Sample records for jersey utility fed

  1. Sandia National Laboratories: New Jersey Board of Public Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jersey Board of Public Utilities New Jersey Transit FutureGrid MOU Signing On October 4, 2013, in Analysis, Energy Surety, Infrastructure Security, Microgrid, Modeling, Modeling &...

  2. Borough of Milltown, New Jersey (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotins EnergiaMilltown, New Jersey (Utility Company)

  3. Borough of Butler, New Jersey (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotins Energia JumpBorough of Butler, New Jersey

  4. Borough of Park Ridge, New Jersey (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotins EnergiaMilltown, New JerseyInformation

  5. POST-CONSTRUCTION WILDLIFE MONITORING AT THE ATLANTIC CITY UTILITIES AUTHORITY-JERSEY ATLANTIC WIND POWER FACILITY

    E-Print Network [OSTI]

    Firestone, Jeremy

    WIND POWER FACILITY PROJECT STATUS REPORT IV Submitted to: New Jersey Board of Public Utilities New Authority (ACUA) wind power facility. The period covered by this report is 1 January to 31 August 2009

  6. City of Vineland, New Jersey (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation Smyrna Beach,Stuart, Iowa (UtilityCity ofCity of

  7. Community Energy Systems and the Law of Public Utilities. Volume Thirty-two. New Jersey

    SciTech Connect (OSTI)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01T23:59:59.000Z

    A detailed description is presented of the laws and programs of the State of New Jersey governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  8. New Jersey SmartStart Buildings- New Construction and Retrofits

    Broader source: Energy.gov [DOE]

    New Jersey SmartStart Buildings is a program sponsored by the New Jersey Board of Public Utilities in partnership with New Jersey’s gas and electric utilities. The program has three main project...

  9. Performance and nutrient utilization of steers fed short term reconstituted grains

    E-Print Network [OSTI]

    Simpson, Edward James

    1982-01-01T23:59:59.000Z

    experiment. The ration's were composed on a dry basis of 86X grain and 14X of the same protein supplement used in the feeding experiment. Eight Beefmaster crossbred steers of the same origin and weight as those used in the growth trial were assigned...PERFORMANCE AND NUTRIENT UTILIZATION OF STEERS FED SHORT TERM RECONSTITUTED GRAINS A Thesis by EDWARD JAMES SIMPSON, JR. Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree...

  10. Nutrient digestibility and protein utilization by heifers and steers fed high molasses-urea diets

    E-Print Network [OSTI]

    Pina, Angel Modesto

    1973-01-01T23:59:59.000Z

    Directed by: Professor J. K. Riggs Experiments were conducted to study the effect of roughage level on nutrient digestibility of high molasses- urea diets and to evaluate the level of fish meal best utilized by animals in such diets. The animals.... Some developing countries in tropical areas have a readily available source of energy in the form of blackstrap molasses, a by-product of the sugar cane industry. Presently much exported at comparatively have been made to utilize of the blackstrap...

  11. Wayne Interim Storage Site environmental report for calendar year 1992, 868 Black Oak Ridge Road, Wayne, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This report describes the environmental surveillance program at the Wayne Interim Storage Site (WISS) and provides the results for 1992. The fenced, site, 32 km (20 mi) northwest of Newark, New Jersey, was used between 1948 and 1971 for commercial processing of monazite sand to separate natural radioisotopes - predominantly thorium. Environmental surveillance of WISS began in 1984 in accordance with Department of Energy (DOE) Order 5400.1 when Congress added the site to DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). The environmental surveillance program at WISS includes sampling networks for radon and thoron in air; external gamma radiation exposure; radium-226, radium-228, thorium-230, thorium-232, total uranium, and several chemicals in surface water and sediment; and total uranium, radium-226, radium-228, thorium-230, thorium-232, and organic and inorganic chemicals in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and state standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. This monitoring program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Results for environmental surveillance in 1992 show that the concentrations of all radioactive and most chemical contaminants were below applicable standards.

  12. New Jersey Business Growth Fund (New Jersey)

    Broader source: Energy.gov [DOE]

    Creditworthy small or mid-sized companies that are creating or retaining jobs in New Jersey can apply for financing through the New Jersey Business Growth Fund, a joint program of the EDA and PNC...

  13. Middlesex Sampling Plant environmental report for calendar year 1992, 239 Mountain Avenue, Middlesex, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This report describes the environmental surveillance program at the Middlesex Sampling Plant (MSP) and provides the results for 1992. The site, in the Borough of Middlesex, New Jersey, is a fenced area and includes four buildings and two storage piles that contain 50,800 m{sup 3} of radioactive and mixed hazardous waste. More than 70 percent of the MSP site is paved with asphalt. The MSP facility was established in 1943 by the Manhattan Engineer District (MED) to sample, store, and/or ship uranium, thorium, and beryllium ores. In 1955 the Atomic Energy Commission (AEC), successor to MED, terminated the operation and later used the site for storage and limited sampling of thorium residues. In 1967 AEC activities ceased, onsite structures were decontaminated, and the site was certified for unrestricted use under criteria applicable at that time. In 1980 the US Department of Energy (DOE) initiated a multiphase remedial action project to clean up several vicinity properties onto which contamination from the plant had migrated. Material from these properties was consolidated into the storage piles onsite. Environmental surveillance of MSP began in 1980 when Congress added the site to DOE`s Formerly Utilized Sites Remedial Action Program. The environmental surveillance program at MSP includes sampling networks for radon and thoron in air; external gamma radiation exposure; and radium-226, radium-228, thorium-230, thorium-232, and total uranium in surface water, sediment, and groundwater. Additionally, chemical analyses are performed to detect metals and organic compounds in surface water and groundwater and metals in sediments. This program assists in fulfilling th DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses.

  14. Forestry Policies (New Jersey)

    Broader source: Energy.gov [DOE]

    New Jersey Forests are managed by the Department of Environmental Protection, Division of Parks and Forestry, New Jersey Forestry Services. In 2010 the State issued its Forest Action Plan,...

  15. Bond Financing (New Jersey)

    Broader source: Energy.gov [DOE]

    Bond financing is available to eligible businesses through the New Jersey Economic Development Authority, in the amount of $500,000 to $10 million. The bonds can be used to finance capital...

  16. Grow NJ (New Jersey)

    Broader source: Energy.gov [DOE]

    A business creating or retaining jobs in New Jersey and making a qualified capital investment at a qualified business facility can apply for grants of corporate business tax credits for job...

  17. New Jersey: New Jersey's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of New Jersey.

  18. New Jersey Comfort Partners Program

    Broader source: Energy.gov [DOE]

    The New Jersey Comfort Partners program is a free of charge, direct installation energy efficiency assistance program available to most New Jersey households with significant energy usage and an...

  19. Jersey City, New Jersey, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ I 1' . _c m yJersey City,

  20. Maywood Interim Storage Site environmental report for calendar year 1992, 100 West Hunter Avenue, Maywood, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This report describes the environmental surveillance program at the Maywood Interim Storage Site (MISS) and provides the results for 1992. Environmental monitoring of MISS began in 1984, when the site was assigned to DOE by Congress through the Energy and Water Development Appropriations Act and was placed under DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP was established to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. MISS is part of a National Priorities List (NPL) site. The environmental surveillance program at MISS includes sampling networks for radon and thoron in air; external gamma radiation exposure; and radium-226, radium-228, thorium-232, and total uranium in surface water, sediment, and groundwater. Additionally, chemical analysis includes metals and organic compounds in surface water and groundwater and metals in sediments. This program assists in fulfilling the DOE objective of measuring and monitoring effluents from DOE activities and calculating hypothetical doses to members of the general public. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and state standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. Environmental standards are established to protect public health and the environment. The radiological data for all media sampled support the conclusion that doses to the public are not distinguishable from natural background radiation.

  1. Climate Action Plan (New Jersey)

    Broader source: Energy.gov [DOE]

    The NJDEP Office of Sustainability and Green Energy coordinates programs that reduce greenhouse gas emissions that cause climate change, as well as programs designed to help New Jersey become...

  2. Urban Enterprise Zone Program (New Jersey)

    Broader source: Energy.gov [DOE]

    New Jersey's Urban Enterprise (UEZ) Program operates under the Department of Community Affairs. The UEZ Program exists to foster an economic climate that revitalizes designated urban communities...

  3. FedConnect Instructions

    Broader source: Energy.gov [DOE]

    Here are instructions to make it easier to locate Funding Opportunity Announcements (FOAs) for the Geothermal Technologies Office at the FedConnect Web site.

  4. A doubly-fed machine for propulsion applications

    E-Print Network [OSTI]

    Tomovich, Michael S. (Michael Stephen)

    2014-01-01T23:59:59.000Z

    A doubly fed machine for propulsion applications is proposed, which, given the presence of AC and DC power sources, can be utilized in order to improve efficiency, weight, volume, and sizing of the rotor power electronics. ...

  5. Qualifying RPS State Export Markets (New Jersey)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in New Jersey as eligible sources towards their RPS targets or goals. For specific...

  6. Business Employment Incentive Program (BEIP) (New Jersey)

    Broader source: Energy.gov [DOE]

    Economically viable expanding or relocating businesses that create jobs in New Jersey are eligible to secure annual incentive grants via the Business Employment Incentive Program (BEIP) of up to 80...

  7. PARTNERSHIPS POWER NEW JERSEY NEIGHBORHOODS' SAVINGS | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAVINGS With a sluggish economy and more than half of its residents living in poverty, the City of Camden, New Jersey, saw a new energy efficiency program as a good...

  8. New Jersey Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Note: The New Jersey Clean Energy Program has issued a notice stating that the wind energy portion of this program is temporarily on hold and new applications are not being accepted at this time....

  9. Environmental Protection Agency - Edison, New Jersey | Department...

    Energy Savers [EERE]

    Agency (EPA) has a laboratory in Edison, New Jersey that is the site of an alternative energy project. It uses a super ambient solar thermal collector or solar hot water...

  10. Doubly fed induction machine

    DOE Patents [OSTI]

    Skeist, S. Merrill; Baker, Richard H.

    2005-10-11T23:59:59.000Z

    An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.

  11. Public Power & Utility, Inc. (New Jersey) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon TwitterZip JumpProwind GmbHPublic Power &

  12. City of Seaside Heights, New Jersey (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer,City of

  13. Alternative Fuels Data Center: New Jersey Utility Saves With Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduceNew Hampshire Fleet Revs up With

  14. Borough of Lavallette, New Jersey (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotins Energia JumpBorough

  15. Borough of Madison, New Jersey (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotins Energia JumpBoroughInformation Borough

  16. Borough of Pemberton, New Jersey (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotins EnergiaMilltown, New

  17. Borough of South River, New Jersey (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotins EnergiaMilltown,Information Borough of

  18. New Jersey Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    and ground water aquifers. Sae-Khow and her advisor developed a microscale solid phase extraction methodNew Jersey Water Resources Research Institute Annual Technical Report FY 2008 New Jersey Water Resources Research Institute Annual Technical Report FY 2008 1 #12;Introduction The New Jersey Water

  19. Cancer Institute of New Jersey: University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The Department of Energy (DOE) proposes to authorize the University of Medicine and Dentistry of New Jersey to proceed with the design, construction, and equipping of the proposed Clinical Treatment and Research Facility of the University of New Jersey on the New Brunswick campus. The facility will provide for the integration of new and existing clinical outpatient cancer treatment with basic and clinical research to expedite the application of new discoveries in cancer treatment. Based on the analysis in the environmental assessment, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA).

  20. Radiological survey results at 1 Shady Lane, Lodi, New Jersey (LJ095)

    SciTech Connect (OSTI)

    Foley, R.D.; Johnson, C.A.

    1995-07-01T23:59:59.000Z

    The US Department of Energy (DOE) conducted remedial action at the Stepan property in Maywood, New Jersey and several vicinity properties in Lodi, New Jersey as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are in the vicinity of the DOE-owned Maywood Interim Storage Site (MISS), adjacent to the former Maywood Chemical Works facility. The property at One Shady Lane, Lodi, New Jersey was not one of these vicinity properties but was surveyed by DOE at the request of the owner. At the request of DOE, a team from Oak Ridge National Laboratory conducted a radiological survey at this property. The purpose of the survey, conducted in November 1994, was to confirm whether remedial actions were to be performed on the property in order to be in compliance with the identified Guidelines. The radiological survey included surface gamma scans and gamma readings at 1 meter, and the collection of soil samples for radionuclide analysis. Results of the survey demonstrated that all radiological measurements on the property at One Shady Lane, Lodi, New Jersey, were comparable to background levels in the area, and well within the limits prescribed by DOE radiological guidelines. Based on the results of the radiological survey data, this property does not meet guidelines for inclusion under FUSRAP.

  1. Regional Report New Jersey's New Economy

    E-Print Network [OSTI]

    Rutgers Regional Report New Jersey's New Economy Growth Challenges James W. Hughes Dean Edward J July 2006 #12;advanced new-economy peers--New York, Connecticut, and Massachusetts--have been experi- encing employment declines in the post­2000 period in a number of important "new economy" sectors

  2. Gloucester County, New Jersey Industry City

    E-Print Network [OSTI]

    Rusu, Adrian

    Gloucester County, New Jersey Industry City Number of Employees IT Service Provider Paulsboro 600 Oil Refinery Westville 479 Durable Medical Equipment Sewell 500 Flowers and Florist Wholesale Supply Sewell 550 Petroleum Refining Paulsboro 550 Warehousing Pitman 800 Packaged Frozen Food Merchant

  3. Environmental Protection Agency- Edison, New Jersey

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency (EPA) has a laboratory in Edison, New Jersey that is the site of an alternative energy project. It uses a super ambient solar thermal collector or solar hot water pre-heater for shower facilities in the lab.

  4. Understanding Green Jobs in New Jersey

    E-Print Network [OSTI]

    , geothermal, solar, ocean, hydropower, landfill gas, and municipal solid waste. Some RE firms research sell, support, install, and repair RE infrastructure and technologies. New Jersey has a large solar for years, as an offshore wind farm is still being planned. Some jo

  5. NEW JERSEY INSTITUTE OF TECHNOLOGY PATENT POLICY

    E-Print Network [OSTI]

    contributing to the general economic development of the State of New Jersey and beyond. NJIT recognizes, including the generation of revenue to provide funds for further basic and applied research and associated accomplishment in science and engineering, and encourages technological innovation by rewarding inventors

  6. An Experiment with Depressurization Tests as Indicators of Radon Availability in Six New Jersey Houses

    E-Print Network [OSTI]

    Gadgil, A.J.

    2008-01-01T23:59:59.000Z

    as Indicators of Radon Availability in 6 New Jersey HousesAS INDICATORS OF RADON AVAILABILITY IN 6 NEW JERSEY HOUSESas Indicators of Radon Availability in 6 New Jersey Houses

  7. Streamlining and Refining FEDS Loads Models - Final Report

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Dirks, James A.

    2013-02-05T23:59:59.000Z

    The Facility Energy Decision System (FEDS) software is a powerful buildings energy analysis tool developed by Battelle at the Pacific Northwest National Laboratory with support from numerous organizations including several within the U.S. Department of Energy (DOE) and U.S. Department of Defense (DoD). FEDS is used extensively throughout the federal sector to examine building energy efficiency potential and recommend energy saving retrofit projects. The focus of this CRADA was to update the foundation of the FEDS loads models, to improve the core functionality and calculation methods and position the building efficiency analysis software for continued growth. The broader intent was to increase FEDS utility and user satisfaction via improving modeling accuracy, facilitating development and making possible a wide range of new and desired capability enhancements. This report provides an summary of the various tasks performed under the CRADA.

  8. New Jersey SmartStart Buildings- Pay for Performance Program

    Broader source: Energy.gov [DOE]

    The New Jersey Clean Energy Program (NJCEP) offers the Pay for Performance incentive program for energy efficiency improvements in industrial, commercial, and multi-family residential buildings....

  9. Sandia Energy - Hoboken, New Jersey, Mayor Zimmer AnnouncesInfrastruc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jersey, Mayor Zimmer Announces Infrastructure Initiatives to Address Flooding, Water, and Power Systems Home Energy Assurance Infrastructure Security Renewable Energy Energy Surety...

  10. Results of the radiological survey at 48 Schlosser Drive, Rochelle Park, New Jersey (RJ005)

    SciTech Connect (OSTI)

    Foley, R.D.; Brown, K.S.

    1992-10-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956.MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from thisthorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy(DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally [sup 232]Tb, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 48 Schlosser Drive, Rochelle Park, New Jersey (RJO05), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  11. Results of the radiological survey at 77 Sinninger Street, Maywood, New Jersey (MJ052)

    SciTech Connect (OSTI)

    Foley, R.D.; Brown, K.S.

    1993-06-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 77 Sinninger Street, Maywood, New Jersey (MJ052), was conducted on December 17, 1992. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  12. Results of the radiological survey at 37 Schlosser Drive, Rochelle Park, New Jersey (RJ002)

    SciTech Connect (OSTI)

    Foley, R.D.; Brown, K.S.

    1992-10-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally [sup 232]Th derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 37 Schlosser Drive, Rochelle Park, New Jersey (RJ002), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  13. Results of the radiological survey at 27 Schlosser Drive, Rochelle Park, New Jersey (RJ004)

    SciTech Connect (OSTI)

    Foley, R.D.; Brown, K.S.

    1992-10-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Tb, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 27 Schlosser Drive, Rochelle Park, New Jersey (RJ004), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  14. Results of the radiological survey at 37 Schlosser Drive, Rochelle Park, New Jersey (RJ002)

    SciTech Connect (OSTI)

    Foley, R.D.; Brown, K.S.

    1992-10-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 37 Schlosser Drive, Rochelle Park, New Jersey (RJ002), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  15. Results of the radiological survey at 48 Schlosser Drive, Rochelle Park, New Jersey (RJ005)

    SciTech Connect (OSTI)

    Foley, R.D.; Brown, K.S.

    1992-10-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956.MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from thisthorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy(DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Tb, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 48 Schlosser Drive, Rochelle Park, New Jersey (RJO05), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  16. Results of the radiological survey at 27 Schlosser Drive, Rochelle Park, New Jersey (RJ004)

    SciTech Connect (OSTI)

    Foley, R.D.; Brown, K.S.

    1992-10-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally [sup 232]Tb, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 27 Schlosser Drive, Rochelle Park, New Jersey (RJ004), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  17. Results of the radiological survey at 30 Long Valley Road, Lodi, New Jersey (LJ045)

    SciTech Connect (OSTI)

    Cottrell, W.D.; Floyd, L.M.; Francis, M.W.; Mynatt, J.O.

    1989-11-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 30 Long Valley Road, Lodi, New Jersey (LJ045), was conducted during 1985, 1986, and 1987. Some radionuclide measurements were greater than typical background levels in the northern New Jersey area. However, results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. 5 refs., 10 figs., 3 tabs.

  18. Results of the radiological survey at 12 Long Valley Road, Lodi, New Jersey (LJ054)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.F.

    1989-11-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extracting process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 12 Long Valley Road, Lodi, New Jersey (LJ054), was conducted during 1985 and 1986. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  19. Results of the radiological survey at 10 Long Valley Road, Lodi, New Jersey (LJ055)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.F.

    1989-11-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 10 Long Valley Road, Lodi, New Jersey (LJ055), was conducted during 1985 and 1986. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area. 4 refs., 5 figs., 3 tabs.

  20. Results of the radiological survey at 32 Long Valley Road, Lodi, New Jersey (LJ046)

    SciTech Connect (OSTI)

    Cottrell, W.D.; Floyd, L.M.; Francis, M.W.; Mynatt, J.O.

    1989-10-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 32 Long Valley Road, Lodi, New Jersey (LJ046), was conducted during 1985, 1986, and 1987. Some radionuclide measurements were greater than typical background levels in the northern New Jersey area. However, results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. 5 refs., 6 figs., 3 tabs.

  1. Results of the radiological survey at 19 Redstone Lane, Lodi, New Jersey (LJ056)

    SciTech Connect (OSTI)

    Cottrell, W.D.; Floyd, L.M.; Francis, M.W.; Mynatt, J.O.

    1989-10-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 19 Redstone Lane, Lodi, New Jersey (LJ056), was conducted during 1985 and 1986. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area. 4 refs., 4 figs., 3 tabs.

  2. Results of the radiological survey at 1 Branca Court, Lodi, New Jersey (LJ034)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.F.

    1989-10-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 1 Branca Court, Lodi, New Jersey (LJ034), was conducted during 1985 and 1986. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area. 4 refs., 4 figs., 3 tabs.

  3. Results of the radiological survey at 142 West Central Avenue, Maywood, New Jersey (MJ041)

    SciTech Connect (OSTI)

    Foley, R.D.; Crutcher, J.W.

    1989-06-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 142 West Central Avenue, Maywood, New Jersey (MJ041), was conducted during 1988. Results of the survey indicated scattered radiation or ''shine'' from a storage pile, located off the property, containing residual radioactive material. Lead-shielded measurements showed radioactivity in the range of normal background for the northern New Jersey area. Radiological assessments of soil samples from the site demonstrate no radionuclide concentrations in excess of DOE Formerly Utilized Sites Remedial Action Program criteria. 4 refs., 8 figs., 3 tabs.

  4. Results of the radiological survey at 9 Hancock Street, Lodi, New Jersey (LJ028)

    SciTech Connect (OSTI)

    Cottrell, W.D.; Floyd, L.M.; Francis, M.W.; Mynatt, J.O.

    1989-09-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 9 Hancock Street, Lodi, New Jersey (LJ028), was conducted during 1985 and 1986. Some radionuclide measurements were greater than typical background levels in the northern New Jersey area. However, results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. 5 refs., 6 figs., 3 tabs.

  5. Results of the radiological survey at 28 Long Valley Road, Lodi, New Jersey (LJ047)

    SciTech Connect (OSTI)

    Cottrell, W.D.; Floyd, L.M.; Francis, M.W.; Mynatt, J.O.

    1989-10-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 28 Long Valley Road, Lodi, New Jersey (LJ047), was conducted during 1985, 1986, 1987. Some radionuclide measurements were greater than typical background levels in the northern New Jersey area. However, results of the Survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. 5 refs., 8 figs., 3 tabs.

  6. Results of the radiological survey at 205 Main Street, Lodi, New Jersey (LJ075)

    SciTech Connect (OSTI)

    Foley, R.D.; Carrier, R.F.; Floyd, L.M.; Crutcher, J.W.

    1989-08-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 205 Main Street, Lodi, New Jersey (LJ075), was conducted during 1987 and 1988. Results of the survey indicated radioactivity in the range of normal background for the northern New Jersey area. Radiological assessments of soil samples from the site demonstrate no radionuclide concentrations in excess of DOE Formerly Utilized Sites Remedial Action Program criteria. 5 refs., 21 figs., 3 tabs.

  7. Results of the radiological survey at 7 Redstone Lane, Lodi, New Jersey (LJ044)

    SciTech Connect (OSTI)

    Cottrell, W.D.; Floyd, L.M.; Francis, M.W.; Mynatt, J.O.

    1989-10-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclides analyses. The survey of this site, 7 Redstone Lane, Lodi, New Jersey (LJ044), was conducted during 1985 and 1986. Some radionuclide measurements were greater than typical background levels in the northern New Jersey area. However, results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. 5 refs., 4 figs., 3 tabs.

  8. A Breakout Year Propels New Jersey Economy into 2005

    E-Print Network [OSTI]

    A Breakout Year Propels New Jersey Economy into 2005 A t the end of 2003, we tiptoed out on the forecasting limb and asserted that if the 2004 national economy were a movie, it would be titled "Showtime." We also opined that if the 2004 New Jersey economy were a movie, it would be titled "The Sweet Smell

  9. The Value of New Jersey's Ecosystem Services and Natural Capital

    E-Print Network [OSTI]

    The Value of New Jersey's Ecosystem Services and Natural Capital Robert Costanza Matthew Wilson services are are mainly provided by ecosystems. Examples of ecosystem services ("ecoservices") include of ecoservices in a variety of locations using a variety of valuation methods and applies them to New Jersey

  10. New Jersey State Health Benefits Monthly Group Dental Rates

    E-Print Network [OSTI]

    New Jersey State Health Benefits Monthly Group Dental Rates Effective January 1, 2013 to December.68 305 CIGNA Dental Health, Inc www.cigna.com/stateofnj 800-367-1037 All of New Jersey (Except Cape May County); Eastern Pennsylvania $11.28 $19.63 $32.10 $23.79 307 Healthplex (International Heath Care

  11. New Jersey Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Hanson, Stephen José

    harvesting. The results of this research will help to develop guidelines for water testing and best management practices for applying harvested rain water to backyard and community gardens. In the secondNew Jersey Water Resources Research Institute Annual Technical Report FY 2011 New Jersey Water

  12. New Jersey School of Architecture The Master of Architecture

    E-Print Network [OSTI]

    Bieber, Michael

    one-year Master of Science in Architecture with a concentration in Sustainable Design. Students canNew Jersey School of Architecture The Master of Architecture New Jersey Institute of Technology #12;WHO SHOULD ENROLL IN THE MASTERS IN ARCHITECTURE? The program has two degree options: the professional

  13. Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The...

  14. GEXA Corp. (New Jersey) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXA Corp. (New Jersey) Jump to: navigation, search

  15. Jersey Atlantic Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind FarmJefferson City,JemezJensenJersey

  16. New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel WindNew Grid EnergyHarvestNewNewNew Jersey:

  17. Bluewater Wind New Jersey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirchBlockVIServicesValleyNew Jersey

  18. South Jersey Energy Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkarTopicsSouth DakotaSouth Jersey

  19. FED reactor engineering features

    SciTech Connect (OSTI)

    Sager, P.H.; Brown, T.G.; Fuller, G.M.; Smith, G.E.

    1982-01-01T23:59:59.000Z

    The Fusion Engineering Device (FED) Baseline design incorporates a number of features which were selected to enhance its maintainability, as well as limit cost and achieve reliable operation. An installation of ten TF coils and ten torus sectors was selected on the basis of plasma chamber segmentation studies and TF coil cost tradeoff studies, permitting removal of a torus sector with a single radial motion. The design also features a shield sector support spool which provides a plasma chamber vacuum boundary and access to the shield sectors. The vacuum seals are made at the outboard face of the torus so that they can be readily cut and rewelded. A pumped limiter provides plasma edge definition and impurity control. Ten individual blades are inserted through the shield sector in an arrangement that permits replacement without sector removal. ICRH is used for plasma bulk heating. Two EF coils, which are located inside the TF coil bore, are segmented so that they can be removed if necessary. The removal of the superconducting lower outboard EF coil, which is trapped under the TF coil assembly, presents a problem; consideration is being given to increasing its diameter and relocating it so that it can be lifted up around the TF coils.

  20. Grid Pricing of Fed Cattle

    E-Print Network [OSTI]

    Schroeder, Ted C.; Hogan, Robert J.; Anderson, David P.

    2009-03-02T23:59:59.000Z

    There are several value-based fed cattle pricing systems, including formula pricing, price grids and alliances. This publication describes the different cattle pricing methods and helps you decide which is best for you....

  1. RUTGERS COOPERATIVE EXTENSION NEW JERSEY AGRICULTURAL EXPERIMENT STATION

    E-Print Network [OSTI]

    Goodman, Robert M.

    sludges or animal manures. A valuable attribute of MCST- leaves is that the material may be applied on issues relating to soils and plant nutrition in New Jersey Figure 1: S oil O rganic M atter Lev els

  2. The Olympics of science knowledge at DOE's New Jersey Regional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Olympics of science knowledge at DOE's New Jersey Regional Science Bowl at PPPL By Jeanne Jackson DeVoe March 3, 2014 Tweet Widget Google Plus One Share on Facebook The J...

  3. Energy Department Partners with State of New Jersey to Study...

    Office of Environmental Management (EM)

    announced today marks an important step in this direction by working to improve the electric grid system in New Jersey and the broader region so that it is more resilient and...

  4. Small Scale CHP and Fuel Cell Incentive Program (New Jersey)

    Broader source: Energy.gov [DOE]

    The New Jersey Clean Energy Program (NJCEP) offers incentives for several types of small combined heat and power (CHP) and fuel cell systems that have a generating capacity of 1 MW or less and are...

  5. FedVTE/FedCTE | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY FactWindFaultFedVTE/FedCTE

  6. Factors influencing carbohydrate utilization in steers fed processed sorghum grain

    E-Print Network [OSTI]

    McNeill, John W

    1970-01-01T23:59:59.000Z

    reacted with iodine (Baker et al. , 1950) . Th& fermentation of dietary carbol!ydrates in the rumen results in tl. e production of volatile fatty acids (Annlson nd Be&&is& 1959). These acids constitute tI&e major source cf energy for th& ruminant...

  7. Utility Partnerships

    Broader source: Energy.gov [DOE]

    Utility Partnerships 7/10/12. Provides an overview of LEAP's (Charlottesville, VA) partnership with local utilities.

  8. Journal of Power Sources 135 (2004) 184191 A solid oxide fuel cell system fed with hydrogen sulfide

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    Journal of Power Sources 135 (2004) 184­191 A solid oxide fuel cell system fed with hydrogen for a solid oxide fuel cell (SOFC). This paper presents an examination of a simple hydrogen sulfide and natural gas-fed solid oxide fuel cell system. The possibility of utilization of hydrogen sulfide

  9. Jersey Central Power & Lt Co (New Jersey) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformationJames Watkins JumpJenn Feng Co Ltd JumpJersey

  10. Instructions for Accessing FedConnect Postings, June 30, 2009...

    Broader source: Energy.gov (indexed) [DOE]

    Instructions for Accessing FedConnect Postings, June 30, 2009 Instructions for Accessing FedConnect Postings, June 30, 2009 Instructions for Accessing FedConnect Postings and...

  11. The New Jersey Voting-machine Lawsuit and the AVC Advantage DRE Voting Machine

    E-Print Network [OSTI]

    Tan, Gang

    machine, which is used throughout New Jersey (and Louisiana), and the Court has permitted us to publicly-04, Superior Court of New Jersey. In the "Super Tuesday" Presidential Primary of February 5, 2008, at least 37

  12. Results of the radiological survey at the Napp Chemical Company, 199 Main Street, Lodi, New Jersey (LJ076)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.F.

    1989-11-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, the Napp Chemical Company, 199 Main Street, Lodi, New Jersey (LJ076), was conducted during 1987. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area. 4 refs., 8 figs., 3 tabs.

  13. On achieving the state's household recycling target: A case study of Northern New Jersey, USA

    SciTech Connect (OSTI)

    Otegbeye, M.; Abdel-Malek, L. [Department of Industrial and Management Systems Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Hsieh, H.N. [Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Meegoda, J.N. [Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States)], E-mail: meegoda@njit.edu

    2009-02-15T23:59:59.000Z

    In recent times, the State of New Jersey (USA) has been making attempts at promoting recycling as an environmentally friendly means of attaining self-sufficiency at waste disposal, and the state has put in place a 50% recycling target for its municipal solid waste stream. While the environmental benefits of recycling are obvious, a recycling program must be cost effective to ensure its long-term sustainability. In this paper, a linear programming model is developed to examine the current state of recycling in selected counties in Northern New Jersey and assess the needs to achieve the state's recycling goal in these areas. The optimum quantities of waste to be sent to the different waste facilities, which include landfills, incinerators, transfer stations, recycling and composting plants, are determined by the model. The study shows that for these counties, the gap between the current waste practices where the recycling rate stands at 32% and the state's goal can be bridged by more efficient utilization of existing facilities and reasonable investment in expanding those for recycling activities.

  14. Radiological verification survey results at 14 Peck Ave., Pequannock, New Jersey (PJ001V)

    SciTech Connect (OSTI)

    Rodriguez, R.E.; Johnson, C.A.

    1995-05-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) conducted remedial action during 1993 at the Pompton Plains Railroad Spur and eight vicinity properties in the Wayne and Pequannock Townships in New Jersey as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are in the vicinity of the DOE-owned Wayne Interim Storage Site (WISS), formerly the W. R. Grace facility. The property at 14 Peck Ave., Pequannock, New Jersey is one of these vicinity properties. At the request of DOE, a team from Oak Ridge National Laboratory conducted an independent radiological verification survey at this property. The purpose of the survey, conducted between September and December 1993, was to confirm the success of the remedial actions performed to remove any radioactive materials in excess of the identified guidelines. The verification survey included surface gamma scans and gamma readings at 1 meter, beta-gamma scans, and the collection of soil and debris samples for radionuclide analysis. Results of the survey demonstrated that all radiological measurements on the property at 14 Peck Ave. were within applicable DOE guidelines. Based on the results of the remedial action data and confirmed by the verification survey data, the portions of the site that had been remediated during this action successfully meet the DOE remedial action objectives.

  15. Radiological verification survey results at 7 Peck Ave., Pequannock, New Jersey (PJ003V)

    SciTech Connect (OSTI)

    Rodriguez, R.E.; Johnson, C.A.

    1995-05-01T23:59:59.000Z

    The US Department of Energy (DOE) conducted remedial action during 1993 at the Pompton Plains Railroad Spur and eight vicinity properties in the Wayne and Pequannock Townships in New Jersey as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are in the vicinity of the DOE-owned Wayne Interim Storage Site (WISS), formerly the W.R. Grace facility. The property at 7 Peck Ave., Pequannock, New Jersey is one of these vicinity properties. At the request of DOE, a team from Oak Ridge National Laboratory conducted an independent radiological verification survey at this property. The purpose of the survey, conducted between September and December 1993, was to confirm the success of the remedial actions performed to remove any radioactive materials in excess of the identified guidelines. The verification survey included surface gamma scans and gamma readings at 1 meter, beta-gamma scans, and the collection of soil samples for radionuclide analysis. Results of the survey demonstrated that all radiological measurements on the property at 7 Peck Ave. were within applicable DOE guidelines. Based on the results of the remedial action data and confirmed by the verification survey data, the portions of the site that had been remediated during this action successfully meet the DOE remedial action objectives.

  16. Results of the radiological survey at 24 Long Valley Road, Lodi, New Jersey (LJ048)

    SciTech Connect (OSTI)

    Cottrell, W.D.; Floyd, L.M.; Francis, M.W.; Mynatt, J.O.

    1989-08-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monozite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 24 Long Valley Road, Lodi, New Jersey (LJ048), was conducted during 1985 and 1986. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 4 refs., 8 figs., 3 tabs.

  17. Results of the radiological survey at 6 Hancock Street, Lodi, New Jersey (LJ033)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.F.; Crutcher, J.W.

    1989-06-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth, earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 6 Hancock Street, Lodi, New Jersey (LJ033), was conducted during 1985 and 1986. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site.

  18. Results of the radiological survey at 99 Garibaldi Avenue, Lodi, New Jersey (LJ064)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Crutcher, J.W.

    1989-07-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 99 Garibaldi Avenue, Lodi, New Jersey (LJ064), was conducted during 1987. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 4 refs., 8 figs., 3 tabs.

  19. Results of the radiological survey at 106 Columbia Lane, Lodi, New Jersey (LJ063)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Crutcher, J.W.

    1989-07-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 106 Columbia Lane, Lodi, New Jersey (LJ063), was conducted during 1987. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 4 refs., 7 figs., 3 tabs.

  20. Results of the radiological survey at 6 Branca Court, Lodi, New Jersey (LJ041)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.F.; Crutcher, J.W.

    1989-06-01T23:59:59.000Z

    Maywood Chemical works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rate earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 6 Branca Court, Lodi, New Jersey (LJ041), was conducted during 1985 and 1986. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Act program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 6 figs., 3 tabs.

  1. Results of the radiological survey at 7 Hancock Street, Lodi, New Jersey (LJ027)

    SciTech Connect (OSTI)

    Cottrell, W.D.; Floyd, L.M.; Francis, M.W.; Mynatt, J.O.

    1989-09-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. AT the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 7 Hancock Street, Lodi, New Jersey (LJ027), was conducted during 1985 and 1986. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 5 refs., 5 figs., 3 tabs.

  2. Results of the radiological survey at 5 Hancock Street, Lodi, New Jersey (LJ029)

    SciTech Connect (OSTI)

    Cottrell, W.D.; Floyd, L.M.; Francis, M.W.; Mynatt, J.O.

    1989-09-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 5 Hancock Street, Lodi, New Jersey (LJ029), was conducted during 1985 and 1986. Results of the survey demonstrated concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of the material originating from the MCW site. 5 refs., 6 figs., 3 tabs.

  3. Results of the radiological survey at 2 Branca Court, Lodi, New Jersey (LJ036)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.F.; Crutcher, J.W.

    1989-06-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1961 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 2 Branca Court, Lodi, New Jersey (LJ036), was conducted during 1985 and 1986. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site.

  4. Results of the radiological survey at 174 Essex Street, Lodi, New Jersey (LJ073)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.F.; Crutcher, J.W.

    1989-06-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 174 Essex Street, Lodi, New Jersey (LJ073), was conducted during 1987. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site.

  5. Results of the radiological survey at 17 Redstone Lane, Lodi, New Jersey (LJ030)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.F.; Crutcher, J.W.

    1989-06-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 17 Redstone Lane, Lodi, New Jersey (LJ030), was conducted during 1985 and 1986. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 4 refs., 7 figs., 3 tabs.

  6. Results of the radiological survey at 62 Trudy Drive, Lodi, New Jersey (LJ080)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.

    1989-06-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 62 Trudy Drive, Lodi, New Jersey (LJ080), was conducted during 1988. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 5 refs., 5 figs., 3 tabs.

  7. Results of the radiological survey at 160 Essex Street, Lodi, New Jersey (LJ072)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.F.; Crutcher, J.W.

    1989-06-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 160 Essex Street, Lodi, New Jersey (LJ072), was conducted during 1987. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 4 refs., 10 figs., 2 tabs.

  8. Results of the radiological survey at 10 Hancock Street, Lodi, New Jersey (LJ031)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.F.; Crutcher, J.W.

    1989-06-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling from radionuclide analyses. The survey of this site, 10 Hancock Street, Lodi, New Jersey (LJ031), was conducted during 1985 and 1986. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 4 refs., 4 figs., 3 tabs.

  9. Results of the radiological survey at 4 Branca Court, Lodi, New Jersey (LJ037)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.R.; Crutcher, J.W.

    1989-06-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 4 Branca Court, Lodi, New Jersey (LJ037), was conducted during 1985 and 1986. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. However, this property is apparently located directly over the old Lodi Brook streambed. This factor in combination with the elevated gamma logs of several auger holes is sufficient to recommend this site for inclusion in the DOE remedial action program. 5 refs., 5 figs., 4 tabs.

  10. Results of the independent radiological verification survey of the lower Sheffield Brook floodplain, Wayne, New Jersey

    SciTech Connect (OSTI)

    Yalcintas, M.G.; Carrier, R.F.

    1989-05-01T23:59:59.000Z

    Prior to 1971, the W.R. Grace Company processed and stored radioactive materials at Wayne, New Jersey, under license to the Atomic Energy Commission. Decontamination of structures and storage of waste materials on the property at the Wayne Interim Storage Site (WISS) took place in 1974. Surveys by the State of New Jersey Department of Environmental Protection and by Oak Ridge Associated Universities for the NRC in 1982 indicated that properties adjacent to the WISS contained surface contamination by radioactive residuals in amounts exceeding those acceptable under US Department of Energy (DOE) remedial action guidelines. At the request of DOE, remedial actions have been conducted by Bechtel National, Inc., to remove radioactive residuals from properties adjacent to the site. It is the policy of DOE to assign an independent verification contractor to ensure the effectiveness of remedial actions performed within the Formerly Utilized Sites Remedial Action Program. This report describes the methods and results of those studies that were conducted by the Measurement Applications and Development Group of the Oak Ridge National Laboratory for the lower Sheffield Brook floodplain west of the WISS. Based upon post-remedial action and verification survey data, it was concluded that residual soil concentrations and gamma levels following excavation and backfilling of the area are within the limits prescribed by DOE radiological guidelines. 12 refs., 6 figs., 8 tabs.

  11. Advanced Sediment Washing for Decontamination of New York/New Jersey Harbor Dredged Materials

    E-Print Network [OSTI]

    Brookhaven National Laboratory

    .S. Army Corps of Engineers (USACE) ­ New York District, with the U.S. Department of Energy (DOE1 Advanced Sediment Washing for Decontamination of New York/New Jersey Harbor Dredged Materials Focus: New York / New Jersey Harbor Region In the New York / New Jersey Harbor Region, the effect

  12. A Cournot-Nash Equilibrium Analysis of the New Jersey Electricity Market

    E-Print Network [OSTI]

    California at Berkeley. University of

    mark-up grows rapidly with demand. We argue that the sensitivity of these results to other factors1 A Cournot-Nash Equilibrium Analysis of the New Jersey Electricity Market Severin Borenstein in a restructured electricity industry in New Jersey. Our primary focus in this study has been on the New Jersey

  13. Federal Utility Partnership Working Group Utility Partners |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kentucky Elizabethtown Gas Kathy Robb 404-584-4372 New Jersey Energy Trust of Oregon Edgar Wales 503-445-2954 Oregon Entergy Jennifer Gary 504-576-3877 Arkansas, Louisiana,...

  14. Cedar Grove, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest, New Jersey: Energy Resources Jump to:Jersey:

  15. Holiday Heights, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey:Heights, New Jersey: Energy Resources Jump

  16. Dumont, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey:Jump to:Dudleyville,Dumont, New Jersey:

  17. RUTGERS -THE STATE UNIVERSITY OF NEW JERSEY Data Mining

    E-Print Network [OSTI]

    Lin, Xiaodong

    RUTGERS - THE STATE UNIVERSITY OF NEW JERSEY Data Mining Fall 2012 Instructor: Dr. Hui Xiong E or by appointment Text Book: "Introduction to Data Mining", by Pang-Ning Tan, Michael Steinbach, Vipin Kumar for analysts to sift through the data even though it may contain useful information. Data mining holds great

  18. RUTGERS -THE STATE UNIVERSITY OF NEW JERSEY Data Mining

    E-Print Network [OSTI]

    Lin, Xiaodong

    RUTGERS - THE STATE UNIVERSITY OF NEW JERSEY Data Mining Instructor: Dr. Hui Xiong E-mail: hxiong@rutgers.edu WEB : http://datamining.rutgers.edu Text Book: "Introduction to Data Mining", by Pang-Ning Tan useful information. Data mining holds great promise to address this problem by providing efficient

  19. RUTGERS -THE STATE UNIVERSITY OF NEW JERSEY Data Mining

    E-Print Network [OSTI]

    Lin, Xiaodong

    RUTGERS - THE STATE UNIVERSITY OF NEW JERSEY Data Mining Spring 2011 Instructor: Dr. Hui Xiong E-353-5261 Text Book: "Introduction to Data Mining", by Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Addison for analysts to sift through the data even though it may contain useful information. Data mining holds great

  20. RUTGERS -THE STATE UNIVERSITY OF NEW JERSEY Data Mining

    E-Print Network [OSTI]

    Lin, Xiaodong

    RUTGERS - THE STATE UNIVERSITY OF NEW JERSEY Data Mining Fall 2013 Instructor: Dr. Hui Xiong E: "Introduction to Data Mining", by Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Addison Wesley, ISBN: 0 even though it may contain useful information. Data mining holds great promise to address this problem

  1. 2004: A Breakout Year for the New Jersey Economy?

    E-Print Network [OSTI]

    2004: A Breakout Year for the New Jersey Economy? A s the fourth quarter of 2003 commenced. The broadest measure of the economy's performance, gross domestic product (GDP), grew by an explosive 7 Reserve pushes up interest rates to quell inflation--that kept the economy afloat, supported by a low

  2. AT&T Bell Laboratories Murray Hill, New Jersey 07974

    E-Print Network [OSTI]

    Perry, Dewayne E.

    AT&T Bell Laboratories Murray Hill, New Jersey 07974 Software and Systems Research Center Technical Report Object-Oriented programs and Testing Dewayne E. Perry Gail E. Kaiser* appears in The Journal Of Object Oriented Programming January/February 1990 __________________ * Columbia University, Department

  3. Value of Solar to New Jersey and Pennsylvania

    E-Print Network [OSTI]

    Perez, Richard R.

    data set that provides time- and location-correlated PV output with loads. Load data and market pricingValue of Solar to New Jersey and Pennsylvania Richard Perez Benjamin L. Norris Thomas E. Hoff October 2012 Prepared for: Mid-Atlantic Solar Energy Industries Association Prepared by: Clean Power

  4. FED baseline engineering studies report

    SciTech Connect (OSTI)

    Sager, P.H.

    1983-04-01T23:59:59.000Z

    Studies were carried out on the FED Baseline to improve design definition, establish feasibility, and reduce cost. Emphasis was placed on cost reduction, but significant feasibility concerns existed in several areas, and better design definition was required to establish feasibility and provide a better basis for cost estimates. Design definition and feasibility studies included the development of a labyrinth shield ring concept to prevent radiation streaming between the torus spool and the TF coil cryostat. The labyrinth shield concept which was developed reduced radiation streaming sufficiently to permit contact maintenance of the inboard EF coils. Various concepts of preventing arcing between adjacent shield sectors were also explored. It was concluded that installation of copper straps with molybdenum thermal radiation shields would provide the most reliable means of preventing arcing. Other design studies included torus spool electrical/structural concepts, test module shielding, torus seismic response, poloidal conditions in the magnets, disruption characteristics, and eddy current effects. These additional studies had no significant impact on cost but did confirm the feasibility of the basic FED Baseline concept.

  5. Perchlorate Degradation in Acetate-fed Bioreactors

    E-Print Network [OSTI]

    Perchlorate Degradation in Acetate-fed Bioreactors Yanguang Song Kijung Kim, Bruce Logan Department;· Dechlorosoma sp. KJ: isolated from a perchlorate- degrading packed bed bioreactor; · Dechlorosoma sp. PDX

  6. Radiological re-survey results at 146 West Central Avenue, Maywood, New Jersey (MJ034)

    SciTech Connect (OSTI)

    Murray, M.E.; Johnson, C.A.

    1994-05-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from 1916 to 1959. During the early years of operation, MCW stored wastes and residues in low-lying areas west of the processing facilities and consequently some of the residuals containing radioactive materials migrated offsite to the surrounding area. Subsequently, the U.S. Department of Energy (DOE) designated for remedial action the old MCW property and several vicinity properties. Additionally, in 1984, the property at 146 West Central Ave., Maywood, New Jersey and properties in its vicinity were included as a decontamination research and development project under the DOE Formerly Utilized Sites Remedial Action Program. In 1987 and 1988, at the request of DOE, Oak Ridge National Laboratory (ORNL) conducted a radiological survey on this property. A report describing this survey was published in 1989. A second radiological survey by ORNL was conducted on this property in May 1993 at the request of DOE after an ad hoc radiological survey, requested by the property owner and conducted by Bechtel National, Inc. (BNI), identified some contamination not previously found by ORNL. The purpose of the second ORNL survey was to determine whether radioactive materials from the old MCW were present on the property, and if so, if radioactive materials present were above guidelines. A certified civil survey was requisitioned by ORNL to determine actual property boundaries before beginning the radiological re-survey. The re-survey included a surface gamma scan and the collection of a large number of soil samples for radionuclide analyses. Results of this survey demonstrated that although elevated residual thorium-232 contamination was present in a few isolated spots on the southern end of the backyard, it did not exceed DOE guidelines.

  7. Relationships of milk yield and season of calving with ovarian cyclicity of Holstein and Jersey cows

    E-Print Network [OSTI]

    Gonzalez Sanchez, Andres

    1984-01-01T23:59:59.000Z

    estimated for 60, 90, 120, and 305 days in lactation. Average postpartum intervals to first two ovulations of Holsteins (23 and 44 days) were longer than for Jerseys (19 and 39 days). length of first two estrous cycles were 19 and 24 days for Jerseys... days/100 kg 305-day milk yield). 'This unfavorable milk yield ? ovulation relationship was undetectable by third ovulation which averaged 67 days postpartum. Length of second estrous cycle of Holsteins was unrelated to milk yield, but foz Jerseys...

  8. Optimum Fuel Cell Utilization with Multilevel Inverters Burak Ozpineci1

    E-Print Network [OSTI]

    Tolbert, Leon M.

    Optimum Fuel Cell Utilization with Multilevel Inverters Burak Ozpineci1 1 Oak Ridge National. This inevitable decrease, which is caused by internal losses, reduces the utilization factor of the fuel cells at low loads. Additionally, the converters fed by these fuel cells have to be derated to accommodate

  9. Health hazard evaluation report HETA 91-0190-2491, International Association of Fire Fighters (IAFF), Jersey City, New Jersey

    SciTech Connect (OSTI)

    Kinnes, G.M.; Deitchman, S.

    1995-02-01T23:59:59.000Z

    In response to a request from the International Association of Fire Fighters, an investigation was begun into the health and safety practices used during the handling of a fire at an illegal dumpsite by Jersey City Fire Department (SIC-9224), Jersey City, New Jersey. The investigation centered around the incident command system, safety management, the arrangements for medical service, and decontamination. High winds and several directional wind shifts hampered operations at the fire scene. Some fire fighters did not wear their self contained breathing apparatus or depleted their supply of air cylinders during the fire. Several fire fighters were treated at the scene for dizziness, mucosal irritation and elevated blood pressure. Abnormalities were noted on the field cardiac monitors for several of the firemen. A total of 171 fire fighters were transported to area hospitals and three were admitted. The fire department indicated that 68 fire fighters received incident related injuries. Findings indicated that exposure to methylene-chloride (75092) may have been responsible for some of the adverse health experiences reported. The authors conclude that it was not possible to determine a definitive environment cause for the health effects experienced by fire fighters during the dumpsite fire. The authors recommend that changes be made in incident command and safety procedures.

  10. Results of the radiological survey at Interstate 80, North Right of Way at Lodi Brook, Lodi, New Jersey (LJ077)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.

    1989-06-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and oil sampling for radionuclide analyses. The survey of this site, on the North Right of Way of Interstate 80 at Lodi Brook, Lodi, New Jersey (LJ077), was conducted during 1988. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 5 refs., 3 figs., 3 tabs.

  11. Results of the radiological survey at Kennedy Park, Money and Sidney Streets, Lodi, New Jersey (LJ062)

    SciTech Connect (OSTI)

    Foley, R.D.; Cottrell, W.D.; Floyd, L.M.

    1989-07-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, Kennedy Park, Money and Sidney Streets, Lodi, New Jersey (LJ062), was conducted during 1986 and 1987. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 4 refs., 4 figs., 3 tabs.

  12. The warehousing and logistics sector of the New Jersey economy has been significantly impacted by two cross

    E-Print Network [OSTI]

    Goodman, Robert M.

    The warehousing and logistics sector of the New Jersey economy has been significantly impacted in the flow of goods through the state's ports and logistical centers to New Jersey and regional markets has been the erosion of New Jersey's logistical workforce at a time when the equivalent workforces

  13. About Total Lubricants USA, Inc. Headquartered in Linden, New Jersey, Total Lubricants USA provides

    E-Print Network [OSTI]

    Fisher, Kathleen

    New Jersey, Total Lubricants USA provides advanced quality industrial lubrication productsAbout Total Lubricants USA, Inc. Headquartered in Linden, New Jersey, Total Lubricants USA provides. A subsidiary of Total, S.A., the world's fourth largest oil company, Total Lubricants USA still fosters its

  14. Decontamination of Dredged Material from The Port of New York and New Jersey

    E-Print Network [OSTI]

    Brookhaven National Laboratory

    Decontamination of Dredged Material from The Port of New York and New Jersey .K.W. Jones Brookhaven copyrightcoveringthispaper. #12;Decontamination of Dredged Material from The Port of New York and New Jersey K. W. Jones the dredging operations required for the efficient operation of the Port. Decontamination and beneficial reuse

  15. Report to the New Jersey State Board of Agriculture August 2009

    E-Print Network [OSTI]

    Goodman, Robert M.

    kill affected plants and its spores are easily carried in wind currents to infect other susceptible to the New Jersey farm community," said Jack Rabin (associate director, Farm Programs) at Rutgers New Jersey of control recommendations for commercial farms and home owner vegetable gardens · Providing timely updates

  16. Douglas Fisher, Kathleen Merrigan and Robert Goodman Report to the New Jersey State Board of Agriculture

    E-Print Network [OSTI]

    Goodman, Robert M.

    of Agriculture October 2009 Spotlight on USDA Deputy Secretary's Visit to Rutgers Executive Dean of Agriculture Jersey on October 14. Merrigan was accompanied by New Jersey Secretary of Agriculture Douglas Fisher opportunity "to bridge the disconnect between agriculture and the public." Merrigan added, "Not every family

  17. New Jersey: Image and Reality By James W. Hughes and Joseph J. Seneca

    E-Print Network [OSTI]

    Atlantic County New York-Northern New Jersey-Long Island, NY-NJ-PA Metropolitan Statistical Area New York,amilestonewasreachedin1988,19years ago:manufacturing'sshareoftotalemploymentin NewJersey(18percentFairLawnEconomicDevelopment Corporationrecentlyannouncedaconceptplanthat wouldtransform210acresoftheRoute208Corridor Industrial

  18. FINAL DRAFT 4/1/11 New Jersey Institute of Technology Number 12-06

    E-Print Network [OSTI]

    unallowable costs in accordance with OMB Circular A-21 and New Jersey Institute of Technology policiesFINAL DRAFT 4/1/11 New Jersey Institute of Technology Number 12-06 University Policies and Procedures Date of Issue: October 12, 2011 Subject: GRANTS AND CONTRACTS - UNALLOWABLE COSTS A. OVERVIEW

  19. Energy Incentive Programs, New Jersey | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFactIowaMontana EnergyNevadaJersey

  20. Lakewood, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois:LakeIowa: EnergyClub,New Jersey: Energy

  1. Leisure Village, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:New York: EnergyVillage, New Jersey: Energy

  2. Lincoln Park, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLighting ControlWyoming: Energy ResourcesParish,Jersey:

  3. New Jersey Regional Science Bowl | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNewIdeas Spring from|New Jersey

  4. Frenchtown, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, New Jersey: Energy Resources Jump to:

  5. Absecon, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00About OpenEI Jump to:Absecon, New Jersey:

  6. Brownville, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and InnovativeBrookmont,Florida: Energy Resources JumpNew Jersey:

  7. Buena, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington: Energy Resources JumpLCCBuena, New Jersey:

  8. Camden County, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual Jump to:(RECP) in Product:CamdenNew Jersey:

  9. Waldwick, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii:Walbridge,Waldwick, New Jersey:

  10. Wallington, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane,(RedirectedWallington, New Jersey:

  11. West Orange, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, New York: EnergyMountain, Utah:Orange, New Jersey:

  12. Westwood, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills,2732°, -76.7798172°WestsideWestwoodNew Jersey:

  13. Wharton, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills,2732°,Wetzel County, WestWharton, New Jersey:

  14. White Meadow Lake, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: Energy Resources JumpMeadow Lake, New Jersey:

  15. Whittingham, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: EnergyWhitman County,Whittingham, New Jersey:

  16. Wildwood Crest, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho:Wildwood Crest, New Jersey: Energy Resources Jump

  17. Wildwood, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho:Wildwood Crest, New Jersey: Energy ResourcesNew

  18. Woodbridge, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood, Wisconsin:Woodbridge, New Jersey:

  19. Cape May Point, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits ManualCanisteo, NewCanutillo,GirardeauNew Jersey:

  20. Cedar Glen West, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest, New Jersey: Energy Resources Jump to:

  1. Chatham, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest,CEICharlotteNorth Carolina:New Jersey: Energy

  2. Sayreville, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSaltonSprings,Sardinia,SawasdeeSayreville, New Jersey:

  3. Sewaren, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma:Sevin Rosen FundsSewaren, New Jersey:

  4. Ship Bottom, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: EnergySumoncleShida BatteryShip Bottom, New Jersey:

  5. Fairview, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis EnergyRanch,ElectricFairportJersey: Energy

  6. New Jersey - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20YearGeneratingHampshireJersey

  7. Califon, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump28 2013 NextCalifon, New Jersey:

  8. Irvington, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy JumpIrem Geothermal PowerBio EnergyJersey:

  9. Iselin, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy JumpIrem GeothermalIselin, New Jersey: Energy

  10. Kenilworth, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabecKenduskeag, Maine: EnergyNew Jersey: Energy

  11. Kinnelon, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington:KimbleKinnelon, New Jersey: Energy Resources

  12. Highlands, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy ResourcesNew Jersey: Energy Resources

  13. Palmyra, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCN Technology Jump2011) | OpenPalmyra, New Jersey:

  14. Sandia Energy - New Jersey Transit FutureGrid MOU Signing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink GalleryNationalJersey Transit

  15. Hillsborough, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey: Energy Resources Jump to: navigation,

  16. Hillsdale, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey: Energy Resources Jump

  17. Hoboken, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey: EnergySpain) JumpHoback,Hoboken, New

  18. Holiday City South, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey: EnergySpain)HockleyHokeHolderness,

  19. Holiday City-Berkeley, New Jersey: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey:

  20. Palisades Park, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisades Park, New Jersey: Energy Resources Jump to:

  1. Paramus, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisadesParachute,Paramus, New Jersey: Energy

  2. Park Ridge, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisadesParachute,Paramus,New Jersey: Energy

  3. Perth Amboy, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources Jump to:Personal Tax Credit Jump to:New Jersey:

  4. Pine Beach, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project JumpBeach, New Jersey:

  5. Pleasantville, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S APlataformaTexas: EnergyJersey: Energy

  6. Point Pleasant, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S6665°,Jump to:Pleasant, New Jersey: Energy

  7. Pomona, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini EnergiaBiocombustiveis Jump to:Connecticut:Jersey:

  8. Port Reading, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards, Wisconsin: EnergyReading, New Jersey: Energy

  9. Port Republic, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards, Wisconsin: EnergyReading, New Jersey:

  10. Red Bank, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:bJumpRed Bank, New Jersey: Energy

  11. Glen Ridge, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo, Maryland: Energy ResourcesNew Jersey: Energy

  12. Glen Rock, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo, Maryland: Energy ResourcesNew Jersey:

  13. New Jersey/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel WindNew Grid EnergyHarvestNewNew Jersey/Wind

  14. Somerset, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore JumpSolarezoSolicorePatras,Pennsylvania:New Jersey:

  15. Suez Energy Resources North America (New Jersey) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNew Jersey) Jump to: navigation, search

  16. Dover Beaches South, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey: Energy Resources Jump to: navigation,

  17. Dover, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey: Energy Resources Jump

  18. Dunellen, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey:JumpOregon: Energy Resources

  19. East Rutherford, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: Energy ResourcesRutherford, New Jersey: Energy

  20. Emerson, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,Energy Information ElkhornElwood,EmcoreEmergentNew Jersey:

  1. Northfield, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence Seed LLC JumpNew Jersey: Energy Resources Jump to:

  2. Northvale, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence Seed LLC JumpNew Jersey:Northstar EthanolNorthvale,

  3. Nutley, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn, Colorado: EnergySassoNutley, New Jersey:

  4. Ocean City, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,andOasys WaterCity, New Jersey: Energy

  5. Ocean County, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,andOasys WaterCity, New Jersey:Ocean

  6. Ocean Gate, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,andOasys WaterCity, NewGate, New Jersey:

  7. Madison Park, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECOFlorida:Madison Gas &Park, New Jersey:

  8. Madison, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECOFlorida:Madison Gas &Park,Jersey:

  9. Maplewood, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca, California:Park,Maplewood, New Jersey:

  10. Middlesex, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickey HotVII,MiddleVirginia: EnergyNew Jersey:

  11. Millstone, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|Mililani Town,Millinocket, Maine:Millstone, New Jersey:

  12. South Plainfield, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jumpsource History ViewHolt Wind FarmJersey:

  13. Stockton, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation GlassOpen(Redirected fromNew Jersey:

  14. Summit, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By Fault PropagationSummerside Wind FarmSummit, New Jersey:

  15. Cranbury, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings Llc Jump to:Cranbury, New Jersey: Energy

  16. Cumberland County, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWing County,Electric Coop, IncNew Jersey: Energy

  17. Dayton, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNew Jersey: Energy Resources Jump to:

  18. South Jersey Energy Company (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkarTopicsSouth Dakota WindSouth Jersey

  19. South Jersey Energy Company (Rhode Island) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkarTopicsSouth DakotaSouth Jersey Energy

  20. South Plainfield, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkarTopicsSouthNew Jersey: Energy

  1. Allendale, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformationNewInformation AllendaleNew Jersey:

  2. Avalon, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:Auriga EnergyAuxin Solar Jump to:New Jersey: Energy

  3. New Jersey's 12th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR)Nevis EngineCity,NewJumpInformation Jersey.

  4. Ramsey, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name: RaghurajiRamgraberRamsey, New Jersey:

  5. Riverdale, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze -RichtonMissouri:Park, California:New Jersey:

  6. Rutherford, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont:Kentucky: EnergyInformationNew Jersey:

  7. Forked River, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,Forked River, New Jersey: Energy

  8. Union City, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle AirshipsUnalakleet Valley ElecChemBridge,New Jersey:

  9. Clinton, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: Energy Resources Jump to:New Jersey: Energy

  10. New Jersey Industrial Energy Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREof Energy InvestigatesEnvironmentofa DayJersey

  11. Scrap-tire consumption in New England and New Jersey

    SciTech Connect (OSTI)

    Barad, A.

    1991-02-01T23:59:59.000Z

    The disposal of scrap tires is one facet of the current solid waste dilemma that is currently receiving an increasing amount of attention in the northeast. Above-ground disposal in tire stockpiles has become a common phenomenon. One way to avoid continued stockpiling of scrap tires, and to reduce the number and size of existing piles, is to find ways to consume the tires. The economics of scrap tire consumption in the region has not yet been examined in great detail. The main goal of the paper is to describe the current pattern of scrap tire use and disposal in New England and New Jersey, and the changes expected in the near future. In the course of this description, various economic, regulatory and other factors emerge as significant forces shaping the consumption and disposal pattern. The concluding sections of the paper highlight some of these factors and identify policy options available to increase scrap tire consumption in the region.

  12. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of New Jersey

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of New Jersey.

  13. New Jersey State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.

  14. East Building, PHH-30 U.S. Department 1200 New Jersey Avenue...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    East Building, PHH-30 U.S. Department 1200 New Jersey Avenue, S.E. of Transportation Washington, D.C. 20590 Pipeline and Hazardous Materials Safety Administration Tracking Number:...

  15. ENVIRONMENTAL HEALTH AND SAFETY RAMAPO COLLEGE OF NEW JERSEY STANDARD OPERATING PROCEDURE

    E-Print Network [OSTI]

    Rainforth, Emma C.

    HOUSEKEEPING: MAINTENANCE YARDS Standard Operating Procedure: Good Housekeeping: Maintenance Yards IENVIRONMENTAL HEALTH AND SAFETY RAMAPO COLLEGE OF NEW JERSEY STANDARD OPERATING PROCEDURE: GOOD at maintenance yards including maintenance activities at ancillary operations at Ramapo College. The purpose

  16. ENVIRONMENTAL HEALTH AND SAFETY RAMAPO COLLEGE OF NEW JERSEY STANDARD OPERATING PROCEDURE

    E-Print Network [OSTI]

    Rainforth, Emma C.

    MAINTENANCE Standard Operating Procedure: Vehicle Maintenance I. Introduction and Purpose This SOP containsENVIRONMENTAL HEALTH AND SAFETY RAMAPO COLLEGE OF NEW JERSEY STANDARD OPERATING PROCEDURE: VEHICLE operations within Ramapo College. III. Standards and Specifications Conduct vehicle maintenance operation

  17. ENVIRONMENTAL HEALTH AND SAFETY RAMAPO COLLEGE OF NEW JERSEY STANDARD OPERATING PROCEDURE

    E-Print Network [OSTI]

    Rainforth, Emma C.

    ENVIRONMENTAL HEALTH AND SAFETY RAMAPO COLLEGE OF NEW JERSEY STANDARD OPERATING PROCEDURE: VEHICLE FUELING Standard Operating Procedure: Vehicle Fueling I. Introduction and Purpose Vehicle and equipment maintenance yards with fueling, including mobile fueling operations. III. Standards and Specifications (for

  18. Using a newsvendor model for demand planning of NFL replica jerseys

    E-Print Network [OSTI]

    Parsons, John C. W. (John Charles Wilfred), 1976-

    2004-01-01T23:59:59.000Z

    The thesis addresses the inventory planning process for NFL Replica jerseys. The analysis is conducted from the perspective of the manufacturer's North American distribution center, and how flexibility can be employed to ...

  19. New Jersey Natural Gas- SAVEGREEN Commercial On-Bill Financing Program

    Broader source: Energy.gov [DOE]

    New Jersey Natural Gas (NJNG) under SAVEGREEN Project offers 0% APR On-Bill Repayment Program (OBRP) for eligible small to mid-sized commercial, industrial, and local governmental buildings in its...

  20. New Jersey Natural Gas- SAVEGREEN Residential On-Bill Financing Program

    Broader source: Energy.gov [DOE]

    Through the SAVEGREEN Project, New Jersey Natural Gas (NJNG) provides an On-Bill Repayment Program (OBRP) for $2,500 up to $10,000 at 0% APR with no fees, points, or closing cost for energy...

  1. Borough of New Wilmington, Pennsylvania (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotins EnergiaMilltown, New Jersey (Utility

  2. Nitrogen sparing by 2-ketoisocaproate in parenterally fed rats

    SciTech Connect (OSTI)

    Yagi, M.; Matthews, D.E.; Walser, M. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1990-11-01T23:59:59.000Z

    In rats receiving total parenteral nutrition with or without sodium 2-ketoisocaproate (KIC; 2.48 g.kg-1.day-1), L-(1-{sup 13}C)leucine and (1-{sup 14}C)KIC were constantly infused for 6 h. CO{sub 2} production, {sup 14}CO{sub 2} production, {sup 13}CO{sub 2} enrichment, urinary urea nitrogen (N) plus ammonia N and total urinary N were measured. Whole body protein synthesis (S) was calculated in non-KIC-infused rats and also in unfed rats infused with (1-{sup 14}C)leucine from fractional oxidation of labeled leucine (1-F), where F is fractional utilization for protein synthesis, and urea N plus ammonia N excretion (C) as S = C x F/(1-F). Addition of KIC caused a significant reduction in N excretion and a significant improvement in N balance. Fractional oxidation of labeled KIC increased, whereas fractional utilization of labeled KIC for protein synthesis decreased, but the extent of incorporation of infused KIC into newly synthesized protein (as leucine) amounted to at least 40% of the total rate of leucine incorporation into newly synthesized whole body protein. We conclude that addition of KIC spares N in parenterally fed rats and becomes a major source of leucine for protein synthesis.

  3. The V2G Concept: Connecting utility infrastructure and automobiles.

    E-Print Network [OSTI]

    Firestone, Jeremy

    The V2G Concept: A New For Model Power? Connecting utility infrastructure and automobiles OF as mobile, self-contained, and--in the aggregate--highly reliable power resources. "Electric). When vehicle power is fed into the electric grid, we refer to it as "Vehicle-to-Grid" power, or V2G

  4. Productivity of F b1 sAngus-Jersey cows compared with Hereford cows under intensive and extensive management conditions 

    E-Print Network [OSTI]

    Ellison, Daniel Richard

    1974-01-01T23:59:59.000Z

    the younger Angus-Jersey cows at parturition, during the lactation and postlactation periods. Hereford cows consumed an average of 10. 8 kg of feed during the lactation period while the Angus-Jersey cows consumed 9. 5 kg of feed daily during this period.... Average weight change was positive during both the lactation and post- lactation periods. The Herefords gained more weight during the lactation period while the Angus-Jersey cows gained more weight during the postlactation period. Breed of cow...

  5. Ramkrishna Mukherjee. Uganda: An Historical Accident?: Class, Natona, State Formation. Trenton, New Jersey: Africa World Press, 1985 281pp.

    E-Print Network [OSTI]

    Isabirye, Stephen B.

    1989-01-01T23:59:59.000Z

    Trenton, Historical Accident? : Class, Natona, New Jersey:in Mukherjee Historical Accident. analyzes the "poUticalare not an "historical accident." War, Violence and Children

  6. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  7. Morris County Improvement Authority, Morris County, New Jersey Renewable Energy Initiative

    SciTech Connect (OSTI)

    Bonanni, John [Chair, Morris County Improvement Authority] Chair, Morris County Improvement Authority

    2013-05-01T23:59:59.000Z

    The Morris County Improvement Authority (?Authority?), a public body corporate and politic of the State of New Jersey and created and controlled by the County, at the direction of the County and through the Program guaranteed by the County, financed 3.2 MW of solar projects (?Solar Projects?) at fifteen (15) sites for seven (7) local government units (?Local Units?) in and including the County. The Program uses a Power Purchase Agreement (?PPA?) structure, where the Solar Developer constructs, operates and maintains all of the Solar Projects, for the benefit of the Local Units and the Authority, for the maximum State law allowable PPA period of fifteen (15) years. Although all fifteen (15) sites were funded by the Authority, only the Mennen Arena site was considered for the purposes of the required local match funding for this grant. Specifically at the Mennen Arena site, the Authority financed 1.6 MW of solar panels. On October 18, 2013, the DOE Grant was drawn down following completion of the necessary application documents and final execution of an agreement memorializing the contemplated transaction by the Local Units, the County, The Authority and the solar developer. The proceeds of the DOE Grant were then applied to reduce the PPA price to all Local Units across the program and increase the savings from approximately 1/3 to almost half off the existing and forecasted utility pricing over the fifteen (15) year term, without adversely affecting all of the other benefits. With the application of the rate buy down, the price of electricity purchased under the PPA dropped from 10.9 to 7.7 cents/kWh. This made acquisition of renewable energy much more affordable for the Local Units, and it enhanced the success of the program, which will encourage other counties and local units to develop similar programs.

  8. Utility Partnerships Webinar Series: Gas Utility Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Partnerships Webinar Series: Gas Utility Energy Efficiency Programs Utility Partnerships Webinar Series: Gas Utility Energy Efficiency Programs gasutilityeewebinarnov2...

  9. FED-A, an advanced performance FED based on low safety factor and current drive

    SciTech Connect (OSTI)

    Peng, Y.K.M.; Rutherford, P.H.

    1983-08-01T23:59:59.000Z

    The FED-A study aims to quantify the potential improvement in cost-effectiveness of the Fusion Engineering Device (FED) by assuming low safety factor q (less than 2 as opposed to about 3) at the plasma edge and noninductive current drive (as opposed to only inductive current drive). The FED-A performance objectives are set to be : (1) ignition assuming International Tokamak Reactor (INTOR) plamsa confinement scaling, but still achieving a fusion power amplification Q greater than or equal to 5 when the confinement is degraded by a factor of 2; (2) neutron wall loading of about 1 MW/m/sup 2/, with 0.5 MW/m/sup 2/ as a conservative lower bound; and (3) more clearly power-reactor-like operations, such as steady state.

  10. Petrology of Jurassic (Kimmeridgian) coals, Atlantic Continental Shelf, New Jersey

    SciTech Connect (OSTI)

    Hower, J.C.; Wild, G.D. (Univ. of Kentucky, Lexington, KY (United States))

    1993-08-01T23:59:59.000Z

    Ten coals of Kimmeridgian age were recovered from the COST B-3 borehole, offshore New Jersey. Separation of the coal from other cuttings was done at 1.8 specific gravity, meaning that partings and mineral-rich lithotypes were lost in processing. The coals are distributed over an interval of 3.49 to 3.93 km depth. Coal rank, by vitrinite maximum reflectance, spans the lower portion of the high volatile A bituminous range. A single Cretaceous coal with 0.32%R[sub max] occurs at 2.08 km depth. Vitrinite content ranges from 51 to over 90% with vitrinite content generally increasing upward in the section. Telinite with resinite cell fillings is an important vitrinite form. Resinite occurs in concentrations of up to 9% in the Jurassic coals and is nearly 12% in the Cretaceous lignite. Fusinite plus semifusinite ranges from 2 to 31%. Inertinite occurs in a wide variety of forms from low-reflectance semifusinite to massive, structureless fusinite. Inertodetrinite also is a component of the abundant detrital bands of some of the Jurassic coals. The gravity separation did not eliminate all mineral matter. Massive pyrite and marcasite occur in several coals and clay occurs with the detrital minerals.

  11. NET PRED UTILITY

    Energy Science and Technology Software Center (OSTI)

    002602IBMPC00 Normalized Elution Time Prediction Utility  http://omics.pnl.gov/software/NETPredictionUtility.php 

  12. Results of the radiological survey at the Firemen's Memorial Park and Fire Hall No. 2, Garibaldi Avenue and Kennedy Drive, Lodi, New Jersey (LJ066)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Crutcher, J.W. (Oak Ridge National Lab., TN (USA))

    1989-08-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of the gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, the Firemen's Memorial Park and Fire Hall 2, Garibaldi Avenue and Kennedy Drive, Lodi, New Jersey (LJ066) was conducted during 1987. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 4 refs., 10 figs., 3 tabs.

  13. Feds feed Families | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6AwardsScorecard forDepartmentofFeds

  14. Optimization of a fed-batch fermentation process control competition ...

    E-Print Network [OSTI]

    2003-07-07T23:59:59.000Z

    Keywords: optimal control, fed-batch process, network enabled optimization. 1 INTRODUCTION ... input, the output for each batch would not be the problem is ...

  15. NNSA Production Office tops Feds Feed Families campaign goal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production Office tops ... NNSA Production Office tops Feds Feed Families campaign goal Posted: September 16, 2013 - 9:45am Oak Ridge, Tenn. - Employees of the National Nuclear...

  16. Optimization of A Fed-batch Fermentation Process Control ...

    E-Print Network [OSTI]

    Jinsong Liang

    2003-08-01T23:59:59.000Z

    Aug 1, 2003 ... Optimization of A Fed-batch Fermentation Process Control Competition Problem Using NEOS. Jinsong Liang (jinsongliang ***at*** cc.usu.edu)

  17. Growth of yearling fillies fed alfalfa or soybean meal

    E-Print Network [OSTI]

    Wall, Leman H

    1998-01-01T23:59:59.000Z

    to each diet. Group I was fed a diet of coastal bermudagrass hay and concentrate supplemented with soybean meal such that their total diet contained 13% CP. Group 2 was fed a diet of alfalfa hay and a similar concentrate without soybean meal so...

  18. Company: American Pool Management Work Location: Edison, NJ Local Pools throughout Central and North Jersey

    E-Print Network [OSTI]

    Hanson, Stephen José

    Company: American Pool Management Work Location: Edison, NJ ­ Local Pools throughout Central and North Jersey Pay Rate: $9-$12/hour Type of Business: Swimming Pool Management Job Title: Seasonal Staffing Assistant, Seasonal Area Supervisors, Seasonal Pool Managers, Seasonal Lifeguards Start Date: May

  19. Information resources used in health risk assessment by the New Jersey Department of Environmental Protection

    SciTech Connect (OSTI)

    Post, G.B.; Baratta, M.; Wolfson, S.; McGeorge, L. [New Jersey Department of Environmental Protection, Trenton (United States)

    1990-12-31T23:59:59.000Z

    The New Jersey Department of Environmental Protection`s responsibilities related to health-based risk assessment are described, including its research projects and its development of health based compound specific standards and guidance levels. The resources used by the agency to support health risk assessment work are outlined.

  20. Rutgers, The State University of New Jersey 88 Lipman Drive, New Brunswick, NJ 08901-8525

    E-Print Network [OSTI]

    Goodman, Robert M.

    for savings. In some cases it may be economically beneficial to pay for a professional energy audit. SelectingRutgers, The State University of New Jersey 88 Lipman Drive, New Brunswick, NJ 08901-8525 Phone: 732.932.5000 Energy Consumption Electric Petroleum Natural Gas Gas Year 1 Year 4Year 3Year 2 Year 5

  1. RUTGERS -THE STATE UNIVERSITY OF NEW JERSEY 26:198:644 Data Mining

    E-Print Network [OSTI]

    Lin, Xiaodong

    RUTGERS - THE STATE UNIVERSITY OF NEW JERSEY 26:198:644 Data Mining Fall 2014 Instructor: Professor Text Book: "Introduction to Data Mining", by Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Addison and Tom Fawcett, O'REILLY, ISBN: 978-1- 449-36132-7, 2013. "Data Mining: Concepts and Techniques, Third

  2. RUTGERS -THE STATE UNIVERSITY OF NEW JERSEY Data Mining (26:198:685)

    E-Print Network [OSTI]

    Lin, Xiaodong

    RUTGERS - THE STATE UNIVERSITY OF NEW JERSEY Data Mining (26:198:685) Spring 2009 Instructor: Dr · Office Phone: 973-353-5261 · Text Book: "Introduction to Data Mining", by Pang-Ning Tan, Michael, it is difficult for analysts to sift through the data even though it may contain useful information. Data mining

  3. business.rutgers.edu Rutgers, The State University of New Jersey founded 1766 Rutgers Business School

    E-Print Network [OSTI]

    Lin, Xiaodong

    business.rutgers.edu Rutgers, The State University of New Jersey ­ founded 1766 Rutgers Business Business School Rutgers Business School­Newark and New Brunswick (RBS) is an integral part of one--the Association to Advance Collegiate Schools of Business-- a distinction that represents the hallmark

  4. Report to the New Jersey State Board of Agriculture Spotlight on Rutgers NJAES EcoComplex

    E-Print Network [OSTI]

    Goodman, Robert M.

    Report to the New Jersey State Board of Agriculture April 2009 Spotlight on Rutgers NJAES Eco and economic growth," notes David Specca, assistant director for bioenergy technologies and controlled-environment agriculture at the EcoComplex. "By offering services and resources to entrepreneurs that are not available

  5. Energetic-Particle-Induced Geodesic Acoustic Mode Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA

    E-Print Network [OSTI]

    , Princeton, New Jersey 08543, USA (Received 24 June 2008; published 30 October 2008) A new energetic particle that energetic particles can indeed excite a new GAM-like mode via free energy associated with velocity space, the new mode, to be called EGAM (for energetic- particle-induced GAM), is intrinsically an energetic parti

  6. LIBRARY INFORMATION SCIENCE DOCTORAL STUDIES AT RUTGERS THE STATE UNIVERSITY OF NEW JERSEY

    E-Print Network [OSTI]

    LIBRARY INFORMATION SCIENCE DOCTORAL STUDIES AT RUTGERS THE STATE UNIVERSITY OF NEW JERSEY In the School of Communication, Information and Library Studies The Information Science Track Recent Research () Collaboration for Affinity Groups Applications and Funding Support: Students in the Information Science track

  7. 1 Rutgers, The State University of New Jersey @$I1B I STUDENT EMPLOYMENT

    E-Print Network [OSTI]

    Delgado, Mauricio

    1 Rutgers, The State University of New Jersey @$I1B I STUDENT EMPLOYMENT I OFFICE Job Location and Development Program Part-time and Seasonal Jobs Joyce Madee,Assistant Director and Employment Counselor and Employment Counselor 7321932-8817 extension 652 madee@rci.rutgers.edu Student Employment Office 620 George

  8. FINAL DRAFT 4-1-11 New Jersey Institute of Technology Number: 12-04

    E-Print Network [OSTI]

    of Technology policies and procedures. In order to maintain consistency in the treatment of cost transfersFINAL DRAFT 4-1-11 New Jersey Institute of Technology Number: 12-04 University Policies and Procedures Date of Issue: October 12, 2011 Subject: GRANTS AND CONTRACTS - COST TRANSFER A. OVERVIEW Cost

  9. New Jersey Audubon S.A.V.E. Seed Program Business Plan

    E-Print Network [OSTI]

    and Recommendations · Marketing and Communications 14 · Member Survey and Retailer Interview Analysis 15 · Product 19 - Communications 24 - Partnerships and Alliances 26 · Operations 30 · Supply Chain Logistics 30 - Product Storage Appendices 45 1.1 Recommendations table 46 2.1 Survey questions 47 2.2 New Jersey Audubon member survey 51 3

  10. Tuckerton, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (UtilityTri-State

  11. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

  12. Mississippi Public Utility Act

    Broader source: Energy.gov [DOE]

    The Mississippi Public Utility Act is relevant to any project that plans to generate energy. It requires that a utility must first obtain a Certificate of Public Convenience and Necessity (CPCN)...

  13. Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-10-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  14. Camden, New Jersey Data Dashboard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom: UtilizingDepartment ofProvingCompetesThe data

  15. Camden, New Jersey Summary of Reported Data | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom: UtilizingDepartment ofProvingCompetesThe

  16. Atlantic County, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformationGuide | OpenAthens UtilityCounty, New

  17. Trenton, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company)LibraryDatasetsElectricRiver Solar |New

  18. Trenton, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company)LibraryDatasetsElectricRiver Solar

  19. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24T23:59:59.000Z

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  20. GSA- Utility Interconnection Agreements

    Broader source: Energy.gov [DOE]

    Presentation given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  1. Relationships among growth parameters, milk production and reproduction in a Jersey herd

    E-Print Network [OSTI]

    Cantu Martinez, Cesar Servando

    1973-01-01T23:59:59.000Z

    Tecnologico y de Estudios Superiores de Monterrey Directed by Dr. H. A. Pitzhugh, Jr. The relationships among growth curve parameters, milk production and reproductive characteristics in a herd of Jersey cows were analyzed from a set of data collected from... 1944 to 1962 at Texas Agricultural Experiment Station Substation No. 2, Tyler, Texas. Records of body weights and milk production taken at 28-day intervals were available. Birth weight and calving interval were also recorded for most individuals...

  2. Results of the radiological survey at 146 W. Central Avenue, Maywood, New Jersey (MJ034)

    SciTech Connect (OSTI)

    Foley, R.D.; Carrier, R.F.

    1989-11-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and reining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from OaK Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. These surveys typically include direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, a private property at 146 West Central Avenue, Maywood, New Jersey (MJ034), was conducted during 1987 and 1988. While some measurements at this property were greater than background levels typically encountered in the New jersey area, no radiation levels nor radionuclide concentrations exceeded the guidelines established by the DOE for the Maywood, New Jersey, area remedial action plan. However, because of the proximity of the railroad property, which will be remediated, and the DOE's ALARA (As Low As Reasonably Achievable) policy, concurrent removal of the slightly elevated soil layers at 146 W. Central Avenue may be justified. 6 refs., 6 figs., 3 tabs.

  3. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    International Conference onFly Ash Disposal and Utilization,onJanuary 20-22, 1998, New Delhi, India. COAL ASH and Applied Science THE UNIVERSITY OF WISCONSIN - MILWAUKEE #12;COAL ASH GENERATIONANDUTILIZATION: A REVIEW and utilization of coal ash in many parts of the world. The utilization potential for coal ash generated from

  4. California | Connecticut | Illinois | Maine | Maryland | Massachusetts | Michigan | New Hampshire | New Jersey | New York | Oregon | Vermont | Washington STATES' PRINCIPLES ON REFORM OF THE

    E-Print Network [OSTI]

    | New Jersey | New York | Oregon | Vermont | Washington STATES' PRINCIPLES ON REFORM OF THE TOXIC chemical alternatives assessments. #12;States' Principles on Reform of the Toxic Substances Control Act

  5. Immune Response and Salmonella Clearance in Broiler Chickens after Fed Arginine, Vitamin E and Prebiotics

    E-Print Network [OSTI]

    Liu, Xiao

    2012-02-14T23:59:59.000Z

    had the highest OBHR at d 17, chickens fed AVM had the highest LPR at d 17. In E.4, chickens fed AVM showed higher BW than CTL at d 17 and d 24. Also no Salmonella counts differences were found. Chickens fed AVE had higher LPR than chickens fed AVM...

  6. DECONTAMINATION OF DREDGED MATERIAL FROM THE PORT OF NEW YORK AND NEW JERSEY.

    SciTech Connect (OSTI)

    JONES,K.W.; STERN,E.A.; DONATO,K.R.; CLESCERI,N.L.

    1999-06-01T23:59:59.000Z

    The Port of New York and New Jersey ranks first in the United States in volume of petroleum products handled each year. In addition, many refineries are in operation on the New Jersey side of the Port. These activities have led to the discharge of significant amounts of petroleum hydrocarbons into the waters of the New York/New Jersey region. Intense industrial and commercial activities have also brought about major inputs of other organic and inorganic contaminants as would be expected in an industrialized, heavily populated urban port. Sediments that then are contaminated are a major problem for the region since they can no longer be disposed of by the traditional method of ocean disposal following the dredging operations required for the efficient operation of the Port. Decontamination and beneficial reuse of the dredged materials is one component of a comprehensive dredged material management plan being developed by the US Army Corps of Engineers. A demonstration decontamination project extending from bench- to field-scale operations is now in progress in the Port, and its current status and relevance for other regions is summarized.

  7. DECONTAMINATION OF DREDGED MATERIAL FROM THE PORT OF NEW YORK AND NEW JERSEY

    SciTech Connect (OSTI)

    JONES,K.W.; STERN,E.A.; DONATO,K.R.; CLESCERI,N.L.

    1999-06-01T23:59:59.000Z

    The Port of New York and New Jersey ranks first in the US in volume of petroleum products handled each year. In addition, many refineries are in operation on the New Jersey side of the Port. These activities have led to the discharge of significant amounts of petroleum hydrocarbons into the waters of the New York/New Jersey region. Intense industrial and commercial activities have also brought about major inputs of other organic and inorganic contaminants as would be expected in an industrialized, heavily populated urban port. Sediments that then are contaminated are a major problem for the region since they can no longer be disposed of by the traditional method of ocean disposal following the dredging operations required for the efficient operation of the Port. Decontamination and beneficial reuse of the dredged materials is one component of a comprehensive dredged material management plan being developed by the US Army Corps of Engineers. A demonstration decontamination project extending from bench- to field-scale operations is now in progress in the Port, and its current status and relevance for other regions is summarized.

  8. Carrots for Utilities: Providing Financial Returns for Utility...

    Open Energy Info (EERE)

    Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities:...

  9. "List of Covered Electric Utilities" under the Public Utility...

    Energy Savers [EERE]

    6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

  10. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  11. Utility Data Collection Service

    Broader source: Energy.gov [DOE]

    Presentation covers the utility data collection service and is given at the FUPWG 2006 Spring meeting, held on May 3-4, 2006 in Atlanta, Georgia.

  12. Joint Electrical Utilities (Iowa)

    Broader source: Energy.gov [DOE]

    Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease...

  13. Utility Regulation (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Utility Regulatory Commission enforces regulations in this legislation that apply to all individuals, corporations, companies, and partnerships that may own, operate, manage, or control...

  14. Utility Service Renovations

    Broader source: Energy.gov [DOE]

    Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

  15. Municipal Utility Districts (Texas)

    Broader source: Energy.gov [DOE]

    Municipal Utility Districts, regulated by the Texas Commission on Environmental Quality, may be created for the following purposes: (1) the control, storage, preservation, and distribution of its...

  16. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    clean coal technology, are not extensively utilized in the cast concrete masonry products (bricks both conventional and clean coal technologies. A clean coal ash is defined as the ash derived from SO2Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST

  17. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    combustion by-products #12;3 generated by using both conventional and clean-coal technologies. A clean-coal that obtained from clean-coal technology, are not utilized in cast-concrete masonry products (bricks, blocksCenter for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik

  18. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Fellow at the UWM-CBU. His research interests include the use of coal fly ash, coal bottom ash, and used in management, disposal, and sale of coal-combustion by-Center for By-Products Utilization USE OF UNDER-UTILIZED COAL- COMBUSTION PRODUCTS IN PERMEABLE

  19. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    of coal fly ash, coal bottom ash, and used foundry sand in concrete, bricks, blocks, and8 paving stones, Wisconsin. She is involved in management,11 disposal, and sale of coal-combustion by-products. She alsoCenter for By-Products Utilization UNDER-UTILIZED COAL-COMBUSTION PRODUCTS IN PERMEABLE ROADWAY

  20. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST OF CLASS F FLYASHAND CLEAN-COAL ASHBLENDS FOR CAST CONCRETE PRODUCTS Authors: TarunR.Naik, Director, Center,Illinois Clean Coal Institute RudolphN.Kraus, Research Associate, UWM Center forBy-Products Utilization Shiw S

  1. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -Milwaukee, P.O. Box 784, Milwaukee, WI 53201 d Project Manager, Illinois Clean Coal Institute * Director UWM products containing clean coal ash compared to conventional coal ash. Utilization of clean coal ash is much products that utilize clean coal ash. With increasing federal regulations on power plant emissions, finding

  2. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization CLEAN COAL BY-PRODUCTS UTILIZATION IN ROADWAY, EMBANKMENTS-fueled plants, particularly use of eastern coals, has lead to the use of clean coal and using advanced sulfur dioxide control technologies. Figure 1 shows clean coal technology benefits(2) . In 1977, the concept

  3. Results of the radiological survey at 9 Redstone Lane, Lodi, New Jersey (LJ069)

    SciTech Connect (OSTI)

    Foley, R.D.; Carrier, R.F.

    1989-07-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process waste and residues associated with the production and refining of thorium and thorium compounds from monozite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Areas residents used the sandlike waste from this thorium extraction process mixed with teas and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigate radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 9 Redstone Lane, Lodi, New Jersey (LJ069), was conducted during 1987. Measurements at the private property located at 9 Redstone Lane indicate slightly elevated gamma exposure rates in association with cinder-like material observed in logging holes. These elevated levels result from naturally occurring radioactivity present in such substances as ashes and cinders. They are not related to the deposit of residues from processing operations at the MCW site. All other radiological findings conform to the guidelines established by the DOE for the Maywood, New Jersey, area remedial action plan. 4 refs., 3 figs., 3 tabs.

  4. Ho-Ho-Kus, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey: EnergySpain) Jump to:Hitchcock,Ho-Ho-Kus,

  5. New Jersey Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts Regions National ScienceModelingHampshireJersey

  6. ELECTRICAL ANALOGY MODELLING OF PEFC SYSTEM FED BY A COMPRESSOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 PB13-078 ELECTRICAL ANALOGY MODELLING OF PEFC SYSTEM FED BY A COMPRESSOR Moussa Chnani1 , Hattab to be integrated in the simulation of an electrical vehicle power train. As many components have to be modelled by the motor speed. The modelling of the fuel cell electrical response is developed, based on semi

  7. EFFECTS OF THIAMINE-OR RIBOFLAVIN-DEFICIENT DIET FED

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    EFFECTS OF THIAMINE- OR RIBOFLAVIN-DEFICIENT DIET FED TO NEW EMERGED HONEY BEES, APIS MELLIFERA L-vitamins but lacking thiamine or riboflavin. The longevity, hypopharyngeal gland development and total body nitrogen and riboflavin failed to develop beyond the stage found in newly emerged bees. The total nitrogen content of bees

  8. Key issues of FED/INTOR impurity control system

    SciTech Connect (OSTI)

    Abdou, M.A.

    1982-10-01T23:59:59.000Z

    A key part of the FED/INTOR activity over the past year has focused on examining the critical issues and developing credible physics and engineering solutions for the impurity control system. The primary emphasis of the work was on the edge-region physics, plasma-wall interaction, materials, engineering and magnetic considerations of the poloidal divertor and pump limiter.

  9. Development of a Perfusion Fed Bioreactor for Embryonic Stem

    E-Print Network [OSTI]

    Zandstra, Peter W.

    Development of a Perfusion Fed Bioreactor for Embryonic Stem Cell-Derived Cardiomyocyte Generation the heterogeneous cell populations (genetic selec- tion), with medium perfusion in a controlled bioreactor be manipu- lated to improve cardiomyocyte yield. B 2005 Wiley Period- icals, Inc. Keywords: bioreactor

  10. Original article Digestion and fermentation of proteins in rats fed

    E-Print Network [OSTI]

    Boyer, Edmond

    Original article Digestion and fermentation of proteins in rats fed keratin, albumin, cooked casein the hypothesis that cooking reduces the digestibility of casein, and increases the yield of bacterial me transfer and fermentation in the caecum. The caecal digestion of casein (cooked or not), ker- atin

  11. Funding: Fed. Grant/MPIC 2007 POTATO VARIETY EVALUATIONS

    E-Print Network [OSTI]

    Douches, David S.

    Funding: Fed. Grant/MPIC 2007 POTATO VARIETY EVALUATIONS D.S. Douches, J. Coombs, J. Estelle, D Pathology Michigan State University East Lansing, MI 48824 INTRODUCTION Each year, the MSU potato breeding and genetics team conducts a series of variety trials to assess advanced potato selections from the Michigan

  12. Funding: Fed. Grant/MPIC 2006 POTATO VARIETY EVALUATIONS

    E-Print Network [OSTI]

    Douches, David S.

    Funding: Fed. Grant/MPIC 2006 POTATO VARIETY EVALUATIONS D.S. Douches, J. Coombs, J. Driscoll, J of variety trials to assess advanced potato selections from the Michigan State University and other potato on new potato ground that was in corn the previous year. The round white tuber types were divided

  13. Feedback Stabilization of Fed-Batch Bioreactors: Non-Monotonic Growth Kinetics

    E-Print Network [OSTI]

    Bastin, Georges

    Feedback Stabilization of Fed-Batch Bioreactors: Non-Monotonic Growth Kinetics Ilse Y. Smets's yeast, food additives, and recom- binant proteins), optimization and control of fed-batch bioreactors

  14. Minimal time problem for a fed-batch bioreactor with saturating singular control

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Minimal time problem for a fed-batch bioreactor with saturating singular control T´erence Bayen in the present work is a fed-batch bioreactor with one species and one substrate. Our aim is to find an optimal

  15. A Solar Re-Skin at FedEx Field | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A Solar Re-Skin at FedEx Field A Solar Re-Skin at FedEx Field August 2, 2011 - 10:40am Addthis Ramamoorthy Ramesh Former Director, SunShot Initiative & Solar Energy Technologies...

  16. Public Utilities Act (Illinois)

    Broader source: Energy.gov [DOE]

    This act aims to make energy services in the state reliable and efficient, while preserving the quality if the environment. It states the duties of public utilities in terms of accounts and reports...

  17. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization DRAFT REPORT CARBON DIOXIDE SEQUESTRATION IN CEMENTITIOUS-MILWAUKEE #12;CARBON DIOXIDE SEQUESTRATION IN CEMENTITIOUS PRODUCTS Progress Report by Tarun R. Naik, Rakesh of Carbon Dioxide Sequestration Technologies

  18. Public Utilities (Florida)

    Broader source: Energy.gov [DOE]

    Chapter 366 of the Florida Statutes governs the operation of public utilities, and includes a section pertaining to cogeneration and small power production (366.051). This section establishes the...

  19. Cogeneration - A Utility Perspective

    E-Print Network [OSTI]

    Williams, M.

    1983-01-01T23:59:59.000Z

    Cogeneration has become an extremely popular subject when discussing conservation and energy saving techniques. One of the key factors which effect conservation is the utility viewpoint on PURPA and cogeneration rule making. These topics...

  20. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    subbituminous and lignite coals. It is anticipated that increased number of coal- fired plants will utilize subbituminous and lignite coals to reduce sulfur-related emissions. Some correlation exists between chemical

  1. Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one...

  2. Utility and Industrial Partnerships

    E-Print Network [OSTI]

    Sashihara, T. F.

    In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

  3. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -Products Utilization E-mail: ymchun@uwm.edu and F. D. Botha Project Manager, Illinois Clean Coal Institute 5776 Coal, University of Wisconsin-Milwaukee, Milwaukee, WI, USA. 4 Project Manager, Illinois Clean Coal Institute

  4. Gas Utilities (New York)

    Broader source: Energy.gov [DOE]

    This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

  5. Extraction Utility Design Specification

    Energy Savers [EERE]

    Extraction Utility Design Specification January 11, 2011 Document Version 1.9 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All...

  6. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—discusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  7. Earlier this month, I visited some of our New Jersey Agricultural Experiment Station centers and offices in South Jersey. Below are some photos from that trip. It is always a delight to see the

    E-Print Network [OSTI]

    Goodman, Robert M.

    June 2008 Earlier this month, I visited some of our New Jersey Agricultural Experiment Station, along with Mike Green, Art Brown, and Gail Alexander. #12;Faculty and staff at Rutgers Agricultural panel for environmental engineering water/wastewater unsolicited proposals (May 29­30). #12;Dave

  8. Results of the radiological survey at 105 Garibaldi Avenue, Lodi, New Jersey (LJ065)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.F.

    1989-11-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 105 Garibaldi Avenue, Lodi, New Jersey (LJ065), was conducted during 1987. 4 refs., 4 figs., 3 tabs.

  9. Results of the radiological survey at 9 Branca Court, Lodi, New Jersey (LJ042)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.F.

    1989-11-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 9 Branca Court, Lodi, New Jersey (LJ042), was conducted during 1985 and 1986. 4 refs., 7 figs., 3 tabs.

  10. Results of the radiological survey at 112 Columbia Lane, Lodi, New Jersey (LJ068)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.F.

    1989-11-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 112 Columbia Lane, Lodi, New Jersey (LJ068), was conducted during 1987. 4 refs., 6 figs., 3 tabs.

  11. Results of the radiological survey at 4 Hancock Street, Lodi, New Jersey (LJ060)

    SciTech Connect (OSTI)

    Foley, R.D.; Carier, R.F.; Floyd, L.M.; Crutcher, J.W.

    1989-09-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 4 Hancock Street, Lodi, New Jersey (LJ060), was conducted during 1985 and 1986. Gamma logging results found during this survey and during a previous survey conducted by Bechtel National, Incorporated, strongly indicated radionuclide concentrations in subsurface soil in excess of DOE remedial action criteria. This finding, coupled with the fact that adjacent properties have been found to be contaminated and that Lodi Brook apparently flows under the property, suggests that it be considered for inclusion in the DOE remedial action program. 5 refs., 4 figs., 4 tabs.

  12. Results of the radiological survey at 3 Branca Court, Lodi, New Jersey (LJ038)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.F.

    1989-10-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 3 Branca Court, Lodi, New Jersey (LJ038), was conducted during 1985 and 1986. 4 refs., 4 figs., 3 tabs.

  13. Results of the radiological survey at 48 Long Valley Road, Lodi, New Jersey (LJ085)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.

    1989-11-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 48 Long Valley Road, Lodi, New Jersey (LJ085), was conducted during 1988. 5 refs., 6 figs., 3 tabs.

  14. Results of the radiological survey at 15 John Street, Lodi, New Jersey (LJ087)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.

    1989-12-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 15 John Street, Lodi, New Jersey (LJ087), was conducted during 1988. 5 refs., 3 figs., 3 tabs.

  15. Results of the radiological survey at 80 Industrial Road, Lodi, New Jersey (LJ061)

    SciTech Connect (OSTI)

    Foley, R.D.; Carrier, R.F.; Floyd, L.M.; Crutcher, J.W.

    1989-07-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 80 Industrial Road, Lodi, New Jersey (LJ061), was conducted during 1985 and 1986. Results of the survey demonstrated radionuclide concentrations in excess of DOE remedial action criteria, primarily from the /sup 232/Th decay chain, with some contamination from /sup 226/Ra. The radionuclide distributions are typical of the type of material originating from the MCW site. 5 refs., 11 figs., 3 tabs.

  16. Results of the radiological survey at 72 Sidney Stret, Lodi, New Jersey (LJ067)

    SciTech Connect (OSTI)

    Foley, R.D.; Carrier, R.F.; Floyd, L.M.; Crutcher, J.W. (Oak Ridge National Lab., TN (USA))

    1989-09-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residues used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 72 Sidney Street, Lodi, New Jersey (LJ067), was conducted during 1987. Results indicated concentrations of {sup 232}Th slightly in excess of the DOE remedial action criterion for subsurface soil. This finding, coupled with the fact that adjacent properties have been designated by DOE for remedial action, and that the old Lodi Brook streambed is apparently beneath the property, suggests that it be considered for inclusion in the DOE remedial action program. 4 refs., 5 figs., 3 tabs.

  17. Results of the radiological survey at 5 Branca Court, Lodi, New Jersey (LJ039)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.; Carrier, R.F.

    1989-11-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 5 Branca Court, Lodi, New Jersey (LJ039), was conducted during 1985 and 1986. 4 refs., 5 figs., 3 tabs.

  18. "List of Covered Electric Utilities" under the Public Utility...

    Office of Environmental Management (EM)

    8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

  19. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

  20. Energy chief tells Jersey: Fusion's back Secretary, at top research lab in Plainsboro, says country resuming international effort

    E-Print Network [OSTI]

    plan to build a $5 billion fusion reactor, called the International Thermonuclear Experimental ReactorEnergy chief tells Jersey: Fusion's back Secretary, at top research lab in Plainsboro, says country States plans to resume participation in an international collaboration to develop fusion energy

  1. MAJEED M. HAYAT, NAMED 2014 IEEE FELLOW Piscataway, New Jersey, USA, January 2014: Majeed M. Hayat, Professor of Electrical and

    E-Print Network [OSTI]

    New Mexico, University of

    MAJEED M. HAYAT, NAMED 2014 IEEE FELLOW Piscataway, New Jersey, USA, January 2014: Majeed M. Hayat, Professor of Electrical and Computer Engineering at the University of New Mexico, from Albuquerque, New Mexico, USA, has been named an IEEE Fellow. He is being recognized for contributions to the modeling

  2. May 29, 2013 ACADEMIC POSITION PROFILE APP. 209 TITLE: New Jersey Regional Studies Librarian and Head of Public Services

    E-Print Network [OSTI]

    Hanson, Stephen José

    . The New Jersey Regional Studies Librarian and Head of Public Services will: In collaboration with other including electronic publications relating to the State and region Enhance access to the Sinclair New service and collection management staff Direct and coordinate public service activities in the SC

  3. SolutionS from rutgerS New Jersey's Partner for a Strong Economy 2009 A Message from the President

    E-Print Network [OSTI]

    Goodman, Robert M.

    VeR rutgers' 1.4 megawatt solar farm on the livingston Campus in Piscataway is the largest solar farm both in new Jersey and at a single college campus in the nation. the solar farm will reduce rutgers' carbon. the project is the largest to date for the solar farm contractor, South Plainfield-based SunDurance energy

  4. Utility View of Risk Assessment

    E-Print Network [OSTI]

    Bickham, J.

    This paper will address a utility perspective in regard to risk assessment, reliability, and impact on the utility system. Discussions will also include the critical issues for utilities when contracting for energy and capacity from cogenerators...

  5. RUMEN DIGESTION PARAMETERS IN LAMBS FED WITH PELLETED DIET

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RUMEN DIGESTION PARAMETERS IN LAMBS FED WITH PELLETED DIET A. PETKOV E.I. ENEV Department of animal with pelleted feed containing 25 % alfalfa meal, 35 % maize, 9.9 % barley, 7.2 % wheat, 21.5 % sunflower oil ration was 0.200 kg pelleted feed and at the age of 4 months, 0.400 kg. The pelleted feed was given twice

  6. Utility Power Plant Construction (Indiana)

    Broader source: Energy.gov [DOE]

    This statute requires a certificate of necessity from the Indiana Utility Regulatory Commission for the construction, purchase, or lease of an electricity generation facility by a public utility.

  7. GSA-Utility Interconnection Agreements

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers the General Service Administration's (GSA's) utility interconnection agreements.

  8. BBEE Public Utility Conference Call

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BBEE Public Utility Conference Call May 19, 2011 - Summary Summer Goodwin, BPA, welcomed public utility representative participants, asked them to introduce themselves, and...

  9. Utility Community Solar Handbook- Understanding and Supporting Utility Program Development

    Broader source: Energy.gov [DOE]

    The "Utility Community Solar Handbook: Understanding and Supporting Utility Program Development" provides the utility's perspective on community solar program development and is a resource for government officials, regulators, community organizers, solar energy advocates, non-profits, and interested citizens who want to support their local utilities in implementing projects.

  10. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    of Wisconsin-Milwaukee Submitted to the Electric Power Research Institute August 2009 UWM Center for By-Products-Strength Materials) for help in reducing global warming. Concrete mixtures having slump in the range of three to fourCenter for By-Products Utilization CARBON DIOXIDE SEQUESTRATION IN CEMENTITIOUS PRODUCTS By Tarun R

  11. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    evaluation of dredged material from Newark harbor............................ 7 Soil stabilization utilizing environment in a cost effective way while producing necessary chemicals such as lime. Lime is one of the most purchasing fabric filter bag collectors are emission regulations, capital cost and operating cost [1

  12. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Issued to the Illinois Clean Coal Institute For Project 02-1/3.1D-2 Department of Civil Engineering of technology and market development for controlled low-strength material (CLSM) slurry using Illinois coal ashCenter for By-Products Utilization IMPLEMENTATION OF FLOWABLE SLURRY TECHNOLOGY IN ILLINOIS

  13. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    technologies. A clean-coal ash is defined as the ash derived from SOxand NOxcontrol technologies, and FBC that obtained from clean-coal technology, are not utilized in cast-concrete masonry products (bricks, blocks conventional and clean-coal technologies. Fifteen high-sulfur coal ash samples were obtained from eight

  14. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization CARBON DIOXIDE SEQUESTRATION IN NO-FINES CONCRETE By Tarun R;CARBON DIOXIDE SEQUESTRATION IN NO-FINES CONCRETE ABSTRACT By Tarun, R. Naik, Yoon-moon Chun, Rudolph N. Kraus, and Fethullah Canpolat This paper presents a detailed experimental study on the sequestration

  15. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    , compressive strength, concrete testing, fly ash, high-performance concrete, hot weather, permeability, silica Testing of Concrete", Committee 214, "Evaluation of Results of Strength Tests of Concrete", and CommitteeCenter for By-Products Utilization STRENGTH AND DURABILITY OF HIGH- PERFORMANCE CONCRETE SUBJECTED

  16. INTRODUCTION Ukiah Electric Utility

    E-Print Network [OSTI]

    INTRODUCTION Ukiah Electric Utility Renewable Energy Resources Procurement Plan Per Senate Billlx 2 renewable energy resources, including renewable energy credits, as a specified percentage of Ukiah's total,2011 to December 31, 2013, Ukiah shall procure renewable energy resources equivalent to an average of at least

  17. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    ash to solve the concerns associated with its disposal. Wood ash consists of two different types ash and coal fly ash for use in concrete, was used to determine general suitability of wood ashCenter for By-Products Utilization WOOD ASH: A NEW SOURCE OF POZZOLANIC MATERIAL By Tarun R. Naik

  18. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    the concerns associated with its disposal. Wood ash consists of two different types of materials: fly ash for use as construction materials. Therefore, ASTM C 618, developed for volcanic ash and coal fly ashCenter for By-Products Utilization WOOD ASH: A NEW SOURCE OF POZZOLANIC MATERIAL By Tarun R. Naik

  19. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    beneficial uses of wood ash to meet the challenges associated with its disposal. Wood ash consists of two C 618 [13] developed for volcanic ash and coal fly ash for use in concrete, was used to determineCenter for By-Products Utilization RECYCLING OF WOOD ASH IN CEMENT-BASED CONSTRUCTION MATERIALS

  20. Advanced fossil energy utilization

    SciTech Connect (OSTI)

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01T23:59:59.000Z

    This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

  1. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -air entrained concrete without fly ash. Detailed results are presented. Keywords: carbon dioxide sequestrationCenter for By-Products Utilization CO2 SEQUESTRATION IN NON-AIR ENTRAINED CONCRETE By Tarun R. Naik SEQUESTRATION IN NON-AIR ENTRAINED CONCRETE ABSTRACT by Tarun, R. Naik, Yoon-moon Chun, Rudolph N. Kraus

  2. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization CO2 SEQUESTRATION IN NON-AIR ENTRAINED CONCRETE By Tarun R. Naik and Applied Science THE UNIVERSITY OF WISCONSIN­MILWAUKEE #12;1 CO2 SEQUESTRATION IN NON-AIR ENTRAINED-moon Chun The objectives of this project were to sequester carbon dioxide (CO2) in concrete and study

  3. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization CO2 SEQUESTRATION IN NO-FINES CONCRETE By Tarun R. Naik, Timir C Science THE UNIVERSITY OF WISCONSIN­MILWAUKEE #12;1 CO2 SEQUESTRATION IN NO-FINES CONCRETE ABSTRACT of this project were to sequester carbon dioxide (CO2) in concrete and study the effects of carbonation

  4. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    wood with supplementary fuels such as coal, oil, natural gas, and coke by pulp and paper mills and wood, knots, chips, etc. with other supplementary fuels such as coal, oil, natural gas, and coke to generateCenter for By-Products Utilization DEVELOPMENT OF CLSM USING COAL ASH AND WOOD ASH, A SOURCE OF NEW

  5. Physical Plant Utility Department

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    of Massachusetts Amherst Electrical Distribution & Outdoor Lighting 3.0 Table of Contents Page 1 UMass Medium buses at the Eastside sub-station. The Eastside sub-station is comprised of two separate buses with a normally open bus tie. Each bus is automatically backed up by separate utility feeds. The Eastside Sub-station

  6. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization PROPERTIES OF CONCRETE CONTAINING SCRAP TIRE RUBBER in a variety of rubber and plastic products, thermal incineration of waste tires for production of electricity rubber in asphalt mixes, (ii) thermal incineration of worn-out tires for the production of electricity

  7. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization APPLICATION OF SCRAP TIRE RUBBER IN ASPHALTIC MATERIALS: STATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. PRODUCING CRUMB RUBBER MODIFIER (CRM) FROM USED TIRES . . . . . 3 2.1 PRODUCTION OF CRM THE UNIVERSITY OF WISCONSIN - MILWAUKEE #12;APPLICATION OF SCRAP TIRE RUBBER IN ASPHALTIC MATERIALS: STATE

  8. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Presentationand Publicationat the CBIP International Conference onFly Ash Disposal & Utilization,New Delhi, India, January 1998 foundry sand and slag. Most of these by-products are landfilled, primarily due to non-availability of economically attractive use options. Landfilling is not a desirable option because it not only causes huge

  9. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    tires generated during the year 1990 - 1991 were reused, recycled, or recovered [4]. A number of usesCenter for By-Products Utilization CONSTRUCTION MATERIALS INCORPORATING DISCARDED TIRES By Tarun R - MILWAUKEE #12;CONSTRUCTION MATERIALS INCORPORATING DISCARDED TIRES* By Tarun R. Naik Director, Center for By

  10. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization CHARACTERIZATION AND APPLICATION OF CLASSF FLY ASHCOAL AND CLEAN-COAL #12;-1- CHARACTERIZATION AND APPLICATION OF CLASSF FLYASHCOAL AND CLEAN-COAL ASHFOR CEMENT -Milwaukee (UWM) Daniel D.Banerjee, Project Manager,Illinois Clean Coal Institute RudolphN.Kraus, Research

  11. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    CONTAINING CLEAN-COAL ASH AND CLASS F FLY ASH By Tarun R. Naik, Rudolph N. Kraus, Rafat Siddique of HVFA Concrete Containing Clean-Coal Ash and Class F Fly Ash By Tarun R. Naik Director, UWM Center for By-Products Utilization and Francois Botha Project Manager, Illinois Clean Coal Institute Synopsis

  12. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    flue gas. Detailed results are presented. Keywords: carbon dioxide sequestration, carbonation, carbonCenter for By-Products Utilization CO2 SEQUESTRATION IN FOAMED CONTROLLED LOW STRENGTH MATERIALS #12;1 CO2 SEQUESTRATION IN FOAMED CONTROLLED LOW STRENGTH MATERIALS by Tarun R. Naik, Rudolph N. Kraus

  13. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    was produced by Wisconsin Electric's coal-fired power plants. The criteria for selecting these mixtures was to utilize minimal cost materials, such as coal combustion by-products (fly ash, bottom ash, etc coal combustion waste material (fly ash) to the maximum extent possible while minimizing costs (e

  14. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization USE OF COAL-COMBUSTION PRODUCTS IN PERMEABLE PAVEMNET BASE and Published at the Raymundo Rivera International Symposium on Durability of Concrete, Monterrey, N. L., Mexico THE UNIVERSITY OF WISCONSIN­MILWAUKEE #12;Use of Coal-Combustion Products in Permeable Pavement Base1 2 3 4 5 6 7

  15. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    combustion by-products (such as clean-coal ash) from power plants. Maximum recycling of such by- products regulations and increasing use of low-grade coal, the number of coal-fired power plants with flue gasCenter for By-Products Utilization USE OF CLEAN-COAL ASH FOR MANAGING ASR By Zichao Wu and Tarun R

  16. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R #12;1 HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R. Naik, Shiw S. Singh, and Bruce for manufacture of cement-based products using ashes generated from combustion of high-sulfur coals. A clean coal

  17. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization USE OF CLEAN COAL ASH AS SETTING TIME REGULATOR IN PORTLAND OF WISCONSIN ­ MILWAUKEE #12;2 Use of Clean Coal Ash as Setting Time Regulator in Portland Cement by Zichao Wu as setting time regulator for portland cement production. In this paper a source of clean coal ash (CCA

  18. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    and paper mills in concrete. INTRODUCTION Concrete is a porous solid that is created by combining four basicCenter for By-Products Utilization CURING TEMPERATURE EFFECTS ON HIGH-PERFORMANCE CONCRETE By Tarun For presentation and publication at the symposium entitled "High-Performance Concrete and Concrete for Marine

  19. Utility spot pricing, California

    E-Print Network [OSTI]

    Schweppe, Fred C.

    1982-01-01T23:59:59.000Z

    The objective of the present spot pricing study carried out for SCE and PG&E is to develop the concepts which wculd lead to an experimental design for spot pricing in the two utilities. The report suggests a set of experiments ...

  20. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    . Naik, Rudolph N. Kraus, Shiw S. Singh, Lori- Lynn C. Pennock, and Bruce Ramme Report No. CBU-2001 with numerous projects on the use of by-product materials including utilization of used foundry sand and fly ash;2 INTRODUCTION Wood FA is generated due to combustion of wood for energy production at pulp and paper mills, saw

  1. Radiological surveys of properties in the Middlesex, New Jersey area. Final report

    SciTech Connect (OSTI)

    Leggett, R W; Haywood, F.F. Cottrell, W.D.

    1981-03-01T23:59:59.000Z

    Results of the radiological surveys conducted at three properties in the Middlesex, New Jersey area as well as one additional location downstream from the Middlesex Sampling Plant (Willow Lake), are presented. The survey revealed that the yard around the church rectory on Harris Avenue is contaminated with a /sup 226/Ra-bearing material, probably pitchblende ore from the former Middlesex Sampling Plant. The elevated /sup 226/Ra concentrations around and, to a lesser extent, underneath the rectory are leading to elevated /sup 222/Rn concentrations in air in the rectory and elevated alpha contamination levels (from radon daughters) on surfaces inside the rectory. External gamma radiation levels in the rectory yard are well above background levels, and beta-gamma dose rates at many points in the yard are above federal guidelines for the release of property for unrestricted use. The radiological survey of a parking lot at the Union Carbide plant in Bound Brook, New Jersey revealed that a nearly circular region of 50-ft diam in the lot showed above-background external gamma radiation levels. Two isolated spots within this region showed concentrations of uranium in soil above the licensable level stated in 10 CFR 40. Soil samples taken in the area of elevated gamma radiation levels generally showed nearly equal activities of /sup 226/Ra and /sup 238/U. The survey at the residences on William Street in Piscataway, revealed that the front yeard is generally contaminated from near the surface to a depth of 1.5 to 2.5 ft with /sup 226/Ra-bearing material, possibly pitchblende ore. The remainder of the yard shows scattered contaminaion. External gamma radiation levels inside the house are above the background level near some outside walls.

  2. Carcass characteristics, fatty acids, stearoyl-coa desaturase gene expression and sensory evaluation of calf-fed and yearling-fed angus steers

    E-Print Network [OSTI]

    Brooks, Matthew Alan

    2009-05-15T23:59:59.000Z

    body weight, their MUFA:SFA ratio will be the same regardless of being calf-fed (CF) or yearling-fed (YF). Twenty-four Angus cattle were acquired for this study. Cattle were slaughtered at weaning at 8 mo of age (SFCF, n=4), eight steers were assigned...

  3. STEP Utility Bill Analysis Report

    Broader source: Energy.gov [DOE]

    STEP Utility Bill Analysis Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  4. STEP Utility Data Release Form

    Broader source: Energy.gov [DOE]

    STEP Utility Data Release Form, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  5. Relationships among distribution of milk proteins and transmitting ability and yield of milk, efficiency of protein yield and biochemical polymorphisms in Holstein and Jersey cows 

    E-Print Network [OSTI]

    Nmai, Iris Bella

    1980-01-01T23:59:59.000Z

    for first and second stages (trimesters) of lactation. Concentrate Ingredient Stage 1 Stage 2 Corn Kilo 21 55 49 35 Wheat bran Cottonseed meal 9. 60 Limestone Trace minera1 salt Dicalcium phosphate Magnesium oxide Sulfur Vitamin A 1. 00 . 10... to differences in stage of lacta- tion, parity or somatic cell counts. Variation in CN was greater among Holsteins than Jerseys. In early lactation, Jerseys had 4. 7' more protein as casein than Holsteins. Over the two trimesters of lactation, casein...

  6. Utility Energy Services Contracts: Enabling Documents Overview...

    Energy Savers [EERE]

    Utility Energy Services Contracts: Enabling Documents Overview Utility Energy Services Contracts: Enabling Documents Overview Presentation covers the utility energy service...

  7. Utility Maximization under Uncertainty

    E-Print Network [OSTI]

    Li, Jian

    2010-01-01T23:59:59.000Z

    Motivated by several search and optimization problems over uncertain datasets, we study the stochastic versions of a broad class of combinatorial problems where either the existences or the weights of the elements in the input dataset are uncertain. The class of problems that we study includes shortest paths, minimum weight spanning trees, and minimum weight matchings over probabilistic graphs; top-k queries over probabilistic datasets; and other combinatorial problems like knapsack. By noticing that the expected value is inadequate in capturing different types of risk-averse or risk-prone behaviors, we consider a more general objective which is to maximize the expected utility of the solution for some given utility function. For weight uncertainty model, we show that we can obtain a polynomial time approximation algorithm with additive error eps for any eps>0, if there is a pseudopolynomial time algorithm for the exact version of the problem. Our result generalizes several prior works on stochastic shortest ...

  8. Property:FedLandUsePct | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation, search Property Name Ezfeedflag PropertyFedLandUsePct Jump to:

  9. 2013 Feds Feed Families: Your Generosity Counts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergy Vehicle Analysis3 FacilityA. Kipp, ande3 Feds

  10. Public health assessment for Sayreville Landfill, Sayreville, Middlesex County, New Jersey, Region 2. CERCLIS No. NJD980505754. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-11-16T23:59:59.000Z

    The Sayreville Landfill site, located in Middlesex County, New Jersey, was used primarily for the disposal of municipal wastes from 1970 through 1977. Illegal dumping of possibly hazardous materials allegedly occurred during active landfill operations and after landfill closure. Organic and inorganic compounds were found in on-site subsurface soil, ground water, surface water, and sediments at levels above public health assessment comparison values. The community is concerned about the safety of eating fish from the South River. The potential exists for past, present, and future exposure of local residents and workers to contaminated subsurface soil, nearby surface water, and sediments. The New Jersey Department of Health (NJDOH) has concluded that the site is an indeterminate public health hazard since insufficient data exist for all environmental media to which humans may be exposed.

  11. Federal Utility Partnership Working Group- Utility Interconnection Panel

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses solar/photovoltaic (PV) projects to connect with utility in California and their issues.

  12. pH control of a fed batch reactor with precipitation J. Barraud a

    E-Print Network [OSTI]

    pH control of a fed batch reactor with precipitation J. Barraud a , Y. Creff a , N. Petit b,* a IFP of controlling the pH, in a fed batch reactor where precipitation occurs, is con- sidered. Due to the batch Keywords: pH control Fed batch process Precipitation a b s t r a c t In this paper, the problem

  13. Results of the radiological survey at the property at Main Street and Highway 46, Lodi, New Jersey (LJ074)

    SciTech Connect (OSTI)

    Foley, R.D.; Carrier, R.F.; Floyd, L.M.; Crutcher, J.W.

    1989-09-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurements of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site located at the intersection of Main Street and Highway 46, Lodi, New Jersey (LJ074), was conducted during 1987. While some radiological measurements taken at the vacant lot at the intersection of Main Street and Highway 46 were greater than background levels typically encountered in the northern New Jersey area, no radiation levels nor radionuclide concentrations exceeded the applicable DOE criteria. The survey results demonstrate that the radiological condition of this property conforms to DOE guidelines for remedial action. 4 refs., 5 figs., 3 tabs.

  14. Tribal Utility Feasibility Study

    SciTech Connect (OSTI)

    Engel, R. A.; Zoellick, J. J.

    2007-06-30T23:59:59.000Z

    The Schatz Energy Research Center (SERC) assisted the Yurok Tribe in investigating the feasibility of creating a permanent energy services program for the Tribe. The original purpose of the DOE grant that funded this project was to determine the feasibility of creating a full-blown Yurok Tribal electric utility to buy and sell electric power and own and maintain all electric power infrastructure on the Reservation. The original project consultant found this opportunity to be infeasible for the Tribe. When SERC took over as project consultant, we took a different approach. We explored opportunities for the Tribe to develop its own renewable energy resources for use on the Reservation and/or off-Reservation sales as a means of generating revenue for the Tribe. We also looked at ways the Tribe can provide energy services to its members and how to fund such efforts. We identified opportunities for the development of renewable energy resources and energy services on the Yurok Reservation that fall into five basic categories: • Demand-side management – This refers to efforts to reduce energy use through energy efficiency and conservation measures. • Off-grid, facility and household scale renewable energy systems – These systems can provide electricity to individual homes and Tribal facilities in areas of the Reservation that do not currently have access to the electric utility grid. • Village scale, micro-grid renewable energy systems - These are larger scale systems that can provide electricity to interconnected groups of homes and Tribal facilities in areas of the Reservation that do not have access to the conventional electric grid. This will require the development of miniature electric grids to serve these interconnected facilities. • Medium to large scale renewable energy development for sale to the grid – In areas where viable renewable energy resources exist and there is access to the conventional electric utility grid, these resources can be developed and sold to the wholesale electricity market. • Facility scale, net metered renewable energy systems – These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

  15. Extraction Utility Design Specification

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |Exelon GenerationExtraction Utility Design

  16. Utilize Available Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilize Available Resources Print As soon as you arrive

  17. Utility spot pricing study : Wisconsin

    E-Print Network [OSTI]

    Caramanis, Michael C.

    1982-01-01T23:59:59.000Z

    Spot pricing covers a range of electric utility pricing structures which relate the marginal costs of electric generation to the prices seen by utility customers. At the shortest time frames prices change every five ...

  18. Federal Utility Partnership Working Group

    Broader source: Energy.gov [DOE]

    The Federal Utility Partnership Working Group (FUPWG) establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement cost-effective energy efficiency and water conservation projects through utility incentive programs at Federal sites.

  19. Dispute Resolution Process Utility Owner

    E-Print Network [OSTI]

    Minnesota, University of

    State One Call (GSOC) for "Design Call" Provide "as-builts", marked plans or field locates MnDOT Utility? Underground Utility? Contact Minnesota Office of Pipeline Safety Minnesota Office of Pipeline Safety Step 1 - Utility Identification for Construction Investigate and take appropriate action up to and including

  20. CONSORTIUM FOR CLEAN COAL UTILIZATION

    E-Print Network [OSTI]

    Subramanian, Venkat

    CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

  1. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01T23:59:59.000Z

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  2. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg

    2003-12-01T23:59:59.000Z

    This report represents the thirteenth Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this semi annual reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township's Jacobs Road Compost Storage Facility, construction was completed during this reporting period and surface monitoring began. Surface monitoring was conducted periodically at the Mt. Hope Road subsidence work area and adjacent areas after the January 2000 construction effort.

  3. SEDIMENT DECONTAMINATION WITH BENEFICIAL USE FOR THE PORT OF NEW YORK AND NEW JERSEY.

    SciTech Connect (OSTI)

    STERN,E.A.; JONES,K.W.; DOUGLAS,W.S.; FENG,H.; CLESCERI,N.L.; LODGE,J.L.

    2002-05-01T23:59:59.000Z

    Effective operation of the multi-state Port ofNew York/New Jersey (Port), which contributes $20 billion to the regional economy and generates nearly 250,000 jobs, is dependent on yearly navigational dredging of several million m{sup 3} of sediment for channel maintenance and deepening. Further dredging is required for remediation of environmentally sensitive areas. However, more stringent ocean placement testing regulations in the Port region have necessitated a search for other means of handling the most contaminated dredged materials. Here, we describe a dredged material decontamination program for the Port aimed at the creation of sediment decontamination facilities that produce a beneficial use product to obviate the need for ocean placement. These facilities, to be a viable component of an overall dredged material management plan, must be environmentally balanced and economically feasible with the predictable ability to process large volumes of dredged materials with rapid turn-around. Our program recognizes that the responsible management of contaminated dredged materials is a complex problem that requires the effective application and coordination of a variety of cross-cutting skills to make decontamination facilities a reality. Participants do not come from a single agency, but are ad hoc teams of scientists, engineers, regulators, port authorities and operators, technology development firms, federal/state/local governments, business interests and community groups, among others, who are brought together by the need to solve the complex problem of managing dredged material in the Port region.

  4. Integrated sediment decontamination for the New York/New Jersey Harbor

    SciTech Connect (OSTI)

    Stern, W.A. [Environmental Protection Agency, New York, NY (United States); Donato, K.R. [Army Corps of Engineers, New York, NY (United States); Clesceri, N.L. [Rensselaer Polytechnic Inst., Troy, NY (United States); Jones, K.W. [Brookhaven National Lab., Upton, NY (United States)

    1998-02-01T23:59:59.000Z

    Disposal of dredged material taken from the New York/New Jersey (NY/NJ) Harbor is problematic because of the presence of inorganic and organic contaminants that under revised testing criteria render it unsuitable for return to the ocean or for beneficial reuse. Decontamination of the dredged material followed by beneficial reuse is one attractive component of the overall comprehensive dredged material management plan being developed by the US Army Corps of Engineers New York District. A demonstration program to validate decontamination processes and to bring them into full-scale use in the NY/NJ Harbor is now in progress. Tests of selected technologies have been completed at the bench scale and pilot-scale (2--15 m{sup 3}) levels. Procedures for demonstration testing on scales from 750 m{sup 3} to 75,000 m{sup 3} are being developed with the goal of producing a useable decontamination system by the end of 1999. The overall project goals and present status of the project are reviewed here.

  5. Radon and radon daughter measurements at and near the former Middlesex Sampling Plant, Middlesex, New Jersey

    SciTech Connect (OSTI)

    Haywood, F.F.; Perdue, P.T.; Christian, D.J.; Leggett, R.W.; Dickson, H.W.; Myrick, T.E.

    1980-03-01T23:59:59.000Z

    The results of the radon and radon daughter measurements made to date (1978) at the Middlesex Sampling Plant in Middlesex, New Jersey, are presented in this report. These measurements were one portion of a more comprehensive radiological survey conducted at this site and the surrounding area from 1976 to 1978. The surveyed property served as a uranium ore sampling plant during the 1940's and early 1950's and as a result contains elevated levels of surface an subsurface contamination. On-site indoor radon daughter and radon concentrations exceeded both the US Surgeon General Guidelines and the Nuclear Regulatory Commission's maximum permissible concentration limits for radon (10 CFR Part 20) in all structures surveyed. Off-site structures showed concentrations of radon and radon daughters at or only slightly above background levels, except for one site where the radon levels were found to be above the 10 CFR Part 20 guidelines. Outdoor radon ad radon daughter concentrations, measured both on and off the site, were well below the guidelines, and the data give no indication of significant radon transport from the site.

  6. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TONWSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg

    2003-02-01T23:59:59.000Z

    This report represents the tenth Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government-Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township Compost Storage Facility, engineering continued during this reporting period toward development of the Construction Plans and Technical Specifications for the remediation work. At the Mt. Hope Road subsidence, surface monitoring was conducted periodically at the work area and adjacent areas after the January 2000 construction effort.

  7. Intermittently-fed high-pressure gasifier process

    DOE Patents [OSTI]

    Bailey, J.M.; Zadoks, A.L.

    1993-11-30T23:59:59.000Z

    An improved gasifier is described which is adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications. 3 figures.

  8. Intermittently-fed high-pressure gasifier process

    DOE Patents [OSTI]

    Bailey, John M. (Dunlap, IL); Zadoks, Abraham L. (Peoria, IL)

    1993-11-30T23:59:59.000Z

    An improved gasifier adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications.

  9. Minimal time control of fed-batch bioreactor with product Terence Bayen Francis Mairet

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Minimal time control of fed-batch bioreactor with product inhibition T´erence Bayen · Francis-batch bioreactors, in presence of an inhibitory product, which is released by the biomass proportionally to its Introduction Fed-batch operation of bioreactor is a popular operating mode used in industry as the limiting

  10. Digestibility and energy retention by young rabbits fed different levels of intake

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Note Digestibility and energy retention by young rabbits fed different levels of intake Fernando in digestibility cages, were fed a standard diet at four levels of intake: ad libitum (AL), 60, 40 and 10 % of the AL intake. Digestibility of dietary dry matter, organic matter, crude protein, ether extract and ash

  11. THE TEMPERATURE-LIMITED FED-BATCH TECHNIQUE FOR CONTROL OF ESCHERICHIA COLI CULTURES

    E-Print Network [OSTI]

    Enfors, Sven-Olof

    from 18 to 37 °C. A dynamic simulation model of the TLFB technique was developed and the results wereTHE TEMPERATURE-LIMITED FED-BATCH TECHNIQUE FOR CONTROL OF ESCHERICHIA COLI CULTURES MARIE SVENSSON with emphasis on the temperature-limited fed-batch (TLFB) culture. The TLFB technique controls the oxygen

  12. Dynamic Phasor Modeling of the Doubly-Fed Induction Machine in Generator Operation Emmanuel Delaleau*

    E-Print Network [OSTI]

    Stankoviæ, Aleksandar

    Dynamic Phasor Modeling of the Doubly-Fed Induction Machine in Generator Operation Emmanuel at variable speed; second, the excitation power electronics converter feeding the rotor windings needs of the doubly- fed induction machine in generator operation using dynamic phasors. This concept is coming from

  13. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01T23:59:59.000Z

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

  14. DEMEC Member Utilities- Green Energy Program Incentives (8 utilities)

    Broader source: Energy.gov [DOE]

    '''''Note: The municipal electric utilities serving New Castle, Clayton, Lewes, Middletown, Smyrna, and Seaford do not offer any rebates for individual renewable energy systems. Please see the...

  15. Gas and Electric Utilities Regulation (South Dakota)

    Broader source: Energy.gov [DOE]

    This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the Public Utilities Commission a document regarding...

  16. Business Owners: Prepare for Utility Disruptions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Disruptions Business Owners: Prepare for Utility Disruptions Business Owners: Prepare for Utility Disruptions Have a plan in place in case a natural disaster or other...

  17. Effective Strategies for Participating in Utility Planning |...

    Energy Savers [EERE]

    Strategies for Participating in Utility Planning Effective Strategies for Participating in Utility Planning Better Buildings Neighborhood Program Working with Utilities Peer...

  18. Federal Utility Partnership Working Group Seminar: Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Utility Partnership Working Group Seminar: Chairman's Corner Federal Utility Partnership Working Group Seminar: Chairman's Corner Presentation covers the Federal Utility...

  19. Sandia National Laboratories: Utility Operations and Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market TransformationUtility Operations and Programs Utility Operations and Programs Utilities need to understand how solar generating technologies will behave on their systems...

  20. Utility solar water heating workshops

    SciTech Connect (OSTI)

    Barrett, L.B. [Barrett Consulting Associates, Inc., Colorado Springs, CO (United States)

    1992-01-01T23:59:59.000Z

    The objective of this project was to explore the problems and opportunities for utility participation with solar water heating as a DSM measure. Expected benefits from the workshops included an increased awareness and interest by utilities in solar water heating as well as greater understanding by federal research and policy officials of utility perspectives for purposes of planning and programming. Ultimately, the project could result in better information transfer, increased implementation of solar water heating programs, greater penetration of solar systems, and more effective research projects. The objective of the workshops was satisfied. Each workshop succeeded in exploring the problems and opportunities for utility participation with solar water heating as a DSM option. The participants provided a range of ideas and suggestions regarding useful next steps for utilities and NREL. According to evaluations, the participants believed the workshops were very valuable, and they returned to their utilities with new information, ideas, and commitment.

  1. Innovative Utility Pricing for Industry

    E-Print Network [OSTI]

    Ross, J. A.

    tariffs can re a market for power during the time when it has sult in benefits to industry, to the electric abundant capacity available. From the other rate utility, and to other ratepayers on the electric payers' perspective, there will be a continued...INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic...

  2. THE SELF-ADJUSTING CURRENT-FED PUSH-PULL PARALLEL RESONANT INVERTER AS A HIGH FREQUENCY AC BUS DRIVER

    E-Print Network [OSTI]

    . The power inverter is based on a Current-Fed Push-Pull Parallel-Resonant Inverter (CFPPRI), which includes

  3. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    In Montana, regulated electric utilities are required to offer customers the option of purchasing electricity generated by certified, environmentally-preferred resources that include, but are not...

  4. Austin Utilities- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Utilities provides incentives for their residential and commercial customers to install photovoltaic (PV) and solar water heating systems. Qualifying PV systems can earn $1 per watt;...

  5. Utility Partnerships Program Overview (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    Program overview brochure for the Utility Partnerships Program within the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP).

  6. Orlando Utilities Commission- Solar Programs

    Broader source: Energy.gov [DOE]

    The Orlando Utilities Commission (OUC), through its Solar Program, offers to purchase the environmental attributes or renewable energy credits (RECs) from customers who install a photovoltaic (PV)...

  7. Utility lighting summit proves illuminating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility-lighting-summit-proves-illuminating Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects...

  8. Helping Utilities Make Smart Solar Decisions Utility Barriers

    E-Print Network [OSTI]

    Homes, Christopher C.

    #12;About SEPA Developed by utilities to facilitate the integration of solar electric power. SEPA (insurance, disconnects, metering) · Balanced vs. best interconnection and net metering regimes #12;Managing Solar DecisionsSource: SEPA 2010 1,717 MW of utility scale solar or 63 % · Nevada & New Mexico 659 MW

  9. Development of site-specific soil cleanup criteria: New Brunswick Laboratory, New Jersey site

    SciTech Connect (OSTI)

    Veluri, V.R.; Moe, H.J.; Robinet, M.J.; Wynveen, R.A.

    1983-03-01T23:59:59.000Z

    The potential human exposure which results from the residual soil radioactivity at a decommissioned site is a prime concern during D and D projects. To estimate this exposure, a pathway analysis approach is often used to arrive at the residual soil radioactivity criteria. The development of such a criteria for the decommissioning of the New Brunswick Laboratory, New Jersey site is discussed. Contamination on this site was spotty and located in small soil pockets spread throughout the site area. Less than 1% of the relevant site area was contaminated. The major contaminants encountered at the site were /sup 239/Pu, /sup 241/Am, normal and natural uranium, and natural thorium. During the development of the pathway analysis to determine the site cleanup criteria, corrections for the inhomogeneity of the contamination were made. These correction factors and their effect upon the relevant pathway parameters are presented. Major pathways by which radioactive material may reach an individual are identified and patterns of use are specified (scenario). Each pathway is modeled to estimate the transfer parameters along the given pathway, such as soil to air to man, etc. The transfer parameters are then combined with dose rate conversion factors (ICRP 30 methodology) to obtain soil concentration to dose rate conversion factors (pCi/g/mrem/yr). For an appropriate choice of annual dose equivalent rate, one can then arrive at a value for the residual soil concentration. Pathway modeling, transfer parameters, and dose rate factors for the three major pathways; inhalation, ingestion and external exposure, which are important for the NBL site, are discussed.

  10. Cost effectiveness of the 1993 model energy code in New Jersey

    SciTech Connect (OSTI)

    Lucas, R.G.

    1995-09-01T23:59:59.000Z

    This is an analysis of cost effectiveness the Council of American Building Officials` 1993 Model Energy Code (MEC) building thermal-envelope requirements for single-family houses and multifamily housing units in New Jersey. Goal was to compare the cost effectiveness of the 1993 MEC to the alternate allowed in the 1993 Building Officials & Code Administrators (BOCA) National Energy Conservation Code -- American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90A-1980 -- based on a comparison of the costs and benefits associated with complying with each. This comparison was performed for Camden, New Brunswick; Somerville, and Sparta. The analysis was done for two different scenarios: a ``move-up`` home buyer purchasing a single-family house and a ``first-time`` financially limited home buyer purchasing a multifamily unit. For the single-family home buyer, compliance with the 1993 MEC was estimated to increase first costs by $1028 to $1564, resulting in an incremental down payment increase of $206 to $313 (at 20% down). The time when the homeowner realizes net cash savings (net positive cash flow) for houses built in accordance with the 1993 MEC was from 1 to 5 years. The home buyer who paid 20% down had recovered increases in down payments and mortgage payments in energy cost savings by the end of the fifth year or sooner and thereafter will save more money each year. For the multifamily unit home buyer first costs were estimated to increase by $121 to $223, resulting in an incremental down payment increase of $12 to $22 (at 10% down). The time when the homeowner realizes net cash savings (net positive cash flow) for houses built in accordance with the 1993 MEC was 1 to 3 years.

  11. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg, P.E., P.P.

    1999-10-01T23:59:59.000Z

    This report represents the fourth Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. During this reporting period the Engineering Design for remediation of the surface safety hazards associated with the White Meadow Mine was completed. Construction Plans and Technical Specifications were completed and competitive bids were solicited by the Township for completion of the work. The electrical resistivity survey analysis and report was completed for the Green Pond Mines site at the Township Compost Storage Facility. The geophysical survey results confirmed evidence of abandoned mining activity at the Green Pond Mine site which was previously identified. During this reporting period, the time frame of the Cooperative Agreement between the Township and the Department of Energy was extended. An additional site of subsidence with in the Township related to abandoned mining activity at Mount Hope Road was selected by Rockaway Township to be considered for remediation and inclusion under the Cooperative Agreement.

  12. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg, P.E., P.P.

    2001-04-01T23:59:59.000Z

    This report represents the sixth Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the White Meadow Mine site, after amended specifications were prepared and continued negotiations took place with the Property Owner, the property ownership was transferred during the reporting period. As a result in the change in property ownership, the remediation project was then to be done by the new Property Owner out of the responsibility of Rockaway Township under this Cooperators Agreement. At the Mt. Hope Road subsidence, surface monitoring was conducted at the work area and adjacent areas after the January 2000 construction effort. At the Green Pond Mine site at the Township Compost Storage Facility, no additional field work was undertaken during this reporting period subsequent to the previous completion of the geophysical survey. With the termination of the White Meadow Mine project, work began toward development of a remedial design for the Green Pond Mines.

  13. The Remediation of Abandoned Iron Ore Mine Subsidence in Rockaway Township, New Jersey

    SciTech Connect (OSTI)

    Gartenberg, Gary; Poff, Gregory

    2010-06-30T23:59:59.000Z

    This report represents the twenty-seventh and Final Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this last reporting period ending June 30, 2010 and a summary of the work accomplished since the agreement inception in 1997. This report is issued as part of the project reporting provisions set forth in the Cooperatorâ??s Agreement between the United States Government - Department of Energy, and Rockaway Township. The purpose of the Cooperatorâ??s Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800â??s, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Townshipâ??s Jacobs Road Compost Storage Facility, surface monitoring continued after completion of construction in September 2003. Surface monitoring was conducted periodically at the Mt. Hope Road subsidence work area and adjacent areas after the January 2000 construction effort. In March 2007, a seventh collapse occurred over a portion of the White Meadow Mine in a public roadway at the intersection of Iowa and Erie Avenues in Rockaway Township. After test drilling, this portion of the mine was remediated by drilling and grouting the stopes.

  14. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg, P.E., P.P.

    2001-04-01T23:59:59.000Z

    This report represents the seventh Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township Compost Storage Facility, research and preliminary design was performed during this reporting period toward development of the engineering plans and Technical Specifications for the remediation work. At the White Meadow Mine site, the remediation project was conducted last reporting period by others, out of the responsibility of Rockaway Township under this Cooperators Agreement. At the Mt. Hope Road subsidence, surface monitoring was conducted at the work area and adjacent areas after the January 2000 construction effort.

  15. New York/New Jersey Intra Harbor Petroleum Supplies Following Hurricane Sandy: Summary of Impacts Through November 13, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb Mar Apr May JunNew York/New Jersey

  16. Optimal feeding strategy for the minimal time problem of a fed-batch bioreactor with mortality rate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimal feeding strategy for the minimal time problem of a fed-batch bioreactor with mortality rate of finding an optimal feedback control for feeding a fed-batch bioreactor with one species and one substrate, Bioreactor. 1 Introduction This work is devoted to the study of a bioreactor which is operated in fed

  17. United States Department of Energy New Jersey Department of Environmental Protection and Energy. 1991--1992 Heating Oil and Propane Price Monitoring Program

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    In cooperation with the United States Department of Energy (USDOE), Energy Information Administration (EIA) the New Jersey Department of Environmental Protection and Energy (DEPE), Office of Energy participated in a program to monitor retail prices of no. 2 heating oil and propane in New Jersey. According to program instructions, we conducted price surveys on a semi-monthly basis to obtain the necessary information from retail fuel merchants and propane dealers identified by the EIA. The period of the surveys was October 7, 1991 to March 16 1992. We submitted data collected as of specified reference dates to the EIA, within two working days of those dates.

  18. Improving alternative fuel utilization: detailed kinetic combustion...

    Energy Savers [EERE]

    Improving alternative fuel utilization: detailed kinetic combustion modeling & experimental testing Improving alternative fuel utilization: detailed kinetic combustion modeling &...

  19. Spectrophotometry with Hectospec, the MMT's Fiber-Fed Spectrograph

    E-Print Network [OSTI]

    Daniel G. Fabricant; Michael J. Kurtz; Margaret J. Geller; Nelson Caldwell; Deborah Woods

    2008-09-08T23:59:59.000Z

    We describe techniques for photometric calibration of optical spectra obtained with the MMT's fiber-fed spectrograph, Hectospec. The atmospheric dispersion compensation prisms built into the MMT's f/5 wide field corrector effectively eliminate errors due to differential refraction, and simplify the calibration procedure. The procedures that we describe here are applicable to all 220,000+ spectra obtained to date with Hectospec because the instrument response is stable. We estimate the internal error in the Hectospec measurements by comparing duplicate measurements of $\\sim$1500 galaxies. For a sample of 400 galaxies in the Smithsonian Hectospec Lensing Survey (SHELS) with a median z=0.10, we compare line and continuum fluxes measured by Hectospec through a 1.5 arcsec diameter optical fiber with those measured by the Sloan Digital Sky Survey (SDSS) through a 3 arcsec diameter optical fiber. Agreement of the [OII] and H alpha SHELS and SDSS line fluxes, after scaling by the R band flux in the different apertures, suggests that the spatial variation in star formation rates over a 1.5 to 3 kpc radial scale is small. The median ratio of the Hectospec and SDSS spectra, smoothed over 100 Angstrom scales, is remarkably constant to ~5% over the range of 3850 to 8000 Angstroms. Offsets in the ratio of the median [OII] and H alpha fluxes, the equivalent width of H delta and the continuum index d4000 are a few percent, small compared with other sources of scatter.

  20. Hectospec, the MMT's 300 Optical Fiber-Fed Spectrograph

    E-Print Network [OSTI]

    Daniel Fabricant; Robert Fata; John Roll; Edward Hertz; Nelson Caldwell; Thomas Gauron; John Geary; Brian McLeod; Andrew Szentgyorgyi

    2005-08-25T23:59:59.000Z

    The Hectospec is a 300 optical fiber fed spectrograph commissioned at the MMT in the spring of 2004. A pair of high-speed six-axis robots move the 300 fiber buttons between observing configurations within ~300 s and to an accuracy ~25 microns. The optical fibers run for 26 m between the MMT's focal surface and the bench spectrograph operating at R~1000-2000. Another high dispersion bench spectrograph offering R~5,000, Hectochelle, is also available. The system throughput, including all losses in the telescope optics, fibers, and spectrograph peaks at ~10% at the grating blaze in 1" FWHM seeing. Correcting for aperture losses at the 1.5" diameter fiber entrance aperture, the system throughput peaks at $\\sim$17%. Hectospec has proven to be a workhorse instrument at the MMT. Hectospec and Hectochelle together were scheduled for 1/3 of the available nights since its commissioning. Hectospec has returned \\~60,000 reduced spectra for 16 scientific programs during its first year of operation.

  1. ENERGY COMMISSION PUBLIC UTILITIES COMMISSION

    E-Print Network [OSTI]

    . Specifically, the Proposed Final Opinion: · Reaffirms a commitment to pursue all cost-effective energy, however, utility costs may be reduced compared with business as usual, after accounting for significantCALIFORNIA ENERGY COMMISSION CALIFORNIA PUBLIC UTILITIES COMMISSION FOR IMMEDIATE RELEASE

  2. Supply-side utility economics

    SciTech Connect (OSTI)

    Platt, H.D.

    1985-06-27T23:59:59.000Z

    This article makes two main points: that electricity is a necessary resource, and that utilities respond to incentives as do individuals. From them, the author deduces that the US will have a power shortage within the foreseeable future unless utility regulators begin to consider future power plant needs realistically.

  3. Xylose utilization in recombinant Zymomonas

    DOE Patents [OSTI]

    Kahsay, Robel Y; Qi, Min; Tao, Luan; Viitanen, Paul V; Yang, Jianjun

    2013-01-07T23:59:59.000Z

    Zymomonas expressing xylose isomerase from A. missouriensis was found to have improved xylose utilization, growth, and ethanol production when grown in media containing xylose. Xylose isomerases related to that of A. missouriensis were identified structurally through molecular phylogenetic and Profile Hidden Markov Model analyses, providing xylose isomerases that may be used to improve xylose utilization.

  4. Xylose utilization in recombinant zymomonas

    DOE Patents [OSTI]

    Caimi, Perry G; McCole, Laura; Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V

    2014-03-25T23:59:59.000Z

    Xylose-utilizing Zymomonas strains studied were found to accumulate ribulose when grown in xylose-containing media. Engineering these strains to increase ribose-5-phosphate isomerase activity led to reduced ribulose accumulation, improved growth, improved xylose utilization, and increased ethanol production.

  5. Hualapai Tribal Utility Development Project

    SciTech Connect (OSTI)

    Hualapai Tribal Nation

    2008-05-25T23:59:59.000Z

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West “mini-grid” sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribe’s wind resources.

  6. Results of the radiological verification survey of the partial remediation at 90 Avenue C, Lodi, New Jersey (LJ079V)

    SciTech Connect (OSTI)

    Foley, R.D.; Johnson, C.A.

    1994-02-01T23:59:59.000Z

    The property at 90 Avenue C, Lodi, New Jersey is one of the vicinity properties of the former Maywood Chemical Works, Maywood, New Jersey designated for remedial action by the US Department of Energy (DOE). In July 1991, Bechtel National, Inc. performed a partial remedial action on this property. At the request of DOE, a team from Oak Ridge National Laboratory conducted an independent radiological verification survey in July, 1991 at this site. The purpose of the verification survey was to ensure the effectiveness of remedial actions performed within FUSRAP and to confirm the site`s compliance with DOE guidelines. The radiological survey included surface gamma scans indoors and outdoors, ground-level beta-gamma measurements, and systematic and biased soil and material sampling. Results of the verification survey demonstrated that all radiological measurements on the portions of the property that had been remediated were within DOE guidelines. However, there still remains a portion of the property to be remediated that is not covered by this verification survey.

  7. Results of the radiological survey at Greg's Auto Emporium, 60 State Highway 46, Lodi, New Jersey (LJ089)

    SciTech Connect (OSTI)

    Foley, R.D.; Floyd, L.M.

    1989-11-01T23:59:59.000Z

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, Greg's Auto Emporium, 60 State Highway 46, Lodi, New Jersey (LJ089), was conducted during 1988. 5 refs., 3 figs., 3 tabs.

  8. Characterization of the Acoustic Interactions in a Two-Stage Multi-Injection Combustor Fed with

    E-Print Network [OSTI]

    Boyer, Edmond

    Characterization of the Acoustic Interactions in a Two-Stage Multi-Injection Combustor Fed and efficient mixing. A laboratory-scale staged multipoint combustor is developed in the present study

  9. Analysis of electromechanical interactions in a flywheel system with a doubly fed induction machine

    E-Print Network [OSTI]

    Ran, Li

    This paper analyzes the electromechanical inter-action in a flywheel system with a doubly fed induction machine, used for wind farm power smoothing or grid frequency response control. The grid-connected electrical machine ...

  10. Experimental verification for the design of a doubly-fed permanent magnetic generator

    E-Print Network [OSTI]

    Lu, Bin, Ph. D. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    This is a continuous work on the project of a doubly-fed permanent magnet (DFPM) generator for wind turbines. The construction of a prototype machine was finally finished and experiments were conducted to verify the design ...

  11. 1 Copyright 2004 by ASME Proceedings of HT-FED2004

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    1 Copyright © 2004 by ASME Proceedings of HT-FED2004: 2004 ASME Heat Transfer/Fluids Engineering due to the rise in computing power and the improvement in sub-grid scale (SGS) parameterizations

  12. Precision Dual-Aquifer Dewatering at a Low Level Radiological Cleanup in New Jersey

    SciTech Connect (OSTI)

    Gosnell, A. S.; Langman, J. W. Jr.; Zahl, H. A.; Miller, D. M.

    2002-02-27T23:59:59.000Z

    Cleanup of low-level radioactive wastes at the Wayne Interim Storage Site (WISS), Wayne, New Jersey during the period October, 2000 through November, 2001 required the design, installation and operation of a dual-aquifer dewatering system to support excavation of contaminated soils. Waste disposal pits from a former rare-earth processing facility at the WISS had been in contact with the water table aquifer, resulting in moderate levels of radionuclides being present in the upper aquifer groundwater. An uncontaminated artesian aquifer underlies the water table aquifer, and is a localized drinking water supply source. The lower aquifer, confined by a silty clay unit, is flowing artesian and exhibits potentiometric heads of up to 4.5 meters above grade. This high potentiometric head presented a strong possibility that unloading due to excavation would result in a ''blowout'', particularly in areas where the confining unit was < 1 meter thick. Excavation of contaminated materials w as required down to the surface of the confining unit, potentially resulting in an artesian aquifer head of greater than 8 meters above the excavation surface. Consequently, it was determined that a dual-aquifer dewatering system would be required to permit excavation of contaminated material, with the water table aquifer dewatered to facilitate excavation, and the deep aquifer depressurized to prevent a ''blowout''. An additional concern was the potential for vertical migration of contamination present in the water table aquifer that could result from a vertical gradient reversal caused by excessive pumping in the confined system. With these considerations in mind, a conceptual dewatering plan was developed with three major goals: (1) dewater the water table aquifer to control radionuclide migration and allow excavation to proceed; (2) depressurize the lower, artesian aquifer to reduce the potential for a ''blowout''; and (3) develop a precise dewatering level control mechanism to insure a vertical gradient reversal did not result in cross-contamination. The plan was executed through a hydrogeologic investigation culminating with the design and implementation of a complex, multi-phased dual-aquifer dewatering system equipped with a state of the art monitoring network.

  13. Materials and design experience in a slurry-fed electric glass melter

    SciTech Connect (OSTI)

    Barnes, S.M.; Larson, D.E.

    1981-08-01T23:59:59.000Z

    The design of a slurry-fed electric gas melter and an examination of the performance and condition of the construction materials were completed. The joule-heated, ceramic-lined melter was constructed to test the applicability of materials and processes for high-level waste vitrification. The developmental Liquid-Fed Ceramic Melter (LFCM) was operated for three years with simulated high-level waste and was subjected to conditions more severe than those expected for a nuclear waste vitrification plant.

  14. Prececal, postileal and total tract starch digestion in ponies fed corn, oats, barley or sorghum grain

    E-Print Network [OSTI]

    Arnold, Fairfax Ferguson

    1982-01-01T23:59:59.000Z

    of the foot during the acute disease . J. Equine Mad . and Surg. 2: 439. Householder, D. D. 1978. Prececal, postileal and total tract digestion and growth performance in horses fed concentrate rations containing oats or sorghum grain processed by crimping...PRECECAL, POSTILEAL AND TOTAL TRACT STARCH DIGESTION IN PONIES FED CORN, OATS, BARLEY OR SORGHUM GRAIN A Thesis by FAIRFAX FERGUSON ARNOLD Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements...

  15. An analysis of a back-fed porous electrode for the bromine/bromide redox reaction

    E-Print Network [OSTI]

    Van Zee, John William

    1982-01-01T23:59:59.000Z

    that of the front-fed electrode (compare Figs. 1 and 2) This reduction in electrode gap could decrease the cell's specific resistance by more than 25% in Zn/Hrl batteries if a relatively nonconducting complexing agent (3) is present in the electrolyte. (The... of the back-fed electrode Previous Steady State Analyses Previous steady state analyses of porous electrodes have been presented for diffusion electrodes and for electrodes with electrolyte flowing through them. Two classes of flow-through electrodes...

  16. Creating solutions for water quality issues in New Jersey It has been a year since our last newsletter, so we have a lot of

    E-Print Network [OSTI]

    Goodman, Robert M.

    Jersey designs stormwater best management practices (BMPs) for the water quality design storm of 1 and graphic design, and stormwater best management practice design. Hae-An received a Master of Architecture a background in ecological restoration, watershed assessment and planning, stormwater best management practice

  17. IEEE Vehicular Technology Conference, pp. 2048-2052, October 2001, Atlantic City, New Jersey Performance of Smart Antennas with Adaptive Combining at Handsets

    E-Print Network [OSTI]

    Ha, Dong S.

    IEEE Vehicular Technology Conference, pp. 2048-2052, October 2001, Atlantic City, New Jersey 2048 Performance of Smart Antennas with Adaptive Combining at Handsets for the 3GPP WCDMA System Suk Won Kim1 the performance gain of dual smart antennas with an adaptive combining at handsets for the 3GPP WCDMA system

  18. The New Jersey Institute of Technology Technical Assistance for Brownfield Communities (NJIT TAB) Program for USEPA Regions 1, 2 and 3 is proud to be a

    E-Print Network [OSTI]

    Bieber, Michael

    The New Jersey Institute of Technology Technical Assistance for Brownfield Communities (NJIT TAB vision is a lively, intense exchange of ideas regarding sustainability and brownfields. More at www.nscw.net Panel Topics to Include: ·The Insider's Guide to Brownfield Redevelopment in Bad Times ·The Sustainable

  19. Utility Security & Resiliency: Working Together

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses Edison Electric Institute (EEI), including its key security objectives, key activities, cybersecurity activities, and spare transformer equipment program (STEP).

  20. Electric Utility Measurement & Verification Program

    E-Print Network [OSTI]

    Lau, K.; Henderson, G.; Hebert, D.

    Electric Utility Measurement & Verification Program Ken Lau, P.Eng., CMVP Graham Henderson, P.Eng., CMVP Dan Hebert, P.Eng.,CMVP Mgr, Measurement & Verification Engineering Team Leader Senior Engineer BC Hydro Burnaby, BC Canada...

  1. Gas Utility Pipeline Tax (Texas)

    Broader source: Energy.gov [DOE]

    All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

  2. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    In May 2001, Washington enacted legislation (EHB 2247) that requires all electric utilities serving more than 25,000 customers to offer customers the option of purchasing renewable energy. Eligible...

  3. Utility Lines and Facilities (Montana)

    Broader source: Energy.gov [DOE]

    These regulations apply to the construction of utility and power lines and facilities. They address the use of public right-of-ways for such construction, underground power lines, and construction...

  4. Ukiah Utilities- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Through Ukiah Utilities’ PV Buydown Program, residential and commercial customers are eligible for a $1.40-per-watt AC rebate on qualifying grid-connected PV systems up to a maximum system size of...

  5. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    In addition to meeting the requirements of the state [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N... renewables portfolio standard], New Mexico investor-owned utilities...

  6. Deregulating the electric utility industry

    E-Print Network [OSTI]

    Bohn, Roger E.

    1982-01-01T23:59:59.000Z

    Many functions must be performed in any large electric power system. A specific proposal for a deregulated power system, based on a real-time spot energy marketplace, is presented and analyzed. A central T&D utility acts ...

  7. Photovoltaics: New opportunities for utilities

    SciTech Connect (OSTI)

    Not Available

    1991-07-01T23:59:59.000Z

    This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

  8. Fischer-Tropsch Wastewater Utilization

    DOE Patents [OSTI]

    Shah, Lalit S. (Sugar Land, TX)

    2003-03-18T23:59:59.000Z

    The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.

  9. Incidence of Dental Caries in Tube-Fed Children and Tube-fed Children Receiving Oral Feeding Therapy: A Retrospective Analysis

    E-Print Network [OSTI]

    Morgan, Benjamin P

    2013-12-10T23:59:59.000Z

    69-70. 25. Blackman JA, Nelson CL. Reinstituting oral feedings in children fed by gastrostomy tube. Clin Pediatr (Phila) 1985;24(8):434-8. 26. Schauster H. Transition from Tube Feedings to Feedings by Mouth in Children Preventing Eating...

  10. Gainesville Regional Utilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXA Corp. (New Jersey)GainSpan Corporation Jump

  11. Galena Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXA Corp. (New Jersey)GainSpan Corporation

  12. Dublin Municipal Electric Util | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey: EnergyDrewDrillingProjectDublin

  13. Utility+Utility Access Map | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUser pageUtility+Utility Access Map Home

  14. Utility Solar Generation Valuation Methods

    SciTech Connect (OSTI)

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30T23:59:59.000Z

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

  15. Availability and Utilization of Cardiac Resuscitation Centers

    E-Print Network [OSTI]

    Mumma, Bryn E.; Diercks, Deborah B.; Holmes, James F.

    2014-01-01T23:59:59.000Z

    15 Last, our data reflect availability and utilization ofNovember 2014 Mumma et al. Availability and Utilization ofB rief R esearch R eport Availability and Utilization of

  16. Utility Systems Management and Operational Optimization

    E-Print Network [OSTI]

    Dhole, V.; Seillier, D.; Garza, K.

    simultaneously within the context of an integrated utilities management objective. Aspen Utilities™ provides a single environment to optimize business processes relating to utilities management and substantially improves financial performance typically equivalent...

  17. Utility vehicle safety Operator training program

    E-Print Network [OSTI]

    Minnesota, University of

    Utility vehicle safety Operator training program #12;Permissible use Utility Vehicles may only Utility Vehicle operator · When equipped with the "Required Equipment" · On public roadways within Drivers" · Obey all traffic regulations · Trained; update training every two years · Operate vehicles

  18. The top 100 electric utilities

    SciTech Connect (OSTI)

    Warkentin, D.

    1995-10-01T23:59:59.000Z

    This has been an extremely interesting market during the past year or so due to the Energy Policy Act of 1992 (EPACT) and the US FERC actions since then to make it more competitive. A major move was a 1994 proposal to open up access to the nation`s privately owned transmission grid to make it easier for buyers and sellers of wholesale electricity to do business. Overall, the wholesale market in the US generates about $50 billion in annual revenues. That compares with a retail market about four times that size. The term retail refers to electricity sales to ultimate consumers, while wholesale refers to bulk power transactions among utilities or purchases by utilities from NUGs. The data in this report can be considered a baseline look at the major utility players in the wholesale market. Results of wholesale deregulation have not really been felt yet, so this may be the last look at the regulated market.

  19. Utility reregulation: The ESCO fit

    SciTech Connect (OSTI)

    Hansen, S.J. [Kiona International, Annapolis, MD (United States); Weisman, J.C. [Hansen Associates, Inc., Atlanta, GA (United States)

    1998-10-01T23:59:59.000Z

    No one can think energy, and more particularly energy efficiency, these days without wondering what the impact of utility deregulation and competition will be on his or her operation. Suddenly, owners must get smart about buying power and making choices. The complexities inherent in this new era make what was learned through the deregulation of the telephone and natural gas industries look like rehearsals for the command performance. For ESCOs, the whole scenario becomes a crucial part of doing business. There is no question that changes in the new utility market place will have a significant impact on the way ESCOs do business. The market segments an ESCO strives to serve will change. In the near term, large industrial customers will have little interest in the relatively small action on the demand side of the meter when rate/price negotiations on the supply side can make a big difference in the utility bill.

  20. Russian prospects for plutonium utilization

    SciTech Connect (OSTI)

    Kudriavtsev, E.G.; Mikerin, E.I. [Ministry for Atomic Energy of Russian Federation, Moscow (Russian Federation)

    1993-12-31T23:59:59.000Z

    The main figures and options are given in this paper on plutonium build-up under various conditions of the Russian nuclear fuel cycle final stage. The real possibility of useful utilization of plutonium being recovered at the NPP fuel radiochemical reprocessing or becoming available as a result of disarmament, is connected with its involvement into the BN-800 and VVER-1000 fuel cycles. A reviews of the main installations for production of MOX-fuel for scientific studies and pilot testing on plutonium utilization in fast reactors has been made. The trends for investigations and developments being designed and aimed at plutonium optimum utilization in nuclear power engineering of the Russian Federation are presented.

  1. Federal Energy Efficiency through Utility Partnerships

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Two-page fact sheet on FEMP's Federal Utility Program that works with federal agencies and their utilities to reduce energy use.

  2. Federal Utility Partnership Working Group Participants

    Broader source: Energy.gov [DOE]

    The following Federal agencies have participated in the Federal Utility Partnership Working Group or engaged in a utility energy service contract project.

  3. Studying the Communications Requirements of Electric Utilities...

    Office of Environmental Management (EM)

    Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities...

  4. Sustainable Business Models - Utilities and Efficiency Partnerships...

    Energy Savers [EERE]

    Sustainable Business Models - Utilities and Efficiency Partnerships Sustainable Business Models - Utilities and Efficiency Partnerships Provides an overview and lessons learned on...

  5. A Technical Databook for Geothermal Energy Utilization

    E-Print Network [OSTI]

    Phillips, S.L.

    1981-01-01T23:59:59.000Z

    A TECHNICAL DATABOOK FOR GEOTHERMAL ENERGY UTILIZATION S.L.Technical Databook for Geothermal Energy Utilization* s. L.Survey, Menlo Park, CA. Geothermal Energy Development, CA.

  6. Virginia Electric Utility Regulation Act (Virginia)

    Broader source: Energy.gov [DOE]

    The Virginia Electric Utility Regulation Act constitutes the main legislation in Virginia that pertains to the regulation of the state's electric utilities. The Act directs the State Corporation...

  7. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Net metering rules developed by the New Mexico Public Regulation Commission (PRC) apply to the state's investor-owned utilities and electric cooperatives. Municipal utilities, which are not...

  8. Selecting Your Subcontractors (for the Utility)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subcontractors (for the Utility) Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral, Florida * Energy Service Companies - Act as your...

  9. Federal Utility Partnership Working Group Meeting Chairman's...

    Office of Environmental Management (EM)

    Meeting Chairman's Corner Federal Utility Partnership Working Group Meeting Chairman's Corner Presentation-given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG)...

  10. Federal Utility Partnership Working Group Meeting: Washington...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Utility Partnership Working Group Meeting: Washington Update fupwgspring12unruh.pdf More Documents & Publications Federal Utility Partnership Working Group Meeting:...

  11. Better Buildings Neighborhood Program Working with Utilities...

    Broader source: Energy.gov (indexed) [DOE]

    August 2, 2012 Better Buildings Neighborhood Program Working with Utilities Peer Exchange Call: Effective Strategies for Participating in Utility Planning Call Slides and...

  12. Federal Utility Partnership Working Group Participants | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Participants Federal Utility Partnership Working Group Participants The following Federal agencies have participated in the Federal Utility Partnership Working Group or engaged in...

  13. Federal Utility Partnership Working Group Industry Commitment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Commitment Federal Utility Partnership Working Group Industry Commitment Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist...

  14. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Presentation-given at the Fall 2012...

  15. Utility Energy Services Contracts: Enabling Documents DRAFT ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DRAFT Utility Energy Services Contracts: Enabling Documents DRAFT Presentation on Cyber Security given at the Federal Utility Partnership Working Group Fall 2008 meeting in...

  16. Industrial Customer Perspectives on Utility Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Customer Perspectives on Utility Energy Efficiency Programs Industrial Customer Perspectives on Utility Energy Efficiency Programs These presentations from ATK Aerospace Systems,...

  17. Electric utility research and development

    SciTech Connect (OSTI)

    Not Available

    1982-10-25T23:59:59.000Z

    Nineteen papers presented at a seminar held by the National Association of Regulatory Utility Commissioners (NARUC) at North Carolina State University during October, 1982 represent an opportunity for an exchange of research information among regulators, utility officials, and research planners. The topics range from a regulatory perspective of research and development to a review of new and evolving technologies. Separate abstracts were prepared for each of the papers for the Energy Data Base (EDB), Energy Research Abstracts (ERA), and Energy Abstracts for Policy Analysis.

  18. Utility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict SolarJohn Keeler,Washington

  19. By By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By By-Products Utilization THE ROLE OF FLOWABLE SLURRY IN SUSTAINABLE DEVELOPMENTS of Flowable Slurry in Sustainable Developments in Civil Engineering Tarun R. Naik and Rudolph N. Kraus Materials (CLSM) incorporating industrial by-products (coal fly ash, and used foundry sand). CLSM reference

  20. Public Utilities Commission Consumer Programs

    E-Print Network [OSTI]

    California Public Utilities Commission Consumer Programs Water Programs The CPUC regulates privately owned water companies, which may provide specific as- sistance programs that are unique to each about consumer programs. For infor- mation on income eligibility limits and for a list of water