Sample records for jam content group

  1. Recent content in Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito,JumpReactionEnergy Data Jam Home Name Post

  2. Recipes for cooking with the jams created by the CityFresh Garden Products Jam group, part of the Minnesota Landscape Arboretum Urban Garden Program.

    E-Print Network [OSTI]

    Amin, S. Massoud

    /2 teaspoon of jam. 6. Bake for 12-15 minutes or until slightly firm. Allow to cool for a few minutes on the cookie sheet to firm up before moving them to a wire rack to finish cooling. Makes 2 dozen cookies. #12;Spice Cake Ingredients ·1 (2 layer size) spice cake mix ·1 1/3 c. milk ·3 eggs ·2 (8 oz) jars Jam

  3. Energy Education Data Jam

    Broader source: Energy.gov [DOE]

    This all-day data jam will bring together developers, educators, organizations, and energy experts to collaborate toward the goal of improving energy literacy in the United States.

  4. JAMMING COMMUNICATION NETWORKS UNDER COMPLETE ...

    E-Print Network [OSTI]

    2007-02-08T23:59:59.000Z

    This paper describes a problem of interdicting/jamming communication networks in un- ... Jamming communication networks is an important problem but has.

  5. Automatically Identifying Groups Based on Content and Collective Behavioral Patterns of Group Members

    SciTech Connect (OSTI)

    Gregory, Michelle L.; Engel, David W.; Bell, Eric B.; Piatt, Andrew W.; Dowson, Scott T.; Cowell, Andrew J.

    2011-07-17T23:59:59.000Z

    Online communities, or groups, have largely been defined based on links, page rank, and eigenvalues. In this paper we explore identifying abstract groups, groups where member's interests and online footprints are similar but they are not necessarily connected to one another explicitly. We use a combination of structural information and content information from posts and their comments to build a footprint for groups. We find that these variables do a good job at identifying groups, placing members within a group, and help determine the appropriate granularity for group boundaries.

  6. DOE's Energy Education Data Jam

    Broader source: Energy.gov [DOE]

    In the growing ecosystem of energy-related data jams and hackathons, this one will be distinct in that it is targeted toward improving the general understanding of the basics of energy in the U.S.,...

  7. Data Jam at New York Energy Week | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Data Jam at New York Energy Week Data Jam at New York Energy Week Addthis Duration 2:32 Topic Open Data...

  8. IDENTIFYING ON-LINE GROUPS BASED ON CONTENT AND COLLECTIVE BEHAVIORAL PATTERNS

    SciTech Connect (OSTI)

    Engel, David W.; Gregory, Michelle L.; Bell, Eric B.; McGrath, Liam R.

    2012-05-01T23:59:59.000Z

    Online communities, or groups, have largely been defined based on links, page rank, and eigenvalues. In this paper we explore identifying abstract groups, groups where member's interests and online footprints are similar but they are not necessarily connected to one another explicitly. We use a combination of structural information and content information from posts and their comments to build a footprint for groups. We find that these variables do a good job at identifying groups, placing members within a group, and help determine the appropriate granularity for group boundaries.

  9. UWM Research Planning Report Kohls Group Consulting2 Table of Contents Page

    E-Print Network [OSTI]

    Saldin, Dilano

    · · #12;UWM Research Planning Report Kohls Group Consulting2 Table of Contents Page Executive for development of an implementation plan. These recommendations are the work products of eight subcommittees. The subcommittees met from #12;UWM Research Planning Report Kohls Group Consulting3 January to April 2011. Each

  10. Electromagnetic anti-jam telemetry tool

    DOE Patents [OSTI]

    Ganesan, Harini (Sugar Land, TX); Mayzenberg, Nataliya (Missouri City, TX)

    2008-02-12T23:59:59.000Z

    A mud-pulse telemetry tool includes a tool housing, a motor disposed in the tool housing, and a magnetic coupling coupled to the motor and having an inner shaft and an outer shaft. The tool may also include a stator coupled to the tool housing, a restrictor disposed proximate the stator and coupled to the magnetic coupling, so that the restrictor and the stator adapted to generate selected pulses in a drilling fluid when the restrictor is selectively rotated. The tool may also include a first anti-jam magnet coupled to the too housing, and an second anti-jam magnet disposed proximate the first anti-jam magnet and coupled to the inner shaft and/or the outer shaft, wherein at least one of the first anti-jam magnet and the second anti-jam magnet is an electromagnet, and wherein the first anti-jam magnet and the second anti-jam magnet are positioned with adjacent like poles.

  11. New York City Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniX LtdNew EnergyCity Data Jam Home > Groups

  12. Jellies, Jams, Preserves, Marmalades, and Butters.

    E-Print Network [OSTI]

    Sweeten, Mary K.

    1979-01-01T23:59:59.000Z

    ........................... 11 Marmalade recipes ......................... 13 Fruit Butters Preparation ................................ 14 Recipes ................................... 15 Jams and Jellies with No Added Sugar Sugarless jams ............................ 16... of the commercial pectin can be used successfully in a recipe for the particular form. These pectins may be used with any fruit. Many homemakers prefer the added-pectin method for making jellied fruit pro ducts because fully ripe fruit can be used, cooking time...

  13. The Energy Data Jam Goes on Tour | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the next few months, Energy Data Jams will include a vehicles-focused Data Jam with the automotive industry in Detroit, the Research Triangle Park in Raleigh, NC, Boston...

  14. A thermodynamic unification of jamming , E. E. BRODSKY2

    E-Print Network [OSTI]

    Weeks, Eric R.

    -like properties across the jamming transition. Unlike ordinary fusion, systems of grains, foams and colloids jam volume, also successfully predicts the entropic data of five molecular glasses. Notably, the predicted on jamming that includes a connection to the glass transition of viscous liquids. The proposed equation

  15. Memory of jamming and shear-jamming (in soft and granular matter)

    E-Print Network [OSTI]

    Nishant Kumar; Stefan Luding

    2014-07-23T23:59:59.000Z

    Soft, disordered, micro-structured materials are ubiquitous but are different from ordinary fluids or solids; they display complicated flow properties, in-between the extremes. Of particular interest is the transition between fluid and solid, the so called jamming transition. A multitude of jamming-related phenomena have been catalogued, mostly as unrelated observations, but there is no theoretical framework that explains the complex behavior observed close to jamming. In this article, we present a unified model that remarkably captures and predicts these complexities. A simple, yet quantitative and predictive model is proposed based on the study of three-dimensional soft, frictionless, polydisperse spheres, using isotropic and shear tests. The key ingredient is the knowledge of how the jamming density as state-variable changes for different deformation modes. This encompasses the history of deformation and relates the system's macroscopic response to its micro-structure. The packing efficiency can increase logarithmically slow under gentle ``tapping' or repeated (isotropic) compression, leading to an increase of the jamming density. In contrast, shear deformations cause anisotropy and dilatancy, and rapidly decreases the jamming density that thus represents the memory of previous deformations. A micro-statistical model that explains the memory of the system near jamming involves a multi-scale, fractal-type energy landscape, providing a unified picture for the multitude of phenomena reported near jamming. Finally, to complement our work, a recipe to extract the history-dependent jamming-point from experimentally accessible data is provided. The present results can help avoiding geophysical hazards, bring forward industrial process design and optimization, and solve scientific challenges in fundamental research.

  16. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIAEnergy Data JamData Jam

  17. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIAEnergy Data JamData Jam

  18. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIAEnergy Data JamData Jam

  19. jamSheets: Thin Interfaces with Tunable Stiffness Enabled by Layer Jamming

    E-Print Network [OSTI]

    Ou, Jifei

    This works introduces layer jamming as an enabling technology for designing deformable, stiffness-tunable, thin sheet interfaces. Interfaces that exhibit tunable stiffness properties can yield dynamic haptic feedback and ...

  20. Free volume distribution of nearly jammed hard sphere packings

    E-Print Network [OSTI]

    Moumita Maiti; Srikanth Sastry

    2014-07-25T23:59:59.000Z

    We calculate the free volume distributions of nearly jammed packings of monodisperse and bidisperse hard sphere configurations. These distributions differ qualitatively from those of the fluid, displaying a power law tail at large free volumes, which constitutes a distinct signature of nearly jammed configurations, persisting for moderate degrees of decompression. We reproduce and explain the observed distribution by considering the pair correlation function within the first coordination shell for jammed hard sphere configurations. We analyze features of the equation of state near jamming, and discuss the significance of observed asphericities of the free volumes to the equation of state.

  1. Jefferson Lab Programmer a Finalist in Google's Global Code Jam...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programmer a Finalist in Google's Global Code Jam October 13, 2006 Newport News, Va. -- Michael Haddox-Schatz, a computer programmer at the Department of Energy's (DOE's) Thomas...

  2. Jamming in finite systems: stability, anisotropy, fluctuations and scaling

    E-Print Network [OSTI]

    Carl P. Goodrich; Simon Dagois-Bohy; Brian P. Tighe; Martin van Hecke; Andrea J. Liu; Sidney R. Nagel

    2014-12-31T23:59:59.000Z

    Athermal packings of soft repulsive spheres exhibit a sharp jamming transition in the thermodynamic limit. Upon further compression, various structural and mechanical properties display clean power-law behavior over many decades in pressure. As with any phase transition, the rounding of such behavior in finite systems close to the transition plays an important role in understanding the nature of the transition itself. The situation for jamming is surprisingly rich: the assumption that jammed packings are isotropic is only strictly true in the large-size limit, and finite-size has a profound effect on the very meaning of jamming. Here, we provide a comprehensive numerical study of finite-size effects in sphere packings above the jamming transition, focusing on stability as well as the scaling of the contact number and the elastic response.

  3. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIAEnergy Data Jam Home

  4. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIAEnergy Data Jam

  5. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIAEnergy Data JamData

  6. Shear Jamming in Granular Experiments without Basal Friction

    E-Print Network [OSTI]

    Hu Zheng; Joshua A. Dijksman; Robert P. Behringer

    2014-08-08T23:59:59.000Z

    Jammed states of frictional granular systems can be induced by shear strain at densities below the isostatic jamming density ($\\phi_c$). It remains unclear, however, how much friction affects this so-called shear-jamming. Friction appears in two ways in this type of experiment: friction between particles, and friction between particles and the base on which they rest. Here, we study how particle-bottom friction, or basal friction, affects shear jamming in quasi-two dimensional experiments. In order to study this issue experimentally, we apply simple shear to a disordered packing of photoelastic disks. We can tune the basal friction of the particles by immersing the particles in a density matched liquid, thus removing the normal force, hence the friction, between the particles and base. We record the overall shear stress, and particle motion, and the photoelastic response of the particles. We compare the shear response of dry and immersed samples, which enables us to determine how basal friction affects shear jamming. Our findings indicate that changing the basal friction shifts the point of shear jamming, but it does not change the basic phenomenon of shear jamming.

  7. Microfluidic rheology of soft colloids above and below jamming

    E-Print Network [OSTI]

    K. N. Nordstrom; E. Verneuil; P. E. Arratia; A. Basu; Z. Zhang; A. G. Yodh; J. P. Gollub; D. J. Durian

    2010-09-22T23:59:59.000Z

    The rheology near jamming of a suspension of soft colloidal spheres is studied using a custom microfluidic rheometer that provides stress versus strain rate over many decades. We find non-Newtonian behavior below the jamming concentration and yield stress behavior above it. The data may be collapsed onto two branches with critical scaling exponents that agree with expectations based on Hertzian contacts and viscous drag. These results support the conclusion that jamming is similar to a critical phase transition, but with interaction-dependent exponents.

  8. Critical scaling near jamming transition for frictional granular particles

    E-Print Network [OSTI]

    Michio Otsuki; Hisao Hayakawa

    2011-03-30T23:59:59.000Z

    The critical rheology of sheared frictional granular materials near jamming transition is numer- ically investigated. It is confirmed that there exist a true critical density which characterizes the onset of the yield stress, and two fictitious critical densities which characterize the scaling laws of rheological properties. We find the existence of a hysteresis loop between two of the critical densities for each friction coefficient. It is noteworthy that the critical scaling law for frictionless jamming transition seems to be still valid even for frictional jamming despite using fictitious critical density values.

  9. Jamming Transition and Inherent Structures of Hard Spheres and Discs

    E-Print Network [OSTI]

    Misaki Ozawa; Takeshi Kuroiwa; Atsushi Ikeda; Kunimasa Miyazaki

    2012-11-17T23:59:59.000Z

    Recent studies show that volume fractions $\\phiJ$ at the jamming transition of frictionless hard spheres and discs are not uniquely determined but exist over a continuous range. Motivated by this observation, we numerically investigate dependence of $\\phiJ$ on the initial configurations of the parent fluids equilibrated at a fraction $\\phiini$, before compressing to generate a jammed packing. We find that $\\phiJ$ remains constant when $\\phiini$ is small but sharply increases when $\\phiini$ exceeds the dynamic transition point which the mode-coupling theory predicts. We carefully analyze configurational properties of both jammed packings and parent fluids and find that, while all jammed packings remain isostatic, the increase of $\\phiJ$ is accompanied with subtle but distinct changes of (i) local orders, (ii) a static length scale, and (iii) an exponent of the finite size scaling. These results quantitatively support the scenario of the random first order transition theoryof the glass transition.

  10. Evolution in the H I Gas Content of Galaxy Groups: Pre-Processing and Mass Assembly in the Current Epoch

    E-Print Network [OSTI]

    Hess, Kelley M

    2013-01-01T23:59:59.000Z

    We present an analysis of the neutral hydrogen (HI) content and distribution of galaxies in groups as a function of their parent dark matter halo mass. The Arecibo Legacy Fast ALFA survey alpha.40 data release allows us, for the first time, to study the HI properties of over 740 galaxy groups in the volume of sky common to the SDSS and ALFALFA surveys. We assigned ALFALFA HI detections a group membership based on an existing magnitude/volume-limited SDSS DR7 group/cluster catalog. Additionally, we assigned group "proximity" membership to HI detected objects whose optical counterpart falls below the limiting optical magnitude--thereby not contributing substantially to the estimate of the group stellar mass, but significantly to the total group HI mass. We find that only 25% of the HI detected galaxies reside in groups or clusters, in contrast to approximately half of all optically detected galaxies. Further, we plot the relative positions of optical and HI detections in groups as a function of parent dark matt...

  11. Critical behaviors of sheared frictionless granular materials near jamming transition

    E-Print Network [OSTI]

    Michio Otsuki; Hisao Hayakawa

    2009-06-25T23:59:59.000Z

    Critical behaviors of sheared dense and frictionless granular materials in the vicinity of the jamming transition are numerically investigated. From the extensive molecular dynamics simulation, we verify the validity of the scaling theory near the jamming transition proposed by Otsuki and Hayakawa (Prog. Theor. Phys., 121, 647 (2009)). We also clarify the critical behaviors of the shear viscosity and the pair correlation function based on both a phenomenology and the simulation.

  12. Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids

    E-Print Network [OSTI]

    Atsushi Ikeda; Ludovic Berthier

    2015-04-10T23:59:59.000Z

    Jamming is a geometric phase transition occurring in dense particle systems in the absence of temperature. We use computer simulations to analyse the effect of thermal fluctuations on several signatures of the transition. We show that scaling laws for bulk and shear moduli only become relevant when thermal fluctuations are extremely small, and propose their relative ratio as a quantitative signature of jamming criticality. Despite the nonequilibrium nature of the transition, we find that thermally induced fluctuations and mechanical responses obey equilibrium fluctuation-dissipation relations near jamming, provided the appropriate fluctuating component of the particle displacements is analysed. This shows that mechanical moduli can be directly measured from particle positions in mechanically unperturbed packings, and suggests that the definition of a "nonequilibrium index" is unnecessary for amorphous materials. We find that fluctuations of particle displacements are spatially correlated, and define a transverse and a longitudinal correlation lengthscales which both diverge as the jamming transition is approached. We analyse the frozen component of density fluctuations and find that it displays signatures of nearly-hyperuniform behaviour at large lengthscales. This demonstrates that hyperuniformity in jammed packings is unrelated to a vanishing compressibility and explains why it appears remarkably robust against temperature and density variations. Differently from jamming criticality, obstacles preventing the observation of hyperuniformity in colloidal systems do not originate from thermal fluctuations.

  13. Hiding Traffic with Camouflage: Minimizing Message Delay in the Smart Grid under Jamming

    E-Print Network [OSTI]

    Wang, Wenye

    been proposed for efficient communications. However, the jamming attack that broadcasts radio communication under jamming attacks. Nevertheless, an open question in the smart grid is how to minimize message] that the jamming attack, which uses radio interference to disrupt wireless communications [5], [6], can result

  14. From Jammer to Gambler: Modeling and Detection of Jamming Attacks against Time-Critical Traffic

    E-Print Network [OSTI]

    Wang, Wenye

    From Jammer to Gambler: Modeling and Detection of Jamming Attacks against Time-Critical Traffic attacks. However, existing methods to characterize and detect jamming attacks cannot be applied directly. In this paper, we aim at modeling and detecting jamming attacks against time-critical traffic. We introduce

  15. Analysis of the trace element content of coals from the Wabaunsee Group southeastern Nebraska

    SciTech Connect (OSTI)

    Kaplan, S.S.; Carr, J.D.; Kelter, P.B.

    1983-01-01T23:59:59.000Z

    Eight coal samples obtained from the Honey Creek, Lorton, Wamego, Elmo, and Nodaway coals of the Wabaunsee Group (Upper Pennsylvanian) were analyzed for their concentration of certain trace elements. Analysis of the data suggests (a) a general decrease of trace element concentrations away from the Precambrian Nemaha Arch in a basinward direction, and (b) the post-diagenetic emplacement of lead, zinc and cadmium typical of mid-continent coals.

  16. The Complete Jamming Landscape of Confined Hard Discs

    E-Print Network [OSTI]

    S. S. Ashwin; Richard k. Bowles

    2009-03-25T23:59:59.000Z

    An exact description of the complete jamming landscape is developed for a system of hard discs of diameter $\\sigma$, confined between two lines separated by a distance $1+\\sqrt{3/4} < H/\\sigma < 2$. By considering all possible local packing arrangements, the generalized ensemble partition function of jammed states is obtained using the transfer matrix method, which allows us to calculate the configurational entropy and the equation of state for the packings. Exploring the relationship between structural order and packing density, we find that the geometric frustration between local packing environments plays an important role in determining the density distribution of jammed states and that structural "randomness" is a non-monotonic function of packing density. Molecular dynamics simulations show that the properties of the equilibrium liquid are closely related to those of the landscape.

  17. On Adjusting Power to Defend Wireless Networks from Jamming

    E-Print Network [OSTI]

    Xu, Wenyuan

    1 On Adjusting Power to Defend Wireless Networks from Jamming Wenyuan Xu Department of Computer}@engr.sc.edu Abstract-- Wireless networks are susceptible to accidental or intentional radio interference. One way, we turn to examining the more complicated scenario consisting of a multi- hop wireless network. We

  18. Selective Jamming Attacks in Wireless Networks Alejandro Proa~no

    E-Print Network [OSTI]

    Lazos, Loukas

    for preventing real-time packet classification and neutralizing the inside knowledge of the attacker. I emission of high-power interference signals such as continuous wave tones, or FM modulated noise [15-one transformations [13], with physical-layer parameters. We further study the impact of various selective jamming

  19. Jamming-Aware Minimum Energy Routing in Wireless Networks

    E-Print Network [OSTI]

    Goeckel, Dennis L.

    1 Jamming-Aware Minimum Energy Routing in Wireless Networks Azadeh Sheikholeslami, Majid Ghaderi; however, energy-aware routing in the presence of active adversary (jammers) has not been considered. We. There has been some study of energy-aware ad hoc routing protocols in the literature [13], [14], [15], [16

  20. Control Channel Jamming: Resilience and Identification of Traitors

    E-Print Network [OSTI]

    Noubir, Guevara

    efficient than blind jamming. We propose several schemes based on coding theory and its applications that can counter both external and internal attackers (traitors). We introduce a T-(traitor) resilient and energy available to the mobile devices. Therefore, wireless networks implement various control mechanisms

  1. The Evolved Red Stellar Contents of the Sculptor Group Galaxies NGC55, NGC300, and NGC7793

    E-Print Network [OSTI]

    T. J. Davidge

    1998-03-23T23:59:59.000Z

    Deep J, H, and K images are used to probe the evolved stellar contents in the central regions of the Sculptor group galaxies NGC55, NGC300, and NGC7793. The brightest stars are massive red supergiants (RSGs) with K ~ 15 - 15.5. The peak RSG brightness is constant to within ~0.5 mag in K, suggesting that NGC55, NGC300, and NGC7793 are at comparable distances. Comparisons with bright RSGs in the Magellanic Clouds indicate that the difference in distance modulus with respect to the LMC is = 7.5. A rich population of asymptotic giant branch (AGB) stars, which isochrones indicate have ages between 0.1 and 10 Gyr, dominates the (K, J-K) color-magnitude diagram (CMD) of each galaxy. The detection of significant numbers of AGB stars with ages near 10 Gyr indicates that the disks of these galaxies contain an underlying old population. The CMDs and luminosity functions reveal significant galaxy-to-galaxy variations in stellar content. Star-forming activity in the central arcmin of NGC300 has been suppressed for the past Gyr with respect to disk fields at larger radii. Nevertheless, comparisons between fields within each galaxy indicate that star-forming activity during intermediate epochs was coherent on spatial scales of a kpc or more. A large cluster of stars, which isochrones suggest has an age near 100 Myr, is seen in one of the NGC55 fields. The luminosity function of the brightest stars in this cluster is flat, as expected if a linear luminosity-core mass relation is present.

  2. Spatial Distributions of Local Elastic Moduli Near the Jamming Transition

    E-Print Network [OSTI]

    Hideyuki Mizuno; Leonardo E. Silbert; Matthias Sperl

    2015-04-10T23:59:59.000Z

    Recent progress in studies of the nanoscale mechanical responses in amorphous solids has highlighted a strong degree of heterogeneity in the elastic moduli of thermal glassy systems. In this contribution, using computer simulations, we study the elastic heterogeneities in athermal amorphous solids, composed of isotropic, static, sphere packings near the jamming transition. We employ techniques based on linear response theory which avoid the need to invoke any explicit deformation. Not only do we validate these procedures by reproducing established scaling laws for the global elastic moduli, but our technique reveals new power-law behaviors in the spatial fluctuations of the local moduli. The local moduli are randomly distributed in space, and are described by Gaussian probability distributions all the way down to the transition point. However, the moduli fluctuations grow as the jamming threshold is approached, through which we are able to identify a characteristic length scale, associated with the shear modulus heterogeneities.

  3. Jamming Countermeasures for Multi-User MISO Broadcast Channels -a DoF perspective

    E-Print Network [OSTI]

    Buehrer, R. Michael

    Jamming Countermeasures for Multi-User MISO Broadcast Channels - a DoF perspective SaiDhiraj Amuru the multi-user multiple-input single-output (MISO) broadcast channel (BC) in the presence of jamming attacks is quantified in terms of the degrees-of-freedom (DoF) of the MISO BC under various assumptions regarding

  4. Camouflage Traffic: Minimizing Message Delay for Smart Grid Applications under Jamming

    E-Print Network [OSTI]

    Wang, Wenye

    in the smart grid. However, the jamming attack that constantly broadcasts radio interference is a primary under any potential jamming attack. To address this issue, we provide a paradigm shift from the case-by-case methodology, which is widely used in existing works to investigate well- adopted attack models, to the worst

  5. Jamming probabilities for a vacancy in the dimer model

    E-Print Network [OSTI]

    V. S. Poghosyan; V. B. Priezzhev; P. Ruelle

    2008-01-28T23:59:59.000Z

    Following the recent proposal made by Bouttier et al [Phys. Rev. E 76, 041140 (2007)], we study analytically the mobility properties of a single vacancy in the close-packed dimer model on the square lattice. Using the spanning web representation, we find determinantal expressions for various observable quantities. In the limiting case of large lattices, they can be reduced to the calculation of Toeplitz determinants and minors thereof. The probability for the vacancy to be strictly jammed and other diffusion characteristics are computed exactly.

  6. First JAM results on the determination of polarized parton distributions

    SciTech Connect (OSTI)

    Accardi, Alberto [Hampton Univ., VA and JLAB, Newport News, VA (United States); Jimenez-Delgado, Pedro [JLAB, Newport News, VA (United States); Melnitchouk, Wally [JLAB, Newport News, VA (United States)

    2014-01-01T23:59:59.000Z

    The Jefferson Lab Angular Momentum (JAM) Collaboration is a new initiative to study the angular momentum dependent structure of the nucleon. First results on the determination of spin-dependent parton distribution functions at intermediate and large x from world data on polarized deep-inelastic scattering are presented. Different aspects of global QCD analysis are discussed, including the effects of nuclear structure of deuterium and {sup 3}He targets, target mass corrections and higher twist contributions to the g{sub 1} and g{sub 2} structure functions.

  7. Three-dimensional jamming and flows of soft glassy materials

    E-Print Network [OSTI]

    Guillaume Ovarlez; Quentin Barral; Philippe Coussot

    2011-05-03T23:59:59.000Z

    Various disordered dense systems such as foams, gels, emulsions and colloidal suspensions, exhibit a jamming transition from a liquid state (they flow) to a solid state below a yield stress. Their structure, thoroughly studied with powerful means of 3D characterization, exhibits some analogy with that of glasses which led to call them soft glassy materials. However, despite its importance for geophysical and industrial applications, their rheological behavior, and its microscopic origin, is still poorly known, in particular because of its nonlinear nature. Here we show from two original experiments that a simple 3D continuum description of the behaviour of soft glassy materials can be built. We first show that when a flow is imposed in some direction there is no yield resistance to a secondary flow: these systems are always unjammed simultaneously in all directions of space. The 3D jamming criterion appears to be the plasticity criterion encountered in most solids. We also find that they behave as simple liquids in the direction orthogonal to that of the main flow; their viscosity is inversely proportional to the main flow shear rate, as a signature of shear-induced structural relaxation, in close similarity with the structural relaxations driven by temperature and density in other glassy systems.

  8. Universal Robotic Gripper based on the Jamming of Granular Material

    E-Print Network [OSTI]

    Eric Brown; Nicholas Rodenberg; John Amend; Annan Mozeika; Erik Steltz; Mitchell R. Zakin; Hod Lipson; Heinrich M. Jaeger

    2010-11-05T23:59:59.000Z

    Gripping and holding of objects are key tasks for robotic manipulators. The development of universal grippers able to pick up unfamiliar objects of widely varying shape and surface properties remains, however, challenging. Most current designs are based on the multi-fingered hand, but this approach introduces hardware and software complexities. These include large numbers of controllable joints, the need for force sensing if objects are to be handled securely without crushing them, and the computational overhead to decide how much stress each finger should apply and where. Here we demonstrate a completely different approach to a universal gripper. Individual fingers are replaced by a single mass of granular material that, when pressed onto a target object, flows around it and conforms to its shape. Upon application of a vacuum the granular material contracts and hardens quickly to pinch and hold the object without requiring sensory feedback. We find that volume changes of less than 0.5% suffice to grip objects reliably and hold them with forces exceeding many times their weight. We show that the operating principle is the ability of granular materials to transition between an unjammed, deformable state and a jammed state with solid-like rigidity. We delineate three separate mechanisms, friction, suction and interlocking, that contribute to the gripping force. Using a simple model we relate each of them to the mechanical strength of the jammed state. This opens up new possibilities for the design of simple, yet highly adaptive systems that excel at fast gripping of complex objects.

  9. Multiscaling at Point J: Jamming is a Critical Phenomenon J. A. Drocco,1

    E-Print Network [OSTI]

    Weeks, Eric R.

    There has been a surge of activity in jamming phe- nomena for T 0 systems such as granular materials, foams be relevant to the physics near the glass transition. A key question is whether Point J is a true continuous

  10. Jamming during the discharge of granular matter from a silo Iker Zuriguel,1,

    E-Print Network [OSTI]

    Weeks, Eric R.

    the idea of "jamming transition," character- ized by the sudden arrest of the particle dynamics. Glass transitions, colloidal gels, foams, as well as granular flows, traffic, and stampedes are included among

  11. Jammed frictionless discs: connecting local and global response

    E-Print Network [OSTI]

    Wouter G. Ellenbroek; Martin van Hecke; Wim van Saarloos

    2009-11-04T23:59:59.000Z

    By calculating the linear response of packings of soft frictionless discs to quasistatic external perturbations, we investigate the critical scaling behavior of their elastic properties and non-affine deformations as a function of the distance to jamming. Averaged over an ensemble of similar packings, these systems are well described by elasticity, while in single packings we determine a diverging length scale $\\ell^*$ up to which the response of the system is dominated by the local packing disorder. This length scale, which we observe directly, diverges as $1/\\Delta z$, where $\\Delta z$ is the difference between contact number and its isostatic value, and appears to scale identically to the length scale which had been introduced earlier in the interpretation of the spectrum of vibrational modes. It governs the crossover from isostatic behavior at the small scale to continuum behavior at the large scale; indeed we identify this length scale with the coarse graining length needed to obtain a smooth stress field. We characterize the non-affine displacements of the particles using the \\emph{displacement angle distribution}, a local measure for the amount of relative sliding, and analyze the connection between local relative displacements and the elastic moduli.

  12. Disentangling glass and jamming physics in the rheology of soft materials

    E-Print Network [OSTI]

    Atsushi Ikeda; Ludovic Berthier; Peter Sollich

    2013-02-18T23:59:59.000Z

    The shear rheology of soft particles systems becomes complex at large density because crowding effects may induce a glass transition for Brownian particles, or a jamming transition for non-Brownian systems. Here we successfully explore the hypothesis that the shear stress contributions from glass and jamming physics are `additive'. We show that the experimental flow curves measured in a large variety of soft materials (colloidal hard spheres, microgel suspensions, emulsions, aqueous foams) as well as numerical flow curves obtained for soft repulsive particles in both thermal and athermal limits are well described by a simple model assuming that glass and jamming rheologies contribute linearly to the shear stress, provided that the relevant scales for time and stress are correctly identified in both sectors. Our analysis confirms that the dynamics of colloidal hard spheres is uniquely controlled by glass physics while aqueous foams are only sensitive to jamming effects. We show that for micron-sized emulsions both contributions are needed to successfully account for the flow curves, which reveal distinct signatures of both phenomena. Finally, for two systems of soft microgel particles we show that the flow curves are representative of the glass transition of colloidal systems, and deduce that microgel particles are not well suited to studying the jamming transition experimentally.

  13. Autonomous detection and anticipation of jam fronts from messages propagated by inter-vehicle communication

    E-Print Network [OSTI]

    Sch"onhof, M; Kesting, A; Helbing, D; Sch\\"onhof, Martin; Treiber, Martin; Kesting, Arne; Helbing, Dirk

    2006-01-01T23:59:59.000Z

    In this paper, a minimalist, completely distributed freeway traffic information system is introduced. It involves an autonomous, vehicle-based jam front detection, the information transmission via inter-vehicle communication, and the forecast of the spatial position of jam fronts by reconstructing the spatiotemporal traffic situation based on the transmitted information. The whole system is simulated with an integrated traffic simulator, that is based on a realistic microscopic traffic model for longitudinal movements and lane changes. The function of its communication module has been explicitly validated by comparing the simulation results with analytical calculations. By means of simulations, we show that the algorithms for a congestion-front recognition, message transmission, and processing predict reliably the existence and position of jam fronts for vehicle equipment rates as low as 3%. A reliable mode of operation already for small market penetrations is crucial for the successful introduction of inter-...

  14. Jamming at zero temperature, zero friction, and finite applied shear stress

    E-Print Network [OSTI]

    Massimo Pica Ciamarra; Antonio Coniglio

    2009-07-09T23:59:59.000Z

    Via molecular dynamics simulations, we unveil the hysteretic nature of the jamming transition of soft repulsive frictionless spheres, as it occurs varying the volume fraction or the shear stress. In a given range of control parameters the system may be found both in a flowing and in an jammed state, depending on the preparation protocol. The hysteresis is due to an underlying energy landscape with many minima, as explained by a simple model, and disappears in the presence of strong viscous forces and in the small $\\sigma$ limit. In this limit, structural quantities are continuous at the transition, while the asymptotic values of two time quantities such as the self-intermediate scattering function are discontinuous, giving to the jamming transition a mixed first-order second-order character close to that found at the glass transition of thermal systems.

  15. Mechanical properties of jammed packings of frictionless spheres under applied shear stress

    E-Print Network [OSTI]

    Hao Liu; Hua Tong; Ning Xu

    2015-02-03T23:59:59.000Z

    By minimizing a thermodynamic-like potential, we unbiasedly sample the potential energy landscape of soft and frictionless spheres under constant shear stress. We obtain zero-temperature jammed states under desired shear stresses and investigate their mechanical properties as a function of the shear stress. As a comparison, we also obtain jammed states from the quasistatic-shear sampling in which the shear stress is not well-controlled. Although the yield stresses determined by both samplings show the same power-law scaling with the compression from point $J$, i.e.~the jamming transition point at zero temperature and shear stress, for finite size systems, the quasistatic-shear sampling leads to a lower yield stress and a higher critical volume fraction of point $J$. The shear modulus of jammed solids decreases when increasing the shear stress. However, the shear modulus does not decay to zero at yielding. This discontinuous change of the shear modulus implies the discontinuous nature of the unjamming transition under nonzero shear stress, which is further verified by the observation of a discontinuous jump of the pressure from jammed solids to shear flows. The pressure jump decreases upon decompression and approaches zero at the critical-like point $J$, in analogy with well-known phase transitions under external field. The analysis of force networks in jammed solids reveals that the force distribution is more sensitive to the increase of the shear stress near point $J$. The force network anisotropy increases with the shear stress. Weak particle contacts near the average force and under large shear stresses exhibit asymmetric angle distribution.

  16. Beijing Traffic Jam Daniel Barry, Jennifer Corriveau, Michael Lecomte, Johanna Zuber

    E-Print Network [OSTI]

    Nagurney, Anna

    that railway would be the most efficient and environmentally friendly way for energy transportation" · 42,000km; efficient; high capacity · Can reduce up to 25-30% of traffic jams · Safety precautions #12;Solution: Energy, construction · Solutions: Railroad, Straddle bus, Transport energy #12;Questions? · Thank you! #12;

  17. Modeling and Designing Network Defense against Control Channel Jamming Attacks: A

    E-Print Network [OSTI]

    Poovendran, Radha

    . Keywords: Cyber-physical system, Node capture attacks, Security, Control- channel jamming, Passivity 1, University of Washington, Seattle, WA, 98195, USA {leep3, awclark, lb2, rp3}@uw.edu Abstract. Cyber-physical systems rely on distributed embedded wire- less nodes for sensing, computation, and control, often leaving

  18. Cut-off Rate based Outage Probability Analysis of Frequency Hopping Mobile Radio under Jamming

    E-Print Network [OSTI]

    Yýlmaz, Özgür

    Cut-off Rate based Outage Probability Analysis of Frequency Hopping Mobile Radio under Jamming Conditions G¨okhan M. G¨uvensen Electrical and Electronics Eng. Dept. Middle East Technical University Ankara, Turkey Email: guvensen@metu.edu.tr Yalc¸in Tanik Electrical and Electronics Eng. Dept. Middle East

  19. When Quasistatic Jamming is Impossible J.C. Trinkle S.L. Yeap L. Han

    E-Print Network [OSTI]

    Han, Li

    rigid parts with torsion springs. They assumed Coulomb friction acted at the contacts and that dynamic e to predict jamming. Dupont's work was more general. He also assumed dry friction acted at the contacts be position-or e ort- controlled as desired, 1 and Coulomb friction acts at the contact points. Further, we

  20. Superdiffusive, heterogeneous, and collective particle motion near the jamming transition in athermal disordered materials

    E-Print Network [OSTI]

    Boyer, Edmond

    -to-solid, jamming transition. Borrowing tools developed to study dynamic heterogeneity near glass transitions, we heterogeneities in dense athermal systems and glass-formers are very different, and shed light on recent assemblies. INTRODUCTION Many materials, from emulsions and suspensions to foams and granular materials

  1. Maximally Random Jamming of Two-Dimensional One-Component and Binary Hard Disc Fluids

    E-Print Network [OSTI]

    Xinliang Xu; Stuart A. Rice

    2010-10-05T23:59:59.000Z

    We report calculations of the density of maximally random jamming (aka random close packing) of one-component and binary hard disc fluids. The theoretical structure used provides a common framework for description of the hard disc liquid to hexatic, the liquid to hexagonal crystal and the liquid-to-maximally random jammed state transitions. Our analysis is based on locating a particular bifurcation of the solutions of the integral equation for the inhomogeneous single particle density at the transition between different spatial structures. The bifurcation of solutions we study is initiated from the dense metastable fluid, and we associate it with the limit of stability of the fluid, which we identify with the transition from the metastable fluid to a maximally random jammed state. For the one-component hard disc fluid the predicted packing fraction at which the metastable fluid to maximally random jammed state transition occurs is 0.84, in excellent agreement with the experimental value 0.84 \\pm 0.02. The corresponding analysis of the limit of stability of a binary hard disc fluid with specified disc diameter ratio and disc composition requires extra approximations in the representations of the direct correlation function, the equation of state, and the number of order parameters accounted for. Keeping only the order parameter identified with the largest peak in the structure factor of the highest density regular lattice with the same disc diameter ratio and disc composition as the binary fluid, the predicted density of maximally random jamming is found to be 0.84 to 0.87, depending on the equation of state used, and very weakly dependent on the ratio of disc diameters and the fluid composition, in agreement with both experimental data and computer simulation data.

  2. Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model

    SciTech Connect (OSTI)

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S. [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8582 (Japan); Institute for Cosmic Ray Research, and Institute for the Physics and Mathematical of the Universe, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8582 (Japan); Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo, 169-8555 (Japan); Faculty of Software and Information Technology, Aomori University, Aomori, 030-0943 Japan (Japan)

    2011-06-15T23:59:59.000Z

    We present the calculation of the atmospheric neutrino fluxes with an interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion Transport code System) [K. Niita et al., Radiation Measurements 41, 1080 (2006).]. The JAM interaction model agrees with the HARP experiment [H. Collaboration, Astropart. Phys. 30, 124 (2008).] a little better than DPMJET-III[S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252.]. After some modifications, it reproduces the muon flux below 1 GeV/c at balloon altitudes better than the modified DPMJET-III, which we used for the calculation of atmospheric neutrino flux in previous works [T. Sanuki, M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 75, 043005 (2007).][M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. D 75, 043006 (2007).]. Some improvements in the calculation of atmospheric neutrino flux are also reported.

  3. Critical Phenomena in Driven Granular Matter: Jamming and Glassy Behavior - Final Report

    SciTech Connect (OSTI)

    Teitel, Stephen

    2013-02-20T23:59:59.000Z

    Granular materials, such as powders, seeds, grains, sand, rocks, etc., are ubiquitous both in nature and in industrial processes. At the scale of individual grains, granular systems are particularly simple: particles interact only when they touch. But when viewed in the aggregate, granular systems can display complex behavior. In particular, as the volume packing fraction of the grains increases, the system undergoes a jamming transition from a flowing liquid to a disordered but rigid solid. We study the critical behavior of such systems near the jamming transition using numerical simulations of a simple model of soft-core, bidisperse, frictionless disks in two dimensions. We seek to understand the structural and transport properties of such systems under a variety of physical perturbations such as steady state shear driven flow, and finite thermal fluctuations.

  4. Statistics of Conserved Quantities in Mechanically Stable Packings of Frictionless Disks Above Jamming

    E-Print Network [OSTI]

    Yegang Wu; S. Teitel

    2014-10-03T23:59:59.000Z

    We numerically simulate mechanically stable packings of soft-core, frictionless, bidisperse disks in two dimensions, above the jamming packing fraction $\\phi_J$. For configurations with a fixed isotropic global stress tensor, we compute the averages, variances, and correlations of conserved quantities (stress $\\Gamma_{\\cal C}$, force-tile area $A_{\\cal C}$, Voronoi volume $V_{\\cal C}$, number of particles $N_{\\cal C}$, and number of small particles $N_{s{\\cal C}}$) on compact subclusters of particles ${\\cal C}$, as a function of the cluster size and the global system stress. We find several significant differences depending on whether the cluster ${\\cal C}$ is defined by a fixed radius $R$ or a fixed number of particles $M$. We comment on the implications of our findings for maximum entropy models of jammed packings.

  5. Jamming at the laning-flocking transition in systems of self-propelled rods

    E-Print Network [OSTI]

    Hui-Shun Kuan; Robert Blackwell; Matthew A. Glaser; M. D. Betterton

    2014-07-17T23:59:59.000Z

    Non-equilibrium active matter made up of self-driven particles exhibits collective motion and nonequilibrium order-disorder transitions. Self-propelled rod models with short-range repulsive interactions are a useful minimal system to study active matter. We simulated high-aspect-ratio self-propelled rods with varying packing fraction and driving. Two characteristic phases, the flocking and laning phases, occupy much of the phase diagram. We study the laning-flocking transition and the emergence of the laning state from the equilibrium nematic. For low packing fraction, driving induces formation of a clustered flocking phase, as observed previously. In flocks the average pressure is high and structural and mechanical relaxation times are long. These results suggest that rods in flocks are in a translating jammed state with an internal structure similar to a jammed solid despite overall flock motion. For higher packing fraction, a laning state emerges in response to driving, with polar domains that vary in size with the driving force. The average pressure is relatively low and structural and mechanical relaxation times are short, showing fluid-like behavior. Both structural and mechanical properties vary rapidly upon lowering the packing fraction from the laning to flocking regime, suggesting an abrupt dynamic phase transition occurs in this system. We propose that the laning-flocking transition is a type of jamming transition which, in contrast to other jamming systems, occurs as density is decreased. In contrast, the laning state appears to emerge continuously from the equilibrium nematic as driving is increased.

  6. VOLUME 86, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 1 JANUARY 2001 Force Distributions near Jamming and Glass Transitions

    E-Print Network [OSTI]

    O'Hern, Corey S.

    liquids and foams, respectively. P F develops a peak that appears near the glass or jamming transitions near Jamming and Glass Transitions Corey S. O'Hern,1,3 Stephen A. Langer,2 Andrea J. Liu,1 and Sidney R the distribution of interparticle normal forces P F near the glass and jamming transitions in model supercooled

  7. Cell theory for glass-forming materials and jamming matter, combining free volume and cooperative rearranging regions

    E-Print Network [OSTI]

    Antonio Coniglio; Tomaso Aste

    2015-05-20T23:59:59.000Z

    We investigate the statistical mechanics of glass-forming materials and jamming matter by means of a geometrically driven approach based on a revised cell theory. By considering the system as constituted of jammed blocks of increasing sizes, we obtain a unified picture that describes accurately the whole process from low densities to limit densities at the glass/jamming transition. The approach retrieves many of the aspects of existing theories unifying them into a coherent framework. In particular, at low densities we find a free volume regime, based on local relaxation process, at intermediate densities a cooperative length sets in, where both local and cooperative relaxation process are present. At even higher densities the increasing cooperative length suppresses the local relaxation and only the cooperative relaxation survives characterized by the divergence of the cooperative length, as suggested by the random first order theory. Finally a relation between the cooperative length and the hyperuniform length is also suggested.

  8. Maximum Entropy and the Stress Distribution in Soft Disk Packings Above Jamming

    E-Print Network [OSTI]

    Yegang Wu; S. Teitel

    2014-10-17T23:59:59.000Z

    We show that the maximum entropy hypothesis can successfully explain the distribution of stresses on compact clusters of particles within disordered mechanically stable packings of soft, isotropically stressed, frictionless disks above the jamming transition. We show that, in our two dimensional case, it becomes necessary to consider not only the stress but also the Maxwell-Cremona force-tile area, as a constraining variable that determines the stress distribution. The importance of the force-tile area was suggested by earlier computations on an idealized force-network ensemble.

  9. Computing an Approximate Jam/Fold Equilibrium for 3-player No-Limit Texas Hold'em Tournaments

    E-Print Network [OSTI]

    Computing an Approximate Jam/Fold Equilibrium for 3-player No-Limit Texas Hold'em Tournaments Sam similar to value iteration for solving stochastic games, and a heuristic from the poker community known-specific assumptions and thus also applies to other multiplayer stochastic games of imperfect information. Categories

  10. Plastic flow of frictionless grains near the jamming transition Claus Heussinger Pinaki Chaudhuri Jean-Louis Barrat

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Plastic flow of frictionless grains near the jamming transition Claus Heussinger Pinaki Chaudhuri. This flow behavior is called "plastic flow" as the mate- rial will not revert to its original shape when strain localization in the simulations that are presented here. Plastic flow is observed in a large

  11. Goddard rattler-jamming mechanism for quantifying pressure dependence of elastic moduli of grain packs

    SciTech Connect (OSTI)

    Pride, Steven R.; Berryman, James G.

    2009-01-05T23:59:59.000Z

    An analysis is presented to show how it is possible for unconsolidated granular packings to obey overall non-Hertzian pressure dependence due to the imperfect and random spatial arrangements of the grains in these packs. With imperfect arrangement, some gaps that remain between grains can be closed by strains applied to the grain packing. As these gaps are closed, former rattler grains become jammed and new stress-bearing contacts are created that increase the elastic stiffness of the packing. By allowing for such a mechanism, detailed analytical expressions are obtained for increases in bulk modulus of a random packing of grains with increasing stress and strain. Only isotropic stress and strain are considered in this analysis. The model is shown to give a favorable fit to laboratory data on variations in bulk modulus due to variations in applied pressure for bead packs.

  12. Critical scaling and aging in cooling systems near the jamming transition

    E-Print Network [OSTI]

    D. A. Head

    2009-04-01T23:59:59.000Z

    We conduct athermal simulations of freely-cooling, viscous soft spheres around the jamming transition density \\phi_{J}, and find evidence for a growing length \\xi(t) that governs relaxation to mechanical equilibrium. \\xi(t) is manifest in both the velocity correlation function, and the spatial correlations in a scalar measure of local force balance which we define. Data for different densities \\phi can be collapsed onto two master curves by scaling \\xi(t) and t by powers of |\\phi-\\phi_{J}|, indicative of critical scaling. Furthermore, particle transport for \\phi>\\phi_{J} exhibits aging and superdiffusion similar to a range of soft matter experiments, suggesting a common origin. Finally, we explain how \\xi(t) at late times maps onto known behavior away from \\phi_{J}.

  13. Absence of jamming in ant trails: Feedback control of self propulsion and noise

    E-Print Network [OSTI]

    Chaudhuri, Debasish

    2014-01-01T23:59:59.000Z

    We present a model of ant traffic considering individual ants as self-propelled particles undergoing single file motion on a one-dimensional trail. Recent experiments on unidirectional ant traffic in well-formed natural trails showed that the collective velocity of ants remains approximately unchanged, leading to absence of jamming even at very high densities [ John et. al., Phys. Rev. Lett. 102, 108001 (2009) ]. Assuming a feedback control mechanism of self-propulsion force generated by each ant using information about the distance from the ant in front, our model captures all the main features observed in the experiment. The distance headway distribution shows a maximum corresponding to separations within clusters. The position of this maximum remains independent of average number density. We find a non-equilibrium first order transition, with the formation of an infinite cluster at a threshold density where all the ants in the system suddenly become part of a single cluster.

  14. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy 2014 #12;Combustion Group Combustion Physics and Modeling Pollutants, Emissions, and Soot Formation Thermoacoustics and Combustion Dynamics Research focus § Examine mechanisms responsible for flame stabilization

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat Content of

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat Content

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat ContentHeat

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeat Content

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat Content of

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat Content ofHeat

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat Content

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat ContentHeat

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat ContentHeatHeat

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat Content of

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat Content

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat ContentHeat

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeat Content

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeat Content

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat Content of

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat Content

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat ContentHeat

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeat Content

  14. Diagnosing hyperuniformity in two-dimensional disordered jammed-packings of soft spheres

    E-Print Network [OSTI]

    Remi Dreyfus; Ye Xu; Tim Still; Lawrence A. Hough; A. G. Yodh; Salvatore Torquato

    2014-08-20T23:59:59.000Z

    Hyperuniformity characterizes a state of matter for which density fluctuations diminish towards zero at the largest length scales. However, the task of determining whether or not an experimental system is hyperuniform is experimentally challenging due to finite-resolution, noise and sample-size effects that influence characterization measurements. Here we explore these issues, employing video optical microscopy to study hyperuniformity phenomena in disordered two-dimensional jammed packings of soft spheres. Using a combination of experiment and simulation we characterize the detrimental effects of particle polydispersity, image noise, and finite-size effects on the assignment of hyperuniformity, and we develop a methodology that permits improved diagnosis of hyperuniformity from real-space measurements. The key to this improvement is a simple packing reconstruction algorithm that incorporates particle polydispersity to minimize free volume. In addition, simulations show that hyperuniformity can be ascertained more accurately in direct space than in reciprocal space as a result of finite sample-size. Finally, experimental colloidal packings of soft polymeric spheres are shown to be hyperuniform.

  15. Jamming of molecular motors as a tool for transport cargos along microtubules

    E-Print Network [OSTI]

    Lucas W. Rossi; Carla Goldman

    2012-01-26T23:59:59.000Z

    The hopping model for cargo transport by molecular motors introduced in Refs. goldman1, goldman2, is extended here in order to incorporate the movement of cargo-motor complexes. In this context, hopping process expresses the possibility for cargo to be exchanged between neighbor motors at a microtubule where the transport takes place. Jamming of motors is essential for cargos to execute long-range movement in this way. Results from computer simulations performed using the extended model indicate that cargo may execute bidirectional movement in the presence of motors of a single polarity, confirming previous analytical results. Moreover, these results suggest the existence of a balance between cargo hopping and the movement of the complex that may control the efficiency of cargo transfer and cargo delivering. Considerations about the energy involved in the transport process show that the model presented here offers a considerable advantage over other models in the literature for which cargo movement is restricted to the movement of cargo-motor complexes.

  16. Stochasticity and traffic jams in the transcription of ribosomal RNA: Intriguing role of termination and antitermination

    E-Print Network [OSTI]

    Stefan Klumpp; Terence Hwa

    2008-11-19T23:59:59.000Z

    In fast growing bacteria, ribosomal RNA (rRNA) is required to be transcribed at very high rates to sustain the high cellular demand on ribosome synthesis. This results in dense traffic of RNA polymerases (RNAP). We developed a stochastic model, integrating results of single-molecule and quantitative in vivo studies of E. coli, to evaluate the quantitative effect of pausing, termination, and antitermination on rRNA transcription. Our calculations reveal that in dense RNAP traffic, spontaneous pausing of RNAP can lead to severe "traffic jams", as manifested in the broad distribution of inter-RNAP distances and can be a major factor limiting transcription and hence growth. Our results suggest the suppression of these pauses by the ribosomal antitermination complex to be essential at fast growth. Moreover, unsuppressed pausing by even a few non-antiterminated RNAPs can already reduce transcription drastically under dense traffic. However, the termination factor Rho can remove the non-antiterminated RNAPs and restore fast transcription. The results thus suggest an intriguing role by Rho to enhance rather than attenuate rRNA transcription.

  17. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy § New combustion and energy-conversion concepts #12;Introduction Combustion research thrusts Combustion Dynamics and Flame-Stabilization Research objectives § Obtain fundamental understanding of combustion

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb362 41,298 36,4875

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb362 41,298

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb362

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear JanAnnual",2014

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYearAnnual",2014 ,"Release

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYearAnnual",2014

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197Annual",2014 ,"Release

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197Annual",2014

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197Annual",2014Monthly","4/2015"

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet name or

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet name

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet%)"

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click- Underground Storage

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click- Underground

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click- UndergroundTotal

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click-

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)"

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)"Monthly","4/2015"

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas)

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas)Monthly","4/2015" ,"Release

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas)Monthly","4/2015"

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBaseMonthly","4/2015" ,"Release

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBaseMonthly","4/2015"

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBaseMonthly","4/2015"Annual",2014

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015Monthly","4/2015" ,"Release

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015Monthly","4/2015"

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015Monthly","4/2015"Annual",2014

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015" ,"Release

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015" ,"ReleaseAnnual",2014

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015"

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015"Monthly","4/2015"

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"Release Date:","2015/06/30"

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"Release

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"ReleaseAnnual",2014 ,"Release

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"ReleaseAnnual",2014

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015" ,"Release

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015"

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015"and Distribution

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015"and

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"Release Date:","6/30/2015" ,"Next

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"Release Date:","6/30/2015"

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"Release

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"ReleaseDaily","7/20/2015"

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015"

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015"Monthly","4/2015","1/15/1973"

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom for data" ,"Worksheet

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom for data"

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom for

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural Gas Proved

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural Gas ProvedCoalbed

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural Gas

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDry Natural Gas

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDry Natural

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDry

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDryNonproducing

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved NaturalProved Reserves, Wet

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved NaturalProved Reserves,

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved NaturalProved

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab atpri_sum_a_epg0_fwa_dmcf_a.xls" ,"Available from

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab atpri_sum_a_epg0_fwa_dmcf_a.xls" ,"Available

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab atpri_sum_a_epg0_fwa_dmcf_a.xls"

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls" ,"Available from Web

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls" ,"Available from

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls" ,"Available

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls"

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900" ,"Data

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900"

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900""

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900""Natural Gas

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900""Natural

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973" ,"Release

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No. 2

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No. 2Total

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No.

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No.Propane

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No.PropaneMotor

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and Petroleum Products "

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and Petroleum Products

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and Petroleum

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oilmbbl_m.xls" ,"Available from

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oilmbbl_m.xls" ,"Available

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oilmbbl_m.xls"

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry" ,"Click worksheet

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry" ,"Click

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry" ,"ClickPercentages

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Net Receipts by

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Net Receipts

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Net

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker, Pipeline,

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil by

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil byof by

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil byof

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil"

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net Production of Total

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net Production of

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net Production

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsers Prices

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsers

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsersPrices -

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsersPrices

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsersPricesNo.

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea" ,"Click

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea"

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea"Area"

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea"Area"for

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End Users "

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End Users

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End UsersAcquisition

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to EndNo. 2 Distillate

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to EndNo. 2

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to EndNo.

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating Oil Weekly

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating Oil

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating OilPropane

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeatingand Petroleum

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeatingand

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil and Petroleum

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil and

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil andDomestic

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct SuppliedMonthly","4/2015","1/15/1981"

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProductMonthly","4/2015","1/15/1981" ,"Data

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProductMonthly","4/2015","1/15/1981"

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"ClickMonthly","4/2015","1/15/1981" ,"Data

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"ClickMonthly","4/2015","1/15/1981" ,"DataU.S.

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"Marketed ProductionMarketedHeat Content

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of Natural Gas

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of Natural GasHeat

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of Natural

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of NaturalHeat

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of NaturalHeatHeat

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeat

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeatHeat

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeatHeatHeat

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeat

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeatHeat

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeatHeatHeat

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of Natural Gas

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of Natural

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of NaturalHeat

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeat

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeatHeat

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeatHeatHeat

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeat

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeatHeat

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeatHeatto

  17. Can the jamming transition be described using equilibrium statistical mechanics? This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Berthier, Ludovic

    such as foams or emulsions are compressed, they display solid behaviour above the so-called `jamming' transition, disordered systems (theory), mode coupling theory, structural glasses (theory) ArXiv ePrint: 1011.5637 c 2011. Statistical mechanics of harmonic spheres: glass phase 8 4.1. Mode-coupling theory

  18. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 1997 #12;Data Management Group Annual Report 1997 A co-operative project that is jointly funded by members of the Toronto Area Transportation Planning Data Collection: (416) 978-3941 #12;Data Management Group 1997 Annual Report Table of Contents 1 INTRODUCTION

  19. Water Resources Working Group Report

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Water Resources Working Group Report This report provided content for the Wisconsin Initiative in February 2011. #12;Water Resources Working Group Wisconsin Initiative on Climate Change Impacts October 2010 #12;Water Resources Working Group Members ­ WICCI Tim Asplund (Co-Chair) - Wisconsin Department

  20. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16T23:59:59.000Z

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  1. CONTENTS PAGE INTRODUCTION

    E-Print Network [OSTI]

    Aslaksen, Helmer

    THE APPLICATIONS AND VALIDITY OF BODE'S LAW CAN WE EXPLAIN BODE'S LAW USING GRAVITY? 8 Law of Gravitation 8 Centre#12;#12;CONTENTS CONTENTS PAGE INTRODUCTION WHO, HOW AND WHEN IS THE BODE'S LAW DISCOVERED? 1 THE BODE'S LAW HOW THE BODE'S LAW SATISFIED URANUS 3 HOW THE BODE'S LAW LED TO THE DISCOVERY OF CERES

  2. Automata groups

    E-Print Network [OSTI]

    Muntyan, Yevgen

    2010-01-16T23:59:59.000Z

    automata over the alphabet of 2 letters and 2-state automata over the 3-letter alphabet. We continue the classification work started by the research group at Texas A&M University ([BGK+07a, BGK+07b]) and further reduce the number of pairwise nonisomorphic...

  3. Content Protection for Optical Media Content Protection for Optical Media

    E-Print Network [OSTI]

    Amir, Yair

    Content Protection for Optical Media Content Protection for Optical Media A Comparison of Self-Protecting Digital Content and AACS Independent Security Evaluators www.securityevaluators.com May 3, 2005 Copyright for Optical Media 2 #12;Content Protection for Optical Media Content Protection for Optical Media 3 Executive

  4. SuStainability table of contentS

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    SuStainability table of contentS executive Summary-Related Sustainability Options ........................................... 41 Information Technology Infrastucture #12;sustainability 2 Private Giving

  5. Content Provider Speeds Application

    E-Print Network [OSTI]

    Fisher, Kathleen

    protocols like SMPP for SMS and MM7 for MMS are industry standards, carriers typically layer their own APIs.0 standards," says Rose, "and we thought that would help speed development." The AT&T API Platform includesContent Provider Speeds Application Development AT&T API Platform cuts development time and costs

  6. Remote-Handled Transuranic Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2001-08-01T23:59:59.000Z

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document representsthe development of a uniform content code system for RH-TRU waste to be transported in the 72-Bcask. It will be used to convert existing waste form numbers, content codes, and site-specificidentification codes into a system that is uniform across the U.S. Department of Energy (DOE) sites.The existing waste codes at the sites can be grouped under uniform content codes without any lossof waste characterization information. The RH-TRUCON document provides an all-encompassing|description for each content code and compiles this information for all DOE sites. Compliance withwaste generation, processing, and certification procedures at the sites (outlined in this document foreach content code) ensures that prohibited waste forms are not present in the waste. The contentcode gives an overall description of the RH-TRU waste material in terms of processes and|packaging, as well as the generation location. This helps to provide cradle-to-grave traceability ofthe waste material so that the various actions required to assess its qualification as payload for the72-B cask can be performed. The content codes also impose restrictions and requirements on themanner in which a payload can be assembled.The RH-TRU Waste Authorized Methods for Payload Control (RH-TRAMPAC), Appendix 1.3.7of the 72-B Cask Safety Analysis Report (SAR), describes the current governing procedures|applicable for the qualification of waste as payload for the 72-B cask. The logic for this|classification is presented in the 72-B Cask SAR. Together, these documents (RH-TRUCON,|RH-TRAMPAC, and relevant sections of the 72-B Cask SAR) present the foundation and|justification for classifying RH-TRU waste into content codes. Only content codes described in thisdocument can be considered for transport in the 72-B cask. Revisions to this document will be madeas additional waste qualifies for transport. |Each content code uniquely identifies the generated waste and provides a system for tracking theprocess and packaging history. Each content code begins with a two-letter site abbreviation thatindicates the shipper of the RH-TRU waste. The site-specific letter designations for each of the|DOE sites are provided in Table 1. Not all of the sites listed in Table 1 have generated/stored RH-|TRU waste.

  7. Microsystems and Nanotechnology Group

    E-Print Network [OSTI]

    Pulfrey, David L.

    Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report ­ 2007 Microsystems and Nanotechnology Research Group 1 About

  8. Microsystems and Nanotechnology Group

    E-Print Network [OSTI]

    Pulfrey, David L.

    Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report ­ 2008 Microsystems and Nanotechnology Research Group 1 About

  9. TableofContentsEnvironmentalStudies Table of Contents Environmental Studies

    E-Print Network [OSTI]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 · Environmental Management: Policy, Resources and Conservation345 TableofContents­EnvironmentalStudies Table of Contents ­ Environmental Studies Faculty of Environmental Studies . . . . . . . . . . . . . . . . 347 The Bachelor in Environmental Studies

  10. Web Content Filtering 1 User Guidelines Web content filter guidelines

    E-Print Network [OSTI]

    Web Content Filtering 1 User Guidelines Web content filter guidelines Introduction The basic criterion for blocking a Web page Categories of material which will be blocked Requesting the unblocking of Aberdeen applies a Web Content Filtering service to all web pages accessed from the undergraduate network

  11. Fermilab Today - Related Content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FYU.S. DOEFigure 1.Related Content Subscribe

  12. Mentoring Guide TABLE OF CONTENTS

    E-Print Network [OSTI]

    Dasgupta, Dipankar

    Mentoring Guide 1 #12;TABLE OF CONTENTS Introduction...........................................................................................................3 CCFA Mentoring Guide.........................................................................................3 Why Do I Need A Mentor

  13. Properties of Group Five and Group Seven transactinium elements

    E-Print Network [OSTI]

    Wilk, Philip A.

    2001-01-01T23:59:59.000Z

    of Group Five and Group Seven Transactinium Elementsof Group Five and Group Seven Transactinium Elements byof Group Five and Group Seven Transactinium Elements by

  14. Image Content Engine (ICE)

    SciTech Connect (OSTI)

    Brase, J M

    2007-03-26T23:59:59.000Z

    The Image Content Engine (ICE) is being developed to provide cueing assistance to human image analysts faced with increasingly large and intractable amounts of image data. The ICE architecture includes user configurable feature extraction pipelines which produce intermediate feature vector and match surface files which can then be accessed by interactive relational queries. Application of the feature extraction algorithms to large collections of images may be extremely time consuming and is launched as a batch job on a Linux cluster. The query interface accesses only the intermediate files and returns candidate hits nearly instantaneously. Queries may be posed for individual objects or collections. The query interface prompts the user for feedback, and applies relevance feedback algorithms to revise the feature vector weighting and focus on relevant search results. Examples of feature extraction and both model-based and search-by-example queries are presented.

  15. TABLE OF CONTENTS

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O'1 ~(3JlpV ProjectDear Mr.o l DH E

  16. Microsoft Word - contents

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc. No.GS05: Woman Creek

  17. Automatic identification of abstract online groups

    DOE Patents [OSTI]

    Engel, David W; Gregory, Michelle L; Bell, Eric B; Cowell, Andrew J; Piatt, Andrew W

    2014-04-15T23:59:59.000Z

    Online abstract groups, in which members aren't explicitly connected, can be automatically identified by computer-implemented methods. The methods involve harvesting records from social media and extracting content-based and structure-based features from each record. Each record includes a social-media posting and is associated with one or more entities. Each feature is stored on a data storage device and includes a computer-readable representation of an attribute of one or more records. The methods further involve grouping records into record groups according to the features of each record. Further still the methods involve calculating an n-dimensional surface representing each record group and defining an outlier as a record having feature-based distances measured from every n-dimensional surface that exceed a threshold value. Each of the n-dimensional surfaces is described by a footprint that characterizes the respective record group as an online abstract group.

  18. ContentsContents2424Fourier 1. The Fourier transform

    E-Print Network [OSTI]

    Vickers, James

    ContentsContents2424Fourier transforms 1. The Fourier transform 2. Properties of the Fourier Transform 3. Some Special Fourier Transform Pairs Learning outcomes needs doing Time allocation You mathematical topics this time may vary considerably. 1 #12;The Fourier Transform 24.1 Introduction

  19. GROUP THERAPY Syracuse University

    E-Print Network [OSTI]

    McConnell, Terry

    your individual needs. In a group, up to eight students meet with one or two group therapists. MostGROUP THERAPY Syracuse University Counseling Center 200 Walnut Place Phone: 315-443-4715 Fax: 315-443-4276 counselingcenter.syr.edu WHAT STUDENTS SAY ABOUT GROUP THERAPY I was really anxious about joining a group

  20. Specific Group Hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group Hardware Specific Group Hardware ALICE palicevo1 The Virtual Organization (VO) server. Serves as gatekeeper for ALICE jobs. It's duties include getting assignments from...

  1. QEP WORKING GROUP CHARGES Assessment Working Group

    E-Print Network [OSTI]

    Liu, Paul

    and a framework that details timelines, leadership, resource allocation, and an assessment plan that is clearlyQEP WORKING GROUP CHARGES Assessment Working Group The topic of the QEP should fit should be supported by a thorough understanding of the institutional context and by assessment data

  2. Selmer groups as flat cohomology groups

    E-Print Network [OSTI]

    ?esnavi?ius, K?stutis

    2014-01-01T23:59:59.000Z

    Given a prime number p, Bloch and Kato showed how the p Selmer group of an abelian variety A over a number field K is determined by the p-adic Tate module. In general, the pm1-Selmer group Selpmn A need not be determined ...

  3. 1. Tsubono Group 1 1 Tsubono Group

    E-Print Network [OSTI]

    Ejiri, Shinji

    optical fiber ­ Test of the law of gravitation at extremely small distance references [1] Y. Aso, M. Ando1. Tsubono Group 1 1 Tsubono Group Research Subjects: Experimental Relativity, Gravitational Wave Physics, Laser Inter- ferometer Member: Kimio TSUBONO and Masaki ANDO The detection of gravitational waves

  4. FNANO12 Table of Contents Table of Contents

    E-Print Network [OSTI]

    Reif, John H.

    Bardram Software tools for automated design of dynamic nucleic acid systems Table of Contents In Silico Design, In Vitro Characterization and Ex-Vivo Studies of Functional RNA-based Nanoparticles

  5. Visual Analysis of Weblog Content

    SciTech Connect (OSTI)

    Gregory, Michelle L.; Payne, Deborah A.; McColgin, Dave; Cramer, Nick O.; Love, Douglas V.

    2007-03-26T23:59:59.000Z

    In recent years, one of the advances of the World Wide Web is social media and one of the fastest growing aspects of social media is the blogosphere. Blogs make content creation easy and are highly accessible through web pages and syndication. With their growing influence, a need has arisen to be able to monitor the opinions and insight revealed within their content. In this paper we describe a technical approach for analyzing the content of blog data using a visual analytic tool, IN-SPIRE, developed by Pacific Northwest National Laboratory. We highlight the capabilities of this tool that are particularly useful for information gathering from blog data.

  6. Mental content, holism and communication 

    E-Print Network [OSTI]

    Pollock, Joanna Katharine Mary

    2014-07-01T23:59:59.000Z

    In this project, I defend a holistic, internalist conceptual-role theory of mental content (‘Holism’, for short). The account of communicative success which must be adopted by the Holist is generally thought to be ...

  7. TABLE OF CONTENTS ABSTRACT . . .. . . .. . . . . . . . . . . . . . . . . . . . . . v

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ............................................... 12 Water-Source Heat Pump Performance ............................ 18 Air-Source Heat Pump QUARTZ CONTENT OF SEDIMENTARY ROCK LAYERS ........ 17 TABLE 10. PROPERTIES OF SEDIMENTARY ROCK LAYERS OF PERFORMANCE OF WATER-SOURCE HEAT PUMP .............................. ................. 23 FIGURE 2. NODAL

  8. Identifying Differences in Cultural Behavior in Online Groups

    SciTech Connect (OSTI)

    Gregory, Michelle L.; Engel, David W.; Bell, Eric B.; Mcgrath, Liam R.

    2012-07-23T23:59:59.000Z

    We have developed methods to identify online communities, or groups, using a combination of structural information variables and content information variables from weblog posts and their comments to build a characteristic footprint for groups. We have worked with both explicitly connected groups and 'abstract' groups, in which the connection between individuals is in interest (as determined by content based features) and behavior (metadata based features) as opposed to explicit links. We find that these variables do a good job at identifying groups, placing members within a group, and helping determine the appropriate granularity for group boundaries. The group footprint can then be used to identify differences between the online groups. In the work described here we are interested in determining how an individual's online behavior is influenced by their membership in more than one group. For example, individuals belong to a certain culture; they may belong as well to a demographic group, and other 'chosen' groups such as churches or clubs. There is a plethora of evidence surrounding the culturally sensitive adoption, use, and behavior on the Internet. In this work we begin to investigate how culturally defined internet behaviors may influence behaviors of subgroups. We do this through a series of experiments in which we analyze the interaction between culturally defined behaviors and the behaviors of the subgroups. Our goal is to (a) identify if our features can capture cultural distinctions in internet use, and (b) determine what kinds of interaction there are between levels and types of groups.

  9. TEC Working Group Topic Groups Archives Communications Meeting...

    Office of Environmental Management (EM)

    TEC Working Group Topic Groups Archives Communications Conference Call Summaries TEC Meeting Summaries - January 1997 TEC Working Group Topic Groups Tribal Conference Call...

  10. Long Term by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 13:59:48...

  11. Mechanical Engineering & Thermal Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has · STOP (Structural, Thermal, and Optical Performance) analyses of optical systems Thermal engineers lead evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

  12. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  13. Hydrogen Analysis Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

  14. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, MY); Watkins, Ronnie Wade (Cypress, TX)

    2010-11-09T23:59:59.000Z

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  15. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, ML); Watkins, Ronnie Wade (Cypress, TX)

    2012-07-31T23:59:59.000Z

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  16. GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6 ANDERSON, JENNIFER AYENI, MARY ABATE BESSOMO, ANNA BARRETT, CIAN ADAMS, NICOLE BARTON, MICHAEL

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6 ANDERSON, JENNIFER AYENI, MARY ABATE BESSOMO, ANNA ANDERSON FITZSIMONS, DENISEBINCHY, SUSAN CARLEY, JESSE CONWAY, AILBHE BROOKE, HENRY CONLAN, DEIRDRE, CAOIMHE HESKIN, CLODAGH MC GOVERN, MARIE-CLAIREMURRAY, AINE GROGAN, CLARE GERARD, ALLISON MC QUAID, RACHEL

  17. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed to reduce the weight of cars and trucks, innovative approaches for protecting fish as they navigate power- producing dams, and a discovery that makes it possible to turn...

  18. Contents

    E-Print Network [OSTI]

    Modeling the invasion and spread of contagious diseases in heterogeneous populations; Wayne M. Getz, James O. Lloyd-Smith, Paul C. Cross, Shirli Bar-

  19. Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution And Bylaws |Contact UsContactsContemplating 10Program

  20. Contents

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy This partAs theFebruary09 FY1,The1,

  1. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r kiVP-^"^^?CONCEPTUALor.1,4,5,3,

  2. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r kiVP-^"^^?CONCEPTUALor.1,4,5,3,

  3. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r

  4. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.0 - HOISTING AND RIGGING IN HOSTILE

  5. Contents

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S. S p e c t® ALOHA A

  6. contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013constant Ames

  7. Table of Contents INTRODUCTION 2

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    #12;1 Table of Contents INTRODUCTION 2 SECTION ONE: PRINCIPLES OF GOOD PRACTICE 4 SECTION TWO, it offers a practical guide to staff and volunteers who work with children by outlining a number of fundamental principles of good practice, highlighting the key elements of each one and discussing the issues

  8. SPPR Group Proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    members will execute in August 2011. Facilities Use Charge agreements are drafted: In review stage by customer group; Proposal specifies annual update of charge amount...

  9. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  10. Changes in sulfides and platinum-group minerals with the degree of alteration in the Roby, Twilight, and High

    E-Print Network [OSTI]

    Long, Bernard

    with laser ablation analysis of the sulfides was used to determine which phase controlled each of the PGE content of the rocks. Keywords Platinum-group elements . Platinum-group minerals . Laser ablation

  11. Fermilab | Employee Advisory Group | Focus Group Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focus Group Report A random sampling of

  12. Working group report: Neutrino physics

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    Working group report: Neutrino physics Acknowledgements TheWorking group report: Neutrino physics Coordinators: SANDHYAthe report of the neutrino physics working group at WHEPP-X.

  13. Power Systems Group Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Information ASD Groups ESHQA Operations Argonne Home > Advanced Photon Source > Power Systems Group This page is currently under construction. Old PS Group Site (visible...

  14. Alexandria Digital Library Project Content Access Characterization

    E-Print Network [OSTI]

    Janée, Greg

    Alexandria Digital Library Project Content Access Characterization in Digital Libraries Greg Janée · James Frew · David Valentine University of California, Santa Barbara #12;Alexandria Digital Library environments e.g., GIS #12;Alexandria Digital Library Project Janée, Frew, Valentine · Content Access

  15. Recent content in Energy Systems Integration | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito,JumpReactionEnergy Data Jam Home Name

  16. Recent content in Geothermal Regulatory Roadmap | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito,JumpReactionEnergy Data Jam Home

  17. Recent content in Green Button Applications | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito,JumpReactionEnergy Data Jam HomeGreen Button

  18. Recent content in Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito,JumpReactionEnergy Data Jam HomeGreenRecent

  19. Wind forces on isolated and grouped mobile homes 

    E-Print Network [OSTI]

    Oldham, Gary Albert

    1974-01-01T23:59:59.000Z

    WIND FORCES ON ISOLATED AND GROUPED MOBILE HOMFS A Thesis by GARY ALBERT OLDHAM Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1974 Major... Subject: Aerospace Engineering WIND FORCES ON ISOLATED AND GROUPED MOBILE HOMES A Thesis by GARY ALBERT OLDHAM Approved as to style and content by: (Chairman of Committee) ( a of Department (Member) (Member) December 1974 ABSTRACT Wind Forces...

  20. SOFA 2 Documentation Table of contents

    E-Print Network [OSTI]

    SOFA 2 Documentation Table of contents 1 Overview...................................................................................................................... 2 2 Documentation............................................................................................................. 2 3 Other documentation and howtos

  1. Optimal Rate Allocation in Overlay Content Distribution

    E-Print Network [OSTI]

    Li, Baochun

    Optimal Rate Allocation in Overlay Content Distribution Chuan Wu and Baochun Li Department. This paper addresses the optimal rate allocation problem in overlay content distribution for efficient, these scenarios reflect the contrast between elastic and streaming content distribution, with either per

  2. Content of system design descriptions

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    A System Design Description (SDD) describes the requirements and features of a system. This standard provides guidance on the expected technical content of SDDs. The need for such a standard was recognized during efforts to develop SDDs for safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Existing guidance related to the corresponding documents in other industries is generally not suitable to meet the needs of DOE nuclear facilities. Across the DOE complex, different contractors have guidance documents, but they vary widely from site to site. While such guidance documents are valuable, no single guidance document has all the attributes that DOE considers important, including a reasonable degree of consistency or standardization. This standard is a consolidation of the best of the existing guidance. This standard has been developed with a technical content and level of detail intended to be most applicable to safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Notwithstanding that primary intent, this standard is recommended for other systems at such facilities, especially those that are important to achieving the programmatic mission of the facility. In addition, application of this standard should be considered for systems at other facilities, including non-nuclear facilities, on the basis that SDDs may be beneficial and cost-effective.

  3. Strangulation in Galaxy Groups

    E-Print Network [OSTI]

    Kawata, Daisuke

    2007-01-01T23:59:59.000Z

    We use a cosmological chemodynamical simulation to study how the group environment impacts the star formation properties of disk galaxies. The simulated group has a total mass of M~8x10^12 Msun and a total X-ray luminosity of L_X~10^41 erg s^-1. Our simulation suggests that ram pressure is not sufficient in this group to remove the cold disk gas from a V_rot~150 km s^-1 galaxy. However, the majority of the hot gas in the galaxy is stripped over a timescale of approximately 1 Gyr. Since the cooling of the hot gas component provides a source for new cold gas, the stripping of the hot component effectively cuts off the supply of cold gas. This in turn leads to a quenching of star formation. The galaxy maintains the disk component after the cold gas is consumed leading to a galaxy with S0 properties. Our self-consistent simulation suggests that this strangulation mechanism works even in low mass groups, providing an explanation for the lower star formation rates in group galaxies relative to galaxies in the field...

  4. Strangulation in Galaxy Groups

    E-Print Network [OSTI]

    Daisuke Kawata; John S. Mulchaey

    2007-11-20T23:59:59.000Z

    We use a cosmological chemodynamical simulation to study how the group environment impacts the star formation properties of disk galaxies. The simulated group has a total mass of M~8x10^12 Msun and a total X-ray luminosity of L_X~10^41 erg s^-1. Our simulation suggests that ram pressure is not sufficient in this group to remove the cold disk gas from a V_rot~150 km s^-1 galaxy. However, the majority of the hot gas in the galaxy is stripped over a timescale of approximately 1 Gyr. Since the cooling of the hot gas component provides a source for new cold gas, the stripping of the hot component effectively cuts off the supply of cold gas. This in turn leads to a quenching of star formation. The galaxy maintains the disk component after the cold gas is consumed, which may lead to a galaxy similar to an S0. Our self-consistent simulation suggests that this strangulation mechanism works even in low mass groups, providing an explanation for the lower star formation rates in group galaxies relative to galaxies in the field.

  5. Finite group symmetry breaking

    E-Print Network [OSTI]

    G. Gaeta

    2005-10-02T23:59:59.000Z

    Finite group symmetry is commonplace in Physics, in particular through crystallographic groups occurring in condensed matter physics -- but also through the inversions (C,P,T and their combinations) occurring in high energy physics and field theory. The breaking of finite groups symmetry has thus been thoroughly studied, and general approaches exist to investigate it. In Landau theory, the state of a system is described by a finite dimensional variable (the {\\it order parameter}), and physical states correspond to minima of a potential, invariant under a group. In this article we describe the basics of symmetry breaking analysis for systems described by a symmetric polynomial; in particular we discuss generic symmetry breakings, i.e. those determined by the symmetry properties themselves and independent on the details of the polynomial describing a concrete system. We also discuss how the plethora of invariant polynomials can be to some extent reduced by means of changes of coordinates, i.e. how one can reduce to consider certain types of polynomials with no loss of generality. Finally, we will give some indications on extension of this theory, i.e. on how one deals with symmetry breakings for more general groups and/or more general physical systems.

  6. TECHNICAL PROPOSAL Table of Contents

    E-Print Network [OSTI]

    ____________________________________________ 13 A.4.5 Energy Management ____________________________________________ 14 Related Work of Advanced Network Infrastructure Technology in Health and Disaster Management," the Decision Systems Group proposed building a test bed patient monitoring system in the Emergency Department at the Brigham and Women

  7. Do Plants Sweat? Core Content

    E-Print Network [OSTI]

    Kessler, Bruce

    in the bright sun and others are grouped together and are regularly sprinkled with water. You begin to wonder plant distribution where you see this principle in action? -Can you predict the effect of seasons data/graph] Three plants are grown in the same greenhouse with the same air temperature, amount

  8. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28T23:59:59.000Z

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  9. The "FISH" Quad Hand Sensor Physics and Media Group

    E-Print Network [OSTI]

    The "FISH" Quad Hand Sensor Physics and Media Group MIT Media Laboratory 20 Ames Street E15 OF CONTENTS ----------------- 1. ASCII SERIAL FISH PROTOCAL 2. HOW TO MAKE FISH ANTENNA 3. CALIBRATION SOFTWARE INSTALLATION 4. HOW TO CALIBRATE A FISH 5. COMPONENT PLACEMENT 6. SCHEMATICS 7. PARTS LIST HOW

  10. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08T23:59:59.000Z

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  11. Bell, group and tangle

    SciTech Connect (OSTI)

    Solomon, A. I., E-mail: a.i.solomon@open.ac.u [Open University, Department of Physics (United Kingdom)

    2010-03-15T23:59:59.000Z

    The 'Bell' of the title refers to bipartite Bell states, and their extensions to, for example, tripartite systems. The 'Group' of the title is the Braid Group in its various representations; while 'Tangle' refers to the property of entanglement which is present in both of these scenarios. The objective of this note is to explore the relation between Quantum Entanglement and Topological Links, and to show that the use of the language of entanglement in both cases is more than one of linguistic analogy.

  12. Magnetism Theory Group / POSTECH Magnetism Theory Group / POSTECH

    E-Print Network [OSTI]

    Min, Byung Il

    Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH J.H . Park et al. #12;'s of FeinCsm e tal The chargeandorbitalordering geom etryin YB a C o 2 O 5 S. K. Kwon etal .Magnetism Theory

  13. Content in physical education 1 The Contribution of Two Research Programs on Teaching Content

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : "Pedagogical Content Knowledge" and "Didactics of Physical Education" Chantal Amade-Escot, Toulouse University with pedagogical content knowledge; the other, in France, studying the didactics of physical education (didactics communities. Key-words Content in Physical Education, Pedagogical Content Knowledge, Didactics of Physical

  14. Explicit Presentations for Exceptional Braid Groups David Bessis and Jean Michel

    E-Print Network [OSTI]

    Bessis, David

    Explicit Presentations for Exceptional Braid Groups David Bessis and Jean Michel CONTENTS 1- of-the-monodromy (in the sense of [Brou´e et al. 98] and [Bessis 01]) or equivalently braid

  15. Systematics of the Bufo Valliceps Group (Anura: Bufonidae) of Middle America

    E-Print Network [OSTI]

    Mendelson, Joseph R. III

    1997-05-06T23:59:59.000Z

    A phylogenetic analysis of morphological characters revealed that the species content of the Bufo valliceps group is limited to eight species (two of them new) occurring between the southern United States and Costa Rica. ...

  16. GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Stabilitcroissanceetperformanceconomique

    E-Print Network [OSTI]

    Boyer, Edmond

    GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1026 économique, stabilité, canal d'investissement. Classification JEL : B22, E32, O42 1 Dr. Zied Ftiti. Université de Lyon, Université Lyon 2, F - 69007, Lyon, France. CNRS, GATE Lyon-St Etienne, UMR n° 5824

  17. GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Sectorbasedexplanationofverticalintegrationin

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1136, France CNRS, GATE Lyon-St Etienne, UMR n° 5824, 69130, Ecully, France Université de Saint-Etienne, Jean. Reif, G. Solard, 2009 ; B. Mura, 2010). A network relates to a network of downstream firms using

  18. GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Dynamicmodelsofresidentialsgrgation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1017 #12;DYNAMIC MODELS OF RESIDENTIAL SEGREGATION: AN ANALYTICAL SOLUTION S´ebastian GRAUWINa,b,c , Florence GOFFETTE-NAGOTa,d, , Pablo JENSENa,b,c,e aUniversit´e de Lyon, Lyon, F-69007, France bInstitut rh

  19. Group Analysis Jean Daunizeau

    E-Print Network [OSTI]

    Daunizeau, Jean

    ) is measurement error True response magnitude is fixed 111 Xy Fixed effect #12;Random effects-sphericity modelling Examples Power and efficiency: summary Overview #12;Group analysis: fixed versus random effects Two RFX methods: Holmes & Friston (HF) approach non-sphericity modelling Examples Power

  20. TKN Telecommunication Networks Group

    E-Print Network [OSTI]

    Wichmann, Felix

    consumption. Quite some effort has already been undertaken to address this issue, striving for low-energy trends in the power consumption, the NICs and APs are classified according to the following aspects Group Power consumption of WLAN network elements Salvatore Chiaravalloti, Filip Idzikowski, Lukasz

  1. MULTIMEDIA PHOTOGRAPHY PERFORMANCE AGREEMENT AND RELEASE FORM FOR ALL USER GROUP/VISITING RESEARCHER PARTICIPANTS @ Shoals Marine Laboratory on Appledore Island, Maine.

    E-Print Network [OSTI]

    MULTIMEDIA PHOTOGRAPHY PERFORMANCE AGREEMENT AND RELEASE FORM FOR ALL USER GROUP updating its multimedia products, including, but not limited to web content, broadcast television

  2. arrestin content studied: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Two Research Programs on Teaching Content: "Pedagogical Content Knowledge" and "Didactics of Physical Education" Chantal Amade-Escot, Toulouse University Abstract Content in...

  3. Military Munitions Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-30T23:59:59.000Z

    This report presents the findings of the Military Munitions Waste Working Group in its effort to achieve the goals directed under the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT Committee) for environmental restoration and waste management. The Military Munitions Waste Working Group identified the following seven areas of concern associated with the ordnance (energetics) waste stream: unexploded ordnance; stockpiled; disposed -- at known locations, i.e., disposal pits; discharged -- impact areas, unknown disposal sites; contaminated media; chemical sureties/weapons; biological weapons; munitions production; depleted uranium; and rocket motor and fuel disposal (open burn/open detonation). Because of time constraints, the Military Munitions Waste Working Group has focused on unexploded ordnance and contaminated media with the understanding that remaining waste streams will be considered as time permits. Contents of this report are as follows: executive summary; introduction; Military Munitions Waste Working Group charter; description of priority waste stream problems; shortcomings of existing approaches, processes and technologies; innovative approaches, processes and technologies, work force planning, training, and education issues relative to technology development and cleanup; criteria used to identify and screen potential demonstration projects; list of potential candidate demonstration projects for the DOIT committee decision/recommendation and appendices.

  4. KKG Group Paraffin Removal

    SciTech Connect (OSTI)

    Schulte, Ralph

    2001-12-01T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed a test of a paraffin removal system developed by the KKG Group utilizing the technology of two Russian scientists, Gennady Katzyn and Boris Koggi. The system consisting of chemical ''sticks'' that generate heat in-situ to melt the paraffin deposits in oilfield tubing. The melted paraffin is then brought to the surface utilizing the naturally flowing energy of the well.

  5. Standard Format and Content for Emergency Plans

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume addresses recommended emergency plan format and content for Operational Emergency Base Programs and Operational Emergency Hazardous Material Programs. Canceled by DOE G 151.1-3.

  6. Peer Mentor Handbook Table of Contents

    E-Print Network [OSTI]

    Lin, Zhiqun

    Peer Mentor Handbook #12;Table of Contents Learning Communities Characteristics ..............................................................................................4 Skills for Effective Mentors ...............................................................................................................7 Ethical Considerations for the Peer Mentor

  7. TABLE OF CONTENTS NIST Map ...................................................................................................................................................3

    E-Print Network [OSTI]

    TABLE OF CONTENTS NIST Map the Power Grid PML TIME SPEAKER UNIVERSITY TITLE LAB 3:00P Brian Weinstein American University Temperature

  8. Mass and spin content of a free relativistic particle of arbitrary spins and the group

    E-Print Network [OSTI]

    Nikitin, Anatoly

    of particles with several spins and masses which can exist in positive as well as negative energy states Postal 20-364, 01000 Mexico D. F., Mexico 2 Instituto de Ciencias Nucleares, UNAM, Apdo. Postal 70 approach to the free parti- cle of arbitrary spins whose relativistic equation can be obtained from

  9. Research Groups - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch Finds VitaminResearch Groups

  10. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALS Communications Group Print

  11. # Energy Measuremenfs Group

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal -Center05Sites »ri

  12. Environmental/Interest Groups

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...)369s ..T

  13. Specific Group Hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3Biology|SolarSpeakers BureauSpecialSpecific Group

  14. Computer Modeling of Violent Intent: A Content Analysis Approach

    SciTech Connect (OSTI)

    Sanfilippo, Antonio P.; Mcgrath, Liam R.; Bell, Eric B.

    2014-01-03T23:59:59.000Z

    We present a computational approach to modeling the intent of a communication source representing a group or an individual to engage in violent behavior. Our aim is to identify and rank aspects of radical rhetoric that are endogenously related to violent intent to predict the potential for violence as encoded in written or spoken language. We use correlations between contentious rhetoric and the propensity for violent behavior found in documents from radical terrorist and non-terrorist groups and individuals to train and evaluate models of violent intent. We then apply these models to unseen instances of linguistic behavior to detect signs of contention that have a positive correlation with violent intent factors. Of particular interest is the application of violent intent models to social media, such as Twitter, that have proved to serve as effective channels in furthering sociopolitical change.

  15. Digital Technology Group Computer Laboratory

    E-Print Network [OSTI]

    Cambridge, University of

    Digital Technology Group 1/20 Computer Laboratory Digital Technology Group Computer Laboratory William R Carson Building on the presentation by Francisco Monteiro Matlab #12;Digital Technology Group 2/20 Computer Laboratory Digital Technology Group Computer Laboratory The product: MATLAB® - The Language

  16. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  17. Winter 2015 Positive Parenting Group

    E-Print Network [OSTI]

    Winter 2015 Positive Parenting Group This is an eight-week parent group series starting Monday, January 12, 2015 Future parent group sessions to be held: January 26 (no group 19th ) February 2, 9 and 23 (no group 16th ) and March 2, 9 and 16 6:00 p.m. to 8:00 p.m. Room 145 of the Clinical Services

  18. Network Coding for Large Scale Content Distribution

    E-Print Network [OSTI]

    Keinan, Alon

    Network Coding for Large Scale Content Distribution IEEE Infocom 2005 Christos Gkantsidis College propose a new scheme for content distribution of large files that is based on network coding. With network coding, each node of the distribution network is able to generate and transmit encoded blocks

  19. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18T23:59:59.000Z

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  20. Table of Contents Executive Summary............................................................................................................................................ 1

    E-Print Network [OSTI]

    Fainman, Yeshaiahu

    ........................................................................................................................................................ 47 Recycling and Waste Group... 76 Appendix C: Sustainability Organizations on Campus

  1. Effects of Cu Content and Preaging on Precipitation Characteristics in Aluminum Alloy 6022

    E-Print Network [OSTI]

    Laughlin, David E.

    Effects of Cu Content and Preaging on Precipitation Characteristics in Aluminum Alloy 6022 W and artificial aging response in aluminum alloy 6022 were investigated using transmission electron microscopy,are an important group of aluminum alloys that can be although its structure has been proposed

  2. Annals of Nuclear Energy 38 (2011) 808816 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Demazière, Christophe

    2011-01-01T23:59:59.000Z

    Keywords: Neutron noise ANM Power reactor approximation 2-Group theory Diffusion theory In this study of Nuclear Engineering, Chalmers University of Technology (Dema zière, 2004). The reactor transfer functionAnnals of Nuclear Energy 38 (2011) 808­816 Contents lists available at ScienceDirect Annals

  3. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    universal access. The Cordon Count data, which allows access only to funding agencies or their agents, had in Transportation University of Toronto Telephone: (416) 978-7282 #12;TABLE OF CONTENTS SUMMARY ............................................................................ 16 UNIVERSITY RESEARCH ....................................................................... 16

  4. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2001 prepared by: Data Management Group Joint Program..............................................................................2 Text Based Data Retrieval System `drs' ..........................................................2 Internet Browser Data Retrieval System (iDRS)..............................................3 Complex Data

  5. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 1999 prepared by: Data Management Group Joint Program................................................................. 1 INFORMATION PROCESSING ............................................. 2 Text Based Data Retrieval System `drs' ........................ 2 Internet Browser Data Retrieval System (iDRS) ............ 3

  6. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    iv Data Management Group Annual Report 2003 City of Hamilton City of Toronto GO Transit Regional of York Toronto Transit Commission The Data Management Group is a research program located ........................................................................................................ 3 Text-based Data Retrieval System `drs

  7. Weighter Long Term by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weighted Running Jobs by Group Weighted Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 14:00:02...

  8. INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP

    E-Print Network [OSTI]

    space exploration infrastructure standards facilitating interoperability through an international with relevant existing international working groups/ organisations. · Preparation and Organization of a WS1 INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP WORKPLAN Update following 3rd ISECG Meeting

  9. ASD Groups | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASD Groups Accelerator Operations and Physics Applies integrated expertise in accelerator physics, operations techniques, safety systems, software development, and numerical...

  10. The endomorphism near ring on the quaternion group 

    E-Print Network [OSTI]

    King, Mary Katherine

    1969-01-01T23:59:59.000Z

    ) (Year) Major Subject: Mathematics TNE ENDOMO1PNTSM NEAR RlNG ON T11E QUATEPBTON GROUP A Thesis by Mary Katherine King Approved as to style and content by: ha man of Committee (Member) (Member) (Memb er) (Memb r) (Member) ~Au, ust 1969 (Month...~eedin s of the American Mathematical ~Societ Definition 1. 1. A near r~in is an ordered triple (R, +, ~ ) such that a) (R, +) is a group, b) (R, ~ ) is a semigroup, c) . is left distributive over +, i. e. rj (r2 + 13) = r r + r r for each r , r , r s R. D*ft t ' 1...

  11. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2000 prepared by: Data Management Group Joint Program the operation of the EMME/2 simu- lation package on the Data Management Group's computer system. During the year computing resource at the DMG. A major challenge in 2000 was to maintain this service while operating out

  12. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2004 City of Hamilton City of Toronto GO Transit Regional of York Toronto Transit Commission The Data Management Group is a research program located of the funding partners: Ministry of Transportation, Ontario #12;SUMMARY The Data Management Group (DMG

  13. Fermilab Steering Group Report

    SciTech Connect (OSTI)

    Beier, Eugene; /Pennsylvania U.; Butler, Joel; /Fermilab; Dawson, Sally; /Brookhaven; Edwards, Helen; /Fermilab; Himel, Thomas; /SLAC; Holmes, Stephen; /Fermilab; Kim, Young-Kee; /Fermilab /Chicago U.; Lankford, Andrew; /UC, Irvine; McGinnis, David; /Fermilab; Nagaitsev, Sergei; /Fermilab; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01T23:59:59.000Z

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the industrialization of ILC components in the U.S. and creating an engineering opportunity for ILC cost reductions. It offers an early and tangible application for ILC R&D in superconducting technology, attracting participation from accelerator scientists worldwide and driving forward the technology for still higher-energy accelerators of the future, such as a muon collider. To prepare for a future decision, the Fermilab Steering Group recommends that the laboratory seek R&D support for Project X, in order to produce an overall design of Project X and to spur the R&D and industrialization of ILC linac components needed for Project X. Advice from the High Energy Physics Advisory Panel will guide any future decision to upgrade the Fermilab accelerator complex, taking into account developments affecting the ILC schedule and the continuing evaluation of scientific priorities for U.S. particle physics. Fermilab should also work toward increased resources for longer-term future accelerators such as a muon collider, aiming at higher energies than the ILC would provide.

  14. Milk dispenser for variable fat content

    E-Print Network [OSTI]

    Henion, Julie E

    2011-01-01T23:59:59.000Z

    This thesis describes the development of a new milk dispenser product that is designed to dispense milk with varying levels of milk fat content. The product contains two tanks of milk, one containing skim and one containing ...

  15. The Digital Divide: It's the Content Stupid 

    E-Print Network [OSTI]

    Guadamuz, Andres

    2005-01-01T23:59:59.000Z

    The article examines the notion of the digital divide, not purely from physical access to the Internet, but from availability to online content. It focusses particularly on concerns held by developing countries, and of ...

  16. Correlation properties of loose groups

    SciTech Connect (OSTI)

    Maia, M.A.G.; Da Costa, L.N. (Observatorio Nacional do Brasil, Rio de Janeiro (Brazil))

    1990-02-01T23:59:59.000Z

    The two-point spatial correlation function for loose groups of galaxies is computed, using the recently compiled catalog of groups in the southern hemisphere. It is found that the correlation function for groups has a similar slope to that of galaxies but with a smaller amplitude, confirming an earlier result obtained from a similar analysis of the CfA group catalog. This implies that groups of galaxies are more randomly distributed than galaxies, which may be consistent with the predictions of Kashlinsky (1987) for a gravitational clustering scenario for the formation of large-scale structures. 21 refs.

  17. Digital Strategies Group Provide direction and strategic planning for the libraries' development of digital activities that focus on

    E-Print Network [OSTI]

    Schweik, Charles M.

    Digital Strategies Group Charge: Provide direction and strategic planning for the libraries' development of digital activities that focus on digital content that is created or collected by the libraries within the libraries of current and emerging issues related to digital content such as rights management

  18. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    September 11, 1998 Meeting June 22, 1998 Meeting May 27, 1998 Meeting November 3, 1997 Meeting September 18, 1997 Meeting More Documents & Publications TEC Working Group...

  19. Integrity and access control in untrusted content distribution networks

    E-Print Network [OSTI]

    Fu, Kevin E. (Kevin Edward), 1976-

    2005-01-01T23:59:59.000Z

    A content distribution network (CDN) makes a publisher's content highly available to readers through replication on remote computers. Content stored on untrusted servers is susceptible to attack, but a reader should have ...

  20. Method of determining a content of a nuclear waste container

    DOE Patents [OSTI]

    Bernardi, Richard T. (Prospect Heights, IL); Entwistle, David (Buffalo Grove, IL)

    2003-04-22T23:59:59.000Z

    A method and apparatus are provided for identifying contents of a nuclear waste container. The method includes the steps of forming an image of the contents of the container using digital radiography, visually comparing contents of the image with expected contents of the container and performing computer tomography on the container when the visual inspection reveals an inconsistency between the contents of the image and the expected contents of the container.

  1. On The Harmonic Oscillator Group

    E-Print Network [OSTI]

    Raquel M. Lopez; Sergei K. Suslov; Jose M. Vega-Guzman

    2011-12-04T23:59:59.000Z

    We discuss the maximum kinematical invariance group of the quantum harmonic oscillator from a view point of the Ermakov-type system. A six parameter family of the square integrable oscillator wave functions, which seems cannot be obtained by the standard separation of variables, is presented as an example. The invariance group of generalized driven harmonic oscillator is shown to be isomorphic to the corresponding Schroedinger group of the free particle.

  2. Reformulating Competition? Gasoline Content Regulation and Wholesale Gasoline Prices

    E-Print Network [OSTI]

    Brown, Jennifer; Hastings, Justine; Mansur, Erin T.; Villas-Boas, Sofia B

    2007-01-01T23:59:59.000Z

    Regulation and Arbitrage in Wholesale Gasoline Markets,Content Regulation and Wholesale Gasoline Prices JenniferCONTENT REGULATION AND WHOLESALE GASOLINE PRICES by Jennifer

  3. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC Educating Consumers: New Content on Diesel...

  4. U-094: EMC Documentum Content Server Lets Local Administrative...

    Broader source: Energy.gov (indexed) [DOE]

    4: EMC Documentum Content Server Lets Local Administrative Users Gain Elevated Privileges U-094: EMC Documentum Content Server Lets Local Administrative Users Gain Elevated...

  5. Safarevic's Theorem on Solvable Groups as Galois Groups

    E-Print Network [OSTI]

    extension Kjk with Galois group G(Kjk) ¸ = G. Ÿ SafareviŸc proved this result in 1954. The intricate proof ) are embedable into G. Then there exists a Galois extension Kjk with Galois group isomorphic to G, which

  6. Neil 65 Group Picture Neil 65 Group Picture

    E-Print Network [OSTI]

    Mohar, Bojan

    Neil 65 Group Picture Neil 65 Group Picture December 14, 2003 Row 1: Tom Dowling, Nolan Mc-Marie Belcastro, Chris Stephens, Rajneesh Hegde Row 2: Paul Wollan, Bruce Richter, Mike Plummer, Xiaoya Zha, Dan Bannai, Mike Albertson, Joan Hutchinson, Matt Devos, Tom Zaslovsky, Mark Ellingham, Sandra Kingan, James

  7. Presentation SCA Group 1 SCA Group 2007-03-15

    E-Print Network [OSTI]

    -03-15 Every day, millions of people use our products We are here to develop and improve everyday lives. People SCA Group 2007-03-15 SCA is a global consumer goods and paper company We offer personal care products #12;4 SCA Group 2007-03-15 Personal Care Tissue Packaging Forest Products Business areas Operations

  8. Infrared Thermography (IRT) Working Group

    Broader source: Energy.gov (indexed) [DOE]

    Infrared Thermography (IRT) Working Group Sco McWilliams U.S. Photovoltaic Manufacturing Consor;um (PVMC) Infrared Thermography Infrared Thermography (IRT) has been demonstrated...

  9. Lorentz Group in Ray Optics

    E-Print Network [OSTI]

    S. Baskal; E. Georgieva; Y. S. Kim; M. E. Noz

    2004-01-18T23:59:59.000Z

    It has been almost one hundred years since Einstein formulated his special theory of relativity in 1905. He showed that the basic space-time symmetry is dictated by the Lorentz group. It is shown that this group of Lorentz transformations is not only applicable to special relativity, but also constitutes the scientific language for optical sciences. It is noted that coherent and squeezed states of light are representations of the Lorentz group. The Lorentz group is also the basic underlying language for classical ray optics, including polarization optics, interferometers, the Poincare\\'e sphere, one-lens optics, multi-lens optics, laser cavities, as well multilayer optics.

  10. Physics Division: Subatomic Physics Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subatomic Physics Physics home Subatomic Physics Site Home About Us Groups Applied Modern Physics, P-21 Neutron Science and Technology, P-23 Plasma Physics, P-24 Subatomic...

  11. Primary geologic controls on coalbed methane content

    SciTech Connect (OSTI)

    Thomas, W.A.; Hines, R.A.

    1985-12-12T23:59:59.000Z

    Three primary factors that control gas content in coal beds are present depth of coal, maximum original burial depth, and depositional environments of the coal. Complex distribution of gas content suggests an interplay between these primary factors, as well as other controls. Present depth can be predicted in terms of surface geology and structure. Four closely spaced core holes in the Tuscaloosa area provide detailed data for interpretation of depositional environments and for inference of relative original depth of burial. Gas content apparently is higher in bayfill and bay-margin coals than in coals that were deposited in other environments. Data from petrophysical logs of petroleum wells can be used for regional stratigraphic mapping to outline extent of depositional systems. Correlations show that the section in the Cahaba synclinorium is thicker and contains more coal beds than that in the Black Warrior basin. 15 refs., 22 figs., 5 tabs.

  12. HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Course contentCourse content

    E-Print Network [OSTI]

    Zevenhoven, Ron

    - firedPulverised coal- fired power plantpower plant #12;HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Pulverised coal combustion and gas clean-upPulverised coal combustion and gas clean-up #12;HELSINKIHELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 ·· Course contentCourse content ·· Flue gases and fuel

  13. On the Global Content PMI: Improved Copy-Protected Internet Content Distribution

    E-Print Network [OSTI]

    Matsuoka, Yoky

    On the Global Content PMI: Improved Copy-Protected Internet Content Distribution Tadayoshi Kohno distribution, copy-protection, PMI, risk manage- ment. 1 Introduction The Internet is changing the way Conference, 2001. #12;2 Tadayoshi Kohno and Mark McGovern the Privilege Management Infrastructure (PMI

  14. CH-TRU Waste Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2008-01-16T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  15. Report of the Event Tag Review and Recommendation Group

    SciTech Connect (OSTI)

    ATLAS Group; Assamagan, K.A.; Barberis, D.; Bentvelsen, S.; Brooijmans, G.; Cranmer, K.; Cranshaw, J.; Dell'Acqua, A.; Farbin, A.; Froidevaux, D.; Gianotti, F.; Hinchliffe, I.; LeCompte, T.; Maeno, T.; Malon, D.; Paige, F.; Polesello, G.; Quarrie, D.; Rousseau, D.; Schaffer, R.D.; Smizanska, M.; Unal, G.; Voss, K.; Wielers, M.

    2006-04-12T23:59:59.000Z

    In order to facilitate access to the large volumes of data (multiple petabytes per year) which will be produced during data taking and Monte Carlo production at ATLAS, work has proceeded on building a system of event-level metadata to allow selections of a subset of events to use as input to an analysis. This was included in the ATLAS Computing Model and was first studied and implemented by the Physics Analysis Tools group based on the decisions of the ESD/AOD Task Force. They used tools developed and supported by the CERN IT group and the ATLAS Database group. During 2005 this structure was put through various tests and evaluations. Also, work by physicists on reconstruction and analysis led to an improved understanding of the requirements on the TAG. This report addresses the effect of these new inputs on the previous work with regard to content and the infrastructure needed to support it.

  16. Federal Utility Partnership Working Group

    Broader source: Energy.gov [DOE]

    The Federal Utility Partnership Working Group (FUPWG) establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement cost-effective energy efficiency and water conservation projects through utility incentive programs at Federal sites.

  17. Research documentation per participating group

    E-Print Network [OSTI]

    Franssen, Michael

    Research documentation per participating group #12;2. RESEARCH DOCUMENTATION OF THE GROUP SYSTEM Management Hybrid trucks StDy Steen, R. v.d. (PhD 3) FEM Tyre Modelling StDy 5.4 Mechanical Design Bedem, Ir

  18. 2011 Annual Report Table of Contents

    E-Print Network [OSTI]

    Security ....................................11 National Initiative for Cybersecurity Education (NICE for Emerging Technologies and Applications (CETA) Workshop and Emerging Technologies Security Research Group ........................................... 31 Strategic Goal

  19. Digital Watermark Detection in Visual Multimedia Content

    E-Print Network [OSTI]

    Uhl, Andreas

    Digital Watermark Detection in Visual Multimedia Content Peter Meerwald Cumulative thesis (online or video. Watermark detection is an integral component of a watermarking system. This cumulative thesis. The computational effort for blind, spread-spectrum watermark detection is analyzed in- cluding the determination

  20. Table of Contents ODS Scholars 1

    E-Print Network [OSTI]

    Chapman, Michael S.

    Table of Contents ODS Scholars 1 Endowed Lecture 1 Senju 3 Research Awards 4 Dr. Stewart 5 OHSU (see page two) 2011 ODS Scholars Announced May 2 The $300,000 gift from the ODS Companies provides five students recently were selected as ODS Scholars for 2011-2012. The awardees were announced at the third

  1. Compositional procedural content generation Julian Togelius

    E-Print Network [OSTI]

    Togelius, Julian

    based on ASP undoubtedly performs a search of the content space. The name "solver-based PCG" has been that are diverse and natural-looking (SpeedTree). PCG problems can be posed and solved online as the game is executing, or offline during design time. Like all problems, PCG problems can be cast as search problems

  2. Section 4. Inventory Table of Contents

    E-Print Network [OSTI]

    Section 4. Inventory Table of Contents 4.1 Existing Legal Protections........................................................................................................... 14 #12;Draft Umatilla/Willow Subbasin Plan May 28, 2004 4. Inventory of Existing Activities The following section contains information derived from an inventory questionnaire that was sent

  3. WWW-2005 Tutorial Web Content Mining

    E-Print Network [OSTI]

    Hu, Wen-Chen

    of surface Web and deep Web. Surface Web: pages that can be browsed using a browser. Deep Web: databasesWWW-2005 Tutorial Web Content Mining Bing Liu Department of Computer Science University of Illinois at Chicago (UIC) liub@cs.uic.edu http://www.cs.uic.edu/~liub The 14th International World Wide Web Conference

  4. Heat Content Changes in the Pacific Ocean

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Heat Content Changes in the Pacific Ocean The Acoustic Thermometry of Ocean Cli- mate (ATOC assimilating ocean observations and changes expected from surface heat fluxes as measured by the daily National are a result of advection of heat by ocean currents. We calculate that the most likely cause of the discrepancy

  5. Philosophy 57 Greensheet (Syllabus) Table of Contents

    E-Print Network [OSTI]

    Fitelson, Branden

    Philosophy 57 Greensheet (Syllabus) Table of Contents: Instructor Information Course Home Page Greensheet Page Page 1 of 3http://philosophy.wisc.edu/fitelson/57/syllabus.htm #12;I highly recommend using/syllabus.htm #12;Your 2 lowest quiz grades will be dropped ( , your 5 best quiz scores will be averaged). i

  6. CONTROL OF HAZARDOUS ENERGY Table Of Contents

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Sep 13 i Section 12 CONTROL OF HAZARDOUS ENERGY Table Of Contents Section: Page 12.A General.................. .............................................. ... .12-1 12.B Hazardous Energy.......................................................12-6 #12;EM 385-1-1 XX Sep 13 12-1 SECTION 12 CONTROL OF HAZARDOUS ENERGY 12.A GENERAL 12.A.01 When

  7. CenterPulse ContentsDirector's Notes

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    to our year-in-review newsletter, CenterPulse. Please forward it to your colleagues to help us improveCenterPulse ContentsDirector's Notes 2012 Year in Review Happy New Year, everyone! The year 2012 that recommended full continuation of funding for years 52-56 of NIH support. While the final funding level

  8. TABLE OF CONTENTS Organizational Profile i

    E-Print Network [OSTI]

    Magee, Joseph W.

    1 #12;2 TABLE OF CONTENTS Organizational Profile i Leadership 1 1.1a. Vision, Values and Mission 1 1.1b. Communication and Organizational Performance 3 1.2a. Organizational Governance 3 1.2b. Legal employees with ORGANIZATIONAL PROFILE $26 million in revenue. Most of that revenue was generated by its

  9. Chemistry Department Assessment Table of Contents

    E-Print Network [OSTI]

    Bogaerts, Steven

    0 Chemistry Department Assessment May, 2006 Table of Contents Page Executive Summary 1 Prelude 1 Mission Statement and Learning Goals 1 Facilities 2 Staffing 3 Students: Chemistry Majors and Student Taking Service Courses Table: 1997-2005 graduates profile Table: GRE Score for Chemistry Majors, 1993

  10. Schedule Worksheet -Table of Contents Subject Description

    E-Print Network [OSTI]

    Pittendrigh, Barry

    Subject Description NUPH NUPH-Nuclear Pharmacy NUR NUR-Nursing OBHR OBHR-Orgnztnl Bhvr &Hum Resrce OLS OLS Description CLPH CLPH-Clinical Pharmacy CMCI CMCI-CIC Common Market CMPL CMPL-Comparative Literature CNIT CNIT Sci NS NS-Naval Science NUCL NUCL-Nuclear Engineering #12;Schedule Worksheet - Table of Contents

  11. Schedule Worksheet -Table of Contents Subject Description

    E-Print Network [OSTI]

    Ginzel, Matthew

    ;Schedule Worksheet - Table of Contents Subject Description NUPH NUPH-Nuclear Pharmacy NUR NUR-Nursing NUTR Description CLPH CLPH-Clinical Pharmacy CMCI CMCI-CIC Common Market CMPL CMPL-Comparative Literature CNIT CNIT-Music History & Theory NRES NRES-Natural Res & Environ Sci NS NS-Naval Science NUCL NUCL-Nuclear Engineering #12

  12. VEHICLE SERVICES POLICY Table of Contents

    E-Print Network [OSTI]

    Shihadeh, Alan

    VEHICLE SERVICES POLICY Table of Contents 1. Policy 2. Procedures a. Vehicle Services Oversight b. Vehicle Maintenance and Inspection c. Authorized Drivers d. Responsibilities Back to Top (To download requirements for AUB's vehicles, the University has adopted a policy of centralizing these activities under one

  13. Streiffer's Job Market Sampler Table of Contents

    E-Print Network [OSTI]

    Streiffer, Robert

    Streiffer's Job Market Sampler Table of Contents · Cover letters addressing a variety of jobs Dean Sigman, I am writing to apply for position number 8, advertised in Jobs for Philosophers, volume. Respectfully yours, Robert Streiffer (rstreiff@mit.edu) #12;Cover letter for a job listing which

  14. Content Literacy Tied to the New Standards

    E-Print Network [OSTI]

    Stuart, Steven J.

    Content Literacy Tied to the New Standards Tom Peters, Ed.D. SC Coalition for Mathematics & Science as they relate to the Common Core State Standards for Mathematics and the Next Generation Science Standards*. #12 in extended discussion about those ideas. Framework for K-12 Science pg 76 #12;So What Does this mean in K-12

  15. VEHICLES, MACHINERY AND EQUIPMENT Table Of Contents

    E-Print Network [OSTI]

    US Army Corps of Engineers

    of a license/permit for each piece of equipment, an Operator Equipment Qualification Record (DA Form 348EM 385-1-1 XX Sep 13 i Section 18 VEHICLES, MACHINERY AND EQUIPMENT Table Of Contents Section: Page...................................................................18-16 18.G Machinery And Mechanized Equipment.........................18-16 18.H Drilling Equipment

  16. WORK PLATFORMS and SCAFFOLDING Table Of Contents

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Sep 13 i Section 22 WORK PLATFORMS and SCAFFOLDING Table Of Contents Section: Page 22 (Personnel) Platforms...................22-33 22.L Elevating Work Platforms..............................................22-33 22.M Vehicle-Mounted Elevating And Rotating Work Platforms (Aerial Devices

  17. AD CONTENT CHECK LIST: o Company logo

    E-Print Network [OSTI]

    Zakharov, Vladimir

    AD CONTENT CHECK LIST: o Company logo o Address o Contact Info: Phone, web site, and/or e-mail o that will perfectly reflect your image! Acceptable Formats For Logos/Graphics/Photos High-Res (300 dpi) PDF, EPS

  18. Contents course 424304 / 2011 1 Exergy analysis

    E-Print Network [OSTI]

    Zevenhoven, Ron

    energy 2c.6 Tidal energy, Ocean thermal energy conversion (OTEC), osmotic power 3. ThermodynamicsContents course 424304 / 2011 1 Exergy analysis 1.1 Exergy vs. energy 1.2 Reversible work radiation 2a.8 Environmental radiation 2b Solar energy (thermal, PV, TIR) 2b.1 Solar radiation 2b.2 Photo

  19. Marseglia Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNew Hampshire:Marin EnergyChoiceMarseglia Group

  20. Groups

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | OpenInformationMagnetics

  1. Midwest Hydro Users Group Meeting

    Broader source: Energy.gov [DOE]

    The Midwest Hydro Users Group will be holding their annual Fall meeting on November 12th and 13th in Wausau, Wisconsin.  An Owners-only meeting on the afternoon of the 12th followed by a full...

  2. Optimization Online - The wireless network jamming problem

    E-Print Network [OSTI]

    Clayton W. Commander

    2007-02-06T23:59:59.000Z

    Feb 6, 2007 ... Two case studies are presented comparing the formulations with the addition of various percentile constraints. Finally, directions of further ...

  3. New Research on Jamming Behavior Expands Understanding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPC for Next-Generation ClimateNew

  4. New Research on Jamming Behavior Expands Understanding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPC for Next-Generation ClimateNewNew

  5. Soft Particle Suspensions Near Jamming: Structure, Diffusion,

    E-Print Network [OSTI]

    McGaughey, Alan

    fluids -- suspensions, emulsions, foams, etc. -- can exhibit many of the same behavior as conventional into a gumball machine -- plays an analogous role to the glass transition temperature in con- ventional glass-forming materials like molecular, polymeric, or metallic glasses. Above rcp, the suspension is a fluid -- albeit

  6. Energy Education Data Jam | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy Policy Act of 2005and Money |HydropowerEducation

  7. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol Jump to:EnergEnergy 21 Jump to:Energy DataFeatures

  8. Preventing Space Traffic Jams | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for

  9. New Research on Jamming Behavior Expands Understanding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011R - 445Reports Chart OffshoreNew

  10. New Research on Jamming Behavior Expands Understanding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011R - 445Reports Chart OffshoreNewNew

  11. New Research on Jamming Behavior Expands Understanding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011R - 445Reports Chart OffshoreNewNewNew

  12. New Research on Jamming Behavior Expands Understanding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011R - 445Reports Chart

  13. New Research on Jamming Behavior Expands Understanding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011R - 445Reports ChartNew Research on

  14. New Research on Jamming Behavior Expands Understanding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011R - 445Reports ChartNew Research onNew

  15. OpenEI Community - Data Jam

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff the GridHome All0 en HowEDI)

  16. Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro Site Jump(RedirectedDalianDasa Jump to:Home Energy

  17. Preventing Space Traffic Jams | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev next > Sun Mon2015Department

  18. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIA TypeEnergyStay

  19. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIA TypeEnergyStayWind

  20. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIA TypeEnergyStayWind

  1. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIA TypeEnergyStayWind

  2. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIA TypeEnergyStayWindApps

  3. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIA

  4. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIAEnergy Data

  5. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIAEnergy DataBig Data

  6. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIAEnergy DataBig

  7. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIAEnergy DataBig

  8. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIAEnergy

  9. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:Econ Inc JumpEIAEnergyOpen Data Type

  10. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLC Place: Ketchum, Idaho Zip:EnergyfilesystemEnergy

  11. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLC Place: Ketchum, Idaho

  12. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLC Place: Ketchum, Idaho(1) Datapalooza (1) EDI (2)

  13. Galois Groups of Schubert Problems

    E-Print Network [OSTI]

    Martin Del Campo Sanchez, Abraham

    2012-10-19T23:59:59.000Z

    GALOIS GROUPS OF SCHUBERT PROBLEMS A Dissertation by ABRAHAM MARTIN DEL CAMPO SANCHEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY... August 2012 Major Subject: Mathematics GALOIS GROUPS OF SCHUBERT PROBLEMS A Dissertation by ABRAHAM MARTIN DEL CAMPO SANCHEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  14. Characterization, Leaching, and Filtration Testing for Bismuth Phosphate Sludge (Group 1) and Bismuth Phosphate Saltcake (Group 2) Actual Waste Sample Composites

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn; Edwards, Matthew K.; Fiskum, Sandra K.; Hallen, Richard T.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.

    2009-02-19T23:59:59.000Z

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.() The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—bismuth phosphate sludge (Group 1) and bismuth phosphate saltcake (Group 2)—are the subjects of this report. The Group 1 waste was anticipated to be high in phosphorus and was implicitly assumed to be present as BiPO4 (however, results presented here indicate that the phosphate in Group 1 is actually present as amorphous iron(III) phosphate). The Group 2 waste was also anticipated to be high in phosphorus, but because of the relatively low bismuth content and higher aluminum content, it was anticipated that the Group 2 waste would contain a mixture of gibbsite, sodium phosphate, and aluminum phosphate. Thus, the focus of the Group 1 testing was on determining the behavior of P removal during caustic leaching, and the focus of the Group 2 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  15. TEC Working Group Topic Groups Routing | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group Topic Groups Routing

  16. TEC Working Group Topic Groups Section 180(c) Meeting Summaries |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group Topic Groups

  17. Hanergy Holdings Group Company Ltd formerly Farsighted Group aka Huarui

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy Information Hanergy Holdings Group Company Ltd

  18. Structural group analysis of residues from Athabasca bitumen

    SciTech Connect (OSTI)

    Gray, M.R.; Choi, J.H.K.; Egiebor, N.O.; Kirchen, R.P.; Sanford, E.C.

    1988-06-01T23:59:59.000Z

    Non-distillable fractions of hydrocarbons such as bitumen are a challenge for analysis because of their molecular complexity and high heteroatom content. One method for characterizing their composition is by analysis for a relatively small number of structures expected to predominate in the mixture, i.e. for the significant structural groups. Because NMR spectroscopy can give quantitative data on the distribution of hydrogen and carbon types, it is an ideal method for group-based analysis. This study uses a structural group formalism which combines data from several analytical methods into a single profile. Residue fractions derived from Athabasca bitumen were investigated to determine the different chemical structures which could have an impact on subsequent processing. Structural analysis is the identification of key structures from analytical data that characterize a complex mixture. Higher accuracy data, from elemental, /sup 1/H-NMR, IR and titration analyses, are used to construct balance equations which must be satisfied. The spectral envelope of /sup 13/C-NMR is more difficult to resolve quantatitively, and hence /sup 13/C-NMR data are used as constraints to compute the concentrations of structural groups. The mathematical notation and methods have been presented previously. The structural analysis transforms the spectrometric data into a more useable form; the maximum number of groups that can be calculated is limited to the number of useful analytical measurements.

  19. Representations of the rotation group

    E-Print Network [OSTI]

    Broemeling, Lyle D

    1963-01-01T23:59:59.000Z

    ' and S be arbitrary positive constants. Define f = f + f + f' and I 2 e hl = /f and h2 =f2/f. ? 1 Choose a neighborhood V such that ~ h (X) ? h (X) ~&8 ' when X y6 V. i y If fi 6 L V and f (X) & E C II (S X), then ff (S X) g 0 implies X S 6V. -1 Thus bu... ACKNOWLEDGMENT I am deeply indebted to Professor E. R. Keown for the time and encouragement which he has generously given. Several impasses were overcome only through his detailed study of the problems. TABLE OF CONTENTS Page CHAPTER I CHAPTER II CHAPTER...

  20. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.