Sample records for izat ion program

  1. NA61/SHINE ion program

    E-Print Network [OSTI]

    Maja Mackowiak for the NA61 Collaboration

    2010-09-06T23:59:59.000Z

    The Super Proton Synchrotron (SPS) at CERN covers one of the most interesting regions of the phase diagram (T - \\mu_{B}) of strongly interacting matter. The study of central Pb+Pb collisions by NA49 indicate that the threshold for deconfinement is reached already at the low SPS energies. Theoretical considerations predict a critical point of strongly interacting matter at energies accessible at the SPS. The NA61/SHINE experiment, a successor of the NA49 project, will study hadron production in p+p, p+A, h+A, and A+A reactions at various energies. The broad physics program includes the investigation of the properties of strongly interacting matter, as well as precision measurements of hadron spectra for the T2K neutrino experiment and for the Pierre Auger Observatory and KASCADE cosmic-ray projects. The main physics goals of the NA61/SHINE ion program are to study the properties of the onset of deconfinement at low SPS energies and to find signatures of the critical point of strongly interacting matter. To achieve these goals a broad range in the (T - \\mu_{B}) phase diagram will be covered by performing an energy (10A-158A GeV/c) and system size (p+p, B+C, Ar+Ca, Xe+La) scan. The first data for this 2-D scan were taken in 2009, i.e. p+p interactions at 20, 30, 40, 80, 158 GeV/c beam energy. This contribution will summarize physics arguments for the NA61/SHINE ion program, show the detector performance and present the current status of the experiment and plans for the next years.

  2. The Scientific program with RIBRAS (Radioactive Ion Beams in Brasil)

    SciTech Connect (OSTI)

    Lichtenthaeler, R.; Lepine-Szily, A.; Guimaraes, V.; Faria, P. N. de; Mendes, D. R. Jr.; Pires, K. C. C.; Morcelle, V.; Hussein, M. S.; Barioni, A.; Condori, R. Pampa; Morais, M. C.; Alcantara Nunez, J.; Camargo, O. Jr.; Otani, Y.; Leistenschneider, E.; Scarduelli, V. [Instituto de Fisica da Universidade de Sao Paulo, C.P. 66318, 05389-970 Sao Paulo (Brazil); Benjamim, E. A. [Universidad de Santiago de Compostela, Depto. Fisica Particulas, Facultad Fisica, Campus Sur s/n 15786 Santiago de Compostela (Spain) (Spain); Moro, A. M. [Departamento de FAMN, Universidad de Sevilla, Apdo 1065, E-41080, Sevilla (Spain); Arazi, A. [Laboratorio Tandar, Departamento de Fisica, Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429), Buenos Aires (Argentina); Assuncao, M. [UNIFESP-Campus de Diadema, SP (Brazil)] (and others)

    2009-06-03T23:59:59.000Z

    The Radioactive Ion Beams Facility (RIBRAS) is in operation since 2004 at the Pelletron Accelerator Laboratory of the University of Sao Paulo and consists of two superconducting solenoids capable of producing low energy secondary beams of light exotic nuclei. Measurements of the elastic scattering, breakup and transfer reactions with radioactive projectiles such as {sup 6}He,{sup 8}Li,{sup 7}Be on several targets have been performed. A review of the research program carried on along the last four years using the RIBRAS facility is presented.

  3. YEAR-END REPORT: HEAVY ION FUSION PROGRAM

    E-Print Network [OSTI]

    Fusion Staff, Heavy Ion

    2010-01-01T23:59:59.000Z

    and 2826 MB as wel i as General Electric F e B S i ~ . TheseAllied Chemical and General Electric have corporate researchby a factor of 10. General Electric's program on the pro­

  4. Engineering nanostructured electrodes away from equilibrium for lithium-ion Yanyi Liu, Dawei Liu, Qifeng Zhang and Guozhong Cao*

    E-Print Network [OSTI]

    Cao, Guozhong

    - izations of nanostructured materials for energy storage devices. Dawei Liu Dr Dawei Liu is a postdocEngineering nanostructured electrodes away from equilibrium for lithium-ion batteries Yanyi Liu materials, Li-ion batteries have achieved significant progress in energy storage performance since

  5. Micro Ion Source Program NA22 Plutonium Detection Portfolio Final Report

    SciTech Connect (OSTI)

    James E. Delmore

    2010-09-01T23:59:59.000Z

    The purpose of the micro ion source program was to enhance the performance of thermal ionization mass spectrometry (TIMS) for various actinides and fission products. The proposal hypothesized that when ions are created at the ion optic center of the mass spectrometer, ion transmission is significantly increased and the resulting ion beam is more sharply focused. Computer modeling demonstrated this logic. In order to prove this hypothesis it was first necessary to understand the chemistry and physics governing the particular ion production process that concentrates the emission of ions into a small area. This has been achieved for uranium and technetium, as was shown in the original proposal and the improvement of both the beam transmission and sharpness of focus were proven. Significantly improved analytical methods have been developed for these two elements based upon this research. The iodine portion of the proposal turned out to be impractical due to volatility of iodine and its compounds. We knew this was a possibility prior to research and we proceeded anyway but did not succeed. Plutonium is a potential option, but is not quite up to the performance level of resin beads. Now, we more clearly understand the chemical and physical issues for plutonium, but have not yet translated this knowledge into improved analytical processes. The problems are that plutonium is considerably more difficult to convert to the required intermediate species, plutonium carbide, and the chemical method we developed that works with uranium functions only moderately well with plutonium. We are of the opinion that, with this knowledge, similar progress can be made with plutonium.

  6. Advances in the Ion Source Research and Development Program at ISIS

    SciTech Connect (OSTI)

    Faircloth, D.C.; Thomason, J.W.G.; Sidlow, R.; Whitehead, M.O. [CCLRC, RAL, ISIS, Didcot, Oxon, OX11 0QX (United Kingdom)

    2005-04-06T23:59:59.000Z

    This paper covers the advances in the ion source research and development Program at ISIS over the last 2 years. The work is a combination of theoretical finite element analysis calculations and experiments conducted on a purpose built development rig. The broad development goals are higher beam current with longer pulse length. A Finite Element Analysis (FEA) model is used here to understand the steady state and dynamic thermal behavior of the source, and to investigate the design changes necessary to offset the extra heating. Electromagnetic FEA modeling of the extraction region of the ISIS H- ion source has suggested that the present set up of extraction electrode and 90 deg. sector magnet is sub-optimal, with the result that the beam profile is asymmetric, the beam is strongly divergent in the horizontal plane and there is severe aberration in the focusing in the vertical plane. The FEA model of the beam optics has demonstrated that relatively simple changes to the system should produce a dramatic improvement in performance. The theoretical and experimental results are compared here.

  7. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Quarkonium Production in Elementary and Heavy Ion Collisions

    SciTech Connect (OSTI)

    Dumitru, A.; Lourenco, C.; Petreczky, P.; Qiu, J., Ruan, L.

    2011-08-03T23:59:59.000Z

    Understanding the structure of the hadron is of fundamental importance in subatomic physics. Production of heavy quarkonia is arguably one of the most fascinating subjects in strong interaction physics. It offers unique perspectives into the formation of QCD bound states. Heavy quarkonia are among the most studied particles both theoretically and experimentally. They have been, and continue to be, the focus of measurements in all high energy colliders around the world. Because of their distinct multiple mass scales, heavy quarkonia were suggested as a probe of the hot quark-gluon matter produced in heavy-ion collisions; and their production has been one of the main subjects of the experimental heavy-ion programs at the SPS and RHIC. However, since the discovery of J/psi at Brookhaven National Laboratory and SLAC National Accelerator Laboratory over 36 years ago, theorists still have not been able to fully understand the production mechanism of heavy quarkonia, although major progresses have been made in recent years. With this in mind, a two-week program on quarkonium production was organized at BNL on June 6-17, 2011. Many new experimental data from LHC and from RHIC were presented during the program, including results from the LHC heavy ion run. To analyze and correctly interpret these measurements, and in order to quantify properties of the hot matter produced in heavy-ion collisions, it is necessary to improve our theoretical understanding of quarkonium production. Therefore, a wide range of theoretical aspects on the production mechanism in the vacuum as well as in cold nuclear and hot quark-gluon medium were discussed during the program from the controlled calculations in QCD and its effective theories such as NRQCD to various models, and to the first principle lattice calculation. The scientific program was divided into three major scientific parts: basic production mechanism for heavy quarkonium in vacuum or in high energy elementary collisions; the formation of quarkonium in nuclear medium as well as the strong interacting quark-gluon matter produced in heavy ion collisions; and heavy quarkonium properties from the first principle lattice calculations. The heavy quarkonium production at a future Electron-Ion Collider (EIC) was also discussed at the meeting. The highlight of the meeting was the apparent success of the NRQCD approach at next-to-leading order in the description of the quarkonium production in proton-proton, electron-proton and electron positron collisions. Still many questions remain open in lattice calculations of in-medium quarkonium properties and in the area of cold nuclear matter effects.

  8. LUCIAE 3.0: A new version of a computer program for Firecracker Model and rescattering in relativistic heavy-ion collisions

    E-Print Network [OSTI]

    Tai An; Sa Ben-Hao

    1998-04-01T23:59:59.000Z

    LUCIAE is a Monte Carlo program that, connected to FRITIOF, implements both the Firecracker Model (FCM), a possible mechanism for collective multi-gluon emission from the colour fields of interacting strings, and the reinteraction of the final state hadrons in relativistic heavy ion collisions. This paper includes a brief presentation of the dynamics of LUCIAE with an emphasis on the new features in this version, as well as a description of the program.

  9. Angular neutron transport investigation in the HZETRN free-space ion and nucleon transport and shielding computer program

    SciTech Connect (OSTI)

    Singleterry, R.C. Jr. [Argonne National Lab. - West, Idaho Falls, ID (United States); Wilson, J.W. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center

    1997-05-01T23:59:59.000Z

    Extension of the high charge and energy (HZE) transport computer program HZETRN for angular transport of neutrons is considered. For this paper, only light ion transport, He{sup 4} and lighter, will be analyzed using a pure solar proton source. The angular transport calculator is the ANISN/PC program which is being controlled by the HZETRN program. The neutron flux values are compared for straight-ahead transport and angular transport in one dimension. The shield material is aluminum and the target material is water. The thickness of these materials is varied; however, only the largest model calculated is reported which is 50 gm/cm{sup 2} of aluminum and 100 gm/cm{sup 2} of water. The flux from the ANISN/PC calculation is about two orders of magnitude lower than the flux from HZETRN for very low energy neutrons. It is only a magnitude lower for the neutrons in the 10 to 20 MeV range in the aluminum and two orders lower in the water. The major reason for this difference is in the transport modes: straight-ahead versus angular. The angular treatment allows a longer path length than the straight-ahead approximation. Another reason is the different cross section sets used by the ANISN/PC-BUGLE-80 mode and the HZETRN mode. The next step is to investigate further the differences between the two codes and isolate the differences to just the angular versus straight-ahead transport mode. Then, create a better coupling between the angular neutron transport and the charged particle transport.

  10. The Research Program at RIBRAS (Radioactive Ion Beams in Brasil)-III

    SciTech Connect (OSTI)

    Lichtenthaeler, R.; Lepine-Szily, A.; Guimaraes, V.; Faria, P. N. de; Mendes, D. R. Jr; Pires, K. C. C.; Morcelle, V.; Barioni, A.; Morais, M. C.; Pampa Condori, R. [Instituto de Fisica da USP, Sao Paulo, Brazil, C.P. 66318, 05314-970 (Brazil); Assuncao, M. [Departamento de Ciencias Exatas e da Terra, Unifesp, Campus de Diadema, Sao Paulo (Brazil); Moro, A. M. [Departamento de FAMN, Universidad de Sevilla, Apdo. 1065, E-41080, Sevilla (Spain); Rodriguez-Gallardo, M. [Departamento de FAMN, Universidad de Sevilla, Apdo. 1065, E-41080, Sevilla (Spain); Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain); Arazi, A. [Laboratorio TANDAR, Comision Nacional de Energia Atomica (Argentina)

    2010-04-30T23:59:59.000Z

    A part of the research program developed in the RIBRAS facility over the last four years is presented. Experiments using radioactive secondary beams of light exotic nuclei such as {sup 6}He, {sup 7}Be, {sup 8}Li on several targets have been performed. Elastic angular distributions have been analysed by the Optical Model and four body Continuous Discretized Coupled Channels Calculations (4b-CDCC) and the total reaction cross sections have been obtained. A comparison between the reaction cross sections of {sup 6}He and other stable projectiles with medium-heavy targets was performed. Measurements of the proton transfer reaction {sup 12}C({sup 8}Li,{sup 9}Be){sup 11}B are also presented.

  11. Ion colliders

    SciTech Connect (OSTI)

    Fischer, W.

    2011-12-01T23:59:59.000Z

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the RHIC and LHC injector chains for the heaviest ion species used to date. The RHIC pulsed sputter source (PSC) and Tandem electrostatic accelerator are being replaced by an Electron Beam Ion Source (EBIS), Radio Frequency Quadrupole (RFQ) and short linac [08Ale1]. With EBIS beams of any element can be prepared for RHIC including uranium and spin-polarized 3He. At CERN an ECR ion source is used, followed by an RFQ and Linac. The ions are then accumulated, electron cooled, and accelerated in LEIR. After transfer to and acceleration in the PS, ion beams are injected into the SPS.

  12. Characterization of high-power lithium-ion cells-performance and diagnostic analysis

    E-Print Network [OSTI]

    2003-01-01T23:59:59.000Z

    by an arrow. Key words: Lithium ion battery, diagnostics,Development Program for Lithium-Ion Batteries: Handbook ofTechnology Development For Lithium- Ion Batteries: Gen 2

  13. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Yang, Li

    2014-01-01T23:59:59.000Z

    References 1. Lithium Ion Batteries: Fundamentals andProgram for Lithium Ion Batteries, U.S. Department ofas Electrolytes for Lithium Ion Batteries Li Yang a , Hanjun

  14. icBIE: A Boundary Integral Equation Program for an Ion Channel in Layered Membrane/Electrolyte Media

    E-Print Network [OSTI]

    Cai, Wei

    in this paper. The program uses a layered media Green's function of the P-B equation in order to accurately and Electromagnetics. External routines/libraries: OpenMP (http://openmp.org/wp/) Nature of problem: Electrostatic method: Boundary integral equation method and the layered media Green's function of the Poisson

  15. Development of ultralow energy (1–10 eV) ion scattering spectrometry coupled with reflection absorption infrared spectroscopy and temperature programmed desorption for the investigation of molecular solids

    SciTech Connect (OSTI)

    Bag, Soumabha; Bhuin, Radha Gobinda; Methikkalam, Rabin Rajan J.; Pradeep, T., E-mail: pradeep@iitm.ac.in [DST Unit of Nanoscience (DST UNS), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India); Kephart, Luke; Walker, Jeff; Kuchta, Kevin; Martin, Dave; Wei, Jian [Extrel CMS, LLC, 575 Epsilon Drive, Pittsburgh, Pennsylvania 15238 (United States)] [Extrel CMS, LLC, 575 Epsilon Drive, Pittsburgh, Pennsylvania 15238 (United States)

    2014-01-15T23:59:59.000Z

    Extremely surface specific information, limited to the first atomic layer of molecular surfaces, is essential to understand the chemistry and physics in upper atmospheric and interstellar environments. Ultra low energy ion scattering in the 1–10 eV window with mass selected ions can reveal extremely surface specific information which when coupled with reflection absorption infrared (RAIR) and temperature programmed desorption (TPD) spectroscopies, diverse chemical and physical properties of molecular species at surfaces could be derived. These experiments have to be performed at cryogenic temperatures and at ultra high vacuum conditions without the possibility of collisions of neutrals and background deposition in view of the poor ion intensities and consequent need for longer exposure times. Here we combine a highly optimized low energy ion optical system designed for such studies coupled with RAIR and TPD and its initial characterization. Despite the ultralow collision energies and long ion path lengths employed, the ion intensities at 1 eV have been significant to collect a scattered ion spectrum of 1000 counts/s for mass selected CH{sub 2}{sup +}.

  16. Characterization of Materials for Li-ion Batteries: Success Stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for Li-ion Batteries: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Materials for Li-ion Batteries: Success...

  17. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program Direction and Analysis DeputyStructure

  18. An ideal program for an M.A. and Ph.D specialization in technical communication

    E-Print Network [OSTI]

    Paggi, Alison Kay

    1979-01-01T23:59:59.000Z

    and production, ph1losophy of sc1ence, ut11ization of instruc- t 1onal materials, engineering and society, engineering analysis, and 1ntroductory courses in chemistry, b1ology, and physics. In addition, students should be required to teach undergraduate... This thes 1s follows the format of PMLA. being graduated from graduate programs in English with any or adequate train1ng 1n technical communication. English departments all over the country express a need for qualified teachers of technical communicat1on...

  19. The Electron Beam Ion Source (EBIS)

    ScienceCinema (OSTI)

    Brookhaven Lab

    2010-01-08T23:59:59.000Z

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  20. Lithium-Ion Battery Recycling Facilities | Department of Energy

    Office of Environmental Management (EM)

    Recycling Facilities Lithium-Ion Battery Recycling Facilities 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  1. SCALABLE NONLINEAR PROGRAMMING VIA EXACT ...

    E-Print Network [OSTI]

    2012-09-05T23:59:59.000Z

    detection of activity, efficient warm-starting, and progress on a primal-dual merit function at every iteration. ... izations for preconditioning the augmented system, detecting its inertia [35] or testing the ...... The control is the cooling water flow u(·).

  2. Ion-neutral chemical reactions between ultracold localized ions and neutral molecules with single-particle resolution

    E-Print Network [OSTI]

    Schiller, Stephan

    + ions and room-temperature O2 have been studied in a laser-cooling ion trap apparatus. For small Coulomb state-selectively. Regarding the ion side of this challenging program, sig- nificant progress was made using laser cooling techniques. In par- ticular, sympathetic cooling by laser-cooled atomic ions

  3. Ion Rings for Magnetic Fusion

    SciTech Connect (OSTI)

    Greenly, John, B.

    2005-07-31T23:59:59.000Z

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a reactor-scale FRC, and the FIREX program was intended to test the ideas behind this approach. We will describe in this report the technological development path and advances in physics understanding that allowed FIREX to reach a regime in which ion rings were reproducibly created with up to about half the current necessary to produce field reversal. Unfortunately, the experiments were limited to this level by a fundamental, unanticipated aspect of the physics of strong ion rings in plasma. The FIREX ring is a strongly anisotropic, current-carrying population of ions moving faster than the Alfven speed in the background plasma. The rapidly changing ring current excites very large-amplitude Alfven waves in the plasma, and these waves strongly affect the ring, causing rapid energy loss in a way that is not compatible with the success of the ring trapping scenario around which FIREX was designed. The result was that FIREX rings were always very short-lived. We will discuss the implication of these results for possible future use of large-orbit ions in FRCs. In short, it appears that a certain range of the parameters characterizing the ring Alfven mach number and distribution function must be avoided to allow the existence of a long-lived energetic ion component in an FRC. This report will explain why FIREX experimental results cannot be directly scaled to quantitatively predict this range for a particular FRC configuration. This will require accurate, three-dimensional simulations. FIREX results do constitute a very good dataset for validating such a code, and simulations already carried out during this program provide a guide to the important physics involved.

  4. Ion dip spectroscopy of cold molecules and ions. Progress report and renewal proposal

    SciTech Connect (OSTI)

    Wessel, J.

    1987-08-13T23:59:59.000Z

    A research program is underway with the objective of developing techniques of high resolution multiphoton spectroscopy for selective, ultrasensitive molecular detection. Methods under study include various forms of ion dip spectroscopy and new methods of ion fragmentation spectroscopy. The studies are providing a new understanding of the fundamental spectroscopy and photophysics of large molecular ions. Dimer and cluster ions of polynuclear aromatics and related species are also being investigated, with potential detection applications.

  5. Characterization of Li-ion Batteries using Neutron Diffraction...

    Broader source: Energy.gov (indexed) [DOE]

    Li-ion batteries Using Neutron Diffraction and Infrared Imaging Techniques: Success Stories from the High Temperature Materials Laboratory (HTML) User Program DOE 2011 Vehicle...

  6. Linking Ion Solvation and Lithium Battery Electrolyte Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Electrolyte Properties Linking Ion Solvation and Lithium Battery Electrolyte Properties 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and...

  7. Characterization of Materials for Li-ion Batteries: Success Stories...

    Broader source: Energy.gov (indexed) [DOE]

    Materials for Li-ion Batteries: Success Stories from the High Temperature Materials Laboratory (HTML) User Program DOE 2010 Vehicle Technologies Annual Merit Review and Peer...

  8. Investigating Iron Ions | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Iron Ions Investigating Iron Ions Computer code provides detailed predictions of highly charged ions in water Using resources at EMSL, scientists obtained...

  9. Helium Ion Microscope | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helium Ion Microscope Helium Ion Microscope The Helium Ion Microscope promises to advance biological, geochemical, biogeochemical, and surfaceinterface studies using its combined...

  10. Helium Ion Microscope | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helium Ion Microscope Helium Ion Microscope Bruce Arey discusses the capabilities of EMSL's new helium ion microscope housed in EMSL's Quiet Wing....

  11. GRADUATE PROGRAM UNDERGRADUATE PROGRAMS

    E-Print Network [OSTI]

    SELF STUDY GRADUATE PROGRAM UNDERGRADUATE PROGRAMS DEPARTMENT OF POLITICAL SCIENCE COLLEGE OF LIBERALARTS TEXAS A&M UNIVERSITY March 2007 #12;SELF STUDY GRADUATE PROGRAM UNDERGRADUATE PROGRAMS DEPARTMENT........................................................................................ 4 Brief History of Degree Programs and the Department

  12. Ion detector

    DOE Patents [OSTI]

    Tullis, Andrew M. (Livermore, CA)

    1987-01-01T23:59:59.000Z

    An improved ion detector device of the ionization detection device chamber ype comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

  13. C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Abstract: Secondary...

  14. Ion Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2003-11-18T23:59:59.000Z

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  15. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing and Materials for Low-Cost Lithium-Ion Batteries Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program...

  16. Design of Safer High-Energy Density Materials for Lithium-Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Safer High-Energy Density Materials for Lithium-Ion Cells Design of Safer High-Energy Density Materials for Lithium-Ion Cells 2012 DOE Hydrogen and Fuel Cells Program and...

  17. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  18. Ion funnel ion trap and process

    DOE Patents [OSTI]

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15T23:59:59.000Z

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  19. Jets in relativistic heavy ion collisions

    SciTech Connect (OSTI)

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01T23:59:59.000Z

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs.

  20. Ion beam processing of advanced electronic materials

    SciTech Connect (OSTI)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01T23:59:59.000Z

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  1. Heavy Ion Event Displays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulated collisions of lead ions in the LHC experiments. Additional photos, video and information are available at these links: Lead-ion collision images from the ALICE...

  2. Recognition and quantitative character-ization of subsurface stratigraphic units in

    E-Print Network [OSTI]

    Barrash, Warren

    have only framework- gravel­dominated lithotypes and have ran- dom vertical transition probability between these two lithotypes; and (2) Units 2 and 4 consist of both framework-gravel­dominated and sand- or matrix-dominated lithotypes and have structured vertical transition proba- bility. The two framework-gravel

  3. Microfabricated ion frequency standard

    SciTech Connect (OSTI)

    Schwindt, Peter (Albuquerque, NM); Biedermann, Grant (Albuquerque, NM); Blain, Matthew G. (Albuquerque, NM); Stick, Daniel L. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM); Olsson, III, Roy H. (Albuquerque, NM)

    2010-12-28T23:59:59.000Z

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  4. Ion Coulomb Crystals

    E-Print Network [OSTI]

    Richard C. Thompson

    2014-11-18T23:59:59.000Z

    Ion Coulomb crystals (ICC), formed by atomic ions at low temperatures in radiofrequency and Penning ion traps, are structures that have remarkable properties and many applications. Images of Coulomb crystals are striking and reveal the crystal structure, which arises from a balance between the trapping forces acting on the ions and their mutual Coulomb repulsion. Applications of these structures range from frequency standards and quantum simulation through to measurement of the cross sections of chemical reactions of ions.

  5. Heavy Ion Collisions at the LHC - Last Call for Predictions

    E-Print Network [OSTI]

    S. Abreu; S. V. Akkelin; J. Alam; J. L. Albacete; A. Andronic; D. Antonov; F. Arleo; N. Armesto; I. C. Arsene; G. G. Barnafoldi; J. Barrette; B. Bauchle; F. Becattini; B. Betz; M. Bleicher; M. Bluhm; D. Boer; F. W. Bopp; P. Braun-Munzinger; L. Bravina; W. Busza; M. Cacciari; A. Capella; J. Casalderrey-Solana; R. Chatterjee; L. -W. Chen; J. Cleymans; B. A. Cole; Z. Conesa Del Valle; L. P. Csernai; L. Cunqueiro; A. Dainese; J. Dias de Deus H. -T. Ding; M. Djordjevic; H. Drescher; I. M. Dremin A. Dumitru; A. El; R. Engel; D. d'Enterria; K. J. Eskola; G. Fai; E. G. Ferreiro; R. J. Fries; E. Frodermann; H. Fujii; C. Gale; F. Gelis; V. P. Goncalves; V. Greco; C. Greiner; M. Gyulassy; H. van Hees; U. Heinz; H. Honkanen; W. A. Horowitz; E. Iancu; G. Ingelman; J. Jalilian-Marian; S. Jeon; A. B. Kaidalov; B. Kampfer; Z. -B. Kang; Iu. A. Karpenko; G. Kestin; D. Kharzeev; C. M. Ko; B. Koch; B. Kopeliovich; M. Kozlov; I. Kraus; I. Kuznetsova; S. H. Lee; R. Lednicky; J. Letessier; E. Levin; B. -A. Li; Z. -W. Lin; H. Liu; W. Liu; C. Loizides; I. P. Lokhtin; M. V. T. Machado; L. V. Malinina; A. M. Managadze; M. L. Mangano; M. Mannarelli; C. Manuel; G. Martinez; J. G. Milhano; A. Mocsy; D. Molnar; M. Nardi; J. K. Nayak; H. Niemi; H. Oeschler; J. -Y. Ollitrault; G. Paic; C. Pajares; V. S. Pantuev; G. Papp; D. Peressounko; P. Petreczky; S. V. Petrushanko; F. Piccinini; T. Pierog; H. J. Pirner; S. Porteboeuf; I. Potashnikova; G. Y. Qin; J. -W. Qiu; J. Rafelski; K. Rajagopal; J. Ranft; R. Rapp; S. S. Rasanen; J. Rathsman; P. Rau; K. Redlich; T. Renk; A. H. Rezaeian; D. Rischke; S. Roesler; J. Ruppert; P. V. Ruuskanen; C. A. Salgado; S. Sapeta; I. Sarcevic; S. Sarkar; L. I. Sarycheva; I. Schmidt; A. I. Shoshi; B. Sinha; Yu. M. Sinyukov; A. M. Snigirev; D. K. Srivastava; J. Stachel; A. Stasto; H. Stocker; C. Yu. Teplov; R. L. Thews; G. Torrieri; V. Topor Pop; D. N. Triantafyllopoulos; K. L. Tuchin; S. Turbide; K. Tywoniuk; A. Utermann; R. Venugopalan; I. Vitev; R. Vogt; E. Wang; X. N. Wang; K. Werner; E. Wessels; S. Wheaton; S. Wicks; U. A. Wiedemann; G. Wolschin; B. -W. Xiao; Z. Xu; S. Yasui; E. Zabrodin; K. Zapp; B. Zhang; B. -W. Zhang; H. Zhang; D. Zhou

    2007-11-06T23:59:59.000Z

    This writeup is a compilation of the predictions for the forthcoming Heavy Ion Program at the Large Hadron Collider, as presented at the CERN Theory Institute 'Heavy Ion Collisions at the LHC - Last Call for Predictions', held from May 14th to June 10th 2007.

  6. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01T23:59:59.000Z

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  7. Program Building Committee's Central Planning Group.

    E-Print Network [OSTI]

    Richardson, Burl B.; Marshall, Mary G.

    1982-01-01T23:59:59.000Z

    Tooe ZTA245.7 8873 Y)O./3~ The Texas A&M (stem r ultural ~ion ~ervrce Damet C Plannstlel. Director College Stallon Program Building Committee's CENTRAL PLANNING GROUP 8-1344 Authors: Burl B. Richardson , Extension Program Specialist... and Mary G. Marshall, Extension Program Specialist Program -Building Committee's CENTRAL PLANNING GROUP This leaflet describes the role of the central planning group in the program development process_ The central planning group is the highest...

  8. Superconducting microfabricated ion traps

    E-Print Network [OSTI]

    Wang, Shannon Xuanyue

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single [superscript 88]Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the ...

  9. Single Ion Implantation

    ScienceCinema (OSTI)

    Thomas Schenkel

    2010-01-08T23:59:59.000Z

    On the equipment needed to implant ions in silicon and other materials. More information: http://newscenter.lbl.gov/f...

  10. Single Ion Implantation

    SciTech Connect (OSTI)

    Thomas Schenkel

    2008-10-21T23:59:59.000Z

    On the equipment needed to implant ions in silicon and other materials. More information: http://newscenter.lbl.gov/f...

  11. Lithium Ion Production NDE

    E-Print Network [OSTI]

    Lithium Ion Electrode Production NDE and QC Considerations David Wood, Debasish Mohanty, Jianlin Li, and Claus Daniel 12/9/13 EERE Quality Control Workshop #12;2 Presentation name Lithium Ion Electrode to be meaningful and provide electrode and cell QC. #12;3 Presentation name New Directions in Lithium Ion Electrode

  12. Lithium ion sources

    E-Print Network [OSTI]

    Roy, Prabir K.

    2014-01-01T23:59:59.000Z

    HIFAN 1866 Lithium ion sources by Prabir K. Roy, Wayne G.No. DE-AC02-05CH11231. Lithium ion sources Prabir K. RoyUSA Abstract A 10.9 cm diameter lithium alumino-silicate ion

  13. Superconducting microfabricated ion traps

    E-Print Network [OSTI]

    Shannon X. Wang; Yufei Ge; Jaroslaw Labaziewicz; Eric Dauler; Karl Berggren; Isaac L. Chuang

    2010-12-14T23:59:59.000Z

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  14. Ion cyclotron resonance cell

    DOE Patents [OSTI]

    Weller, R.R.

    1995-02-14T23:59:59.000Z

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  15. Ion cyclotron resonance cell

    DOE Patents [OSTI]

    Weller, Robert R. (Aiken, SC)

    1995-01-01T23:59:59.000Z

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  16. Microfabricated ion trap array

    DOE Patents [OSTI]

    Blain, Matthew G. (Albuquerque, NM); Fleming, James G. (Albuquerque, NM)

    2006-12-26T23:59:59.000Z

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  17. ION-BY-ION COOLING EFFICIENCIES

    SciTech Connect (OSTI)

    Gnat, Orly [Theoretical Astrophysics, California Institute of Technology, MC 350-17, Pasadena, CA 91125 (United States) and Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); Ferland, Gary J., E-mail: orlyg@tapir.caltech.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

    2012-03-01T23:59:59.000Z

    We present ion-by-ion cooling efficiencies for low-density gas. We use Cloudy (version 10.00) to estimate the cooling efficiencies for each ion of the first 30 elements (H-Zn) individually. We present results for gas temperatures between 10{sup 4} and 10{sup 8} K, assuming low densities and optically thin conditions. When nonequilibrium ionization plays a significant role the ionization states deviate from those that obtain in collisional ionization equilibrium (CIE), and the local cooling efficiency at any given temperature depends on specific nonequilibrium ion fractions. The results presented here allow for an efficient estimate of the total cooling efficiency for any ionic composition. We also list the elemental cooling efficiencies assuming CIE conditions. These can be used to construct CIE cooling efficiencies for non-solar abundance ratios or to estimate the cooling due to elements not included in any nonequilibrium computation. All the computational results are listed in convenient online tables.

  18. Charge exchange molecular ion source

    DOE Patents [OSTI]

    Vella, Michael C.

    2003-06-03T23:59:59.000Z

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  19. The Radioactive Beam Program at Argonne

    E-Print Network [OSTI]

    B. B. Back

    2006-06-06T23:59:59.000Z

    In this talk I will present selected topics of the ongoing radioactive beam program at Argonne and discuss the capabilities of the CARIBU radioactive ion production facility as well as plans for construction of a novel superconducting solenoid spectrometer.

  20. APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS 3 JUNE 1974 NOTE: Discussions of closed problems COMPOSITION EXPERIMENT ZERO OFFSET . . . . . . . . . . . . . 3.6 APOLLO 14 ALSEP COLD CATHODE ION GAUGE EXPERIMENT INTERMITTENT SCIENCE DATA. 3.7 APOLLO 15 ALSEP COLD CATHODE ION GAUGE EXPERIMENT NOISY DATA

  1. APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS 18 SEPTEMBER 1973 NOTE: Discussions of closed-14 4-18 4-19 ZERO OFFSET. . . · . . . . . . . · . . . . . . . 4-20 4. 6 APOLLO 14 ALSEP COLD CATHODE ION GAUGE EXPERIMENT INTERMITTENT SCIENCE DATA 4. ? APOLLO 15 ALSEP COLD CATHODE ION GAUGE EXPERIMENT

  2. APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS 1 DECEMBER 1973 NOTE: Discussions of closed problems. · · · . · · . · · . · . . · . . CLOSED 4.6 APOLLO 14 ALSEP COLD CATHODE ION GAUGE EXPERIMENT INTERMITTENT SCIENCE DATA · . · CLOSED 4.7 APOLLO 15 ALSEP COLD CATHODE ION GAUGE EXPERIMENT NOISY DATA AND INTERMITTENT AUTOMATIC ZERO

  3. Damage Profile and Ion Distribution of Slow Heavy Ions in Compounds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Profile and Ion Distribution of Slow Heavy Ions in Compounds. Damage Profile and Ion Distribution of Slow Heavy Ions in Compounds. Abstract: Slow heavy ions inevitably produce a...

  4. Euclid Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programming Programming Compiling and linking programs on Euclid. Compiling Codes How to compile and link MPI codes on Euclid. Read More Using the ACML Math Library How to...

  5. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); Galvin, James (2 Commodore #276, Emeryville, CA 94608)

    1987-01-01T23:59:59.000Z

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  6. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22T23:59:59.000Z

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  7. Collection of ions

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM); Bounds, John Alan (Los Alamos, NM); Koster, James E. (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    The apparatus and method provide an improved technique for detecting ions as the area from which ions are attracted to a detector is increased, consequently increasing the number of ions detected. This is achieved by providing the outer electrodes of the detector connected to the electrical potential, together with alternate intermediate electrodes. The other intermediate electrodes and preferably the housing are grounded. The technique renders such detection techniques more sensitive and gives them a lower threshold at which they can function.

  8. Correlation ion mobility spectroscopy

    DOE Patents [OSTI]

    Pfeifer, Kent B. (Los Lunas, NM); Rohde, Steven B. (Corrales, NM)

    2008-08-26T23:59:59.000Z

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  9. Student Internship Programs Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Student Internship Programs Program Description The objective of the Laboratory's student internship programs is to provide students with opportunities for meaningful hands- on...

  10. Plasma ion sources and ion beam technology in microfabrications

    E-Print Network [OSTI]

    Ji, Lili

    2007-01-01T23:59:59.000Z

    in the right chamber (ion chamber) are confined in their ownwatts and that on the ion chamber is 50 watts. A permanent-column and the ion source chamber. The simulation is

  11. Microfabricated cylindrical ion trap

    DOE Patents [OSTI]

    Blain, Matthew G.

    2005-03-22T23:59:59.000Z

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  12. Selective ion source

    DOE Patents [OSTI]

    Leung, K.N.

    1996-05-14T23:59:59.000Z

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

  13. Selective ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01T23:59:59.000Z

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

  14. Relativistic heavy ion research

    SciTech Connect (OSTI)

    Nagamiya, Shoji.

    1992-01-01T23:59:59.000Z

    This report discusses the following topics: antiproton production; Bose-Einstein correlations; high-transverse momentum spectra; strangeness enhancement in heavy ion collisions; search for rare negative secondaries of antiprotons and antinuclei produced in heavy ion collisions; quark matter; and time-of-flight systems test at Brookhaven AGS. (LSP).

  15. Ion-beam technologies

    SciTech Connect (OSTI)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01T23:59:59.000Z

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  16. Electron Flood Charge Compensation Device for Ion Trap Secondary Ion Mass Spectrometry

    SciTech Connect (OSTI)

    Appelhans, Anthony David; Ward, Michael Blair; Olson, John Eric

    2002-11-01T23:59:59.000Z

    During secondary ion mass spectrometry (SIMS) analyses of organophosphorous compounds adsorbed onto soils, the measured anion signals were lower than expected and it was hypothesized that the low signals could be due to sample charging. An electron flood gun was designed, constructed and used to investigate sample charging of these and other sample types. The flood gun was integrated into one end cap of an ion trap secondary ion mass spectrometer and the design maintained the geometry of the self-stabilizing extraction optics used in this instrument. The SIMION ion optics program was used to design the flood gun, and experimental results agreed with the predicted performance. Results showed the low anion signals from the soils were not due to sample charging. Other insulating and conducting samples were tested using both a ReO4- and a Cs+ primary ion beam. The proximity of the sample and electron source to the ion trap aperture resulted in generation of background ions in the ion trap via electron impact (EI) ionization during the period the electron gun was flooding the sample region. When using the electron gun with the ReO4- primary beam, the required electron current was low enough that the EI background was negligible; however, the high electron flood current required with the Cs+ beam produced background EI ions that degraded the quality of the mass spectra. The consequences of the EI produced cations will have to be evaluated on a sample-by-sample basis when using electron flood. It was shown that the electron flood gun could be intentionally operated to produce EI spectra in this instrument. This offers the opportunity to measure, nearly simultaneously, species evaporating from a sample, via EI, and species bound to the surface, via SIMS.

  17. HEAVY-ION RADIOGRAPHY AND HEAVY-ION COMPUTED TOMOGRAPHY

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01T23:59:59.000Z

    RADIOGRAPHY AND HEAVY-ION COMPUTED TOMOGRAPHY 1,2 Jacob I .RADIOGRAPHY AND HEAVY-ION COMPUTED TOMOGRAPHY J I Fabrikant,

  18. Ion mobility sensor system

    DOE Patents [OSTI]

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22T23:59:59.000Z

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  19. Program School/ Career: Descripton ISIS Program Codes

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Program School/ Career: Descripton ISIS Program Codes Program Career: Descripton College School;Program School/ Career: Descripton ISIS Program Codes Program Career: Descripton College School/ College 1

  20. Relating to ion detection

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    The apparatus and method provide a technique for improving detection of alpha and/or beta emitting sources on items or in locations using indirect means. The emission forms generate ions in a medium surrounding the item or location and the medium is then moved to a detecting location where the ions are discharged to give a measure of the emission levels. To increase the level of ions generated and render the system particularly applicable for narrow pipes and other forms of conduits, the medium pressure is increased above atmospheric pressure. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

  1. Extraction of highly charged ions from the electron beam ion trap at LBNL for applications in surface analysis and Materials Science

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    Electron Beam Ion Trap at LBNL for Applications in Surfacetransferred from LLNL to LBNL, and is now operating with+ . The research program at LBNL is focused on the following

  2. Overview of LANL short-pulse ion acceleration activities

    SciTech Connect (OSTI)

    Flippo, Kirk A [Los Alamos National Laboratory; Schmitt, Mark J [Los Alamos National Laboratory; Offermann, Dustin [Los Alamos National Laboratory; Cobble, James A [Los Alamos National Laboratory; Gautier, Donald [Los Alamos National Laboratory; Kline, John [Los Alamos National Laboratory; Workman, Jonathan [Los Alamos National Laboratory; Archuleta, Fred [Los Alamos National Laboratory; Gonzales, Raymond [Los Alamos National Laboratory; Hurry, Thomas [Los Alamos National Laboratory; Johnson, Randall [Los Alamos National Laboratory; Letzring, Samuel [Los Alamos National Laboratory; Montgomery, David [Los Alamos National Laboratory; Reid, Sha-Marie [Los Alamos National Laboratory; Shimada, Tsutomu [Los Alamos National Laboratory; Gaillard, Sandrine A [UNIV OF NEVADA; Sentoku, Yasuhiko [UNIV OF NEVADA; Bussman, Michael [FORSCHUNGZENTRUM DRESDEN; Kluge, Thomas [FORSCHUNGZENTRUM DRESDEN; Cowan, Thomas E [FORSCHUNGZENTRUM DRESDEN; Rassuchine, Jenny M [FORSCHUNGZENTRUM DRESDEN; Lowenstern, Mario E [UNIV OF MICHIGAN; Mucino, J Eduardo [UNIV OF MICHIGAN; Gall, Brady [UNIV OF MISSOURI; Korgan, Grant [NANOLABZ, RENO; Malekos, Steven [NANOLABZ, RENO; Adams, Jesse [NANOLABZ, RENO; Bartal, Teresa [UCSD; Chawla, Surgreev [UCSD; Higginson, Drew [UCSD; Beg, Farhat [UCSD; Nilson, Phil [LLE, ROCHESTER; MacPhee, Andrew [LLNL; Le Pape, Sebastien [LLNL; Hey, Daniel [LLNL; MacKinnon, Andy [LLNL; Geissel, Mattias [SNL; Schollmeier, Marius [SNL; Stephens, Rich [GENERAL ATOMICS, SAN DIEGO

    2009-12-02T23:59:59.000Z

    An overview of Los Alamos National Laboratory's activities related to short-pulse ion acceleration is presented. LANL is involved is several projects related to Inertial Confinement Fusion (Fast Ignition) and Laser-Ion Acceleration. LANL has an active high energy X-ray backlighter program for radiographing ICF implosions and other High Energy Density Laboratory Physics experiments. Using the Trident 200TW laser we are currently developing high energy photon (>10 keV) phase contrast imaging techniques to be applied on Omega and the NIF. In addition we are engaged in multiple programs in laser ion acceleration to boost the ion energies and efficiencies for various potential applications including Fast Ignition, active material interrogation, and medical applications. Two basic avenues to increase ion performance are currently under study: one involves ultra-thin targets and the other involves changing the target geometry. We have recently had success in boosting proton energies above 65 MeV into the medical application range. Highlights covered in the presentation include: The Trident Laser System; X-ray Phase Contrast Imaging for ICF and HEDLP; Improving TNSA Ion Acceleration; Scaling Laws; Flat Targets; Thin Targets; Cone Targets; Ion Focusing;Trident; Omega EP; Scaling Comparisons; and, Conclusions.

  3. Secondary ion collection and transport system for ion microprobe

    DOE Patents [OSTI]

    Ward, James W. (Canoga Park, CA); Schlanger, Herbert (Simi Valley, CA); McNulty, Jr., Hugh (Santa Monica, CA); Parker, Norman W. (Camarillo, CA)

    1985-01-01T23:59:59.000Z

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  4. Ion sensing method

    DOE Patents [OSTI]

    Smith, Richard Harding; Martin, Glenn Brian

    2004-05-18T23:59:59.000Z

    The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10.sup.-6 M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10.sup.-6 M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.

  5. Ion exchange phenomena

    SciTech Connect (OSTI)

    Bourg, I.C.; Sposito, G.

    2011-05-01T23:59:59.000Z

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  6. Ion manipulation device

    DOE Patents [OSTI]

    Anderson, Gordon A; Smith, Richard D; Ibrahim, Yehia M; Baker, Erin M

    2014-09-16T23:59:59.000Z

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.

  7. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31T23:59:59.000Z

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  8. HEAVY ION INERTIAL FUSION

    E-Print Network [OSTI]

    Keefe, D.

    2008-01-01T23:59:59.000Z

    Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

  9. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, John B. (Lansing, NY)

    1997-01-01T23:59:59.000Z

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  10. High current ion source

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); MacGill, Robert A. (645 Kern St., Richmond, CA 94805); Galvin, James E. (2 Commodore Dr. #276, Emeryville, CA 94608)

    1990-01-01T23:59:59.000Z

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  11. Ion electric propulsion unit

    DOE Patents [OSTI]

    Light, Max E; Colestock, Patrick L

    2014-01-28T23:59:59.000Z

    An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

  12. Sponsored Program Resources SPONSORED PROGRAMS

    E-Print Network [OSTI]

    Mather, Patrick T.

    Sponsored Program Resources - 1 - SPONSORED PROGRAMS Sponsored programs are research, instruction for sponsored programs is provided through an agreement between the sponsor and Syracuse University are being achieved and funds properly used Sponsored programs are managed by the Office of Sponsored

  13. Ion optics of RHIC EBIS

    SciTech Connect (OSTI)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2011-09-10T23:59:59.000Z

    RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  14. Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experience, is a unique educational program designed to introduce students in geophysics and related fields to "hands on" geophysical exploration and research. The program...

  15. Program Administration

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume describes program administration that establishes and maintains effective organizational management and control of the emergency management program. Canceled by DOE G 151.1-3.

  16. Environmental Programs Environmental Programs Committee

    E-Print Network [OSTI]

    Richards-Kortum, Rebecca

    162 Environmental Programs Environmental Programs Committee Walter Whitfield Isle, Chair (English) Katherine Bennett Ensor (Statistics) Mark R. Wiesner (Civil and Environmental Engineering) Donald Ostdiek (Architecture) The Environmental Programs Committee coordinates courses and curricula on environmental topics

  17. Accessible programming using program synthesis

    E-Print Network [OSTI]

    Singh, Rishabh

    2014-01-01T23:59:59.000Z

    New computing platforms have greatly increased the demand for programmers, but learning to program remains a big challenge. Program synthesis techniques have the potential to revolutionize programming by making it more ...

  18. Modulational instability of ion acoustic wave with warm ions in electron-positron-ion plasmas

    SciTech Connect (OSTI)

    Mahmood, S. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan); Department of Physics and Applied Mathematics, PIEAS, P.O. Nilore, Islamabad 44000 (Pakistan); Siddiqui, Sadiya [Department of Physics and Applied Mathematics, PIEAS, P.O. Nilore, Islamabad 44000 (Pakistan); Jehan, Nusrat [Pakistan Atomic Energy Commission, P.O. Box 1114, Islamabad 44000 (Pakistan)

    2011-05-15T23:59:59.000Z

    The nonlinear amplitude modulation of ion acoustic wave is studied in the presence of warm ions in unmagnetized electron-positron-ion plasmas. The Krylov-Bogoliubov-Mitropolsky (KBM) method is used to derive the nonlinear Schroedinger equation. The dispersive and nonlinear coefficients are obtained which depends on the ion temperature and positron density in electron-positron-ion plasmas. The modulationally stable and unstable regions are studied numerically for a wide range of wave number. It is found that both ion temperature and positron density play a significant role in the formation of bright and dark envelope solitons in electron-positron-ion plasmas.

  19. Electronuclear ion fusion in an ion cyclotron resonance reactor

    SciTech Connect (OSTI)

    Cowgill, Donald F.

    1996-12-01T23:59:59.000Z

    A method and apparatus for generating nuclear fusion by ion cyclotron resonance in an ion trap reactor. The reactor includes a cylindrical housing having an axial axis, an internal surface, and first and second ends. First and second end plates that are charged are respectively located at the first and second ends of the cylindrical housing. A gas layer is adsorbed on the internal surface of the cylindrical housing. Ions are desorbed from the gas layer, forming a plasma layer adjacent to the cylindrical housing that includes first ions that have a same charge sign as the first and second end plates. A uniform magnetic field is oriented along the axial axis of the cylindrical housing. Second ions, that are unlike the first ions, but have the same charge sign, are injected into the cylindrical housing along the axial axis of the cylindrical housing. A radio frequency field resonantly accelerates the injected second ions at the cyclotron resonance frequency of the second ions. The second ions circulate in increasing helical orbits and react with the first ions, at the optimum energy for nuclear fusion. The amplitude of the radio frequency field is adjusted to accelerate the second ions at a rate equal to the rate of tangential energy loss of the second ions by nuclear scattering in the first ions, causing the ions to continually interact until fusion occurs.

  20. Ion source choices - an h- source for the high intensity neutrino source

    SciTech Connect (OSTI)

    Moehs, Douglas P.; /Fermilab; Welton, Robert F.; /SNS Project, Oak Ridge; Stockli, Martin P.; Peters, Jens; /DESY; Alessi, James; /Brookhaven

    2006-08-01T23:59:59.000Z

    The High Intensity Neutrino Source (HINS) program at Fermilab (formerly the Proton Driver) aims to develop a multi-mission linear accelerator (LINAC) capable of accelerate H{sup -} ions to 8 GeV. This paper touches on the ion source requirements for the HINS and discusses long pulse length testing of three ion sources which appear to have the capability of meeting these requirements.

  1. Spark-protected ion-source control and monitoring system at 1. 5 MV

    SciTech Connect (OSTI)

    Bogaty, J.M.; Zolecki, R.

    1981-01-01T23:59:59.000Z

    The Heavy Ion Fusion Program at Argonne National Laboratory utilizes a 1.5-MV Xe ion preaccelerator. Reliable beam transport requires accurate measurements and precise control of various ion-source parameters. This paper discusses the use of a multiplexed fiberoptic data-transmission system and low-cost digital stepper motors for control functions. Techniques are discussed which allow TTL and CMOS semiconductor curcuits to survive the destructive sparks which can occur in the 1.5-MV preaccelerator.

  2. Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology ? High Voltage Electrolyte

    Broader source: Energy.gov [DOE]

    Presentation given by Daikin America at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  3. Vehicle Technologies Office Merit Review 2015: Lithium-Ion Battery Production and Recycling Materials Issues

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lithium-ion...

  4. U.S. Heavy Ion Beam Science towards inertial fusion energy

    E-Print Network [OSTI]

    2002-01-01T23:59:59.000Z

    Science towards Inertial Fusion Energy B.G. Logan 1), D.activities for inertial fusion energy at Lawrence LivermoreIon Fusion in the U.S. Fusion Energy Sciences Program [25].

  5. Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte

    Broader source: Energy.gov [DOE]

    Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  6. Vehicle Technologies Office Merit Review 2015: Optimization of Ion Transport in High-Energy Composite Cathodes

    Broader source: Energy.gov [DOE]

    Presentation given by UC San Diego at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about optimization of ion transport in...

  7. Fact Sheet: Sodium-Ion Batteries for Grid-Level Applications...

    Office of Environmental Management (EM)

    Department of Energy's program with its low-cost, grid-scale, ambient temperature Aqueous Hybrid Ion (AHI) energy storage device. During the three-year project, Aquion manufactured...

  8. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, K.E.; Weeks, D.R.

    1997-08-12T23:59:59.000Z

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  9. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  10. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  11. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  12. Induction linacs for heavy ion fusion research

    SciTech Connect (OSTI)

    Fessenden, T.J.

    1984-05-01T23:59:59.000Z

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  13. Asymmetric ion trap

    DOE Patents [OSTI]

    Barlow, Stephan E. (Richland, WA); Alexander, Michael L. (Richland, WA); Follansbee, James C. (Pasco, WA)

    1997-01-01T23:59:59.000Z

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  14. Asymmetric ion trap

    DOE Patents [OSTI]

    Barlow, S.E.; Alexander, M.L.; Follansbee, J.C.

    1997-12-02T23:59:59.000Z

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode is disclosed. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity. 4 figs.

  15. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    experimental data from plastic lithium ion cells. Journal ofelectrolyte additive for lithium-ion batteries. Elec-A. Aging Mechanisms in Lithium-Ion Batteries. Journal of

  16. HEAVY-ION RADIOBIOLOGY: CELLULAR STUDIES

    E-Print Network [OSTI]

    Blakely, Eleanor A.

    2013-01-01T23:59:59.000Z

    foiled parallel-plate ion chambers filled with pure nitrogenare made with a pair of ion chambers using an interposedbeen used to verify ion chamber dosimetry; (1) comparisons

  17. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca

    2014-01-01T23:59:59.000Z

    Company-v3832/Lithium-Ion-Batteries- Outlook-Alternative-Anodes for Sodium Ion Batteries Marca M. Doeff * , Jordirechargeable sodium ion batteries, particularly for large-

  18. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    Anodes for Sodium Ion Batteries Identification of a suitabledevelopment of sodium ion batteries, because graphite, theanode for lithium ion batteries, does not undergo sodium

  19. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

  20. Ion Distribution And Electronic Stopping Power For Au ions In...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power for heavy ions in light targets is highly desired due to the large errors in prediction by the widely used Stopping and Range of Ions in Matter (SRIM) code. In this study,...

  1. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    ion batteries In current lithium ion battery technology,ion batteries The first commercialized lithium-ion batteryfirst lithium-ion battery. Compared to the other batteries,

  2. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, J.B.

    1997-08-12T23:59:59.000Z

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  3. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

    1999-01-01T23:59:59.000Z

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  4. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Young, Charles E. (Westmont, IL); Pellin, Michael J. (Naperville, IL)

    1989-01-01T23:59:59.000Z

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  5. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-08-08T23:59:59.000Z

    A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.

  6. Ion Runaway in Lightning Discharges

    E-Print Network [OSTI]

    Landreman, Matt

    Runaway ions can be produced in plasmas with large electric fields, where the accelerating electric force is augmented by the low mean ionic charge due to the imbalance between the number of electrons and ions. Here we ...

  7. EBIT (Electron Beam Ion Trap), N-Division Experimental Physics. Annual report, 1994

    SciTech Connect (OSTI)

    Schneider, D. [ed.

    1995-10-01T23:59:59.000Z

    The experimental groups in the Electron Beam Ion Trap (EBIT) program continue to perform front-line research with trapped and extracted highly charged ions (HCI) in the areas of ion/surface interactions, atomic spectroscopy, electron-ion interaction and structure measurements, highly charged ion confinement, and EBIT development studies. The ion surface/interaction studies which were initiated five years ago have reached a stage where they an carry out routine investigations, as well as produce breakthrough results towards the development of novel nanotechnology. At EBIT and SuperEBIT studies of the x-ray emission from trapped ions continue to produce significant atomic structure data with high precision for few electron systems of high-Z ions. Furthermore, diagnostics development for magnetic and laser fusion, supporting research for the x-ray laser and weapons programs, and laboratory astrophysics experiments in support of NASA`s astrophysics program are a continuing effort. The two-electron contributions to the binding energy of helium like ions were measured for the first time. The results are significant because their precision is an order of magnitude better than those of competing measurements at accelerators, and the novel technique isolates the energy corrections that are the most interesting. The RETRAP project which was initiated three years ago has reached a stage where trapping, confining and electronic cooling of HCI ions up to Th{sup 80+} can be performed routinely. Measurements of the rates and cross sections for electron transfer from H{sub 2} performed to determine the lifetime of HCI up to Xe{sup q+} and Th{sup q+} (35 {le} q {le} 80) have been studied at mean energies estimated to be {approximately} 5 q eV. This combination of heavy ions with very high charges and very low energies is rare in nature, but may be encountered in planned fusion energy demonstration devices, in highly charged ion sources, or in certain astrophysical events.

  8. Determination of Atomic Data Pertinent to the Fusion Energy Program

    SciTech Connect (OSTI)

    Reader, J.

    2013-06-11T23:59:59.000Z

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  9. Characterization of an RF plasma ion source for ion implantation

    SciTech Connect (OSTI)

    Kopalidis, Peter M.; Wan Zhimin [Advanced Ion Beam Technology Inc., 47370 Fremont Blvd., Fremont, CA 94538 (United States)

    2012-11-06T23:59:59.000Z

    A novel inductively coupled RF plasma ion source has been developed for use in a beamline ion implanter. Ion density data have been taken with an array of four Langmuir probes spaced equally at the source extraction arc slit. These provide ion density uniformity information as a function of source pressure, RF power and gas mixture composition. In addition, total extracted ion beam current data are presented for the same conditions. The comparative advantages of the RF source in terms of higher beam current, reduced maintenance and overall productivity improvement compared to a hot cathode source are discussed.

  10. Photoabsorption by Ions and Atoms

    SciTech Connect (OSTI)

    Manson, Steven T. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States)

    2004-12-01T23:59:59.000Z

    Recent progress in theoretical and experimental investigations of photoabsorption by atoms and ions is presented. Specifically, examples of near-chaotic behavior in photoionization of positive ions, low-energy manifestations of nondipole effects, high-energy breakdown of the single particle picture and new phenomenology uncovered in the inner-shell photoabsorption by negative ions are discussed.

  11. Fiber optic integration in planar ion traps

    E-Print Network [OSTI]

    George, Elizabeth Marie

    2008-01-01T23:59:59.000Z

    Atomic ion traps are are excellent tools in atomic physics for studying single ions. Accurate measurement of the ion's electronic state in these ion traps is required by both atomic clocks and quantum computation. Quantum ...

  12. Analysis of Heat Dissipation in Li-Ion Cells & Modules for Modeling of Thermal Runaway (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Pesaran, A.

    2007-05-15T23:59:59.000Z

    The objectives of this study are: (1) To develop 3D Li-Ion battery thermal abuse ''reaction'' models for cell and module analysis; (2) To understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-Ion cells and modules; (3) To develop a tool and methodology to support the design of abuse-tolerant Li-Ion battery systems for PHEVs/HEVs; and (4) To help battery developers accelerate delivery of abuse-tolerant Li-Ion battery systems in support of the FreedomCAR's Energy Storage Program.

  13. EBIT - Electronic Beam Ion Trap: N Divison experimental physics annual report 1995

    SciTech Connect (OSTI)

    Schneider, D. [ed.

    1996-10-01T23:59:59.000Z

    The multi-faceted research effort of the EBIT (Electron Beam Ion Trap) program in N-Division of the Physics and Space Technology Department at Lawrence Livermore National Laboratory (LLNL) continues to contribute significant results to the physical sciences from studies with low energy very highly charged heavy ions. The EBIT program attracts a number of collaborators from the US and abroad for the different projects. The collaborations are partly carried out through participating graduate students demonstrating the excellent educational capabilities at the LLNL EBIT facilities. Moreover, participants from Historically Black Colleges and Universities are engaged in the EBIT project. This report describes EBIT work for 1995 in atomic structure measurements and radiative transition probabilities, spectral diagnostics for laboratory and astrophysical plasmas, ion/surface interaction studies, electron-ion interactions studies, retrap and ion collisions, and instrumental development.

  14. Ion aggregation in high salt solutions: Ion network versus ion cluster

    SciTech Connect (OSTI)

    Kim, Seongheun; Kim, Heejae; Choi, Jun-Ho; Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of)

    2014-09-28T23:59:59.000Z

    The critical aggregation phenomena are ubiquitous in many self-assembling systems. Ions in high salt solutions could also spontaneously form larger ion aggregates, but their effects on hydrogen-bond structures in water have long been controversial. Here, carrying out molecular dynamics (MD) simulation studies of high salt solutions and comparing the MD simulation results with infrared absorption and pump-probe spectroscopy of O–D stretch mode of HDO in highly concentrated salt solutions and {sup 13}C-NMR chemical shift of S{sup 13}CN{sup ?} in KSCN solutions, we find evidence on the onset of ion aggregate and large-scale ion-ion network formation that concomitantly breaks water hydrogen-bond structure in certain salt solutions. Despite that these experimental results cannot provide direct evidence on the three-dimensional morphological structures of ion aggregates, they serve as reference data for verifying MD simulation methods. The MD results suggest that disrupted water hydrogen-bond network is intricately intertwined with ion-ion network. This further shows morphological variation of ion aggregate structures from ion cluster to ion network in high salt solutions that are interrelated to the onset of macroscopic aggregate formation and the water hydrogen-bond structure making and breaking processes induced by Hofmeister ions.

  15. 2008 Academic Program Review Graduate Programs

    E-Print Network [OSTI]

    2008 Academic Program Review of Graduate Programs November 2008 Texas A&M University College ........................................................................................................12 III. Graduate Program.....................................................................................................14 B. Educational Programs

  16. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect (OSTI)

    Rasmussen, D.A. [Oak Ridge National Laboratory (United States); Baylor, L.R. [Oak Ridge National Laboratory (United States); Combs, S.K. [Oak Ridge National Laboratory (United States); Fredd, E. [Princeton Plasma Physics Laboratory (United States); Goulding, R.H. [Oak Ridge National Laboratory (United States); Hosea, J. [Princeton Plasma Physics Laboratory (United States); Swain, D.W. [Oak Ridge National Laboratory (United States)

    2005-04-15T23:59:59.000Z

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  17. Electron string ion sources for carbon ion cancer therapy accelerators

    E-Print Network [OSTI]

    Boytsov, A Yu; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-01-01T23:59:59.000Z

    The Electron String type of Ion Sources (ESIS) was developed, constructed and tested first in the Joint Institute for Nuclear Research. These ion sources can be the appropriate sources for production of pulsed C4+ and C6+ ion beams which can be used for cancer therapy accelerators. In fact the test ESIS Krion-6T already now at the solenoid magnetic field only 4.6 T provides more than 10^10 C4+ ions per pulse and about 5*10^9 C6+ ions per pulse. Such ion sources could be suitable for application at synchrotrons. It was also found, that Krion-6T can provide more than 10^11 C6+ ions per second at 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. As for production of 11C radioactive ion beams ESIS can be the most economic kind of ion source. To proof that the special cryogenic cell for pulse injection of gaseous species into electron string was successfully tested using the ESIS Krion-2M.

  18. Characterization of Ion Dynamics in Structures for Lossless Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along...

  19. A novel planar ion funnel design for miniature ion optics

    SciTech Connect (OSTI)

    Chaudhary, A.; Amerom, Friso H. W. van; Short, R. T. [Space and Marine Technology Laboratory, SRI International, 450 8th Ave SE, St. Petersburg, Florida 33701 (United States)

    2014-10-15T23:59:59.000Z

    The novel planar ion funnel (PIF) design presented in this article emphasizes simple fabrication, assembly, and operation, making it amenable to extreme miniaturization. Simulations performed in SIMION 8.0 indicate that ion focusing can be achieved by using a gradient of electrostatic potentials on concentric metal rings in a plane. A prototype was fabricated on a 35 × 35 mm custom-designed printed circuit board (PCB) with a center hole for ions to pass through and a series of concentric circular metal rings of increasing diameter on the front side of the PCB. Metal vias on the PCB electrically connected each metal ring to a resistive potential divider that was soldered on the back of the PCB. The PIF was tested at 5.5 × 10{sup ?6} Torr in a vacuum test setup that was equipped with a broad-beam ion source on the front and a micro channel plate (MCP) ion detector on the back of the PIF. The ion current recorded on the MCP anode during testing indicated a 23× increase in the ion transmission through the PIF when electric potentials were applied to the rings. These preliminary results demonstrate the functionality of a 2D ion funnel design with a much smaller footprint and simpler driving electronics than conventional 3D ion funnels. Future directions to improve the design and a possible micromachining approach to fabrication are discussed in the conclusions.

  20. Counterintelligence Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-12-10T23:59:59.000Z

    The Order establishes Counterintelligence Program requirements and responsibilities for the Department of Energy, including the National Nuclear Security Administration. Cancels: DOE 5670.3.

  1. Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Description Discover E (Engineering) is an evening of interesting, interactive and fun engineering, science, math, and technology demonstrations for K-12 students and their...

  2. Programming Stage

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-21T23:59:59.000Z

    This chapter addresses plans for the acquisition and installation of operating environment hardware and software and design of a training program.

  3. Counterintelligence Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-09-04T23:59:59.000Z

    To establish the policies, procedures, and specific responsibilities for the Department of Energy (DOE) Counterintelligence (CI) Program. This directive does not cancel any other directive.

  4. Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MATHCOUNTS is a national enrichment, coaching and competition program that promotes middle school mathematic achievement. The mission of MATHCOUNTS is to increase enthusiasm for...

  5. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, Daniel D. (Livermore, CA); Keville, Robert F. (Valley Springs, CA)

    1995-01-01T23:59:59.000Z

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  6. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, D.D.; Keville, R.F.

    1995-09-19T23:59:59.000Z

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  7. Ion exchange technology assessment report

    SciTech Connect (OSTI)

    Duhn, E.F.

    1992-01-01T23:59:59.000Z

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  8. Ion exchange technology assessment report

    SciTech Connect (OSTI)

    Duhn, E.F.

    1992-12-31T23:59:59.000Z

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW`s. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  9. Community Leadership Certificate Program Program Overview

    E-Print Network [OSTI]

    Saldin, Dilano

    Community Leadership Certificate Program Program Overview The undergraduate Community Leadership Certificate Program is an interdisciplinary program where students from any major can explore leadership in community engagement and leadership. The program is based on a social justice model of leadership

  10. Improved ion detector

    DOE Patents [OSTI]

    Tullis, A.M.

    1986-01-30T23:59:59.000Z

    An improved ion detector device of the ionization detection device chamber type comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

  11. Ion beam lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-08-02T23:59:59.000Z

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  12. Compact ion accelerator source

    DOE Patents [OSTI]

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali

    2014-04-29T23:59:59.000Z

    An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.

  13. APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS 1 MARCH 1974 NOTE: Discussions of closed problems. . . . . . . . . . · . . . APOLLO 14 ALSEP COLD CATHODE ION GAUGE EXPERIMENT INTERMITTENT SCIENCE DATA · . APOLLO 15 ALSEP COLD . . . . 0 . . . . . APOLLO 15 LUNAR SURFACE MAGNETOMETER LOSS OF SCIENTIFIC AND ENGINEERING DATA. APOLLO 14

  14. RHIC | Electron-Ion Collider

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a ripple, the product of those pre-smash particles flying at relativistic speeds. By examining accelerated ions directly, scientists might clearly identify physics phenomena...

  15. RHIC | Relativistic Heavy Ion Collider

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of LINAC The Relativistic Heavy Ion Collider (RHIC) is a world-class particle accelerator at Brookhaven National Laboratory where physicists are exploring the most...

  16. DIVALENT ION EXCHANGE WITH ALKALI

    E-Print Network [OSTI]

    Bunge, A.L.

    2011-01-01T23:59:59.000Z

    Injection for Enhanced Oil Recovery - A Status Report," SPEDOE Symposium on Enhanced Oil Recovery, Tulsa, OK, Apri120-ions is important enhanced oil recovery with chemical addi-

  17. Vehicle Technologies Office Merit Review 2014: Advanced High Energy Li-Ion Cell for PHEV and EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced high energy Li-ion cell for PHEV...

  18. Vehicle Technologies Office Merit Review 2015: Ion-Exchanged Derived Cathodes (IE-LL_NCM) for High Energy Density LIBs

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ion-exchanged...

  19. Feasibility study of a laser ion source for primary ion injection into the Relativistic Heavy Ion Collider electron beam ion sourcea...

    E-Print Network [OSTI]

    chamber to be able to change ion species on a pulse by pulse basis. The optimal plasma drift length variesFeasibility study of a laser ion source for primary ion injection into the Relativistic Heavy Ion Collider electron beam ion sourcea... Takeshi Kanesue Department of Applied Quantum Physics and Nuclear

  20. Molecular dynamics simulations of ion range profiles for heavy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulations of ion range profiles for heavy ions in light targets. Molecular dynamics simulations of ion range profiles for heavy ions in light targets. Abstract: The determination...

  1. asymmetric ion mobility: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Field Ion Mobility ions, including isotopomers and isobars, using ion mobility spectrometry (IMS), specifically, the field) and ion mobility spectrometry (IMS).1,2 Though both...

  2. Apparatus and method of dissociating ions in a multipole ion guide

    DOE Patents [OSTI]

    Webb, Ian K.; Tang, Keqi; Smith, Richard D.; Ibrahim, Yehia M.; Anderson, Gordon A.

    2014-07-08T23:59:59.000Z

    A method of dissociating ions in a multipole ion guide is disclosed. A stream of charged ions is supplied to the ion guide. A main RF field is applied to the ion guide to confine the ions through the ion guide. An excitation RF field is applied to one pair of rods of the ion guide. The ions undergo dissociation when the applied excitation RF field is resonant with a secular frequency of the ions. The multipole ion guide is, but not limited to, a quadrupole, a hexapole, and an octopole.

  3. Cryogenic silicon surface ion trap

    E-Print Network [OSTI]

    Michael Niedermayr; Kirill Lakhmanskiy; Muir Kumph; Stefan Partel; Johannes Edlinger; Michael Brownnutt; Rainer Blatt

    2015-05-01T23:59:59.000Z

    Trapped ions are pre-eminent candidates for building quantum information processors and quantum simulators. They have been used to demonstrate quantum gates and algorithms, quantum error correction, and basic quantum simulations. However, to realise the full potential of such systems and make scalable trapped-ion quantum computing a reality, there exist a number of practical problems which must be solved. These include tackling the observed high ion-heating rates and creating scalable trap structures which can be simply and reliably produced. Here, we report on cryogenically operated silicon ion traps which can be rapidly and easily fabricated using standard semiconductor technologies. Single $^{40}$Ca$^+$ ions have been trapped and used to characterize the trap operation. Long ion lifetimes were observed with the traps exhibiting heating rates as low as $\\dot{\\bar{n}}=$ 0.33 phonons/s at an ion-electrode distance of 230 $\\mu$m. These results open many new avenues to arrays of micro-fabricated ion traps.

  4. Metal vapor arc ion plating

    DOE Patents [OSTI]

    Bertram, L.A.; Fisher, R.W.; Mattox, D.M.; Zanner, F.J.

    1986-09-09T23:59:59.000Z

    A method and apparatus for ion plating are described. The apparatus uses more negative than a first electrode voltage in a vacuum arc remelt system to attract low energy ions from the anode electrode to the article to be plated. 2 figs.

  5. Laser acceleration of ion beams

    E-Print Network [OSTI]

    I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

    2007-02-01T23:59:59.000Z

    We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

  6. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

    1989-01-01T23:59:59.000Z

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  7. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1998-01-01T23:59:59.000Z

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  8. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10T23:59:59.000Z

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  9. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials

    E-Print Network [OSTI]

    Ceder, Gerbrand

    Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion-ion systems. Introduction Rechargeable lithium-ion (Li-ion) batteries1­4 have become a mainstay of the digital), much research has targeted the development and optimization of lithium-ion batteries, in particular

  10. Solar Thermal Incentive Program

    Broader source: Energy.gov [DOE]

    Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs.

  11. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Young, Charles E. (Westmont, IL); Pellin, Michael J. (Naperville, IL)

    1989-01-01T23:59:59.000Z

    A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.

  12. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-12-26T23:59:59.000Z

    A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.

  13. Solenoid and monocusp ion source

    DOE Patents [OSTI]

    Brainard, J.P.; Burns, E.J.T.; Draper, C.H.

    1997-10-07T23:59:59.000Z

    An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures. 6 figs.

  14. Ion chamber based neutron detectors

    DOE Patents [OSTI]

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16T23:59:59.000Z

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  15. ARRA Program Summary: Energy Smart Jobs Program

    E-Print Network [OSTI]

    ARRA Program Summary: Energy Smart Jobs Program Statewide Program (Initially targeting urban 30,000 buildings surveyed, approximately 5,000 will be retrofitted, yielding approximately $40

  16. Machinist Pipeline/Apprentice Program Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Machinist PipelineApprentice Program Program Description The Machinist Pipeline Program was created by the Prototype Fabrication Division to fill a critical need for skilled...

  17. Challenges for Na-ion Negative Electrodes

    E-Print Network [OSTI]

    Chevrier, V. L.

    Na-ion batteries have been proposed as candidates for replacing Li-ion batteries. In this paper we examine the viability of Na-ion negative electrode materials based on Na alloys or hard carbons in terms of volumetric ...

  18. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vanbook is intended for lithium-ion scientists and engineersof the state of the Lithium-ion art and in this they have

  19. MESON PRODUCTION IN RELATIVISTIC HEAVY ION COLLISIONS

    E-Print Network [OSTI]

    Schnetzer, S.R.

    2010-01-01T23:59:59.000Z

    by (kaon yield)*/*?. Fig. 27 Ion chamber voltage vs. T-Bcoincidences. Fig. ? 8 Ion chamber voltage vs. E tag29 Measured charge on the Ion chamber per beam particle vs.

  20. 4th Generation ECR Ion Sources

    E-Print Network [OSTI]

    Lyneis, Claude M.

    2010-01-01T23:59:59.000Z

    4th Generation ECR Ion Sources Claude M Lyneis, D. Leitner,to developing a 4 th generation ECR ion source with an RFover current 3 rd generation ECR ion sources, which operate

  1. Phosphonic acid based ion exchange resins

    DOE Patents [OSTI]

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25T23:59:59.000Z

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  2. Phosphonic acid based ion exchange resins

    DOE Patents [OSTI]

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23T23:59:59.000Z

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  3. Jet-Underlying Event Separation Method for Heavy Ion Collisions at the Relativistic Heavy Ion Collider

    E-Print Network [OSTI]

    J. A. Hanks; A. M. Sickles; B. A. Cole; A. Franz; M. P. McCumber; D. P. Morrison; J. L. Nagle; C. H. Pinkenburg; B. Sahlmueller; P. Steinberg; M. von Steinkirch; M. Stone

    2012-04-10T23:59:59.000Z

    Reconstructed jets in heavy ion collisions are a crucial tool for understanding the quark-gluon plasma. The separation of jets from the underlying event is necessary particularly in central heavy ion reactions in order to quantify medium modifications of the parton shower and the response of the surrounding medium itself. There have been many methods proposed and implemented for studying the underlying event substructure in proton-proton and heavy ion collisions. In this paper, we detail a method for understanding underlying event contributions in Au+Au collisions at $\\sqrt{s_{NN}}$ = 200 GeV utilizing the HIJING event generator. This method, extended from previous work by the ATLAS collaboration, provides a well-defined association of "truth jets" from the fragmentation of hard partons with "reconstructed jets" using the anti-$k_T$ algorithm. Results presented here are based on an analysis of 750M minimum bias HIJING events. We find that there is a substantial range of jet energies and radius parameters where jets are well separated from the background fluctuations (often termed "fake jets") that make jet measurements at RHIC a compelling physics program.

  4. Heavy Ion Collisions at the LHC - Last Call for Predictions

    SciTech Connect (OSTI)

    Armesto, N; Borghini, N; Jeon, S; Wiedemann, U A; Abreu, S; Akkelin, V; Alam, J; Albacete, J L; Andronic, A; Antonuv, D; Arleo, F; Armesto, N; Arsene, I C; Barnafoldi, G G; Barrette, J; Bauchle, B; Becattini, F; Betz, B; Bleicher, M; Bluhm, M; Boer, D; Bopp, F W; Braun-Munzinger, P; Bravina, L; Busza, W; Cacciari, M; Capella, A; Casalderrey-Solana, J; Chatterjee, R; Chen, L; Cleymans, J; Cole, B A; delValle, Z C; Csernai, L P; Cunqueiro, L; Dainese, A; de Deus, J D; Ding, H; Djordjevic, M; Drescher, H; Dremin, I M; Dumitru, A; El, A; Engel, R; d'Enterria, D; Eskola, K J; Fai, G; Ferreiro, E G; Fries, R J; Frodermann, E; Fujii, H; Gale, C; Gelis, F; Goncalves, V P; Greco, V; Gyulassy, M; van Hees, H; Heinz, U; Honkanen, H; Horowitz, W A; Iancu, E; Ingelman, G; Jalilian-Marian, J; Jeon, S; Kaidalov, A B; Kampfer, B; Kang, Z; Karpenko, I A; Kestin, G; Kharzeev, D; Ko, C M; Koch, B; Kopeliovich, B; Kozlov, M; Kraus, I; Kuznetsova, I; Lee, S H; Lednicky, R; Letessier, J; Levin, E; Li, B; Lin, Z; Liu, H; Liu, W; Loizides, C; Lokhtin, I P; Machado, M T; Malinina, L V; Managadze, A M; Mangano, M L; Mannarelli, M; Manuel, C; Martinez, G; Milhano, J G; Mocsy, A; Molnar, D; Nardi, M; Nayak, J K; Niemi, H; Oeschler, H; Ollitrault, J; Paic, G; Pajares, C; Pantuev, V S; Papp, G; Peressounko, D; Petreczky, P; Petrushanko, S V; Piccinini, F; Pierog, T; Pirner, H J; Porteboeuf, S; Potashnikova, I; Qin, G Y; Qiu, J; Rafelski, J; Rajagopal, K; Ranft, J; Rapp, R; Rasanen, S S; Rathsman, J; Rau, P; Redlich, K; Renk, T; Rezaeian, A H; Rischke, D; Roesler, S; Ruppert, J; Ruuskanen, P V; Salgado, C A; Sapeta, S; Sarcevic, I; Sarkar, S; Sarycheva, L I; Schmidt, I; Shoski, A I; Sinha, B; Sinyukov, Y M; Snigirev, A M; Srivastava, D K; Stachel, J; Stasto, A; Stocker, H; Teplov, C Y; Thews, R L; Torrieri, G; Pop, V T; Triantafyllopoulos, D N; Tuchin, K L; Turbide, S; Tywoniuk, K; Utermann, A; Venugopalan, R; Vitev, I; Vogt, R; Wang, E; Wang, X N; Werner, K; Wessels, E; Wheaton, S; Wicks, S; Wiedemann, U A; Wolschin, G; Xiao, B; Xu, Z; Yasui, S; Zabrodin, E; Zapp, K; Zhang, B

    2008-02-25T23:59:59.000Z

    In August 2006, the CERN Theory Unit announced to restructure its visitor program and to create a 'CERN Theory Institute', where 1-3 month long specific programs can take place. The first such Institute was held from 14 May to 10 June 2007, focusing on 'Heavy Ion Collisions at the LHC - Last Call for Predictions'. It brought together close to 100 scientists working on the theory of ultra-relativistic heavy ion collisions. The aim of this workshop was to review and document the status of expectations and predictions for the heavy ion program at the Large Hadron Collider LHC before its start. LHC will explore heavy ion collisions at {approx} 30 times higher center of mass energy than explored previously at the Relativistic Heavy Ion Collider RHIC. So, on the one hand, the charge of this workshop provided a natural forum for the exchange of the most recent ideas, and allowed to monitor how the understanding of heavy ion collisions has evolved in recent years with the data from RHIC, and with the preparation of the LHC experimental program. On the other hand, the workshop aimed at a documentation which helps to distinguish pre- from post-dictions. An analogous documentation of the 'Last Call for Predictions' [1] was prepared prior to the start of the heavy-ion program at the Relativistic Heavy Ion Collider RHIC, and it proved useful in the subsequent discussion and interpretation of RHIC data. The present write-up is the documentation of predictions for the LHC heavy ion program, received or presented during the CERN TH Institute. The set-up of the CERN TH Institute allowed us to aim for the wide-most coverage of predictions. There were more than 100 presentations and discussions during the workshop. Moreover, those unable to attend could still participate by submitting predictions in written form during the workshop. This followed the spirit that everybody interested in making a prediction had the right to be heard. To arrive at a concise document, we required that each prediction should be summarized on at most two pages, and that predictions should be presented, whenever possible, in figures which display measurable quantities. Full model descriptions were not accepted--the authors were encouraged to indicate the relevant references for the interested reader. Participants had the possibility to submit multiple contributions on different topics, but it was part of the subsequent editing process to ensure that predictions on neighboring topics were merged wherever possible. The contributions summarized here are organized in several sections,--though some of them contain material related with more than one section--roughly by going from low transverse momentum to high transverse momentum and from abundant to rare measurements. In the low transverse momentum regime, we start with predictions on multiplicity distributions, azimuthal asymmetries in particle production and hadronic flavor observables, followed by correlation and fluctuation measurements. The contributions on hard probes at the LHC start with predictions for single inclusive high transverse momentum spectra, and jets, followed by heavy quark and quarkonium measurements, leptonic probes and photons. A final section 'Others' encompasses those predictions which do not fall naturally within one of the above-mentioned categories, or discuss the more speculative phenomena that may be explored at the LHC.

  5. Programming models

    SciTech Connect (OSTI)

    Daniel, David J [Los Alamos National Laboratory; Mc Pherson, Allen [Los Alamos National Laboratory; Thorp, John R [Los Alamos National Laboratory; Barrett, Richard [SNL; Clay, Robert [SNL; De Supinski, Bronis [LLNL; Dube, Evi [LLNL; Heroux, Mike [SNL; Janssen, Curtis [SNL; Langer, Steve [LLNL; Laros, Jim [SNL

    2011-01-14T23:59:59.000Z

    A programming model is a set of software technologies that support the expression of algorithms and provide applications with an abstract representation of the capabilities of the underlying hardware architecture. The primary goals are productivity, portability and performance.

  6. SECO Programs

    E-Print Network [OSTI]

    Trevino, E.

    2011-01-01T23:59:59.000Z

    this web page address! ASSISTANCE AND FUNDING OPPORTUNITIES Energy Efficiency Technical Assistance Energy Efficiency Grants Renewable Energy Technology Grants Alternative Fuel Grants The LoanSTAR Revolving Loan Program Energy Efficiency... maximum of $50,000 per grant ? Funded on a reimbursement basis Renewable Energy Technology Grants ? Fort Worth ISD ? South Sills High School ? 5KW Wind Turbine Alternative Fuel Grants ? Grant program to convert city/county and ISD vehicle...

  7. Sodium Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    for  Sodium  Ion  Batteries   One   of   the   challenges  of   sodium   ion   batteries   is   identification   of  for   use   in   batteries.   Our   recent   work   has  

  8. Creating a GPS for aluminum ions | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Creating a GPS for aluminum ions Creating a GPS for aluminum ions Released: August 14, 2014 New approach pinpoints locations in simple zeolite catalysts Aluminum EXAFS and zeolite...

  9. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2009-06-30T23:59:59.000Z

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high charge state phosphorus and antimony could have resulted in a lower power consumption of 30 kW/implanter) for the following reasons (which were discovered after R&D completion): record output of high charge state phosphorous would have thermally damage wafers; record high charge state of antimony requires tool (ion implanting machine in ion implantation jargon) modification, which did not make economic sense due to the small number of users. Nevertheless, BNL has benefited from advances in high-charge state ion generation, due to high charge state ions need for RHIC preinjection. High fraction boron ion was delivered to PVI client Axcelis for retrofit and implantation testing; the source could have reduced beam preinjector power consumption by a factor of 3.5. But, since the source generated some lithium (though in miniscule amounts); last minute decision was made not to employ the source in implanters. R&D of novel transport and gasless plasmaless deceleration, as well as decaborane molecular ion source to mitigate space charge problems in low energy shallow ion implantation was also conducted though results were not yet ready for commercialization. Future work should be focused on gasless plasmaless transport and deceleration as well as on molecular ions due to their significance to low energy, shallow implantation; which is the last frontier of ion implantation. To summarize the significant accomplishments: 1. Record steady state output currents of high charge state phosphorous, P, ions in particle milli-Ampere: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA). 2. Record steady state output currents of high charge state antimony, Sb, ions in particle milli-Ampere: Sb{sup 3+} (16.2 pmA), Sb{sup 4+} (7.6 pmA), Sb{sup 5+} (3.3 pmA), and Sb{sup 6+} (2.2 pmA). 3. 70% output of boron ion current (compared to 25% in present state-of-the-art) from a Calutron-Bemas ion source. These accomplishments have the potential of benefiting the semiconductor manufacturing industry by lowering power consumption by as much as 30 kW per ion implanter. Major problem w

  10. Commissioning of the EBIS-based heavy ion preinjector at Brookhaven

    SciTech Connect (OSTI)

    Alessi, J.; Beebe, E.; Binello, S.; Hoff, L.; Kondo, K.; Lambiase, R.; LoDestro, V.; Mapes, M.; McNerney, A.; Morris, J.; Okamura, M.; Pikin, A.I.; Raparia, D.; Ritter, J.; Smart, L.; Snydstrup, L.; Wilinski, M.; Zaltsman, A.; Schempp, A.; Ratzinger, U.; Kanesue, T.

    2010-09-12T23:59:59.000Z

    The status is presented of the commissioning of a new heavy ion preinjector at Brookhaven National Laboratory. This preinjector uses an Electron Beam Ion Source (EBIS), and an RFQ and IH Linac, both operating at 100.625 MHz, to produce 2 MeV/u ions of any species for use, after further acceleration, at the Relativistic Heavy Ion Collider (RHIC) and the NASA Space Radiation Laboratory (NSRL). Among the increased capabilities provided by this preinjector are the ability to produce ions of any species, and the ability to switch between multiple species in 1 second, to simultaneously meet the needs of both science programs. For initial setup, helium beam from EBIS was injected and circulated in the Booster synchrotron. Following this, accelerated Au{sup 32+} and Fe{sup 20+} beams were transported to the Booster injection point, fulfilling DOE requirements for project completion.

  11. as-grown ga1-xmnxas studied: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processes.11 In materials such as CNTs, ion- ization is often quenched while knock-on hollow core.13 To control the quality of as-grown CNTs and to study intentionally...

  12. Ann. Geophys., 24, 21912200, 2006 www.ann-geophys.net/24/2191/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to the database and conse- quently a newer version of the IRI model, containing updated CCIR and URSI sub and compared with IRI- 2001 predictions. PAL is located near the equatorial ion- ization anomaly (EIA) trough

  13. Double Photoionization of excited Lithium and Beryllium

    E-Print Network [OSTI]

    Yip, Frank L.

    2010-01-01T23:59:59.000Z

    of excited Lithium and Beryllium F. L. Yip, 1 C. W. McCurdy,ion- ization of lithium and beryllium starting from aligned,DPI from aligned lithium and beryllium atoms in excited P-

  14. doi:10.1016/j.gca.2005.06.011 Early diagenesis impact on precise U-series dating of deep-sea corals: Example of a 100

    E-Print Network [OSTI]

    Long, Bernard

    /Ba ratios of ambient-seawater changed over time or that a diagenetic phenomenon have affected the U. INTRODUCTION Uranium-series dating of surface reef corals by thermal ion- ization mass spectrometry (TIMS

  15. Program Year 2008 State Energy Program Formula

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) State Energy Program (SEP), SEP Program Guidance Fiscal Year 2008, Program Year 2008, energy efficiency and renewable energy programs in the states, DOE Office of Energy Efficiency and Renewable Energy

  16. Multi-source ion funnel

    DOE Patents [OSTI]

    Tang, Keqi; Belov, Mikhail B.; Tolmachev, Aleksey V.; Udseth, Harold R.; Smith, Richard D.

    2005-12-27T23:59:59.000Z

    A method for introducing ions generated in a region of relatively high pressure into a region of relatively low pressure by providing at least two electrospray ion sources, providing at least two capillary inlets configured to direct ions generated by the electrospray sources into and through each of the capillary inlets, providing at least two sets of primary elements having apertures, each set of elements having a receiving end and an emitting end, the primary sets of elements configured to receive a ions from the capillary inlets at the receiving ends, and providing a secondary set of elements having apertures having a receiving end and an emitting end, the secondary set of elements configured to receive said ions from the emitting end of the primary sets of elements and emit said ions from said emitting end of the secondary set of elements. The method may further include the step of providing at least one jet disturber positioned within at least one of the sets of primary elements, providing a voltage, such as a dc voltage, in the jet disturber, thereby adjusting the transmission of ions through at least one of the sets of primary elements.

  17. Three chamber negative ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.; Hiskes, J.R.

    1983-11-10T23:59:59.000Z

    It is an object of this invention provide a negative ion source which efficiently provides a large flux of negatively ionized particles. This invention provides a volume source of negative ions which has a current density sufficient for magnetic fusion applications and has electrons suppressed from the output. It is still another object of this invention to provide a volume source of negative ions which can be electrostatically accelerated to high energies and subsequently neutralized to form a high energy neutral beam for use with a magnetically confined plasma.

  18. Ion beam extractor with counterbore

    DOE Patents [OSTI]

    Ji, Qing; Standiford, Keith; King, Tsu-Jae; Leung, Ka-Ngo

    2006-08-01T23:59:59.000Z

    An extractor system for a plasma ion source has a single (first) electrode with one or more apertures, or a pair of spaced electrodes, a first or plasma forming electrode and a second or extraction electrode, with one or more aligned apertures. The aperture(s) in the first electrode (or the second electrode or both) have a counterbore on the downstream side (i.e. away from the plasma ion source or facing the second electrode). The counterbored extraction system reduces aberrations and improves focusing. The invention also includes an ion source with the counterbored extraction system, and a method of improving focusing in an extraction system by providing a counterbore.

  19. Plasma ion sources and ion beam technology inmicrofabrications

    SciTech Connect (OSTI)

    Ji, Lili

    2007-09-01T23:59:59.000Z

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 {micro}m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25 mm) at 25 keV beam voltage. Such an integrated FIB/SEM dual-beam system will not only improve the accuracy and reproducibility when performing ion beam sculpting and direct implantation processes, but will also enable researchers to perform cross-sectioning, imaging, and analysis with the same tool. A major advantage of this approach is the ability to produce a wide variety of ion species tailored to the application.

  20. CANCER PROGRAM ANNUAL REPORT CANCER PROGRAM

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    CANCER PROGRAM ANNUAL REPORT CANCER PROGRAM 2010 ANNUAL REPORT WITH STATISTICAL DATA FROM 2009 UNIVERSITY OF ILLINOIS MEDICAL CENTER #12;2 CANCER PROGRAM ANNUAL REPORT 2 #12;3 CANCER PROGRAM ANNUAL REPORT 3 UIMC CANCER PROGRAM CHANGING MULTIDISCIPLINARY CARE. FOR GOOD. #12;4 CANCER PROGRAM ANNUAL REPORT

  1. Semiconductor Ion Implanters

    SciTech Connect (OSTI)

    MacKinnon, Barry A. [Isys, 2727 Walsh Ave., Suite 103, Santa Clara, CA 95051 (United States); Ruffell, John P. [Group 3, LLC, Sunnyvale, CA 94086 (United States)

    2011-06-01T23:59:59.000Z

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  2. STEP Program Benchmark Report

    Broader source: Energy.gov [DOE]

    STEP Program Benchmark Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  3. Maryland Efficiency Program Options

    Broader source: Energy.gov [DOE]

    Maryland Efficiency Program Options, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  4. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect (OSTI)

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2015-01-01T23:59:59.000Z

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting in nearly lossless transmission.

  5. Surface trap for ytterbium ions

    E-Print Network [OSTI]

    Campbell, Jonathan A. (Jonathan Alan)

    2006-01-01T23:59:59.000Z

    We conducted an experiment to load a shallow planar ion trap from a cold atom source of Ytterbium using photoionization. The surface trap consisted of a three-rod radio frequency Paul trap fabricated using standard printed ...

  6. Program Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35Information &Program PlanningProgram

  7. Vitrification of ion exchange resins

    DOE Patents [OSTI]

    Cicero-Herman, Connie A. (Aiken, SC); Workman, Rhonda Jackson (North Augusta, SC)

    2001-01-01T23:59:59.000Z

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  8. Orthogonal ion injection apparatus and process

    DOE Patents [OSTI]

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15T23:59:59.000Z

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  9. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    SciTech Connect (OSTI)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01T23:59:59.000Z

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for NSRL experiments, reducing delays due to the interference with RHIC injection operations, and allowing enhanced mixed field radiation studies. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  10. Dual mode ion mobility spectrometer and method for ion mobility spectrometry

    DOE Patents [OSTI]

    Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2007-08-21T23:59:59.000Z

    Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.

  11. Electrostatic ion waves in non-Maxwellian pair-ion plasmas

    SciTech Connect (OSTI)

    Arshad, Kashif [Department of Physics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); National Centre for Physics, Quaid-i-Azam University Campus, Shadhra Valley Road, Islamabad 44000 (Pakistan); Mahmood, S. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan); National Centre for Physics, Quaid-i-Azam University Campus, Shadhra Valley Road, Islamabad 44000 (Pakistan)

    2010-12-15T23:59:59.000Z

    The electrostatic ion waves are studied for non-Maxwellian or Lorentzian distributed unmagnetized pair-ion plasmas. The Vlasov equation is solved and damping rates are calculated for electrostatic waves in Lorentzian pair-ion plasmas. The damping rates of the electrostatic ion waves are studied for the equal and different ion temperatures of pair-ion species. It is found that the Landau damping rate of the ion plasma wave is increased in Lorentzian plasmas in comparison with Maxwellian pair-ion plasmas. The numerical results are also presented for illustration by taking into account the parameters reported in fullerene pair-ion plasma experiments.

  12. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    Electrode for Sodium Ion Batteries. Chemistry of Materialsnickel fluoride in Li ion batteries. Electrochimica Actafor advanced lithium ion batteries. Materials Science and

  13. Ion-Acoustic Solitons in Bi-Ion Dusty Plasma

    E-Print Network [OSTI]

    V. V. Prudskikh

    2008-12-02T23:59:59.000Z

    The propagation of ion-acoustic solitons in a warm dusty plasma containing two ion species is investigated theoretically. Using an approach based on the Korteveg-de-Vries equation, it is shown that the critical value of the negative ion density that separates the domains of existence of compressi- on and rarefaction solitons depends continuously on the dust density. A modified Korteveg-de Vries equation for the critical density is derived in the higher order of the expansion in the small parameter. It is found that the nonlinear coefficient of this equation is positive for any values of the dust density and the masses of positive and negative ions. For the case where the negative ion density is close to its critical value, a soliton solution is found that takes into account both the quadratic and cubic nonlinearities. The propagation of a solitary wave of arbitrary amplitude is investigated by the quasi-potential method. It is shown that the range of the dust densities around the critical value within which solitary waves with positive and negative potentials can exist simultaneously is relatively wide.

  14. Radioactive Ions Production Ring for Beta-Beams

    E-Print Network [OSTI]

    Benedetto, E; Wehner, J

    2010-01-01T23:59:59.000Z

    Within the FP7 EUROnu program, Work Package 4 addresses the issues of production and acceleration of 8Li and 8B isotopes through the Beta-Beam complex, for the production of electron-neutrino. One of the major critical issues is the production of a high enougth ion ßux, to fulÞll the requirements for physics. In alternative to the direct ISOL production method, a new ap- proach is proposed in [1]. The idea is to use a compact ring for Litium ions at 25 MeV and an internal He or D target, in which the radioactive-isotopes production takes place. The beam is expected to survive for several thousands of turns, therefore cooling in 6D is required and, according this scheme, the ionization cooling provided by the target itself and a suitable RF system would be sufÞcient. We present some preliminary work on the Production ring lat- tice design and cooling issues, for the 7Li ions, and propose plans for future studies, within the EUROnu program.

  15. Proposed New Program: Planning New Programs

    E-Print Network [OSTI]

    Machel, Hans

    Proposed New Program: Planning New Programs Planning Program As outlined in the attached document, the Human Geography group is bringing forward a proposal for a new undergraduate program in Planning. The Curriculum Committee has discussed this program both last year, and in our Friday the 13th

  16. Better Buildings Neighborhood Program Business Models Guide: Program Administrator Description

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: Program Administrator Business Models, Program Administrator Description.

  17. Automated identification of elemental ions in macromolecular crystal structures

    SciTech Connect (OSTI)

    Echols, Nathaniel, E-mail: nechols@lbl.gov; Morshed, Nader; Afonine, Pavel V. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235 (United States); McCoy, Airlie J. [University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 0XY (United Kingdom); Miller, Mitchell D. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Joint Center for Structural Genomics, (United States); Read, Randy J. [University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 0XY (United Kingdom); Richardson, Jane S. [Duke University Medical Center, Durham, NC 27710 (United States); Terwilliger, Thomas C. [Los Alamos National Laboratory, Los Alamos, NM 87545-0001 (United States); Adams, Paul D. [University of California at Berkeley, Berkeley, CA 94720-1762 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235 (United States)

    2014-04-01T23:59:59.000Z

    The solvent-picking procedure in phenix.refine has been extended and combined with Phaser anomalous substructure completion and analysis of coordination geometry to identify and place elemental ions. Many macromolecular model-building and refinement programs can automatically place solvent atoms in electron density at moderate-to-high resolution. This process frequently builds water molecules in place of elemental ions, the identification of which must be performed manually. The solvent-picking algorithms in phenix.refine have been extended to build common ions based on an analysis of the chemical environment as well as physical properties such as occupancy, B factor and anomalous scattering. The method is most effective for heavier elements such as calcium and zinc, for which a majority of sites can be placed with few false positives in a diverse test set of structures. At atomic resolution, it is observed that it can also be possible to identify tightly bound sodium and magnesium ions. A number of challenges that contribute to the difficulty of completely automating the process of structure completion are discussed.

  18. Maskless, resistless ion beam lithography

    SciTech Connect (OSTI)

    Ji, Qing

    2003-03-10T23:59:59.000Z

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P{sup +} beam implantation at 5 keV is also presented. With implantation dose of around 10{sup 16} cm{sup -2}, the electron concentration is about 2.5 x 10{sup 18} cm{sup -3} and electron mobility is around 200 cm{sup 2}/V{center_dot}s. To demonstrate the suitability of scanning FIB lithography for the manufacture of integrated circuit devices, SOI MOSFET fabrication using the maskless, resistless ion beam lithography is demonstrated. An array of microcolumns can be built by stacking multi-aperture electrode and insulator layers. Because the multicusp plasma source can achieve uniform ion density over a large area, it can be used in conjunction with the array of microcolumns, for massively parallel FIB processing to achieve reasonable exposure throughput.

  19. Voltage, Stability and Diffusion Barrier Differences between Sodium-ion and Lithium-ion Intercalation Materials

    E-Print Network [OSTI]

    Ong, Shyue Ping

    To evaluate the potential of Na-ion batteries, we contrast in this work the difference between Na-ion and Li-ion based intercalation chemistries in terms of three key battery properties—voltage, phase stability and diffusion ...

  20. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01T23:59:59.000Z

    Rechargeable Sodium-Ion Batteries: Potential Alternatives toCurrent Lithium-Ion Batteries. Adv. Energy Mater. 2 (2012):J. , Rojo, T. Na-ion Batteries, Recent Advances and Present

  1. Characterization of an iodine-based ionic liquid ion source and studies on ion fragmentation

    E-Print Network [OSTI]

    Fedkiw, Timothy Peter

    2010-01-01T23:59:59.000Z

    Electrosprays are a well studied source of charged droplets and ions. A specific subclass is the ionic liquid ion source (ILIS), which produce ion beams from the electrostatically stressed meniscus of ionic liquids. ILIS ...

  2. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01T23:59:59.000Z

    Alternatives to Current Lithium-Ion Batteries. Adv. EnergyMaterials for Lithium Ion Batteries. Materials Matters. 7 4.to the Study of Lithium Ion Batteries. J. Solid State

  3. Three chamber negative ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA); Hiskes, John R. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  4. Chemistry of heavy ion reactions

    SciTech Connect (OSTI)

    Hoffman, D.C.

    1988-10-01T23:59:59.000Z

    The use of heavy ions to induce nuclear reactions was reported as early as 1950. Since that time it has been one of the most active areas of nuclear research. Intense beams of ions as heavy as uranium with energies high enough to overcome the Coulomb barriers of even the heaviest elements are available. The wide variety of possible reactions gives rise to a multitude of products which have been studied by many ingenious chemical and physical techniques. Chemical techniques have been of special value for the separation and unequivocal identification of low yield species from the plethora of other nuclides present. Heavy ion reactions have been essential for the production of the trans-Md elements and a host of new isotopes. The systematics of compound nucleus reactions, transfer reactions, and deeply inelastic reactions have been elucidated using chemical techniques. A review of the variety of chemical procedures and techniques which have been developed for the study of heavy ion reactions and their products is given. Determination of the chemical properties of the trans-Md elements, which are very short-lived and can only be produced an ''atom-at-a-time'' via heavy ion reactions, is discussed. 53 refs., 19 figs.

  5. Program Development

    SciTech Connect (OSTI)

    Atencio, Julian J.

    2014-05-01T23:59:59.000Z

    This presentation covers how to go about developing a human reliability program. In particular, it touches on conceptual thinking, raising awareness in an organization, the actions that go into developing a plan. It emphasizes evaluating all positions, eliminating positions from the pool due to mitigating factors, and keeping the process transparent. It lists components of the process and objectives in process development. It also touches on the role of leadership and the necessity for audit.

  6. Vehicle Technologies Office Merit Review 2015: High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Farasis at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy density Li-ion cells for...

  7. Summer School Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer School Programs Summer School Programs Focused technical enrichment programs. Contact Leader Francis J. Alexander (505) 665-4518 Email Deputy Carolyn Connor (505) 665-9891...

  8. Geothermal Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jay Nathwani Acting Program Manager Geothermal Technologies Program Office of Energy Efficiency and Renewable Energy The Geothermal Technologies Program Overview May 18 2010 Energy...

  9. Existing Facilities Program

    Broader source: Energy.gov [DOE]

    The NYSERDA Existing Facilities program merges the former Peak Load Reduction and Enhanced Commercial and Industrial Performance programs. The new program offers a broad array of different...

  10. Pseudo ribbon metal ion beam source

    SciTech Connect (OSTI)

    Stepanov, Igor B., E-mail: stepanovib@tpu.ru; Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A. [Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050 (Russian Federation)] [Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050 (Russian Federation)

    2014-02-15T23:59:59.000Z

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  11. URBAN LEADERSHIP DEVELOPMENT PROGRAM SUPPLEMENTAL PROGRAM APPLICATION

    E-Print Network [OSTI]

    Walker, Lawrence R.

    URBAN LEADERSHIP DEVELOPMENT PROGRAM SUPPLEMENTAL PROGRAM APPLICATION as part of your Graduate College application to the Urban Leadership Program/Supervisor: #12;Part 3: LEADERSHIP EXPERIENCES: Identify any educational leadership experiences

  12. Microscale ion trap mass spectrometer

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Witten, William B. (Lancing, TN); Kornienko, Oleg (Lansdale, PA)

    2002-01-01T23:59:59.000Z

    An ion trap for mass spectrometric chemical analysis of ions is delineated. The ion trap includes a central electrode having an aperture; a pair of insulators, each having an aperture; a pair of end cap electrodes, each having an aperture; a first electronic signal source coupled to the central electrode; a second electronic signal source coupled to the end cap electrodes. The central electrode, insulators, and end cap electrodes are united in a sandwich construction where their respective apertures are coaxially aligned and symmetric about an axis to form a partially enclosed cavity having an effective radius r.sub.0 and an effective length 2z.sub.0, wherein r.sub.0 and/or z.sub.0 are less than 1.0 mm, and a ratio z.sub.0 /r.sub.0 is greater than 0.83.

  13. Trapped-ion Lissajous trajectories

    E-Print Network [OSTI]

    R. F. Rossetti; G. D. de Moraes Neto; J. Carlos Egues; M. H. Y. Moussa

    2015-02-25T23:59:59.000Z

    Here we present a protocol for generating Lissajous curves with a trapped ion by engineering Rashba- and the Dresselhaus-type spin-orbit interactions in a Paul trap. The unique anisotropic Rashba $\\alpha_{x}$, $\\alpha_{y}$ and Dresselhaus $\\beta_{x}$, $\\beta_{y}$ couplings afforded by our setup also enables us to obtain an "unusual" Zitterbewegung, i.e., the semiconductor analog of the relativistic trembling motion of electrons, with cycloidal trajectories in the absence of magnetic fields. We have also introduced bounded SO interactions, confined to an upper-bound vibrational subspace of the Fock states, as an additional mechanism to manipulate the Lissajous motion of the trapped ion. Finally, we accounted for dissipative effects on the vibrational degrees of freedom of the ion and find that the Lissajous trajectories are still robust and well defined for realistic parameters.

  14. Tachyon Physics with Trapped Ions

    E-Print Network [OSTI]

    Lee, Tony E; Cheng, Xiao-Hang; Lamata, Lucas; Solano, Enrique

    2015-01-01T23:59:59.000Z

    It has been predicted that particles with imaginary mass, called tachyons, would be able to travel faster than the speed of light. So far, there has not been any experimental evidence for tachyons in either natural or engineered systems. Here, we propose how to experimentally simulate Dirac tachyons with trapped ions. Quantum measurement on a Dirac particle simulated by a trapped ion causes it to have an imaginary mass so that it may travel faster than the effective speed of light. We show that a Dirac tachyon must have spinor-motion entanglement in order to be superluminal. We also show that it exhibits significantly more Klein tunneling than a normal Dirac particle. We provide numerical simulations with realistic ion systems and show that our scheme is feasible with current technology.

  15. Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE...

    Office of Science (SC) Website

    Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  16. Ion acoustic shock waves in degenerate plasmas

    SciTech Connect (OSTI)

    Akhtar, N. [Theoretical Plasma Physics Division, PINSTECH, Nilore, Islamabad 44000 Pakistan (Pakistan); Hussain, S. [Theoretical Plasma Physics Division, PINSTECH, Nilore, Islamabad 44000 Pakistan (Pakistan); Department of Physics and Applied Mathematics, PIEAS, Nilore, Islamabad 44000 Pakistan (Pakistan)

    2011-07-15T23:59:59.000Z

    Korteweg de Vries Burgers equation for negative ion degenerate dissipative plasma has been derived using reductive perturbation technique. The quantum hydrodynamic model is used to study the quantum ion acoustic shock waves. The effects of different parameters on quantum ion acoustic shock waves are studied. It is found that quantum parameter, electrons Fermi temperature, temperature of positive and negative ions, mass ratio of positive to negative ions, viscosity, and density ratio have significant impact on the shock wave structure in negative ion degenerate plasma.

  17. Microfabricated linear Paul-Straubel ion trap

    DOE Patents [OSTI]

    Mangan, Michael A. (Albuquerque, NM); Blain, Matthew G. (Albuquerque, NM); Tigges, Chris P. (Albuquerque, NM); Linker, Kevin L. (Albuquerque, NM)

    2011-04-19T23:59:59.000Z

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  18. Ion mobility spectrometer with virtual aperture grid

    DOE Patents [OSTI]

    Pfeifer, Kent B. (Los Lunas, NM); Rumpf, Arthur N. (Albuquerque, NM)

    2010-11-23T23:59:59.000Z

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  19. Grafted methylenediphosphonate ion exchange resins

    DOE Patents [OSTI]

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08T23:59:59.000Z

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  20. Pionic Fusion of Heavy Ions

    E-Print Network [OSTI]

    D. Horn; G. C. Ball; D. R. Bowman; W. G. Davies; D. Fox; A. Galindo-Uribarri; A. C. Hayes; G. Savard; L. Beaulieu; Y. Larochelle; C. St-Pierre

    1996-08-13T23:59:59.000Z

    We report the first experimental observation of the pionic fusion of two heavy ions. The 12C(12C,24Mg)pi0 and 12C(12C,24Na)pi+ cross sections have been measured to be 208 +/- 38 and 182 +/- 84 picobarns, respectively, at E_cm = 137 MeV. This cross section for heavy-ion pion production, at an energy just 6 MeV above the absolute energy-conservation limit, constrains possible production mechanisms to incorporate the kinetic energy of the entire projectile-target system as well as the binding energy gained in fusion.

  1. Ion exchange purification of scandium

    DOE Patents [OSTI]

    Herchenroeder, L.A.; Burkholder, H.R.

    1990-10-23T23:59:59.000Z

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity. 2 figs.

  2. Relating to monitoring ion sources

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM); Bounds, John Alan (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    The apparatus and method provide techniques for monitoring the position on alpha contamination in or on items or locations. The technique is particularly applicable to pipes, conduits and other locations to which access is difficult. The technique uses indirect monitoring of alpha emissions by detecting ions generated by the alpha emissions. The medium containing the ions is moved in a controlled manner frog in proximity with the item or location to the detecting unit and the signals achieved over time are used to generate alpha source position information.

  3. Chemical Shuttle Additives in Lithium Ion Batteries

    SciTech Connect (OSTI)

    Patterson, Mary

    2013-03-31T23:59:59.000Z

    The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

  4. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Abstract: Sodium ion (Na+) batteries...

  5. Proceedings of the 8th High Energy Heavy Ion Study

    E-Print Network [OSTI]

    Harris Ed, J.W.

    2010-01-01T23:59:59.000Z

    and a high pressure ion chamber. Several of the gas modulesenergy measurement in the ion chamber. The calibrations werefield Frisch grid ion chamber, which is operated with

  6. Ion Energy Distribution in Collisionless and Collisional, Capacitive RF Sheath

    E-Print Network [OSTI]

    Wang, Ying

    2012-01-01T23:59:59.000Z

    Sheath 3 Model of Collisionless Ion Energy Distributions 3.1Ion Energy Distributions in Collisionless and Collisional,Fall 2012 Ion Energy Distributions in Collisionless and

  7. Pushing the Frontier of High-Definition Ion Mobility Spectrometry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Frontier of High-Definition Ion Mobility Spectrometry Using FAIMS. Pushing the Frontier of High-Definition Ion Mobility Spectrometry Using FAIMS. Abstract: Differential ion...

  8. Fundamentals of Traveling Wave Ion Mobility Spectrometry. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fundamentals of Traveling Wave Ion Mobility Spectrometry. Fundamentals of Traveling Wave Ion Mobility Spectrometry. Abstract: Traveling-wave ion mobility spectrometry (TW IMS) is a...

  9. Intercalation Kinetics and Ion Mobility in Electrode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intercalation Kinetics and Ion Mobility in Electrode Materials for Advanced Lithium Ion Batteries Intercalation Kinetics and Ion Mobility in Electrode Materials for Advanced...

  10. alloy ion source: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an...

  11. ambient ion sources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an...

  12. Solar Energy Incentives Program

    Broader source: Energy.gov [DOE]

    Note: The deadline for the most recent solicitation under this program has now passed. The program is currently closed, pending revisions to the program guidelines. Please see the program web site...

  13. HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM

    E-Print Network [OSTI]

    HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM date ­ November 23, 2004 · Contract end date ­ March 31, 2006 #12;Hydrogen Regional Infrastructure Program in Pennsylvania Hydrogen Regional Infrastructure Program in Pennsylvania · Objectives ­ Capture

  14. Human Reliability Program Overview

    SciTech Connect (OSTI)

    Bodin, Michael

    2012-09-25T23:59:59.000Z

    This presentation covers the high points of the Human Reliability Program, including certification/decertification, critical positions, due process, organizational structure, program components, personnel security, an overview of the US DOE reliability program, retirees and academia, and security program integration.

  15. The positive ion temperature effect in magnetized electronegative plasma sheath with two species of positive ions

    SciTech Connect (OSTI)

    Shaw, A. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur-782 402, Guwahati, Assam (India); Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat (India); Kar, S. [Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat (India); Goswami, K. S. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur-782 402, Guwahati, Assam (India)

    2012-10-15T23:59:59.000Z

    The properties of a magnetized multi-component (two species of positive ions, negative ions and electrons) plasma sheath with finite positive ion temperature are studied. By using three fluid hydrodynamic model and some dimensionless variables, the ion (both lighter and heavier positive ions, and negative ions) densities, the ion (only for positive ions) velocities, and electric potential inside the sheath are investigated. In addition, the absence and presence of magnetic field and the orientation of magnetic field are considered. It is noticed that, with increase of positive ion temperature, the lighter positive ion density peaks increase only at the sheath edge and shift towards the sheath edge for both absence and presence of magnetic field. For heavier positive ions, in the absence of magnetic field, the density peaks increase at the sheath edge. But in the presence of magnetic field, the density fluctuations increase at the sheath edge. For both the cases, the density peaks shift towards the sheath edge.

  16. Program Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev next >Presentations Program Presentations

  17. Science Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland Science Stockpile2015HighlightsSciencePrograms

  18. Volunteer Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka Analytics and VisualizationVolunteer

  19. Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, informationPriorityPetroleumNotActivities |Program

  20. Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, informationPriorityPetroleumNotActivities |Program

  1. Program Managers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program Direction and Analysis Deputy Director

  2. SCIENCE Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobsS2.Tour"Program early

  3. Resource Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-Ray Scattering of0 Resource Program

  4. Educational Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarthTroubleProgram

  5. DOE Technical Assistance Program

    Broader source: Energy.gov (indexed) [DOE]

    energy management, and conservation strategies * Green building technologies * Building codes Program Design and Implementation * Policy and program development * Coordinating...

  6. Actuarial Sciences Program

    E-Print Network [OSTI]

    The Purdue Actuarial Science Program is an interdisciplinary program offered jointly by the Department of Mathematics and Department of Statistics.

  7. Renewable Energy Grant Programs

    Broader source: Energy.gov [DOE]

    '''''Note: This program is no longer accepting applications. See the program web site for information regarding future solicitations. '''''

  8. NEGATIVE ION PRODUCTION BY BACK-SCATTERING FROM ALKALI-METAL SURFACES BOMBARDED BY IONS OF HYDROGEN AND DEUTERIUM.

    E-Print Network [OSTI]

    Schneider, Peter Juergen

    2010-01-01T23:59:59.000Z

    and Neutralization of Negative Hydrogen Ions and Beams (and Neutralization of Negative Hydrogen Ions and Beams (and Neutralization of Negative Hydrogen Ions and Beams,

  9. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOE Patents [OSTI]

    Campbell, Ann N. (Albuquerque, NM); Soden, Jerry M. (Placitas, NM)

    1998-01-01T23:59:59.000Z

    An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.

  10. Review of Heavy-ion Induced Desorption Studies for Particle Accelerators

    E-Print Network [OSTI]

    Mahner, E

    2008-01-01T23:59:59.000Z

    During high-intensity heavy-ion operation of several particle accelerators worldwide, large dynamic pressure rises of orders of magnitude were caused by lost beam ions that impacted under grazing angle onto the vacuum chamber walls. This ion-induced desorption, observed, for example, at CERN, GSI, and BNL, can seriously limit the ion intensity, luminosity, and beam lifetime of the accelerator. For the heavyion program at CERN's Large Hadron Collider collisions between beams of fully stripped lead (208Pb82+) ions with a beam energy of 2.76 TeV/u and a nominal luminosity of 10**27 cm**-2 s**-1 are foreseen. The GSI future project FAIR (Facility for Antiproton and Ion Research) aims at a beam intensity of 10**12 uranium (238U28+) ions per second to be extracted from the synchrotron SIS18. Over the past years an experimental effort has been made to study the observed dynamic vacuum degradations, which are important to understand and overcome for present and future particle accelerators. The paper reviews the resu...

  11. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01T23:59:59.000Z

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  12. SUNY Programs: Australia and

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    SUNY Programs: Australia and New Zealand Semester, Academic Year and Short Term #12;1 Table of Contents How to Use this Booklet 1 Choosing a Program in Australia and New Zealand 2 Exchange vs. Study Abroad 3 Programs Outside Sydney and Melbourne 4 Programs in Melbourne 10 Programs in Sydney 12 Programs

  13. Ion-induced nuclear radiotherapy

    DOE Patents [OSTI]

    Horn, Kevin M. (Albuquerque, NM); Doyle, Barney L. (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  14. Reactive Ion Etch Users Guide

    E-Print Network [OSTI]

    Wager, John F.

    RIE Reactive Ion Etch Users Guide Eric Sundholm 2-22-2007 Standby Condition: be sure that the tool the chamber to remove any potential hazards before the chamber can be opened. 9. Pump Down Chamber Utilities Pump Chamber 10. Check pressure to start turbo pump Display Sensor Display a. Wait for pressure

  15. The Electron-Ion Collider

    E-Print Network [OSTI]

    V. Guzey

    2009-07-23T23:59:59.000Z

    The future Electron-Ion Collider (EIC) is a proposed new facility to collide high-energy electrons with beams of polarized protons/light nuclei and unpolarized nuclei. We overview the goals of the project and key measurements at the EIC. We also briefly comment on recent developments of the project.

  16. Ion-induced nuclear radiotherapy

    DOE Patents [OSTI]

    Horn, K.M.; Doyle, B.L.

    1996-08-20T23:59:59.000Z

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  17. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vantolerance of these batteries this is a curious omission andmysteries of lithium ion batteries. The book begins with an

  18. Title Quantum Optics and Heavy Ion Physics

    E-Print Network [OSTI]

    Roy J. Glauber

    2006-04-10T23:59:59.000Z

    I shall try to say a few words about two particular ways in which my own work has a certain relation to your work with heavy ions. My title is therefore "Quantum Optics and Heavy Ion Physics".

  19. Laser ion source with solenoid field

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-10T23:59:59.000Z

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 ?s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided bymore »a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.« less

  20. Laser ion source with solenoid field

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kanesue, Takeshi [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fuwa, Yasuhiro [Kyoto Univ., Kyoto (Japan); RIKEN, Saitama (Japan); Kondo, Kotaro [Tokyo Institute of Technology, Tokyo (Japan). Research Lab. for Nuclear Reactors; Okamura, Masahiro [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2014-11-10T23:59:59.000Z

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 ?s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  1. Laser ion source with solenoid field

    SciTech Connect (OSTI)

    Kanesue, Takeshi [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fuwa, Yasuhiro [Kyoto Univ., Kyoto (Japan); RIKEN, Saitama (Japan); Kondo, Kotaro [Tokyo Institute of Technology, Tokyo (Japan). Research Lab. for Nuclear Reactors; Okamura, Masahiro [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2014-11-10T23:59:59.000Z

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 ?s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  2. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    Model for the Graphite Anode in Li-Ion Batteries. Journal ofgraphite Chapters 2-3 have developed a method using ferrocene to characterize the SEI in lithium- ion batteries.

  3. Heavy Ion Fusion Science Virtual National Laboratory

    E-Print Network [OSTI]

    line- of-sight damage from target debris, neutron and gamma radiation. · Target injection: Heavy ions-liquid-protected target chambers with 30 yr lifetimes. · Robust final optics: Focusing magnets for ion beams avoid direct

  4. International Programs and Services International Programs

    E-Print Network [OSTI]

    Stephens, Graeme L.

    International Programs and Services _______________ 1.5 Page 1 International Programs and Services OFFICE OF INTERNATIONAL PROGRAMS Offices in Laurel Hall (970) 491-5917 www.international.colostate.edu James A. Cooney, Vice Provost for International Affairs The Office of International Programs acts

  5. International Programs and Services International Programs

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    International Programs and Services International Programs and Services OFFICE OF INTERNATIONAL PROGRAMS Offices in Laurel Hall (970) 491-5917 international.colostate.edu James A. Cooney, Vice Provost for International Affairs The Office of International Programs acts as a catalyst for ideas that bring about

  6. Signature Program/Landmark Research Programs

    E-Print Network [OSTI]

    Signature Program/Landmark Research Programs for the College of Veterinary Medicine and Biomedical Sciences November 20, 2008 #12;SIGNATURE PROGRAM PROPOSAL: CARDIOVASCULAR SCIENCES/DEBAKEY INSTITUTE in Figure 1 to identify the participants in the cardiovascular science program and the central role

  7. Solution dewatering with concomitant ion removal

    DOE Patents [OSTI]

    Peterson, Eric S.; Marshall, Douglas W.; Stone, Mark L.

    2003-08-05T23:59:59.000Z

    One of the biggest needs in the separations and waste handling and reduction area is a method for dewatering ion-containing solutions. Unexpectedly, it has been found that phosphazene polymers can discriminate between water and metal ions, allowing water to pass through the membrane while retaining the ions. This unexpected result, along with the inherent chemical and thermal stability of the phosphazene polymers, yields a powerful tool for separating and dewatering metal-ion-containing solutions.

  8. The Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy

    E-Print Network [OSTI]

    , describes R&D needs for heavy-ion accelerator, target and chamber R&D. 44 pages. Defines goals and criteria tasks) - ion accelerator technologies - chamber and maintenance technologies - pulsed power technologiesThe Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy Grant Logan

  9. Recent Progress on Design Studies of High-Luminosity Ring-Ring Electron-Ion Collider at CEBAF

    SciTech Connect (OSTI)

    Zhang, Y; Bruell, A; Chevtsov, P; Derbenev, Y S; Ent, R; Krafft, G A; Li, R; Merminga, L

    2009-05-01T23:59:59.000Z

    The conceptual design of a ring-ring electron-ion collider based on CEBAF has been continuously optimized to cover a wide center-of-mass energy region and to achieve high luminosity and polarization to support next generation nuclear science programs. Here, we summarize the recent design improvements and R&D progress on interaction region optics with chromatic aberration compensation, matching and tracking of electron polarization in the Figure-8 ring, beam-beam simulations and ion beam cooling studies.

  10. Inductively generated streaming plasma ion source

    DOE Patents [OSTI]

    Glidden, Steven C.; Sanders, Howard D.; Greenly, John B.

    2006-07-25T23:59:59.000Z

    A novel pulsed, neutralized ion beam source is provided. The source uses pulsed inductive breakdown of neutral gas, and magnetic acceleration and control of the resulting plasma, to form a beam. The beam supplies ions for applications requiring excellent control of ion species, low remittance, high current density, and spatial uniformity.

  11. Interaction of trapped ions with trapped atoms

    E-Print Network [OSTI]

    Grier, Andrew T. (Andrew Todd)

    2011-01-01T23:59:59.000Z

    In this thesis, I present results from two Paul-trap based ion traps carried out in the Vuleti? laboratory: the Atom-Ion trap for collision studies between cold atoms and cold ions, and the Cavity-Array trap for studying ...

  12. Berkeley Accelerator Space Effects (BASE) Light Ion Facility Upgrade

    E-Print Network [OSTI]

    Johnson, Michael B.; McMahan, Margaret A.; Gimpel, Thomas L.; Tiffany, William S.

    2006-01-01T23:59:59.000Z

    a position- sensitive ion chamber for online dosimetry, theBeam Exit Window The ion chamber (Fig. 3) monitors the beamthe nitrogen-filled ion chamber leave a trail of ions that

  13. Intense ion beam propagation in a reactor sized chamber

    E-Print Network [OSTI]

    Vay, J.L.; Deutsch, C.

    2000-01-01T23:59:59.000Z

    beams in a heavy ion fusion reactor chamber filled with lowIon Fusion, Intense Ion Beams, Reaction Chamber. P.A.C.S.heavy ion beam propagation in the reaction chamber, Fus.

  14. Isotopic Effect on Ion Mobility and Separation of Isotopomers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effect on Ion Mobility and Separation of Isotopomers by High-Field Ion Mobility Spectrometry . Isotopic Effect on Ion Mobility and Separation of Isotopomers by High-Field Ion...

  15. Landau damping of ion acoustic wave in Lorentzian multi-ion plasmas

    SciTech Connect (OSTI)

    Arshad, Kashif [National Center for Plasma Physics, Quaid-i-Azam University, Shadra Valley Road, Islamabad 44000 (Pakistan); Mahmood, S. [Theoretical Plasma Physics Division (TPPD), PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan); National Center for Plasma Physics, Quaid-i-Azam University, Shadra Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Department of Physics, Theoretical Plasma Physics Group, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2011-09-15T23:59:59.000Z

    The Landau damping rates of ion acoustic wave are studied by using Vlasov-Poisson model for unmagnetized Lorentzian or kappa distributed plasma containing electrons, positively and negatively charged ions. It is found that the damping rate of ion acoustic wave is increased with the decrease of kappa (i.e., the spectral index of Lorentzian distribution) value. The damping rates of the electrostatic wave in multi-ion component plasmas are discussed in detail which depends on electron to ion temperature ratio and ions masses and density ratios. The numerical results are also shown by choosing some typical experimental parameters of multi-ion plasmas.

  16. Electric Potential Near The Extraction Region In Negative Ion Sources With Surface Produced Negative Ions

    SciTech Connect (OSTI)

    Fukano, A. [Monozukuri Department, Tokyo Metropolitan College of Industrial Technology, 1-10-40 Higashi-Ohi, Shinagawa-ku, Tokyo 140-0011 (Japan); Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522 (Japan)

    2011-09-26T23:59:59.000Z

    The potential distribution near the extraction region in negative ion sources for the plasma with the surface produced negative ions is studied analytically. The potential is derived analytically by using a plasma-sheath equation, where negative ions produced on the Plasma Grid (PG) surface are considered in addition to positive ions and electrons. A negative potential peak is formed in the sheath region near the PG surface for the case of strong surface production of negative ions or for low energy negative ions. Negative ions are reflected by the negative potential peak near the PG and returned to the PG surface. This reflection mechanism by the negative potential peak possibly becomes a factor in negative ion extraction. It is also indicated that the potential difference between the plasma region and the wall decreases by the surface produced negative ions. This also has the possibility to contribute to the negative ion extraction.

  17. Study on space charge effect in an electrostatic ion analyzer applied to measure laser produced ions

    SciTech Connect (OSTI)

    Jin, Q. Y.; Li, Zh. M.; Liu, W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China) [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Sha, S.; Zhang, J. J.; Zhang, X. Zh.; Sun, L. T.; Zhao, H. W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)] [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-03-15T23:59:59.000Z

    The abundance of different ions produced by laser ion sources is usually analyzed by an electrostatic ion analyzer (EIA). Ion current intensities in the range of several mA/cm{sup 2} at the position of the EIA have been achieved from the laser ion source developed by the Institute of Modern Physics; this indicates that a noticeable influence of space charge effect during the ion transmission will occur. Hence, while the parameters of the EIA or the beams are changed, such as ion species, current intensity, the ions’ transmission efficiency through the EIA is different, which will result in an uncertainty in the estimation of the ions’ yields. Special attention is focused on this issue in this paper. Ion's transmissions through the EIA under different circumstances are studied with simulations and experiments, the results of which are consistent with each other.

  18. Distribution of ion current density on a rotating spherical cap substrate during ion-assisted deposition

    SciTech Connect (OSTI)

    Marushka, Viktor; Zabeida, Oleg, E-mail: oleg.zabeida@polymtl.ca; Martinu, Ludvik [Engineering Physics Department, Polytechnique Montréal, P.O. Box 6079, Downtown station, Montreal, Quebec H3C 3A7 (Canada)

    2014-11-01T23:59:59.000Z

    The uniformity of ion density is critical for applications relying on the ion assisted deposition technique for the fabrication of the high quality thin films. The authors propose and describe here a method allowing one to calculate the ion density distribution on spherical substrate holders under stationary and rotating conditions for different positions of the ion source. The ion beam shape was approximated by a cos{sup n} function, and the ion current density was represented by a function inversely proportional to the distance from the ion source in accordance with our experimental results. As an example, a calculation of the current density distribution on the spherical cap substrate was performed for a broad beam ion source operated with an anode current of 3?A. The authors propose an approach for process optimization with respect to the ion source position and its inclination, in terms of uniformity and absolute value of the ion current density.

  19. High Current Ion Source Development for Heavy Ion Fusion

    SciTech Connect (OSTI)

    Westenskow, G A; Grote, D P; Kwan, J W

    2003-09-04T23:59:59.000Z

    We are developing high-current-density high-brightness sources for Heavy Ion Fusion applications. Heavy ion driven inertial fusion requires beams of high brightness in order to achieve high power density at the target for high target gain. At present, there are no existing ion source types that can readily meet all the driver HIF requirements, though sources exist which are adequate for present experiments and which with further development may achieve driver requirements. Our two major efforts have been on alumino-silicate sources and RF plasma sources. Experiments being performed on a 10-cm alumino-silicate source are described. To obtain a compact system for a HIF driver we are studying RF plasma sources where low current beamlets are combined to produce a high current beam. A 80-kV 20-{micro}s source has produced up to 5 mA of Ar{sup +} in a single beamlet. The extraction current density was 100 mA/cm{sup 2}. We present measurements of the extracted current density as a function of RF power and gas pressure, current density uniformity, emittance, and energy dispersion (due to charge exchange).

  20. Bifunctional Electrolytes for Lithium-ion Batteries

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. GM Li-Ion Battery Pack Manufacturing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Latent ion tracks in amorphous silicon

    SciTech Connect (OSTI)

    Bierschenk, Thomas [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Giulian, Raquel [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Afra, Boshra [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Rodriguez, Matias D [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Schauries, D [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Mudie, Stephen [Australian Synchrotron] [Australian Synchrotron; Pakarinen, Olli H [ORNL] [ORNL; Djurabekova, Flyura [University of Helsinki] [University of Helsinki; Nordlund, Kai [University of Helsinki] [University of Helsinki; Osmani, Orkhan [University of Duisburg-Essen, Germany] [University of Duisburg-Essen, Germany; Medvedev, Nikita [University of Kaiserslautern, Germany] [University of Kaiserslautern, Germany; Rethfield, Baerbel [University of Kaiserslautern, Germany] [University of Kaiserslautern, Germany; Ridgway, Mark C [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Kluth, Patrick [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia

    2013-01-01T23:59:59.000Z

    We present experimental evidence for the formation of ion tracks in amorphous Si induced by swift heavy ion irradiation. An underlying core-shell structure consistent with remnants of a high density liquid structure was revealed by small-angle x-ray scattering and molecular dynamics simulations. Ion track dimensions dier for as-implanted and relaxed Si as attributed to dierent microstructures and melting temperatures. The identication and characterisation of ion tracks in amorphous Si yields new insight into mechanisms of damage formation due to swift heavy ion irradiation in amorphous semiconductors.

  3. Lithium Ion Cell Development for Photovoltaic Energy Storage Applications

    SciTech Connect (OSTI)

    Susan Babinec

    2012-02-08T23:59:59.000Z

    The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component â?? the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program â?? even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials â?? specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge with this material will be to maintain proven performance when this composite is coated onto a thicker electrode; as well the high temperature storage must meet application requirements. One continuing program challenge was the lack of specific performance variables for this PV application and so the low power requirements of PHEV/EV transportation markets were again used.

  4. Overview of Light-Ion Beam Therapy

    SciTech Connect (OSTI)

    Chu, William T.

    2006-03-16T23:59:59.000Z

    In 1930, Ernest Orlando Lawrence at the University of California at Berkeley invented the cyclotron. One of his students, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early cyclotrons, accelerating protons to 80 keV using less than 1 kV on a semi-circular accelerating electrode, now called the ''dee''. Soon after, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. In 1939, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. Just before WWII, Lawrence designed a 184-inch cyclotron, but the war prevented the building of this machine. Immediately after the war ended, the Veksler-McMillan principle of phase stability was put forward, which enabled the transformation of conventional cyclotrons to successful synchrocyclotrons. When completed, the 184-Inch Synchrocyclotron produced 340-MeV protons. Following it, more modern synchrocyclotrons were built around the globe, and the synchrocyclotrons in Berkeley and Uppsala, together with the Harvard cyclotron, would perform pioneering work in treatment of human cancer using accelerated hadrons (protons and light ions). When the 184-Inch Synchrocyclotron was built, Lawrence asked Robert Wilson, one of his former graduate students, to look into the shielding requirements for of the new accelerator. Wilson soon realized that the 184-Inch would produce a copious number of protons and other light ions that had enough energy to penetrate human body, and could be used for treatment of deep-seated diseases. Realizing the advantages of delivering a larger dose in the Bragg peak when placed inside deep-seated tumors, he published in a medical journal a seminal paper on the rationale to use accelerated protons and light ions for treatment of human cancer. The precise dose localization provided by protons and light ions means lower doses to normal tissues adjacent to the treatment volume compared to those in conventional (photon) treatments. Wilson wrote his personal account of this pioneering work in 1997. In 1954 Cornelius Tobias and John Lawrence at the Radiation Laboratory (former E.O. Lawrence Berkeley National Laboratory) of the University of California, Berkeley performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams at the 184-Inch Synchrocyclotron. By 1984, or 30 years after the first proton treatment at Berkeley, programs of proton radiation treatments had opened at: University of Uppsala, Sweden, 1957; the Massachusetts General Hospital-Harvard Cyclotron Laboratory (MGH/HCL), USA, 1961; Dubna (1967), Moscow (1969) and St Petersburg (1975) in Russia; Chiba (1979) and Tsukuba (1983) in Japan; and Villigen, Switzerland, 1984. These centers used the accelerators originally constructed for nuclear physics research. The experience at these centers has confirmed the efficacy of protons and light ions in increasing the tumor dose relative to normal tissue dose, with significant improvements in local control and patient survival for several tumor sites. M.R. Raju reviewed the early clinical studies. In 1990, the Loma Linda University Medical Center in California heralded in the age of dedicated medical accelerators when it commissioned its proton therapy facility with a 250-MeV synchrotron. Since then there has been a relatively rapid increase in the number of hospital-based proton treatment centers around the world, and by 2006 there are more than a dozen commercially-built facilities in use, five new facilities under construction, and more in planning stages. In the 1950s larger synchrotrons were built in the GeV region at Brookhaven (3-GeV Cosmotron) and at Berkeley (6-GeV Bevatron), and today most of the world's largest accelerators are synchrotrons. With advances in accelerator design in the early 1970s, synchrotrons at Berkeley and Princeton accelerated ions with atomic numbers between 6 and 18, at energies that permitted the initiation of several biological studies. It is worth noting that when th

  5. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y. Simon (Lakewood, CO)

    1991-01-01T23:59:59.000Z

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  6. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.

    1991-08-20T23:59:59.000Z

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  7. Composite oxygen ion transport element

    DOE Patents [OSTI]

    Chen, Jack C. (Getzville, NY); Besecker, Charles J. (Batavia, IL); Chen, Hancun (Williamsville, NY); Robinson, Earil T. (Mentor, OH)

    2007-06-12T23:59:59.000Z

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  8. Focused electron and ion beam systems

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27T23:59:59.000Z

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  9. PRTR ion exchange vault column sampling

    SciTech Connect (OSTI)

    Cornwell, B.C.

    1995-03-14T23:59:59.000Z

    This report documents ion exchange column sampling and Non Destructive Assay (NDA) results from activities in 1994, for the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. The objective was to obtain sufficient information to prepare disposal documentation for the ion exchange columns found in the PRTR Ion exchange vault. This activity also allowed for the monitoring of the liquid level in the lower vault. The sampling activity contained five separate activities: (1) Sampling an ion exchange column and analyzing the ion exchange media for purpose of waste disposal; (2) Gamma and neutron NDA testing on ion exchange columns located in the upper vault; (3) Lower vault liquid level measurement; (4) Radiological survey of the upper vault; and (5) Secure the vault pending waste disposal.

  10. The ion pairs and superconducting bosons

    E-Print Network [OSTI]

    V. N. Minasyan

    2009-02-11T23:59:59.000Z

    First, it is shown that the creation of the spinless ion pairs in the lattice, which are hold by the binding with neighbor ion pairs together regarded as covalent. These ion pairs are created by the repulsive potential interaction of two ions which is bound as linear oscillator. The repulsive S-wave scattering between ion pairs and electrons is transformed to the attractive effective interaction between electrons which leads to a creation of electron pairs by a binding energy depending on the condensate fraction of ion pairs $\\frac{N_0}{N}$. In this respect, the absence of ion pairs in the condensate destroys a binding energy of electron pairs and in turn so-called superconductimg phase. As new result presented theory is that the number of the superconducting bosons is not changed in the superconducting phase.

  11. Cooling Techniques for Trapped Ions

    E-Print Network [OSTI]

    Daniel M. Segal; Christof Wunderlich

    2014-09-24T23:59:59.000Z

    This book chapter gives an introduction to, and an overview of, methods for cooling trapped ions. The main addressees are researchers entering the field. It is not intended as a comprehensive survey and historical account of the extensive literature on this topic. We present the physical ideas behind several cooling schemes, outline their mathematical description, and point to relevant literature useful for a more in-depth study of this topic.

  12. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05T23:59:59.000Z

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  13. Graduate Programs Auburn University

    E-Print Network [OSTI]

    Forestry Graduate Programs Auburn University Auburn University, Alabama 368495414 Programs://www.forestry.auburn.edu/graduate/ University of California, Berkeley Berkeley, California 947203114 Program: Forestry http://espm.berkeley.edu/gradprograms/grad_programs_mf.html Clemson University Clemson, South Carolina 29634 Program: Forest Resources http

  14. Postdoctoral Mentoring Program

    E-Print Network [OSTI]

    Kemner, Ken

    Postdoctoral Mentoring Program Procedures, Guidelines and Resources As one of the largest Mentoring Program Procedures, Guidelines and Resources Overview of the Mentoring Program: As one-wide postdoc mentoring program was implemented to help us fulfill this goal. The Mentoring Program's chief

  15. Program Management for Large Scale Engineering Programs

    E-Print Network [OSTI]

    Oehmen, Josef

    The goal of this whitepaper is to summarize the LAI research that applies to program management. The context of most of the research discussed in this whitepaper are large-scale engineering programs, particularly in the ...

  16. RENEWABLE ENERGY PROGRAM OVERALL PROGRAM GUIDEBOOK

    E-Print Network [OSTI]

    RENEWABLE ENERGY PROGRAM OVERALL PROGRAM GUIDEBOOK Committee Draft Guidebook Third Edition.D. Commissioner Associate Member Kate Zocchetti Project Manager Tony Gonçalves Office Manager Renewable Energy Office Panama Bartholomy Deputy Director Efficiency and Renewable Energy Division Melissa Jones Executive

  17. RENEWABLE ENERGY PROGRAM OVERALL PROGRAM GUIDEBOOK

    E-Print Network [OSTI]

    RENEWABLE ENERGY PROGRAM OVERALL PROGRAM GUIDEBOOK Staff Draft Guidebook Third Edition COMMISSION Kate Zocchetti Project Manager Tony Gonçalves Office Manager Renewable Energy Office Valerie Hall Deputy Director Efficiency and Renewable Energy Division Melissa Jones Executive Director The California

  18. RENEWABLE ENERGY PROGRAM OVERALL PROGRAM GUIDEBOOK

    E-Print Network [OSTI]

    RENEWABLE ENERGY PROGRAM OVERALL PROGRAM GUIDEBOOK Final Committee Draft Guidebook Third Edition.D. Commissioner Associate Member Kate Zocchetti Project Manager Tony Gonçalves Office Manager Renewable Energy Office Panama Bartholomy Deputy Director Efficiency and Renewable Energy Division Melissa Jones Executive

  19. Commuter simulation of lithium-ion battery performance in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A.; Henriksen, G. L.; Amine, K.

    2000-12-04T23:59:59.000Z

    In this study, a lithium-ion battery was designed for a hybrid electric vehicle, and the design was tested by a computer program that simulates driving of a vehicle on test cycles. The results showed that the performance goals that have been set for such batteries by the Partnership for a New Generation of Vehicles are appropriate. The study also indicated, however, that the heat generation rate in the battery is high, and that the compact lithium-ion battery would probably require cooling by a dielectric liquid for operation under conditions of vigorous vehicle driving.

  20. Jet Quenching in Heavy-Ion Collisions - The Transition Era from RHIC to LHC

    E-Print Network [OSTI]

    Barbara Betz

    2012-11-26T23:59:59.000Z

    A status report on the jet quenching physics in heavy-ion collisions is given as it appears after more than 10 years of collecting and analysing data at the Relativistic Heavy Ion Collider (RHIC) and ~1.5 years of physics at the Large Hadron Collider (LHC). The (theoretical) predictions and expectations before the start of the LHC program are contrasted with the most recent experimental results, focussing on the nuclear modification factor R_{AA}, the elliptic flow v_2 of high-p_T particles, and on the problem of initial conditions.

  1. Environmental Certificate Program

    E-Print Network [OSTI]

    Rose, Michael R.

    Environmental Management Certificate Program Accelerate Your Career Environmentaland Facilities of excellence. Environmental Management Certificate Program Compliance with regulatory requirements, remediation Irvine Extension's Certificate Program in Environmental Manage- ment prepares professionals at every

  2. Program Analyst (Recent Graduate)

    Broader source: Energy.gov [DOE]

    This position is being filled under the Department of Energy's Recent Graduate Program. The Recent Graduate Program is a 1 year developmental program designed to promote careers in Federal Service...

  3. Categorical ExclusIon DeterminatIon Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . CForn1 Project Title:DeterminatIon Fornl

  4. Recent advances in vacuum arc ion sources

    SciTech Connect (OSTI)

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Oks, E.M.

    1995-07-01T23:59:59.000Z

    Intense beams of metal ions can be formed from a vacuum arc ion source. Broadbeam extraction is convenient, and the time-averaged ion beam current delivered downstream can readily be in the tens of milliamperes range. The vacuum arc ion source has for these reasons found good application for metallurgical surface modification--it provides relatively simple and inexpensive access to high dose metal ion implantation. Several important source developments have been demonstrated recently, including very broad beam operation, macroparticle removal, charge state enhancement, and formation of gaseous beams. The authors have made a very broad beam source embodiment with beam formation electrodes 50 cm in diameter, producing a beam of width {approximately}35 cm for a nominal beam area of {approximately}1,000 cm{sup 2}, and a pulsed Ti beam current of about 7 A was formed at a mean ion energy of {approximately}100 keV. Separately, they`ve developed high efficiency macroparticle-removing magnetic filters and incorporated such a filter into a vacuum arc ion source so as to form macroparticle-free ion beams. Jointly with researchers at the High Current Electronics Institute at Tomsk, Russia, and the Gesellschaft fuer Schwerionenforschung at Darmstadt, Germany, they`ve developed a compact technique for increasing the charge states of ions produced in the vacuum arc plasma and thus providing a simple means of increasing the ion energy at fixed extractor voltage. Finally, operation with mixed metal and gaseous ion species has been demonstrated. Here, they briefly review the operation of vacuum marc ion sources and the typical beam and implantation parameters that can be obtained, and describe these source advances and their bearing on metal ion implantation applications.

  5. Colorado Natural Heritage Program Wetland Program Plan

    E-Print Network [OSTI]

    of Land Management (BLM), and numerous county and local governments. The surveys have also involvedColorado Natural Heritage Program Wetland Program Plan A Vision for Building Comprehensive Wetland Information for the State of Colorado Planning Years 2011­2015 #12;Colorado Natural Heritage Program Wetland

  6. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect (OSTI)

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X. [Institute for Particle and Nuclear Physics (IPNS), High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Otokawa, Y.; Osa, A.; Ichikawa, S. [Institute of Atomic Energy Science, Japan Atomic Energy Agency (JAEA), Shiragata Shirakane 2-4, Tokai, Ibaraki 319-1195 (Japan)

    2012-02-15T23:59:59.000Z

    We investigated the ion-loss distribution on the sidewall of an electron cyclotron resonance (ECR) plasma chamber using the 18-GHz ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex (TRIAC). Similarities and differences between the ion-loss distributions (longitudinal and azimuthal) of different ion species (i.e., radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions that are typical volatile and nonvolatile elements) was qualitatively discussed to understand the element dependence of the charge breeding efficiency. Especially, the similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  7. Robust Collimation Control of Laser-Generated Ion Beam

    E-Print Network [OSTI]

    Kawata, S; Kamiyama, D; Nagashima, T; Barada, D; Gu, Y J; Li, X; Yu, Q; Kong, Q; Wang, P X

    2015-01-01T23:59:59.000Z

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.

  8. Technology Innovation Program | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Program SHARE Technology Innovation Program The Technology Innovation Program (TIP) is a 1-year program designed to accelerate selected technologies to commercial...

  9. Approximating semidefinite packing programs ?

    E-Print Network [OSTI]

    2010-10-25T23:59:59.000Z

    In this paper we define semidefinite packing programs and describe an ... Semidefinite packing programs arise in many applications such as semidefinite.

  10. INL Small Business Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Business Program The Idaho National Laboratory Idaho National Laboratory (INL) Small Business Program is a fundamental component of the Supply Chain Management organization....

  11. Hydrogen Program Overview

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

  12. JGI Fungal Genomics Program

    E-Print Network [OSTI]

    Grigoriev, Igor V.

    2012-01-01T23:59:59.000Z

    JGI Fungal Genomics Program Igor V. Grigoriev 1 Lawrenceof California. JGI Fungal Genomics Program Contact: IgorJGI). Its key project, the Genomics Encyclopedia of Fungi,

  13. JGI Fungal Genomics Program

    E-Print Network [OSTI]

    Grigoriev, Igor V.

    2011-01-01T23:59:59.000Z

    View Supports functional genomics, user data deposition andJGI Fungal Genomics Program Igor V. Grigoriev 1 DOE Jointof California. JGI Fungal Genomics Program Contact: Igor

  14. Fungal Genomics Program

    E-Print Network [OSTI]

    Grigoriev, Igor

    2012-01-01T23:59:59.000Z

    strains Comparative genomics and transcriptomics of xyloseFungal Genomics Program Igor Grigoriev 1 * (complex communities Fungal Genomics Program Igor Grigoriev

  15. Surety Bond Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Surety Bond Program, a program of the Maryland Small Business Development Financing Authority, assists eligible small businesses in obtaining bid, performance or payment bonds necessary to...

  16. Alternative Fuel Transportation Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review: EPAct State and Alternative Fuel Provider Fleets "Alternative Fuel Transportation Program" Dana O'Hara, DOE Ted Sears, NREL Vehicle Technologies Program June 20,...

  17. DOE Technical Assistance Program

    Broader source: Energy.gov (indexed) [DOE]

    Designing Effective Residential Retrofit Programs eere.energy.gov The Parker Ranch installation in Hawaii DOE Technical Assistance Program Quality Assurance for Residential...

  18. Science of Signatures Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Science of Signatures-Past Programs Contact Institute Director Charles Farrar (505) 663-5330 Email Professional Staff Assistant Jutta Kayser (505) 663-5649 Email...

  19. Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation Peer Review 2012 May 9,Investor Flowsheating

  20. Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation Peer Review 2012 May 9,Investor

  1. Negative ion source with low temperature transverse divergence optical system

    DOE Patents [OSTI]

    Whealton, J.H.; Stirling, W.L.

    1985-03-04T23:59:59.000Z

    A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.

  2. Negative ion source with low temperature transverse divergence optical system

    DOE Patents [OSTI]

    Whealton, John H. (Oak Ridge, TN); Stirling, William L. (Oak Ridge, TN)

    1986-01-01T23:59:59.000Z

    A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.

  3. Extending ion-track lithography to the low-energy ion regime

    SciTech Connect (OSTI)

    Musket, R.G. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2006-06-01T23:59:59.000Z

    Ion tracking and ion-track lithography have been performed almost exclusively using ions with energies near or above the maximum in electronic stopping, which occurs at {approx}1 MeV/amu. In this paper, ion-track lithography using ions with energies well below this maximum is discussed. The results of etching ion tracks created in polycarbonate films by ions with energies just above the anticipated threshold for creating etchable latent tracks with cylindrical geometry have been examined. Low-energy neon and argon ions with 18-60 keV/amu and fluences of {approx}10{sup 8} cm{sup -2} were used to examine the limits for producing useful, etchable tracks in polycarbonate films. By concentrating on the early stages of etching (i.e., {approx}20 nmion was correlated with the creation of etchable tracks. The experimental results are discussed with regard to the energy losses of the ions in the polycarbonate films and to the formation of continuous latent tracks through the entire thickness of the films. The probability distributions for large-angle scattering events were calculated to assess their importance as a function of ion energy. All these results have significant implications with respect to the threshold for formation of etchable tracks and to the use of low-energy ions for lithographic applications of ion tracking.

  4. Extending ion-track lithography to the low-energy ion regime

    SciTech Connect (OSTI)

    Musket, R G

    2005-10-14T23:59:59.000Z

    Ion tracking and ion-track lithography have been performed almost exclusively using ions with energies near or above the maximum in electronic stopping, which occurs at {approx}1 MeV/amu. In this paper, ion-track lithography using ions with energies well below this maximum is discussed. The results of etching ion tracks created in polycarbonate films by ions with energies just above the anticipated threshold for creating etchable latent tracks with cylindrical geometry have been examined. Low-energy neon and argon ions with 18-60 keV/amu and fluences of {approx}10{sup 8}/cm{sup 2} were used to examine the limits for producing useful, etchable tracks in polycarbonate films. By concentrating on the early stages of etching (i.e., {approx}20 nm < SEM hole diameter < {approx}100 nm), the energy deposition calculated for the incident ion was correlated with the creation of etchable tracks. The experimental results are discussed with regard to the energy losses of the ions in the polycarbonate films and to the formation of continuous latent tracks through the entire thickness of the films. The probability distributions for large-angle scattering events were calculated to assess their importance as a function of ion energy. All these results have significant implications with respect to the threshold for formation of etchable tracks and to the use of low-energy ions for lithographic applications of ion tracking.

  5. LANL: Ion Beam Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 6157Bioenergy » CPO: LosUniqueIon

  6. ION Engineering | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILab Incubator PtyION Engineering

  7. SECTION II. HEAVY ION REACTIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release PrintedDEVIATIONS F O INTERACTIONSII. HEAVY ION

  8. Metal-Ion-Mediated Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from aRod EggertMercuryAdvancedMetal-Ion-Mediated

  9. A single ion inside a miniature cavity

    E-Print Network [OSTI]

    Steiner, Matthias

    2014-04-08T23:59:59.000Z

    and the characterisation of the trap in terms of trap frequencies, external electric fields, micromotion compensation, ion lifetime and motional heating is discussed. Furthermore we introduce a set of experimental tech- niques to manipulate the ion on the infrared... .3.4. Calibration of the Electrostatic Compensation Fields . . . . . . . 52 1.3.5. Micromotion Compensation . . . . . . . . . . . . . . . . . . . . . 54 1.3.6. Ion Lifetime and Heating Rate . . . . . . . . . . . . . . . . . . . . 56 1.4. Manipulation on the 935 nm...

  10. Controlled ion implant damage profile for etching

    DOE Patents [OSTI]

    Arnold, Jr., George W. (Tijeras, NM); Ashby, Carol I. H. (Edgewood, NM); Brannon, Paul J. (Albuquerque, NM)

    1990-01-01T23:59:59.000Z

    A process for etching a material such as LiNbO.sub.3 by implanting ions having a plurality of different kinetic energies in an area to be etched, and then contacting the ion implanted area with an etchant. The various energies of the ions are selected to produce implant damage substantially uniformly throughout the entire depth of the zone to be etched, thus tailoring the vertical profile of the damaged zone.

  11. The role of mobile ions in fast ion conducting systems and high impact strength ceramics

    SciTech Connect (OSTI)

    Angell, C.A.

    1991-01-01T23:59:59.000Z

    This report discusses the following topics: Polymeric systems; Lead halide-containing fast ion conducting glasses; Mixed ionic electronic conduction; Plastic crystals; and Mobile ions as a basis for high impact ceramics.

  12. Shielding analysis for a heavy ion beam chamber with plasma channels for ion transport

    E-Print Network [OSTI]

    Sawan, M.E.; Peterson, R.R.; Yu, S.

    2000-01-01T23:59:59.000Z

    Analysis for a Heavy Ion Beam Chamber with Plasma Channelsthe target chamber wall, an adiabatic lens to focus the ionchamber that utilizes pre-formed plasma channels for heavy ion

  13. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01T23:59:59.000Z

    Charge Distribution in a Lithium Battery Electrode. J. Phys.Aluminum is used for lithium ion battery cathodes and alland copper is used for lithium ion battery anodes. After the

  14. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    SciTech Connect (OSTI)

    A. Smirnov; Y. Raitses; N.J. Fisch

    2005-01-25T23:59:59.000Z

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster.

  15. Characterization of ionic liquid ion sources for focused ion beam applications

    E-Print Network [OSTI]

    Perez Martinez, Carla S. (Carla Sofia)

    2013-01-01T23:59:59.000Z

    In the Focused Ion Beam (FIB) technique, a beam of ions is reduced to nanometer dimensions using dedicated optics and directed to a substrate for patterning. This technique is widely used in micro- and nanofabrication for ...

  16. Molecular phosphorus ion source for semiconductor technology

    SciTech Connect (OSTI)

    Gushenets V. I.; Hershcovitch A.; Bugaev, A.S.; Oks, E.M.; Kulevoy, T.V.

    2012-02-15T23:59:59.000Z

    This paper presents results on the generation of molecular phosphorus ion beams in a hot filament ion source. Solid red phosphorous is evaporated mainly as tetra-atomic molecules up to a temperature of 800 C. Thus, one of the main conditions for producing maximum P{sub 4}{sup +} fraction in the beam is to keep the temperature of the phosphorous oven, the steam line and the discharge chamber walls no greater than 800 C. The prior version of our ion source was equipped with a discharge chamber cooling system. The modified source ensured a P{sub 4}{sup +} ion beam current greater than 30% of the total beam current.

  17. RECENT PROGRESS IN HEAVY ION SOURCES

    E-Print Network [OSTI]

    Clark, D.J.

    2010-01-01T23:59:59.000Z

    of hydrogen into thermonuclear fusion reactors. A summary ofFusion Plasma Sources Other sources of high charge state ions include the dense plasma in magnetic confinement thermonuclear

  18. Sandia National Laboratories: molecularly engineered ion exchanger

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ion exchanger ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy,...

  19. Low Energy Ion Implantationin Semiconductor Manufacturing | U...

    Office of Science (SC) Website

    Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  20. Sandia National Laboratories: lithium-ion battery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ion battery Electric Car Challenge Sparks Students' STEM Interest On January 9, 2015, in Energy, Energy Storage, News, News & Events, Partnership, Transportation Energy Aspiring...

  1. Ion Acceleration by Short Chirped Laser Pulses

    E-Print Network [OSTI]

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01T23:59:59.000Z

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  2. Neutral beamline with improved ion energy recovery

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN); Haselton, Halsey H. (Knoxville, TN); Stirling, William L. (Oak Ridge, TN); Whealton, John H. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  3. High Performance Ion Mobility Spectrometry Using Hourglass Electrodynamic Funnel And Internal Ion Funnel

    DOE Patents [OSTI]

    Smith, Richard D. (Richland, WA); Tang, Keqi (Richland, WA); Shvartsburg, Alexandre A. (Richland, WA)

    2005-11-22T23:59:59.000Z

    A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing a device for transmitting ions from an ion source which allows the transmission of ions without significant delay to an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.

  4. Ion acoustic solitons/double layers in two-ion plasma revisited

    SciTech Connect (OSTI)

    Lakhina, G. S., E-mail: gslakhina@gmail.com; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Kakad, A. P., E-mail: amar@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai 410218 (India)

    2014-06-15T23:59:59.000Z

    Ion acoustic solitons and double layers are studied in a collisionless plasma consisting of cold heavier ion species, a warm lighter ion species, and hot electrons having Boltzmann distributions by Sagdeev pseudo-potential technique. In contrast to the previous results, no double layers and super-solitons are found when both the heavy and lighter ion species are treated as cold. Only the positive potential solitons are found in this case. When the thermal effects of the lighter ion species are included, in addition to the usual ion-acoustic solitons occurring at M?>?1 (where the Mach number, M, is defined as the ratio of the speed of the solitary wave and the ion-acoustic speed considering temperature of hot electrons and mass of the heavier ion species), slow ion-acoustic solitons/double layers are found to occur at low Mach number (M?ion-acoustic mode is actually a new ion-ion hybrid acoustic mode which disappears when the normalized number density of lighter ion species tends to 1 (i.e., no heavier species). An interesting property of the new slow ion-acoustic mode is that at low number density of the lighter ion species, only negative potential solitons/double layers are found whereas for increasing densities there is a transition first to positive solitons/double layers, and then only positive solitons. The model can be easily applicable to the dusty plasmas having positively charged dust grains by replacing the heavier ion species by the dust mass and doing a simple normalization to take account of the dust charge.

  5. Design of High Luminosity Ring-Ring Electron- Light Ion Collider at CEBAF

    SciTech Connect (OSTI)

    Slawomir Bogacz; Antje Bruell; Jean Delayen; Yaroslav Derbenev; Rolf Ent; Joseph Grames; Andrew Hutton; Geoffrey Krafft; Rui Li; Nikolitsa Merminga; Benard Poelker; Bogdan Wojtsekhowski; Byung Yunn; Yuhong Zhang; C Montag

    2007-06-25T23:59:59.000Z

    Experimental studies of fundamental structure of nucleons require an electron-ion collider of a center-of-mass energy up to 90 GeV at luminosity up to 1035 cm-2s-1 with both beams polarized. A CEBAF-based collider of 9 GeV electrons/positrons and 225 GeV ions is envisioned to meet this science need and as a next step for CEBAF after the planned 12 GeV energy upgrade of the fixed target program. A ring-ring scheme of this collider developed recently takes advantage of the existing polarized electron CW beam from the CEBAF and a green-field design of an ion complex with electron cooling. We present a conceptual design and report design studies of this high-luminosity collider.

  6. Overview of Theory and Modeling in the Heavy Ion Fusion Virtual National Laboratory

    E-Print Network [OSTI]

    Davidson, R C; Celata, C M; Cohen, R H; De Hoon, M; Friedman, A; Grote, D P; Henestroza, E; Kaganovich, I D; Lee, E P; Lee, W W; Lund, S M; Olson, C L; Qin, H; Rose, D V; Sharp, W M; Startsev, E A; Tzenov, Stephan I; Vay, J L; Welch, D R; Yu, S S

    2003-01-01T23:59:59.000Z

    This paper presents analytical and simulation studies of intense heavy ion beam propagation, including the injection, acceleration, transport and compression phases, and beam transport and focusing in background plasma in the target chamber. Analytical theory and simulations that support the High Current Experiment (HCX), the Neutralized Transport Experiment (NTX), and the advanced injector development program are being used to provide a basic understanding of the nonlinear beam dynamics and collective processes, and to develop design concepts for the next-step Integrated Beam Experiment (IBX), an Integrated Research Experiment (IRE), and a heavy ion fusion driver. Three-dimensional (3-D) nonlinear perturbative simulations have been applied to collective instabilities driven by beam temperature anisotropy and to two-stream interactions between the beam ions and any unwanted background electrons. Three-dimensional particle-in-cell simulations of the 2 MV Electrostatic Quadrupole (ESQ) injector have clarified t...

  7. Better Buildings Neighborhood Program

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Business Models Guide, October 27, 2011.

  8. Fishery Biology Graduate Programs

    E-Print Network [OSTI]

    Fishery Biology Graduate Programs University of Alaska Fairbanks, Alaska 997750820 Program/degrees/index.html University of Arizona Tucson, Arizona 95721 Program: Fisheries Conservation and Management http://ag.arizona.edu/srnr/academicprograms/wildlifefisheries/gradstudiesFisheries.html Auburn University Auburn, Alabama 368490001 Programs: Aquaculture, Aquatic Ecology, Fishery Management

  9. SHIPBOARD LABORATORY SAFETY PROGRAM

    E-Print Network [OSTI]

    ...................................................................................................10 Lockout/Tag-Out Program: IODP-USIO Policy Modification

  10. OSHWPP model programs guide

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Descriptions of model occupational health and safety programs implemented at DOE facilities are presented.

  11. DOE Mentoring Program

    Broader source: Energy.gov [DOE]

    The Office of Learning and Workforce Development coordinates this mentoring program for DOE Federal Employees.

  12. Sensitivity Increases for the TITAN Decay Spectroscopy Program

    E-Print Network [OSTI]

    K. G. Leach; A. Lennarz; A. Grossheim; C. Andreoiu; J. Dilling; D. Frekers; M. Good; S. Seeraji

    2014-10-30T23:59:59.000Z

    The TITAN facility at TRIUMF has recently initiated a program of performing decay spectroscopy measurements in an electron-beam ion-trap (EBIT). The unique environment of the EBIT provides backing-free storage of the radioactive ions, while guiding charged decay particles from the trap centre via the strong magnetic field. This measurement technique is able to provide a significant increase in detection sensitivity for photons which result from radioactive decay. A brief overview of this device is presented, along with methods of improving the signal-to-background ratio for photon detection by reducing Compton scattered events, and eliminating vibrational noise.

  13. Surface Analysis by Highly Charged Ion Based Secondary Ion Mass Spectrometry

    E-Print Network [OSTI]

    Surface Analysis by Highly Charged Ion Based Secondary Ion Mass Spectrometry T. Schenkel,1 A high vacuum (10^8 torr). In posi- tive polarity, HCI can be decelerated to an impact energy of $1 ke in the interaction of slow (u highly charged ions (e.g., Au69+ ) with solid surfaces increases secondary

  14. The uses of electron beam ion traps in the study of highly charged ions

    SciTech Connect (OSTI)

    Knapp, D.

    1994-11-02T23:59:59.000Z

    The Electron Beam Ion Trap (EBIT) is a relatively new tool for the study of highly charged ions. Its development has led to a variety of new experimental opportunities; measurements have been performed with EBITs using techniques impossible with conventional ion sources or storage rings. In this paper, I will highlight the various experimental techniques we have developed and the results we have obtained using the EBIT and higher-energy Super-EBIT built at the Lawrence Livermore National Laboratory. The EBIT employs a high-current-density electron beam to trap, ionize, and excite a population of ions. The ions can be studied in situ or extracted from the trap for external experiments. The trapped ions form an ionization-state equilibrium determined by the relative ionization and recombination rates. Ions of several different elements may simultaneously be present in the trap. The ions are nearly at rest, and, for most systems, all in their ground-state configurations. The electron-ion interaction energy has a narrow distribution and can be varied over a wide range. We have used the EBIT devices for the measurement of electron-ion interactions, ion structure, ion-surface interactions, and the behavior of low-density plasmas.

  15. atom-probe field ion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by High-Field Ion Mobility ions, including isotopomers and isobars, using ion mobility spectrometry (IMS), specifically, the field) and ion mobility spectrometry (IMS).1,2...

  16. Spectra of Ions Produced by Corona Discharges

    SciTech Connect (OSTI)

    Skalny, J.; Hortvath, G. [Department of Experimental Physics, Comenius University, Mlynska dolina F-2, 84248 Bratislava (Slovakia); Mason, N. J. [Open University, Department of Physics and Astronomy, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2006-12-01T23:59:59.000Z

    A mass spectrometric study of ions extracted from both positive and negative DC corona discharges, initiated in point-to plane electrode system, has been carried out in ambient air at low air pressure (5 - 30) kPa. The average relative humidity of air was typically 40-50 %. Ions were extracted through a small orifice in the plane electrode into an intermediate gap where the low pressure prevented further ion-molecule reactions. Mass analysis of negative ions formed in the negative corona discharge using ambient air has shown that the yield of individual ions is strongly affected by trace concentrations of ozone, nitrogen oxides, carbon dioxide and water vapour. In dry air the CO{sub 3}{sup -} ion was found to be dominant. In presence of water this is converted very efficiently to cluster ions CO{sub 3}{sup -}{center_dot}(H{sub 2}O){sub n} containing one and more water molecules. The yield of O{sub 3}{sup -}{center_dot}(H{sub 2}O){sub n} clusters or core ions was found to be considerably lower than in some other studies at atmospheric pressure. The mass spectrum of ions extracted from drift region of a positive corona discharge was simpler being dominantly cluster ions H3O+{center_dot}(H2O)n most probably formed from O{sub 2}{sup +} ions, a two step process being active if water molecules are present in the discharge gap even at relatively low concentration.

  17. Technology Commercialization Program 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  18. Uniform insulation applied-B ion diode

    DOE Patents [OSTI]

    Seidel, David B. (Albuquerque, NM); Slutz, Stephen A. (Albuquerque, NM)

    1988-01-01T23:59:59.000Z

    An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

  19. Adsorption of Cu21 Ions with Poly

    E-Print Network [OSTI]

    Adsorption of Cu21 Ions with Poly (N-isopropylacrylamide-co-methacrylic acid) Micro. It was shown that particle size played a very important role in the adsorption process. The nano-scale particles showed much improved Cu ion adsorption efficiency, compared with the micro hydro- gels. The amount

  20. Laser cooling of trapped ions Jurgen Eschner

    E-Print Network [OSTI]

    Blatt, Rainer

    of the art is reported, and several new cooling techniques are outlined. The principles of ion trapping by elucidating several milestone experiments. In addition, a number of special cooling techniques pertainingLaser cooling of trapped ions Ju¨rgen Eschner Institut fu¨ r Experimentalphysik, Universita

  1. Beam current controller for laser ion source

    DOE Patents [OSTI]

    Okamura, Masahiro

    2014-10-28T23:59:59.000Z

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  2. Relativistic heavy ion research. Progress report

    SciTech Connect (OSTI)

    Nagamiya, Shoji

    1992-07-01T23:59:59.000Z

    This report discusses the following topics: antiproton production; Bose-Einstein correlations; high-transverse momentum spectra; strangeness enhancement in heavy ion collisions; search for rare negative secondaries of antiprotons and antinuclei produced in heavy ion collisions; quark matter; and time-of-flight systems test at Brookhaven AGS. (LSP).

  3. Transparent lithium-ion batteries , Sangmoo Jeongb

    E-Print Network [OSTI]

    Cui, Yi

    voltage window. For example, LiCoO2 and graphite, the most common cathode and anode in Li-ion batteriesTransparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices

  4. SMALL FREE NEGATIVE IONS R. STEPHEN BERRY

    E-Print Network [OSTI]

    Berry, R. Stephen

    are those pertinent to gaseous discharge physics, to radiation damage problems, and to the study of ion. Electron Affinities A. The Hydride Ion B. Optical Methods C. Thresholds and Excited States D. Other, and optical properties, and the experi- mental and theoretical methods for studying these properties. We

  5. Heavy ion, recirculating linac, design optimization

    SciTech Connect (OSTI)

    Hewett, D.W. (Lawrence Livermore National Lab., CA (United States)); Godlove, T.F. (FM Technologies, Inc., Fairfax Station, VA (United States))

    1991-06-04T23:59:59.000Z

    Cost optimization is important to the development of high-current, heavy-ion accelerators for power production based on inertial confinement fusion. Two heavy-ion, recirculating linac configurations are examined that eliminate the necessity to provide reset pulses for the cores used in the linac induction accelerating modules. 3 refs., 2 figs.

  6. Magnetic piston model for higher ion charge and different electron and ion plasma temperatures

    SciTech Connect (OSTI)

    Bogatu, I. N. [FAR-TECH, Inc., 10350 Science Center Drive, Bldg.14, Suite 150, San Diego, California 92121 (United States)] [FAR-TECH, Inc., 10350 Science Center Drive, Bldg.14, Suite 150, San Diego, California 92121 (United States)

    2013-05-15T23:59:59.000Z

    A new formula for the magnetic piston model, which explicitly describes how the momentum imparted to the ions by the magnetic pressure depends not only on the ion mass but also on the ion charge, as well as, on the plasma electron and ion temperatures, is derived following Rosenbluth's classical particle-field self-consistent plane approximation analytic calculation. The formula presented in this paper has implications in explaining the experimentally observed separation of the ions of different species and charges by the magnetic field penetrating the plasma and specularly reflecting them.

  7. An ion source module for the Beijing Radioactive Ion-beam Facility

    SciTech Connect (OSTI)

    Cui, B., E-mail: cui@ciae.ac.cn; Huang, Q.; Tang, B.; Ma, R.; Chen, L.; Ma, Y. [China Institute of Atomic Energy, Beijing (China)] [China Institute of Atomic Energy, Beijing (China)

    2014-02-15T23:59:59.000Z

    An ion source module is developed for Beijing Radioactive Ion-beam Facility. The ion source module is designed to meet the requirements of remote handling. The connection and disconnection of the electricity, cooling and vacuum between the module and peripheral units can be executed without on-site manual work. The primary test of the target ion source has been carried out and a Li{sup +} beam has been extracted. Details of the ion source module and its primary test results are described.

  8. Production of negative hydrogen and deuterium ions in microwave-driven ion sources.

    SciTech Connect (OSTI)

    Spence, D.

    1998-09-11T23:59:59.000Z

    The authors report progress they have made in the production of negative hydrogen and deuterium atomic ions in magnetically-confined microwave-driven (2.45 GHz) ion sources. The influence of source surface material, microwave power, source gas pressure and magnetic field configuration on the resulting ion current is discussed. Results strongly suggest that, at least in the source, vibrationally excited molecular hydrogen, the precursor to atomic negative ion production, is produced via a surface mechanism suggested by Hall et al. rather than via a gas phase reaction as is generally believed to be the case in most ion sources.

  9. Rechargeable lithium-ion cell

    DOE Patents [OSTI]

    Bechtold, Dieter (Bad Vilbel, DE); Bartke, Dietrich (Kelkheim, DE); Kramer, Peter (Konigstein, DE); Kretzschmar, Reiner (Kelkheim, DE); Vollbert, Jurgen (Hattersheim, DE)

    1999-01-01T23:59:59.000Z

    The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

  10. Method and apparatuses for ion cyclotron spectrometry

    DOE Patents [OSTI]

    Dahl, David A. (Idaho Falls, ID); Scott, Jill R. (Idaho Falls, ID); McJunkin, Timothy R. (Idaho Falls, ID)

    2012-03-06T23:59:59.000Z

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  11. ECR ion source with electron gun

    DOE Patents [OSTI]

    Xie, Z.Q.; Lyneis, C.M.

    1993-10-26T23:59:59.000Z

    An Advanced Electron Cyclotron Resonance ion source having an electron gun for introducing electrons into the plasma chamber of the ion source is described. The ion source has a injection enclosure and a plasma chamber tank. The plasma chamber is defined by a plurality of longitudinal magnets. The electron gun injects electrons axially into the plasma chamber such that ionization within the plasma chamber occurs in the presence of the additional electrons produced by the electron gun. The electron gun has a cathode for emitting electrons therefrom which is heated by current supplied from an AC power supply while bias potential is provided by a bias power supply. A concentric inner conductor and outer conductor carry heating current to a carbon chuck and carbon pusher which hold the cathode in place and also heat the cathode. In the Advanced Electron Cyclotron Resonance ion source, the electron gun replaces the conventional first stage used in prior electron cyclotron resonance ion generators. 5 figures.

  12. Method and apparatus for ion cyclotron spectrometry

    DOE Patents [OSTI]

    Dahl, David A. (Idaho Falls, ID) [Idaho Falls, ID; Scott, Jill R. (Idaho Falls, ID) [Idaho Falls, ID; McJunkin, Timothy R. (Idaho Falls, ID) [Idaho Falls, ID

    2010-08-17T23:59:59.000Z

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  13. Magnetic island evolution in hot ion plasmas

    SciTech Connect (OSTI)

    Ishizawa, A.; Nakajima, N. [National Institute for Fusion Science, Toki 509-5292 (Japan); Waelbroeck, F. L.; Fitzpatrick, R.; Horton, W. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

    2012-07-15T23:59:59.000Z

    Effects of finite ion temperature on magnetic island evolution are studied by means of numerical simulations of a reduced set of two-fluid equations which include ion as well as electron diamagnetism in slab geometry. The polarization current is found to be almost an order of magnitude larger in hot than in cold ion plasmas, due to the strong shear of ion velocity around the separatrix of the magnetic islands. As a function of the island width, the propagation speed decreases from the electron drift velocity (for islands thinner than the Larmor radius) to values close to the guiding-center velocity (for islands of order 10 times the Larmor radius). In the latter regime, the polarization current is destabilizing (i.e., it drives magnetic island growth). This is in contrast to cold ion plasmas, where the polarization current is generally found to have a healing effect on freely propagating magnetic island.

  14. Ion acceleration processes at reforming collisionless shocks

    E-Print Network [OSTI]

    R. E. Lee; S. C. Chapman; R. O. Dendy

    2004-10-25T23:59:59.000Z

    The identification of pre-acceleration mechanisms for cosmic ray ions in supernova remnant shocks is an important problem in astrophysics. Recent particle-in-cell (PIC) shock simulations have shown that inclusion of the full electron kinetics yields non-time-stationary solutions, in contrast to previous hybrid (kinetic ions, fluid electrons) simulations. Here, by running a PIC code at high phase space resolution, ion acceleration mechanisms associated with the time dependence of a supercritical collisionless perpendicular shock are examined. In particular the components of $\\int \\mathbf{F} \\cdot \\mathbf{v} dt$ are analysed along trajectories for ions that reach both high and low energies. Selection mechanisms for the ions that reach high energies are also examined. In contrast to quasi-stationary shock solutions, the suprathermal protons are selected from the background population on the basis of the time at which they arrive at the shock, and thus are generated in bursts.

  15. Ion Trap in a Semiconductor Chip

    E-Print Network [OSTI]

    D. Stick; W. K. Hensinger; S. Olmschenk; M. J. Madsen; K. Schwab; C. Monroe

    2006-01-09T23:59:59.000Z

    The electromagnetic manipulation of isolated atoms has led to many advances in physics, from laser cooling and Bose-Einstein condensation of cold gases to the precise quantum control of individual atomic ion. Work on miniaturizing electromagnetic traps to the micrometer scale promises even higher levels of control and reliability. Compared with 'chip traps' for confining neutral atoms, ion traps with similar dimensions and power dissipation offer much higher confinement forces and allow unparalleled control at the single-atom level. Moreover, ion microtraps are of great interest in the development of miniature mass spectrometer arrays, compact atomic clocks, and most notably, large scale quantum information processors. Here we report the operation of a micrometer-scale ion trap, fabricated on a monolithic chip using semiconductor micro-electromechanical systems (MEMS) technology. We confine, laser cool, and measure heating of a single 111Cd+ ion in an integrated radiofrequency trap etched from a doped gallium arsenide (GaAs) heterostructure.

  16. Tailored ion energy distributions on plasma electrodes

    SciTech Connect (OSTI)

    Economou, Demetre J. [Plasma Processing Laboratory, Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004 (United States)] [Plasma Processing Laboratory, Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004 (United States)

    2013-09-15T23:59:59.000Z

    As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods include the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas.

  17. Synthesis, Characterization and Testing of Novel Anode and Cathode Materials for Li-Ion Batteries

    SciTech Connect (OSTI)

    White, Ralph E.; Popov, Branko N.

    2002-10-31T23:59:59.000Z

    During this program we have synthesized and characterized several novel cathode and anode materials for application in Li-ion batteries. Novel synthesis routes like chemical doping, electroless deposition and sol-gel method have been used and techniques like impedance, cyclic voltammetry and charge-discharge cycling have been used to characterize these materials. Mathematical models have also been developed to fit the experimental result, thus helping in understanding the mechanisms of these materials.

  18. Morphology and Ion Transport in Block-Copolymer Electrolytes

    E-Print Network [OSTI]

    Mullin, Scott Allen

    2011-01-01T23:59:59.000Z

    of- the-art rechargeable lithium-ion batteries, but lithiumsystem, 46 a porous lithium-ion anode, 48 and a systemmost appropriate. The lithium ion transference number can

  19. Simulation of chamber transport for heavy-ion fusion

    E-Print Network [OSTI]

    2002-01-01T23:59:59.000Z

    Simulation of Chamber Transport for Heavy-Ion Fusion W. M.et al. , “Modeling Chamber Transport for Heavy-Ion Fusion,”et al. , "Chamber Transport of `Foot' Pulses for Heavy-Ion

  20. COULOMB EFFECTS ON PIONS PRODUCED IN HEAVY ION REACTIONS

    E-Print Network [OSTI]

    Sullivan, J.P.

    2010-01-01T23:59:59.000Z

    singles other rates ion chamber, and secondary beam monitorswitn an Ar/CO- filled ion chamber) and the solid-anglementioned Ar/C0„-filled ion chamber. To minimize background

  1. Chamber transport of "foot" pulses for heavy-ion fusion

    E-Print Network [OSTI]

    Sharp, W.M.; Callahan-Miller, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.

    2002-01-01T23:59:59.000Z

    Neutralization on Heavy-Ion-Fusion Chamber Transport," to beChamber transport of "foot" pulses for heavy-ion fusion W.chamber-transport effectiveness is the fraction of enclosed beam ions

  2. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    E-Print Network [OSTI]

    Hoarfrost, Megan Lane

    2012-01-01T23:59:59.000Z

    corrected with the post-ion chamber intensity using Nikawas corrected with the post-ion chamber intensity using Nikacorrected with the post-ion chamber intensity using Nika

  3. ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE

    E-Print Network [OSTI]

    Anders, Andre

    2010-01-01T23:59:59.000Z

    a high current ion source for ultra-low energy ions has beenthe Department of Energy ULTRA-LOW-ENERGY HIGH-CURRENT IONedited by A. Anders. ULTRA-LOW-ENERGY HIGH-CURRENT ION

  4. Secondary ion emission from single massive gold cluster impacts

    E-Print Network [OSTI]

    Hager, George Joseph

    2007-09-17T23:59:59.000Z

    massive projectile impacts. Secondary ion yield enhancements, resulting from use of the multi-anode detector, are reported along with secondary ion distributions for organic and inorganic targets. Au-adduct ions have been observed in mass spectra resulting...

  5. Improved ion implant fluence uniformity in hydrogen enhanced glow discharge plasma immersion ion implantation into silicon

    SciTech Connect (OSTI)

    Luo, J. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Department of 702, Beihang University, Beijing 100191 (China); Li, L. H., E-mail: liliuhe@buaa.edu.cn, E-mail: paul.chu@cityu.edu.hk; Liu, H. T.; Xu, Y.; Zuo, X. J.; Zhu, P. Z.; Ma, Y. F. [Department of 702, Beihang University, Beijing 100191 (China); Yu, K. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Fu, Ricky K. Y.; Chu, Paul K., E-mail: liliuhe@buaa.edu.cn, E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2014-06-15T23:59:59.000Z

    Enhanced glow discharge plasma immersion ion implantation does not require an external plasma source but ion focusing affects the lateral ion fluence uniformity, thereby hampering its use in high-fluence hydrogen ion implantation for thin film transfer and fabrication of silicon-on-insulator. Insertion of a metal ring between the sample stage and glass chamber improves the ion uniformity and reduces the ion fluence non-uniformity as the cathode voltage is raised. Two-dimensional multiple-grid particle-in-cell simulation confirms that the variation of electric field inside the chamber leads to mitigation of the ion focusing phenomenon and the results are corroborated experimentally by hydrogen forward scattering.

  6. Production of multiply charged ion beams from solid substances with the mVINIS ion source

    SciTech Connect (OSTI)

    Draganic, I.; Dobrosavljevic, A.; Nedeljkovic, T.; Siljegovic, M. [Laboratory of Physics, Vinca Institute of Nuclear Sciences, P.O. Box. 522, 11000 Belgrade (Serbia and Montenegro)

    2006-03-15T23:59:59.000Z

    The mVINIS ion source has enabled us to obtain multiply charged ion beams from gases as well as from solid materials. The solid substance ion beams were produced by using two techniques: (a) the evaporation of metals by using the inlet system based on a minioven and (b) the metal-ions-from-volatile-compounds method (MIVOC) by using the modified gas inlet system. Great efforts were made in the production of high current stable ion beams of solids with relatively high melting points (over 1000 deg. C). The B{sup 3+} ion-beam current of over 300 {mu}A was one of the most intensive beams extracted until now. The obtained multiply charged ion-beam spectra of solid substances (B, Fe, and Zn) are presented as well as some of the corresponding experimental results achieved during the modification of polymers, carbon materials, and fullerenes.

  7. Synthesis and Characterization of Templated Ion Exchange Resins for the Selective Complexation of Actinide Ions

    SciTech Connect (OSTI)

    Murray, George M.; Uy, O. Manual murragm1@aplcomm.jhuapl.edu; uyom1@aplmsg.jhuapl.edu

    2001-03-01T23:59:59.000Z

    The purpose of this research is to develop a polymeric extractant for the selective complexation of uranyl ions (and subsequently other actinyl and actinide ions) from aqueous solutions (lakes, streams, waste tanks and even body fluids). Chemical insights into what makes a good complexation site will be used to synthesize reagents tailor-made for the complexation of uranyl and other actinide ions. These insights, derived from studies of molecular recognition include ion coordination number and geometry, ionic size and ionic shape, as well as ion to ligand thermodynamic affinity. Selectivity for a specific actinide ion will be obtained by providing the polymers with cavities lined with complexing ligands so arranged as to match the charge, coordination number, coordination geometry, and size of the actinide metal ion. These cavity-containing polymers will be produced by using a specific ion (or surrogate) as a template around which monomeric complexing ligands will be polymerized. The complexing ligands will be ones containing functional groups known to form stable complexes with a specific ion and less stable complexes with other cations. Prior investigator's approaches for making templated resins for metal ions have had marginal success. We have extended and amended these methodologies in our work with Pb(II) and uranyl ion, by changing the order of the steps, by the inclusion of sonication, by using higher complex loading, and the selection of functional groups with better complexation constants. This has resulted in significant improvements to selectivity. The unusual shape of the uranyl ion suggests that this approach will result in even greater selectivities than already observed for Pb(II). Preliminary data obtained for uranyl templated polymers shows unprecedented selectivity and has resulted in the first ion selective electrode for uranyl ion.

  8. Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-103

    SciTech Connect (OSTI)

    Hassan, N.M.

    2000-07-27T23:59:59.000Z

    The pretreatment process for BNFL, Inc.'s Hanford River Protection Project is to provide decontaminated low activity waste and concentrated eluate streams for vitrification into low activity and high level waste glass, respectively. The pretreatment includes sludge washing, filtration, precipitation, and ion exchange processes to remove entrained solids, cesium, transuranics, technetium, and strontium. The ion exchange removal of cesium (Cs) and technetium (Tc) ions is accomplished by using SuperLig 644, and 639 resins from IBC Advanced Technologies, American Fork, Utah. The resins were shown to selectively remove cesium and technetium (as pertechnetate), from alkaline salt solutions. The efficiency of ion exchange column loading and elution is a complex function involving feed compositions, equilibrium and kinetic behavior of ion exchange resins, diffusion, and the ionic strength and pH of the aqueous solution. A previous experimental program completed at the Savannah River Technology Center demonstrated the conceptualized flow sheet parameters with a similar Hanford tank sample (241-AW-101). Those experiments included determination of Cs and Tc batch distribution coefficients by SuperLig 644 and 639 resins and demonstration of small-scale column breakthrough and elution. The experimental findings were used in support of preliminary design bases and pretreatment flow sheet development by BNFL, Inc.

  9. Solid lithium ion conducting electrolytes and methods of preparation

    DOE Patents [OSTI]

    Narula, Chaitanya K; Daniel, Claus

    2013-05-28T23:59:59.000Z

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  10. New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries

    SciTech Connect (OSTI)

    Yang, Xiao-Qing

    2008-08-31T23:59:59.000Z

    In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40°C to -40°C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 °C. Also, there was no lithium plating when the lithium­-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

  11. Integrated Program Review Fish and Wildlife Program

    E-Print Network [OSTI]

    Integrated Program Review (IPR) Fish and Wildlife Program Costs May 20, 2010 Presented to Northwest Total Annual Average Cost of BPA Fish & Wildlife Actions1/ 226 5 24 41 8 310 137 750 1/ FY 2012 White Sturgeon. These actions may include such things as dredging, restoration of channel complexity

  12. Bulk Storage Program Compliance Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Bulk Storage Program Compliance Written Program Cornell University 5/8/2013 #12;Bulk Storage.......................................................... 5 4.2.2 Aboveground Petroleum Storage Tanks­ University activities/operations designed to prevent releases of oil from Aboveground Petroleum Storage Tanks (ASTs) required to comply with following

  13. Dietetic Internship Program Structure of the Program

    E-Print Network [OSTI]

    Hemmers, Oliver

    Dietetic Internship Program Structure of the Program The UNLV Dietetic Internship (DI Internship are designed to provide well-trained dietetics professionals for the growing Southern Nevada Overview The goal of the Community Component of the Dietetic Internship is to provide the intern

  14. Science Policy Fellowship Program About the Program

    E-Print Network [OSTI]

    Sibille, Etienne

    Science Policy Fellowship Program About the Program This two-year fellowship at the IDA Science recipients to gain science and technology policy experience. Policy research will focus on areas research for leaders in the Office of Science and Technology Policy (OSTP) in the Executive Office

  15. Ion acceleration from thin foil and extended plasma targets by slow electromagnetic wave and related ion-ion beam instability

    SciTech Connect (OSTI)

    Bulanov, S. V. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto, 619-0215 (Japan); A. M. Prokhorov Institute of General Physics RAS, Moscow, 119991 (Russian Federation); Esirkepov, T. Zh.; Kando, M. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto, 619-0215 (Japan); Pegoraro, F. [Physical Department, University of Pisa, Pisa 56127 (Italy); Bulanov, S. S. [University of California, Berkeley, California 94720 (United States); Geddes, C. G. R.; Schroeder, C. B.; Esarey, E. [Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States); Leemans, W. P. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States)

    2012-10-15T23:59:59.000Z

    When ions are accelerated by the radiation pressure of a laser pulse, their velocity cannot exceed the pulse group velocity which can be considerably smaller than the speed of light in vacuum. This is demonstrated in two cases corresponding to a thin foil target irradiated by high intensity laser light and to the hole boring produced in an extended plasma by the laser pulse. It is found that the beams of accelerated ions are unstable against Buneman-like and Weibel-like instabilities which results in the broadening of the ion energy spectrum.

  16. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    and characterization of spinel Li 4 Ti 5 O 12 nanoparticles anode materials for lithium ion battery.Li-ion battery performance. Figure 34. Characterization of

  17. Characterization of Li-ion Batteries using Neutron Diffraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

  18. ar ion beam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ion optical code IBSimu. The simulations predict self-consistently the triangular and hollow beam structures which are often observed experimentally with ECRIS ion beams. The...

  19. argon ion beam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ion optical code IBSimu. The simulations predict self-consistently the triangular and hollow beam structures which are often observed experimentally with ECRIS ion beams. The...

  20. anionic ion exchangers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ions and water flow under the influence of gradients in hydrostatic pressure, ion chemical potential, and electrical potential (voltage), leading to solvent flow, ionic fluxes...

  1. alkane molecular ions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1977-01-01 25 Blackbody thermometry with cold molecular ions and application to ion-based frequency standards Physics Websites Summary: Blackbody thermometry with cold...

  2. albumin ions injected: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19 Hunt, Galen 3 Characterizing Oligosaccharides Using Injected-Ion MobilityMass Spectrometry Chemistry Websites Summary: Characterizing Oligosaccharides Using Injected-Ion...

  3. Long Plasma Source for Heavy Ion Beam Charge Neutralization

    E-Print Network [OSTI]

    Efthimion, P.C.

    2009-01-01T23:59:59.000Z

    neutralizing plasma column the heavy ion beam can focus to aPlasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus

  4. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Energy Savers [EERE]

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  5. Magnetization measurements and XMCD studies on ion irradiated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements and XMCD studies on ion irradiated iron oxide and core-shell ironiron-oxide nanomaterials. Magnetization measurements and XMCD studies on ion irradiated iron oxide...

  6. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    electrode in lithium-ion batteries: AFM study in an ethylenelithium-ion rechargeable batteries. Carbon 1999, 37, 165-batteries. J. Electrochem. Soc. 2001,

  7. Sodium Titanates as Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    Anodes  for  Sodium  Ion  Batteries   Marca  M.  Doeff,  dual   intercalation   batteries   based   on   sodium  future   of   sodium  ion  batteries  will  be  discussed  

  8. Highly Reversible Mg Insertion in Nanostructured Bi for Mg Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reversible Mg Insertion in Nanostructured Bi for Mg Ion Batteries. Highly Reversible Mg Insertion in Nanostructured Bi for Mg Ion Batteries. Abstract: Rechargeable magnesium...

  9. Analysis of Crystal Lattice Deformation by Ion Channeling. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystal Lattice Deformation by Ion Channeling. Analysis of Crystal Lattice Deformation by Ion Channeling. Abstract: A model of dislocations has been developed for the use in Monte...

  10. Silicon sponge improves lithium-ion battery performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sponge improves lithium-ion battery performance Silicon sponge improves lithium-ion battery performance Increasing battery's storage capacity could allow devices to run...

  11. Lithium Ion Electrode Production NDE and QC Considerations |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Ion Electrode Production NDE and QC Considerations Lithium Ion Electrode Production NDE and QC Considerations Review of Oak Ridge process and QC activities by David Wood,...

  12. Nanoscale In Situ Characterization of Li-ion Battery Electrochemistry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale In Situ Characterization of Li-ion Battery Electrochemistry via Scanning Ion Conductance Microscopy A. L. Lipson, R. S. Ginder, and M. C. Hersam, Northwestern University...

  13. Exploring the interaction between lithium ion and defective graphene...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploring the interaction between lithium ion and defective graphene surface using dispersion corrected DFT studies. Exploring the interaction between lithium ion and defective...

  14. High-Resolution Differential Ion Mobility Separations Using Helium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helium-Rich Gases. High-Resolution Differential Ion Mobility Separations Using Helium-Rich Gases. Abstract: Analyses of complex mixtures and characterization of ions increasingly...

  15. ION ACCELERATORS AS DRIVERS FOR INERTIAL CONFINEMENT FUSION

    E-Print Network [OSTI]

    Faltens, A.

    2010-01-01T23:59:59.000Z

    and Controlled Nuclear Fusion Research, Brussels, Belgium,of the Heavy Ion Fusion Workshop held at Brookhaven NationalReport, Hearthfire Heavy Ion Fusion, October 1, 1979 - March

  16. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Energy Savers [EERE]

    Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session...

  17. Lithium Ion Battery Performance of Silicon Nanowires With Carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Battery Performance of Silicon Nanowires With Carbon Skin . Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin . Abstract: Silicon (Si) nanomaterials have...

  18. Designing Silicon Nanostructures for High Energy Lithium Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel...

  19. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

  20. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report Breakout session presentation for the EV Everywhere Grand...

  1. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

  2. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

  3. Coordination and Hydrolysis of Plutonium Ions in Aqueous Solution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrolysis of Plutonium Ions in Aqueous Solution using Car-Parrinello Molecular Dynamics Free Energy Coordination and Hydrolysis of Plutonium Ions in Aqueous Solution using...

  4. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved Photoelectron Spectroscopy of Cold C60- Anions. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved...

  5. HEAT TRANSFER ANALYSIS FOR ION-EXCHANGE COLUMN SYSTEM

    SciTech Connect (OSTI)

    Lee, S.; King, W.

    2011-05-23T23:59:59.000Z

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed, inadvertent column drainage, and loss of active cooling in the column. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature.

  6. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    SciTech Connect (OSTI)

    Singh, M. J.; Bandyopadhyay, M.; Yadava, Ratnakar; Chakraborty, A. K. [ITER- India, Institute for Plasma Research, A-29, Sector 25, GIDC, Gandhinagar, Gujrat (India); Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J. [Institute for Plasma Research, Bhat Gandhinagar, Gujrat (India); Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U. [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2011-09-26T23:59:59.000Z

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1x10{sup 18}/m{sup 3}, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  7. The high current transport experiment for heavy ion inertial fusion

    SciTech Connect (OSTI)

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01T23:59:59.000Z

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  8. Variable energy positron measurements at nitrogen ion bombarded steel surfaces

    SciTech Connect (OSTI)

    Brauer, G.; Kolitsch, A. [Research Centre Rossendorf, Inc., Dresden (Germany); Schut, H.; Veen, A. van [TU Delft (Netherlands). Interfaculty Reactor Inst.

    1996-12-31T23:59:59.000Z

    Nitrogen ion bombardment of steel samples has been studied by utilizing the Delft variable energy positron beam facility. The energy of the beam was varied between 250 eV and 25 keV and a line-shape parameter S describing the annihilation radiation has been measured. By use of the VEPFIT fitting program, up to five different layers, each having different densities, could be identified and characterized. The results show that carbon layers deposited during nitrogen implantation can be observed. A relation between the measured depth profiles of nitrogen, carbon and oxygen by Elastic Recoil Detection Analysis (ERDA) and the results of positron annihilation is given and discussed. The wear and friction properties of the steel surfaces before and after nitrogen implantation are presented.

  9. State Energy Program Formula Grant Guidance Program Year 2007

    Broader source: Energy.gov (indexed) [DOE]

    STATE ENERGY PROGRAM FORMULA GRANT GUIDANCE PROGRAM YEAR 2007 STATE ENERGY PROGRAM NOTICE 07-01 EFFECTIVE DATE: April 3, 2007 PURPOSE To establish grant guidance and management...

  10. Ion temperature measurements in the Maryland Spheromak

    SciTech Connect (OSTI)

    Gauvreau, J.L.

    1992-12-31T23:59:59.000Z

    Initial spectroscopic data from MS showed evidence of ion heating as deduced from the line widths of different ion species. Detailed measurements of OIV spectral emission line profiles in space and time revealed that heating takes place at early time, before spheromak formation and is occurring within the current discharge. The measured ion temperature is several times the electron temperature and cannot be explained by classical (Spitzer) resistivity. Classically, ions are expected to have lower temperatures than the electrons and therefore, lower temperatures than observed. High ion temperatures have been observed in different RFP`s and Spheromaks but are usually associated with relaxation to the Taylor state and occur in the sustainment phase. During formation, the current delivered to start the discharge is not axisymmetric and as a consequence, X-points appear in the magnetic flux. A two dimensional analysis predicts that magnetic reconnection occurring at an X-point can give rise to high ion heating rates. A simple 0-dimensional calculation showed that within the first 20 {mu}s, a conversion of mass flow kinetic energy into ion temperature could take place due to viscosity.

  11. Production of N[sup +] ions from a multicusp ion beam apparatus

    DOE Patents [OSTI]

    Kango Leung; Kunkel, W.B.; Walther, S.R.

    1993-03-30T23:59:59.000Z

    A method of generating a high purity (at least 98%) N[sup +] ion beam using a multicusp ion source having a chamber formed by a cylindrical chamber wall surrounded by a plurality of magnets, a filament centrally disposed in said chamber, a plasma electrode having an extraction orifice at one end of the chamber, a magnetic filter having two parallel magnets spaced from said plasma electrode and dividing the chamber into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber, maintaining the chamber wall at a positive voltage relative to the filament and at a magnitude for an optimum percentage of N[sup +] ions in the extracted ion beams, disposing a hot liner within the chamber and near the chamber wall to limit recombination of N[sup +] ions into the N[sub 2][sup +] ions, spacing the magnets of the magnetic filter from each other for optimum percentage of N[sup 3] ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8[times]10[sup [minus]4] torr) for an optimum percentage of N[sup +] ions in the extracted ion beam.

  12. Production of N.sup.+ ions from a multicusp ion beam apparatus

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Kunkel, Wulf B. (Berkeley, CA); Walther, Steven R. (Salem, MA)

    1993-01-01T23:59:59.000Z

    A method of generating a high purity (at least 98%) N.sup.+ ion beam using a multicusp ion source (10) having a chamber (11) formed by a cylindrical chamber wall (12) surrounded by a plurality of magnets (13), a filament (57) centrally disposed in said chamber, a plasma electrode (36) having an extraction orifice (41) at one end of the chamber, a magnetic filter having two parallel magnets (21, 22) spaced from said plasma electrode (36) and dividing the chamber (11) into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber (11), maintaining the chamber wall (12) at a positive voltage relative to the filament (57) and at a magnitude for an optimum percentage of N.sup.+ ions in the extracted ion beams, disposing a hot liner (45) within the chamber and near the chamber wall (12) to limit recombination of N.sup.+ ions into the N.sub.2.sup.+ ions, spacing the magnets (21, 22) of the magnetic filter from each other for optimum percentage of N.sup.3 ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8.times.10.sup.-4 torr) for an optimum percentage of N.sup.+ ions in the extracted ion beam.

  13. Ion detection device and method with compressing ion-beam shutter

    DOE Patents [OSTI]

    Sperline, Roger P [Tucson, AZ; Roger P. (Tucson, AZ)

    2009-05-26T23:59:59.000Z

    An ion detection device, method and computer readable medium storing instructions for applying voltages to shutter elements of the detection device to compress ions in a volume defined by the shutter elements and to output the compressed ions to a collector. The ion detection device has a chamber having an inlet and receives ions through the inlet, a shutter provided in the chamber opposite the inlet and configured to allow or prevent the ions to pass the shutter, the shutter having first and second shutter elements, a collector provided in the chamber opposite the shutter and configured to collect ions passed through the shutter, and a processing unit electrically connected to the first and second shutter elements. The processing unit applies, during a first predetermined time interval, a first voltage to the first shutter element and a second voltage to the second shutter element, the second voltage being lower than the first voltage such that ions from the inlet enter a volume defined by the first and second shutter elements, and during a second predetermined time interval, a third voltage to the first shutter element, higher than the first voltage, and a fourth voltage to the second shutter element, the third voltage being higher than the fourth voltage such that ions that entered the volume are compressed as the ions exit the volume and new ions coming from the inlet are prevented from entering the volume. The processing unit is electrically connected to the collector and configured to detect the compressed ions based at least on a current received from the collector and produced by the ions collected by the collector.

  14. High-Performance Ion Mobility Spectrometry Using Hourglass Electrodynamic Funnel And Internal Ion Funnel

    DOE Patents [OSTI]

    Smith, Richard D. (Richland, WA); Tang, Keqi (Richland, WA); Shvartsburg, Alexandre A. (Richland, WA)

    2004-11-16T23:59:59.000Z

    A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.

  15. Generic programming in Scala

    E-Print Network [OSTI]

    N'guessan, Olayinka

    2007-04-25T23:59:59.000Z

    Generic programming is a programming methodology that aims at producing reusable code, defined independently of the data types on which it is operating. To achieve this goal, that particular code must rely on a set of requirements known as concepts...

  16. MMEECCHHAANNIICCAALL ENGINEERING PROGRAM

    E-Print Network [OSTI]

    Fernandez, Eduardo

    for admission to the Department of Ocean and Mechanical Engineering in the Mechanical Engineering ProgramMMEECCHHAANNIICCAALL ENGINEERING PROGRAM UNDERGRADUATE ADMISSION REQUIREMENTS To be eligible Fundamentals of Engineering* 3 Engineering Graphics* 3 Electives 6 Total: 60 NOTE: Electives may include

  17. Ordinals and Interactive Programs 

    E-Print Network [OSTI]

    Hancock, Peter

    have much to contribute to the theory of programming. This has indeed turned out to be the case. Various technologies developed in proof theory are now widely used in computer science for formulating and investigating programming languages and logics...

  18. Y-12 Apprentice Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an enviable placement rate of 100 percent. Until recently, another training program series, the Y-12 Apprentice Program, had not been provided at Y-12 for several years. Until...

  19. Parallel programming with PCN

    SciTech Connect (OSTI)

    Foster, I.; Tuecke, S.

    1991-12-01T23:59:59.000Z

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, tools for developing and debugging programs in this language, and interfaces to Fortran and C that allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. In includes both tutorial and reference material. It also presents the basic concepts that underly PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous FTP from Argonne National Laboratory in the directory pub/pcn at info.mcs.anl.gov (c.f. Appendix A).

  20. Enterprise Risk Management Program

    E-Print Network [OSTI]

    Hayden, Nancy J.

    Enterprise Risk Management Program DRAFT Introduction to Enterprise Risk Management at UVM 1 #12;Enterprise Risk Management Program DRAFT What is Enterprise Risk Management? Enterprise risk management governance, and accountability · Facilitates effective management of the uncertainty and associated risks

  1. Worker Training Program (Nebraska)

    Broader source: Energy.gov [DOE]

    The Worker Training Program is a business incentive program to support the retraining and upgrading of Nebraska’s current workforce. The amount of grant funding available quarterly is distributed...

  2. SREC Procurement Program (Delaware)

    Broader source: Energy.gov [DOE]

    '''''Note: The SREC procurement program will accept applications from March 25 to April 12, 2013. The summary below is intended to reflect the 2013 program as described in the [http://depsc...

  3. Operational Demonstration Program

    Broader source: Energy.gov [DOE]

    This program is currently closed. Applications were due in February 2012. Additional funding rounds have not yet been announced. Check the program web site for the latest available information.

  4. HAZARDOUS WASTE [Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    HAZARDOUS WASTE MANUAL [Written Program] Cornell University [10/7/13 #12;Hazardous Waste Program................................................... 8 3.0 MINIMIZING HAZARDOUS WASTE GENERATION.........................................................10 4.0 HAZARDOUS WASTE GENERATOR REQUIREMENTS.....................................................10

  5. Commonwealth Hydropower Program

    Broader source: Energy.gov [DOE]

    Note: This program reopened March 15, 2013. There is $1,200,000 available for Round 5; applications will be accepted on a rolling basis until funding is exhausted. See the program web site for...

  6. COMPUTER SCIENCE SAMPLE PROGRAM

    E-Print Network [OSTI]

    Gering, Jon C.

    COMPUTER SCIENCE SAMPLE PROGRAM (First Math Course MATH 198) This sample program suggests one way CS 181: Foundations of Computer Science II CS 180: Foundations of Computer Science I CS 191

  7. Sandia's Biofuels Program

    ScienceCinema (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-24T23:59:59.000Z

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  8. Sandia's Biofuels Program

    SciTech Connect (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22T23:59:59.000Z

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  9. Acquisition Fellows Program

    Broader source: Energy.gov [DOE]

    Acquisition Fellows Program (AFP)- is a program designed to recruit, acquire, develop and retain 1102 series contract specialist. Fellows are recruited, hired, selected and funded by their sponsoring DOE/NNSA office.

  10. Protective Force Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-30T23:59:59.000Z

    Provides detailed requirements to supplement DOE O 473.2, Protective Force Program, which establishes the requirements and responsibilities for management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Does not cancel other directives.

  11. Strengthening Relationships Between Energy Programs and Housing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strengthening Relationships Between Energy Programs and Housing Programs Strengthening Relationships Between Energy Programs and Housing Programs Better Buildings Residential...

  12. Geothermal materials program: strategy. Final report

    SciTech Connect (OSTI)

    Crane, C.H.; Kenkeremath, D.C.

    1980-10-01T23:59:59.000Z

    The following topics are discussed: program goal and objectives, program organization, and program status. Current program projects are described. (MHR)

  13. Sustainable Energy Management Programs

    E-Print Network [OSTI]

    Hanner, S.

    2014-01-01T23:59:59.000Z

    Sustainable Energy Management Programs Steve Hanner Allen ISD/TEMA . ESL-KT-14-11-45 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Starting an Energy Management Program • Recognize need, Elicit District Commitment... • Appoint Energy Manager • Analyze Existing Conditions • Develop Plan • Implement and Monitor Program ESL-KT-14-11-45 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Sustainable Programs Feature – District Commitment...

  14. Symmetries in Integer Programs

    E-Print Network [OSTI]

    Bödi, R

    2009-01-01T23:59:59.000Z

    The notion of symmetry is defined in the context of Linear and Integer Programming. Symmetric integer programs are studied from a group theoretical viewpoint. We investigate the structure of integer solutions of integer programs and show that any integer program on n variables having an alternating group A_n as a group of symmetries can be solved in linear time in the number of variables.

  15. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-08-16T23:59:59.000Z

    The Order is the primary directive for administering the Department's directives Program. Cancels: DOE O 251.1A

  16. Independent Oversight Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-30T23:59:59.000Z

    The order prescribes the requirements and responsibilities for the DOE Independent Oversight Program. Cancels DOE O 470.2B.

  17. Physics Illinois Undergraduate Programs

    E-Print Network [OSTI]

    Gilbert, Matthew

    , and business. In order to support the diverse career goals of our students, we have infused our programs

  18. Short wavelength ion temperature gradient turbulence

    SciTech Connect (OSTI)

    Chowdhury, J.; Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar (India); Brunner, S.; Lapillonne, X.; Villard, L. [CRPP, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Jenko, F. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr. 2, D-85748 Garching (Germany)

    2012-10-15T23:59:59.000Z

    The ion temperature gradient (ITG) mode in the high wavenumber regime (k{sub y}{rho}{sub s}>1), referred to as short wavelength ion temperature gradient mode (SWITG) is studied using the nonlinear gyrokinetic electromagnetic code GENE. It is shown that, although the SWITG mode may be linearly more unstable than the standard long wavelength (k{sub y}{rho}{sub s}<1) ITG mode, nonlinearly its contribution to the total thermal ion heat transport is found to be low. We interpret this as resulting from an increased zonal flow shearing effect on the SWITG mode suppression.

  19. Dual Chamber Laser Ion Source at Lisol

    E-Print Network [OSTI]

    Yu. Kudryavtsev; T. E. Cocolios; J. Gentens; M. Huyse; O. Ivanov; D. Pauwels; T. Sonoda; P. Van den Bergh; P. Van Duppen

    2009-04-23T23:59:59.000Z

    A new type of the gas cell for the resonance ionization laser ion source at the Leuven Isotope Separator On Line (LISOL) has been developed and tested at off-line and on-line conditions. Two-step selective laser ionization is applied to produce purified beams of radioactive isotopes. The selectivity of the ion source has been increased by more than one order of magnitude by separation of the stopping and laser ionization regions. This allows to use electrical fields for further ion purification.

  20. Parallel ion strings in linear multipole traps

    E-Print Network [OSTI]

    Mathieu Marciante; Caroline Champenois; J. Pedregosa-Gutierrez; Annette Calisti; Martina Knoop

    2011-03-13T23:59:59.000Z

    Additional radio-frequency (rf) potentials applied to linear multipole traps create extra field nodes in the radial plane which allow one to confine single ions, or strings of ions, in totally rf field-free regions. The number of nodes depends on the order of the applied multipole potentials and their relative distance can be easily tuned by the amplitude variation of the applied voltages. Simulations using molecular dynamics show that strings of ions can be laser cooled down to the Doppler limit in all directions of space. Once cooled, organized systems can be moved with very limited heating, even if the cooling process is turned off.

  1. Physics with fast molecular-ion beams

    SciTech Connect (OSTI)

    Kanter, E.P.

    1980-01-01T23:59:59.000Z

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  2. Focused ion beam source method and apparatus

    DOE Patents [OSTI]

    Pellin, Michael J. (Naperville, IL); Lykke, Keith R. (Gaithersburg, MD); Lill, Thorsten B. (Sunnyvale, CA)

    2000-01-01T23:59:59.000Z

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  3. Liquid membrane coated ion-exchange column solids

    DOE Patents [OSTI]

    Barkey, Dale P. (Berkeley, CA)

    1989-01-01T23:59:59.000Z

    This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  4. Liquid membrane coated ion-exchange column solids

    DOE Patents [OSTI]

    Barkey, Dale P. (Berkeley, CA)

    1988-01-01T23:59:59.000Z

    This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  5. Spontaneous ion beam formation in the laboratory, space, and simulation

    SciTech Connect (OSTI)

    Carr, J. Jr.; Cassak, P. A.; Galante, M.; Keesee, A. M.; Lusk, G.; Magee, R. M.; McCarren, D.; Scime, E. E.; Sears, S.; Vandervort, R. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States)] [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Gulbrandsen, N. [University of Tromsø, Tromsø (Norway)] [University of Tromsø, Tromsø (Norway); Goldman, Martin; Newman, David [Department of Physics, University of Colorado–Boulder, Boulder, Colorado 80309 (United States)] [Department of Physics, University of Colorado–Boulder, Boulder, Colorado 80309 (United States); Eastwood, J. P. [The Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom)] [The Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom)

    2013-07-15T23:59:59.000Z

    We present experimental evidence for the spontaneous formation of multiple double layers within a single divergent magnetic field structure. Downstream of the divergent magnetic field, multiple accelerated ion populations are observed. The similarity of the accelerated ion populations observed in these laboratory experiments to ion populations observed in the magnetosphere and in numerical simulations suggests that the observation of a complex ion velocity distribution alone is insufficient to distinguish between simple plasma expansion and magnetic reconnection. Further, the effective temperature of the aggregate ion population is significantly larger than the temperatures of the individual ion population components, suggesting that insufficiently resolved measurements could misidentify multiple beam creation as ion heating. Ions accelerated in randomly oriented electric fields that mimic heating would have an ion heating rate dependent on the ion charge and mass that is qualitatively consistent with recent experimental observations of ion heating during magnetic reconnection.

  6. SUNY Programs: Experiential Learning

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    SUNY Programs: Experiential Learning Internships Volunteer & Service-Learning Field Work quite broad, although the offerings are more limited than the programs in the general section. Teaching the programs with experiential learning opportunities offered by SUNY campuses. These listings give just

  7. ARRA FUNDED ENERGY PROGRAMS

    E-Print Network [OSTI]

    lower energy costs and fossil fuel energy use. Increasing arra funds with private and public sector. The Clean Energy Business Financing loan program is designed to leverage even more private sector funds programs (such as Clean Energy Business and Municipal Financing programs) when developing the federal

  8. Safeguards and Security Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21T23:59:59.000Z

    To establish responsibilities for the U.S. Department of Energy (DOE) Safeguards and Security (S&S) Program, and to establish program planning and management requirements for the S&S Program. Cancels DOE O 470.4A, DOE M 470.4-1, Chg. 2, and DOE O 142.1.

  9. Model Fire Protection Program

    Broader source: Energy.gov [DOE]

    To facilitate conformance with its fire safety directives and the implementation of a comprehensive fire protection program, DOE has developed a number of "model" program documents. These include a comprehensive model fire protection program, model fire hazards analyses and assessments, fire protection system inspection and testing procedures, and related material.

  10. Priorities and Allocations Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-10-12T23:59:59.000Z

    The Order establishes responsibilities for administration of the DOE and NNSA priorities and allocations program for industrial products, materials, and services and requirements for maintaining a system for procurement of industrial products, materials, and services programs that promote the national defense and programs that are determined by DOE to maximize domestic energy supplies. Cancels DOE O 5560.1A.

  11. ACADEMIC PROGRAM PROCEDURE MANUAL

    E-Print Network [OSTI]

    Fay, Noah

    1 ACADEMIC PROGRAM REVIEW PROCEDURE MANUAL 2014-2015 Office of the Senior Vice President Tucson, AZ 85721 #12;2 ACADEMIC PROGRAM REVIEW MANAGEMENT TEAM Web Site for Academic Program Review http Educational Policy Studies & Practice Spanish and Portuguese Electrical & Computer Engineering Teaching

  12. Multidimensional Model Programming

    E-Print Network [OSTI]

    Hunt, Galen

    #12;Multidimensional Model Programming SQL Server 2012 Books Online Summary: Analysis Services provides several APIs that you can use to program against an Analysis Services instance this information to choose the programming interface that best meets the requirements of a particular project

  13. BCB Graduate Program Introduction

    E-Print Network [OSTI]

    Mayfield, John

    Fall 2014 BCB Graduate Program Introduction Bioinformatics and Computational Biology www and Computational Biology #12;Program Overview One of the first Bioinformatics Ph.D. programs in the US With about-major professor (each in a different discipline) Bioinformatics and Computational Biology #12;Major Research

  14. Utility Partnerships Program Overview (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    Program overview brochure for the Utility Partnerships Program within the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP).

  15. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Metallic Materials Meeting Washington, DC Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager...

  16. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01T23:59:59.000Z

    Passivation of Aluminum in Lithium-ion Battery Electrolytesin commercially available lithium-ion battery electrolytes,

  17. Nonlinear Spectroscopy of Trapped Ions

    E-Print Network [OSTI]

    Frank Schlawin; Manuel Gessner; Shaul Mukamel; Andreas Buchleitner

    2014-10-07T23:59:59.000Z

    Nonlinear spectroscopy employs a series of laser pulses to interrogate dynamics in large interacting many-body systems, and has become a highly successful method for experiments in chemical physics. Current quantum optical experiments approach system sizes and levels of complexity which require the development of efficient techniques to assess spectral and dynamical features with scalable experimental overhead. However, established methods from optical spectroscopy of macroscopic ensembles cannot be applied straightforwardly to few-atom systems. Based on the ideas proposed in [M. Gessner et al. New J. Phys. 16 092001 (2014)], we develop a diagrammatic approach to construct nonlinear measurement protocols for controlled quantum systems and discuss experimental implementations with trapped ion technology in detail. These methods in combination with distinct features of ultra-cold matter systems allow us to monitor and analyze excitation dynamics in both the electronic and vibrational degrees of freedom. They are independent of system size, and can therefore reliably probe systems where, e.g., quantum state tomography becomes prohibitively expensive. We propose signals that can probe steady state currents, detect the influence of anharmonicities on phonon transport, and identify signatures of chaotic dynamics near a quantum phase transition in an Ising-type spin chain.

  18. Ion acoustic shock waves in plasmas with warm ions and kappa distributed electrons and positrons

    SciTech Connect (OSTI)

    Hussain, S.; Mahmood, S.; Hafeez Ur-Rehman [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan and Department of Physics and Applied Mathematics, PIEAS, P.O. Nilore, Islamabad 44000 (Pakistan)] [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan and Department of Physics and Applied Mathematics, PIEAS, P.O. Nilore, Islamabad 44000 (Pakistan)

    2013-06-15T23:59:59.000Z

    The monotonic and oscillatory ion acoustic shock waves are investigated in electron-positron-ion plasmas (e-p-i) with warm ions (adiabatically heated) and nonthermal kappa distributed electrons and positrons. The dissipation effects are included in the model due to kinematic viscosity of the ions. Using reductive perturbation technique, the Kadomtsev-Petviashvili-Burgers (KPB) equation is derived containing dispersion, dissipation, and diffraction effects (due to perturbation in the transverse direction) in e-p-i plasmas. The analytical solution of KPB equation is obtained by employing tangent hyperbolic (Tanh) method. The analytical condition for the propagation of oscillatory and monotonic shock structures are also discussed in detail. The numerical results of two dimensional monotonic shock structures are obtained for graphical representation. The dependence of shock structures on positron equilibrium density, ion temperature, nonthermal spectral index kappa, and the kinematic viscosity of ions are also discussed.

  19. Liquid metal ion source and alloy for ion emission of multiple ionic species

    DOE Patents [OSTI]

    Clark, Jr., William M. (Thousand Oaks, CA); Utlaut, Mark W. (Saugus, CA); Wysocki, Joseph A. (Oxnard, CA); Storms, Edmund K. (Los Alamos, NM); Szklarz, Eugene G. (Los Alamos, NM); Behrens, Robert G. (Los Alamos, NM); Swanson, Lynwood W. (McMinnville, OR); Bell, Anthony E. (McMinnville, OR)

    1987-06-02T23:59:59.000Z

    A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.

  20. Improving Ion Mobility Measurement Sensitivity by Utilizing Helium in an Ion Funnel-Trap

    SciTech Connect (OSTI)

    Ibrahim, Yehia M.; Garimella, Venkata BS; Tolmachev, Aleksey V.; Baker, Erin Shammel; Smith, Richard D.

    2014-05-01T23:59:59.000Z

    Ion mobility instruments that utilize nitrogen as buffer gas are often preceded by an ion trap and accumulation region that also uses nitrogen, and for different inert gases no significant effects upon performance are expected for IMS of larger ions. However, we have observed significantly improved performance for an ion funnel trap upon adding helium; the signal intensities for higher m/z species were improved by more than an order of magnitude compared to using pure nitrogen. The effect of helium upon IMS resolving power was also studied by introducing a He/N2 gas mixture into the drift cell, and in some cases a slight improvement was observed compared to pure N2. The improvement in signal can be largely attributed to faster and more efficient ion ejection into the drift tube from the ion funnel trap.