Joaquin ......................................................................................... 45 Contaminant Concentrations in Fish from the Sacramento­San Joaquin Delta and Lower San Joaquin

  16. Drilling Addendum to Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California

    SciTech Connect (OSTI)

    Taylor, Gary C.; Bacon, C. Forrest; Chapman, Rodger H.; Chase, Gordon W.; Majmundar, Hasmukhrai H.

    1981-05-01T23:59:59.000Z

    This addendum report presents the results of the California Division of Mines and Geology (CDMG) drilling program at Calistoga, California, which was the final geothermal-resource assessment investigation performed under terms of the second year contract (1979-80) between the U.S. Department of Energy (DOE) and the CDMG under the State Coupled Program. This report is intended to supplement information presented in CDMG's technical report for the project year, ''Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California''. During the investigative phase of the CDMG's Geothermal Project, over 200 well-driller's reports were obtained from the Department of Water Resources (DWR). It was hoped that the interpretation and correlation of these logs would reveal the subsurface geology of the Upper Napa Valley and also provide a check for the various geophysical surveys that were performed in the course of the study. However, these DWR driller logs proved to be inadequate due to the brief, non-technical, and erroneous descriptions contained on the logs. As a result of the lack of useable drill-hole data, and because information was desired from,deeper horizons, it became evident that drilling some exploratory holes would be necessary in order to obtain physical evidence of the stratigraphy and aquifers in the immediate Calistoga area. Pursuant to this objective, a total of twelve sites were selected--four under jurisdiction of Napa County and eight under jurisdiction of the City of Calistoga. A moratorium is currently in existence within Napa County on most geothermal drilling, and environmental and time constraints precluded CDMG from obtaining the necessary site permits within the county. However, a variance was applied for and obtained from the City of Calistoga to allow CDMG to drill within the city limits. With this areal constraint and also funding limits in mind, six drilling sites were selected on the basis of (1) proximity to areas where geophysical surveys had been performed, (2) accessibility of the site for drill rig setup, and (3) favorability for obtaining the maximum information possible concerning the geology and the resources. Necessary landowner permission and permits were secured for these sites, and actual drilling began on December 17, 1980. Drilling was terminated on February 4, 1981, with the completion of three holes that ranged in depth from 205 to 885 feet. Use of a relatively new drilling technique called the Dual Tube Method enabled the collection of precise subsurface data of a level of detail never before obtained in the Calistoga area. As a result, a totally new and unexpected picture of the geothermal reservoir conditions there has been obtained, and is outlined in this addendum report.

  17. Well blowout rates in California Oil and Gas District 4--Update and Trends

    E-Print Network [OSTI]

    Benson, Sally M.

    2010-01-01T23:59:59.000Z

    geologic assessment of oil and gas in the San Joaquin BasinRates in California Oil and Gas District 4 – Update andoccurring in California Oil and Gas District 4 during the

  18. Life in Challenge Mills, Yuba County, California, 18751915 After Leach went broke and no one was present to maintain the flume or to

    E-Print Network [OSTI]

    Standiford, Richard B.

    23 Life in Challenge Mills, Yuba County, California, 1875­1915 After Leach went broke and no one and a tender, construction number 7362, were ordered from the Baldwin Locomotive Works by R.E. Woodward ordinary ability," noted a newspaper article, and probably responsible for the engineering and construction

  19. Five-year resurvey for endangered species on Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    SciTech Connect (OSTI)

    O'Farrell, T.P.; Mathews, N.E.

    1987-09-01T23:59:59.000Z

    A transect survey of Naval Petroleum Reserve No. 1 (NPR-1), Kern County, California, was conducted in 1984 to determine the distribution and relative abundance of endangered species and other wildlife. A total of 589.8 miles of transects were walked through approximately 47,235 acres in all or parts of 81 sections. A total of 16,401 observations of 58 species of wildlife were made which demonstrated the richness and abundance of wildlife on NPR-1 in spite of the intensity of recent petroleum developments. Although most construction activities associated with increased petroleum production took place between the first transect survey in 1979 and this resurvey, no adverse changes in relative densities of kit fox dens, prey base, or other wildlife were observed. NPR-1 should be resurveyed again in 1989. 33 refs., 5 figs., 13 tabs.

  20. Southern California Channel Islands Bibliography, through 1992

    E-Print Network [OSTI]

    Channel Islands National Marine Sanctuary

    1992-01-01T23:59:59.000Z

    Southern California Bight/San Onofre/Power Plant/Southern California Bight/San Onofre Power Plant/Power Plant (DCPP), San Luis Obispo County, California.

  1. California’s North Coast Fishing Communities Historical Perspective and Recent Trends: Regional Profile

    E-Print Network [OSTI]

    Pomeroy, Caroline; Thomson, Cynthia J.; Stevens, Melissa M.

    2011-01-01T23:59:59.000Z

    of Mendocino, Humboldt and Del Norte counties and selectedof Mendocino, Humboldt, Del Norte counties and California inwith paid employees in Del Norte County, 2007, by NAICS

  2. Health assessment for Del Norte County Pesticide Storage Area, Cresent City, Del Norte County, California, Region 9. CERCLIS No. CAD000626176. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-04-18T23:59:59.000Z

    The Del Norte County Pesticide Storage Area is located northwest of Cresent City, California. The site soils and ground water were contaminated with a myriad of pesticides and herbicides. The data also indicated an elevated concentration of chromium was present on-site and off-site; however, it does not appear to be related to the activities involving the use of the site as a pesticide storage area. The site was included on the National Priorities List in 1983. The storage area operated from 1970 until 1981, accepting containers from local agricultural and forestry-related industries. The intended use of the site was as an interim or emergency storage area for pesticide containers which had been triple rinsed and punctured prior to coming to the site. There were 9 private wells monitored within 0.50 miles of the site and the results indicated these wells were not contaminated by site contaminants. This site is of public health concern because of the potential for exposure to pesticides, herbicides, and chromium at concentrations of health concern.

  3. Joint Environmental Assessment of the California Department of...

    Broader source: Energy.gov (indexed) [DOE]

    e. Bats 4 Page No. f. California Condor; Birds of Prey-Hawks, Eagles, Falcons g. Fish. h. Desert Pupfish i. San Joaquin Dune Beetle, Andrew's Dune Scarab Beetle; Ciervo...

  4. The San Joaquin Valley Westside Perspective

    E-Print Network [OSTI]

    Quinn, Nigel W.T.; Linneman, J. Christopher; Tanji, Kenneth K.

    2006-01-01T23:59:59.000Z

    2004). Real-Time Water Quality Management in the Grasslandof “real-time water quality management” and invest in thefor real-time water quality management in the San Joaquin

  5. Economic Impact of Low Income Health Program Spending on Select California Counties by Laurel Lucia

    E-Print Network [OSTI]

    Militzer, Burkhard

    . County health spending supports economic output and jobs in hospitals, clinics and other health care settings, at medical supply companies and other health care suppliers, and also at the grocery stores, retail stores and other local businesses in which health care workers shop. The federal matching dollars

  6. Provenance and Detrital-Zircon Studies of the Mint Canyon Formation and its Correlation to the Caliente Formation, Southern California

    E-Print Network [OSTI]

    Hoyt, Johanna

    2012-01-01T23:59:59.000Z

    Valley area, Kern and Ventura Counties, California [Ph.D.Lockwood Valley area, Kern and Ventura Counties, California:San Luis Obispo, Santa Barbara, Ventura, and Kern Counties,

  7. Hematologic values of the endangered San Joaquin kit fox, Vulpes macrotis mutica

    SciTech Connect (OSTI)

    McCue, P.M.; O'Farrell, T.P.

    1986-01-01T23:59:59.000Z

    Between 1981 and 1982 a total of 102 blood samples was collected from 91 San Joaquin kit foxes, Vulpes macrotis mutica, won the US Department of Energy's Naval Petroleum Reserve No. 1 (Elk Hills), in western Kern County, California. The goal of the study was to establish normal blood parameters for this endangered species and to determine whether changes in them could be used to assess the possible effects of petroleum developments on foxes. Adult foxes had the following average hematological characteristics: RBC, 8.4 x 10/sup 6/ cells/..mu..l; Hb, 14.9 g/dl; PCV, 46.9%; MCV, 56.4 fl; MCH, 18.2 pg; MCHC, 32.0 g/dl; and WBC, 6900/..mu..l. None of the parameters differed significantly between the sexes. RBC, Hb, PCV, MCV, and MCHC varied as a function of age for puppies between three and six months of age. The highest values of MCV and MCH were obtained in summer, 1982, and the highest value of MCHC was obtained in winter, 1981-1982. These were the only parameters that appeared to change with season. None of the blood parameters appeared to be affected by petroleum developments. Hematological data for kit foxes, coyotes, and wolves confirmed a previously published observation that within mammalian families RBC is inversely correlated with body weight, and that MCV is directly correlated with body weight. It was speculated that it was an adaptive advantage for kit foxes having a high weight-specific metabolic rate to have evolved a high RBC and low MCV, allowing increased oxygen transport and exchange, while PCV was maintained relatively constant, avoiding hemoconcentration and increased viscosity of blood. 33 refs., 1 fig., 6 tabs.

  8. San Joaquin Valley Unified Air Pollution Control District

    E-Print Network [OSTI]

    #12;San Joaquin Valley Unified Air Pollution Control District Best Available Control Technology.4.2 #12;San Joaquin Valley Air Pollution Control Distri RECEIVED ~ 2 ED ECEIVED www.valleyalr.org SJVAPCD-2370·(661)326-6900"FAX(661)326-6985 #12;San Joaquin Valley Unified Air Pollution Control District TITLE V MODIFICATION

  9. EA-1840: California Valley Solar Ranch Project in San Luis Obispo County,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIXKahukuCounty,ColoradoApril 28, 2011CA |

  10. Heat flow in the Coso geothermal area, Inyo County, California | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEIHas BeenLegalHeard County,Grain

  11. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 2 report, Executive summary

    SciTech Connect (OSTI)

    Not Available

    1988-07-01T23:59:59.000Z

    The Naval Petroleum Reserve No. 1 (Elk Hills) is located in Kern County, California, and is jointly owned by the US Department of Energy and Chevron USA Inc. The Elk Hills Field is presently producing oil and gas from five geologic zones. These zones contain a number of separate and geologically complex reservoirs. Considerable field development and production of oil and gas have occurred since initial estimates of reserves were made. Total cumulative field production through December 1987 is 850 MMBbls of oil, 1.2 Tcf of gas and 648.2 MMBbls of water. In December 1987, field producing rates expressed on a calendar day basis amounted to 110,364 BOPD, 350,946 Mcfd and 230,179 BWPD from 1157 producers. In addition, a total of two reservoirs have gas injection in progress and four reservoirs have water injection in progress and four reservoirs have water injection in progress. Cumulative gas and water injection amounted to 586 Bcf of gas and 330 MMB of water. December 1987 gas and water injection rates amounted to 174 MMcfd and 234 MBWPD, into 129 injectors. In addition, a steamflood pilot program is currently active in the Eastern Shallow Oil Zone. Jerry R. Bergeson and Associates, Inc. (Bergeson) has completed Phase II of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objectives for this phase of the study included the establishment of revised estimates of the original oil and gas-in-place for each of the zones/reservoirs, estimation of the remaining proved developed, proved undeveloped, probable and possible reserves, and assessment of the effects of historical development and production operations and practices on recoverable reserves. 28 figs., 37 tabs.

  12. Potential for Induced Seismicity Related to the Northern California CO2 Reduction Project Pilot Test, Solano County, California

    SciTech Connect (OSTI)

    Myer, L.; Chiaramonte, L.; Daley, T.M.; Wilson, D.; Foxall, W.; Beyer, J.H.

    2010-06-15T23:59:59.000Z

    The objective of this technical report is to analyze the potential for induced seismicity due to a proposed small-scale CO{sub 2} injection project in the Montezuma Hills. We reviewed currently available public information, including 32 years of recorded seismic events, locations of mapped faults, and estimates of the stress state of the region. We also reviewed proprietary geological information acquired by Shell, including seismic reflection imaging in the area, and found that the data and interpretations used by Shell are appropriate and satisfactory for the purpose of this report. The closest known fault to the proposed injection site is the Kirby Hills Fault. It appears to be active, and microearthquakes as large as magnitude 3.7 have been associated with the fault near the site over the past 32 years. Most of these small events occurred 9-17 miles (15-28 km) below the surface, which is deep for this part of California. However, the geographic locations of the many events in the standard seismicity catalog for the area are subject to considerable uncertainty because of the lack of nearby seismic stations; so attributing the recorded earthquakes to motion along any specific fault is also uncertain. Nonetheless, the Kirby Hills Fault is the closest to the proposed injection site and is therefore our primary consideration for evaluating the potential seismic impacts, if any, from injection. Our planned installation of seismic monitoring stations near the site will greatly improve earthquake location accuracy. Shell seismic data also indicate two unnamed faults more than 3 miles east of the project site. These faults do not reach the surface as they are truncated by an unconformity at a depth of about 2,000 feet (610 m). The unconformity is identified as occurring during the Oligocene Epoch, 33.9-23.03 million years ago, which indicates that these faults are not currently active. Farther east are the Rio Vista Fault and Midland Fault at distances of about 6 miles (10 km) and 10 miles (16 km), respectively. These faults have been identified as active during the Quaternary (last 1.6 million years), but without evidence of displacement during the Holocene (the last 11,700 years). The stress state (both magnitude and direction) in the region is an important parameter in assessing earthquake potential. Although the available information regarding the stress state is limited in the area surrounding the injection well, the azimuth of the mean maximum horizontal stress is estimated at 41{sup o} and it is consistent with strike-slip faulting on the Kirby Hills Fault, unnamed fault segments to the south, and the Rio Vista Fault. However, there are large variations (uncertainty) in stress estimates, leading to low confidence in these conclusions regarding which fault segments are optimally oriented for potential slip induced by pressure changes. Uncertainty in the stress state can be substantially reduced by measurements planned when wells are drilled at the site. Injection of CO{sub 2} at about two miles depth will result in a reservoir fluid pressure increase, which is greatest at the well and decreases with distance from the well. After the injection stops, reservoir fluid pressures will decrease rapidly. Pressure changes have been predicted quantitatively by numerical simulation models of the injection. Based on these models, the pressure increase on the Kirby Hills Fault at its closest approach to the well due to the injection of 6,000 metric tons of CO{sub 2} would be a few pounds per square inch (psi), which is a tiny fraction of the natural pressure of approximately 5,000 psi at that depth. The likelihood of such a small pressure increase triggering a slip event is very small. It is even more unlikely that events would be induced at the significantly greater depths where most of the recorded earthquakes are concentrated, because it is unlikely that such a small pressure pulse would propagate downwards any appreciable distance. Therefore, in response to the specific question of the likelihood of the CO{sub 2} injection caus

  13. Sediment accumulation in San Leandro Bay, Alameda County, California, during the 20th century - A preliminary report

    SciTech Connect (OSTI)

    Nolan, K.M.; Fuller, C.C.

    1986-01-01T23:59:59.000Z

    Major changes made in the configuration of San Leandro Bay, Alameda County, California, during the 20th century have caused rapid sedimentation within parts of the Bay. Comparison of bathymetric surveys indicates that sedimentation in the vicinity of the San Leandro Bay channel averaged 0.7 cm/annum between 1856 and 1984. Lead-210 data collected at four shallow water sites east of the San Leandro Bay channel indicated that sedimentation rates have averaged between 0.06 and 0.28 cm/annum. Because bioturbation of bottom sediments cannot be discounted, better definition of this range in sedimentation rates would require measuring the activity of lead-210 on incoming sediments. In addition to sediment deposited in the vicinity of the San Leandro Bay channel and open, shallow areas to the east, 850,740 cu m of sediment was deposited between 1948 and 1983 in an area dredged at the mouth of San Leandro Creek. All available data indicate that between 1,213,000 and 1,364,000 cu m of sediment was deposited in San Leandro Bay between 1948 and 1983. Sediment yield data from an adjacent drainage basin, when combined with inventories of lead-210 and cesium-137, indicate that most of the sediment deposited in San Leandro Bay is coming from resuspension of bottom sediments or from erosion of marshes or shorelines of San Leandro or San Francisco Bay. 31 refs., 7 figs., 4 tabs.

  14. Property description and fact-finding report for NPR-2, Buena Vista Hills Field, Kern County, California

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The US Department of Energy has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 2 (NPR-2) in Kern County, California. The report that follows is the Phase 1 fact-finding and property description for that study. The United States of America owns 100 percent of the mineral rights and 96.1 percent of surface rights in 10,447 acres of the 30,182 acres contained within NPR-2. This property comprises the Buena Vista Hills Oil Field. Oil and gas companies have leased out 9,227 acres in 17 separate leases. Discovered in 1909, this field has approximately 435 active wells producing 2,819 gross barrels of oil and 8.6 million cubic feet of gas per day. Net production to the Government royalty interests include 200 barrels of oil per day and 750 thousand cubic feet of gas per day. Royalty revenues are about $1.7 million per year. Remaining recoverable reserves are approximately 407 thousand barrels of oil and 1.8 billion cubic feet of gas. Significant plugging and abandonment (P&A) and environmental liabilities are present, but these should be the responsibility of the lessees. Ultimate liability still rests with the United States and may increase as the leases are sold to smaller and smaller operators.

  15. Final Report: Natural State Models of The Geysers Geothermal System, Sonoma County, California

    SciTech Connect (OSTI)

    T. H. Brikowski; D. L. Norton; D. D. Blackwell

    2001-12-31T23:59:59.000Z

    Final project report of natural state modeling effort for The Geysers geothermal field, California. Initial models examined the liquid-dominated state of the system, based on geologic constraints and calibrated to match observed whole rock delta-O18 isotope alteration. These models demonstrated that the early system was of generally low permeability (around 10{sup -12} m{sup 2}), with good hydraulic connectivity at depth (along the intrusive contact) and an intact caprock. Later effort in the project was directed at development of a two-phase, supercritical flow simulation package (EOS1sc) to accompany the Tough2 flow simulator. Geysers models made using this package show that ''simmering'', or the transient migration of vapor bubbles through the hydrothermal system, is the dominant transition state as the system progresses to vapor-dominated. Such a system is highly variable in space and time, making the rock record more difficult to interpret, since pressure-temperature indicators likely reflect only local, short duration conditions.

  16. Syntectonic hydrocarbon migration and accumulation in Miley Reservoir, Rincon field, Ventura County, California

    SciTech Connect (OSTI)

    Nelson, D.E.; Harrison, R.A.

    1987-05-01T23:59:59.000Z

    The Miley reservoir of the Rincon field is located in the Central Transverse Ranges of southern California on a structural high that borders the Santa Barbara Channel. The east-west-trending Rincon and Ventura anticlines are part of a major oil-productive trend containing the Rincon, San Miguelito, and Ventura Avenue fields, which have estimated ultimate recovery of 1.7 billion BOE. Hydrocarbon accumulations in the multiple and stacked reservoirs within these three fields are controlled by the complex interplay of late Pleistocene folding and reverse fault development. The detailed interpretation reported here combines reservoir performance data with subsurface structural geology and sequential tectonic development to provide a new understanding of the relationship of migration barriers to oil accumulation and production. The Miley reservoir is an axial- and fault-controlled accumulation on the eastern terminus of the Rincon anticline. It is located in a structural saddle formed by the doubly plunging Rincon and Ventura anticlinal trend. Three operative trapping mechanisms confine oil pools: (1) axial accumulations associated with reverse fault closures; (2) traps on the hanging wall of dip-slip reverse faults; and (3) a permeability barrier developed in response to flexural slip folding. Oil trapped within the Rincon-Miley reservoir was primarily generated beneath the Santa Barbara Channel and migrated up the south flank of the anticlinal trend. Four stages of structural development and hydrocarbon migration, encompassing the last 700,000 years, have implications for the enhanced development of reservoirs on this anticlinal trend.

  17. Population density of San Joaquin kit fox

    SciTech Connect (OSTI)

    McCue, P.; O'Farrell, T.P.; Kato, T.; Evans, B.G.

    1982-01-01T23:59:59.000Z

    Populations of the endangered San Joaquin kit fox, vulpes macrotis mutica, are known to occur on the Elk Hills Naval Petroleum Reserve No. 1. This study assess the impact of intensified petroleum exploration and production and associated human activities on kit fox population density. (ACR)

  18. UONPR No. 1, Elk Hills, 26R Reservoir, Elk Hills oil and gas field, Kern County, California: Management Review: Surface operations and measurements of production and injection volumes

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    Evans, Carey and Crozier was given the task to conduct a Management Review of the Surface Operations of the 26R Reservoir in UONPR No. 1, Elk Hills field, Kern County, California. The MER strategy for this reservoir is to maintain pressure, and toward this end, gas injection volumes are scheduled to amount to 110% of calculated withdrawals. In spite of this, however, reservoir pressure continues to decline. The purpose of this study was, therefore, to determine if, and to what extent, field operating practices and accounting procedures may be contributing to this dilemma and to make appropriate recommendations pertaining to correcting any deficiencies which may have been found.

  19. Review of mineral estate of the United States at Naval Petroleum Reserve No. 2, Buena Vista Hills Field, Kern County, California

    SciTech Connect (OSTI)

    NONE

    1996-08-09T23:59:59.000Z

    The purpose of this report is to present this Consultant`s findings regarding the nature and extent of the mineral estate of the United States at National Petroleum Reserve No. 2 (NPR-2), Buena Vista Hills Field, Kern County, California. Determination of the mineral estate is a necessary prerequisite to this Consultant`s calculation of estimated future cash flows attributable to said estate, which calculations are presented in the accompanying report entitled ``Phase II Final Report, Study of Alternatives for Future Operations of the Naval Petroleum and Oil Shale Reserves, NPR-2, California.`` This Report contains a discussion of the leases in effect at NPR-2 and subsequent contracts affecting such leases. This Report also summarizes discrepancies found between the current royalty calculation procedures utilized at NPR-2 and those procedures required under applicable agreements and regulations. Recommendations for maximizing the government`s income stream at NPR-2 are discussed in the concluding section of this Report.

  20. Autonomous Robotic Sensing Experiments at San Joaquin River

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Autonomous Robotic Sensing Experiments at San Joaquin Riverof an autonomous, high-resolution robotic spatial mapping ofinsights for similar robotic investigations in aquatic

  1. EIS-0439: Rice Solar Energy Project in Riverside County, CA ...

    Office of Environmental Management (EM)

    Riverside County, CA October 22, 2010 EIS-0439: EPA Notice of Availability of the Draft Environmental Impact Statement Rice Solar Energy Project, Riverside County, California...

  2. Geology and alteration of the Coso Geothermal Area, Inyo County...

    Open Energy Info (EERE)

    California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology and alteration of the Coso Geothermal Area, Inyo County, California Abstract Geology...

  3. Los Angeles County Makeover Contest Attracts More Than Just Winners...

    Broader source: Energy.gov (indexed) [DOE]

    words 'Energy Upgrade California.' Six homeowners from Los Angeles County will receive free home energy makeovers from a contest organized by Energy Upgrade California in Los...

  4. The San Joaquin Valley Westside Perspective

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.; Linneman, J. Christopher; Tanji, Kenneth K.

    2006-03-27T23:59:59.000Z

    Salt management has been a challenge to westside farmerssince the rapid expansion of irrigated agriculture in the 1900 s. Thesoils in this area are naturally salt-affected having formed from marinesedimentary rocks rich in sea salts rendering the shallow groundwater,and drainage return flows discharging into the lower reaches of the SanJoaquin River, saline. Salinity problems are affected by the importedwater supply from Delta where the Sacramento and San Joaquin Riverscombine. Water quality objectives on salinity and boron have been inplace for decades to protect beneficial uses of the river. However it wasthe selenium-induced avian toxicity that occurred in the evaporationponds of Kesterson Reservoir (the terminal reservoir of a planned but notcompleted San Joaquin Basin Master Drain) that changed public attitudesabout agricultural drainage and initiated a steady stream ofenvironmental legislation directed at reducing non-point source pollutionof the River. Annual and monthly selenium load restrictions and salinityand boron Total Maximum Daily Loads (TMDLs) are the most recent of thesepolicy initiatives. Failure by both State and Federal water agencies toconstruct a Master Drain facility serving mostly west-side irrigatedagriculture has constrained these agencies to consider only In-Valleysolutions to ongoing drainage problems. For the Westlands subarea, whichhas no surface irrigation drainage outlet to the San Joaquin River,innovative drainage reuse systems such as the Integrated Farm DrainageManagement (IFDM) offer short- to medium-term solutions while morepermanent remedies to salt disposal are being investigated. Real-timesalinity management, which requires improved coordination of east-sidereservoir releases and west-side drainage, offers some relief toGrasslands Basin farmers and wetland managers - allowing greater salinityloading to the River than under a strict TMDL. However, currentregulation drives a policy that results in a moratorium on all drainagereturn flows.

  5. EA-1840: Department of Energy Loan Guarantee for the SunPower, Systems California Valley Solar Ranch Project in San Luis Obispo County, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with the California Valley Solar Ranch (CVSR) project, a...

  6. Airborne particles in the San Joaquin Valley may affect human health

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    graphics for nonreaders, created for the event. The San Joaquin Valley Unified Air Pollution Control

  7. Dry Gas Zone, Elk Hills field, Kern County, California: General reservoir study: Engineering text and exhibits: (Final report)

    SciTech Connect (OSTI)

    Not Available

    1988-08-01T23:59:59.000Z

    The Dry Gas Zone in the Elk Hills field is comprised of fourteen separate productive horizons deposited in the MYA Group of the San Joaquin Formation of Pliocene Age. Eighty-six separate Reservoir Units have been identified within the interval over an area roughly ten miles long and four miles wide. One basal Tulare sand, the Tulare B, was also included in the geologic study. Five earlier studies have been made of the Dry Gas Zone; each is referenced in the Appendix of this report. Most of these studies were geologic in nature, and none provided in-depth reservoir analyses. This report is made up of ten (10) separate volumes which include: engineering text and exhibits (white dot); engineering data (black dot); geologic text and tables (green dot); structure and isochore maps (light blue dot); structural cross sections (dark blue dot); stratigraphic cross sections (brown dot); geologic data sheets -book 1 (yellow dot); geologic data sheets - book 2 (orange dot); geologic data sheets - book 3 (red dot); and geologic data sheets - book 4 (pink or coral dot). Basic production, injection, pressure, and other assorted technical data were provided by the US Department of Energy engineering staff at Elk Hills. These data were accepted as furnished with no attempt being made at independent verification.

  8. Characteristics of the C Shale and D Shale reservoirs, Monterey Formation, Elk Hills Field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A.; McIntyre, J.L. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); McJannet, G.S. [Dept. of Energy, Tupman, CA (United States)

    1996-12-31T23:59:59.000Z

    The upper Miocene C Shale and D Shale reservoirs of the Elk Hills Shale Member of the Monterey Formation have cumulative oil and gas production much higher than the originally estimated recovery. These San Joaquin basin reservoirs are the lowest of the Stevens producing zones at Elk Hills and currently produce from a 2800-acre area on the 31 S anticline. The C Shale contains lower slope and basin plain deposits of very fine grained, thinly bedded, graded turbidites, pelagic and hemipelagic claystone, and slump deposits. Although all units are oil-bearing, only the lower parts of the graded turbidity intervals have sufficient horizontal permeability to produce oil. The D Shale consists of chart, claystone, carbonates and slump deposits, also originating in a lower slope to basin plain setting. All D Shale rock types contain oil, but the upper chart interval is the most productive. The chart has high matrix porosity, and due to a complex horizontal and vertical microfracture system, produces at a highly effective rate. Core samples indicate more oil-in-place is present in the thin, graded C Shale beds and in the porous D Shale chart than is identifiable from conventional electric logs. High gas recovery rates are attributed mostly to this larger volume of associated oil. Gas also enters the reservoirs from the adjacent 26R reservoir through a leaky normal fault. Significant gas volumes also may desorb from immature organic material common in the rock matrix.

  9. Characteristics of the C Shale and D Shale reservoirs, Monterey Formation, Elk Hills Field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A.; McIntyre, J.L. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

    1996-01-01T23:59:59.000Z

    The upper Miocene C Shale and D Shale reservoirs of the Elk Hills Shale Member of the Monterey Formation have cumulative oil and gas production much higher than the originally estimated recovery. These San Joaquin basin reservoirs are the lowest of the Stevens producing zones at Elk Hills and currently produce from a 2800-acre area on the 31 S anticline. The C Shale contains lower slope and basin plain deposits of very fine grained, thinly bedded, graded turbidites, pelagic and hemipelagic claystone, and slump deposits. Although all units are oil-bearing, only the lower parts of the graded turbidity intervals have sufficient horizontal permeability to produce oil. The D Shale consists of chart, claystone, carbonates and slump deposits, also originating in a lower slope to basin plain setting. All D Shale rock types contain oil, but the upper chart interval is the most productive. The chart has high matrix porosity, and due to a complex horizontal and vertical microfracture system, produces at a highly effective rate. Core samples indicate more oil-in-place is present in the thin, graded C Shale beds and in the porous D Shale chart than is identifiable from conventional electric logs. High gas recovery rates are attributed mostly to this larger volume of associated oil. Gas also enters the reservoirs from the adjacent 26R reservoir through a leaky normal fault. Significant gas volumes also may desorb from immature organic material common in the rock matrix.

  10. Dry Gas Zone, Elk Hills Field, Kern County, California: General reservoir study: Geologic text and tables: Final report

    SciTech Connect (OSTI)

    Not Available

    1988-06-29T23:59:59.000Z

    The Dry Gas Zone was defined by US Naval Petroleum Reserve No. 1 Engineering Committee (1957) as ''/hor ellipsis/all sands bearing dry gas above the top of the Lower Scalez marker bed. The term is used to include the stratigraphic interval between the Scalez Sand Zone and the Tulare Formation - the Mya Sand Zone. The reservoirs in this upper zone are thin, lenticular, loosely cemented sandstones with relatively high permeabilities.'' Other than the limited Tulare production in the western part of the field, the Dry Gas Zone is the shallowest productive zone in the Elk Hills Reserve and is not included in the Shallow Oil Zone. It is Pliocene in age and makes up approximately eighty percent of the San Joaquin Formation as is summarized in Exhibit TL-1. The lithologic character of the zone is one of interbedded shales and siltstones with intermittent beds of various thickness sands. The stratigraphic thickness of the Dry Gas Zone ranges from 950 to 1150 feet with a general thickening along the flanks and thinning over the crests of the anticlines. The productive part of the Dry Gas Zone covers portions of 30 sections in an area roughly 10 miles long by 4 miles wide. 4 refs.

  11. San Diego County Reservation

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Solar Energy Study Areas in California Map Prepared July 21, 2009 Surface Management Agency As of 3 California State Line County Boundary Solar Energy Study Area (As of 6/5/2009) Existing Designated Corridor Cathedral City Bullhead City Lake Havasu City East Hemet Temecula Escondido Ramona Poway San Jacinto Bonita

  12. Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field.

  13. Arnold Schwarzenegger THE CENTRAL CALIFORNIA

    E-Print Network [OSTI]

    , Bay Area AQMD Tom Umeda, Bay Area AQMD Evan Shipp, San Joaquin Valley Unified APCD Steve Gouze Hoffmann, San Joaquin Valley Unified APCD Dave Jones, San Joaquin Valley Unified APCD Tom Jordon, San Joaquin Valley Unified APCD Scott Nestor, San Joaquin Valley Unified APCD Stephen Shaw, San Joaquin Valley

  14. Influence of physiography and vegetation on small mammals at the Naval Petroleum Reserves, California

    SciTech Connect (OSTI)

    Cypher, B.L.

    1995-02-13T23:59:59.000Z

    Influence of physiography and vegetation on small mammal abundance and species Composition was investigated at Naval Petroleum Reserve No. 1 in California to assess prey abundance for Federally endangered San Joaquin kit foxes (Vulpes macrotis mutica) and to assess the distribution of two Federal candidate species, San Joaquin antelope squirrels (Ammospermophilus nelsoni) and short-nosed kangaroo rats (Dinodomys nitratoides brevinasus). The specific objectives of this investigation were to determine whether small mammal abundance and community composition varied with north-south orientation, terrain, ground cover, and Cypher shrub density, and whether these factors influenced the distribution and abundance of San Joaquin antelope squirrels and short-nosed kangaroo rats.

  15. EIS-0446: Department of Energy Loan Guarantee to AES for the Proposed Daggett Ridge Wind Farm, San Bernardino County, California

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Department of the Interior (Bureau of Land Management [BLM], Barstow Field Office) evaluates the environmental impacts of a proposed 82.5-megawatt (MW) Daggett Ridge Wind Farm project on land managed by the BLM located 11 miles southwest of Barstow, California, and five miles southwest of Daggett, California. DOE, a cooperating agency, is considering the impacts of its proposal to issue a Federal loan guarantee to AES Wind Generation, Inc., to support the construction of the proposed wind project. This EIS has been cancelled.

  16. Energy Efficiency Financing for Public Sector Projects (California)

    Broader source: Energy.gov [DOE]

    Cities, counties, public care institutions, public hospitals, public schools and colleges, and special districts in California can apply for low-interest loans from the California Energy Commission...

  17. Yolo County, California, made history in July when officials installed a 1 MW solar photovoltaic (PV) project to supply power

    E-Print Network [OSTI]

    use of QECBs and clean renewable energy bonds (CREBs) in the country. This article outlines and renewable energy installations. With either QECBs or "new" CREBS,1 the Department of the Treasury provides both buildings in Woodland, California, for the 1 MW ground-mounted solar PV system. Energy Analysis

  18. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales, Class III

    SciTech Connect (OSTI)

    Perri, Pasquale R.

    2001-04-04T23:59:59.000Z

    This report describes the evaluation, design, and implementation of a DOE funded CO2 pilot project in the Lost Hills Field, Kern County, California. The pilot consists of four inverted (injector-centered) 5-spot patterns covering approximately 10 acres, and is located in a portion of the field, which has been under waterflood since early 1992. The target reservoir for the CO2 pilot is the Belridge Diatomite. The pilot location was selected based on geology, reservoir quality and reservoir performance during the waterflood. A CO2 pilot was chosen, rather than full-field implementation, to investigate uncertainties associated with CO2 utilization rate and premature CO2 breakthrough, and overall uncertainty in the unproven CO2 flood process in the San Joaquin Valley.

  19. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels) Crude OilLeaseWet

  20. California - San Joaquin Basin Onshore Coalbed Methane Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels) Crude

  1. California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels) CrudeReserves

  2. California - San Joaquin Basin Onshore Dry Natural Gas Expected Future

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels)

  3. California - San Joaquin Basin Onshore Natural Gas, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels)Separation Proved

  4. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels)Separation

  5. California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460CubicYear Jan Feb

  6. San Joaquin, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY)Project JumpSan FranciscoWind FarmSolar

  7. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    SciTech Connect (OSTI)

    James B. Paces; Zell E. Peterman; Kiyoto Futa; Thomas A. Oliver; and Brian D. Marshall.

    2007-08-07T23:59:59.000Z

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values for Paleozoic seawater present at the time of deposition. Many of the samples have 87Sr/86Sr compositions that remain relatively unmodified from expected seawater values. However, rocks underlying the northern Nevada Test Site as well as rocks exposed at Bare Mountain commonly have elevated 87Sr/86Sr values derived from post-depositional addition of radiogenic Sr most likely from fluids circulating through rubidium-rich Paleozoic strata or Precambrian basement rocks.

  8. EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air...

    Broader source: Energy.gov (indexed) [DOE]

    52: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California EA-1752: Pacific Gas & Electric...

  9. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1984-10-01T23:59:59.000Z

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  10. Mortality and dispersal of San Joaquin kit fox. [Vulpes macrotis matica

    SciTech Connect (OSTI)

    Kato, T.; O'Farrell, T.P.; McCue, P.; Evans, B.G.

    1982-01-01T23:59:59.000Z

    Populations of the endangered San Joaquin kit fox, Vulpes macrotis mutica, are known to occur on the Naval Petroleum Reserve No. 1 (NPR-1) in the Elk Hills, California. In order to ascertain whether the maximization of oil production and associated human activity jeopardized the continued existence of the kit fox, a study of the sources of mortality and patterns of dispersal of the kit fox was conducted. Sources of mortality in disturbed and undisturbed habitat were not significantly different. Predation was the most common cause of death, while vehicle-related deaths amounted to 14% of known mortalities. Levels of disturbance did not appear to influence dispersal patterns of juvenile kit fox. (ACR)

  11. Joint environmental assessment for western NPR-1 3-dimensional seismic project at Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Department of Energy (DOE), in conjunction with the Bureau of Land Management (BLM), has prepared an Environmental Assessment (DOE/EA-1124) to identify and evaluate the potential environmental impacts of the proposed geophysical seismic survey on and adjacent to the Naval Petroleum Reserve No.1 (NPR-1), located approximately 35 miles west of Bakersfield, California. NPR-1 is jointly owned and operated by the federal government and Chevron U.S.A. Production Company. The federal government owns about 78 percent of NPR-1, while Chevron owns the remaining 22 percent. The government`s interest is under the jurisdiction of DOE, which has contracted with Bechtel Petroleum Operations, Inc. (BPOI) for the operation and management of the reserve. The 3-dimensional seismic survey would take place on NPR-1 lands and on public and private lands adjacent to NPR-1. This project would involve lands owned by BLM, California Department of Fish and Game (CDFG), California Energy Commission (CEC), The Nature Conservancy, the Center for Natural Lands Management, oil companies (Chevron, Texaco, and Mobil), and several private individuals. The proposed action is designed to provide seismic data for the analysis of the subsurface geology extant in western NPR-1 with the goal of better defining the commercial limits of a currently producing reservoir (Northwest Stevens) and three prospective hydrocarbon bearing zones: the {open_quotes}A Fan{close_quotes} in Section 7R, the 19R Structure in Section 19R, and the 13Z Structure in Section 13Z. Interpreting the data is expected to provide NPR-1 owners with more accurate locations of structural highs, faults, and pinchouts to maximize the recovery of the available hydrocarbon resources in western NPR-1. Completion of this project is expected to increase NPR-1 recoverable reserves, and reduce the risks and costs associated with further exploration and development in the area.

  12. Petroleum production at Maximum Efficient Rate Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California. Final Supplemental Environmental Impact Statement

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    This document provides an analysis of the potential impacts associated with the proposed action, which is continued operation of Naval Petroleum Reserve No. I (NPR-1) at the Maximum Efficient Rate (MER) as authorized by Public law 94-258, the Naval Petroleum Reserves Production Act of 1976 (Act). The document also provides a similar analysis of alternatives to the proposed action, which also involve continued operations, but under lower development scenarios and lower rates of production. NPR-1 is a large oil and gas field jointly owned and operated by the federal government and Chevron U.SA Inc. (CUSA) pursuant to a Unit Plan Contract that became effective in 1944; the government`s interest is approximately 78% and CUSA`s interest is approximately 22%. The government`s interest is under the jurisdiction of the United States Department of Energy (DOE). The facility is approximately 17,409 acres (74 square miles), and it is located in Kern County, California, about 25 miles southwest of Bakersfield and 100 miles north of Los Angeles in the south central portion of the state. The environmental analysis presented herein is a supplement to the NPR-1 Final Environmental Impact Statement of that was issued by DOE in 1979 (1979 EIS). As such, this document is a Supplemental Environmental Impact Statement (SEIS).

  13. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 2 report, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1988-06-01T23:59:59.000Z

    Jerry R. Bergeso and Associates, Inc. (Bergeson) has completed Phase II of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objectives for this phase of the study included the establishment of revised estimates of the original oil and gas-in-place for each of the zones/reservoirs, estimation of the remaining proved developed, proved undeveloped, probable and possible reserves, and assessment of the effects of historical development and production operations and practices on recoverable reserves. Volume one contains the following: summary; introduction; and reservoir studies for tulare, dry gas zone, eastern shallow oil zone, western shallow oil zone, and Stevens --MBB/W31S, 31S NA/D.

  14. i MARIN COUNTY~ ....-_.-"".~

    E-Print Network [OSTI]

    Civic Center Drive San Rafael, California 94903 SUBJECT: First reading of proposed Green Building: Initiate an amendment to the Building Code updating the County's green building requirements by taking's green building standards. The standards apply to all new construction, additions, and remodels

  15. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General Reservoir Study, Executive Summary: Bittium, Wilhelm, Gusher, and Calitroleum Sands

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-12-22T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. The study addresses the Bittium Wilhelm, Gusher, and Calitroleum Sands and their several sub units and pools. A total of twenty-eight (28) separate reservoir units have been identified and analyzed. Areally, these reservoirs are located in 31 separate sections of land including and lying northwest of sections 5G, 8G, and 32S, all in the Elk Hills Oil Fileds, Naval Petroleum Reserve No. 1, Kern County California. Vertically, the reservoirs occur as shallow as 2600 feet and as deep as 4400 feet. Underlying a composite productive area of about 8300 acres, the reservoirs originally contained an estimated 138,022,000 stock tank barrels of oil, and 85,000 MMCF of gas, 6300 MMCF of which occurred as free gas in the Bittium and W-1B Sands. Since original discovery in April 1919, a total of over 500 wells have been drilled into or through the zones, 120 of which were completed as Western Shallow Oil Zone producers. Currently, these wells are producing about 2452 barrels of oil per day, 1135 barrels of water per day and 5119 MCF of gas per day from the collective reservoirs. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent vertification. This study has successfully identified the size and location of all commercially productive pools in the Western Shallow Oil Zone. It has identified the petrophysical properties and the past productive performance of the reservoirs. Primary reserves have been determined and general means of enhancing future recovery have been suggested. 11 figs., 8 tabs.

  16. Distribution, abundance, and habitat use of the endangered blunt-nosed leopard lizard on the Naval Petroleum Reserves, Kern County, California

    SciTech Connect (OSTI)

    Kato, T.T.; Rose, B.R.; O'Farrell, T.P.

    1987-09-01T23:59:59.000Z

    The distribution, abundance, and habitat use of the endangered blunt-nosed leopard lizard, Gambelia silus, was studied on and adjacent to Naval Petroleum Reserves No. 1 (NPR-1, Elk Hills), and No. 2 (NPR-2, Buena Vista), Kern County, CAlifornia. A total of 262 blunt-nosed leopard lizards were seen over 8 years (1979-1987) in 28 sections of NPR-1, 15 sections of NPR-2, and 10 sections adjacent to the petroleum reserves. All but one were in areas of gentle or flat relief with sparse annual ground cover. Home range size and overlap, activity patterns, and habitat use were determined from monitoring blunt-nosed leopard lizards fitted with miniature radiocollars on two study sites. Mean home range size estimated by the minimum polygon method was 2.7 acres for female blunt-nosed leopard lizards, which was significantly smaller than the 5.4 acres mean home range size for males inhabiting a major wash. The structure of the habitat affected significantly the lizards' activity and burrow use. Lizards inhabiting the wash study site were more frequently seen on the surface not associated with a burrow than lizards in the more sparsely vegetated grassland study site (63% compared with 48% of their sightings); 51.5% of the sightings for lizards in the grassland study site were associated with burrows, compared with 37.1% for lizards in the wash study site. Burrows were not shared and some burrows were used more than once (30% of burrows and 62% of burrow sightings).

  17. An interdisciplinary approach to characterize flash flood occurrence frequency for mountainous Southern California

    E-Print Network [OSTI]

    Carpenter, Theresa Marie Modrick

    2011-01-01T23:59:59.000Z

    Oak Ridge anticline, Ventura Basin, southern California, GSAground-water basin, Ventura County, California, WaterA.Trabuco Santa Barbara Ventura SanBernardino Orange Orange

  18. 3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report

    SciTech Connect (OSTI)

    Wagoner, J

    2009-04-24T23:59:59.000Z

    The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

  19. 3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report

    SciTech Connect (OSTI)

    Wagoner, J

    2009-02-23T23:59:59.000Z

    The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

  20. California Enterprise Development Authority- Statewide PACE Program (California)

    Broader source: Energy.gov [DOE]

    FIGTREE Energy Financing is administering a Property Assessed Clean Energy (PACE) financing program in a number of California cities and counties through a partnership with the Pacific Housing &...

  1. Sustainable Best Management Practices for Wetland Seasonal Drainage in Response to San Joaquin

    E-Print Network [OSTI]

    Quinn, Nigel

    wetland sites ­ treatment drawdown is delayed to coincide with VAMP period (April 15-May 15) HighSustainable Best Management Practices for Wetland Seasonal Drainage in Response to San Joaquin wetlands in the Grasslands Ecological Area within the San Joaquin Basin #12;WATER MANAGEMENT FOR MOIST SOIL

  2. Effects of supplemental feeding on survivorship, reproduction, and dispersal in San Joaquin kit foxes

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    Previous field studies at the Naval Petroleum Reserves in California indicated that a decline in tie population size of the endangered San Joaquin kit fox might be linked to declining prey abundance. To evaluate whether kit fox populations we limited by food resources; survival probabilities, sources of mortality, reproductive success, and dispersal rates were compared between foxes with access to supplemental food and foxes without access to supplemental food (controls). Of foxes born in 1988, the probabilities of supplementary fed foxes surviving to age one and age two were higher than corresponding probabilities of control foxes. Survival probabilities of fed foxes from the 1988 cohort also were higher than the average survival probabilities of foxes born in the previous eight years. Most foxes that died during their first year of life died in June, July, or August. Monthly probabilities of survival were higher for fed pups than control pups curing the months of July and August of 1988. Survival probabilities of fed foxes originally r captured as adults and fed foxes born in 1989 were not significantly different than survival probabilities of corresponding control groups. Most foxes for which a cause of death could be determined were lolled by predators. Average dispersal distances were not significantly different between fed and control groups but the two longest dispersal distances were made by control foxes. These results indicate that food availability affects survival, reproduction, and dispersal by kit foxes and provides evidence that kit fox populations may at times be limited by food abundance.

  3. Surveillance study of health effects associated with cleanup of a hazardous waste site, Ralph Gray Trucking Company (a/k/a Westminster Tract Number 2633), Westminster, Orange County, California, Region 9: CERCLIS number CAD981995947

    SciTech Connect (OSTI)

    Hoshiko, S.; Underwood, M.C.; Smith, D.; DeLorenze, G.; Neuhaus, J.

    1999-04-01T23:59:59.000Z

    Excavation of a Superfund site, the Ralph Gray Truncking Company located in Westminster Orange County, California was anticipated to release sulfur dioxide and other chemicals. The California Department of Health Services, under cooperative agreement with the Agency for Toxic Substances and Disease Registry, conducted a surveillance study to assess whether illnesses were associated with cleanup activities. A panel primarily composed of more sensitive persons (n = 36) was selected to report daily respiratory symptoms and odors. Exposures included sulfur dioxide (SO{sub 2}) measurements and daily tonnage of waste removed. Analysis used Conditional Likelihood Regression and Generalized Estimating Equations (GEE) methods. Levels of SO{sub 2} were generally higher than usual ambient air, at times exceeding levels which can cause health effects among asthmatics in laboratory settings. Wheeze and cough were significantly associated with tonnage of waste removed, especially on days when the highest amounts of waste were removed. Upper respiratory symptoms were found to be associated with SO{sub 2}, and weak relationships were found with nausea and burning nose and SO{sub 2}.

  4. Clean Cities: San Joaquin Valley Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthern ColoradoRogueJoaquin

  5. Southern California Channel Islands Bibliography, through 1992

    E-Print Network [OSTI]

    Channel Islands National Marine Sanctuary

    1992-01-01T23:59:59.000Z

    Channel/Santa Maria Basin/Elk Hills/San Joaquin Basin/Chicosiliceous composition/Elk Hills/San Joaquin Basin/Chico

  6. EIS-0067: 230-kV International Transmission Line San Diego County, California to Tijuana, Mexico, San Diego Gas and Electric Company

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration and the California Public Utilities Commission jointly prepared this EIS to evaluate the environmental impacts of the construction, maintenance and operation of a 10-mile, 230-kilovolt transmission line across the U.S./Mexico border for the purpose of economic exchange of power and increased reliability.

  7. EA-1826: AV Solar Ranch One Project in Los Angeles and Kern Counties...

    Broader source: Energy.gov (indexed) [DOE]

    August 1, 2011 EA-1826: Final Environmental Assessment AV Solar Ranch One Project, Los Angeles and Kern Counties, California August 2, 2011 EA-1826: Finding of No Significant...

  8. Evaluation of Riparian Restoration to Enhance Anadromous Fish Habitat along a Napa County Stream

    E-Print Network [OSTI]

    Gaber, Christine O.

    2008-01-01T23:59:59.000Z

    California Salmonid Stream Restoration Manual. Part XI:2003. Federal Interagency Stream Restoration Working Group (Napa County rangeland stream restoration project designed to

  9. Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin basin, California. Quarterly report, January 1--March 31, 1996

    SciTech Connect (OSTI)

    Schamel, S.

    1996-06-28T23:59:59.000Z

    This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. The producibility problems initially thought to be responsible for the low recovery in the Pru Fee property are: (a) the shallow dip of the bedding; (b) complex reservoir structure, (c) thinning pay zone; and (d) the presence of bottom water. The project is using tight integration of reservoir characterization and simulation modeling to evaluate the magnitude of and alternative solutions to these problems. Two main activities were brought to completion during the first quarter of 1996: (1) lithologic and petrophysical description of the core taken form the new well Pru 101 near the center of the demonstration site and (2) development of a stratigraphic model for the Pru Fee project area. In addition, the first phase of baseline cyclic steaming of the Pru Fee demonstration site was continued with production tests and formation temperature monitoring.

  10. Photographs on front cover (clockwise, from upper left): (upper left) Visible mercury at contact between alluvium and slate bedrock, Sailor Flat Mine, Greenhorn Creek drainage, Nevada County, California; total length of ruler is

    E-Print Network [OSTI]

    at contact between alluvium and slate bedrock, Sailor Flat Mine, Greenhorn Creek drainage, Nevada County

  11. Public health assessment for Treasure Island Naval Station, Hunters Point Annex, San Francisco, San Francisco County, California, Region 9. Cerclis No. CA1170090087. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-09-30T23:59:59.000Z

    Naval Station Treasure Island, Hunters Point Annex (HPA), an inactive Naval shipyard located on a peninsula in the San Francisco Bay, San Francisco, California, was listed for base closure in 1990. Metals, pesticides, radium-226, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds, semivolatile organic compounds, petroleum products, and asbestos have been found in various media such as soil, groundwater, surface water, air, and sediments. Navy contractors have identified 58 HPA areas where there may be contamination; investigations at these areas are ongoing.

  12. Greenwood, Foster, and Romani: Archaeological Study of CA-VEN-110, California; and Roeder: Archaeological Study of CA-VEN-110, Ventura, California: Fish Remains

    E-Print Network [OSTI]

    Johnson, John R.

    1991-01-01T23:59:59.000Z

    procedures had been followed by Ventura County, the Corps ofStudy of CA-VEN-110, Ventura, California: Fish Remains. MarkLemos, and Jamie Karl V, Ventura County, et al,. Central

  13. Simplified 1-D Hydrodynamic and Salinity Transport Modeling of the Sacramento–San Joaquin Delta: Sea Level Rise and Water Diversion Effects

    E-Print Network [OSTI]

    Fleenor, William E.; Bombardelli, Fabian

    2013-01-01T23:59:59.000Z

    Hydrodynamic and Salinity Transport Modeling of the Sacramento–San Joaquin Delta: Sea Level Rise and Water Diversion Effects

  14. Tomorrow`s energy today for cities and counties

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    The document focuses on the use of commercial building energy codes to promote energy efficiency and achieve cost savings in communities. Energy conservation codes used in Montgomery County, Maryland and San Francisco, California are used as examples.

  15. Public health assessment for Del Amo Facility, Los Angeles, Los Angeles County, California, Region 9. Cerclis No. CAD029544731. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1994-01-12T23:59:59.000Z

    Located in Los Angeles, California, the 280-acre Del Amo hazardous waste site contains contamination resulting from a synthetic rubber manufacturing facility consisting of three plants, which formerly operated on the site from 1943 through the mid to late 1960s. Primary contaminants associated with a 3.7-acre waste disposal area located near the southern boundary of the Del Amo site include volatile aromatic hydrocarbons (such as benzene and ethylbenzene) and polycyclic aromatic hydrocarbons (such as naphthalene, benzo(a)pyrene, phenanthrene, and chrysene). Based on the information available for review, CDHS and ATSDR conclude that the Del Amo site presently poses an indeterminate public health hazard to nearby residents and workers.

  16. CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH & ANALYTICAL STUDIES

    E-Print Network [OSTI]

    de Lijser, Peter

    GROWTH OF CA HIGH SCHOOL GRADS: ORANGE, LOS ANGELES COUNTIES; CALIFORNIA FROM BASE YEAR 1997-98 TO 2008 OF CALIFORNIA HIGH SCHOOL GRADUATES IN SELECTED COUNTIES/REGIONS Data from the State of California, Department-09 % of Total 2019-20 % of Total Orange 25,965 9% 34,520 9% 31,422 9% Los Angeles 75,320 25% 93,346 24% 74

  17. How the Recovery Act and Community Organizing Are Saving the Residents of San Mateo County Major Cash

    Broader source: Energy.gov [DOE]

    California's San Mateo County gives residents more affordable access to energy upgrades, reducing home energy use and creating new jobs in the process.

  18. Steamflooding projects boost California's crude oil production

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    During the summer and fall of 1981, the first time in more than a decade, US crude oil production in the lower 48 was higher than production in the preceding year. California is leading this resurgence. The state's oil production in October 1981 averaged 1,076,000 bpd, compared with 991,000 bpd in October 1980. Some of the increase comes from production in several offshore fields whose development had been delayed; some is due to greater output from the US Government's petroleum reserve at Elk Hills. However, a big portion of the state's increased production results from large steamdrive projects in heavy-oil fields of the San Joaquin Valley that were set in motion by decontrol of heavy-oil proces in mid-1979. California holds vast reserves of viscous, low-gravity oil in relatively shallow reservoirs. The methods used to produce heavy oil are discussed.

  19. STATE OF CALIFORNIA _ THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    in Fellows in Kern County, California and uses cogeneration steam to aid in the enhanced oil recovery process the following proposed modification: · Replacement of Unit S's DLN-9 combustion chambers, liners and burner

  20. Post project evaluation, Miller Creek, California : assessment of stream bed morphology, and recommendations for future study

    E-Print Network [OSTI]

    Yin, Wan-chih; Pope-Daum, Caitilin

    2004-01-01T23:59:59.000Z

    1989) Grading Plan, Miller Creek Phases 5 and 6. PreparedValley Units 3-6, Miller Creek Stabilization/Restorationchannel restoration: Miller Creek, Marin County, California.

  1. Water and Waste Water Tariffs for New Residential Construction inCalifornia

    SciTech Connect (OSTI)

    Fisher, Diane; Lutz, James

    2006-04-24T23:59:59.000Z

    This study collected current water and waste water tariffsin California cities and counties where there is a high level of newresidential construction.

  2. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 3 report, economic development and production plan

    SciTech Connect (OSTI)

    Not Available

    1988-07-01T23:59:59.000Z

    Jerry R. Bergeson and Associates, Inc. (Bergeson) has completed Phase 3 of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objective of this phase of the study was to establish the economic potential for the field by determining the optimum economic plan for development and production. The optimum economic plan used net cash flow analysis to evaluate future expected Department of Energy revenues less expenses and investments for proved developed, proved undeveloped, probable, possible and possible-enhanced oil recovery (EOR) reserves assigned in the Phase 2 study. The results of the Phase 2 study were used to define future production flowstreams. Additional production scheduling was carried out to evaluate accelerated depletion of proved developed reserves in the 29R, 31 C/D Shale and Northwest Stevens T Sand/N Shale Reservoirs. Production, cost and investment schedules were developed for the enhanced oil recovery projects identified in Phase 2. Price forecasts were provided by the Department of Energy. Operating costs and investment requirements were estimated by Bergeson. 4 figs., 48 tabs.

  3. Perry County

    E-Print Network [OSTI]

    Durning, Matt; Eaton, N'Jeri

    2010-01-01T23:59:59.000Z

    those who took jobs at the landfill as a means of survival.recently hired at the landfill, Perry County Commissionerash to the local Arrowhead Landfill. The coal ash comes from

  4. Small Power Plant Exemption (06-SPPE-1) Imperial County

    E-Print Network [OSTI]

    Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT COMMISSIONDECISION ENERGY COMMISSION Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT GAS TURBINE PLANT SMALL POWER PLANT EXEMPTION DOCKET NO. 06-SPPE-1 The California Energy Commission

  5. State of heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B. [BDM-Oklahoma, Inc., Bartlesville, OK (United States)

    1995-12-31T23:59:59.000Z

    California is unique in the United States because it has the largest heavy oil (10{degrees} to 20{degrees}API gravity) resource, estimated to be in excess of 40 billion barrels. Of the current 941,543 barrels/day of oil produced in California (14% of the U.S. total), 70% or 625,312 barrels/day is heavy oil. Heavy oil constituted only 20% of California`s oil production in the early 1940s, but development of thermal oil production technology in the 1960s allowed the heavy industry to grow and prosper to the point where by the mid-1980s, heavy oil constituted 70% of the state`s oil production. Similar to the rest of the United States, light oil production in the Los Angeles Basin, Coastal Region, and San Joaquin Valley peaked and then declined at different times throughout the past 30 years. Unlike other states, California developed a heavy oil industry that replaced declining light oil production and increased the states total oil production, despite low heavy oil prices, stringent environmental regulations and long and costly delays in developing known oil resources. California`s deep conversion refineries process the nation`s highest sulfur, lowest API gravity crude to make the cleanest transportation fuels available. More efficient vehicles burning cleaner reformulated fuels have significantly reduced the level of ozone precursors (the main contributor to California`s air pollution) and have improved air quality over the last 20 years. In a state where major oil companies dominate, the infrastructure is highly dependent on the 60% of ANS production being refined in California, and California`s own oil production. When this oil is combined with the small volume of imported crude, a local surplus of marketed oil exists that inhibits exploitation of California`s heavy oil resources. As ANS production declines, or if the export restrictions on ANS sales are lifted, a window of opportunity develops for increased heavy oil production.

  6. Cook County- LEED Requirements for County Buildings

    Broader source: Energy.gov [DOE]

    In 2002, Cook County enacted an ordinance requiring all new county buildings and all retrofitted county buildings to be built to LEED standards. Specifically, all newly constructed buildings and...

  7. California Energy Commission Staff Draft

    E-Print Network [OSTI]

    Program funds for small cities and counties and be prioritized based on cost-effective energy efficiencyCalifornia Energy Commission Staff Draft BLOCK GRANT GUIDELINES (FORMULA-BASED GRANTS) ENERGY GLOSSARY #12;Energy Efficiency and Conservation Block Grant (EECBG) Program Guidelines 1. Background

  8. Systematic variations in stress state in the southern San Joaquin Valley: Inferences based on well-bore data and contemporary seismicity

    SciTech Connect (OSTI)

    Castillo, D.A.; Zoback, M.D. (Stanford Univ., CA (United States))

    1994-08-01T23:59:59.000Z

    Analysis of stress-induced well-bore breakouts in 35 wells from 10 production fields in the southern San Joaquin Valley (SSJV) indicates systematic spatial variations in the direction of the maximum horizontal stresses at three different scales. First, the regional northeast-southwest compressional stress direction seen along the western margin of the San Joaquin Valley in the Elk Hills, Kettleman Hills, and Coalinga areas, gradually changes to approximately north-south compression over a distance of 10-20 km in the SSJV. This major excursion in the stress field seen in the Yowlumne, Yowlumne North, Paloma, and Rio Viejo production fields represents an approximately 40[degrees] counterclockwise rotation in the direction of the maximum horizontal stress (MHS). This systematic reorientation is consistent with approximately north-south convergence as seen in the local fold axes and reverse faults of Pliocene age and younger. Second, at the extreme south of the SSJV in the San Emidio, Los Lobos, Pleito, Wheeler Ridge, and North Tejon fields, another systematic, but localized, reorientation in the stress field indicates an abrupt change to an approximately east-northeast-west-southwest compression over a distance of a few kilometers. This latter reorientation of MHS stress direction, which is inconsistent with the local east-west-trending fold axes and thrust faults, represents a 40-50[degrees] clockwise rotation in the stresses; this reorientation appears to be limited to oil production fields located within the inferred hanging wall of the White Wolf fault that ruptured during the 1952 Kern County earthquake. Inversion of earthquake focal mechanisms of events located below the perturbed stress field indicates approximately north-south compression. The stress drop associated with the 1952 earthquake may have been responsible for rotating the MHS stress direction, implying that the remote horizontal stresses are comparable in magnitude. 53 refs., 16 refs., 2 tabs.

  9. Suffolk County- LEED Program for County Construction

    Broader source: Energy.gov [DOE]

    In 2006, the Suffolk County Legislature enacted Resolution No. 126-2006, creating the Leadership in Energy and Environment Design (LEED) Program for county construction projects. The program...

  10. History of petroleum exploration in California and the West Coast

    SciTech Connect (OSTI)

    Kilkenny, J.E.

    1991-03-01T23:59:59.000Z

    California's main oil and gas basins consist of the inland Sacramento and San Joaquin and the Los Angeles, Ventura, and Santa Maria basins adjacent to the coast and extending offshore. The state's total oil production to 1991 is approximately 22.8 billion bbls. Producing formations range in age from basement Jurassic to Pleistocene, but production is mainly from thick multiple sand zones of Miocene and Pliocene age. The first oil discovery was in the eastern Ventura basin in 1875. By the turn of the century, 22 fields, including several giants in the San Joaquin Valley, had been discovered by drilling near oil seepages. The most important event of the 1920s was the discovery of several giant oil fields in the Los Angeles basin, drilled on topographic highs suggestive of underlying anticlines. State production rapidly increased to 850,000 BOPD, or 40% of all US production. The 1930s saw the advent of the reflection seismograph, responsible for the state's largest oil field (Wilmington) in the Lost Angeles basin and the state's largest gas field (Rio Vista) in the Sacramento basin. A number of important fields were found under the San Joaquin Valley floor. Geological thinking in the late 1930s and 1940s resulted in the discovery of large stratigraphic traps in the San Joaquin Valley (e.g., East Coalinga) and at Santa Maria from fractured shale, plus two new small producing basins, the Cuyama and the Salinas. Offshore exploration, consisting of seismic work, ocean-bottom sampling, and coreholing, revealed the presence of a number of anticlines in the Ventura basin, paralleling the Santa Barbara coast. The first offshore discovery was made in 1959 on state lands followed by several major fields on federal lands in the late 1960s. Elsewhere along the West Coast, exploration in Oregon and Washington has yielded only minor gas.

  11. From the hills to the mountain. [Oil recovery in California

    SciTech Connect (OSTI)

    McDonald, J.

    1980-05-01T23:59:59.000Z

    The oil reserves at Elk Hills field, California, are listed as amounting to 835 million bbl. There is 12 times that amount lying in shallow sands in the San Joaquin Valley, although the oil is much heavier and requires more refining before use. Improved recovery techniques have enabled higher rates of recovery for heavy oil than in the past. Some of these techniques are described, including bottom-hole heating, steam injection, and oil mining. Bottom-hole heating alone raised recovery rates for heavy oil to 25%, and steam injection raised rates to 50%. It is predicted that oil mining may be able to accomplish 100% recovery of the heavy oil.

  12. CALIFORNIA COMMISSION

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION 2008 BEST PERMITTING PRACTICES GUIDELINES FOR LIQUID Schwarzenegger, Governor #12;#12;CALIFORNIA ENERGY COMMISSION Eugenia Laychak Project Manager of the California Energy Commission prepared this report. It does not necessarily represent the views of the Energy

  13. Historic, Recent, and Future Subsidence, Sacramento-San Joaquin Delta, California, USA

    E-Print Network [OSTI]

    Deverel, Steven J; Leighton, David A

    2010-01-01T23:59:59.000Z

    Deverel SJ, Leighton DA, Sola–Llonch N. 2007b. Appendix C:Mark Finlay and Nancy Sola–Llonch (formerly of HydroFocus)

  14. Economic Costs and Adaptations for Alternative Regulations of California's Sacramento–San Joaquin Delta

    E-Print Network [OSTI]

    Tanaka, Stacy K.; Connell-Buck, Christina R.; Madani, Kaveh; Medellin-Azuara, Josue; Lund, Jay R.; Hanak, Ellen

    2011-01-01T23:59:59.000Z

    water-quality control purposes. Hydropower representation isplus scarcity costs minus hydropower ben- efits) for eachwastewater reuse, and reduced hydropower pro- duction. ares

  15. California's SacramentoSan Joaquin Delta Conflict: From Cooperation to Chicken

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    's marshlands for agricul- ture began in the 1850s and induced subsidence of its peat soils, which continues and several salmon runs are at risk of extinction (Lund et al. 2007, 2010; Madani and Lund 2011). All resource

  16. Shallow-Water Piscivore-Prey Dynamics in California's Sacramento–San Joaquin Delta

    E-Print Network [OSTI]

    Nobriga, Matthew L.; Feyrer, Frederick

    2007-01-01T23:59:59.000Z

    of native fish species than striped bass and Sacramentolargemouth bass are primarily a freshwater fish that cannotbass were piscivorous at about 115 mm, native fish use

  17. Historic, Recent, and Future Subsidence, Sacramento-San Joaquin Delta, California, USA

    E-Print Network [OSTI]

    Deverel, Steven J; Leighton, David A

    2010-01-01T23:59:59.000Z

    The vertical line above the box to the 90 th percentile.extends to the 90th percentile. august 2010 predicted that

  18. Contemporaneous Subsidence and Levee Overtopping Potential, Sacramento-San Joaquin Delta, California

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    to subsidence associated with peat thickness variations overprimarily by oxidation of peat soils drained MAY 2012 INSARDeverel and Leighton 2010). Peat- related subsidence in the

  19. Historic, Recent, and Future Subsidence, Sacramento-San Joaquin Delta, California, USA

    E-Print Network [OSTI]

    Deverel, Steven J; Leighton, David A

    2010-01-01T23:59:59.000Z

    S. 1984. Subsidence over oil and gas fields. In: Holzer TL,shrinkage, wind erosion, gas, water and oil withdrawal, and

  20. California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear Jan Feb MarSeparation,Future

  1. ,"California - San Joaquin Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas, WetCoalbed Methane Proved

  2. CALIFORNIA ENERGY COMMISSION California Energy Commission

    E-Print Network [OSTI]

    , CALIFORNIA CENTER FOR SUSTAINABLE ENERGY, CALIFORNIA ENVIRONMENTAL JUSTICE ALLIANCE, CALIFORNIA SOLAR ENERGY for Sustainable Energy, California Environmental Justice Alliance, California Solar Energy Industries Association OF AMERICAN LUNG ASSOCIATION IN CALIFORNIA, ASIAN PACIFIC ENVIRONMENTAL NETWORK, BRIGHTLINE DEFENSE PROJECT

  3. EIS-0448: Department of Energy Loan Guarantee to First Solar for the Proposed Desert Sunlight Solar Farm Project, California

    Broader source: Energy.gov [DOE]

    First Solar Desert Sunlight Solar Farm (DSSF) Project, proposes to develop a 550-megawatt photovoltaic solar project and proposes to facilitate the construction and operation of the Red Bluff Substation, California Desert Conservation Area (CDCA) Plan, Riverside County, California.

  4. California's Housing Problem

    E-Print Network [OSTI]

    Kroll, Cynthia; Singa, Krute

    2008-01-01T23:59:59.000Z

    only improve California’s housing opportunities but produce2004: California’s Affordable Housing Crisis. 2004. http://Raising the Roof: California Housing Development Projections

  5. In Yuma County, Arizona and Imperial County, California RECORD...

    Broader source: Energy.gov (indexed) [DOE]

    changing insulators, and replacement of poles, circuit breakers, conductors, transformers, and crossarms." B. Regulatory Requirements in 10 CFR 1021.410 (b): 1. The...

  6. Montgomery County- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    In October 2000, a group six county agencies, consisting of Montgomery County, Montgomery County Public Schools, Montgomery County Housing Opportunities Commission, Montgomery College, the...

  7. Public Health-Related Impacts of Climate Change in California

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    change on food-, vector-, and water-borne diseases is veryof urban runoff with coastal water quality in Orange County,California. ” Water Environment Research 74: 82– Ebi, K.

  8. Energy Department Finalizes Loan Guarantee to Support California...

    Energy Savers [EERE]

    managed by the Bureau of Land Management in eastern Riverside County, California. "To win the clean energy race we must invest in projects like this that fund jobs and increase...

  9. ADVANCED RESERVOIR CHARACTERIZATION IN THE ANTELOPE SHALE TO ESTABLISH THE VIABILITY OF CO2 ENHANCED OIL RECOVERY IN CALIFORNIA'S MONTEREY FORMATION SILICEOUS SHALES

    SciTech Connect (OSTI)

    Pasquale R. Perri

    2003-05-15T23:59:59.000Z

    This report describes the evaluation, design, and implementation of a DOE funded CO{sub 2} pilot project in the Lost Hills Field, Kern County, California. The pilot consists of four inverted (injector-centered) 5-spot patterns covering approximately 10 acres, and is located in a portion of the field, which has been under waterflood since early 1992. The target reservoir for the CO{sub 2} pilot is the Belridge Diatomite. The pilot location was selected based on geologic considerations, reservoir quality and reservoir performance during the waterflood. A CO{sub 2} pilot was chosen, rather than full-field implementation, to investigate uncertainties associated with CO{sub 2} utilization rate and premature CO{sub 2} breakthrough, and overall uncertainty in the unproven CO{sub 2} flood process in the San Joaquin Valley. A summary of the design and objectives of the CO{sub 2} pilot are included along with an overview of the Lost Hills geology, discussion of pilot injection and production facilities, and discussion of new wells drilled and remedial work completed prior to commencing injection. Actual CO{sub 2} injection began on August 31, 2000 and a comprehensive pilot monitoring and surveillance program has been implemented. Since the initiation of CO{sub 2} injection, the pilot has been hampered by excessive sand production in the pilot producers due to casing damage related to subsidence and exacerbated by the injected CO{sub 2}. Therefore CO{sub 2} injection was very sporadic in 2001 and 2002 and we experienced long periods of time with no CO{sub 2} injection. As a result of the continued mechanical problems, the pilot project was terminated on January 30, 2003. This report summarizes the injection and production performance and the monitoring results through December 31, 2002 including oil geochemistry, CO{sub 2} injection tracers, crosswell electromagnetic surveys, crosswell seismic, CO{sub 2} injection profiling, cased hole resistivity, tiltmetering results, and corrosion monitoring results. Although the Lost Hills CO{sub 2} pilot was not successful, the results and lessons learned presented in this report may be applicable to evaluate and design other potential San Joaquin Valley CO{sub 2} floods.

  10. Simplified 1-D Hydrodynamic and Salinity Transport Modeling of the Sacramento–San Joaquin Delta: Sea Level Rise and Water Diversion Effects

    E-Print Network [OSTI]

    Fleenor, William E.; Bombardelli, Fabian

    2013-01-01T23:59:59.000Z

    Hydrodynamic and Salinity Transport Modeling of the Sacramento–San Joaquinhydrodynamic and salinity transport mod- eling of the Sacramento–San Joaquin

  11. Notices Del Norte County, California,'' evaluated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O N N789 Federal231104 Federal48

  12. Notices Del Norte County, California,'' evaluated

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDynNet-ZeroNew0035 Federal Register / Vol.517478664048

  13. Sonoma County, California | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of EnergySite Screening DecisionOverviewEnergy

  14. The Golden Gate Textile Barrier: Preserving California Bay of San Francisco from a Rising North Pacific Ocean

    E-Print Network [OSTI]

    Cathcart, R B; Bolonkin, Alexander A.; Cathcart, Richart B.

    2007-01-01T23:59:59.000Z

    Climate change in California may require construction of a barrier separating the Pacific Ocean from San Francisco Bay and the Sacramento River-San Joaquin River Delta simply because Southern California is remarkably dependent on freshwater exported from the Delta. We offer a new kind of salt barrier, a macroproject built of impermeable textile materials stretched across the Golden Gate beneath the famous bridge. We anticipate it might eventually substitute for a recently proposed San Francisco In-Stream Tidal Power Plant harnessing a 1.7 m tide at the Bay entrance if future climate conditions Statewide is conducive. First-glance physics underpin our macroproject.

  15. The Golden Gate Textile Barrier: Preserving California Bay of San Francisco from a Rising North Pacific Ocean

    E-Print Network [OSTI]

    Richart B. Cathcart; Alexander A. Bolonkin

    2007-02-04T23:59:59.000Z

    Climate change in California may require construction of a barrier separating the Pacific Ocean from San Francisco Bay and the Sacramento River-San Joaquin River Delta simply because Southern California is remarkably dependent on freshwater exported from the Delta. We offer a new kind of salt barrier, a macroproject built of impermeable textile materials stretched across the Golden Gate beneath the famous bridge. We anticipate it might eventually substitute for a recently proposed San Francisco In-Stream Tidal Power Plant harnessing a 1.7 m tide at the Bay entrance if future climate conditions Statewide is conducive. First-glance physics underpin our macroproject.

  16. LIGHT EMITTING DIODE (LED) TRAFFIC SIGNAL SURVEY RESULTS

    E-Print Network [OSTI]

    Joaquin County Salinas Simi Valley West Sacramento San Luis Obispo County San Anselmo Solvang Westlake

  17. EIS-0431: Hydrogen Energy California's Project, Kern County, California |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartment ofStatement |Statement |of Energy

  18. Los Angeles County- LEED for County Buildings

    Broader source: Energy.gov [DOE]

    In January 2007, the Los Angeles County Board of Supervisors adopted rules to require that all new county buildings greater than 10,000 square feet be LEED Silver certified. All buildings...

  19. Harris County- LEED Requirement for County Buildings

    Broader source: Energy.gov [DOE]

    In 2009, the Harris County Commissioners Court approved a measure that requires all new county buildings to meet minimum LEED certification standards. Buildings do not have to register with the the...

  20. Habitat reclamation plan to mitigate for the loss of habitat due to oil and gas production activities under maximum efficient rate, Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    Anderson, D.C.

    1994-11-01T23:59:59.000Z

    Activities associated with oil and gas development under the Maximum Efficiency Rate (MER) from 1975 to 2025 will disturb approximately 3,354 acres. Based on 1976 aerial photographs and using a dot grid methodology, the amount of land disturbed prior to MER is estimated to be 3,603 acres. Disturbances on Naval Petroleum Reserve No. 1 (NPR-1) were mapped using 1988 aerial photography and a geographical information system. A total of 6,079 acres were classified as disturbed as of June, 1988. The overall objective of this document is to provide specific information relating to the on-site habitat restoration program at NPRC. The specific objectives, which relate to the terms and conditions that must be met by DOE as a means of protecting the San Joaquin kit fox from incidental take are to: (1) determine the amount and location of disturbed lands on NPR-1 and the number of acres disturbed as a result of MER activities, (2) develop a long term (10 year) program to restore an equivalent on-site acres to that lost from prior project-related actions, and (3) examine alternative means to offset kit fox habitat loss.

  1. Unitizing and waterflooding the California Yowlumne Oil Field

    SciTech Connect (OSTI)

    Burzlaff, A.A.

    1983-03-01T23:59:59.000Z

    The Yowlumne field, located at the southern end of the San Joaquin Valley of California, is one of the largest new onshore oil fields discovered in California in the past twenty years. The field, at an average depth of 12,200', has produced over 42 million barrels of oil since its discovery in 1974. In May, 1982, a portion of the Yowlumne field was unitized and called Yowlumne Unit ''B''. Nine operators and about 160 royalty owners cooperated to form this unit. A two phase unitization formula based on remaining primary and initial hydrocarbon pore volume was used to form Unit ''B''. A secondary waterflood project is being implemented which is estimated to increase oil recovery by some 25 million barrels.

  2. CALIFORNIA COMMISSION

    E-Print Network [OSTI]

    CHAPTER 2: LAND USE AND ENERGY: TRENDS AND DRIVERS ...........................17 Vehicle Miles Traveled................................................................................................................... 20 Residential Energy Consumption CALIFORNIA ENERGY COMMISSION THE ROLE OF LAND USE IN MEETING CALIFORNIA'S ENERGY

  3. The microplankton off southern California

    E-Print Network [OSTI]

    Whitley, Glenn Ross

    1970-01-01T23:59:59.000Z

    to the northwest, between Hawaii and Alaska. Variations in the location of the systen determine the gradient winds that enter the coastal area. In sum- mer, the pressures increase and subsequently so do the prevailing winds. In winter, the high pressure area... 500 m off Pelican Point, 2. 5 km southeast of the entrance to Newport Harbor in Orange County, California. These water samples were studied in order to relate the biological composition of the diatom, dinoflagellate, and tintinnid assemblages...

  4. Radon mapping - Santa Barbara and Ventura counties

    SciTech Connect (OSTI)

    Churchill, R.

    1997-11-01T23:59:59.000Z

    Since 1990, the Department of Conservation`s Division of Mines and Geology (DMG) has provided geologic information and conducted several research projects on geology and radon for the California Department of Health Services (DHS) Radon Program. This article provides a brief overview of radon`s occurrence and impact on human health, and summarizes a recent DMG project for DHS that used geologic, geochemical, and indoor radon measurement data to produce detailed radon potential zone maps for Santa Barbara and Ventura counties.

  5. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  6. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  7. San Diego County- Design Standards for County Facilities

    Broader source: Energy.gov [DOE]

    The San Diego County Board of Supervisors established design standards for county facilities and property. Among other requirements,  the policy requires that all new county buildings or major...

  8. Ventura County hazardous waste minimization program

    SciTech Connect (OSTI)

    Hanlon, D.A.; Koepp, D.W.

    1987-05-01T23:59:59.000Z

    In 1985, Ventura County Environmental Health Department began a technical assistance program to encourage hazardous waste generators to reduce their dependence on land disposal. In order to accomplish this, information from the California State Hazardous Waste Manifest Information System was analyzed to identify the types, quantities and disposition of hazardous waste produced by companies in Ventura County. All generators that rely on land disposal were also surveyed to determine future waste management plans. Waste audits were conducted at each site to determine if alternative waste handling methods were feasible and to ensure that reuse, recycling and waste reduction methods are used when possible. This article summarizes these findings and projects future hazardous waste generation and disposal patterns for industries in Ventura County. It also identifies barriers to volume reduction and provides a framework for future local hazardous waste alternative technology/volume reduction program activities.

  9. CALIFORNIA ENERGY CALIFORNIA'S STATE ENERGY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA'S STATE ENERGY EFFICIENT APPLIANCE REBATE PROGRAM INITIAL November 2009 CEC-400-2009-026-CMD Arnold Schwarzenegger, Governor #12;#12;CALIFORNIA ENERGY COMMISSION Program Manager Paula David Supervisor Appliance and Process Energy Office Valerie T. Hall Deputy Director

  10. Report on locomotive emission inventory: Locomotive emissions by county (revised). Final report

    SciTech Connect (OSTI)

    NONE

    1992-08-01T23:59:59.000Z

    The objective of this study was to expand the six basin locomotive inventory already extant to include all basins in the state of California, with a further breakdown of emissions within each county. In addition, the study provides projected rail emissions by county for the years 2000 and 2010. Finally, the contractor provided information on seasonal and daily variations in rail activity.

  11. Discriminating between west-side sources of nutrients and organiccarbon contributing to algal growth and oxygen demand in the San JoaquinRiver

    SciTech Connect (OSTI)

    Wstringfellow@lbl.gov

    2002-07-24T23:59:59.000Z

    The purpose of this study was to investigate the Salt and Mud Slough tributaries as sources of oxygen demanding materials entering the San Joaquin River (SJR). Mud Slough and Salt Slough are the main drainage arteries of the Grasslands Watershed, a 370,000-acre area west of the SJR, covering portions of Merced and Fresno Counties. Although these tributaries of the SJR are typically classified as agricultural, they are also heavily influenced by Federal, State and private wetlands. The majority of the surface water used for both irrigation and wetland management in the Grassland Watershed is imported from the Sacramento-San Joaquin Delta through the Delta-Mendota Canal. In this study, they measured algal biomass (as chlorophyll a), organic carbon, ammonia, biochemical oxygen demand (BOD), and other measures of water quality in drainage from both agricultural and wetland sources at key points in the Salt Slough and Mud Slough tributaries. This report includes the data collected between June 16th and October 4th, 2001. The objective of the study was to compare agricultural and wetland drainage in the Grasslands Watershed and to determine the relative importance of each return flow source to the concentration and mass loading of oxygen demanding materials entering the SJR. Additionally, they compared the quality of water exiting our study area to water entering our study area. This study has demonstrated that Salt and Mud Sloughs both contribute significant amounts of oxygen demand to the SJR. Together, these tributaries could account for 35% of the oxygen demand observed below their confluence with the SJR. This study has characterized the sources of oxygen demanding materials entering Mud Slough and evaluated the oxygen demand conditions in Salt Slough. Salt Slough was found to be the dominant source of oxygen demand load in the study area, because of the higher flows in this tributary. The origins of oxygen demand in Salt Slough still remain largely uninvestigated and the seasonal oxygen demand loading pattern remains unexplained. An expanded investigation of the Salt Slough watershed is warranted, because of the importance of this watershed to the oxygen demand load entering the SJR.

  12. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01T23:59:59.000Z

    Deputy Project Director, Energy and Environmental Security,Security Principal Directorate, Lawrence Livermore National Lab California’s Energy

  13. Concept Paper for Real-Time Temperature and Water QualityManagement for San Joaquin River Riparian Habitat Restoration

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.

    2004-12-20T23:59:59.000Z

    The San Joaquin River Riparian Habitat Restoration Program (SJRRP) has recognized the potential importance of real-time monitoring and management to the success of the San Joaquin River (SJR) restoration endeavor. The first step to realizing making real-time management a reality on the middle San Joaquin River between Friant Dam and the Merced River will be the installation and operation of a network of permanent telemetered gauging stations that will allow optimization of reservoir releases made specifically for fish water temperature management. Given the limited reservoir storage volume available to the SJJRP, this functionality will allow the development of an adaptive management program, similar in concept to the VAMP though with different objectives. The virtue of this approach is that as management of the middle SJR becomes more routine, additional sensors can be added to the sensor network, initially deployed, to continue to improve conditions for anadromous fish.

  14. California Levee Risk, Now and in the Future:Identifying Research and Tool Development Needs

    SciTech Connect (OSTI)

    Newmark, R L; Hanemann, M; Farber, D

    2006-11-28T23:59:59.000Z

    The Center for Catastrophic Risk Management (CCRM) and the California Center for Environmental Law and Policy (CCELP) at UC Berkeley and the Lawrence Livermore National Laboratory (LLNL) joined together to cosponsor a workshop to define research requirements to mitigate the hazards facing the Sacramento-San Joaquin Delta Levee system. The Workshop was intended to provide a forum to (1) Report assessments of current vulnerabilities facing the levees, such as structural failure, seismic loading, flooding, terrorism; (2) Consider longer term challenges such as climate change, sea level rise; and (3) Define research requirements to fill gaps in knowledge and reduce uncertainties in hazard assessments.

  15. California Solar Initiative California Public Utilities Commission

    E-Print Network [OSTI]

    California Solar Initiative California Public Utilities Commission Staff Progress Report January 2008 #12;California Solar Initiative, CPUC Staff Progress Report, January 2008 This page intentionally left blank. #12;California Solar Initiative, CPUC Staff Progress Report, January 2008 Table of Contents

  16. Broward County- Green Building Policy

    Broader source: Energy.gov [DOE]

    In October 2008, Board of County Commissioners of Broward County passed a resolution creating the County Green Building Policy. All new County-owned and operated buildings must achieve a minimum...

  17. Regional Lead Agents and County Coordinators 2011 RESPONSIBILITY NAME COUNTY

    E-Print Network [OSTI]

    Bolding, M. Chad

    #12;Regional Lead Agents and County Coordinators 2011 RESPONSIBILITY NAME COUNTY REGION 1 Regional Lead Millie Davenport HGIC County Coordinator Matt Burns Pickens County Coordinator Marty Watt Anderson County Coordinator Morris Warner Oconee REGION 2 Regional Lead Danny Howard Greenville County Coordinator

  18. Balance : Lancaster County's tragedy

    E-Print Network [OSTI]

    Gingrich, Valerie (Valerie J.)

    2007-01-01T23:59:59.000Z

    Lancaster County, Pennsylvania residents are proud of their agricultural heritage. They do not want to see their farmland disappear. But the County continues to be developed into residential subdivisions. This thesis ...

  19. Purchasing in Texas Counties.

    E-Print Network [OSTI]

    Hervey, E. J.; Bradshaw, H. C.

    1944-01-01T23:59:59.000Z

    from every standpoint. As long as it continues, the purchasing power of the county dollar is sub- stantially reduced, for each company and individual must discount the county's warrants. In these counties, the necessity of developing and maintaining...8 r3' L \\, & #5, CnLpL"; 3' --%I k? TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, Director College Station, Texas BULLETIN NO. 653 JULY 1944 PURCHASING IN TEXAS COUNTIES H. C. BRADSEAW and E. J, HERVEY Division of Farm and Ranch...

  20. Kent County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

  1. Kiowa County Commons Building

    Office of Energy Efficiency and Renewable Energy (EERE)

    This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

  2. "Indian Rancherie on Dry Creek": An Early 1850s Indian Village on the Sacramento and San Joaquin County Line

    E-Print Network [OSTI]

    Farris, Glenn

    2008-01-01T23:59:59.000Z

    I "Indian Rancherie on Dry Creek": An Early 185Ds IndianIndian Rancherie on Dry Creek." Cahfomia Pictorial Letterimage of the rancheria on Dry Creek with a commentary relat-

  3. ATOC/CHEM 5151 Fall 2014 The San Joaquin Valley, acid rain, and a simple "box" model

    E-Print Network [OSTI]

    Toohey, Darin W.

    ATOC/CHEM 5151 ­ Fall 2014 Problem 26 The San Joaquin Valley, acid rain, and a simple "box" model. In this problem, use a simple box model to estimate the formation of so-called "acid fogs" in this valley. Assume the steady-state SO2 concentration (in units of molecules cm-3 ). (2) Sulfuric acid is produced from

  4. An Overview of Geologic Carbon Sequestration Potential in California

    SciTech Connect (OSTI)

    Cameron Downey; John Clinkenbeard

    2005-10-01T23:59:59.000Z

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

  5. STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    . The facility is located in Fellows in Kern County, California and uses cogeneration steam to aid in the enhanced oil recovery process. Air Quality technical staff reviewed the petition to amend and requested and docketed on November 19, 2010. The proposed amendment requests administrative modifications to Units A, B

  6. STATE OF CALIFORNIA THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    in Kern County, California and uses cogeneration steam to aid in the enhanced oil recovery process Commission approved a petition to add SCR systems to each of their three turbine units. The addition of SCR's units which would increase output and lower the unit thermal heat rate. Because of the increased output

  7. EA-1840: California Valley Solar Ranch Project in San Luis Obispo...

    Office of Environmental Management (EM)

    Valley Solar Ranch Project in San Luis Obispo County, CA August 3, 2011 EA-1840: Final Environmental Assessment California Valley Solar Ranch Project in San Luis Obispo and Kern...

  8. About California Agriculture

    E-Print Network [OSTI]

    Editors, The

    2012-01-01T23:59:59.000Z

    Form 3579” to California Agriculture at the address above. ©Submissions. California Agriculture manages the peer reviewour Writing CALIFORNIA AGRICULTURE • VOLUME 66 , NUMBER 4

  9. About California Agriculture

    E-Print Network [OSTI]

    Editor, The

    2013-01-01T23:59:59.000Z

    Submissions. California Agriculture manages the peer reviewread our CALIFORNIA AGRICULTURE • VOLUME 67 , NUMBER 2Carol Lovatt California Agriculture (ISSN 0008-0845, print,

  10. About California Agriculture

    E-Print Network [OSTI]

    Editor, The

    2013-01-01T23:59:59.000Z

    Submissions. California Agriculture manages the peer reviewread our CALIFORNIA AGRICULTURE • VOLUME 67 , NUMBER 1Carol Lovatt California Agriculture (ISSN 0008-0845, print,

  11. Simplified 1-D Hydrodynamic and Salinity Transport Modeling of the Sacramento–San Joaquin Delta: Sea Level Rise and Water Diversion Effects

    E-Print Network [OSTI]

    Fleenor, William E.; Bombardelli, Fabian

    2013-01-01T23:59:59.000Z

    salinity simulations of sea level rise scenarios. AppendixSan Joaquin Delta: Sea Level Rise and Water Diversiona 1-D model of sea level rise in an estuary must account for

  12. California Solar Initiative California Public Utilities Commission

    E-Print Network [OSTI]

    California Solar Initiative California Public Utilities Commission Staff Progress Report January 2009 #12;2 California Solar Initiative CPUC Staff Progress Report - January 2009 The California Public progress on the California Solar Initiative, the country's largest solar incentive program. In January 2007

  13. California Solar Initiative California Public Utilities Commission

    E-Print Network [OSTI]

    California Solar Initiative California Public Utilities Commission Staff Progress Report October 2008 #12;2 California Solar Initiative CPUC Staff Progress Report - October 2008 The California Public progress on the California Solar Initiative, the country's largest solar incentive program. In January 2007

  14. Endangered species and cultural resources program, Naval Petroleum Reserves in California, annual report FY97

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The Naval Petroleum Reserves in California (NPRC) are oil fields administered by the DOE in the southern San Joaquin Valley of California. Four federally endangered animal species and one federally threatened plant species are known to occur on NPRC: San Joaquin kit fox (Vulpes macrotis mutica), blunt-nosed leopard lizard (Gambelia silus), giant kangaroo rat (Dipodomys ingens), Tipton kangaroo rat (Dipodomys nitratoides), and Hoover`s wooly-star (Eriastrum hooveri). All five are protected under the Endangered Species Act (ESA) of 1973. The DOE/NPRC is obliged to determine whether actions taken by their lessees on Naval Petroleum Reserve No. 2 (NPR-2) will have any effects on endangered species or their habitats. The primary objective of the Endangered Species and Cultural Resources Program is to provide NPRC with the scientific expertise necessary for compliance with the ESA, the National Environmental Policy Act (NEPA), and the National Historic Preservation Act (NHPA). The specific objective of this report is to summarize progress, results, and accomplishments of the program during fiscal year 1997 (FY97).

  15. California Geothermal Energy Collaborative

    E-Print Network [OSTI]

    California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

  16. Humboldt County RESCO Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County,Ohio:Hughson, California:Humble,

  17. California Solar Initiative California Public Utilities Commission

    E-Print Network [OSTI]

    California Solar Initiative California Public Utilities Commission Staff Progress Report July 2008 #12;California Solar Initiative, CPUC Staff Progress Report, July 2008 Cover Photo Credits: Photographer: Andrew McKinney Name of Installer: Marin Solar System owner

  18. County\\PAAN

    Broader source: Energy.gov (indexed) [DOE]

    The attached comments by the Clark County, Nevada Department of Comprehensive Planning, Nuclear Waste Division, are in reference to a Notice of Inquiry (NOI) released by the...

  19. BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA

    E-Print Network [OSTI]

    at the Data Center, located in an industrial area in the city of Santa Clara, Santa Clara County, CaliforniaBEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA 1516 NINTH STREET, SACRAMENTO, CA 95814 1-800-822-6228 ­ WWW.ENERGY.CA.GOV APPLICATION FOR SMALL POWER PLANT

  20. EIS-0458: Proposed Loan Guarantee to Support Construction and Startup of the Topaz Solar Farm, San Luis Obispo County, CA

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts from DOE’s proposal to issue a federal loan guarantee to Royal Bank of Scotland to provide funding to Topaz Solar Farms, LLC, to construct and start up the Topaz Solar Farm, a nominal 550-megawatt photovoltaic solar energy generating facility. The facility would be located in unincorporated eastern San Luis Obispo County, California, approximately one mile north of the community of California Valley, California, and six miles northwest of the Carrizo Plain National Monument.

  1. Montezuma County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy Resources JumpPowerCounty,

  2. Frio County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° ShowCounty, California: Energyof theFrio County,

  3. Frederick County- Green Building Program

    Broader source: Energy.gov [DOE]

    Frederick County administers a green building program. It has two goals: (1) to ensure that County building projects implement strategies that enhance environmental performance and fiscal...

  4. Shoreface Morphodynamics, Back Beach Variability, and Implications of Future Sea-Level Rise for California's Sandy Shorelines

    E-Print Network [OSTI]

    Harden, Erika Lynne

    2012-01-01T23:59:59.000Z

    25 1.4.4 Southern California: Ventura to San Diego92 2.4.5 Ventura9 Fig. 1.4: Sea Cliff in Ventura County: An example of a

  5. Design and implementation of an emergency environmental response system to protect migrating salmon in the lower San Joaquin River, California

    E-Print Network [OSTI]

    Quinn, Nigel W.T.; Jacobs, Karl C.

    2006-01-01T23:59:59.000Z

    and Data Acquisition (SCADA) systems, continuous monitoringof water districts employ SCADA telemetry to monitor bothcomputer that controls the SCADA system through the local

  6. Using Conceptual Models in Ecosystem Restoration Decision Making: An Example from the Sacramento-San Joaquin River Delta, California

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    CA): Delta Regional Ecosystem Restoration ImplementationCA): Delta Regional Ecosystem Restoration ImplementationBay–Delta Program. 2000. Ecosystem Restoration Program:

  7. ,"California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas, WetCoalbed Methane

  8. ,"California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas, WetCoalbed MethaneDry

  9. ,"California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas, WetCoalbed

  10. ,"California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDry Natural GasCoastalSan

  11. Joaquin Correa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for(SC) Jetting into theJie

  12. Scully field - Marion County, Kansas

    SciTech Connect (OSTI)

    Salgat, B.

    1983-08-01T23:59:59.000Z

    The Scully field is a multipay new-field discovery located in the southern end of Salina basin, Marion County, Kansas. The Scully field was discovered using a combination of satellite imagery and subsurface control. The overall trapping mechanism at the Scully field is anticlinal closure. Infield drilling has demonstrated, however, that significant stratigraphic variations do exist within the productive area. The Simpson sands have been subdivided in five separate units which range from 4 to 12 ft (1 to 4 m) in thickness. Three of these are of economic importance in the field. In general, the sands with the most economic potential are distributed within relative Ordovician paleolows. The Viola has four main lithologic divisions. The uppermost of these is a relatively thin dolomite cap which ranges from 2 to 15 ft (1 to 5 m). This upper dolomite is the primary Viola pay zone. The Mississippian section is eroded deeply over the Scully structure and demonstrates about 70 ft (20 m) of thinning. The potential pay interval is chert which has 25 to 30% porosity based on log analysis. The trapping mechanism is a combination of erosional truncation and structural closure. In addition to the structural information obtained from satellite imagery, R.J. Walker Oil Co., Inc., evaluated the hydrocarbon potential of T18S, R1E, Marion County, Kansas, which contains the Scully field, using remote sensing technology developed by Earth Reference Systems of Long Beach, California. The technology involves direct detection of hydrocarbons in place, using satellite data, nonlinear mathematics, and the fundamental principles of molecular structure and electromagnetic wave propagation.

  13. i MARIN COUNTY /Z'.

    E-Print Network [OSTI]

    and the Building Energy Efficiency Standards Dear Commissioners Eggert and Byron, Per the request of Commission the current Title 24 Building Energy Efficiency Standards as part of the implementation of our local Green with the California Building Energy Efficiency Standards (Title 24, part 6) of the California Building Code

  14. Clark county monitoring program

    SciTech Connect (OSTI)

    Conway, Sheila [Urban Environmental Research, 10100 W. Charleston Boulevard Las Vegas, 89135 (United States); Auger, Jeremy [Applied Analysis, 10100 West Charleston Blvd, Suite 200, Las Vegas, Nevada 89135 (United States); Navies, Irene [Clark County, Department of Comprehensive Planning, Las Vegas, NV (United States)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: Since 1988, Clark County has been one of the counties designated by the United States Department of Energy (DOE) as an 'Affected Unit of Local Government' (AULG). The AULG designation is an acknowledgement by the federal government that could be negatively impacted to a considerable degree by activities associated with the Yucca Mountain High Level Nuclear Waste Repository. These negative effects would have an impact on residents as individuals and the community as a whole. As an AULG, Clark County is authorized to identify 'any potential economic, social, public health and safety, and environmental impacts' of the potential repository (42 USC Section 10135(C)(1)(B)(1)). Toward this end, Clark County has conducted numerous studies of potential impacts, many of which are summarized in the Clark County's Impact Assessment Report that was submitted by the DOE and the president of the United States in February 2002. Given the unprecedented magnitude and duration of the DoE's proposal, as well as the many unanswered questions about the number of shipments and the modal mix, the estimate of impacts described in these studies are preliminary. In order to refine these estimates, Clark County Comprehensive Planning Department's Nuclear Waste Division is continuing to assess potential impacts. In addition, the County has implemented a Monitoring Program designed to capture changes to the social, environmental, and economic well-being of its residents resulting from the Yucca Mountain project and other significant events within the County. The Monitoring Program acts as an 'early warning system' that allows Clark County decision makers to proactive respond to impacts from the Yucca Mountain Project. (authors)

  15. Montgomery County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy

  16. Montgomery County, North Carolina: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California:

  17. Levee Failures in the Sacramento - San Joaquin River Delta: Characteristics and Perspectives 

    E-Print Network [OSTI]

    Hopf, Frank

    2012-02-14T23:59:59.000Z

    Stewardship Council DWR California Department of Water Resources ESA Endangered Species Act (Federal) SWP California State Water Project SRCD Suisun Resource Conservation District SWRC State Water Resources Council RD Reclamation District USACE United... ..................................................... 50 Building the Delta Levees for Agriculture...................................... 52 Subsidence of Peat Islands .............................................................. 64 The USACE and Flood Control Levees...

  18. CALIFORNIA ENERGY COMMISSIONCOMMISSION

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSIONCOMMISSION California Clean Energy Jobs Act: Proposition 39 Draft MEETINGMEETING AGENDA · Summary of California Clean Energy Jobs Act· Summary of California Clean Energy Jobs Act and Questions W U· Wrap Up #12;THE CALIFORNIA CLEAN ENERGY JOBS ACTENERGY JOBS ACT · Combination of two recent

  19. in Idaho's Power County

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Located in Power County on the Fort Hall Reservation, the land is bisected by Bannock Creek, a perennial stream which flows from the east side of the Deep Creek Mountains and...

  20. Parallel ozone monitoring study performed in the Ojai Valley, California

    SciTech Connect (OSTI)

    Mikel, D.K. [Ventura County Air Pollution Control District, CA (United States)

    1998-12-31T23:59:59.000Z

    The Ventura County Air Pollution Control District (also known as the District) Monitoring and Technical Services Division, relocated the State and Local Air Monitoring Station (SLAMS) for the Ojai Valley. The SLAMS was located on property that was being abandoned and sold by the County of Ventura, thus necessitating a station relocation. From August 3, through October 31, 1995, the District performed parallel ozone monitoring at two sites. The former site was located at 1768 Maricopa Road, Ojai, California (AIRS Site 06111-1003) and the existing site at 1201 Ojai Avenue, Ojai California (County Fire Station {number_sign}21). This paper outlines the process of parallel monitoring, the statistical tests used and their justification. In addition, there is a discussion on station equivalency.

  1. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01T23:59:59.000Z

    Annual Energy Outlook Air Resources Board Business-As-Usualbusiness as usual ( BAU) and median scenarios (Based upon Caltrans 2008, AEO 2011 but extended to 2050) California’s Energy

  2. Occurrence and distribution of special status plant species on the Naval Petroleum Reserves in California

    SciTech Connect (OSTI)

    Anderson, D.C.; Cypher, B.L.; Holmstead, G.L.; Hammer, K.L.; Frost, N.

    1994-10-01T23:59:59.000Z

    Several special status plant species occur or potentially occur at the Naval Petroleum Reserves in California (NPRC). Special status species are defined as those species that are either federally listed as endangered or threatened, or candidate taxa. Candidate species are classified as Category 1 or Category 2. Category 1 taxa are those species for which there is sufficient evidence to support listing, while Category 2 taxa are those species for which listing may possibly be appropriate, but for which sufficient data are lacking to warrant immediate listing. Determining the presence and distribution of these species on NPRC is necessary so that appropriate conservation or protection measures can be implemented. In the spring of 1988, a survey of Naval Petroleum Reserve No. 1 (NPR-1) was conducted to determine the occurrence of Hoover`s wooly-star (Eriastrum hooveri), Kern Mallow (Eremalche kemensis), San Joaquin wooly-threads (Lembertia congdonii), and California jewelflower (Caulanthus califonicus), all listed by the US Fish and Wildlife Service (FWS) as Category 2 species at that time. Of the four species, only Hoover`s wooly-star was found. It was concluded that Kern mallow and San Joaquin wooly-threads could potentially be found on NPR-1, but habitat for California jewelflower did not occur on NPR-1 and its occurrence was unlikely. As part of an ongoing effort to document the presence or absence of sensitive plant species on NPRC, surveys for species other than Hoover`s wooly-star were conducted in the spring of 1993. Abundant spring rains in 1993 created favorable growing conditions for annual forbs. Surveys in 1993 focused on potential habitat of several endangered and candidate species. The results of those surveys are presented in this report.

  3. California Energy Commission REGULATIONS

    E-Print Network [OSTI]

    California Energy Commission REGULATIONS NONRESIDENTIAL BUILDING ENERGY Disclosure Program California Code of Regulations Title 20. Public Utilities and Energy Division 2. State USE DISCLOSURE PROGRAM California Code of Regulations, Title 20, Division 2

  4. California Energy Commission GUIDELINES

    E-Print Network [OSTI]

    , electricity generation, photovoltaic, PV, PV Calculator, energy efficiency, guidelines, eligibilityCalifornia Energy Commission GUIDELINES GUIDELINES FOR CALIFORNIA'S SOLAR-300-2012-008-ED5-CMF CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr., Governor

  5. California Energy Commission GUIDELINES

    E-Print Network [OSTI]

    , photovoltaic, PV, PV Calculator, energy efficiency, guidelines, eligibility criteria, conditionsCalifornia Energy Commission GUIDELINES GUIDELINES FOR CALIFORNIA'S SOLAR ELECTRIC INCENTIVE PROGRAMS (SENATE BILL 1) Fourth Edition CALIFORNIA ENERGY COMMISSION Edmund G. Brown, Jr., Governor

  6. California Energy Commission GUIDELINES

    E-Print Network [OSTI]

    , electricity generation, photovoltaic, PV, PV Calculator, energy efficiency, guidelines, eligibility criteriaCalifornia Energy Commission GUIDELINES GUIDELINES FOR CALIFORNIA'S SOLAR ELECTRIC INCENTIVE PROGRAMS (SENATE BILL 1) Third Edition JUNE 2010 CEC3002010004CMF #12;CALIFORNIA ENERGY COMMISSION

  7. Arnold Schwarzenegger CALIFORNIA OCEAN WAVE

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor CALIFORNIA OCEAN WAVE ENERGY ASSESSMENT Prepared For: California this report as follows: Previsic, Mirko. 2006. California Ocean Wave Energy Assessment. California Energy Systems Integration · Transportation California Ocean Wave Energy Assessment is the final report

  8. California's electricity crisis

    E-Print Network [OSTI]

    Joskow, Paul L.

    2001-01-01T23:59:59.000Z

    The collapse of California's electricity restructuring and competition program has attracted attention around the world. Prices in California's competitive wholesale electricity market increased by 500% between the second ...

  9. Demand Response In California

    Broader source: Energy.gov [DOE]

    Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

  10. A decision support system for adaptive real-time management ofseasonal wetlands in California

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.; Hanna, W. Mark

    2001-10-16T23:59:59.000Z

    This paper describes the development of a comprehensive flow and salinity monitoring system and application of a decision support system (DSS) to improve management of seasonal wetlands in the San Joaquin Valley of California. The Environmental Protection Agency regulates salinity discharges from non-point sources to the San Joaquin River using a procedure known as the Total Maximum Daily Load (TMDL) to allocate the assimilative capacity of the River for salt among watershed sources. Management of wetland sources of salt load will require the development of monitoring systems, more integrative management strategies and coordination with other entities. To obtain local cooperation the Grassland Water District, whose primary function is to supply surface water to private duck clubs and managed wetlands, needs to communicate to local landowners the likely impacts of salinity regulation on the long term health and function of wildfowl habitat. The project described in this paper will also provide this information. The models that form the backbone of the DSS develop salinity balances at both a regional and local scale. The regional scale concentrates on deliveries to and exports from the Grasland Water District while the local scale focuses on an individual wetland unit where more intensive monitoring is being conducted. The design of the DSS is constrained to meet the needs of busy wetland managers and is being designed from the bottom up utilizing tools and procedures familiar to these individuals.

  11. Policy Implications of Permanently Flooded Islands in the Sacramento–San Joaquin Delta

    E-Print Network [OSTI]

    Suddeth, Robyn J.

    2011-01-01T23:59:59.000Z

    Environmental Science and Policy 12:631–643. Kimmerer W,discussions with attorneys and policy-makers familiar withSan Francisco (CA): Public Policy Institute of California.

  12. Weigel and Fredrickson: An Assessment of the Research Potential of 13 Ridgetop Archaeological Sites in Humboldt and Trinity Counties in Northwestern California; Hildebrandt and Hayes: Archaeological Investigations on Pilot Ridge, Six Rivers National Forest; Hildebrandt and Hayes: Archaeological Investigations on South Fork Mountain, Six Rivers and Shasta-Trinity National Forests; and Hildebrandt and Hayes: Archaeological Investigations on Pilot Ridge: Results of the 1984 Field Season

    E-Print Network [OSTI]

    Henn, Winfield G

    1988-01-01T23:59:59.000Z

    Sites in Humboldt and Trinity Counties in Northwestern Cali-Humboldt County and western Trinity County. Sponsored by theSix Rivers and Shasta-Trinity Na- preceded by extensive

  13. Santa Clara County- Green Building Policy for County Government Buildings

    Broader source: Energy.gov [DOE]

    In February 2006, the Santa Clara County Board of Supervisors approved a Green Building Policy for all county-owned or leased buildings. The standards were revised again in September 2009.

  14. Imperial County geothermal development. Quarterly report, April 1-June 30, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-06-30T23:59:59.000Z

    The activities of the Geothermal Office during the quarter are discussed, including: important geothermal events, geothermal waste disposal, a grant award by the California Energy Commission, the geothermal development meeting, and the current status of geothermal development in Imperial County. Activities of the Geothermal Planner are addressed, including permits, processing of EIR's, and other planning activities. Progress on the direct heat study is reported.

  15. Snohomish County Biodiesel Project

    SciTech Connect (OSTI)

    Terrill Chang; Deanna Carveth

    2010-02-01T23:59:59.000Z

    Snohomish County in western Washington State began converting its vehicle fleet to use a blend of biodiesel and petroleum diesel in 2005. As prices for biodiesel rose due to increased demand for this cleaner-burning fuel, Snohomish County looked to its farmers to ���¢��������grow���¢������� this fuel locally. Suitable seed crops that can be crushed to extract oil for use as biodiesel feedstock include canola, mustard, and camelina. The residue, or mash, has high value as an animal feed. County farmers began with 52 acres of canola and mustard crops in 2006, increasing to 250 acres and 356 tons in 2008. In 2009, this number decreased to about 150 acres and 300 tons due to increased price for mustard seed.

  16. Riverside County- Sustainable Building Policy

    Broader source: Energy.gov [DOE]

    In February 2009, the County of Riverside Board of Supervisors adopted Policy Number H-29, creating the Sustainable Building Policy. The Policy requires that all new county building projects...

  17. San Diego County- Wind Regulations

    Broader source: Energy.gov [DOE]

    The County of San Diego has established zoning guidelines for wind turbine systems of varying sizes in the unincorporated areas of San Diego County. Wind turbine systems can be classified as small,...

  18. Gas Pipelines, County Roads (Indiana)

    Broader source: Energy.gov [DOE]

    A contract with any Board of County Commissioners is required prior to the construction of a pipeline, conduit, or private drain across or along any county highway. The contract will include terms...

  19. Hamilton County- Home Improvement Program

    Broader source: Energy.gov [DOE]

    The Hamilton County, Ohio, Home Improvement Program (HIP) was originally initiated in 2002, and then reinstated in May 2008. The HIP loan allows homeowners in Hamilton County communities to borrow...

  20. Petroleum County Secondary Data Analysis

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Petroleum County Secondary Data Analysis July 23, 2012 1 Community Health Data, MT Dept American Diabetes Association (2012) Region 3 (South Central) ­ Judith Basin, Fergus, Petroleum* #12; Petroleum County Secondary Data Analysis July 23, 2012 2 Socioeconomic Measures1

  1. “The Making of” California’s Energy Crisis

    E-Print Network [OSTI]

    Whittington, Jan

    2002-01-01T23:59:59.000Z

    much individual California power plants increased earningspower plants were popular developments in California, butno new power plants had been constructed in California over

  2. NUCLEAR POWER in CALIFORNIA

    E-Print Network [OSTI]

    NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners

  3. California's Water Energy Relationship

    E-Print Network [OSTI]

    1 CALIFORNIA ENERGY COMMISSION California's Water ­ Energy Relationship Prepared in Support The California's Water-Energy Relationship report is the product of contributions by many California Energy, Lorraine White and Zhiqin Zhang. Staff would also like to thank the members of the Water-Energy Working

  4. Spatial Disaggregation of CO2 Emissions for the State of California

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; de la Rue du Can, Stephane; Wenzel, Tom; Fischer, Marc

    2008-06-11T23:59:59.000Z

    This report allocates California's 2004 statewide carbon dioxide (CO2) emissions from fuel combustion to the 58 counties in the state. The total emissions are allocated to counties using several different methods, based on the availability of data for each sector. Data on natural gas use in all sectors are available by county. Fuel consumption by power and combined heat and power generation plants is available for individual plants. Bottom-up models were used to distribute statewide fuel sales-based CO2 emissions by county for on-road vehicles, aircraft, and watercraft. All other sources of CO2 emissions were allocated to counties based on surrogates for activity. CO2 emissions by sector were estimated for each county, as well as for the South Coast Air Basin. It is important to note that emissions from some sources, notably electricity generation, were allocated to counties based on where the emissions were generated, rather than where the electricity was actually consumed. In addition, several sources of CO2 emissions, such as electricity generated in and imported from other states and international marine bunker fuels, were not included in the analysis. California Air Resource Board (CARB) does not include CO2 emissions from interstate and international air travel, in the official California greenhouse gas (GHG) inventory, so those emissions were allocated to counties for informational purposes only. Los Angeles County is responsible for by far the largest CO2 emissions from combustion in the state: 83 Million metric tonnes (Mt), or 24percent of total CO2 emissions in California, more than twice that of the next county (Kern, with 38 Mt, or 11percent of statewide emissions). The South Coast Air Basin accounts for 122 MtCO2, or 35percent of all emissions from fuel combustion in the state. The distribution of emissions by sector varies considerably by county, with on-road motor vehicles dominating most counties, but large stationary sources and rail travel dominating in other counties.The CO2 emissions data by county and source are available upon request.

  5. Immigration reform and California agriculture

    E-Print Network [OSTI]

    Martin, Philip

    2013-01-01T23:59:59.000Z

    reform and California agriculture Philip Martin Professor,proposals for California agriculture. Immigration reformCenter. 196 CALIFORNIA AGRICULTURE • VOLUME 67 , NUMBER 4

  6. Estimation of Loads of Mercury, Selenium, PCBs, PAHs, PBDEs, Dioxins, and1 Organochlorine Pesticides from the Sacramento-San Joaquin River Delta to San2

    E-Print Network [OSTI]

    1 Estimation of Loads of Mercury, Selenium, PCBs, PAHs, PBDEs, Dioxins, and1 Organochlorine concentrations from the Sacramento- San Joaquin River watershed were9 determined in water samples during flood 1.6 and 6.1%, respectively. Also monitored were PAHs, PBDEs (two years of19 data), and dioxins

  7. Iron County Minersville

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Lund Cedar Breaks National Monument Solar Energy Study Areas in Utah Map Prepared June 5, 2009 State Line County Boundary Solar Energy Study Area (As of 6/5/2009) Existing Designated Corridor (See Note 2 Statement to Develop and Implement Agency-Specific Programs for Solar Energy Development Moab Cedar City

  8. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01T23:59:59.000Z

    in California PEV Technology and Costs The main challengesthis analysis. FCV Technology and Costs A hydrogen fuel cell6. Hydrogen storage technology and cost status compared to

  9. CALIFORNIA ENERGY CALIFORNIA ENERGY DEMAND 2010-2020

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2010-2020 ADOPTED FORECAST for this report: Kavalec, Chris and Tom Gorin, 2009. California Energy Demand 20102020, Adopted Forecast. California Energy Commission. CEC2002009012CMF #12; i Acknowledgments The demand forecast

  10. A Bibliography Of The Early Life History Of Fishes. Volume 1, List Of Titles

    E-Print Network [OSTI]

    Hoyt, Robert D

    2002-01-01T23:59:59.000Z

    power plants in Sacramento-San Joaquin Delta, California.for power-plant entrainment studies. California Coop.

  11. Kristine Uhlman, PG EXPERIENCE SUMMARY

    E-Print Network [OSTI]

    Yang, Zong-Liang

    for Certification of four proposed power plants, evaluated water resources in Colusa, Sacramento, San Joaquin, King the proposed 5,100 acre-feet/year supply to the Tesla Power Plant in Alameda County, California. In partnership characterization, geologic data acquisition and analysis, mine site restoration, aquifer vulnerability assessment

  12. Final Environmental Assessment, Burleigh County Wind Energy Center

    Broader source: Energy.gov (indexed) [DOE]

    Assessment Environmental Assessment Environmental Assessment Burleigh County Wind Energy Center Burleigh County, North Dakota Final Burleigh County Wind, LLC BASIN...

  13. Center for Watershed Sciences | groundwaternitrate.ucdavis.edu | University of California, Davis Maximum reported raw-level nitrate concentration in community public water systems and state-

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    and Salinas Valley aquifers. Most nitrate in drinking water wells today was applied to the surface decades ago. This study focuses on the four-county Tulare Lake Basin and the Monterey County portion of the Salinas Valley 254,000 people in California's Tulare Lake Basin and Salinas Valley who are currently at risk

  14. EA-1852: Cloud County Community College Wind Energy Project,...

    Broader source: Energy.gov (indexed) [DOE]

    2: Cloud County Community College Wind Energy Project, Cloud County, Kansas EA-1852: Cloud County Community College Wind Energy Project, Cloud County, Kansas Summary This EA...

  15. Burlingame, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleigh County, North

  16. Hillsborough, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, searchCounty,City,HillsboroTexas:California:

  17. Hughson, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County,Ohio:Hughson, California: Energy

  18. Pittsburg, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S A Jump to:Pittsburg, California: Energy

  19. Poway, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards,PoseyPoudre Valley R E A,Poway, California:

  20. Inglewood, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogen JumpInglewood, California: Energy

  1. Fruitdale, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° ShowCounty, California:Frontier, NorthFruit

  2. Retrofit California Overview and Final Reports

    SciTech Connect (OSTI)

    Choy, Howard; Rosales, Ana

    2014-03-01T23:59:59.000Z

    Energy efficiency retrofits (also called upgrades) are widely recognized as a critical component to achieving energy savings in the building sector to help lower greenhouse gas (GHG) emissions. To date, however, upgrades have accounted for only a small percentage of aggregate energy savings in building stock, both in California and nationally. Although the measures and technologies to retrofit a building to become energy efficient are readily deployed, establishing this model as a standard practice remains elusive. Retrofit California sought to develop and test new program models to increase participation in the energy upgrade market in California. The Program encompassed 24 pilot projects, conducted between 2010 and mid-2013 and funded through a $30 million American Recovery and Reinvestment Act (ARRA) grant from the U.S. Department of Energy’s (DOE) Better Buildings Neighborhood Program (BBNP). The broad scope of the Program can be seen in the involvement of the following regionally based Grant Partners: Los Angeles County (as prime grantee); Association of Bay Area Governments (ABAG), consisting of: o StopWaste.org for Alameda County o Regional Climate Protection Authority (RCPA) for Sonoma County o SF Environment for the City and County of San Francisco o City of San Jose; California Center for Sustainable Energy (CCSE) for the San Diego region; Sacramento Municipal Utilities District (SMUD). Within these jurisdictions, nine different types of pilots were tested with the common goal of identifying, informing, and educating the people most likely to undertake energy upgrades (both homeowners and contractors), and to provide them with incentives and resources to facilitate the process. Despite its limited duration, Retrofit California undoubtedly succeeded in increasing awareness and education among home and property owners, as well as contractors, realtors, and community leaders. However, program results indicate that a longer timeframe will be needed to transform the market and establish energy retrofits as the new paradigm. Innovations such as Flex Path, which came about because of barriers encountered during the Program, have already shown promise and are enabling increased participation. Together, the pilots represent an unprecedented effort to identify and address market barriers to energy efficiency upgrades and to provide lessons learned to shape future program planning and implementation. The statistics reflects the scope of the marketing and outreach campaigns, which tested a variety of approaches to increase understanding of the benefits of energy upgrades to drive participation in the Program. More traditional methods such as TV and radio advertisements were complimented by innovative community based social marketing campaigns that sought to leverage the trusted status of neighborhood organizations and leaders in order to motivate their constituents to undertake retrofits. The remainder of this report provides an overview of Retrofit California including brief summaries of the pilots’ main components and highlights, followed by the major findings or takeaway lessons from the approaches that were tested. Eleven of the pilots will be continued, with modifications, under the ratepayer-funded Regional Energy Networks. Involvement in the RENS by many of the Retrofit California partners will ensure that early lessons learned are carried forward to guide future programs for energy upgrades in California.

  3. Biotic communities and brachiopod paleoecology of the Early Permian McCloud Formation, northern California

    E-Print Network [OSTI]

    Hanger, Rex Alan

    1986-01-01T23:59:59.000Z

    terrene, the shallow water carbonate build-ups are represented by the Early Permian McCloud Formation. Location of Study Area The McCloud Formation crops out discontinuously for about 60 kilometers within Shasta County, California (Figure 2). Effort...BIOTIC COMMUNITIES AND BRACHIOPOD PALEOECOLOGY OF THE EARLY PERMIAN McCLOUD FORMATION, NORTHERN CALIFORNIA. A Thesis by REX ALAN HANGER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements...

  4. Facies relationships in the Steven Sandstone, Kern County, California

    E-Print Network [OSTI]

    Findley, Richard Lee

    1975-01-01T23:59:59.000Z

    associated with the fan imply that these units represent the outer portions of the fan deposited far from the source of the turbi- dite flows. Outer-fan turbidite sequences were observed only in the lower half of the Elk Hills core and are characterized...

  5. A White Steller Jay at Big Creek, Fresno County, California

    E-Print Network [OSTI]

    Catherine E. Bower Journal:  Condor Volume:  34 Issue:  4 (July-August) Section:  From Field and Study Year:  1932 Pages:  194

  6. and Imperial County, California RECORD OF CATEGORICAL EXCLUSION...

    Broader source: Energy.gov (indexed) [DOE]

    changing insulators, and replacement of poles, circuit breakers, conductors, transformers, and crossarms." C, Regulatory Requirements in 10 CFR 1021.410 (b): 1. The...

  7. Budget Strategy: A Survey of California County Governments

    E-Print Network [OSTI]

    Sun, Jinping

    2010-01-01T23:59:59.000Z

    day funds, offering early retirement, increasing taxes andfreeze, furloughs, early retirements, salary freeze, labornumbers for furloughs, early retirement, and salary freeze

  8. Western Shallow Oil Zone, Elk Hills Field, Kern County, California:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    This study, Appendix V, addresses the Gusher Sands and their sub units and pools. Basic pressure, production and assorted technical dta were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off points for exploitation engineers to develop specific programs towards these ends. 16 refs., 9 tabs.

  9. Western Shallow Oil Zone, Elk Hills Field, Kern County, California:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. This study, Appendix II addresses the first Wilhelm Sands and its sub unites and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end.

  10. EIS-0294: Sutter Power Project, Sutter County, California

    Broader source: Energy.gov [DOE]

    This EIS analyzes Western Area Power Administration's (Western) decision to support Calpine Corporation (Calpine) to construct an electric generating facility and associated 230-kilovolt (kV) transmission line, approximately 3.5 miles in length, known as the Sutter Power Plant (SPP).

  11. Facies relationships in the Steven Sandstone, Kern County, California 

    E-Print Network [OSTI]

    Findley, Richard Lee

    1975-01-01T23:59:59.000Z

    in this thesis. Especially helpful were Jim Dorman, Jack Baker, Ron Waddel, and Ralph Brodek. Also, Morris Fishburn of the U. S. Navy provided access to cores at Elk Hills field. In addition, I appreciate the helpful criticisms of other members of my... in the same general direction as the regional strike of the basin. This trend continues to Midway-Sunset south of the Bakersfield Arch. However, large anticlines in the vicinity of the Bakersfield Arch are oblique to this trend. Elk Hills and North...

  12. Distribution of Macroinvertebrates Across a Tidal Gradient, Marin County, California

    E-Print Network [OSTI]

    Robinson, April H.; Cohen, Andrew N.; Lindsey, Brie; Grenier, Letitia

    2011-01-01T23:59:59.000Z

    on sedimentation and intertidal mudflat change in San Pablomarsh and the nearby mudflat at China Camp and other Sangreater infaunal density in the mudflat overall, although

  13. Lake County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups <LackawannaLagoBenton,(Redirected

  14. Geochemistry of Thermal Waters in Long Valley, Mono County, California |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to:Locations In

  15. Feldspar diagenesis in the Yowlumne sandstone, Kern County, California 

    E-Print Network [OSTI]

    Pike, John David

    1981-01-01T23:59:59.000Z

    reactions; (3) precipitation of minerals; and (4) mineral dissolution (Blatt et al, , 1972). Semi-permeable clay membranes commonly change pore water salinity in sandstones. If waters are flowing out of sandstones into shales, the sandstone waters... is reduced Ca~ may be released to pore waters by carbonate dis- solution as shown by the reaction: CaC03 + H+ = Ca~ + HCO3. (3) Reduction in pH may also promote hydrolysis of relatively unstable Ca-silicate minerals, such as plagioclase, selectively...

  16. Calaveras County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80 Jump370 JumpCal.

  17. Sacramento County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY Solutions JumpFacility | OpenSackets Harbor,

  18. San Benito County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton Sea Geothermal Area JumpPlanAugustine

  19. Santa Cruz County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasinSandusky,SanpeteSantaArizona:

  20. Shasta County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd

  1. Sierra County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbH Jump to: navigation,GmbHSiennaClub

  2. Siskiyou County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbHKentucky:Sinosol AGRapids,Siskiyou

  3. Solano County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG26588°,SocorromercurySolaire Direct SACounty,

  4. Santa Barbara County, California Data Dashboard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -Energy Proposed PenaltyLarge10 DOESandiaSanta

  5. San Bernardino County, California: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:Energysource HistorySam HoustondataSan

  6. San Luis Obispo County, California: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:Energysource HistorySamElectricSan

  7. Imperial County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatellite Interferometric

  8. Orange County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEITODO Jump to:Optony Inc Jump

  9. Yolo County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, NewYanceyYokayo Biofuels Jump to:

  10. Yuba County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, NewYanceyYokayoYorktown

  11. Riverside County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to: navigation, search Name RippeyRiverside

  12. San Francisco County, California: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY)Project Jump

  13. San Mateo County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY)Project JumpSan FranciscoWindMesaMateo

  14. Santa Clara County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY)ProjectValley, Nevada:2938907°,

  15. Santa Barbara County, California Data Dashboard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department ofDepartment of

  16. Santa Barbara County, California Summary of Reported Data | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department ofDepartment ofEnergy Summary of Reported Data

  17. Sonoma County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonix Japan Inc Jump to: navigation, searchSonoma

  18. Structural interpretation of Coso Geothermal field, Inyo County, California

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, search Name StratosolarInformation| Open

  19. Sutter County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co LtdLLC Place: Missoula, Montana| OpenSutter

  20. El Dorado County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh University akaCajon,Cerrito,

  1. Merced County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls, Wisconsin: Energy ResourcesMentarixEnclosed

  2. Stanislaus County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity CorpSpringfield,Wind FarmJump to:

  3. Alpine County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place: Wayne,Energy Information Jump

  4. Amador County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan Blanch Green Fuels joint

  5. Modoc County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker,Modernizing Public|

  6. Mono County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia | Open EnergyMongoliaJunction,

  7. Nevada County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR) JumpAir QualityBureau of

  8. Tulare County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (UtilityTri-StateTucson Estates, Arizona:

  9. Dayao County Yupao River BasDayao County Yupao River Basin Hydro...

    Open Energy Info (EERE)

    Dayao County Yupao River BasDayao County Yupao River Basin Hydro electricity Development Co Ltd in Jump to: navigation, search Name: Dayao County Yupao River BasDayao County Yupao...

  10. CALIFORNIA CARBON SEQUESTRATION THROUGH

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN WASHINGTON. Carbon Sequestration Through Changes in Land Use in Washington: Costs and Opportunities. California for Terrestrial Carbon Sequestration in Oregon. Report to Winrock International. #12;ii #12;iii Preface

  11. California Energy Commission REGULATIONS

    E-Print Network [OSTI]

    California Energy Commission REGULATIONS FINAL STATEMENT OF REASONS ENFORCEMENT PROCEDURES by Government Code section 11346.9(a) for the California Energy Commission (Energy Commission) regulations 399.30 (l) directs the Energy Commission to adopt regulations specifying procedures

  12. NORTHERN CALIFORNIA METALLURGICAL SECTION

    E-Print Network [OSTI]

    Wu, Junqiao

    . Chin, Department of Materials Science, University of California, Berkeley, California 12:30 "UFO Professor Robert Creegan as our luncheon speaker. His topic will be "UFO's -- Borders of Science." 5

  13. Ada County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara, California Sector:New Hampshire:Ada County,

  14. Adams County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara, CaliforniaI Jump to:Adairville,Adams County,

  15. Adams County, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara, CaliforniaI JumpIowa: EnergyAdams County,

  16. Broomfield County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to: navigation,Biogen1Broomfield County,

  17. Broward County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to: navigation,Biogen1BroomfieldCounty,

  18. Burleigh County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleigh County, North Dakota: Energy

  19. Business Council of Westchester County (NY) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleigh County,Busch Ranch Jump

  20. Alamosa County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60Alameda County, California:Colorado: Energy

  1. Hillsborough County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy ResourcesNew Jersey:County, Florida:

  2. Hillsborough County, New Hampshire: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy ResourcesNew Jersey:County,

  3. Honolulu County, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHoloceneHonest BuildingsHonolulu County,

  4. Hudson County, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to:Would YouHualalaiCounty, New

  5. Humboldt County, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County,Ohio:Hughson, California:Humble,Iowa:

  6. Atlantic County, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformationGuide | OpenAthens UtilityCounty, New

  7. Bailey County Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: EnergyBagley Public Utilities CommBailey County

  8. Category:County Climate Zones | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashton Greens Jump Lease.UT"OH"county

  9. Centre County, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGoCaterpillarCAPSPower AssnPlainsCounty,

  10. Montgomery County Resource Recovery Biomass Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy Resources

  11. Montgomery County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy ResourcesAlabama: Energy

  12. Montgomery County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy ResourcesAlabama:

  13. Montgomery County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy ResourcesAlabama:802095°,

  14. Montgomery County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy879°, -86.8220341° Show

  15. Montgomery County, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy879°, -86.8220341°

  16. Montgomery County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy879°,

  17. Montgomery County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy879°,Kentucky: Energy

  18. Montgomery County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy879°,Kentucky:

  19. Montgomery County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy879°,Kentucky:Missouri:

  20. Montgomery County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy879°,Kentucky:Missouri:New

  1. Montgomery County, Tennessee: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California:Tennessee: Energy Resources Jump

  2. Montgomery County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California:Tennessee: Energy Resources

  3. Montgomery County, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California:Tennessee: Energy

  4. Frontier County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° ShowCounty, California: EnergyofFronius744778°,

  5. California Energy Commission

    E-Print Network [OSTI]

    presents its audit report concerning our review of the California Energy Commission's (energy commission Recommendation 40 Response to the Audit California Energy Commission 41 #12;1 SUMMARY RESULTS IN BRIEF C oncernsCalifornia Energy Commission: Although External Factors Have Caused Delays in Its Approval of Sites

  6. UCDavis University of California A California Energy

    E-Print Network [OSTI]

    California at Davis, University of

    PEV drivers charge at home #12;Charging behavior ­ self reportedLarger sample ­About 50% sayUCDavis University of California A California Energy Commission Public Interest Energy Research · Fleet Operation · Energy Savings Battery studies · Benchmark Testing · 2nd use · End of life Spatial

  7. Clark County- Energy Conservation Code

    Broader source: Energy.gov [DOE]

    In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings...

  8. Marin County- Solar Access Code

    Broader source: Energy.gov [DOE]

    Marin County's Energy Conservation Code is designed to assure new subdivisions provide for future passive or natural heating or cooling opportunities in the subdivision to the extent feasible. ...

  9. Queen Anne's County- Solar Zoning

    Broader source: Energy.gov [DOE]

    Queen Anne's County zoning code allows for ground mounted solar arrays in areas zoned as "open space," "agricultural," and "countryside" districts.

  10. EEO Employment Data Allegheny County

    E-Print Network [OSTI]

    Sibille, Etienne

    EEO Employment Data for Allegheny County and the Pittsburgh region February 2008 University Center................................................................................................................. 2 Employment Summary by EEO Occupation Group............................................................................... 3 Employment by Detail Census Occupation Category

  11. EIS-0515: Bay Delta Conservation Plan, Sacramento-San Joaquin Delta,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartmentDepartmentStatement |Department of74California |

  12. Vegetation N A County

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 - USAF Wind Power ProgramDeslippe,N A County

  13. EA-2013: Herbicide Application at Three Substations; Imperial County (California), Maricopa and Yuma Counties (Arizona)

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) and the Bureau of Land Management (BLM) are jointly preparing an EA that analyzes the potential environmental impacts of Western’s proposed use of...

  14. Madison County- Wind Energy Systems Ordinance

    Broader source: Energy.gov [DOE]

    Madison County adopted a new land use ordinance in May 2010, which includes provisions for permitting wind turbines within the county.

  15. Uptakes of Cs and Sr on San Joaquin soil measured following ASTM method C1733.

    SciTech Connect (OSTI)

    Ebert, W.L.; Petri, E.T. (Chemical Sciences and Engineering Division)

    2012-04-04T23:59:59.000Z

    Series of tests were conducted following ASTM Standard Procedure C1733 to evaluate the repeatability of the test and the effects of several test parameters, including the solution-to-soil mass ratio, test duration, pH, and the concentrations of contaminants in the solution. This standard procedure is recommended for measuring the distribution coefficient (K{sub d}) of a contaminant in a specific soil/groundwater system. One objective of the current tests was to identify experimental conditions that can be used in future interlaboratory studies to determine the reproducibility of the test method. This includes the recommendation of a standard soil, the range of contaminant concentrations and solution matrix, and various test parameters. Quantifying the uncertainty in the distribution coefficient that can be attributed to the test procedure itself allows the differences in measured values to be associated with differences in the natural systems being studied. Tests were conducted to measure the uptake of Cs and Sr dissolved as CsCl and Sr(NO{sub 3}){sub 2} in a dilute NaHCO{sub 3}/SiO{sub 2} solution (representing contaminants in a silicate groundwater) by a NIST standard reference material of San Joaquin soil (SRM 2709a). Tests were run to measure the repeatability of the method and the sensitivity of the test response to the reaction time, the mass of soil used (at a constant soil-to-solution ratio), the solution pH, and the contaminant concentration. All tests were conducted in screw-top Teflon vessels at 30 C in an oven. All solutions were passed through a 0.45-{mu}m pore size cellulose acetate membrane filter and stabilized with nitric acid prior to analysis with inductively-coupled plasma mass spectrometry (ICP-MS). Scoping tests with soil in demineralized water resulted in a solution pH of about 8.0 and the release of small amounts of Sr from the soil. Solutions were made with targeted concentrations of 1 x 10{sup -6} m, 1 x 10{sup -5} m, 2.5 x 10{sup -5} m, 5 x 10{sup -5} m, 1 x 10{sup -4} m, and 5 x 10{sup -4} m to measure the effects of the Cs and Sr concentrations on their uptake by the soil. The pH values of all solutions were adjusted to about pH 8.5 so that the effects of pH and concentration could be measured separately. The 1 x 10{sup -4} m solutions were used to measure the repeatability of the test and the effects of duration, scale, and imposed pH on the test response.

  16. Granite County Secondary Data Analysis

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Granite County Secondary Data Analysis July 23, 2012 1 1 Community Health Data, MT Dept (CDC) (2012) 4 American Diabetes Association (2012) Region 4 (Southwest) ­ Lewis and Clark, Granite. CLRD* #12; Granite County Secondary Data Analysis July 23, 2012 2 Socioeconomic Measures1

  17. eScholarship provides open access, scholarly publishing services to the University of California and delivers a dynamic

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Estuary requires policies which: (1) establish internal Sacramento­San Joaquin Delta (the Delta) flows habitat; (3) increase inflows from the Sacramento and San Joaquin rivers; (4) increase tidal marsh habitat which: (1) establish internal Sacramento­San Joaquin Delta (the Delta) flows that create a tidally mixed

  18. Spatial Disaggregation of CO2 Emissions for the State of California

    E-Print Network [OSTI]

    consumed. In addition, several sources of CO2 emissions, such as electricity generated in and imported fromSpatial Disaggregation of CO2 Emissions for the State of California Stephane de la Rue du Can, Tom dioxide (CO2) emissions from fuel combustion1 to the 58 counties in the state. The total emissions

  19. Spatial Disaggregation of CO2 Emissions for the State of California

    E-Print Network [OSTI]

    consumed. In addition, several sources of CO2 emissions, such as electricity generated in and imported fromSpatial Disaggregation of CO2 Emissions for the State of California Stephane de la Rue du Can, Tom carbon dioxide (CO2) emissions from fuel combustion1 to the 58 counties in the state. The total emissions

  20. Modeling Tidal Freshwater Marsh Sustainability in the Sacramento–San Joaquin Delta Under a Broad Suite of Potential Future Scenarios

    E-Print Network [OSTI]

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01T23:59:59.000Z

    Francisco region. California Energy Commission. Publicationfour marshes in high and low energy fluvial environments asMarshes situated in high-energy zones were margin- ally more

  1. EIS-0515: Bay Delta Conservation Plan; Sacramento-San Joaquin Delta,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7Estes toprepared this DraftStatement |California

  2. California’s Top Two Primary and the Business Agenda

    E-Print Network [OSTI]

    McGhee, Eric

    2015-01-01T23:59:59.000Z

    Quinn, Tony. 2013. The “Top Two” System: Working Like ItAssessing California’s Top-Two Primary and RedistrictingCalifornia’s Top Two Primary and the Business Agenda Eric

  3. Endangered species and cultural resources program, Naval Petroleum Reserves in California: Annual report FY95

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    In FY95, EG and G Energy Measurements, Inc. (EG and G/EM) continued to support efforts to protect endangered species and cultural resources at the Naval Petroleum Reserves in California (NPRC). These efforts are conducted to ensure NPRC compliance with regulations regarding the protection of listed species and cultural resources on Federal properties. Population monitoring activities are conducted annually for San Joaquin kit foxes, giant kangaroo rats, blunt-nosed leopard lizards, and Hoover`s wooly-star. To mitigate impacts of oil field activities on listed species, 674 preactivity surveys covering approximately 211 hectares (521 acres) were conducted in FY95. EG and G/EM also assisted with mitigating effects from third-party projects, primarily by conducting biological and cultural resource consultations with regulatory agencies. EG and G/EM has conducted an applied habitat reclamation program at NPRC since 1985. In FY95, an evaluation of revegetation rates on reclaimed and non-reclaimed disturbed lands was completed, and the results will be used to direct future habitat reclamation efforts at NPRC. In FY95, reclamation success was monitored on 50 sites reclaimed in 1985. An investigation of factors influencing the distribution and abundance of kit foxes at NPRC was initiated in FY94. Factors being examined include habitat disturbance, topography, grazing, coyote abundance, lagomorph abundance, and shrub density. This investigation continued in FY95 and a manuscript on this topic will be completed in FY96. Also, Eg and G/EM completed collection of field data to evaluate the effects of a well blow-out on plant and animal populations. A final report will be prepared in FY96. Finally, EG and G/EM completed a life table analysis on San Joaquin kit foxes at NPRC.

  4. California’s North Coast Fishing Communities Historical Perspective and Recent Trends: Regional Profile

    E-Print Network [OSTI]

    Pomeroy, Caroline; Thomson, Cynthia J.; Stevens, Melissa M.

    2011-01-01T23:59:59.000Z

    thousands of pounds), and tri-county contribution to totalDel Norte counties, and tri- county contribution to totaland Del Norte counties, and tri-county sum relative to total

  5. California’s North Coast Fishing Communities Historical Perspective and Recent Trends

    E-Print Network [OSTI]

    Pomeroy, Caroline; Thomson, Cynthia J.; Stevens, Melissa M.

    2011-01-01T23:59:59.000Z

    Coast counties and the tri-county region. The demographicthousands of pounds), and tri-county contribution to totalDel Norte counties, and tri- county contribution to total

  6. Proceedings of the Sixth California Islands Symposium, Ventura, California, December 1 3, 2003

    E-Print Network [OSTI]

    Silver, Whendee

    Proceedings of the Sixth California Islands Symposium, Ventura, California, December 1 ­ 3, 2003 of the Sixth California Islands Symposium, Ventura, California, December 1 ­ 3, 2003. National Park Service

  7. California Energy Commission

    Office of Environmental Management (EM)

    California Energy Commission Quadrennial Water Review Comments - June 19, 2014 Water-Energy Nexus Water and energy systems are inextricably linked -- producing energy uses large...

  8. CaliforniaFIRST

    Broader source: Energy.gov [DOE]

    Eligibility is generally determined by the property records and value, and the property must meet general underwriting criteria established by the California Statewide Communities Development Aut...

  9. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    SciTech Connect (OSTI)

    Greenblatt, Jeffery B.

    2013-10-10T23:59:59.000Z

    A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.

  10. Planning Water Use in California

    E-Print Network [OSTI]

    Eisenstein, William; Kondolf, G. Mathias

    2008-01-01T23:59:59.000Z

    the University of Maryland Water Policy Collaborative, 2006.FURTH ER READ ING California Department of Water Resources.California Water Plan Update 2005: A Framework for Action.

  11. Sonoma County- Energy Independence Program

    Broader source: Energy.gov [DOE]

    '''The Federal Housing Financing Agency issued a statement in July 2010 that was critical of PACE programs. Many PACE programs, including Sonoma County's, were temporarily suspended in response to...

  12. San Diego County- Solar Regulations

    Broader source: Energy.gov [DOE]

    The County of San Diego has established [http://www.sdcounty.ca.gov/dplu/zoning/formfields/DPLU-316.pdf zoning guidelines] for solar electric systems of varying sizes in the unincorporated areas of...

  13. Orange County- Wind Permitting Standards

    Broader source: Energy.gov [DOE]

    In December 2010, the County of Orange Board of Supervisors adopted small wind performance and development standards (Ord. No. 10-020) in order to promote distributed generation systems in non...

  14. R[CIPIENT:Loudoun County

    Broader source: Energy.gov (indexed) [DOE]

    Loudoun County u.s. DEPARTl IENT OF ENER GY EERE PROJECT MANAG EMENT CENTER NEPA DETERllINATION PROJEcr TITLE: EECBG Funded Projects - SOW (S) Page I of2 STATE: VA Funding...

  15. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    installed at California power plants. Furthermore, recentlyinformation for California’s power plants. Personalinformation for California’s power plants. Personal

  16. EECBG Success Story: Solar Projects Provide Energy to County...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County Fairgrounds. | Photo courtesy of Ulster County Ulster County Fairgrounds in New York is using funding from the Energy Efficiency and Conservation Block Grant to install a...

  17. Linn County Rural Electric Cooperative- Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of rebates to commercial,...

  18. Homelessness in California

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    Homelessness in California · · · John M. Quigley Steven Raphael Eugene Smolensky with Erin Mansur-in-Publication Data Quigley, John M. Homelessness in California / John M. Quigley, Steven Raphael, Eugene Smolensky. p. The authors of the present volume--John Quigley, Stephen Raphael, and Eugene Smolensky, all from the Goldman

  19. STATE OF CALIFORNIA -NATURAL RESOURCES AGENCY CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    Strategic Plan Governor Brown's Clean Energy Jobs Plan directed the Energy Commission to prepare a planSTATE OF CALIFORNIA - NATURAL RESOURCES AGENCY CALIFORNIA ENERGY COMMISSION 1516 Ninth Street Sacramento, California 95814 Main website: WWN.energy.ca.gov STATE OF CALIFORNIA ENERGY RESOURCES

  20. Computeer-based decision support tools for evaluation of actions affecting flow and water quality in the San Joaquin Basin

    SciTech Connect (OSTI)

    Quinn, N.W.T.

    1993-01-01T23:59:59.000Z

    This document is a preliminary effort to draw together some of the important simulation models that are available to Reclamation or that have been developed by Reclamation since 1987. This document has also attempted to lay out a framework by which these models might be used both for the purposes for which they were originally intended and to support the analysis of other issues that relate to the hydrology and to salt and water quality management within the San Joaquin Valley. To be successful as components of a larger Decision Support System the models should to be linked together using custom designed interfaces that permit data sharing between models and that are easy to use. Several initiatives are currently underway within Reclamation to develop GIS - based and graphics - based decision support systems to improve the general level of understanding of the models currently in use, to standardize the methodology used in making planning and operations studies and to permit improved data analysis, interpretation and display. The decision support systems should allow greater participation in the planning process, allow the analysis of innovative actions that are currently difficult to study with present models and should lead to better integrated and more comprehensive plans and policy decisions in future years.

  1. STATE OF CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    MEETING STATE OF CALIFORNIA ENERGY COMMISSION In the Matter of ) ) California Clean Energy Jobs by the voters in November of last year, and it's known as the clean energy -- or California Clean Energy Jobs in the areas of energy efficiency and clean energy jobs in California. We want to see schools leveraging

  2. CALIFORNIA ENERGY California Outdoor Lighting Baseline

    E-Print Network [OSTI]

    Design of Commercial Building Ceiling Systems Integrated Design of Residential Ducting & Air Flow Systems Author Sonoma, California Managed By: New Buildings Institute Cathy Higgins, Program Director White Jenkins, PIER Buildings Program Manager Terry Surles, PIER Program Director Robert L. Therkelsen Executive

  3. CALIFORNIA ENERGY California Outdoor Lighting Baseline

    E-Print Network [OSTI]

    Design of Commercial Building Ceiling Systems Integrated Design of Residential Ducting & Air Flow Systems Analytics, Inc. Dr. Roger Wright, Lead Author Sonoma, California Managed By: New Buildings Institute Cathy, Contract Manager Nancy Jenkins, PIER Buildings Program Manager Terry Surles, PIER Program Director Robert L

  4. UCDavis University of California A California Energy

    E-Print Network [OSTI]

    California at Davis, University of

    % of USA, California new car buyers have a stable parking spot 25 feet from electricity each night 0% 10 Agency, Clean Energy Ministerial Electric Vehicle Initiative,(16 Energy Ministries), Clinton 40, Rocky-in Prius Battery kWh: Charge Time: Level 1 Level 2 Level 3 All Electric Range: Price: 3hrs/110v (15A) 1

  5. Geothermal resources of California

    SciTech Connect (OSTI)

    Bezore, S.P.

    1984-06-01T23:59:59.000Z

    Geothermal resources may be classified into two types: high temperature, >150 C, suitable for electrical generation and low- to moderate-temperature, 20-150 C, suitable for direct use. To further the development of geothermal resources in California, a concentrated study of low-temperature and moderate-temperature geothermal resources has been conducted by the California Department of Conservation. As part of that study a map containing technical data on the geothermal resources of California is now available to help planners, local governments, etc. develop their local resources.

  6. Solar Construction Permitting Standards (California)

    Broader source: Energy.gov [DOE]

    Two bills signed in 2012 place limits on the fees that cities, counties, cities and counties, and charter cities can charge for a solar permit. AB 1801 specifies that a local government cannot base...

  7. Camden County- Wind Energy Systems Ordinance

    Broader source: Energy.gov [DOE]

    In September 2007, Camden County adopted a wind ordinance to regulate the use of wind-energy systems in the county and to describe the conditions by which a permit for installing such a system may...

  8. Watauga County- Wind Energy System Ordinance

    Broader source: Energy.gov [DOE]

    In 2006, Watauga County adopted a wind ordinance to regulate the use of wind-energy systems in the county and to describe the conditions by which a permit for installing such a system may be...

  9. Hyde County- Wind Energy Facility Ordinance

    Broader source: Energy.gov [DOE]

    Hyde County, located in eastern North Carolina, adopted a wind ordinance in 2008 to regulate the use of wind energy facilities throughout the county, including waters within the boundaries of Hyde...

  10. Tyrrell County- Wind Energy Facility Ordinance

    Broader source: Energy.gov [DOE]

    Tyrrell County, located in northeastern North Carolina, adopted a wind ordinance in 2009 to regulate the use of wind energy facilities in the unincorporated areas of the county. The ordinance is...

  11. Carroll County- Green Building Property Tax Credit

    Broader source: Energy.gov [DOE]

    The state of Maryland permits Carroll County (Md Code: Property Tax § 9-308(e)) to offer property tax credits for high performance buildings if it chooses to do so.* Carroll County has exercised...

  12. Miami-Dade County- Sustainable Buildings Program

    Broader source: Energy.gov [DOE]

    In 2005, the Miami-Dade Board of County Commissioners passed a resolution to incorporate sustainable building measures into county facilities. In 2007, Ordinance 07-65 created the Sustainable...

  13. San Bernardino County- Green Building Requirement

    Broader source: Energy.gov [DOE]

    In August 2007, the San Bernardino County Board of Supervisors approved a policy requiring that all new county buildings and major renovations be built to LEED Silver standards. The decision was...

  14. Pitt County- Wind Energy Systems Ordinance

    Broader source: Energy.gov [DOE]

    The Pitt County Board of Commissioners adopted amendments to the county zoning ordinance in March 2010 which classify wind energy systems as an accessory use and establish siting and permitting...

  15. ATOC 3500/CHEM 3151 Spring 2014 The southern San Joaquin Valley of California one of the largest agricultural regions in the

    E-Print Network [OSTI]

    Toohey, Darin W.

    is from steam generators used in the oil recovery process. These generators emit SO2 at a rate of 400 of the largest agricultural regions in the United States - experiences extended periods of stagnant air this information, create a box model of the valley and calculate the steady-state SO2 concentration (in units

  16. ,"California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas, Wet

  17. ,"California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas, WetCoalbedNonassociated

  18. Pinellas County Fall Gardening 101 Theresa Badurek, Urban Horticulture Extension Agent, Pinellas County

    E-Print Network [OSTI]

    Jawitz, James W.

    Cooperative Extension Program, and Boards of County Commissioners Cooperating. Parsley, Petroselinum crispum

  19. Solar Applications to Multiple County Buildings Feasibility Study

    Broader source: Energy.gov [DOE]

    This study was requested by Salt Lake County in an effort to obtain a cursory overview of solar electric and solar thermal application possibilities on the rooftops of existing county buildings. The subject buildings represent various County Divisions: Aging Services, Community Services, County Health, County Library, Parks & Recreation, Public Works, County Sheriff and Youth Services. There are fifty two buildings included in the study.

  20. Archuleta County CO Lineaments

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-01-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Archuleta Lineaments Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: This layer traces apparent topographic and air-photo lineaments in the area around Pagosa springs in Archuleta County, Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable “plumbing system” that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and right-of-ways. These lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Note: This shape file was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and nature. Spatial Domain: Extent: Top: 4132831.990103 m Left: 311979.997741 m Right: 331678.289280 m Bottom: 4116067.165795 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  1. POSTGRADUATE MONTEREY, CALIFORNIA

    E-Print Network [OSTI]

    Identity Theft Prevention, Computer Security, Information Assurance, Social Engineering, CyberNAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution COVERED Master's Thesis 4. TITLE AND SUBTITLE: Title (Mix case letters) Identity Theft Prevention in Cyber

  2. CALIFORNIA ENERGY FOURTH EDITION

    E-Print Network [OSTI]

    standard, biomass, solar thermal electric, wind, existing renewable #12;Table of Contents I - IntroductionCALIFORNIA ENERGY COMMISSION EXISTING RENEWABLE FACILITIES PROGRAM FOURTH EDITION GUIDEBOOK MARCH RENEWABLE ENERGY OFFICE Valerie Hall Deputy Director EFFICIENCY, RENEWABLES & DEMAND ANALYSIS DIVISION #12

  3. CALIFORNIA ENERGY COMMISSIONGUIDEBOOK

    E-Print Network [OSTI]

    renewable energy, production incentives, renewables portfolio standard, biomass, solar thermal electricCALIFORNIA ENERGY COMMISSION COMMISSIONGUIDEBOOK EXISTING RENEWABLE FACILITIES PROGRAM FIFTH Office Manager RENEWABLE ENERGY OFFICE Valerie Hall Deputy Director ENERGY EFFICIENCY AND RENEWABLES

  4. CALIFORNIA INVESTMENT PLAN FOR

    E-Print Network [OSTI]

    ) .................................................................... 25 Natural Gas TRANSPORTATION COMMITTEE James D. Boyd Presiding Member Karen Douglas Associate Member Primary Author was prepared by the California Energy Commission's Transportation Committee as part of the Alternative

  5. Benton County | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County,InformationBenson,Bentley,Benton County

  6. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Bureau of Land Management with DOE’s Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western’s transmission lines.

  7. Asbestos Emission Control Plan Dakota County, Minnesota

    E-Print Network [OSTI]

    Netoff, Theoden

    Asbestos Emission Control Plan UMore Park Dakota County, Minnesota Prepared for University of Minnesota Revised: July 22, 2009 UMP005460 #12;Asbestos Emission Control Plan UMore Park Dakota County.0.doc iii Asbestos Emission Control Plan UMore Park Dakota County, Minnesota Revised: July 22, 2009

  8. Welcome to Union County Extension. The service offered to the citizens of Union County is a part-

    E-Print Network [OSTI]

    Jawitz, James W.

    education continues to be a Tri-County initiative through Bradford, Baker and Union County. This pro- gramWelcome to Union County Extension. The service offered to the citizens of Union County is a part- nership between Union County Board of County Commissioners and the University of Florida/IFAS. The mission

  9. EIS-0404: Los Vaqueros Reservoir Expansion Project, California

    Broader source: Energy.gov [DOE]

    This EIS/Environmental Impact Report was prepared by the Department of the Interior (Bureau of Reclamation, Mid-Pacific Region) and the Contra Costa Water District to evaluate the environmental impacts of a proposal to enlarge the existing Los Vaqueros Reservoir in Contra Costa County, California. DOE’s Western Area Power Administration (Western) was a cooperating agency because it has jurisdiction over transmission facilities that were expected to be relocated under the proposed action. Based on project changes, however, Western has no action and therefore will not adopt the EIS or issue a ROD.

  10. Humboldt Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County,Ohio:Hughson,Hill, California: Energy

  11. Monterey Park, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy Resources Jump to:Park,

  12. Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.

    SciTech Connect (OSTI)

    Catechis, Christopher Spyros

    2013-10-01T23:59:59.000Z

    Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  13. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    from imports. Onshore crude oil production in California isa peak in production within California of both crude oil and

  14. Workforce Solutions for Tarrant County

    E-Print Network [OSTI]

    Texas at Arlington, University of

    East 8. East Texas 9. West Central 10. Upper Rio Grande 11. Permian Basin 12. Concho Valley 13. Heart 1. Panhandle 2. South Plains 3. North Texas 4. North Central 5. Tarrant County 6. Dallas 7. North of Texas 14. Capital Area 15. Rural Capital 16. Brazos Valley 17. Deep East Texas 18. South East Texas 19

  15. Retrofit Savings for Brazos County

    E-Print Network [OSTI]

    Baltazar-Cervantes, J. C.; Shao, X.; Claridge, D. E.

    2001-01-01T23:59:59.000Z

    This report presents the energy and dollar savings for the period May 2000 - April 2001 for 10 of the Brazos County facilities that have been retrofit. The electricity use saved was 555,170 kWh and the demand was 1062 kW, which is equivalent to a...

  16. Incentive Pass-through for Residential Solar Systems in California

    Broader source: Energy.gov [DOE]

    The deployment of solar photovoltaic (PV) systems has grown rapidly over the last decade, partly because of various government incentives. In the United States, those established in California are among the largest and longest-running incentives. Building on past research, this report addresses the still-unanswered question: to what degree have the direct PV incentives in California been passed along from installers to consumers? This report addresses this question by carefully examining the residential PV market in California and applying both a structural-modeling approach and a reduced-form regression analysis to estimate the incentive pass-through rate. The results suggest an average pass-through rate of direct incentives of nearly 100%, but with regional differences among California counties. While these results could have multiple explanations, they suggest a relatively competitive market and well-functioning subsidy program. Further analysis is required to determine whether similar results broadly apply to other states, to other customer segments, to all third-party-owned PV systems, or to all forms of financial incentives for solar.

  17. California: California's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of California.

  18. California Energy Commission CONSULTANT REPORT

    E-Print Network [OSTI]

    ) and its subcontractors prepared this impact analysis on the 2013 Title 24, Building Energy Efficiency impacts of proposed changes to the California 2013 Building Energy Efficiency Standards on a regional requirements. Keywords: California Energy Commission, Building Energy Efficiency Standards, Architectural

  19. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    , infrastructure, buildings research, distributed generation, smart grid enacted Assembly Bill 1890 (Brulte, Chapter 854, Statutes of 1996), California's electric utility, development, and demonstration (RD&D) from California's investorowned utilities to state government--a major

  20. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    , advanced electricity generation, renewable energy, infrastructure, buildings research, distributed (Brulte, Chapter 854, Statutes of 1996), California's electric utility restructuring legislation, and demonstration (RD&D) from California's investorowned utilities to state government; a major change intended