National Library of Energy BETA

Sample records for jemez mountain area

  1. Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979...

    Open Energy Info (EERE)

    Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Jemez Mountain...

  2. Core Analysis At Jemez Mountain Area (Eichelberger & Koch, 1979...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Jemez Mountain Area (Eichelberger & Koch, 1979) Exploration Activity...

  3. Jemez Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  4. Jemez Mountains Headwaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jemez Mountains Headwaters Jemez Mountains Headwaters Rainfall in the Jemez Mountains flows to the Valles Caldera and eastward onto Laboratory lands. August 1, 2013 Rafts full of people and equipment on the banks of the Rio Grande near Otowi Bridge Water sampling trip embarks downstream from Otowi Bridge onto the Rio Grande. RELATED IMAGES http://farm4.staticflickr.com/3782/9573883786_60ba7b82e3_t.jpg Enlarge

  5. Subsurface Temperature Data in Jemez Mountains, New Mexico |...

    Open Energy Info (EERE)

    Subsurface Temperature Data in Jemez Mountains, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Subsurface Temperature Data in Jemez...

  6. Reflection Survey At Jemez Pueblo Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Jemez Pueblo Area (DOE GTP) Exploration Activity...

  7. Magnetotellurics At Jemez Pueblo Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Jemez Pueblo Area (DOE GTP) Exploration Activity...

  8. Surface Gas Sampling At Jemez Springs Area (Goff & Janik, 2002...

    Open Energy Info (EERE)

    Jemez Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Jemez Springs Area (Goff & Janik,...

  9. Groundwater in the Southwestern Part of the Jemez Mountains Volcanic...

    Open Energy Info (EERE)

    the base flow of the streams, and is the source of water supply in the region. This report is a brief preliminary description of ground water in part of the Jemez Mountains...

  10. Compound and Elemental Analysis At Jemez Springs Geothermal Area...

    Open Energy Info (EERE)

    1972 - 1974 Usefulness useful DOE-funding Unknown References Frank W. Trainer (1974) Groundwater in the Southwestern Part of the Jemez Mountains Volcanic Region, New Mexico...

  11. Development Wells At Jemez Pueblo Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Jemez Pueblo Area (DOE GTP) Exploration Activity...

  12. Isotopic Analysis At Jemez Springs Area (Goff, Et Al., 1981)...

    Open Energy Info (EERE)

    (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Additional References Retrieved from "http:en.openei.orgw...

  13. Compound and Elemental Analysis At Jemez Springs Area (Goff,...

    Open Energy Info (EERE)

    (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Additional References Retrieved from "http:en.openei.orgw...

  14. Water Sampling At Jemez Springs Geothermal Area (Trainer, 1974...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Jemez Springs Geothermal Area (Trainer, 1974) Exploration Activity Details...

  15. Flowing Electrical Conductivity At Jemez Pueblo Area (DOE GTP...

    Open Energy Info (EERE)

    Flowing Electrical Conductivity At Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flowing Electrical Conductivity At...

  16. Compound and Elemental Analysis At Jemez Springs Area (Goff ...

    Open Energy Info (EERE)

    Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Jemez Springs Area (Goff & Janik, 2002)...

  17. Isotopic Analysis At Jemez Springs Area (Goff & Janik, 2002)...

    Open Energy Info (EERE)

    Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Jemez Springs Area (Goff & Janik, 2002) Exploration...

  18. Field Mapping At Jemez Pueblo Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Jemez Pueblo Area (DOE GTP) Exploration Activity...

  19. Slim Holes At Jemez Pueblo Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Jemez Pueblo Area (DOE GTP) Exploration Activity...

  20. Flow Test At Jemez Pueblo Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Jemez Pueblo Area (DOE GTP) Exploration Activity Details Location Jemez Pueblo Area...

  1. Annotated checklist and database for vascular plants of the Jemez Mountains

    SciTech Connect (OSTI)

    Foxx, T. S.; Pierce, L.; Tierney, G. D.; Hansen, L. A.

    1998-03-01

    Studies done in the last 40 years have provided information to construct a checklist of the Jemez Mountains. The present database and checklist builds on the basic list compiled by Teralene Foxx and Gail Tierney in the early 1980s. The checklist is annotated with taxonomic information, geographic and biological information, economic uses, wildlife cover, revegetation potential, and ethnographic uses. There are nearly 1000 species that have been noted for the Jemez Mountains. This list is cross-referenced with the US Department of Agriculture Natural Resource Conservation Service PLANTS database species names and acronyms. All information will soon be available on a Web Page.

  2. Jemez Pueblo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  3. Jemez Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  4. Water Sampling At Jemez Springs Area (Rao, Et Al., 1996) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Jemez Springs Area (Rao, Et Al., 1996) Exploration Activity Details...

  5. Water Sampling At Jemez Springs Area (Goff, Et Al., 1981) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Jemez Springs Area (Goff, Et Al., 1981) Exploration Activity Details...

  6. Jemez Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  7. Cuttings Analysis At Jemez Mountain Geothermal Area (1976) |...

    Open Energy Info (EERE)

    and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Additional References Retrieved from "http:...

  8. Hydrothermal systems in two areas of the Jemez volcanic field: Sulphur Springs and the Cochiti mining district

    SciTech Connect (OSTI)

    WoldeGabriel, G.

    1989-03-01

    K/Ar dates and oxygen isotope data were obtained on 13 clay separates (<2 ..mu..m) of thermally altered mafic and silicic rocks from the Cochiti mining district (SE Jemez Mountains) and Continental Scientific Drilling Project (CSDP) core hole VC-2A (Sulphur Springs, Valles caldera). Illite with K/sub 2/O contents of 6.68%--10.04% is the dominant clay in the silicic rocks, whereas interstratified illite/smectites containing 1.4%--5.74% K/sub 2/O constitute the altered andesites. Two hydrothermal alteration events are recognized at the Cochiti area (8.07 m.y., n = 1, and 6.5--5.6 m.y., n = 6). The older event correlates with the waning stages of Paliza Canyon Formation andesite volcanism (greater than or equal to13 to less than or equal to8.5 m.y.), whereas the younger event correlates with intrusions and gold- and silver-bearing quartz veins associated with the Bearhead Rhyolite (7.54--5.8 m.y.). The majority of K/Ar dates in the hydrothermally altered, caldera-fill rocks of core hole VC-2A (0.83--0.66 m.y., n = 4) indicate that hydrothermal alteration developed contemporaneously with resurgence and ring fracture Valles Rhyolite domes (0.89--0.54 m.y.). One date of 0 +- 0.10 m.y. in acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole probably correlates with Holocene hydrothermal activity possibly associated with the final phases of the Valles Rhyolite (0.13 m.y.).

  9. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Blue Mountain Geothermal Area Contents 1 Area...

  10. Mcgee Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Mcgee Mountain Geothermal Area (Redirected from Mcgee Mountain Area) Redirect page Jump to: navigation, search REDIRECT McGee Mountain Geothermal Area Retrieved from "http:...

  11. Jemez Mountains Headwaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2013 Rafts full of people and equipment on the banks of the Rio Grande near Otowi Bridge Water sampling trip embarks downstream from Otowi Bridge onto the Rio Grande. RELATED...

  12. Pueblo of Jemez Geothermal Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Feasibility Study Presented by Steve Blodgett Director Pueblo of Jemez Department of Resource Protection POJ Geothermal Feasibility Study 2 Background Project funded by DOE under contract DE-FC36-02G012104 Previous studies in 1988, 1990, 1991, 1992 Evaluating geothermal potential of Red Rocks area on northern Jemez Reservation (this study) POJ Geothermal Feasibility Study 3 Study Organization Phase I- Geothermal Reservoirs and Geothermal Drilling at Jemez Pueblo by Jim Witcher,

  13. Innovative Exploration Techniques for Geothermal Assessment at Jemez

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pueblo, New Mexico | Department of Energy Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico DOE Geothermal Peer Review 2010 - Presentation. Project Summary: Locate and drill two exploration wells that will be used to define the nature and extent of the geothermal resources on Jemez Pueblo in the Indian Springs area. validation_kaufman_jemez_pueblo.pdf (769.64 KB) More Documents &

  14. Chocolate Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and...

  15. Temporal relations of volcanism and hydrothermal systems in two areas of the Jemez volcanic field, New Mexico

    SciTech Connect (OSTI)

    WoldeGabriel, G.; Goff, F. )

    1989-11-01

    Two hydrothermal alteration events (8.07 Ma, one sample; 6.51-5.60 Ma, six samples) related to the waning stages of late Miocene volcanism ({ge} 13 to {le} 5.8 Ma) are recognized at the Cochiti district (southeast Jemez Mountains). Most of the K/Ar dates (0.83 {plus minus} 0.11-0.66 {plus minus} 0.21 Ma, four samples) in the hydrothermally altered, caldera-fill rocks of core hole VC-2A at Sulfur Springs, Valles caldera, indicate post-Valles caldera hydrothermal alteration. A sample from acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole was too young to be dated by the K/Ar method and is possibly associated with current hot-spring activity and the youngest pulses of volcanism. Oxygen-isotope data from illite/smectite clays in the Cochiti district are zonally distributed and range from {minus}2.15{per thousand} to {plus}7.97{per thousand} (SMOW), depending upon temperature, extent of rock-fluid interaction, and composition. The samples from VC-2A get lighter with depth ({minus}0.20{per thousand} to {plus}1.62{per thousand}). The K/Ar and oxygen-isotope data provide strong evidence that the epithermal quartz-vein-hosted gold-silver mineralization at Cochiti and the sub-ore grade molybdenite at VC-2A were deposited in the late Miocene (5.99-5.60 Ma) and mid-Quaternary ({approximately}0.66 Ma), respectively, by hydrothermal fluids composed primarily of meteoric water.

  16. Pueblo of Jemez- 2002 Project

    Broader source: Energy.gov [DOE]

    The Pueblo of Jemez is conducting a feasibility study to determine the potential for development of geothermal resources on Jemez Tribal Trust Lands.

  17. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Aeromagnetic Survey Activity...

  18. Geology, Water Geochemistry And Geothermal Potential Of The Jemez...

    Open Energy Info (EERE)

    Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  19. Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004...

    Open Energy Info (EERE)

    Blue Mountain Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Blue Mountain Area (Warpinski,...

  20. Ground Gravity Survey At Chocolate Mountains Area (Alm, Et Al...

    Open Energy Info (EERE)

    Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Chocolate Mountains Area...

  1. Ground Magnetics At Chocolate Mountains Area (Alm, Et Al., 2010...

    Open Energy Info (EERE)

    Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Chocolate Mountains Area (Alm,...

  2. Magnetotellurics At Mcgee Mountain Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Mcgee Mountain Area (DOE GTP) Exploration...

  3. Hydroprobe At Mcgee Mountain Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hydroprobe At Mcgee Mountain Area (DOE GTP) Exploration Activity...

  4. Core Analysis At Mcgee Mountain Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Mcgee Mountain Area (DOE GTP) Exploration Activity...

  5. Compound and Elemental Analysis At Mcgee Mountain Area (DOE GTP...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Mcgee Mountain Area (DOE GTP)...

  6. Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) Exploration...

  7. Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) Exploration...

  8. Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Blue Mountain...

  9. The Guardian: "Landscapes we don't want to lose: New Mexico's Jemez

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mountains" Landscapes we don't want to lose: New Mexico's Jemez mountains The Guardian covers "Landscapes we don't want to lose: New Mexico's Jemez mountains" Nate McDowell, a tree physiologist in New Mexico, explains how a warming climate is irreversibly altering an ancient ecosystem. May 15, 2015 image description Bandelier National Monument in Los Alamos, New Mexico Landscapes we don't want to lose As Earth Day turns 45, we share stories about the natural-or urban-landscape

  10. Modeling-Computer Simulations At White Mountains Area (Goff ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Exploration Activity...

  11. Geothermal Literature Review At White Mountains Area (Goff &...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At White Mountains Area (Goff & Decker, 1983) Exploration Activity Details...

  12. Pueblo of Jemez Geothermal Feasibility Study Fianl Report

    SciTech Connect (OSTI)

    S.A. Kelley; N. Rogers; S. Sandberg; J. Witcher; J. Whittier

    2005-03-31

    This project assessed the feasibility of developing geothermal energy on the Pueblo of Jemez, with particular attention to the Red Rocks area. Geologic mapping of the Red Rocks area was done at a scale of 1:6000 and geophysical surveys identified a potential drilling target at a depth of 420 feet. The most feasible business identified to use geothermal energy on the reservation was a greenhouse growing culinary and medicinal herbs. Space heating and a spa were identified as two other likely uses of geothermal energy at Jemez Pueblo. Further geophysical surveys are needed to identify the depth to the Madera Limestone, the most likely host for a major geothermal reservoir.

  13. Pueblo of Jemez- 1995 Project

    Broader source: Energy.gov [DOE]

    The Pueblo of Jemez is one of 19 pueblos located in New Mexico. It has been in its present location since the late 1300s and currently is home to 3,030 tribal members. Most of the tribe resides in a pueblo village know as Walatowa, which is located in Sandoval county, N.M.

  14. Core Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann...

    Open Energy Info (EERE)

    Activity Details Location Blue Mountain Geothermal Area Exploration Technique Core Holes Activity Date 2002 - 2004 Usefulness useful DOE-funding Unknown Exploration Basis Cores...

  15. Magnetotellurics At Glass Mountain Area (Cumming And Mackie,...

    Open Energy Info (EERE)

    Magnetotellurics At Glass Mountain Area (Cumming And Mackie, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Glass...

  16. Aerial Photography At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Blue...

  17. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  18. Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue...

  19. Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details...

  20. Slim Holes At Blue Mountain Area (Warpinski, Et Al., 2002) |...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Blue Mountain Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Blue...

  1. Time-Domain Electromagnetics At Glass Mountain Area (Cumming...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Glass Mountain Area (Cumming And Mackie, 2007) Exploration...

  2. Geothermometry At Blue Mountain Geothermal Area (Casteel, Et...

    Open Energy Info (EERE)

    Details Location Blue Mountain Geothermal Area Exploration Technique Geothermometry Activity Date 2010 - 2010 Usefulness useful DOE-funding Unknown Exploration Basis A water...

  3. Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity...

  4. Data Acquisition-Manipulation At Socorro Mountain Area (Kooten...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Socorro Mountain Area (Kooten, 1987) Exploration Activity...

  5. Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity...

  6. Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Exploration Activity Details Location...

  7. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross...

    Open Energy Info (EERE)

    R. Langton, Brian D. Fairbank, Claron E. Mackelprang (1999) Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Additional References...

  8. Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie, 2007) Exploration Activity...

  9. Project Reports for Pueblo of Jemez- 2002 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Pueblo of Jemez is conducting a feasibility study to determine the potential for development of geothermal resources on Jemez Tribal Trust Lands.

  10. Jemez Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jemez Springs Space Heating Low Temperature Geothermal Facility Facility Jemez Springs Sector...

  11. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    (DB2) was drilled and completed in 2004.9 Information from these two wells showed that geothermal energy could be commercially produced at Blue Mountain. Geothermal production...

  12. Pueblo of Jemez - Concentrating Photovoltaics Solar Project

    Office of Environmental Management (EM)

    ... Project Benefits * Environmental Benefits: - A coal-fired power plant emits 2,249 lbs. of CO2 gas per MW hour. - The Jemez 3MW solar project would generate 3MW of renewable energy ...

  13. Socorro Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  14. Florida Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  15. Categorical Exclusion Determinations: Western Area Power Administration-Rocky Mountain Region

    Broader source: Energy.gov [DOE]

    Categorical Exclusion Determinations issued by Western Area Power Administration-Rocky Mountain Region.

  16. Ground Magnetics At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Blue Mountain...

  17. Flow Test At Mcgee Mountain Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Mcgee Mountain Area (DOE GTP) Exploration Activity Details Location Mcgee Mountain...

  18. Interagency Visitor Center at Santa Monica Mountains National Recreation Area

    High Performance Buildings Database

    Calabasas, CA This project was to develop the first visitor center for the Santa Monica Mountains National Recreation Area located in the Los Angeles, California area. The previous visitor center was across from a shopping mall in rental space at park headquarters in Thousand Oaks. The new facility is centrally located in the park at a much more appropriate natural and cultural resource setting. It is a partnership project with the Mountains Recreation and Conservation Authority, which is a local land conservation and park agency. It is also a joint facility with California State Parks.

  19. Seismic and magneto-telluric imaging for geothermal exploration at Jemez pueblo in New Mexico

    SciTech Connect (OSTI)

    Huang, Lianjie; Albrecht, Michael

    2011-01-25

    A shallow geothermal reservoir in the Pueblo of Jemez in New Mexico may indicate a commercial-scale geothermal energy potential in the area. To explore the geothermal resource at Jemez Pueblo, seismic surveys are conducted along three lines for the purpose of imaging complex subsurface structures near the Indian Springs fault zone. A 3-D magneto-telluric (MT) survey is also carried out in the same area. Seismic and MT imaging can provide complementary information to reveal detailed geologic formation properties around the fault zones. The high-resolution seismic images will be used together with MT images, geologic mapping, and hydrogeochemistry, to explore the geothermal resource at Jemez Pueblo, and to determine whether a conunercial-scale geothermal resource exists for power generation or direct use applications after drilling and well testing.

  20. Jemez Pueblo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  1. Jemez Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    110C383.15 K 230 F 689.67 R 1 USGS Estimated Reservoir Volume: 2 km 1 USGS Mean Capacity: 9 MW 1 Click "Edit With Form" above to add content History and...

  2. Jemez Springs Bathhouse Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Bathhouse Sector Geothermal energy Type Pool and Spa Location Jemez Springs, New Mexico Coordinates 35.7686356, -106.692258 Show Map Loading map......

  3. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect (OSTI)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  4. Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh...

    Open Energy Info (EERE)

    the Blue Mountain geothermal system integrating data from previous studies. References James E. Faulds, Glenn Melosh (2008) A Preliminary Structural Model for the Blue Mountain...

  5. LANL demolishes first containment dome at disposal area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL Demolishes First Containment Dome LANL demolishes first containment dome at disposal area It once housed thousands of drums of radioactive waste that have been shipped to the Waste Isolation Pilot Plant for disposal. September 30, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  6. Laboratory employees collect backpacks, school supplies for area school

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    children School supplies for children Laboratory employees collect backpacks, school supplies for area school children Employees donated more than 1,000 backpacks and thousands of school supplies, including pencils, pens, and notebooks. August 20, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics

  7. Aeromagnetic Survey At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details...

  8. Ground Gravity Survey At Blue Mountain Geothermal Area (U.S....

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details...

  9. 2-M Probe At Mcgee Mountain Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Mcgee Mountain Area (DOE GTP) Exploration Activity Details Location Mcgee...

  10. 2-M Probe At Tungsten Mountain Area (Shevenell, Et Al., 2008...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Tungsten Mountain Area (Shevenell, Et Al., 2008) Exploration Activity Details...

  11. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Exploration Basis Thermal gradient holes were drilled in an effort to determine the feasibility of commercial geothermal energy generation at Blue Mountain Notes Ten temperature...

  12. Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et...

    Open Energy Info (EERE)

    will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these...

  13. Reflection Survey At Blue Mountain Geothermal Area (Melosh, Et...

    Open Energy Info (EERE)

    model of blue mountain. References Glenn Melosh, William Cumming, John Casteel, Kim Niggemann, Brian Fairbank (2010) Seismic Reflection Data and Conceptual Models for...

  14. Geophysical Setting of the Blue Mountain Geothermal Area, North...

    Open Energy Info (EERE)

    the location of the geothermal prospect and the spatially associated epithermal gold depositon the western flank of Blue Mountain. Other epithermal gold deposits in...

  15. Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank...

    Open Energy Info (EERE)

    have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IPelectrical resistivity traversing. These...

  16. Imaging Faults with Reverse-Time Migration for Geothermal Exploration at Jemez Pueblo in New Mexico

    SciTech Connect (OSTI)

    Huang, Lianjie; Albrecht, Michael; Kaufman, Greg; Kelley, Shari; Rehfeldt, Kenneth; Zhang, Zhifu

    2011-01-01

    The fault zones at Jemez Pueblo may dominate the flow paths of hot water, or confine the boundaries of the geothermal reservoir. Therefore, it is crucial to image the geometry of these fault zones for geothermal exploration in the area. We use reverse-time migration with a separation imaging condition to image the faults at Jemez Pueblo. A finite-difference full-wave equation method with a perfectly-matching-layer absorbing boundary condition is used for backward propagation of seismic reflection data from receivers and forward propagation of wavefields from sources. In the imaging region, the wavefields are separated into the upgoing and downgoing waves, and leftgoing and rightgoing waves. The upgoing and downgoing waves are used to obtain the downward-looking image, and the leftgoing and rightgoing waves are used to form the left-looking image and right-looking image from sources. The left-looking and right-looking images are normally weaker than the downward-looking image because the reflections from the fault zones are much weaker than those from sedimentary layers, but these migration results contain the images of the faults. We apply our reverse-time migration with a wavefield separation imaging condition to seismic data acquired at Jemez Pueblo, and our preliminary results reveal many faults in the area.

  17. Radionuclide concentrations in fish collected from Jemez, Nambe, and San Ildefonso Tribal Lakes

    SciTech Connect (OSTI)

    Fresquez, P.R.; Armstrong, D.R.; Salazar, J.G.

    1995-02-01

    Radionuclide concentrations ({sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu,and total uranium) were determined in fish collected from Jemez, Nambe, and San Ildefonso tribal lakes. With the exception of {sup 137}Cs, all other radionuclides were not significantly different in (stocked) rainbow trout collected from Jemez and Nambe as compared with game fish collected from Abiquiu, Heron, and El Vado Reservoirs. Although {sup 137}Cs levels in trout from Jemez (3.2 {times} 10{sup -2} pCi per dry gram) and Nambe (7.5 {times} 10{sup -2} pCi per dry gram) were significantly higher than {sup 137}Cs concentrations in fish from Abiquiu, Heron, and El Vado, they were still well below the regional statistical (worldwide fallout) reference level (i.e., < 28 {times} 10{sup -2} pCi per dry gram). Game and nongame fish collected from San Ildefonso contained higher and significantly higher concentrations of uranium, respectively, as compared with fish collected from Abiquiu, Heron, and El Vado. The higher uranium concentrations in fish from San Ildefonso as compared with fish from Abiquiu, Heron, and El Vado were attributed to the higher natural soil uranium contents in the area as compared with the geology of the area upstream of San Ildefonso. The effective (radiation) dose equivalent (EDE) from consuming 46 lb of game fish from Jemez, Nambe, and San Ildefonso lakes, after natural background has been subtracted, was 0.013 ({+-}0.002), 0.019 ({+-}0.012), and 0.017 ({+-}0.028) mrem/yr, respectively. Similarly, the EDE from consuming nongame fish from San Ildefonso was 0.0092 ({+-}0.0084) mrem/yr. The highest calculated dose, based on the mean + 2 standard deviation (95% confidence level), was 0.073 mrem/yr; this was <0.08% of the International Commission on Radiological Protection permissible dose limit for protecting members of the public.

  18. Lithic Fragments In The Bandelier Tuff, Jemez Mountains, New...

    Open Energy Info (EERE)

    of actinolite, augite, and epidote, and by alteration of hornblende to F-rich biotite. Water and fluorine involved in the alteration may have come from the magma chamber....

  19. Geologic Map of the Jemez Mountains, New Mexico | Open Energy...

    Open Energy Info (EERE)

    MexicoInfo GraphicMapChart Abstract Abstract unavailable Cartographers Robert Leland Smith, Roy A. Bailey and Clarence Samuel Ross Published U.S. Geological Survey, 1970 DOI Not...

  20. Stratigraphic Nomenclature of Volcanic Rocks in the Jemez Mountains...

    Open Energy Info (EERE)

    the formations are refined by radiometric dating. Authors Roy A. Bailey, Robert Leland Smith and Clarence Samuel Ross Published U.S. Geological Survey, 1969 DOI Not Provided Check...

  1. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    SciTech Connect (OSTI)

    Flynn, T.; Buchanan, P.; Trexler, D.; Shevenell, L., Garside, L.

    1995-12-01

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

  2. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    of at least 150C for the inferred geothermal reservoir. References Brian D. Fairbank, Kim V. Niggemann (2004) Deep Blue No.1-A Slimhole Geothermal Discovery At Blue Mountain,...

  3. Radionuclide concentrations in soils and produce from Cochiti, Jemez, Taos, and San Ildefonso Pueblo Gardens

    SciTech Connect (OSTI)

    Fresquez, P.R.; Armstrong, D.R.; Salazar, J.G.

    1995-05-01

    Radionuclide ({sup 3}H, {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, and total uranium) concentrations were determined in soils and produce collected from Cochiti, Jemez, Taos, and San Ildefonso Pueblo gardens. All radionuclides in soils from Pueblo areas were within or just above regional statistical (natural and/or worldwide fallout) reference levels. Similarily, the average levels of radionuclides in produce collected from Cochiti, Jemez, Taos, and San Ildefonso Pueblo gardens were not significantly different in produce collected from regional (background) locations. The effective (radiation) dose equivalent from consuming 352 lb of produce from Cochiti, Jemez, Taos, and San Ildefonso, after natural background has been subtracted, was 0.036 ({+-}0.016), 0.072 ({+-}0.051), 0.012 ({+-}0.027), and 0.110 ({+-}0.102) mrem/yr, respectively. The highest calculated dose, based on the mean + 2 std dev (95% confidence level), was 0.314 mrem/yr; this was <0.4% of the International Commission on Radiological Protection permissible dose limit for protecting members of the public.

  4. Preliminary analysis of gravity and aeromagnetic surveys of the Timber Mountain Area, southern Nevada

    SciTech Connect (OSTI)

    Kane, M.F.; Webring, M.W.; Bhattacharyya, B.K.

    1981-12-31

    Recent (1977 to 1978) gravity and aeromagnetic surveys of the Timber Mountain region, southern Nevada, have revealed new details of subsurface structure and lithology. The data strongly suggest that deformation caused by volcanic events has been accommodated along straight-line faults combining in such a fashion as to given a curvilinear appearance to regional structure. The magnetic data suggest that rock units in the central graben and along the southeast margin of Timber Mountain may have been altered, perhaps thermally, from their original state. The gravity data indicate that the south part of the Timber Mountain is underlain by relatively dense rock possibly intrusive rock, like that which crops out along its southeast side. The gravity data also suggest that the Silent Canyon caldera may extend considerably south of its presently indicated southern limit and may underlie much of the area of Timber Mountain. The moat areas appear to be more rectangular or triangular than annular in shape. The southern part of Timber Mountain caldera is separated from the Yucca Mountain area to the south by a triangular horst. The structural relations of the rock units making up the horst are complex. Several linear terrain features in the southern part of the caldera area are closely aligned with geophysical features, implying that the terrain features are fault-controlled.

  5. Government Decision to Abandon Yucca Mountain Negatively Impacts Central Savannah River Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Immediate Release Contact: Rick McLeod Monday, November 9, 2009 803.593.9954 x1411 Government Decision to Abandon Yucca Mountain Negatively Impacts Central Savannah River Area AIKEN, SC - The Federal Government's failure to complete construction of its only option for long-term nuclear waste storage at Yucca Mountain in the Nevada desert will result in the Savannah River Site becoming the permanent home to tons of high- level nuclear waste, a local community group says. The SRS Community

  6. Zuni Mountains Nm Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  7. Fission-track tectonic studies of the Transantarctic Mountains, Beardmore Glacier area

    SciTech Connect (OSTI)

    Fitzgerald, P.G.

    1986-01-01

    The Transantarctic Mountains are a major transcontinental range stretching for some 4000 kilometers, varying from 200-400 kilometers in width, and having elevations up to 4500 meters. The uplift and formation of the Transantarctic Mountains have always been something of an enigma, but recent apatite fission-track analysis is providing important new information not only about their uplift history but also about the implications of that uplift history for the glacial history of Antarctica as a whole. The main field objective of this project was to collect samples for fission-track analysis to determine the timing and rate of uplift of the Transantarctic Mountains and measure relative vertical displacements across faults within the range. Results from southern Victoria Land indicate that uplift of the Transantarctic Mountains was initiated at about 50 million years ago and since that time the mountains have undergone some 5 kilometers of uplift at an average rate of 100 meters per million years. It is important to realize, however, that this is an average rate and may well conceal pulses of faster and slower uplift or even periods of subsidence. The amount of uplift across the mountain range is differential; from the axis of maximum uplift about 30 kilometers inland of the Victoria Land coast, the mountains dip gently westward under the polar ice cap. The study was extended to the Beardmore Glacier area to see whether the uplift history and tectonics varies from that observed in southern Victoria Land.

  8. Mineral resources of the Cross Mountain Wilderness Study Area, Moffat County, Colorado

    SciTech Connect (OSTI)

    Evans, K.V.; Frisken, J.G.; Kulik, D.M.; Thompson, J.R.

    1989-01-01

    The Cross Mountain Wilderness Study Area, in northwestern Colorado, contains high-purity limestone suitable for industrial and agricultural use; dolomitic limestone suitable for agricultural use; and limestone, dolomite, sandstone, and sand and gravel suitable for use as construction materials. There has been no mining within this study area. This entire study area has a low mineral resource potential for sediment-hosted copper in the Uinta Mountain Group, and parts of this study area have a low resource potential for sandstone-type uranium-vanadium in sedimentary rocks. The entire study area has a low resource potential for all other metals and geothermal resources. It has a high energy resource potential for oil and gas in the eastern part of the area and moderate potential elsewhere. This study area has no mineral resource potential for coal.

  9. Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    of this survey was to locate areas of shallow geothermal activity which could be linked to faults that serve as pathways for geothermal fluids. Notes This survey was...

  10. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area ...

    Open Energy Info (EERE)

    (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Additional References Retrieved from "http:en.openei.orgw...

  11. Fenton Hill HDR Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    HDR Geothermal Area (Heiken & Goff, 1983) Data Acquisition-Manipulation 1983 Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Development Wells At Fenton Hill...

  12. Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico

    Broader source: Energy.gov [DOE]

    Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico presentation at the April 2013 peer review meeting held in Denver, Colorado.

  13. A Preliminary Study of the Waters of the Jemez Plateau, New Mexico...

    Open Energy Info (EERE)

    of the Jemez Plateau, New Mexico Abstract Abstract unavailable Authors Clyde Kelly and E.V. Anspach Published Journal University of New Mexico Bulletin, Chemistry Series, 1913 DOI...

  14. Isotopic Analysis At Jemez Springs Area (Rao, Et Al., 1996) ...

    Open Energy Info (EERE)

    analyzed for their hydrogen and oxygen isotope contents as a part of previous studies (Goff & Grigsby, 1982; Vuataz & Goff, 1986). The present study focuses on the interpretation...

  15. A revised Litostragraphic Framework for the Southern Yucca Mountain Area, Nye County, Nevada

    SciTech Connect (OSTI)

    R.W. Spengler; F.M. Byers; R.P. Dickerson

    2006-03-24

    An informal, revised lithostratigraphic framework for the southern Yucca Mountain area, Nevada has been developed to accommodate new information derived from subsurface investigations of the Nye County Early Warning Drilling Program. Lithologies penetrated by recently drilled boreholes at locations between Stagecoach Road and Highway 95 in southern Nye County include Quaternary and Pliocene alluvium and alluvial breccia, Miocene pyroclastic flow deposits and intercalated lacustrine siltstone and claystone sequences, early Miocene to Oligocene pre-volcanic sedimentary rocks, and Paleozoic strata. Of the 37 boreholes currently drilled, 21 boreholes have sufficient depth, spatial distribution, or traceable pyroclastic flow, pyroclastic fall, and reworked tuff deposits to aid in the lateral correlation of lithostrata. Medial and distal parts of regional pyroclastic flow deposits of Miocene age can be correlated with the Timber Mountain, Paintbrush, Crater Flat, and Tram Ridge Groups. Rocks intercalated between these regional pyroclastic flow deposits are substantially thicker than in the central part of Yucca Mountain, particularly near the downthrown side of major faults and along the southern extent of exposures at Yucca Mountain.

  16. Rocky Mountain area petroleum product availability with reduced PADD IV refining capacity

    SciTech Connect (OSTI)

    Hadder, G.R.; Chin, S.M.

    1994-02-01

    Studies of Rocky Mountain area petroleum product availability with reduced refining capacity in Petroleum Administration for Defense IV (PADD IV, part of the Rocky Mountain area) have been performed with the Oak Ridge National Laboratory Refinery Yield Model, a linear program which has been updated to blend gasolines to satisfy constraints on emissions of nitrogen oxides and winter toxic air pollutants. The studies do not predict refinery closures in PADD IV. Rather, the reduced refining capacities provide an analytical framework for probing the flexibility of petroleum refining and distribution for winter demand conditions in the year 2000. Industry analysts have estimated that, for worst case scenarios, 20 to 35 percent of PADD IV refining capacity could be shut-down as a result of clean air and energy tax legislation. Given these industry projections, the study scenarios provide the following conclusions: The Rocky Mountain area petroleum system would have the capability to satisfy winter product demand with PADD IV refinery capacity shut-downs in the middle of the range of industry projections, but not in the high end of the range of projections. PADD IV crude oil production can be maintained by re-routing crude released from PADD IV refinery demands to satisfy increased crude oil demands in PADDs II (Midwest), III (Gulf Coast), and Washington. Clean Air Act product quality regulations generally do not increase the difficulty of satisfying emissions reduction constraints in the scenarios.

  17. Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Abstract Large, young calderas...

  18. Flora of the Mayacmas Mountains. [Listing of 679 species in the Geysers Geothermal Resource area

    SciTech Connect (OSTI)

    Neilson, J.A.

    1981-09-01

    This flora describes the plants that occur within the Mayacmas Mountain Range of northern California. It is the result of ten years of environmental assessment by the author in the Geysers Geothermal Resource area, located in the center of the Mayacmas Range. The flora includes notes on plant communities and ecology of the area, as well as habitat and collection data for most of the 679 species covered. Altogether 74 families, 299 genera and 679 species are included in the flora. The work is divided into eight subdivisions: trees; shrubs; ferns and fern allies; aquatic plants; tules, sedges, and rushes; lilies and related plants; dicot herbs; and grasses. Within each subdivision, family, genera and species are listed alphabetically. Keys are provided at the beginning of each subdivision. A unique combination of physical, environmental and geologic factors have resulted in a rich and diverse flora in the Mayacmas. Maps have been provided indicating known locations for species of rare or limited occurrence.

  19. Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Rousseau, J.P.; Kwicklis, E.M.; Gillies, D.C.

    1999-03-01

    Yucca Mountain, in southern Nevada, is being investigated by the US Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the US Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Shallow infiltration is not discussed in detail in this report because the focus in on three major aspects of the deep unsaturated-zone system: geologic framework, the gaseous-phase system, and the aqueous-phase system. However, because the relation between shallow infiltration and deep percolation is important to an overall understanding of the unsaturated-zone flow system, a summary of infiltration studies conducted to date at Yucca Mountain is provided in the section titled Shallow Infiltration. This report describes results of several Site Characterization Plan studies that were ongoing at the time excavation of the ESF North Ramp began and that continued as excavation proceeded.

  20. Integrating Wind into Transmission Planning: The Rocky Mountain Area Transmission Study (RMATS): Preprint

    SciTech Connect (OSTI)

    Hamilton, R.; Lehr, R.; Olsen, D.; Nielsen, J.; Acker, T.; Milligan, M.; Geller, H.

    2004-03-01

    Plans to expand the western grid are now underway. Bringing power from low-cost remote resources--including wind--to load centers could reduce costs for all consumers. But many paths appear to be already congested. Locational marginal price-based modeling is designed to identify the most cost-effective paths to be upgraded. The ranking of such paths is intended as the start of a process of political and regulatory approvals that are expected to result in the eventual construction of new and upgraded lines. This paper reviews the necessary data and analytical tasks to accurately represent wind in such modeling, and addresses some policy and regulatory issues that can help with wind integration into the grid. Providing wind fair access to the grid also (and more immediately) depends on tariff and regulatory changes. Expansion of the Rocky Mountain Area Transmission Study (RMATS) study scope to address operational issues supports the development of transmission solutions that enable wind to connect and deliver power in the next few years--much sooner than upgrades can be completed.

  1. Stepout-Deepening Wells At Blue Mountain Area (Niggemann Et Al...

    Open Energy Info (EERE)

    No. 2 while drilling was 167.5oC at References Kim Niggemann, Brian Fairbank, Susan Petty (2005) Deep Blue No 2- A Resource In The Making At Blue Mountain Additional References...

  2. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 3

    SciTech Connect (OSTI)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

  3. Environmental assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada; Volume 2

    SciTech Connect (OSTI)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

  4. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 1

    SciTech Connect (OSTI)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization.

  5. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 9, Index

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

  6. Site characterization plan overview: Yucca Mountain site, Nevada Research and Development Area, Nevada

    SciTech Connect (OSTI)

    1988-12-01

    To help the public better understand both the SCP and the site characterization program, the DOE has prepared this overview and the SCP Public Handbook. The overview presents summaries of selected topics covered in the SCP; it is not a substitute for the SCP. The organization of the overview is similar to that of the SCP itself, with brief descriptions of the Yucca Mountain site, the repository, and the containers in which the waste would be packaged, followed by a discussion of the characterization program to be carried out at the Yucca Mountain site. This overview is intended primarily for those persons who want to understand the general scope and basis of the site-characterization program, the activities to be conducted, and the facilities to be constructed without spending the time necessary to become familiar with all of the technical details presented in the SCP. For the readers of the SCP, the overview will be useful as a general guide to the plan. The SCP Public Handbook is a short document that contains brief descriptions of the SCP process and the contents of the SCP. It also explains how the public can submit comments on the SCP and lists the libraries and reading rooms at which the SCP is available. 9 refs., 18 tabs.

  7. Hydrogeochemical and stream-sediment reconnaissance, orientation study, Ouachita Mountain area, Arkansas. National Uranium Resource Evaluation Program

    SciTech Connect (OSTI)

    Steele, K. F.

    1982-08-01

    A hydrogeochemical ground water orientation study was conducted in the multi-mineralized area of the Ouachita Mountains, Arkansas in order to evaluate the usefulness of ground water as a sampling medium for uranium exploration in similar areas. Ninety-three springs and nine wells were sampled in Clark, Garland, Hot Springs, Howard, Montgomery, Pike, Polk, and Sevier Counties. Manganese, barite, celestite, cinnabar, stibnite, copper, lead, and zinc are present. The following parameters were determined: pH, conductivity, alkalinity, U, Br, Cl, F, He, Mn, Na, V, Al, Dy, NO/sub 3/, NH/sub 3/, SO/sub 4/, and PO/sub 4/. The minerals appear to significantly affect the chemistry of the ground water. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation.

  8. Sand Mountain Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Sand Mountain Electric Coop Jump to: navigation, search Name: Sand Mountain Electric Coop Place: Alabama Phone Number: Rainsville Area: 256---638---2153; Henagar Area:...

  9. LiDAR At Chocolate Mountains Area (Alm, Et Al., 2010) | Open...

    Open Energy Info (EERE)

    aerial Li-DAR survey flown over the project areas, securing over 177,000 square kilometers of <30cm accuracy digital elevation data. LiDAR data were analyzed to characterize...

  10. Uncertainty and Sensitivity of Contaminant Travel Times from the Upgradient Nevada Test Site to the Yucca Mountain Area

    SciTech Connect (OSTI)

    J. Zhu; K. Pohlmann; J. Chapman; C. Russell; R.W.H. Carroll; D. Shafer

    2009-09-10

    Yucca Mountain (YM), Nevada, has been proposed by the U.S. Department of Energy as the nation’s first permanent geologic repository for spent nuclear fuel and highlevel radioactive waste. In this study, the potential for groundwater advective pathways from underground nuclear testing areas on the Nevada Test Site (NTS) to intercept the subsurface of the proposed land withdrawal area for the repository is investigated. The timeframe for advective travel and its uncertainty for possible radionuclide movement along these flow pathways is estimated as a result of effective-porosity value uncertainty for the hydrogeologic units (HGUs) along the flow paths. Furthermore, sensitivity analysis is conducted to determine the most influential HGUs on the advective radionuclide travel times from the NTS to the YM area. Groundwater pathways are obtained using the particle tracking package MODPATH and flow results from the Death Valley regional groundwater flow system (DVRFS) model developed by the U.S. Geological Survey (USGS). Effectiveporosity values for HGUs along these pathways are one of several parameters that determine possible radionuclide travel times between the NTS and proposed YM withdrawal areas. Values and uncertainties of HGU porosities are quantified through evaluation of existing site effective-porosity data and expert professional judgment and are incorporated in the model through Monte Carlo simulations to estimate mean travel times and uncertainties. The simulations are based on two steady-state flow scenarios, the pre-pumping (the initial stress period of the DVRFS model), and the 1998 pumping (assuming steady-state conditions resulting from pumping in the last stress period of the DVRFS model) scenarios for the purpose of long-term prediction and monitoring. The pumping scenario accounts for groundwater withdrawal activities in the Amargosa Desert and other areas downgradient of YM. Considering each detonation in a clustered region around Pahute Mesa (in

  11. Geologyy of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)

    SciTech Connect (OSTI)

    W.R. Keefer; J.W. Whitney; D.C. Buesch

    2006-09-25

    Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor (< 5% crystal fragments) member, and an intervening thin transition zone. Rocks within the crystal-poor member of the Topopah Spring Tuff, lying some 280 m below the crest of Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal-mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during

  12. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 1, Part A: Chapters 1 and 2

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 750 refs., 123 figs., 42 tabs.

  13. Site Characterization Plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 3, Part A: Chapters 6 and 7

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 218 figs., 50 tabs.

  14. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2

    SciTech Connect (OSTI)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

  15. Deep Blue No.1-A Slimhole Geothermal Discovery At Blue Mountain...

    Open Energy Info (EERE)

    Area (Fairbank & Niggemann, 2004) Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank &...

  16. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1

    SciTech Connect (OSTI)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

  17. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed.

  18. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7

    SciTech Connect (OSTI)

    1988-01-01

    The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  19. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 6

    SciTech Connect (OSTI)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  20. BLUE MOUNTAIN | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN PROJECT SUMMARY In September 2010, the Department of Energy issued a $98.5 million partial loan guarantee under the Financial Institution Partnership Program (FIPP) to finance Blue Mountain, a geothermal power plant. The plant is currently harnessing renewable energy by tapping into an

  1. Final decision document for the interim response action at the Motor Pool Area, Rocky Mountain Arsenal, version 4. 0

    SciTech Connect (OSTI)

    Not Available

    1990-02-01

    The objective of the interim response action at the motor pool area is to mitigate the threat of releases of TRCLE. The proposal IRA will consist of the installation of a vapor extraction system to remove and treat the soil contamination at an identified source of TRCLE at the motor pool. A ground water extraction and treatment system will be installed to contain the TRCLE plume emanating from the area. This decision document provides summaries of: (1) alternative technologies considered; (2) significant events leading to the initiation of the IRA; (3) the IRA project; and (4) applicable or relevant and appropriate requirements, standards, criteria, and limitations (ARAR's) associated with the program.

  2. Yucca Mountain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yucca Mountain We are applying our unique scientific and engineering capabilities to ensure the safety of the nation's first high-level nuclear waste repository. 8 08 FACT SHEET ...

  3. Property:AreaGeology | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak...

  4. Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc area of the Paradox Basin, UTE Mountain UTE Reservation, Colorado

    SciTech Connect (OSTI)

    Joe Hachey

    2007-09-30

    The goals of this project were: (1) To enhance recovery of oil contained within algal mounds on the Ute Mountain Ute tribal lands. (2) To promote the use of advanced technology and expand the technical capability of the Native American Oil production corporations by direct assistance in the current project and dissemination of technology to other Tribes. (3) To develop an understanding of multicomponent seismic data as it relates to the variations in permeability and porosity of algal mounds, as well as lateral facies variations, for use in both reservoir development and exploration. (4) To identify any undiscovered algal mounds for field-extension within the area of seismic coverage. (5) To evaluate the potential for applying CO{sub 2} floods, steam floods, water floods or other secondary or tertiary recovery processes to increase production. The technical work scope was carried out by: (1) Acquiring multicomponent seismic data over the project area; (2) Processing and reprocessing the multicomponent data to extract as much geological and engineering data as possible within the budget and time-frame of the project; (3) Preparing maps and data volumes of geological and engineering data based on the multicomponent seismic and well data; (4) Selecting drilling targets if warranted by the seismic interpretation; (5) Constructing a static reservoir model of the project area; and (6) Constructing a dynamic history-matched simulation model from the static model. The original project scope covered a 6 mi{sup 2} (15.6 km{sup 2}) area encompassing two algal mound fields (Towaoc and Roadrunner). 3D3C seismic data was to acquired over this area to delineate mound complexes and image internal reservoir properties such as porosity and fluid saturations. After the project began, the Red Willow Production Company, a project partner and fully-owned company of the Southern Ute Tribe, contributed additional money to upgrade the survey to a nine-component (3D9C) survey. The purpose

  5. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 4, Part B: Chapter 8, Sections 8.0 through 8.3.1.4

    SciTech Connect (OSTI)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 74 figs., 32 tabs.

  6. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 2, Part A: Chapters 3, 4, and 5

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1--5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 575 refs., 84 figs., 68 tabs.

  7. Timber Mountain Precipitation Monitoring Station

    SciTech Connect (OSTI)

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in

  8. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI); Final report, January 1, 1987--June 30, 1988: Volume 1

    SciTech Connect (OSTI)

    1988-10-01

    This report provides a summary of progress for the project ``Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)`` for the eighteen month period of January 1, 1987 to June 10, 1988. This final report was preceded by the final report for the initial six month period, July 1, 1986 to December 31, 1986 (submitted on January 25, 1987, and revised in June 1987.) Quaternary Tectonics, Geochemical, Mineral Deposits, Vulcanic Geology, Seismology, Tectonics, Neotectonics, Remote Sensing, Geotechnical Assessments, Geotechnical Rock Mass Assessments, Basinal Studies, and Strong Ground Motion.

  9. Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico

    SciTech Connect (OSTI)

    Albrecht, Michael

    2015-06-28

    Surface exploration methods like geological mapping, mineralogical analysis, hydrogeochemistry, magnetotelluric as well as seismic, have been used to analyze the study area and identify a location for a production size exploration well. After that location has been identified in a blind resource scenario, a 5,657 feet deep deviated production size exploration well has been drilled. The surface casing is 13 3/8 inch with open hole starting at 4,136 feet. The well has been designed to be deepened up to 8,000 feet if needed. The first 4,180 feet have been sufficiently analyzed and were considered only of direct use interest prior to drilling. That has been confirmed. The remaining depth couldn't be logged by the time the report has been submitted because the well had an obstruction at 4,180 feet. Currently the power production potential for the drilling location cannot be determined without additional work-over of the well. The seismic conducted prior to drilling was a 100% success, providing a clear image of the subsurface and allowing for geosteering to be fact based and on target. Once the obstruction has been removed, work can continue to determine the power generation potential at that location.

  10. Ute Mountain Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    The Ute Mountain Ute Tribe has the renewable resources and the opportunity to become a national leader in renewable energy production through its local and commercial-scale solar developments due to its proximity to key interconnections in the Four Corners area and interest from various companies that can fund such projects.

  11. BLUE MOUNTAIN | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BLUE MOUNTAIN BLUE MOUNTAIN DOE-LPO_Project-Posters_GEO_Blue-Mountain.pdf (343.09 KB) More Documents & Publications ORMAT NEVADA GRANITE RELIABLE USG OREGON

  12. King Mountain | Open Energy Information

    Open Energy Info (EERE)

    Mountain Jump to: navigation, search Name King Mountain Facility King Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra...

  13. Yucca Mountain - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yucca Mountain In 2009, the Department of Energy announced it was halting work on Yucca Mountain in the Nevada desert which The Nuclear Waste Policy Act of 1982 established as the ...

  14. Mapco's NGL Rocky Mountain pipeline

    SciTech Connect (OSTI)

    Isaacs, S.F.

    1980-01-01

    The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

  15. Draft final decision document for the interim response action at the Motor Pool Area, Rocky Mountain Arsenal, version 3.1. Draft (Final) report

    SciTech Connect (OSTI)

    1990-02-01

    The objective of the interim response action at the Motor Pool Area is to mitigate the threat of releases of trichloroethane. The proposed IRA will consist of the installation of a vapor extraction system to remove and treat the soil contamination at an identified source of trichloroethane at the Moror pool. A ground water extraction and treatment system will be installed to contain the trichloroethane plume emanating from the area. This decision document provides summaries of: (1) alternative technologies considered; (2) significant events leading to the initiation of the IRA; (3) the IRA project; and (4) applicable or relevant and appropriate requirements, standards, criteria, and limitations (ARAR`S) associated with the program.

  16. Late glacial aridity in southern Rocky Mountains

    SciTech Connect (OSTI)

    Davis, O.K.; Pitblado, B.L.

    1995-09-01

    While the slopes of the present-day Colorado Rocky Mountains are characterized by large stands of subalpine and montane conifers, the Rockies of the late glacial looked dramatically different. Specifically, pollen records suggest that during the late glacial, Artemisia and Gramineae predominated throughout the mountains of Colorado. At some point between 11,000 and 10,000 B.P., however, both Artemisia and grasses underwent a dramatic decline, which can be identified in virtually every pollen diagram produced for Colorado mountain sites, including Como Lake (Sangre de Cristo Mountains), Copley Lake and Splains; Gulch (near Crested Butte), Molas Lake (San Juan Mountains), and Redrock Lake (Boulder County). Moreover, the same pattern seems to hold for pollen spectra derived for areas adjacent to Colorado, including at sites in the Chuska Mountains of New Mexico and in eastern Wyoming. The implications of this consistent finding are compelling. The closest modem analogues to the Artemisia- and Gramineae-dominated late-glacial Colorado Rockies are found in the relatively arid northern Great Basin, which suggests that annual precipitation was much lower in the late-glacial southern Rocky Mountains than it was throughout the Holocene.

  17. Back The Pico Mountain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photos *Pubs summary *Status *Inside view *Go Back The Pico Mountain free tropospheric station Richard Honrath, Michigan Tech (reh@mtu.edu) Paulo Fialho, University of the Azores...

  18. Mountainous | Open Energy Information

    Open Energy Info (EERE)

    Horst and Graben Shield Volcano Flat Lava Dome Stratovolcano Cinder Cone Caldera Depression Resurgent Dome Complex The interior of Iceland holds a vast expanse of mountainous...

  19. Tungsten Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    of Replacement Wells: Average Temperature of Geofluid: Sanyal Classification (Wellhead): Reservoir Temp (Geothermometry): Reservoir Temp (Measured): Sanyal Classification...

  20. Drum Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    of Geofluid: Sanyal Classification (Wellhead): Reservoir Temp (Geothermometry): Reservoir Temp (Measured): Sanyal Classification (Reservoir): Depth to Top of Reservoir:...

  1. Chocolate Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  2. White Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    New Hampshire Exploration Region: Other GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp:...

  3. White Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  4. Florida Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  5. Tungsten Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Well Name: Location: Depth: Initial Flow Rate: "f" is not declared as a valid unit of measurement for this property. The given value was not understood. Flow Test Comment:...

  6. Glass Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Well Name: Location: Depth: Initial Flow Rate: "fb" is not declared as a valid unit of measurement for this property. The given value was not understood. Flow Test Comment:...

  7. Augusta Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Date Decision Date Lead Agency Development Phase(s) Techniques NVN-89274 CU AltaRock Energy Inc 4 November 2010 2 December 2010 BLM GeothermalExploration Geophysical...

  8. YUCCA MOUNTAIN SITE DESCRIPTION

    SciTech Connect (OSTI)

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  9. Kibby Mountain II | Open Energy Information

    Open Energy Info (EERE)

    Kibby Mountain II Jump to: navigation, search Name Kibby Mountain II Facility Kibby Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under...

  10. Rocky Mountain Institute | Open Energy Information

    Open Energy Info (EERE)

    Rocky Mountain Institute Jump to: navigation, search Logo: Rocky Mountain Institute Name: Rocky Mountain Institute Address: 1820 Folsom Street Place: Boulder, Colorado Zip: 80302...

  11. Mountain Home Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Mountain Home Wind Farm Jump to: navigation, search Name Mountain Home Wind Farm Facility Mountain Home Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Turtle Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Turtle Mountain Wind Farm Jump to: navigation, search Name Turtle Mountain Wind Farm Facility Turtle Mountain Sector Wind energy Facility Type Small Scale Wind Facility Status In...

  13. Mountain View Grand | Open Energy Information

    Open Energy Info (EERE)

    Mountain View Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service...

  14. Mountaineer Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Mountaineer Wind Energy Center Jump to: navigation, search Name Mountaineer Wind Energy Center Facility Mountaineer Wind Energy Center Sector Wind energy Facility Type Commercial...

  15. Waters LANL Protects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waters LANL Protects Waters LANL Protects LANL watersheds source in the Jemez Mountains and end at the Rio Grande.

  16. Mountain Home Well - Photos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  17. Mountain Home Well - Photos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    2012-01-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  18. Drum Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Mountain Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information...

  19. Greening of Blue Mountain

    SciTech Connect (OSTI)

    Sopper, W.E. ); McMahon, J.M. III )

    1987-04-01

    This article describes the revegetation of Blue Mountain in Palmertown, Pennsylvania, which was biologically destroyed by a zinc smelting operation. After application of industrial fly ash and a municipal sludge mixture, grasses and microbes and some tree seedlings are present. The article outlines in detail the processes of testing and experimentation with the soils and the plants.

  20. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 8, Part B: Chapter 8, Sections 8.4 through 8.7; Glossary and Acronyms

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Section 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 88 figs., 42 tabs.

  1. Thrust faults of southern Diamond Mountains, central Nevada: Implications for hydrocarbons in Diamond Valley and at Yucca Mountain

    SciTech Connect (OSTI)

    French, D.E.

    1993-04-01

    Overmature Mississippian hydrocarbon source rocks in the southern Diamond Mountains have been interpreted to be a klippe overlying less mature source rocks and represented as an analogy to similar conditions near Yucca Mountain (Chamberlain, 1991). Geologic evidence indicates an alternative interpretation. Paleogeologic mapping indicates the presence of a thrust fault, referred to here as the Moritz Nager Thrust Fault, with Devonian rocks emplaced over Permian to Mississippian strata folded into an upright to overturned syncline, and that the overmature rocks of the Diamond Mountains are in the footwall of this thrust. The upper plate has been eroded from most of the Diamond Mountains but remnants are present at the head of Moritz Nager Canyon and at Sentinel Mountain. Devonian rocks of the upper plate comprised the earliest landslide megabreccia. Later, megabreccias of Pennsylvanian and Permian rocks of the overturned syncline of the lower plate were deposited. By this interpretation the maturity of lower-plate source rocks in the southern Diamond Mountains, which have been increased by tectonic burial, is not indicative of conditions in Diamond Valley, adjacent to the west, where upper-plate source rocks might be present in generating conditions. The interpretation that overmature source rocks of the Diamond Mountains are in a lower plate rather than in a klippe means that this area is an inappropriate model for the Eleana Range near Yucca Mountain.

  2. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  3. Oil and gas leasing in proposed wilderness areas: the Wyoming District Court's interpretation of Section 603 of the Federal Land Policy Management Act of 1976 - Rocky Mountain Oil and Gas Association v. Andrus, 500 F. Supp. 1338 (D. Wyo. 1980), appeal docketed, No. 81-1040 (10th Cir. Jan. 5, 1981)

    SciTech Connect (OSTI)

    Corbett, H.E.

    1982-01-01

    Plaintiff Rocky Mountain Oil and Gas Association, a non-profit trade association, brought suit against the Secretary of the Interior, challenging land management policies of the Department of the Interior which plaintiff contended have effectively prohibited oil and gas exploration in areas proposed as wilderness under the Federal Land Policy Management Act of 1976 (FLPMA). The principal issue at trial was Interior's interpretation of the wilderness study provisions contained in Section 603 of the Act, which directed that activities on oil and gas leases in proposed wilderness areas be managed so as to prevent impairment of wilderness values. The United States Court for the District of Wyoming, Kerr, J., held that strict application of the non-impairment standard of Section 603, FLPMA, by the Department of the Interior virtually halted oil and gas exploration in proposed wilderness areas, and is therefore statutorily erroneous, clearly contrary to Congressional intent, and counter-productive to public interest. The Trial Court's decision is being appealed to the Tenth Circuit Court of Appeals under the title Rocky Mountain Oil and Gas Association v. Watt. 91 references.

  4. Two Independent Assessments Find the Department of Energy's Yucca Mountain

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project is on Track | Department of Energy Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track Two Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track December 13, 2007 - 4:44pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) Director of the Office of Civilian Radioactive Waste Management (OCRWM) today released two independent assessments addressing areas critical to the overall success of the Yucca

  5. Field Mapping At Valles Caldera - Redondo Geothermal Area (Bailey...

    Open Energy Info (EERE)

    based on surface mapping of the caldera. References Roy A. Bailey, Robert Leland Smith, Clarence Samuel Ross (1969) Stratigraphic Nomenclature of Volcanic Rocks in the Jemez...

  6. Conceptual Model At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    extending to the AET-4 well near Jemez Springs. References Lisa Shevenell, Fraser E. Goff, Dan Miles, Al Waibel, Chandler Swanberg (1988) Lithologic Descriptions and Temperature...

  7. Well Log Data At Valles Caldera - Redondo Geothermal Area (Shevenell...

    Open Energy Info (EERE)

    extending to the AET-4 well near Jemez Springs. References Lisa Shevenell, Fraser E. Goff, Dan Miles, Al Waibel, Chandler Swanberg (1988) Lithologic Descriptions and Temperature...

  8. BLM Battle Mountain District Office | Open Energy Information

    Open Energy Info (EERE)

    Mountain District Office Jump to: navigation, search Logo: BLM Battle Mountain District Office Name: BLM Battle Mountain District Office Abbreviation: Battle Mountain Address: 50...

  9. Laurel Mountain | Open Energy Information

    Open Energy Info (EERE)

    Laurel Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Corp. Developer AES Corp. Energy Purchaser Merchant Location Belington...

  10. Georgia Mountain | Open Energy Information

    Open Energy Info (EERE)

    Developer All Earth Renewables Energy Purchaser Green Mountain Power Location Milton VT Coordinates 44.662351, -73.067991 Show Map Loading map... "minzoom":false,"map...

  11. EIS-0417: South Mountain Freeway (Loop 202); Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Federal Highway Administration and Arizona Department of Transportation, with Western Area Power Administration as a cooperating agency, prepared an EIS that analyzes the potential environmental impacts of the proposed South Mountain Freeway (Loop 202) project in the Greater Metropolitan Phoenix Area.

  12. The geologic structure of part of the southern Franklin Mountains, El Paso County, Texas

    SciTech Connect (OSTI)

    Smith, W.R.; Julian, F.E. . Dept. of Geosciences)

    1993-02-01

    The Franklin Mountains are a west tilted fault block mountain range which extends northwards from the city of El Paso, Texas. Geologic mapping in the southern portion of the Franklin Mountains has revealed many previously unrecognized structural complexities. Three large high-angle faults define the boundaries of map. Twenty lithologic units are present in the field area, including the southernmost Precambrian meta-sedimentary rocks in the Franklin Mountains (Lanoria Quartzite and Thunderbird group conglomerates). The area is dominated by Precambrian igneous rocks and lower Paleozoic carbonates, but Cenozoic ( ) intrusions are also recognized. Thin sections and rock slabs were used to describe and identify many of the lithologic units. The Franklin Mountains are often referred to as a simple fault block mountain range related to the Rio Grande Rift. Three critical regions within the study area show that these mountains contain structural complexities. In critical area one, Precambrian granites and rhyolites are structurally juxtaposed, and several faults bisecting the area affect the Precambrian/Paleozoic fault contact. Critical area two contains multiple NNW-trending faults, three sills and a possible landslide. This area also shows depositional features related to an island of Precambrian rock exposed during deposition of the lower Paleozoic rocks. Critical area three contains numerous small faults which generally trend NNE. They appear to be splays off of one of the major faults bounding the area. Cenozoic kaolinite sills and mafic intrusion have filled many of the fault zones.

  13. Maine Mountain Power | Open Energy Information

    Open Energy Info (EERE)

    Maine Mountain Power Jump to: navigation, search Name: Maine Mountain Power Place: Yarmouth, Maine Zip: 4096 Sector: Wind energy Product: Wind farm development company focused on...

  14. Mountain Parks Electric, Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Mountain Parks Electric, Inc Place: Colorado Website: www.mpei.com Facebook: https:www.facebook.comMountainParksElectric Outage Hotline: (970) 887-3378...

  15. Rocky Mountain Humane Investing | Open Energy Information

    Open Energy Info (EERE)

    Rocky Mountain Humane Investing Jump to: navigation, search Name: Rocky Mountain Humane Investing Place: Allenspark, Colorado Zip: 80510 Product: Allenspark-based investment...

  16. Black Mountain Insulation | Open Energy Information

    Open Energy Info (EERE)

    Mountain Insulation Jump to: navigation, search Name: Black Mountain Insulation Place: United Kingdom Sector: Carbon Product: UK-based manufacturer of sheeps wool insulation which...

  17. Green Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. BRMF Georgia Mountain Biofuels | Open Energy Information

    Open Energy Info (EERE)

    BRMF Georgia Mountain Biofuels Jump to: navigation, search Name: BRMFGeorgia Mountain Biofuels Place: Clayton, Georgia Product: Biodiesel plant developer in Georgia. References:...

  19. YUCCA MOUNTAIN PROJECT - A BRIEFING --

    SciTech Connect (OSTI)

    NA

    2003-08-05

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.

  20. The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389

    SciTech Connect (OSTI)

    Voegele, Michael; McCracken, Robert; Herrera, Troy

    2012-07-01

    As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening with the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)

  1. Rocky Mountain Power- Net Metering

    Broader source: Energy.gov [DOE]

    For residential and small commercial customers, net excess generation (NEG) is credited at Rocky Mountain Power's retail rate and carried forward to the next month. For larger commercial and...

  2. Yucca Mountain | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    production of nuclear power Nuclear fuel pellets 2 of 13 Nuclear fuel pellets Aerial view of north end of the Yucca Mountain crest in February 1993 3 of 13 Aerial view of north...

  3. Project Reports for Ute Mountain Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    The Ute Mountain Ute Tribe has the renewable resources and the opportunity to become a national leader in renewable energy production through its local and commercial-scale solar developments due to its proximity to key interconnections in the Four Corners area and interest from various companies that can fund such projects.

  4. Review of Yucca Mountain Disposal Criticality Studies

    SciTech Connect (OSTI)

    Scaglione, John M; Wagner, John C

    2011-01-01

    The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

  5. King Mountain Wind Ranch I | Open Energy Information

    Open Energy Info (EERE)

    Mountain Wind Ranch I Jump to: navigation, search Name King Mountain Wind Ranch I Facility King Mountain Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. Armenia Mountain Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Armenia Mountain Wind Energy Project Jump to: navigation, search Name Armenia Mountain Wind Energy Project Facility Armenia Mountain Wind Energy Project Sector Wind energy Facility...

  7. Redelegation Order No. 00-006.02-02 to the Director, Rocky Mountain...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, Redelegation Order No. 00-006.02-02 to the Director, Rocky Mountain Oilfield Testing Center by Admin Functional areas: Miscellaneous 00-00602-02-DirRockyMtnOilFldTesting.pd...

  8. Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma

    SciTech Connect (OSTI)

    1991-11-17

    The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.

  9. Yucca Mountain Science and Engineering Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Yucca Mountain Science and Engineering Report describes the results of scientific and engineering studies of the Yucca Mountain site, the waste forms to be disposed, the repository and waste...

  10. Microsoft Word - IceMountainFinal.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Mountain, in Hampshire County, West Virginia, is marked by a highway historical marker ... Ice Mountain is still open to visitors for guided hikes. Just contact Steve and Terry Lynn ...

  11. Ute Mountain Tribe- 1994 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Ute Mountain Ute tribe in southwestern Colorado brings in considerable income from its cattle-ranching operation, with a herd of nearly 2,000 head. Since annual rainfall is only 10-15 inches and the only stream is dry part of the year, the tribe must rely on groundwater for cattle watering.

  12. Assessment of industrial minerals and rocks in the controlled area

    SciTech Connect (OSTI)

    Castor, S.B.; Lock, D.E.

    1996-08-01

    Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km{sup 2} that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from drill holes in Yucca Mountain.

  13. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  14. Microbial activity at Yucca Mountain

    SciTech Connect (OSTI)

    Horn, J.M.; Meike, A.

    1995-09-25

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified.

  15. Core Holes At Valles Caldera - Redondo Geothermal Area (Fawcett...

    Open Energy Info (EERE)

    John W. Geissman, Giday WoldeGabriel, Craig D. Allen, Catrina M. Johnson, Susan J. Smith (2007) Two Middle Pleistocene Glacial-Interglacial Cycles from the Valle Grande, Jemez...

  16. What waters does LANL protect?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    does LANL protect? Google Earth Tour: Waters around LANL Jemez Mountains Headwaters Watersheds The Rio Grande Buckman Direct Diversion Project Groundwater in the Regional Aquifer...

  17. Energy in Indian Country Providers Conference

    Broader source: Energy.gov (indexed) [DOE]

    ... Tribe- Tribal Utility Authority Formation Zia Pueblo, Jemez Pueblo- Tribal Utility Authority Formation 2015 Project Locations Ute Mountain Ute- Development of Fracking Regulations

  18. Homesteading on the Pajarito Plateau topic of inaugural lecture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to...

  19. Reorganization bolsters nuclear nonproliferation capability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to...

  20. Frontiers In Science public lectures: Harvesting energy from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to...

  1. Tri-Lab Directors' statement on the nuclear posture review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to...

  2. Five Los Alamos researchers receive 2010 LANL Fellows Prize

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to...

  3. New Mexico Small Business Assistance Program to recognize outstanding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation celebration New Mexico Small Business Assistance Program to recognize ... on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a ...

  4. Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    1 was completed in 2002 and it reached a depth of 672.1 m and a temperature of 144.7C. Deep Blue No. 2, was drilled and completed in 2004. It reached 1128 m depth and a...

  5. Isotopic Analysis At Zuni Mountains Nm Area (Brookins, 1982)...

    Open Energy Info (EERE)

    not indicated DOE-funding Unknown References D. G. Brookins (1982) Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger...

  6. Isotopic Analysis At Florida Mountains Area (Brookins, 1982)...

    Open Energy Info (EERE)

    not indicated DOE-funding Unknown References D. G. Brookins (1982) Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger...

  7. Rock Sampling At Florida Mountains Area (Brookins, 1982) | Open...

    Open Energy Info (EERE)

    analysis from U,Th,K concentrations. References D. G. Brookins (1982) Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger...

  8. Rock Sampling At Zuni Mountains Nm Area (Brookins, 1982) | Open...

    Open Energy Info (EERE)

    analysis from U,Th,K concentrations. References D. G. Brookins (1982) Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger...

  9. McGee Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Region GEA Development Phase: Coordinates: 41.8, -118.87 Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp:...

  10. Magnetotellurics At Socorro Mountain Area (Owens, Et Al., 2005...

    Open Energy Info (EERE)

    low-resisitivity fluids and alteration at depth. References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A...

  11. Thermal Gradient Holes At Socorro Mountain Area (Owens, Et Al...

    Open Energy Info (EERE)

    waters with a minimum of 82 degrees C at depth References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A...

  12. Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005...

    Open Energy Info (EERE)

    thermal waters with a minimum of 82oC at depth References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A...

  13. Reflection Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    to the range front faults. Interpretations of the data have been implemented into current structural models and indicated steeply dipping faults that become less steep with...

  14. Cuttings Analysis At Marysville Mountain Geothermal Area (1976...

    Open Energy Info (EERE)

    and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Additional References Retrieved from "http:...

  15. Trace Element Analysis At Socorro Mountain Area (Owens, Et Al...

    Open Energy Info (EERE)

    Terrasol leach are two such techniques. This method has to datae been mostly applied to oil and mineral deposits. Limited unpulished studies on geothermal systems suggest that...

  16. Rock Sampling At Socorro Mountain Area (Armstrong, Et Al., 1995...

    Open Energy Info (EERE)

    SEM studies, and John Repetski (USGS, Reston, Virgina) conodont stratigraphy and color and textural alteration as guides to the carbonate rocks' thermal history. The...

  17. McGee Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    100C373.15 K 212 F 671.67 R 1 USGS Estimated Reservoir Volume: 1 km 1 USGS Mean Capacity: 5 MW 1 Click "Edit With Form" above to add content History and...

  18. Zuni Mountains Nm Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  19. Thermal Gradient Holes At Tungsten Mountain Area (Shevenell,...

    Open Energy Info (EERE)

    Holes Activity Date Usefulness useful DOE-funding Unknown Notes Collaboration with the gold mining industry has brought two new geothermal discoveries to the attention of the...

  20. Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...

    Open Energy Info (EERE)

    from 3 core and 62 rotary drill holes. This exploration effort found sub-economic gold mineralization, but discovered a previously unknown geothermal resource. References...

  1. Thermal Gradient Holes At Tungsten Mountain Area (Kratt, Et Al...

    Open Energy Info (EERE)

    Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes twenty-three gold exploration holes were drilled by Newcrest Resources, Inc. during 2005 and 2006 along...

  2. Modeling-Computer Simulations At Chocolate Mountains Area (Alm...

    Open Energy Info (EERE)

    Simulations Activity Date Usefulness useful DOE-funding Unknown Notes "Shallow temperature gradient drilling began at the CMAGR in January of 2010. 13 temperature...

  3. Thermal Gradient Holes At Chocolate Mountains Area (Alm, Et Al...

    Open Energy Info (EERE)

    Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes "Shallow temperature gradient drilling began at the CMAGR in January of 2010. 13 temperature...

  4. Conceptual Model At Blue Mountain Geothermal Area (Casteel, Et...

    Open Energy Info (EERE)

    model based on drilling results, fluid characteristics, lithology, and 3D permeability mapping has been created. This model has very little geophysical data to work from...

  5. Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin...

    Open Energy Info (EERE)

    layered silicates, opal, calcite, zeolites, and iron oxides and hydroxides. The experimental technique may be able to sample drill cuttings and core more efficiently than...

  6. Earth Tidal Analysis At Marysville Mountain Geothermal Area ...

    Open Energy Info (EERE)

    is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous...

  7. Yucca Mountain Press Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yucca Mountain Press Conference Yucca Mountain Press Conference June 3, 2008 - 12:51pm Addthis Remarks as Prepared for Delivery for Secretary Bodman Thank you all for being here. I'm pleased to announce that this morning the Department of Energy submitted a license application to the U.S. Nuclear Regulatory Commission seeking authorization to build America's first national repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. We are confident that the

  8. Rocky Mountain Power- wattsmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers in Idaho to install energy efficient equipment in their homes. Full details are available on the program website.

  9. APPALACHIAN STATE UNIVERSITY MOUNTAIN LAUREL HOME Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced framing techniques along with an efficient layout reduced material requirements while increasing our mechanical systems' efficiencies. The Mountain Laurel design creates ...

  10. Rocky Mountain Power- wattsmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers to increase the energy efficiency of homes through the Home Energy Savings Program. Full details are available on the program...

  11. Rocky Mountain Power- wattsmart Business Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power's wattsmart Business Program provides extensive incentives and for lighting, HVAC, food service, agricultural, and compressed air equipment. Full details are available on the...

  12. Rocky Mountain Power- wattsmart Business Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power's wattsmart Program includes incentives and technical assistance for lighting, HVAC and other equipment upgrades that increase energy efficiency in commercial and industrial...

  13. Rocky Mountain Power- wattsmart Business Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for its commercial and industrial customers in Idaho to retrofit existing facilities with more efficient equipment. Full details are available on the...

  14. Squirrel Mountain Valley, California: Energy Resources | Open...

    Open Energy Info (EERE)

    Squirrel Mountain Valley, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.6232866, -118.4098058 Show Map Loading map......

  15. Mountain Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Delhi (NCT), India Sector: Hydro Product: Delhi-based investment vehicle set-up to invest specifically in Indian small hydro power generation assets. References: Mountain...

  16. West Mountain Energy Capital | Open Energy Information

    Open Energy Info (EERE)

    Energy Capital Jump to: navigation, search Name: West Mountain Energy Capital Place: Salisbury, Connecticut Zip: 6070 Sector: Renewable Energy Product: Provides renewable resource...

  17. Green Mountain Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: Green Mountain Energy Company Place: Texas Website: www.greenmountainenergy.com Twitter: @GreenMtnEnergy Facebook: https:...

  18. International Centre for Integrated Mountain Development (ICIMOD...

    Open Energy Info (EERE)

    Centre for International Mountain Development (ICIMOD) Resource Type Training materials, Lessons learnedbest practices Website http:www.icimod.org Country Afghanistan,...

  19. White Mountain Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Group LLC Jump to: navigation, search Name: White Mountain Group, LLC Place: Delaware Product: The company has entered an agreement with Australian Biodiesel Group for a share...

  20. Geothermal Energy Resource Investigations, Chocolate Mountains...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range,...

  1. Green Mountain Power Corp | Open Energy Information

    Open Energy Info (EERE)

    from Town of Readsboro, Vermont (Utility Company)) Jump to: navigation, search Name: Green Mountain Power Corp Place: Vermont Service Territory: Vermont Phone Number:...

  2. Mountain Island Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Mountain Island Energy, LLC Place: Soda Springs, Idaho Zip: 83276 Product: Energy and mining development company focused on next generation "clean technology". References:...

  3. Getting Beyond Yucca Mountain - 12305

    SciTech Connect (OSTI)

    Halstead, Robert J.; Williams, James M.

    2012-07-01

    The U.S. Department of Energy has terminated the Yucca Mountain repository project. The U.S. Nuclear Regulatory Commission has indefinitely suspended the Yucca Mountain licensing proceeding. The presidentially-appointed Blue Ribbon Commission (BRC) on America's Nuclear Future is preparing a report, due in January 2012, to the Secretary of Energy on recommendations for a new national nuclear waste management and disposal program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLW). However, the BRC Draft Report fails to provide detailed guidance on how to implement an alternative, successful approach to facility site selection. The comments submitted to the BRC by the State of Nevada Agency for Nuclear Projects provide useful details on how the US national nuclear waste program can get beyond the failed Yucca Mountain repository project. A detailed siting process, consisting of legislative elements, procedural elements, and 'rules' for volunteer sites, could meet the objectives of the BRC and the Western Governors Association (WGA), while promoting and protecting the interests of potential host states. The recent termination of the proposed Yucca Mountain repository provides both an opportunity and a need to re-examine the United States' nuclear waste management program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for SNF and HLW. It is anticipated that the BRC Final report in January 2012 will recommend a new general course of action, but there will likely continue to be a need for detailed guidance on how to implement an alternative, successful approach to facility site selection. Getting the nation's nuclear waste program back on track

  4. Woodward Mountain I & II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Mountain I & II Wind Farm Jump to: navigation, search Name Woodward Mountain I & II Wind Farm Facility Woodward Mountain Wind Ranch I and II Sector Wind energy Facility Type...

  5. Kibby Mountain Phase I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Kibby Mountain Phase I Wind Farm Jump to: navigation, search Name Kibby Mountain Phase I Wind Farm Facility Kibby Mountain Phase I Sector Wind energy Facility Type Commercial Scale...

  6. Mountain

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel (B100) production by Petroleum Administration for Defense District (PADD)" ... is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  7. Mountain View Power Partners II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Mountain View Power Partners II Wind Farm Facility Mountain View Power Partners II Sector Wind energy Facility Type Commercial Scale...

  8. Dongbai Mountain Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dongbai Mountain Wind Power Co Ltd Jump to: navigation, search Name: Dongbai Mountain Wind Power Co Ltd Place: Zhejiang Province, China Sector: Wind energy Product: Dongyang-based...

  9. Department of Energy Files Motion to Withdraw Yucca Mountain...

    Office of Environmental Management (EM)

    Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 - 12:00am Addthis ...

  10. Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility...

  11. City of Kings Mountain, North Carolina (Utility Company) | Open...

    Open Energy Info (EERE)

    Kings Mountain, North Carolina (Utility Company) Jump to: navigation, search Name: City of Kings Mountain Place: North Carolina Phone Number: 704.730.2125 Website:...

  12. EA-1746: Blue Mountain Geothermal Development Project, Humboldt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    46: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3,...

  13. Turtle Mountain Community College Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Facility Status In Service Owner Turtle Mountain Community College Developer Distributed Gen Energy Purchaser Turtle Mountain Community College Location St. John ND Coordinates...

  14. Mountain Spa Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spa Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mountain Spa Resort Pool & Spa Low Temperature Geothermal Facility Facility Mountain Spa...

  15. Statement from Ward Sproat on Yucca Mountain, Director of the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ward Sproat on Yucca Mountain, Director of the Office of Civilian Radioactive Waste Management Statement from Ward Sproat on Yucca Mountain, Director of the Office of Civilian ...

  16. Motion to Withdraw from Yucca Mountain application | Department...

    Office of Environmental Management (EM)

    Motion to Withdraw from Yucca Mountain application Motion to Withdraw from Yucca Mountain application DOE's withdraws it's pending license application for a permanent geologic ...

  17. DOE Announces Yucca Mountain License Application Schedule | Department...

    Energy Savers [EERE]

    Yucca Mountain License Application Schedule DOE Announces Yucca Mountain License Application Schedule July 19, 2006 - 3:13pm Addthis New Director Ward Sproat Testifies on Revised ...

  18. Mountain View Power Partners III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    III Wind Farm Jump to: navigation, search Name Mountain View Power Partners III Wind Farm Facility Mountain View Power Partners III Sector Wind energy Facility Type Commercial...

  19. Buffalo Mountain Wind Energy Center I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Buffalo Mountain Wind Energy Center I Facility Buffalo Mountain Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind...

  20. Buffalo Mountain Wind Energy Center II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Buffalo Mountain Wind Energy Center II Facility Buffalo Mountain Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind...

  1. DOE - Office of Legacy Management -- Rocky Mountain Research...

    Office of Legacy Management (LM)

    Documents Related to ROCKY MOUNTAIN RESEARCH LABORATORIES CO.06-1 - Rocky Mountain Research Letter; Burton to Smith; Subject: Beryllium Oxide and Compounds; October 31, 1949 ...

  2. PIA - Rocky Mountain OTC GSS | Department of Energy

    Office of Environmental Management (EM)

    PIA - Rocky Mountain OTC GSS PIA - Rocky Mountain OTC GSS (1.88 MB) More Documents & Publications PIA - WEB Unclassified Business Operations General Support System Integrated ...

  3. NNMCAB Board Minutes: May 2001 Jemez Pueblo

    Broader source: Energy.gov [DOE]

    Minutes of the May 30, 2001 Board meeting at Walatowa Visitor's Center Presentation DOE, Environmental Restoration, Ted Taylor

  4. Energy in the Mountain West: Colonialism and Independence

    SciTech Connect (OSTI)

    Steven Piet; Lloyd Brown; Robert Cherry; Craig Cooper; Harold Heydt; Richard Holman; Travis McLing

    2007-08-01

    In many ways, the mountain west (Alaska, Arizona, Colorado, Idaho, Montana, New Mexico, Nevada, Utah, Wyoming) is an energy colony for the rest of the United States: it is rich in energy resources that are extracted to fuel economic growth in the wealthier and more populous coastal regions. Federal agencies and global corporations often behave as if the mountain west is a place to be exploited or managed for the benefit of customers and consumers elsewhere. Yet, the area. is not vast empty space with a limitless supply of natural resources, but rather a fast-growing region with a diverse economic base dependent on a limited supply of water. New decision processes and collaborations are slowly changing this situation, but in a piecemeal fashion that places local communities at odds with powerful external interests. Proper planning of major development is needed to insure that the west has a strong economic and cultural future after the fossil energy resources decline, even if that might be a century from now. To encourage the necessary public discussions, this paper identifies key differences between the mountain west and the rest of the United States and suggests some holistic approaches that could improve our future. This paper is designed to provoke thought and discussion; it does not report new analyses on energy resources or usage. It is a summary of a large group effort.

  5. Simulating 3-D Radiative Transfer Effects over the Sierra Nevada Mountains using WRF

    SciTech Connect (OSTI)

    Gu, Yu; Liou, K. N.; Lee, W- L.; Leung, Lai-Yung R.

    2012-10-30

    A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to ?50 to + 50Wm?2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8-10 a.m. and in the afternoon around 3-5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to ?40 gm?2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between ?12~12Wm?2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain

  6. The Church Mountain Sturzstrom (Mega-Landslide), Glacier, Washington

    SciTech Connect (OSTI)

    Carpenter, M.R.; Easterbrook, D.J. . Dept. of Geology)

    1993-04-01

    Detailed investigation of an ancient sturzstrom or mega-landslide near Glacier, Washington has revealed it areal extent, approximate volume, age, geomorphology, source area, and possible causes. Stratigraphic and lithologic investigations indicate Church Mountain as the source area; therefore, this mega-landslide has been named the Church Mountain Sturzstrom (CMS). The CMS deposit is approximately 9 km in length, averages about 1 km in width, and has an estimated volume of 3 [times] 10[sup 8] m[sup 3]. Characteristics of the morphology and stratigraphy of the CMS deposit are suggestive of a sturzstrom origin, and may be indicative of sturzstrom elsewhere in the world. The overall stratigraphy of the deposit mimics the stratigraphy of the source area. The deposit is very compact, poorly sorted, matrix supported, and composed of highly angular clasts. Over steepening of the mountain due to glacial erosion may have contributed to the cause of failure, although the age of the CMS is at least 7,000 years younger than deglaciation. Four trees were C[sup 14] dated, yielding ages of about 2,700 B.P. for the CMS. Several other mega-landslides have been identified within 5--30 km of the CMS. The close proximity of these mega-landslides to the CMS suggests the possibility that they may have been triggered by an earthquake, although the ages of the other slides are currently unknown. The age of the CMS correlates approximately with age ranges of co-seismic events occurring along the west coast of Washington, further suggesting the possibility of an earthquake triggering mechanism.

  7. EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County, NV | Department of Energy 46: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3, 2007 EA-1746: Final Environmental Assessment Blue Mountain Geothermal Development Project April 26, 2010 EA-1746: Finding of No Significant Impact Blue Mountain Geothermal Development Project, Humboldt and Pershing Counties, Nevada

  8. May

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May May We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory to host forum June 16 Area

  9. Lab completes Recovery Act-funded demolition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Act-funded demolition completed Lab completes Recovery Act-funded demolition The building was the largest of the 24 demolished at LANL's historic Technical Area 21. January 19, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of

  10. Los Alamos and NNSS team to resume critical experiments at new location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear safety test runs on planet device Los Alamos and NNSS team to resume critical experiments at new location This experiment demonstrated the restoration of a national capability to perform critical operations that was lost with the closure in 2005 of Technical Area 18. June 17, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable

  11. Homesteading on the Pajarito Plateau topic of inaugural lecture at Los

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos National Laboratory Homesteading On The Pajarito Plateau Homesteading on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory The lecture is based on a book by local writers Dorothy Hoard, Judy Machen and Ellen McGehee about the area's settlement between 1887 and 1942. January 4, 2013 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering

  12. Laboratory awards final Recovery Act demolition contracts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Act demolition contracts Laboratory awards final Recovery Act demolition contracts The two winning bidders will each demolish a portion of the remaining unused buildings at the Lab's historic Technical Area 21. April 20, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

  13. Scientists use world's fastest supercomputer to create the largest HIV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evolutionary tree HIV evolutionary tree Scientists use world's fastest supercomputer to create the largest HIV evolutionary tree Researchers are using the supercomputer to analyze vast quantities of genetic sequences from HIV infected people in the hope of zeroing in on possible vaccine target areas. October 27, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering

  14. Los Alamos National Laboratory to host forum June 16

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL to host forum June 16 Los Alamos National Laboratory to host forum June 16 Area business owners can learn about planned construction projects and potential economic opportunities at a community forum. May 28, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos

  15. Los Alamos National Security awards grants to 24 nonprofits in Northern New

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexico LANS awards grants nonprofits Los Alamos National Security awards grants to 24 nonprofits in Northern New Mexico The grants were awarded to support the efforts of employees whose volunteer work with nonprofit organizations encourages a vibrant quality of life in the area. February 5, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  16. Los Alamos identifies internal material control issue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internal material control issue Los Alamos identifies internal material control issue The error relates to internal inventory and accounting that documents movement of sensitive materials within a small portion of Technical Area 55. February 26, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  17. Six regional businesses receive Native American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grants Native American Venture Acceleration Fund grants Six regional businesses receive Native American Venture Acceleration Fund grants The grants are designed to help the recipients create jobs, increase their revenue base and help diversify the area economy. February 4, 2014 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  18. Rocky Mountain Power- wattsmart New Homes Program

    Broader source: Energy.gov [DOE]

    The Rocky Mountain Power ENERGY STAR New Homes program offers cash incentives to contractors who build energy-efficient homes. To qualify for this incentive, the new home must meet the Version 2.5...

  19. April 25, 1997: Yucca Mountain exploratory drilling

    Broader source: Energy.gov [DOE]

    April 25, 1997Workers complete drilling of the five-mile long, horseshoe-shaped exploratory tunnel through Yucca Mountain at the proposed high-level nuclear waste repository in Nevada.

  20. Rocky Mountain Power | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Rocky Mountain Power is a subsidiary of PacifiCorp which delivers electricity to customers in Utah, Wyoming and Idaho; it is headquartered in Salt Lake...

  1. February 14, 2002: Yucca Mountain | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    14, 2002: Yucca Mountain February 14, 2002: Yucca Mountain February 14, 2002: Yucca Mountain February 14, 2002 Secretary Abraham formally recommends to President Bush that the Yucca Mountain site in Nevada be developed as the nation's first long-term geologic repository for high-level radioactive waste. "I have considered whether sound science supports the determination that the Yucca Mountain site is scientifically and technically suitable for the development of a repository," the

  2. ADVANCES IN YUCCA MOUNTAIN DESIGN

    SciTech Connect (OSTI)

    Harrington, P.G.; Gardiner, J.T.; Russell, P.R.Z.; Lachman, K.D.; McDaniel, P.W.; Boutin, R.J.; Brown, N.R.; Trautner, L.J.

    2003-02-27

    Since site designation of the Yucca Mountain Project by the President, the U.S. Department of Energy (DOE) has begun the transition from the site characterization phase of the project to preparation of the license application. As part of this transition, an increased focus has been applied to the repository design. Several evolution studies were performed to evaluate the repository design and to determine if improvements in the design were possible considering advances in the technology for handling and packaging nuclear materials. The studies' main focus was to reduce and/or eliminate uncertainties in both the pre-closure and post-closure performance of the repository and to optimize operations. The scope and recommendations from these studies are the subjects of this paper and include the following topics: (1) a more phased approach for the surface facility that utilize handling and packaging of the commercial spent nuclear fuel in a dry environment rather than in pools as was presented in the site recommendation; (2) slight adjustment of the repository footprint and a phased approach for construction and emplacement of the repository subsurface; and (3) simplification of the construction, fabrication and installation of the waste package and drip shield.

  3. Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2004 to September 30, 2006

    SciTech Connect (OSTI)

    Smith, Ken

    2007-11-26

    This report describes earthquake activity within approximately 65 km of Yucca Mountain site during the October 1, 2004 to September 30, 2006 time period (FY05-06). The FY05-06 earthquake activity will be compared with the historical and more recent period of seismic activity in the Yucca Mountain region. The relationship between the distribution of seismicity and active faults, historical patterns of activity, and rates of earthquakes (number of events and their magnitudes) are important components in the assessment of the seismic hazard for the Yucca Mountain site. Since October 1992 the University of Nevada has compiled a catalog of earthquakes in the Yucca Mountain area. Seismicity reports have identified notable earthquake activity, provided interpretations of the seismotectonics of the region, and documented changes in the character of earthquake activity based on nearly 30 years of site-characterization monitoring. Data from stations in the seismic network in the vicinity of Yucca Mountain is collected and managed at the Nevada Seismological Laboratory (NSL) at the University of Nevada Reno (UNR). Earthquake events are systematically identified and cataloged under Implementing Procedures developed in compliance with the Nevada System of Higher Education (NSHE) Quality Assurance Program. The earthquake catalog for FY05-06 in the Yucca Mountain region submitted to the Yucca Mountain Technical Data Management System (TDMS) forms the basis of this report.

  4. Los Alamos National Laboratory Yucca Mountain Project publications (1979--1994)

    SciTech Connect (OSTI)

    Bowker, L.M.; Espinosa, M.L.; Klein, S.H.

    1995-11-01

    This over-300 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1994 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/groundwater chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance.

  5. Los Alamos National Laboratory Yucca Mountain Project Publications (1979-1996)

    SciTech Connect (OSTI)

    Ruhala, E.R.; Klein, S.H.

    1997-06-01

    This over-350 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1996 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/ground-water chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance.

  6. Environmental program overview for a high-level radioactive waste repository at Yucca Mountain

    SciTech Connect (OSTI)

    1988-12-01

    The United States plans to begin operating the first repository for the permanent disposal of high-level nuclear waste early in the next century. In February 1983, the US Department of Energy (DOE) identified Yucca Mountain, in Nevada, as one of nine potentially acceptable sites for a repository. To determine its suitability, the DOE evaluated the Yucca Mountain site, along with eight other potentially acceptable sites, in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The purpose of the Environmental Program Overview (EPO) for the Yucca Mountain site is to provide an overview of the overall, comprehensive approach being used to satisfy the environmental requirements applicable to sitting a repository at Yucca Mountain. The EPO states how the DOE will address the following environmental areas: aesthetics, air quality, cultural resources (archaeological and Native American components), noise, radiological studies, soils, terrestrial ecosystems, and water resources. This EPO describes the environmental program being developed for the sitting of a repository at Yucca Mountain. 1 fig., 3 tabs.

  7. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  8. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    2012-11-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  9. City of Mountain Iron, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Mountain Iron, Minnesota (Utility Company) Jump to: navigation, search Name: City of Mountain Iron Place: Minnesota Phone Number: (218)748-7570 Website: www.mtniron.com...

  10. Rich Mountain Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Rich Mountain Elec Coop, Inc Jump to: navigation, search Name: Rich Mountain Elec Coop, Inc Place: Arkansas Phone Number: 1-877-828-4074 Website: www.rmec.com Outage Hotline:...

  11. Mountain Electric Coop, Inc (North Carolina) | Open Energy Information

    Open Energy Info (EERE)

    Mountain Electric Coop, Inc (North Carolina) Jump to: navigation, search Name: Mountain Electric Coop, Inc Place: North Carolina Phone Number: 423-733-0159 or 423-772-3521 or...

  12. Green Mountain Energy Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Green Mountain Energy Wind Farm II Facility AMP-OhioGreen Mountain Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind...

  13. Green Mountain Energy Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Green Mountain Energy Wind Farm I Facility AMP-OhioGreen Mountain Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind...

  14. City of White Mountain, Alaska (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of White Mountain, Alaska (Utility Company) Jump to: navigation, search Name: City of White Mountain Place: Alaska Phone Number: 907-638-2230 Outage Hotline: 907-638-2230...

  15. DOE - NNSA/NFO -- News & Views Yucca Mountain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yucca Mountain Studies Authorized in 1976 Photo - Yucca Mountain on Sept. 25, 1985. In 1982, Congress passed the Nuclear Waste Policy Act (NWPA) to set national policy to help ...

  16. Mountain View Power Partners I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    I Wind Farm Jump to: navigation, search Name Mountain View Power Partners I Wind Farm Facility Mountain View Power Partners I Sector Wind energy Facility Type Commercial Scale Wind...

  17. Alternative Fuels Data Center: Smoky Mountains Leads the Way in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Implementing Alternative Fuels Smoky Mountains Leads the Way in Implementing Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Smoky Mountains Leads the Way in Implementing Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Smoky Mountains Leads the Way in Implementing Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Smoky Mountains Leads the Way in Implementing Alternative Fuels on Google Bookmark Alternative Fuels Data

  18. GreenMountain Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    California Zip: 94107 Product: Consulting firm specializing in clean technology product design and manufacturing development. References: GreenMountain Engineering,...

  19. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    SciTech Connect (OSTI)

    Mancuso, Michael; Moseley, Robert

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  20. Characterize Eruptive Processes at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    D. Krier

    2004-10-04

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.

  1. YUCCA MOUNTAIN WASTE PACKAGE CLOSURE SYSTEM

    SciTech Connect (OSTI)

    G. Housley; C. Shelton-davis; K. Skinner

    2005-08-26

    The method selected for dealing with spent nuclear fuel in the US is to seal the fuel in waste packages and then to place them in an underground repository at the Yucca Mountain Site in Nevada. This article describes the Waste Package Closure System (WPCS) currently being designed for sealing the waste packages.

  2. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  3. Permian age from radiolarites of the Hawasina nappes, Oman Mountains

    SciTech Connect (OSTI)

    Wever, P.D. ); Grissac C.B. ); Bechennec, F. )

    1988-10-01

    The Hawasina napper of the Oman Mountains yielded Permian radiolarians from cherts stratigraphically overlying a thick volcanic basement (Al Jil Formation) at the base of the Hamrat Duru Group. This fauna represents the first Permian radiolarians and radiolarites in the central and western Tethyan realm. A Permain age for pelagic sequences within the Hawasina Complex of Oman has major significance for regional paleogeographic reconstruction. A clear differentiation between platform (reefal sediments) and basin (radiolarites) from the base of the Late Permian (255 Ma) is implied. It suggests a flexure of the platform during Permian time; the present data implies that a zone of rifting was already developed adjacent to the northeast Gondwana platform margin during the Late Permian. The Hamrat Duru Basin corresponds to an opening intracontinental rift area (sphenochasm) between Arabia and northeast Gondwana, a reentrant of the paleo-Tethys.

  4. Simulation of katabatic flow and mountain waves

    SciTech Connect (OSTI)

    Poulos, G.S.

    1995-05-01

    It is well-known that both mountain waves and katabatic flows frequently form in the severe relief of the Front Range of the Rocky Mountains. Occasionally these phenomena have been found to occur simultaneously. Generally, however, the large body of literature regarding them has treated each individually, seldom venturing into the regime of their potential interaction. The exceptions to this rule are Arritt and Pielke (1986), Barr and Orgill (1989). Gudiksen et al. (1992), Moriarty (1984), Orgill et al. (1992), Orgill and Schreck (1985). Neff and King (1988), Stone and Hoard (1989), Whiteman and Doran (1993) and Ying and Baopu (1993). The simulations overviewed here attempt to reproduce both atmospheric features simultaneously for two case days during the 1993 ASCOT observational program near Rocky Flats, Colorado.

  5. YUMMY: The Yucca Mountain MCNP-Library

    SciTech Connect (OSTI)

    Alpan, FA

    2004-12-10

    Point-wise libraries provided with the MCNP code contain neutron data for a limited number of temperatures. However, it is important to have the option of using data from a wide range of temperatures for transport calculations. For this purpose, a multi-temperature, ACE-format neutron library was generated for 134 nuclides, as requested by Yucca Mountain Project (YMP) staff. The library is referred to as YUMMY (YUcca Mountain MCNP-librarY). The neutron cross section data are based on ENDF/B-V or ENDF/B-VI evaluations that were requested by YMP staff. This document provides the details of the new library and its use in criticality safety benchmark problems, a Pressurized Water Reactor design and waste package models in MCNP4C.

  6. Testimony of Greg Friedman Yucca Mountain

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environment and the Economy of the Committee on Energy and Commerce U.S. House of Representatives FOR RELEASE ON DELIVERY 1:00 PM Wednesday, June 1, 2011 1 Mr. Chairman and members of the Subcommittee, I am pleased to be here at your request to testify on matters relating to the Department of Energy's Yucca Mountain Project. As you know, issues surrounding the termination of the Project have been widely publicized. They directly impact the Department's responsibilities to manage legacy waste

  7. Microsoft Word - Yucca Mountain Press Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOR IMMEDIATE RELEASE Angela Hill, (202) 586-4940 Tuesday, June 3, 2008 Remarks as Prepared for Delivery for Energy Secretary Samuel Bodman Yucca Mountain Press Conference National Press Club Washington, D.C. Thank you all for being here. I'm pleased to announce that this morning the Department of Energy submitted a license application to the U.S. Nuclear Regulatory Commission seeking authorization to build America's first national repository for spent nuclear fuel and high-level radioactive

  8. White Mountain Apache Tribe- 2002 Project

    Broader source: Energy.gov [DOE]

    The project will involve an examination of the feasibility of a cogeneration facility at the Fort Apache Timber Company (FATCO), an enterprise of the White Mountain Apache Tribe. FATCO includes a sawmill and a remanufacturing operation that process timber harvested on the tribe's reservation. The operation's main facility is located in the reservation's largest town, Whiteriver. In addition, the tribe operates an ancillary facility in the town of Cibeque on the reservation's west side.

  9. Yucca Mountain transportation routes: Preliminary characterization and risk analysis; Volume 2, Figures [and] Volume 3, Technical Appendices

    SciTech Connect (OSTI)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R.

    1991-05-31

    This report presents appendices related to the preliminary assessment and risk analysis for high-level radioactive waste transportation routes to the proposed Yucca Mountain Project repository. Information includes data on population density, traffic volume, ecologically sensitive areas, and accident history.

  10. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Biosciences The Biosciences Area forges multidisciplinary teams to solve national challenges in energy, environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three divisions and is enabled by Berkeley

  11. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    SciTech Connect (OSTI)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M.

    1996-12-31

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

  12. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1992--September 30, 1992, Number 7

    SciTech Connect (OSTI)

    1992-12-01

    In accordance with section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the Department has prepared the seventh in a series of reports on the progress of site characterization at the Yucca Mountain candidate site. The Civilian Radioactive Waste Management Program made significant progress during the reporting period at the Yucca Mountain Site Characterization Project. Several important advances were made in the surface-based testing program including: initiation of borehole drilling utilizing the new, state-of-the-art LM-300 drill rig which employs dry drilling and coring techniques; neutron access borehole drilling to evaluate infiltration processes; excavations to aid geologic mapping; and trenching in Midway Valley to study Quaternary faulting. A Floodplain Assessment and Statement of Findings was published in the Federal Register which concluded there would be no significant impact nor cumulative impacts on floodplains resulting from Exploratory Studies Facility activities. The National Academy of Sciences` National Research Council released its report entitled ``Ground Water at Yucca Mountain: How High Can It Rise?`` which concluded that none of the evidence cited as proof of groundwater upwelling in and around Yucca Mountain could be reasonably attributed to that process and that significant water table excursions to the repository design level are not shown by the geologic record. The June 29, 1992, earthquake near Yucca Mountain provided scientists with a wealth of information relevant to understanding the neotectonics of the area and the geometry of faults at depth. Early findings suggest that accelerations recorded were well within proposed design limits for the surface waste handling facilities.

  13. US Geological Survey Committee for the Advancement of Science in the Yucca Mountain Project symposium on {open_quotes}Fractures, Hydrology, and Yucca Mountain{close_quotes}: Abstracts and summary

    SciTech Connect (OSTI)

    Gomberg, J.

    1991-12-31

    The principal objective of this symposium is to review the available information on fractured/faulted terrains in terms of a coherent hydrogeologic model of ground-water fluid flow and transport, particularly as it pertains to the Yucca Mountain region. This review addresses the influence and significance of fractures on ground-water flow and the transport of conservative-species solutes within the context of the hydrogeologic setting of the Yucca Mountain area. The relations between fluid flow and fractured or faulted host rock are examined integrally from information on geologic, seismologic, hydrologic, and geomechanical properties of the system. The development of new hydrogeologic approaches that incorporate information from this integrated database are contrasted with more standard approaches toward understanding flow in fractured reservoirs. Ground-water flow in both the unsaturated zone and the saturated zone are considered. The application of various models of flow is addressed, examples include porous-media equivalent and discontinuum fracture-network models. Data and interpretations from the Yucca Mountain area are presented to establish a context for information exchange. The symposium includes discussions relevant to technical considerations for characterizing the Yucca Mountain area hydrogeology. On the basis of these discussions, CASY has compiled this document in order to formally summarize the proceedings and communicate recommendations for future directions of research and investigation.

  14. Overview of Hydrogen and Fuel Cell Activities: September 2010 Mountain

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States Hydrogen Business Council | Department of Energy September 2010 Mountain States Hydrogen Business Council Overview of Hydrogen and Fuel Cell Activities: September 2010 Mountain States Hydrogen Business Council Presentation by Richard Farmer at the Mountain States Hydrogen Business Council on September 14, 2010. Overview of Hydrogen and Fuel Cell Activities (3.7 MB) More Documents & Publications Hydrogen and Fuel Cells Program Overview: Hydrogen and Fuel Cells 2011 International

  15. DOE Marks Milestone in Submitting Yucca Mountain License Application |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Milestone in Submitting Yucca Mountain License Application DOE Marks Milestone in Submitting Yucca Mountain License Application June 3, 2008 - 12:51pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced submittal of a license application (LA) to the U.S. Nuclear Regulatory Commission (NRC) seeking authorization to construct America's first repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. The 8,600 page

  16. 2014 FIRST Robotics Smoky Mountain Regionals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FIRST Robotics Smoky Mountain Regionals 2014 FIRST Robotics Smoky Mountain Regionals Addthis 1 of 8 Students from Hardin Valley Academy in Tennessee prepare their robot for the FIRST Robotics Smoky Mountain regionals. The FIRST robotics competition challenges high school students to design, build and program a complex robot that can compete in that year's game. The team, called the RoHAWKtics, used 3D printing and carbon fiber reinforced plastic to build their robot this year. Image: Michael

  17. DOE Defends Its Motion to Withdraw Yucca Mountain Application | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Defends Its Motion to Withdraw Yucca Mountain Application DOE Defends Its Motion to Withdraw Yucca Mountain Application May 27, 2010 - 2:22pm Addthis Today, the United States Department of Energy filed with the NRC's Atomic Safety and Licensing Board a reply brief making clear that its motion to withdraw the pending application to license the Yucca Mountain geologic repository is authorized by the Atomic Energy Act (AEA) and consistent with the Nuclear Waste Policy Act (NWPA). As

  18. Department of Energy Files Motion to Withdraw Yucca Mountain License

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application | Department of Energy Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 - 12:00am Addthis WASHINGTON, D.C. - The U.S. Department of Energy today filed a motion with the Nuclear Regulatory Commission to withdraw the license application for a high-level nuclear waste repository at Yucca Mountain with prejudice. "President Obama is fully committed to ensuring that the

  19. Source Parameters for Moderate Earthquakes in the Zagros Mountains with Implications for the Depth Extent of Seismicity

    SciTech Connect (OSTI)

    Adams, A; Brazier, R; Nyblade, A; Rodgers, A; Al-Amri, A

    2009-02-23

    Six earthquakes within the Zagros Mountains with magnitudes between 4.9 and 5.7 have been studied to determine their source parameters. These events were selected for study because they were reported in open catalogs to have lower crustal or upper mantle source depths and because they occurred within an area of the Zagros Mountains where crustal velocity structure has been constrained by previous studies. Moment tensor inversion of regional broadband waveforms have been combined with forward modeling of depth phases on short period teleseismic waveforms to constrain source depths and moment tensors. Our results show that all six events nucleated within the upper crust (<11 km depth) and have thrust mechanisms. This finding supports other studies that call into question the existence of lower crustal or mantle events beneath the Zagros Mountains.

  20. ,"Mountain Region Natural Gas Underground Storage Volume (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mountain Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or ...dnavnghistn5030862m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  1. Rocky Mountain Sustainable Enterprises LLC | Open Energy Information

    Open Energy Info (EERE)

    Sustainable Enterprises LLC Jump to: navigation, search Name: Rocky Mountain Sustainable Enterprises LLC Place: Boulder, Colorado Zip: 80302 Product: Colorado-based biofuel...

  2. Streamflow and selected precipitation data for Yucca Mountain...

    Office of Scientific and Technical Information (OSTI)

    water years 1983--85 Citation Details In-Document Search Title: Streamflow and selected precipitation data for Yucca Mountain and vicinity, Nye County, Nevada, water years ...

  3. Mountain Mesa, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain Mesa, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.6393975, -118.4056391 Show Map Loading map......

  4. Mountain View Acres, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Mountain View Acres, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.496663, -117.3489352 Show Map Loading map......

  5. Mountain View, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain View, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.3860517, -122.0838511 Show Map Loading map......

  6. Mountain Lakes, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain Lakes, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8948212, -74.4329314 Show Map Loading map......

  7. Mountain View, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain View, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7744311, -105.0555389 Show Map Loading map... "minzoom":false,"mapp...

  8. Battle Mountain, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Battle Mountain, Nevada: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.6421334, -116.9342671 Show Map Loading map... "minzoom":false,"mapp...

  9. City of Mountain Lake, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Lake, Minnesota (Utility Company) Jump to: navigation, search Name: City of Mountain Lake Place: Minnesota Phone Number: (507) 427-2999 Website: www.mountainlakemn.comindex.a...

  10. Stone Mountain, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Stone Mountain, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8081608, -84.170196 Show Map Loading map... "minzoom":false,"mappin...

  11. Pine Mountain Club, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Pine Mountain Club, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8469211, -119.1567751 Show Map Loading map......

  12. Mountain Iron, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain Iron, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.5324267, -92.623515 Show Map Loading map... "minzoom":false,"mappi...

  13. Eagle Mountain, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eagle Mountain, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3141169, -112.006882 Show Map Loading map... "minzoom":false,"mappings...

  14. Rocky Mountain, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rocky Mountain, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8053663, -94.7674486 Show Map Loading map... "minzoom":false,"mapp...

  15. Lookout Mountain, Tennessee: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Lookout Mountain, Tennessee: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9942422, -85.3494027 Show Map Loading map......

  16. Mountain City, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain City, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.037159, -97.8869497 Show Map Loading map... "minzoom":false,"mappingse...

  17. Casper Mountain, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Casper Mountain, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7330199, -106.3266921 Show Map Loading map... "minzoom":false,"map...

  18. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility...

  19. Snowflake White Mountain Power Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Map Retrieved from "http:en.openei.orgwindex.php?titleSnowflakeWhiteMountainPowerBiomassFacility&oldid398118" Feedback Contact needs updating Image needs updating...

  20. EIS-0417: South Mountain Freeway (Loop 202); Phoenix, Arizona...

    Broader source: Energy.gov (indexed) [DOE]

    Record of Decision September 30, 2014 EIS-0417: Final Environmental Impact Statement More Information http:azdot.govprojectsphoenix-metro-arealoop-202-south-mountain-freeway...

  1. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiwyomingnfmref.html State Wyoming Program Type Rebate Program Rebate Amount 0.15kWh...

  2. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiutahnfmref.html State Utah Program Type Rebate Program Rebate Amount 0.12kWh annual...

  3. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiidahonfmref.html State Idaho Program Type Rebate Program Rebate Amount 0.12kWh...

  4. Rib Mountain, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:en.openei.orgwindex.php?titleRibMountain,Wisconsin&oldi...

  5. Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Drilling Success at Blue Mountain, Nevada Abstract Exploration in a blind prospect...

  6. Battle Mountain Band - Te-Moak: Solar Energy Park

    Energy Savers [EERE]

    Battle Mountain Band - Te-Moak Chairman Joseph Holley and Vice-chairman Mark Oppenhein, Members Donna Hill, Delbert Holley, Lydia Johnson, and Lydell Oppenhein Solar Energy Park ...

  7. City of Mountain View, Missouri (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    View Place: Missouri Phone Number: (417) 934-2601 Website: mountainviewmo.comindex.phpg Facebook: https:www.facebook.comCityOfMountainViewMissouri Outage Hotline: (877)...

  8. 1,"Kingdom Community Wind","Wind","Green Mountain Power Corp...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Kingdom Community Wind","Wind","Green Mountain Power Corp",65 2,"J C ...

  9. The Occurrence of Erionite at Yucca Mountain

    SciTech Connect (OSTI)

    NA

    2004-07-01

    The naturally-occurring zeolite mineral erionite has a fibrous morphology and is a known human carcinogen (inhalation hazard). Erionite has been found typically in very small quantities and restricted occurrences in the course of mineralogic characterization of Yucca Mountain as a host for a high-level nuclear waste repository. The first identification of erionite was made in 1984 on the basis of morphology and chemical composition and later confirmed by X-ray diffraction analysis. It was found in the lower vitrophyre (Tptpv3) of the Topopah Spring Tuff in a borehole sidewall sample. Most erionite occurrences identified at Yucca Mountain are in the Topopah Spring Tuff, within an irregular zone of transition between the lower boundary of devitrified tuff and underlying glassy tuff. This zone is fractured and contains intermingled devitrified and vitric tuff. In 1997, a second host of erionite mineralization was identified in the Exploratory Studies Facility within and adjacent to a high-angle fracture/breccia zone transgressing the boundary between the lowermost devitrified tuff (Tpcplnc) and underlying moderately welded vitric tuff (Tpcpv2) of the Tiva Canyon Tuff. The devitrified-vitric transition zones where erionite is found tend to have complex secondary-mineral assemblages, some of very localized occurrence. Secondary minerals in addition to erionite may include smectite, heulandite-clinoptilolite, chabazite, opal-A, opal-CT, cristobalite, quartz, kenyaite, and moganite. Incipient devitrification within the Topopah Spring Tuff transition zone includes patches that are highly enriched in potassium feldspar relative to the precursor volcanic glass. Geochemical conditions during glass alteration may have led to local evolution of potassium-rich fluids. Thermodynamic modeling of zeolite stability shows that erionite and chabazite stability fields occur only at aqueous K concentrations much higher than in present Yucca Mountain waters. The association of erionite

  10. Mineralogic summary of Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Bish, D.L.; Vaniman, D.T.

    1985-10-01

    Quantitative x-ray powder diffraction analysis of tuffs and silicic lavas, using matrix-flushing techniques, has been used to obtain a model of three-dimensional mineral distributions at Yucca Mountain, Nevada. This method of analysis is especially useful in tuff, where the most abundant phases are commonly too fine grained for optical determination. The three-dimensional distributions of primary glass and of tridymite are particularly well constrained. Vitric nonwelded glasses occur above and below the welded devitrified Topopah Spring Member, but the glass in the lower nonwelded vitric zone is progressively altered to zeolites to the east where the zone is closer to the static water level. The zeolites clinoptilolite, mordenite, heulandite, and erionite have all been found at Yucca Mountain, but only mordenite and clinoptilolite are abundant and can be mapped between many drill holes and at many depths. Heulandite distribution is also mappable, but only below the densely welded devitrified part of the Topopah Storing Member. Erionite has been confirmed only once, as a fracture coating. There is a fairly continuous smectite-rich interval immediately above the basal vitrophyre of the Topopah Spring Member, but no evidence suggests that the smectites can provide information on the paleogroundwater table. There are at least four mappable zeolitized zones in Yucca Mountain, and the thicker zones tend to coincide with intervals that retained glass following early tuff devitrification. Problems in extrapolation occur where zones of welding pinch out. No phillipsite has been found, and some samples previously reported to contain phillipsite or erionite were reexamined with negative results. The deeper alteration to albite and analcime was not sampled in every drill hole, and the distribution of these phases is difficult to map.

  11. The appropriateness of one-dimensional Yucca Mountain hydrologic calculations; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Eaton, R.R.

    1993-07-01

    This report brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. it is shown that, in many cases, one-dimensional modeling is more rigorous than previously assumed.

  12. Building America Whole-House Solutions for New Homes: Pine Mountain Builders, Pine Mountain, Georgia

    Broader source: Energy.gov [DOE]

    Case study of Pine Mountain Builders who worked with Building America research partners IBACOS and Southface Energy Institute to design HERS-59 homes with air-tight 1.0-1.8 ACH50 construction, spray-foamed walls and attics, and high-efficiency heat pumps with fresh-air intake.

  13. Copper Mountain Expansion I and II Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Mountain Expansion I and II Solar Power Plant Jump to: navigation, search Name Copper Mountain Expansion I and II Solar Power Plant Facility Copper Mountain Expansion I and II...

  14. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada with Errata and ROTC 1, Rev. No. 0

    SciTech Connect (OSTI)

    John McCord; Marutzky, Sam

    2004-12-01

    This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the

  15. Magma Dynamics at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    D. Krier

    2005-08-29

    Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event.

  16. Yucca Mountain Climate Technical Support Representative

    SciTech Connect (OSTI)

    Sharpe, Saxon E

    2007-10-23

    The primary objective of Project Activity ORD-FY04-012, “Yucca Mountain Climate Technical Support Representative,” was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding.

  17. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  18. Bay Area

    National Nuclear Security Administration (NNSA)

    8%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  19. 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Rocky Mountain Oilfield Testing Center . The Rocky Mountain Oilfield Testing...

  20. Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2003 to September 30, 2004

    SciTech Connect (OSTI)

    von Seggern, David; Smith, Ken

    2007-10-15

    This report describes the seismicity and earthquake monitoring activities within the Yucca Mountain region during fiscal year 2004 (FY2004 - October 1, 2003, through September 30, 2004) based on operation of the Southern Great Basin Digital Seismic Network (SGBDSN). Network practices and earthquake monitoring conducted at the Nevada Seismological Laboratory (NSL) under DOE directives for prior fiscal years are covered in similar yearly reports (see references). Real-time systems, including regional data telemetry and data management at NSL, provide for the automatic determination of earthquake locations and magnitudes and notification of important earthquakes in the region to UNR staff and DOE management. All waveform and meta-data, including automatic locations, phase arrival information, and analyst reviewed information, are managed through a relational database system allowing quick and reliable evaluation and analysis of ongoing earthquake activity near Yucca Mountain. This network, which contains weak-motion and strong-motion instrumentation, addresses the seismic hazard of the Yucca Mountain area by providing accurate earthquake magnitudes for earthquake recurrence estimates, spatial hypocentral control to very low magnitudes for identifying and assessing active faults and verifying tectonic models, true ground motions over the complete range of expected earthquake amplitudes for developing predictive models, and earthquake source information for characterizing active faulting. The Nevada Seismological Laboratory operated a 30-station monitoring network within a ring of approximately 50 km radius around Yucca Mountain during FY2004. This year showed the second-lowest seismic moment rate in the NTS and Yucca Mountain region for any fiscal year reporting period since prior to the 1992 M 5.6 Little Skull Mountain (LSM) earthquake. A total of 2180 earthquakes were located for FY2004. The largest event during FY2004 was M 2.99 and there were only 12 earthquakes

  1. Magnetotelluric Data, Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada.

    SciTech Connect (OSTI)

    Jackie M. Williams; Jay A. Sampson; Brian D. Rodriguez; and Theodore H. Asch.

    2006-11-03

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site northwest of Las Vegas. Most of these tests were conducted hundreds of feet above the ground-water table; however, more than 200 of the tests were near or within the water table. This underground testing was limited to specific areas of the Nevada Test Site, including Pahute Mesa, Rainier Mesa/Shoshone Mountain, Frenchman Flat, and Yucca Flat. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology, and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (Bechtel Nevada, 2006). During 2005, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data from twenty-six magnetotelluric (MT) and audio-magnetotelluric (AMT) sites at the Nevada Test Site. The 2005 data stations were located on and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend the area of the hydrogeologic study previously conducted in Yucca Flat. This work will help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU late Devonian to Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) from the Yucca Flat area and west towards

  2. Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)

    SciTech Connect (OSTI)

    Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.

    1996-09-01

    In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

  3. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    SciTech Connect (OSTI)

    Y.S. Wu

    2005-08-24

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas

  4. Los Alamos National Laboratory Investigates Fenton Hill to Support Future Land Use

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – Supporting future land use for the U.S. Forest Service, Los Alamos National Laboratory’s Corrective Actions Program (CAP) completed sampling soil at Fenton Hill in the Jemez Mountains this month.

  5. AAAS elects four LANL scientists as Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering...

  6. Computer modeling reveals how surprisingly potent hepatitis C...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19, 2013 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering...

  7. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guardian: "Landscapes we don't want to lose: New Mexico's Jemez mountains" May 15, 2015 Landscapes we don't want to lose As Earth Day turns 45, we share stories about the...

  8. Regional companies eye growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering...

  9. Mimicking the Moon's surface in the basement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop ... at Los Alamos National Laboratory to simulate solar winds on the surface of the Moon. ...

  10. Directions & Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is perched high atop the Pajarito Plateau in the Jemez Mountains, 35 miles northwest of Santa Fe. The Bradbury Science Museum is located in downtown Los Alamos at the corner of...

  11. September

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on our innovations for a secure nation. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research...

  12. December

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Day (January 1, 2011). - 122110 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research...

  13. October

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on our innovations for a secure nation. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research...

  14. August

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new capacity on August 22. - 82511 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research...

  15. November

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on our innovations for a secure nation. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research...

  16. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory June 26, 2011 Los Alamos, New Mexico, June 26, 2011, 6:07pm-The Las Conchas fire burning in the Jemez Mountains approximately 12...

  17. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980

    SciTech Connect (OSTI)

    Lunis, B. C.; Toth, W. J.

    1981-10-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. Background information is provided; program objectives and the technical approach that is used are discussed; and the benefits of the program are described. The summary of findings is presented. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized. The commercialization activities carried out by the respective state teams are described for the following: Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming.

  18. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1981

    SciTech Connect (OSTI)

    Lunis, B.C.

    1982-08-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

  19. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Additional References Retrieved from "http:en.openei.orgw...

  20. Mountain View Electric Association, Inc- Energy Efficiency Rebates Program

    Broader source: Energy.gov [DOE]

    Mountain View Electric Association, Inc. (MVEA) and Tri-State Generation and Transmission Association Inc., MVEA’s power supplier, offers rebates to MVEA customers who install qualifying energy...

  1. Rocky Mountain Power- WattSmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers the Home Energy Savings Program for their residential Wyoming customers to improve the energy efficiency of their homes. Full details are available on the program website. 

  2. Signal Mountain, Tennessee: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Signal Mountain is a town in Hamilton County, Tennessee. It falls under Tennessee's 3rd...

  3. Rich Mountain Elec Coop, Inc (Oklahoma) | Open Energy Information

    Open Energy Info (EERE)

    Inc (Oklahoma) Jump to: navigation, search Name: Rich Mountain Elec Coop, Inc Place: Oklahoma Phone Number: 1-877-828-4074 Website: www.rmec.com Outage Hotline: 1-877-828-4074...

  4. Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel...

    Open Energy Info (EERE)

    Studies in the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  5. Viability Assessment of a Repository at Yucca Mountain

    Broader source: Energy.gov [DOE]

    The Viability Assessment of a Repository at Yucca Mountain describes the nuclear waste problem and explains why the United States and other nations are considering deep geologic disposal as the solution.

  6. West Mountain, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Mountain is a census-designated place in Utah County, Utah.1 References US Census...

  7. Blue Ridge Mountain E M C | Open Energy Information

    Open Energy Info (EERE)

    C Jump to: navigation, search Name: Blue Ridge Mountain E M C Abbreviation: brmemc Place: Georgia Phone Number: 706.379.3121; 828.837.1017 Website: www.brmemc.com Outage Hotline:...

  8. Hazards and scenarios examined for the Yucca Mountain disposal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and ... For PSHA, two expert panels were convened. The first panel consisted of six teams ...

  9. Pine Mountain, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Pine Mountain is a town in Harris County and Meriwether County, Georgia. It falls under Georgia's 3rd congressional...

  10. ,"Mountain Region Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:22 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","Mountain Region Natural Gas ...

  11. Blue Ridge Mountain Electric Membership Corporation- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Blue Ridge Mountain EMC and TVA, its power supplier, offer the Energy Right and TVA E-Score rebates to qualified members. To qualify for water heater rebates provided by the Energy Right program, a...

  12. Nature climate change features Los Alamos forest research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature climate change features forest research Nature climate change features Los Alamos forest research The print issue features as its cover story the tree-stress research of LANL scientist A. Park Williams and partners from the U.S. Geological Survey, University of Arizona and several other organizations. February 27, 2013 Burned trees in the Jemez Mountains of New Mexico after the 2011 Las Conchas fire. Image by Craig D. Allen, USGS. Burned trees in the Jemez Mountains of New Mexico after

  13. Computer modeling helps manage wildfires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer modeling helps manage wildfires Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Computer modeling helps manage wildfires Technology increases preparedness, improves firefighting strategies. September 1, 2016 Smoke over the Jemez Mountains during the 2011 Las Conchas wildfire. Smoke over the Jemez Mountains during the 2011 Las Conchas wildfire. Contacts Director, Community

  14. Mountain-Scale Coupled Processes (TH/THC/THM)

    SciTech Connect (OSTI)

    P. Dixon

    2004-02-09

    The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides the necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in

  15. Turtle Mountain Community College - Wind Turbine Installation and Geothermal Use

    Office of Environmental Management (EM)

    Turtle Mountain Band of Chippewa Indians "First Steps to Implement Strategic Energy Plan" Turtle Mountain Band of Chippewa Indians "First Steps to Implement Strategic Energy Plan" Tribal Planning Staff - Charles Trottier Emphasis on capacity building URS Inc. Madison WI - Jim Yockey EERC, Grand Forks ND (Involve them on the next steps) Project Participants Furthest westward expansion of Chippwa Treaty of 1863, executive order 1882 executive order 1884, 2 townships, public

  16. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down Gradient of the Proposed Yucca Mountain Nuclear Waste Repository, U. S. Department of Energy Grant DE-RW0000233 2010 Project Report, prepared by The Hydrodynamics Group, LLC for Inyo County Yucca Mountain Repository Assessment Office

    SciTech Connect (OSTI)

    King, Michael J; Bredehoeft, John D., Dr.

    2010-09-03

    Inyo County completed the first year of the U.S. Department of Energy Grant Agreement No. DE-RW0000233. This report presents the results of research conducted within this Grant agreement in the context of Inyo County's Yucca Mountain oversight program goals and objectives. The Hydrodynamics Group, LLC prepared this report for Inyo County Yucca Mountain Repository Assessment Office. The overall goal of Inyo County's Yucca Mountain research program is the evaluation of far-field issues related to potential transport, by ground water, of radionuclide into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Data collected within the Grant is included in interpretive illustrations and discussions of the results of our analysis. The centeral elements of this Grant prgoram was the drilling of exploratory wells, geophysical surveys, geological mapping of the Southern Funeral Mountain Range. The cullimination of this research was 1) a numerical ground water model of the Southern Funeral Mountain Range demonstrating the potential of a hydraulic connection between the LCA and the major springs in the Furnace Creek area of Death Valley, and 2) a numerical ground water model of the Amargosa Valley to evaluate the potential for radionuclide transport from Yucca Mountain to Inyo County, California. The report provides a description of research and activities performed by The Hydrodynamics Group, LLC on behalf of Inyo County, and copies of key work products in attachments to this report.

  17. Room at the Mountain: Estimated Maximum Amounts of Commercial Spent Nuclear Fuel Capable of Disposal in a Yucca Mountain Repository

    SciTech Connect (OSTI)

    Kessler, John H.; Kemeny, John; King, Fraser; Ross, Alan M.; Ross, Benjamen

    2006-07-01

    The purpose of this paper is to present an initial analysis of the maximum amount of commercial spent nuclear fuel (CSNF) that could be emplaced into a geological repository at Yucca Mountain. This analysis identifies and uses programmatic, material, and geological constraints and factors that affect this estimation of maximum amount of CSNF for disposal. The conclusion of this initial analysis is that the current legislative limit on Yucca Mountain disposal capacity, 63,000 MTHM of CSNF, is a small fraction of the available physical capacity of the Yucca Mountain system assuming the current high-temperature operating mode (HTOM) design. EPRI is confident that at least four times the legislative limit for CSNF ({approx}260,000 MTHM) can be emplaced in the Yucca Mountain system. It is possible that with additional site characterization, upwards of nine times the legislative limit ({approx}570,000 MTHM) could be emplaced. (authors)

  18. Mountain States Transmission Intertie (MSTI) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K Commercial Business Process Improvement (CBPI) Customer...

  19. White Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Location County Geothermal Area Geothermal Region Geothermal Project Profile Developer Eureka Green Systems Project Type Hydrothermal GEA Development Phase Phase II - Resource...

  20. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

    1994-12-01

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented.

  1. Heterogeneous Structure Around the Jemez Volcanic Field, New...

    Open Energy Info (EERE)

    such as magma ascent from the upper mantle to the crust. Authors Takeshi Nishimura, Michael Fehler, W. Scott Baldridge, Peter Roberts and Lee Steck Published Journal...

  2. After-hours, weekend changes through East Jemez road vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bicyclists must stop at the center lane guard post and proceed only upon verbal or hand-signal direction from a LANL protective force officer. Orange traffic safety cones will be...

  3. Collapse and Resurgence of the Valles Caldera, Jemez Mtns, NM...

    Open Energy Info (EERE)

    they are composed of older pre-caldera units that include the lower Bandelier Tuff (1.68 &plusmin; 0.03 Ma), and a dacitic tuff dated at 8.205 &plusmin; 0.083 Ma. The ages of...

  4. Stratigraphic Relations and Lithologic Variations in the Jemez...

    Open Energy Info (EERE)

    have occurred in the volcanic fields history. Authors Jamie N. Gardner, Fraser E. Goff, Sammy Garcia and Roland C. Hagan Published Journal Journal of Geophysical Research,...

  5. Deep Resistivity Structure of Rainier Mesa-Shoshone Mountain, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Theodore H. Asch; Brian D. Rodriguez; Jay A. Sampson; Jackie M. Williams; Maryla Deszcz-Pan

    2006-12-12

    The U. S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. During 2005, the U.S. Geological Survey (USGS), funded by the DOE and NNSA-NSO, collected and processed data from twenty-six Magnetotelluric (MT) and Audio-Magnetotelluric (AMT) sites at the Nevada Test Site. Data stations were located in and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend to the west the hydrogeologic study that was conducted in Yucca Flat in 2003. This work has helped to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU late Devonian to Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale(Bechtel Nevada, 2006)) in the Yucca Flat area and west towards Shoshone Mountain in the south, east of Buckboard Mesa, and onto Rainier Mesa in the north. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology within the region. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit (UCCU) are generally characterized in the upper 5 km. The interpretation is not well determined where conductive TCU overlies conductive Chainman Shale, where resistive Eleana Formation overlies resistive LCA units, or where resistive VTA rock overlies units of the Eleana Formation. The nature of the

  6. Precipitation and Air Pollution at Mountain and Plain Stations in Northern China: Insights Gained from Observations and Modeling

    SciTech Connect (OSTI)

    Guo, Jianping; Deng, Minjun; Fan, Jiwen; Li, Zhanqing; Chen, Qian; Zhai, Panmao; Dai, Zhijian; Li, Xiaowen

    2014-04-27

    We analyzed 40 year data sets of daily average visibility (a proxy for surface aerosol concentration) and hourly precipitation at seven weather stations, including three stations located on the Taihang Mountains, during the summertime in northern China. There was no significant trend in summertime total precipitation at almost all stations. However, light rain decreased, whereas heavy rain increased as visibility decreased over the period studied. The decrease in light rain was seen in both orographic-forced shallow clouds and mesoscale stratiform clouds. The consistent trends in observed changes in visibility, precipitation, and orographic factor appear to be a testimony to the effects of aerosols. The potential impact of large-scale environmental factors, such as precipitable water, convective available potential energy, and vertical wind shear, on precipitation was investigated. No direct links were found. To validate our observational hypothesis about aerosol effects, Weather Research and Forecasting model simulations with spectral-bin microphysics at the cloud-resolving scale were conducted. Model results confirmed the role of aerosol indirect effects in reducing the light rain amount and frequency in the mountainous area for both orographic-forced shallow clouds and mesoscale stratiform clouds and in eliciting a different response in the neighboring plains. The opposite response of light rain to the increase in pollution when there is no terrain included in the model suggests that orography is likely a significant factor contributing to the opposite trends in light rain seen in mountainous and plain areas.

  7. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Crater Flat, Nye County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D. Campbell; S.Campbell; S. Kohl; D. Shafer

    2009-04-02

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) (cover page figure) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  8. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Tonopah Airport, Nye County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2009-04-02

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Tonopah Airport, Beatty, Rachel, Caliente, Pahranagat NWR, Crater Flat, and the Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  9. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2009-04-02

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Pahranagat NWR, Beatty, Rachel, Caliente, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data on completion of the site's sampling program.

  10. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Crater Flat, Nye County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2008-08-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) (cover page figure) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  11. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Tonopah Airport, Nye County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D Campbell; S. Campbell; S. Kohl, D. Shafer

    2008-08-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Tonopah Airport, Beatty, Rachel, Caliente, Pahranagat NWR, Crater Flat, and the Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  12. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada

    SciTech Connect (OSTI)

    J. Englebrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2008-08-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Pahranagat NWR, Beatty, Rachel, Caliente, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data on completion of the site's sampling program.

  13. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Caliente, Lincoln County, Nevada

    SciTech Connect (OSTI)

    J. Englebrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2008-08-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  14. Scenarios constructed for basaltic igneous activity at Yucca Mountain and vicinity; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Barr, G.E.; Dunn, E.; Dockery, H.; Barnard, R.; Valentine, G.; Crowe, B.

    1993-08-01

    Basaltic volcanism has been identified as a possible future event initiating a release of radionuclides from a potential repository at the proposed Yucca Mountain high-level waste repository site. The performance assessment method set forth in the Site Characterization Plan (DOE, 1988) requires that a set of scenarios encompassing all significant radionuclide release paths to the accessible environment be described. This report attempts to catalogue the details of the interactions between the features and processes produced by basaltic volcanism in the presence of the presumed groundwater flow system and a repository structure, the engineered barrier system (EBS), and waste. This catalogue is developed in the form of scenarios. We define a scenario as a well-posed problem, starting from an initiating event or process and proceeding through a logically connected and physically possible combination or sequence of features, events, and processes (FEPs) to the release of contaminants.

  15. Performance predictions for mechanical excavators in Yucca Mountain tuffs; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Ozdemir, L.; Gertsch, L.; Neil, D.; Friant, J.

    1992-09-01

    The performances of several mechanical excavators are predicted for use in the tuffs at Yucca Mountain: Tunnel boring machines, the Mobile Miner, a roadheader, a blind shaft borer, a vertical wheel shaft boring machine, raise drills, and V-Moles. Work summarized is comprised of three parts: Initial prediction using existing rock physical property information; Measurement of additional rock physical properties; and Revision of the initial predictions using the enhanced database. The performance predictions are based on theoretical and empirical relationships between rock properties and the forces-experienced by rock cutters and bits during excavation. Machine backup systems and excavation design aspects, such as curves and grades, are considered in determining excavator utilization factors. Instanteous penetration rate, advance rate, and cutter costs are the fundamental performance indicators.

  16. Yucca Mountain Site Characterization Project Technical Data Catalog; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    1992-06-30

    The June 1, 1985 DOE/NRC Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. This edition of the Technical Data Catalog supersedes the edition dated March 31, 1992.

  17. Gas Flux Sampling At Socorro Mountain Area (Owens, Et Al., 2005...

    Open Energy Info (EERE)

    Unknown Notes soil-as surveys are pending References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A...

  18. Thermal And-Or Near Infrared At Socorro Mountain Area (Owens...

    Open Energy Info (EERE)

    And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown Notes IR remote sensing has located elevated surface temperatures (<12 degrees C above...

  19. Preliminary analysis of results of a mountain area atmospheric diffusion test

    SciTech Connect (OSTI)

    Not Available

    1983-12-01

    The results of diffusion test of artificial smoke clouds and neutron activated smoke were used to calculate the atmospheric diffusion parameters especially focusing on the differences of the diffusion diluting capabilities of the pollutants and comparing them with related foreign results where upon useful results were obtained.

  20. 2-M Probe At Tungsten Mountain Area (Kratt, Et Al., 2008) | Open...

    Open Energy Info (EERE)

    Mark Coolbaugh, Chris Sladek, Rick Zehner, Robin Penfield, Ben Delwiche (2008) A New Gold Pan For The West- Discovering Blind Geothermal Systems With Shallow Temperature Surveys...

  1. Step-out Well At Blue Mountain Geothermal Area (Melosh, Et Al...

    Open Energy Info (EERE)

    stepout well was drilled 1.2 km to the west of the main well field in order to test permeability for a potential injection well and to explore for deep up flow in the range front...

  2. Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    collected included: geographic coordinates, rock type, magnetic susceptibility, and density. References US Geological Survey (2012) Geophysical Studies in the Vicinity of Blue...

  3. Core Analysis At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    1 and 46 samples from Deep Blue No. 2. The diameter of the core samples are 6.4 cm. Density, porosity, and rock type information was recorded. The samples contain Jurassic and...

  4. Age constraints on fluid inclusions in calcite at Yucca Mountain

    SciTech Connect (OSTI)

    Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.; Peterman, Zell E.; Whelan, Joseph F.

    2001-04-29

    The {sup 207}Pb/{sup 235}U ages for 14 subsamples of opal or chalcedony layers younger than calcite formed at elevated temperature range between 1.88 {+-} 0.05 and 9.7 {+-} 1.5 Ma with most values older than 6-8 Ma. These data indicate that fluids with elevated temperatures have not been present in the unsaturated zone at Yucca Mountain since about 1.9 Ma and most likely since 6-8 Ma. Discordant U-Pb isotope data for chalcedony subsamples representing the massive silica stage in the formation of the coatings are interpreted using a model of the diffusive loss of U decay products. The model gives an age estimate for the time of chalcedony formation around 10-11 Ma, which overlaps ages of clay minerals formed in tuffs below the water table at Yucca Mountain during the Timber Mountain thermal event.

  5. Preparing to Submit a License Application for Yucca Mountain

    SciTech Connect (OSTI)

    W.J. Arthur; M.D. Voegele

    2005-03-14

    In 1982, the U.S. Congress passed the Nuclear Waste Policy Act, a Federal law that established U.S. policy for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Congress amended the Act in 1987, directing the Department of Energy to study only Yucca Mountain, Nevada as the site for a permanent geologic repository. As the law mandated, the Department evaluated Yucca Mountain to determine its suitability as the site for a permanent geologic repository. Decades of scientific studies demonstrated that Yucca Mountain would protect workers, the public, and the environment during the time that a repository would be operating and for tens of thousands of years after closure of the repository. A repository at this remote site would also: preserve the quality of the environment; allow the environmental cleanup of Cold War weapons facilities; provide the nation with additional protection from acts of terrorism; and support a sound energy policy. Throughout the scientific evaluation of Yucca Mountain, there has been no evidence to disqualify Yucca Mountain as a suitable site for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Upon completion of site characterization, the Secretary of Energy considered the results and concluded that a repository at Yucca Mountain would perform in a manner that protects public health and safety. The Secretary recommended the site to the President in February 2002; the President agreed and recommended to Congress that the site be approved. The Governor of Nevada submitted a notice of disapproval, and both houses of Congress acted to override the disapproval. In July 2002, the President's approval allowed the Department to begin the process of submittal of a license application for Yucca Mountain as the site for the nation's first repository for spent nuclear fuel and high-level radioactive waste. Yucca Mountain is located on federal land in Nye County in southern Nevada, an arid region

  6. Inversion Breakup in Small Rocky Mountain and Alpine Basins

    SciTech Connect (OSTI)

    Whiteman, Charles D.; Pospichal, Bernhard; Eisenbach, Stefan; Weihs, P.; Clements, Craig B.; Steinacker, Reinhold; Mursch-Radlgruber, Erich; Dorninger, Manfred

    2004-08-01

    Comparisons are made between the post-sunrise breakup of temperature inversions in two similar closed basins in quite different climate settings, one in the eastern Alps and one in the Rocky Mountains. The small, high-altitude, limestone sinkholes have both experienced extreme temperature minima below -50C. On undisturbed clear nights, temperature inversions reach to 120 m heights in both sinkholes, but are much stronger in the drier Rocky Mountain basin (24K versus 13K). Inversion destruction takes place 2.6 to 3 hours after sunrise and is accomplished primarily by subsidence warming associated with the removal of air from the base of the inversion by the upslope flows that develop over the sidewalls. Differences in inversion strengths and post-sunrise heating rates are caused by differences in the surface energy budget, with drier soil and a higher sensible heat flux in the Rocky Mountain sinkhole.

  7. The interaction of katabatic winds and mountain waves

    SciTech Connect (OSTI)

    Poulos, G.S.

    1997-01-01

    The variation in the oft-observed, thermally-forced, nocturnal katabatic winds along the east side of the Rocky Mountains can be explained by either internal variability or interactions with various other forcings. Though generally katabatic flows have been studied as an entity protected from external forcing by strong thermal stratification, this work investigates how drainage winds along the Colorado Front Range interact with, in particular, topographically forced mountain waves. Previous work has shown, based on measurements taken during the Atmospheric Studies in Complex Terrain 1993 field program, that the actual dispersion in katabatic flows is often greater than reflected in models of dispersion. The interaction of these phenomena is complicated and non-linear since the amplitude, wavelength and vertical structure of mountain waves developed by flow over the Rocky Mountain barrier are themselves partly determined by the evolving atmospheric stability in which the drainage flows develop. Perturbations to katabatic flow by mountain waves, relative to their more steady form in quiescent conditions, are found to be caused by both turbulence and dynamic pressure effects. The effect of turbulent interaction is to create changes to katabatic now depth, katabatic flow speed, katabatic jet height and, vertical thermal stratification. The pressure effect is found to primarily influence the variability of a given katabatic now through the evolution of integrated column wave forcing on surface pressure. Variability is found to occur on two scales, on the mesoscale due to meso-gamma scale mountain wave evolution, and on the microscale, due to wave breaking. Since existing parameterizations for the statically stable case are predominantly based on nearly flat terrain atmospheric measurements under idealized or nearly quiescent conditions, it is no surprise that these parameterizations often contribute to errors in prediction, particularly in complex terrain.

  8. Final report on the Copper Mountain conference on multigrid methods

    SciTech Connect (OSTI)

    1997-10-01

    The Copper Mountain Conference on Multigrid Methods was held on April 6-11, 1997. It took the same format used in the previous Copper Mountain Conferences on Multigrid Method conferences. Over 87 mathematicians from all over the world attended the meeting. 56 half-hour talks on current research topics were presented. Talks with similar content were organized into sessions. Session topics included: fluids; domain decomposition; iterative methods; basics; adaptive methods; non-linear filtering; CFD; applications; transport; algebraic solvers; supercomputing; and student paper winners.

  9. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    SciTech Connect (OSTI)

    J.H. Payer

    2005-03-10

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape size and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective.

  10. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    SciTech Connect (OSTI)

    NA

    2002-03-26

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a staggering amount of

  11. Bibliography of Yucca Mountain Project (YMP) publications at Lawrence Livermore National Laboratory, September 1977--March 1997

    SciTech Connect (OSTI)

    1997-03-01

    This report consists of a listing of Lawrence Livermore National Laboratory`s research items on the Yucca Mountain Project.

  12. Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future

    Broader source: Energy.gov [DOE]

    See how Appalachian State University used traditional mountain life architecture to design their 2011 Solar Decathlon home.

  13. Total-system performance assessment for Yucca Mountain -- SNL second iteration (TSPA-1993); Executive summary

    SciTech Connect (OSTI)

    Wilson, M.L.; Barnard, R.W.; Gauthier, J.H. |

    1994-04-01

    Sandia National Laboratories has completed the second iteration of the periodic total-system performance assessments (TSPA-93) for the Yucca Mountain Site Characterization Project (YMP). Scenarios describing expected conditions (aqueous and gaseous transport of contaminants) and low-probability events (human-intrusion drilling and volcanic intrusion) are modeled. The hydrologic processes modeled include estimates of the perturbations to ambient conditions caused by heating of the repository resulting from radioactive decay of the waste. TSPA-93 incorporates significant new detailed process modeling, including two- and three-dimensional modeling of thermal effects, groundwater flow in the saturated-zone aquifers, and gas flow in the unsaturated zone. Probabilistic analyses are performed for aqueous and gaseous flow and transport, human intrusion, and basaltic magmatic activity. Results of the calculations lead to a number of recommendations concerning studies related to site characterization. Primary among these are the recommendations to obtain better information on percolation flux at Yucca Mountain, on the presence or absence of flowing fractures, and on physical and chemical processes influencing gaseous flow. Near-field thermal and chemical processes, and waste-container degradation are also areas where additional investigations may reduce important uncertainties. Recommendations for repository and waste-package design studies are: (1) to evaluate the performance implications of large-size containers, and (2) to investigate in more detail the implications of high repository thermal power output on the adjacent host rock and on the spent fuel.

  14. Yucca Mountain program summary of research and technical review activities, July 1988--June 1989

    SciTech Connect (OSTI)

    1989-11-01

    The Desert Research Institute (DRI), through its Water Resources Center (WRC), since 1984 has supported the State of Nevada Nuclear Waste Project Office`s activities related to the proposed high-level radioactive waste repository at Yucca Mountain on the Nevada Test Site (NTS). This effort is directed at providing the State Office with an unbiased evaluation of the Yucca Mountain Project (YMP) investigations performed by the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). The overall objective is to determine independently whether or not the site meets the performance criteria defined by the Nuclear Waste Policy Act of 1982 and amendments for isolating and containing the wastes during emplacement and the proposed life of the repository. A particularly important area of concern with the proposed repository is the site`s hydrology. The faculty of the DRI have long been involved with research throughout the State and have particular expertise in groundwater studies related to radionuclide migration and hydrologic safety of underground nuclear testing by DOE and predecessor agencies. In addition, we utilize laboratory personnel for chemical and isotopic analyses in both of the DRI-WMC water chemistry laboratories.

  15. Te-Moak Tribe of Western Shoshone: Battle Mountain Colony- 2012 Project

    Broader source: Energy.gov [DOE]

    The Feasibility Study for the Battle Mountain Renewable Energy Park project ("Feasibility Study") will assess the feasibility, benefits, and impacts of a 5-megawatt (MW) solar photovoltaic (PV) generating system (the "Solar Project" or "Energy Park") on the Te-Moak Tribe of Western Shoshone Indians of Nevada Battle Mountain Colony in Battle Mountain, Nevada.

  16. Project Reports for Te-Moak Tribe of Western Shoshone: Battle Mountain Colony- 2012 Project

    Broader source: Energy.gov [DOE]

    The Feasibility Study for the Battle Mountain Renewable Energy Park project ("Feasibility Study") will assess the feasibility, benefits, and impacts of a 5-megawatt (MW) solar photovoltaic (PV) generating system (the "Solar Project" or "Energy Park") on the Te-Moak Tribe of Western Shoshone Indians of Nevada Battle Mountain Colony in Battle Mountain, Nevada.

  17. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    SciTech Connect (OSTI)

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  18. Valuation of mountain glaciation response on global warming

    SciTech Connect (OSTI)

    Ananicheva, M.D.; Davidovich, N.V.

    1997-12-31

    Quantitative estimates of main climatic parameters, influencing the glacier regime (summer air temperature and annual solid precipitation), and glaciologic characteristics (mass balance components, equilibrium line altitude and rate of air temperature at this height), received on the basis of the scenario for a climate development according to R. Wetherald and S. Manabe (1982) are submitted. The possible reaction of mountain glaciation on global warming is considered for two mountain countries: South-eastern Alaska and Pamir-Alay (Central Asia). In given paper we have tried to evaluate changes of the mountain glaciation regime for a time of CO{sub 2} doubling in the atmosphere, basing on the scenario of climate development and modern statistical relationships between climatic and glaciologic parameters. The GCM scenario of R. Wetherald and C. Manabe (GFDL model) which is made with respect of mountain territories is in the basis our calculations. As initial materials we used data of long-term observations and the maps of World Atlas of Snow and Ice Resources (WASIR).

  19. New Whole-House Solutions Case Study: Pine Mountain Builders

    SciTech Connect (OSTI)

    none,

    2013-02-01

    Pine Mountain Builders achieved HERS scores as low as 59 and electric bills as low as $50/month with extensive air sealing (blower door tests = 1.0 to 1.8 ACH 50), R-3 XPS sheathing instead of OSB, and higher efficiency heat pumps.

  20. Uranium and Neptunium Desorption from Yucca Mountain Alluvium

    SciTech Connect (OSTI)

    C.D. Scism; P.W. Reimus; M. Ding; S.J. Chipera

    2006-03-16

    Uranium and neptunium were used as reactive tracers in long-term laboratory desorption studies using saturated alluvium collected from south of Yucca Mountain, Nevada. The objective of these long-term experiments is to make detailed observations of the desorption behavior of uranium and neptunium to provide Yucca Mountain with technical bases for a more realistic and potentially less conservative approach to predicting the transport of adsorbing radionuclides in the saturated alluvium. This paper describes several long-term desorption experiments using a flow-through experimental method and groundwater and alluvium obtained from boreholes along a potential groundwater flow path from the proposed repository site. In the long term desorption experiments, the percentages of uranium and neptunium sorbed as a function of time after different durations of sorption was determined. In addition, the desorbed activity as a function of time was fit using a multi-site, multi-rate model to demonstrate that different desorption rate constants ranging over several orders of magnitude exist for the desorption of uranium from Yucca Mountain saturated alluvium. This information will be used to support the development of a conceptual model that ultimately results in effective K{sub d} values much larger than those currently in use for predicting radionuclide transport at Yucca Mountain.

  1. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5,000,000 kWh or a 1,000 kW peak load. Through...

  2. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5 million kWh or a peak load of 1,000 kW or more...

  3. Natural Gas in the Rocky Mountains: Developing Infrastructure

    Reports and Publications (EIA)

    2007-01-01

    This Supplement to the Energy Information Administration's Short-Term Energy Outlook analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these states. The influence of these factors on regional prices and price volatility is examined.

  4. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more » We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  5. Strategic Plan for Coordinating Rural Intelligent Transportation System (ITS) Transit Development in the Great Smoky Mountains National Park

    SciTech Connect (OSTI)

    Truett, L.F.

    2002-12-19

    The Great Smoky Mountains National Park, located along the border between North Carolina and Tennessee, is the most visited national park in the United States. This rugged, mountainous area presents many transportation challenges. The immense popularity of the Smokies and the fact that the primary mode of transportation within the park is the personal vehicle have resulted in congestion, damage to the environment, impacts on safety, and a degraded visitor experience. Access to some of the Smokies historical, cultural, and recreational attractions via a mass transit system could alleviate many of the transportation issues. Although quite a few organizations are proponents of a mass transit system for the Smokies, there is a lack of coordination among all parties. In addition, many local residents are not completely comfortable with the idea of transit in the Smokies. This document provides a brief overview of the current transportation needs and limitations in the Great Smoky Mountains National Park, identifies agencies and groups with particular interests in the Smokies, and offers insights into the benefits of using Intelligent Transportation Systems (ITS) technologies in the Smokies. Recommendations for the use of rural ITS transit to solve two major transportation issues are presented.

  6. Dialogs on the Yucca Mountain controversy. Special report No. 10

    SciTech Connect (OSTI)

    Schluter, C.M.; Szymanski, J.S.

    1993-08-01

    In an attempt to resolve the controversial issue of tectonic and hydrologic stability of the Yucca Mountain region, the National Academy of Sciences established a Panel on Coupled Hydrologic/Tectonic/HydrothermaI Systems. The Panel has recently released it`s findings in a report entitled Ground Water at Yucca Mountain: How High Can It Rise? The representation of data and the scientific validity of this report was the subject of comprehensive evaluations and reviews which has led to correspondence between Dr. Charles Archarnbeau and Dr. Frank Press, the President of the National Academy of Sciences. All such correspondence prior to April 9, 1993 is covered by TRAC Special Report No. 5, {open_quotes}Dialogs on the Yucca Mountain Controversy.{close_quotes} The present report represents a continuation of the dialog between Dr. Archambeau and Dr. Press; specifically the letter from Dr. Press to Dr. Archambeau dated April 9, 1993 and Archambeau`s response to Press, dated August 19, 1993. In addition to the correspondence between Press and Archambeau, a series of recent reports by other investigators, referred to in the correspondence from Archambeau, are included in this report and document new data and inferences of importance for resolution of the question of suitability of the Yucca Mountain site as a high level nuclear waste repository. These reports also demonstrate that other scientists, not previously associated with the government`s program at Yucca Mountain or the National Academy review of an aspect of that program, have arrived at conclusions that are different than those stated by the Academy review and DOE program scientists.

  7. Yucca Mountain Site Characterization Project technical data catalog; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    1992-09-30

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. Each new publication of the Technical Data Catalog supersedes the previous edition.

  8. Biomass Adventures and More: Ute Mountain Ute Youth Energy Day | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Biomass Adventures and More: Ute Mountain Ute Youth Energy Day Biomass Adventures and More: Ute Mountain Ute Youth Energy Day July 15, 2016 - 2:05pm Addthis Colton Heaps, NREL Project Leader, leads a discussion during the Ute Mountain Ute Youth Energy Workshop held on July 6, 2016, at the Ute Mountain Recreation Center. Photo by Josh Bauer, NREL. Colton Heaps, NREL Project Leader, leads a discussion during the Ute Mountain Ute Youth Energy Workshop held on July 6, 2016, at the Ute

  9. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO₂) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO₂ storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  10. Natural Analoges as a Check of Predicted Drift Stability at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    J. Stuckless

    2006-03-10

    Calculations made by the U.S. Department of Energy's Yucca Mountain Project as part of the licensing of a proposed geologic repository (in southwestern Nevada) for the disposal of high-level radioactive waste, predict that emplacement tunnels will remain open with little collapse long after ground support has disintegrated. This conclusion includes the effects of anticipated seismic events. Natural analogues cannot provide a quantitative test of this conclusion, but they can provide a reasonableness test by examining the natural and anthropogenic examples of stability of subterranean openings. Available data from a variety of sources, combined with limited observations by the author, show that natural underground openings tend to resist collapse for millions of years and that anthropogenic subterranean openings have remained open from before recorded history through today. This stability is true even in seismically active areas. In fact, the archaeological record is heavily skewed toward preservation of underground structures relative to those found at the surface.

  11. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    SciTech Connect (OSTI)

    I. Wong

    2004-11-05

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

  12. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    SciTech Connect (OSTI)

    Jackson, M.R. Jr.

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  13. Mountain Producing Region Natural Gas in Underground Storage - Change in

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas from Same Month Previous Year (Percent) Mountain Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Mountain Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 -4.70 13.00 35.00 41.50 36.90 27.10 22.30 18.60 16.40 14.60 18.60 22.30 2016 19.40 24.20 27.80 31.30 31.00 27.50 - = No Data Reported;

  14. Mountain Region Natural Gas Working Underground Storage (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Mountain Region Natural Gas Working Underground Storage (Billion Cubic Feet) Mountain Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 195 01/08 185 01/15 176 01/22 171 01/29 164 2010-Feb 02/05 157 02/12 148 02/19 141 02/26 133 2010-Mar 03/05 129 03/12 127 03/19 126 03/26 126 2010-Apr 04/02 126 04/09 126 04/16 129 04/23 134 04/30 138

  15. Passive Seismic Monitoring for Rockfall at Yucca Mountain: Concept Tests

    SciTech Connect (OSTI)

    Cheng, J; Twilley, K; Murvosh, H; Tu, Y; Luke, B; Yfantis, A; Harris, D B

    2003-03-03

    For the purpose of proof-testing a system intended to remotely monitor rockfall inside a potential radioactive waste repository at Yucca Mountain, a system of seismic sub-arrays will be deployed and tested on the surface of the mountain. The goal is to identify and locate rockfall events remotely using automated data collecting and processing techniques. We install seismometers on the ground surface, generate seismic energy to simulate rockfall in underground space beneath the array, and interpret the surface response to discriminate and locate the event. Data will be analyzed using matched-field processing, a generalized beam forming method for localizing discrete signals. Software is being developed to facilitate the processing. To date, a three-component sub-array has been installed and successfully tested.

  16. Yucca Mountain and the Global Nuclear Energy Partnership

    SciTech Connect (OSTI)

    Kim, D.; Cotton, A.T.

    2007-07-01

    Renewed U.S. interest in advanced nuclear fuel cycles involving reprocessing and recycling, embodied in the Global Nuclear Energy Partnership (GNEP) initiative, has raised questions about the role of a Yucca Mountain repository - what it will be used for, and when. While the repository is widely recognized as a key part of U.S. waste management strategy, the potential for advanced fuel cycles to improve the capacity and performance of a repository have led some to question whether its development can be deferred pending resolution of questions about the fuel cycle and the fate of commercial spent nuclear fuel (CSNF). This paper discusses the rationale for the Department of Energy's (DOE's) goal of completing the proposed Yucca Mountain repository by 2017 in parallel with pursuit of its goals for GNEP, as well as issues posed for the repository program by deployment of the initial facilities of an advanced fuel cycle. (authors)

  17. Project Reports for White Mountain Apache Tribe- 2002 Project

    Broader source: Energy.gov [DOE]

    The project will involve an examination of the feasibility of a cogeneration facility at the Fort Apache Timber Company (FATCO), an enterprise of the White Mountain Apache Tribe. FATCO includes a sawmill and a remanufacturing operation that process timber harvested on the tribe's reservation. The operation's main facility is located in the reservation's largest town, Whiteriver. In addition, the tribe operates an ancillary facility in the town of Cibeque on the reservation's west side.

  18. Ute Mountain Ute Tribe Community-Scale Solar Feasibility Study

    SciTech Connect (OSTI)

    Rapp, Jim; Knight, Tawnie

    2014-01-30

    Parametrix Inc. conducted a feasibility study for the Ute Mountain Ute Tribe to determine whether or not a community-scale solar farm would be feasible for the community. The important part of the study was to find where the best fit for the solar farm could be. In the end, a 3MW community-scale solar farm was found best fit with the location of two hayfield sites.

  19. Thermal stability of zeolitic tuff from Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Bish, D.L.

    1990-04-01

    Thermal models of the proposed repository at Yucca Mountain, Nevada, suggest that rocks near the proposed host rock will experience elevated temperatures for at least 1000 yrs. In order to assess the effects of elevated temperatures on zeolites clinoptilolite and mordenite were investigated using a combination of high-temperature X-ray powder diffraction, thermogravimetric and differential scanning calorimetric analysis, and long-term heating experiments. 13 refs., 7 figs.

  20. Vertical Variability in Saturated Zone Hydrochemistry Near Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    G. Patterson; P. Striffler

    2007-02-17

    The differences in the saturated zone hydrochemistry with depth at borehole NC-EWDP-22PC reflect the addition of recharge along Fortymile Wash. The differences in water chemistry with depth at borehole NC-EWDP-19PB appear to indicate that other processes are involved. Water from the lower part of NC-EWDP-19PB possesses chemical characteristics that clearly indicate that it has undergone cation exchange that resulted in the removal of calcium and magnesium and the addition of sodium. This water is very similar to water from the Western Yucca Mountain facies that has previously been thought to flow west of NC-EWDP-19PB. Water from the lower zone in NC-EWDP-19PB also could represent water from the Eastern Yucca Mountain facies that has moved through clay-bearing or zeolitized aquifer material resulting in the altered chemistry. Water chemistry from the upper part of the saturated zone at NC-EWDP-19PB, both zones at NC-EWDP-22PC, and wells in the Fortymile Wash facies appears to be the result of recharge through the alluvium south of Yucca Mountain and within the Fortymile Wash channel.

  1. International safeguards concepts for the Yucca Mountain Geological Repository

    SciTech Connect (OSTI)

    Case, R.S.

    1991-12-31

    This paper reports that the Nuclear Waste Policy Act of 1982 assigns DOE the responsibility to develop a mined geological repository for the long-term storage and isolation from the biosphere of spent civilian nuclear fuel and high level waste from U.S. defense and civilian reprocessing activities. In fulfilling this Congressional mandate, DOE has performed preliminary site characterization on several possible repository sites over the last decade. Recently, Congress delimited site characterization to the site at Yucca Mountain, Nevada for the US`s first mined geologic repository. Although the actual repository is not scheduled to begin operation until the first decade of the next century, planning ahead for international safeguards application to the site will allow resolution of issues which arise. This is especially true for geological repositories because of the large amount of material to be safeguarded and the materials` inaccessibility following repository closure. Further, these unique features of geological repositories may require the IAEA to reexamine its present safeguard philosophy with respect to the roles of Containment and Surveillance (C/S) and Material Control and Accountancy (MC and A). In light of these issues, a C/S based international safeguard concept for Yucca Mountain has been developed and is presented here, using the DOE`s baseline conceptual design of the Yucca Mountain site.

  2. Modeling a ponded infiltration experiment at Yucca Mountain, NV

    SciTech Connect (OSTI)

    Hudson, D.B.; Guertal, W.R. [Foothill Engineering, Inc., Mercury, NV (United States); Flint, A.L. [Geological Survey, Mercury, NV (United States)

    1994-12-31

    Yucca Mountain, Nevada is being evaluated as a potential site for a geologic repository for high level radioactive waste. As part of the site characterization activities at Yucca Mountain, a field-scale ponded infiltration experiment was done to help characterize the hydraulic and infiltration properties of a layered dessert alluvium deposit. Calcium carbonate accumulation and cementation, heterogeneous layered profiles, high evapotranspiration, low precipitation, and rocky soil make the surface difficult to characterize.The effects of the strong morphological horizonation on the infiltration processes, the suitability of measured hydraulic properties, and the usefulness of ponded infiltration experiments in site characterization work were of interest. One-dimensional and two-dimensional radial flow numerical models were used to help interpret the results of the ponding experiment. The objective of this study was to evaluate the results of a ponded infiltration experiment done around borehole UE25 UZN {number_sign}85 (N85) at Yucca Mountain, NV. The effects of morphological horizons on the infiltration processes, lateral flow, and measured soil hydaulic properties were studied. The evaluation was done by numerically modeling the results of a field ponded infiltration experiment. A comparison the experimental results and the modeled results was used to qualitatively indicate the degree to which infiltration processes and the hydaulic properties are understood. Results of the field characterization, soil characterization, borehole geophysics, and the ponding experiment are presented in a companion paper.

  3. Fracture analysis and rock quality designation estimation for the Yucca Mountain Site Characterization Project; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Lin, M.; Hardy, M.P.; Bauer, S.J.

    1993-02-01

    Within the Yucca Mountain Site Characterization Project, the design of drifts and ramps and evaluation of the impacts of thermomechanical loading of the host rock requires definition of the rock mass mechanical properties. Ramps and exploratory drifts will intersect both welded and nonwelded tuffs with varying abundance of fractures. The rock mass mechanical properties are dependent on the intact rock properties and the fracture joint characteristics. An understanding of the effects of fractures on the mechanical properties of the rock mass begins with a detailed description of the fracture spatial location and abundance, and includes a description of their physical characteristics. This report presents a description of the abundance, orientation, and physical characteristics of fractures and the Rock Quality Designation in the thermomechanical stratigraphic units at the Yucca Mountain site. Data was reviewed from existing sources and used to develop descriptions for each unit. The product of this report is a data set of the best available information on the fracture characteristics.

  4. Evaluating mine reclamation habitats at the landscape level following mountain-top removal

    SciTech Connect (OSTI)

    Edmonds, S.N.

    1998-12-31

    Present-day regulations of the Surface Mining Control and Reclamation Act were based largely on the technologies and mining methods of the late 1970`s. Thus reclamation management practices today may not fully address the landscape changes that are possible now from mountain-top removal and associated contour mining operations. This study has sought to evaluate the changes in human and natural resource systems associated with large-scale mining in the Coal River Valley region of south-central West Virginia. The Coal River Valley region was studied at a local to a landscape-scale using ground-level sampling, aerial photomaps and constructed GIS maps, starting from a site-specific-scale of natural and restored habitat types. Six watershed-drainage areas were selected for study. Three of these represented contour mining primarily and three other drainage areas encompassed mountain-top removal mining. Landscape components were characterized by overlaying slope, elevation and contour data from maps onto aerial photomaps. On-the-ground sampling was used to distinguish restoration habitat types. The site-specific measurements were obtained using transects placed across the man-made landforms (i.e., backfill, valleyfill, field, pond and drainage ditch) of the reclamation sites in each of the six watershed drainage areas. All of the measured sites had been revegetated with a seed mixture for a wildlife management plan and ranged in age from 2 to 12 years of vegetative growth at the time of the study. Percentage cover by herbaceous and woody species was determined in two-meter square quadrats placed mechanically along all transect lines to quantify the various site-specific vegetation types. Based on the site-specific evaluation, distinguishable habitats were found on each of the man-made landforms. The percentage of mountaintop removal habitats with non-native species has increased over the last decade. Percentages of total area mined in the region over thirty years were

  5. Geology of the USW SD-7 drill hole Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Rautman, C.A.; Engstrom, D.A.

    1996-09-01

    The USW SD-7 drill hole is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the Systematic Drilling Program, as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada. The Yucca Mountain site has been proposed as the potential location of a repository for high-level nuclear waste. The SD-7 drill hole is located near the southern end of the potential repository area and immediately to the west of the Main Test Level drift of the Exploratory Studies Facility. The hole is not far from the junction of the Main Test Level drift and the proposed South Ramp decline. Drill hole USW SD-7 is 2675.1 ft (815.3 m) deep, and the core recovered nearly complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. Core was recovered from much of the underlying Calico Hills Formation, and core was virtually continuous in the Prow Pass Tuff and the Bullfrog Tuff. The SD-7 drill hole penetrated the top several tens of feet into the Tram Tuff, which underlies the Prow Pass and Bullfrog Tuffs. These latter three units are all formations of the Crater Flat Group, The drill hole was collared in welded materials assigned to the crystal-poor middle nonlithophysal zone of the Tiva Canyon Tuff; approximately 280 ft (85 m) of this ash-flow sheet was penetrated by the hole. The Yucca Mountain Tuff appears to be missing from the section at the USW SD-7 location, and the Pah Canyon Tuff is only 14.5 ft thick. The Pah Canyon Tuff was not recovered in core because of drilling difficulties, suggesting that the unit is entirely nonwelded. The presence of this unit is inferred through interpretation of down-hole geophysical logs.

  6. Geology of uranium deposits in the southern part of the Rocky Mountain province of Colorado

    SciTech Connect (OSTI)

    Malan, R.C.

    1983-07-01

    This report summarizes the geology of uranium deposits in the southern part of the Rocky Mountains of Colorado, an area of about 20,000 square miles. In January 1966, combined ore reserves and ore production at 28 uranium deposits were about 685,000 tons of ore averaging 0.24 percent U/sub 3/O/sub 8/ (3.32 million pounds U/sub 3/O/sub 8/). About half of these deposits each contain <1,000 tons of ore. The two largest deposits, the Pitch in the Marshall Pass locality southwest of Salida and the T-1 in the Cochetopa locality southeast of Gunnison, account for about 90 percent of all production and available reserves. The probability in excellent for major expansion of reserves in Marshall Pass and is favorable at a few other vein localities. There are six types of uranium deposits, and there were at least four ages of emplacement of these deposits in the southern part of the Colorado Rockies. There are eight types of host rocks of eight different ages. Veins and stratiform deposits each account for about 40 percent of the total number of deposits, but the veins of early and middle Tertiary age account for nearly all of the total reserves plus production. The remaining 20 percent of the deposits include uraniferous pegmatites, irregular disseminations in porphyry, and other less important types. The wall rocks at the large Tertiary vein deposits in the southern part of the Rocky Mountains of Colorado are Paleozoic and Mesozoic sedimentary rocks, whereas Precambrian metamorphic wall rocks predominate at the large veins in the Front Range of the northern Colorado Rockies. Metallogenetic considerations and tectonic influences affecting the distribution of uranium in Colorado and in adjacent portions of the western United States are analyzed.

  7. DOE Does Not Oppose Petitions to Intervene in Yucca Mountain NRC Proceeding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Does Not Oppose Petitions to Intervene in Yucca Mountain NRC Proceeding DOE Does Not Oppose Petitions to Intervene in Yucca Mountain NRC Proceeding March 30, 2010 - 9:57am Addthis The U.S. Department of Energy yesterday filed with the Nuclear Regulatory Commission a response to Petitions to Intervene filed by several parties seeking to oppose the Department's motion to withdraw its license application for a nuclear waste repository at Yucca Mountain. DOE said it is

  8. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  9. Mountain Association for Community Economic Development- Solar Water Heater Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Kentucky Solar Partnership (KSP) and the Mountain Association for Community Economic Development (MACED) partner to offer low interest loans for the installation of solar water heaters. Loans...

  10. Ground water of Yucca Mountain: How high can it rise?; Final report

    SciTech Connect (OSTI)

    1992-12-31

    This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

  11. Yucca Mountain - U.S. Department of Energy's Response to the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commission in the proceeding on DOE's applciation to construct a high-level waste repository at Yucca Mountain, Nevada; DOE opposes the motion of Washington, South Carolina,...

  12. Building America Whole-House Solutions for New Homes: Pine Mountain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research partners IBACOS and Southface Energy Institute to design HERS-59 homes with air-tight ... PDF icon Pine Mountain Builders - Georgia More Documents & Publications Building ...

  13. Yucca Mountain - U.S. Department of Energy's Brief in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceeding before the Nuclear Regulatory Commission on DOE's application for a license to construct a high-level waste repository at Yucca Mountain, Nevada; DOE brief...

  14. Products of an Artificially Induced Hydrothermal System at Yucca Mountain

    SciTech Connect (OSTI)

    S. Levy

    2000-08-07

    Studies of mineral deposition in the recent geologic past at Yucca Mountain, Nevada, address competing hypotheses of hydrothermal alteration and deposition from percolating groundwater. The secondary minerals being studied are calcite-opal deposits in fractures and lithophysal cavities of ash-flow tuffs exposed in the Exploratory Studies Facility (ESF), a 7.7-km tunnel excavated by the Yucca Mountain Site Characterization Project within Yucca Mountain. An underground field test in the ESF provided information about the minerals deposited by a short-lived artificial hydrothermal system and an opportunity for comparison of test products with the natural secondary minerals. The heating phase lasted nine months, followed by a nine-month cooling period. Natural pore fluids were the only source of water during the thermal test. Condensation and reflux of water driven away from the heater produced fluid flow in certain fractures and intersecting boreholes. The mineralogic products of the thermal test are calcite-gypsum aggregates of less than 4-micrometer crystals and amorphous silica as glassy scale less than 0.2 mm thick and as mounds of tubules with diameters less than 0.7 micrometers. The minute crystal sizes of calcite and gypsum from the field test are very different from the predominantly coarser calcite crystals (up to cm scale) in natural secondary-mineral deposits at the site. The complex micrometer-scale textures of the amorphous silica differ from the simple forms of opal spherules and coatings in the natural deposits, even though some natural spherules are as small as 1 micrometer. These differences suggest that the natural minerals, especially if they were of hydrothermal origin, may have developed coarser or simpler forms during subsequent episodes of dissolution and redeposition. The presence of gypsum among the test products and its absence from the natural secondary-mineral assemblage may indicate a higher degree of evaporation during the test than

  15. A WRF Simulation of the Impact of 3-D Radiative Transfer on Surface Hydrology over the Rocky Mountains and Sierra Nevada

    SciTech Connect (OSTI)

    Liou, K. N.; Gu, Y.; Leung, Lai-Yung R.; Lee, W- L.; Fovell, R. G.

    2013-12-03

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-DPP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60Wm?2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18%at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower

  16. Completion Report for Well ER-12-4, Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain (includes Errata Sheet)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2006-05-01

    Well ER-12-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in May 2005, as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit in the north-central portion of the Nevada Test Site. The well is located on Rainier/Aqueduct Mesa, northwest of Yucca Flat, within Area 12 of the Nevada Test Site. The well provided information regarding the radiological and physical environment near underground nuclear tests conducted in U12t Tunnel, information on the pre-Tertiary rocks in the area, and depth to the regional water table.

  17. Dynamic coupling of volcanic CO2 flow and wind at the HorseshoeLake tree kill, Mammoth Mountain, CA

    SciTech Connect (OSTI)

    Lewicki, J.L.; Hilley, G.E.; Tosha, T.; Aoyagi, R.; Yamamoto, K.; Benson, S.M.

    2006-11-20

    We investigate spatio-temporal relationships between soilCO2 flux (FCO2), meteorological variables, and topography over a ten-dayperiod (09/12/2006 to 09/21/2006) at the Horseshoe Lake tree kill,Mammoth Mountain, CA. Total CO2 discharge varied from 16 to 52 t d-1,suggesting a decline in CO2 emissions over decadal timescales. Weobserved systematic changes in FCO2 in space and time in association witha weather front with relatively high wind speeds from the west and lowatmospheric pressures. The largest FCO2 changes were observed inrelatively high elevation areas. The variations in FCO2 may be due todynamic coupling of wind-driven airflow through the subsurface and flowof source CO2 at depth. Our results highlight the influence of weatherfronts on volcanic gas flow in the near-surface environment and how thisinfluence can vary spatially within a study area.

  18. Mountain Retail Stores Become Showcase for Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mountain Retail Stores Become Showcase for Solar Energy Local Officials, Business Leaders to Gather for Groundbreaking Ceremony For more information contact: e:mail: Public Affairs Golden, Colo., June 7, 1999 — A retail development owner who wants to set an example is helping make possible a new showcase for energy efficient buildings in the Colorado high country. Ground will be broken June 9 on the BigHorn Home Improvement Center in Silverthorne, which will boast a series of "firsts"

  19. Evidence for Gropun-Water Stratification Near Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    K. Futa; B.D. Marshall; Z.E. Peterman

    2006-03-24

    Major- and trace-element concentrations and strontium isotope ratios (strontium-87/strontium-86) in samples of ground water potentially can be useful in delineating flow paths in the complex ground-water system in the vicinity of Yucca Mountain, Nevada. Water samples were collected from boreholes to characterize the lateral and vertical variability in the composition of water in the saturated zone. Discrete sampling of water-producing intervals in the saturated zone includes isolating borehole sections with packers and extracting pore water from core obtained by sonic drilling. Chemical and isotopic stratification was identified in the saturated zone beneath southern Fortymile Wash.

  20. Implementation of NUREG-1318 guidance within the Yucca Mountain Project

    SciTech Connect (OSTI)

    La Monica, L.B.; Waddell, J.D.; Hardin, E.L.

    1990-04-01

    The US Department of Energy`s Yucca Mountain Project is implementing a quality assurance program that fulfills the requirements of the US Nuclear Regulatory Commission (NRC). Additional guidance for this program was provided in NUREG 1318, ``Technical Position on Items and Activities in the High-Level Waste Geologic Repository Program Subject to Quality Assurance Requirements`` for identification of items and activities important to public radiological safety and waste isolation. The process and organization for implementing this guidance is discussed. 3 refs., 2 figs.