Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Title IX | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IX IX Title IX Title IX of the Education Amendments of 1972, as amended, prohibits discrimination on the basis of sex in all educational programs and activities of institutions that receive federal financial assistance. The law states, in part, that: No person in the United States shall, on the basis of sex, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any education program or activity receiving federal financial assistance. Click here to learn more: 20 U.S.C. § 1681(a) The Office of Civil Rights is responsible for monitoring and enforcing compliance with Title IX, investigating Title IX-related complaints, and providing technical assistance related to Title IX to recipients of Department of Energy financial assistance.

2

UnPlug Stuff | Open Energy Information  

Open Energy Info (EERE)

UnPlug Stuff UnPlug Stuff Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UnPlug Stuff Agency/Company /Organization: High Energy Audits Sector: Energy Focus Area: Energy Efficiency Resource Type: Software/modeling tools User Interface: Website Website: www.unplugstuff.com/index.html Country: United States Web Application Link: www.unplugstuff.com/index.html Cost: Free OpenEI Keyword(s): Green Button Apps, Challenge Generated Northern America References: UnPlug Stuff[1] Apps for Energy[2] Logo: UnPlug Stuff The UnPlug Stuff app tells you how much energy your home is wasting when idling. Overview UnPlug Stuff uses a month's worth of uploaded hourly electricity data to determine your home's Idle Load. After getting your Idle Load check out the hints on how to reduce it. Then come back in a couple of weeks to see if

3

Plug Smart | Open Energy Information  

Open Energy Info (EERE)

Smart Smart Jump to: navigation, search Name Plug Smart Address 930 Kinnear Road Place Columbus, Ohio Zip 43212 Sector Efficiency, Renewable Energy, Services Product Consulting; Manufacturing; Research and development Phone number 614-247-1610 Website http://www.plugsmart.com Coordinates 39.997769°, -83.032407° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.997769,"lon":-83.032407,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

4

Title IX: More than Just Sports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Title IX: More than Just Sports Title IX: More than Just Sports Title IX: More than Just Sports June 23, 2011 - 5:41pm Addthis Bill Valdez Bill Valdez Principal Deputy Director What does this mean for me? The Department works to ensure there is no discrimination on the basis of gender in educational programs at institutions that receive Federal financial assistance. Office of Civil Rights staff work to ensure that the recruitment, retention, training and education practices at schools are inclusive for both men and women. Most people think sports when they think about Title IX. However, Title IX's scope is much broader than that, and the Energy Department actively works to help ensure that there is no discrimination on the basis of gender in educational programs at institutions that receive Federal financial

5

Plug Load Energy Analysis: The Role of Plug Loads in LEED Certification  

E-Print Network (OSTI)

benchmark and is bound to change as the proportion of plug load energy use grows in commercial buildings.

Fuertes, Gwen; Schiavon, Stefano

2013-01-01T23:59:59.000Z

6

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network (OSTI)

Appropriate Energy Technology Resource Center .IX DOE Appropriate Energy Technology Pilot Program - PartOF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II C.

Case, C.W.

2012-01-01T23:59:59.000Z

7

Energy Management Strategies for Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Summarizes and compares potential energy management strategies for plug-in hybrid electric vehicles, accounting for duty cycle distance.

Gonder, J.; Markel, T.

2007-05-01T23:59:59.000Z

8

Plug-In Hybrid Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts would be of very high market penetrations of PHEVs. Plug-In Hybrid Electric Vehicles More Documents & Publications

9

Plug in America | Open Energy Information  

Open Energy Info (EERE)

by cleaner, cheaper, domestic electricity to reduce our nation's dependence on petroleum and improve the global environment. References Plug-in America1 LinkedIn...

10

The "Other" Energy in Buildings: Wireless Power Metering of Plug...  

NLE Websites -- All DOE Office Websites (Extended Search)

The "Other" Energy in Buildings: Wireless Power Metering of Plug-in Devices in Building 90 and Homes Speaker(s): Steven Lanzisera Date: June 17, 2011 - 12:00pm Location: 90-3122...

11

Plug In Partners | Open Energy Information  

Open Energy Info (EERE)

Plug-In Partners Plug-In Partners Place Austin, Texas Zip 78704 Sector Vehicles Product Focused on promotion of flexible-fuel Plug-in Hybrid Electric Vehicles (PHEV). Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

12

Plug Power Inc | Open Energy Information  

Open Energy Info (EERE)

Plug Power Inc Plug Power Inc Jump to: navigation, search Name Plug Power Inc Place Latham, New York Zip 12110 Product Designs, manufactures and markets proton exchange membrane (PEM) fuel cells for stationary applications and for forklifts. Coordinates 39.098856°, -83.247057° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.098856,"lon":-83.247057,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

40th Anniversary of Title IX | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

40th Anniversary of Title IX 40th Anniversary of Title IX 40th Anniversary of Title IX June 22, 2012 - 10:15am Addthis Dot Harris, Director of the Office of Economic Impact and Diversity (pictured in middle of photo) with a group of Girl Scouts and Girls Inc members during a mentoring session after the White House Title IX Anniversary celebration on Wednesday. Dot Harris, Director of the Office of Economic Impact and Diversity (pictured in middle of photo) with a group of Girl Scouts and Girls Inc members during a mentoring session after the White House Title IX Anniversary celebration on Wednesday. Editor's Note: This blog is authored by Valerie Jarrett, Senior Advisor and Assistant to the President for Intergovernmental Affairs and Public Engagement. This was originally posted on the White House blog.

14

SEGS IX Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

IX Solar Power Plant IX Solar Power Plant Jump to: navigation, search Name SEGS IX Solar Power Plant Facility SEGS IX Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Harper Lake, California Coordinates 35.0305°, -117.29° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0305,"lon":-117.29,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

15

MinWind III-IX Wind Farm | Open Energy Information  

Open Energy Info (EERE)

III-IX Wind Farm III-IX Wind Farm Jump to: navigation, search Name MinWind III-IX Wind Farm Facility MinWind III-IX Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Energy Purchaser Xcel Energy Location Near Luverne MN Coordinates 43.6505°, -96.3892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6505,"lon":-96.3892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

Plug-In Hybrid Electric Vehicle Energy Storage System Design: Preprint  

DOE Green Energy (OSTI)

This paper discusses the design options for a plug-in hybrid electric vehicle, including power, energy, and operating strategy as they relate to the energy storage system.

Markel, T.; Simpson, A.

2006-05-01T23:59:59.000Z

17

Going Solar in Record Time with Plug-and-Play PV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV April 24, 2012 - 6:10pm Addthis A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system to initiate communication between the solar energy system and the utility when plugged into a PV-ready circuit. | Photo by iStock. A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system to initiate communication between the solar energy system and the utility when plugged into a PV-ready circuit. | Photo by iStock. Kevin Lynn Systems Integration Lead, SunShot Initiative What does this project do? The Energy Department is investing up to $5 million this year to

18

Fun Fact Friday: Plug-in Hybrid Edition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-in Hybrid Edition Plug-in Hybrid Edition Fun Fact Friday: Plug-in Hybrid Edition September 27, 2013 - 11:50am Addthis Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Today we are introducing a new weekly feature on EERE Blog that highlights-you guessed it-fun facts about clean energy. For our inaugural edition, we are spotlighting plug-in hybrid electric vehicles (PHEVs). With the ability to use their internal combustion engine after

19

Fun Fact Friday: Plug-in Hybrid Edition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fun Fact Friday: Plug-in Hybrid Edition Fun Fact Friday: Plug-in Hybrid Edition Fun Fact Friday: Plug-in Hybrid Edition September 27, 2013 - 11:50am Addthis Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy Today we are introducing a new weekly feature on EERE Blog that highlights-you guessed it-fun facts about clean energy. For our inaugural edition, we are spotlighting plug-in hybrid electric vehicles (PHEVs). With the ability to use their internal combustion engine after

20

Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles  

E-Print Network (OSTI)

could contribute to peak electricity demand. Deferring allvehicles Energy Electricity demand 1. Introduction Plug-inand timing of electricity demand, however, vary signi?cantly

Axsen, Jonn; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Dynamic Programming Applied to Investigate Energy Management Strategies for a Plug-in HEV  

DOE Green Energy (OSTI)

This paper explores two basic plug-in hybrid electric vehicle energy management strategies: an electric vehicle centric control strategy and an engine-motor blended control strategy.

O'Keefe. M. P.; Markel, T.

2006-11-01T23:59:59.000Z

22

Plug-in electric vehicles as dispersed energy storage interactions with a smart office building  

Science Conference Proceedings (OSTI)

Renewable energy resources (RESs) with plug-in electric vehicles (PEVs) are being gradually accepted by society for their low carbon emission merits. However

Qian Dai; Shanxu Duan; Tao Cai; Changsong Chen

2013-01-01T23:59:59.000Z

23

Projects from Federal Region IX: Department of Energy Appropriate Energy Technology Program. Part II  

DOE Green Energy (OSTI)

Details and progress of appropriate energy technology programs in Region IX are presented. In Arizona, the projects are Solar Hot Water for the Prescott Adult Center and Solar Prototype House for a Residential Community. In California, the projects are Solar AquaDome Demonstration Project; Solar Powered Liquid Circulating Pump; Appropriate Energy Technology Resource Center; Digester for Wastewater Grown Aquatic Plants; Performance Characteristics of an Anaerobic Wastewater Lagoon Primary Treatment System; Appropriate Energy/Energy Conservation Demonstration Project; Solar Energy for Composting Toilets; Dry Creek Rancheria Solar Demonstration Projects; Demonstration for Energy Retrofit Analysis and Implementation; and Active Solar Space Heating System for the Integral Urban House. In Hawaii, the projects are: Java Plum Electric; Low-Cost Pond Digesters for Hawaiian Pig Farm Energy Needs; Solar Beeswax Melter; Methane Gas Plant for Operating Boilers and Generating Steam; and Solar Water Heating in Sugarcane Seed-Treatment Plants. A Wind-Powered Lighted Navigation Buoys Project for Guam is also described. A revised description of the Biogas Energy for Hawaiian Small Farms and Homesteads is given in an appendix.

Case, C.W.; Clark, H.R.; Kay, J.; Lucarelli, F.B.; Rizer, S.

1980-01-01T23:59:59.000Z

24

Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles  

E-Print Network (OSTI)

.S. roads alone by 2015. PEVs-- either plug-in hybrid electric vehicles (PHEVs) or pure electric vehicles (EVs)--adopt similar drivetrain configurations as hybrid electric vehicles (HEVs) [21 Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles Di Wu, Student

Tesfatsion, Leigh

25

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

of Plug-in Hybrid Electric Vehicle Technology, Nationalof Plug-In Hybrid Electric Vehicles on Energy and Emissionsof Plug-In Hybrid Electric Vehicles on Energy and Emissions

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

26

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

Analysis of Plug-in Hybrid Electric Vehicle Technology,Impacts of Plug-In Hybrid Electric Vehicles on Energy andImpacts of Plug-In Hybrid Electric Vehicles on Energy and

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

27

General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings | Open  

Open Energy Info (EERE)

General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings Jump to: navigation, search Model Name General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings Building Type Mercantile (Retail Other Than Mall) Model Type 50% Energy Savings Model Target Type ASHRAE 90.1 2004 Model Year 2009 IDF file http://apps1.eere.energy.gov/buildings/energyplus/models/Miami/2009_TSD_GeneralMerch_LPL_50percent.idf XML file http://apps1.eere.energy.gov/buildings/energyplus/models/Miami/2009_TSD_GeneralMerch_LPL_50percent.xml City, State Miami, FL Climate Zone Climate Zone 1A Retrieved from "http://en.openei.org/w/index.php?title=General_Merchandise_2009_TSD_Miami_Low_Plug_Load_50%25_Energy_Savings&oldid=270185" Category: Building Models

28

General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings |  

Open Energy Info (EERE)

Low Plug Load 50% Energy Savings Low Plug Load 50% Energy Savings Jump to: navigation, search Model Name General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings Building Type Mercantile (Retail Other Than Mall) Model Type 50% Energy Savings Model Target Type ASHRAE 90.1 2004 Model Year 2009 IDF file http://apps1.eere.energy.gov/buildings/energyplus/models/Miami/2009_TSD_GeneralMerch_LPL_50percent.idf XML file http://apps1.eere.energy.gov/buildings/energyplus/models/Miami/2009_TSD_GeneralMerch_LPL_50percent.xml City, State Chicago, IL Climate Zone Climate Zone 5A Retrieved from "http://en.openei.org/w/index.php?title=General_Merchandise_2009_TSD_Chicago_Low_Plug_Load_50%25_Energy_Savings&oldid=270181" Category: Building Models What links here Related changes

29

Honey, Did You Plug in the Prius? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? July 7, 2009 - 5:07pm Addthis Francis X. Vogel Executive Director and Coordinator of the Wisconsin Clean Cities coalition An unexpected snowfall in late March prompted me to take my two daughters, Paloma and Ava, for a memorable afternoon of sledding and hot chocolate. However, before leaving home, I unplugged a cord from the standard 110-volt wall socket in my garage and did likewise from the port on the back of my 2007 Toyota Prius. I rolled up the cord, placed it in my trunk, and smoothly drove off. Nestled in my vehicle's spare tire well, a 200-pound lithium-ion battery pack allowed me to go up to 30 miles on electric power before recharging. Yes, I'm fortunate to be one of the only private owners of a plug-in

30

Honey, Did You Plug in the Prius? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? July 7, 2009 - 5:07pm Addthis Francis X. Vogel Executive Director and Coordinator of the Wisconsin Clean Cities coalition An unexpected snowfall in late March prompted me to take my two daughters, Paloma and Ava, for a memorable afternoon of sledding and hot chocolate. However, before leaving home, I unplugged a cord from the standard 110-volt wall socket in my garage and did likewise from the port on the back of my 2007 Toyota Prius. I rolled up the cord, placed it in my trunk, and smoothly drove off. Nestled in my vehicle's spare tire well, a 200-pound lithium-ion battery pack allowed me to go up to 30 miles on electric power before recharging. Yes, I'm fortunate to be one of the only private owners of a plug-in

31

Energy Department Announces Funding to Develop "Plug-and-Play" Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding to Develop "Plug-and-Play" Funding to Develop "Plug-and-Play" Solar Energy Systems for Homeowners Energy Department Announces Funding to Develop "Plug-and-Play" Solar Energy Systems for Homeowners April 24, 2012 - 10:15am Addthis Washington, D.C. - As part of the Energy Department's SunShot Initiative, U.S. Energy Secretary Steven Chu today announced up to $5 million available this year to develop "plug-and-play" photovoltaic (PV) systems that can be purchased, installed and operational in one day. This effort is part of the Department's broader strategy to spur solar power deployment by reducing non-hardware, or "soft" costs, such as installation, permitting, and interconnection, which currently amount to more than half of the total cost of residential systems. The funding will

32

General Merchandise 2009 TSD Chicago Low Plug Load Baseline | Open Energy  

Open Energy Info (EERE)

General Merchandise 2009 TSD Chicago Low Plug Load Baseline General Merchandise 2009 TSD Chicago Low Plug Load Baseline Jump to: navigation, search Model Name General Merchandise 2009 TSD Chicago Low Plug Load Baseline Building Type Mercantile (Retail Other Than Mall) Model Type Baseline Model Target Type ASHRAE 90.1 2004 Model Year 2009 IDF file http://apps1.eere.energy.gov/buildings/energyplus/models/Miami/2009_TSD_GeneralMerch_LPL_Baseline.idf XML file http://apps1.eere.energy.gov/buildings/energyplus/models/Miami/2009_TSD_GeneralMerch_LPL_Baseline.xml City, State Chicago, IL Climate Zone Climate Zone 5A Retrieved from "http://en.openei.org/w/index.php?title=General_Merchandise_2009_TSD_Chicago_Low_Plug_Load_Baseline&oldid=270182" Category: Building Models What links here Related changes Special pages

33

Integration of plug-in electric vehicle charging and wind energy scheduling on electricity grid  

Science Conference Proceedings (OSTI)

Plug-in electric vehicles (PEVs) and wind energy are both key new energy technologies. However, they also bring challenges to the operation of the electricity grid. Charging a large number of PEVs requires a lot of grid energy, and scheduling wind energy ...

Chiao-Ting Li; Changsun Ahn; Huei Peng; Jing Sun

2012-01-01T23:59:59.000Z

34

Definition: Plug-in Electric Vehicle Charging Station | Open Energy  

Open Energy Info (EERE)

Plug-in Electric Vehicle Charging Station Plug-in Electric Vehicle Charging Station Jump to: navigation, search Dictionary.png Plug-in Electric Vehicle Charging Station A device or station that provides power to charge the batteries of an electric vehicle. These chargers are classified according to output voltage and the rate at which they can charge a battery. Level 1 charging is the slowest, and can be done through most wall outlets at 120 volts and 15 amps AC. Level 2 charging is faster, and is done at less than or equal to 240 volts and 60 amps AC, with a power output of less than or equal to 14.4 kW. Level 3 charging is fastest, and can be done with power output of greater than 14.4 kW. Level 1 and 2 charging can be done at home with the proper equipment, and Level 2 and 3 charging can be done at fixed public charging

35

Using GPS Travel Data to Assess the Real World Driving Energy Use of Plug-In Hybrid Electric Vehicles (PHEVs)  

DOE Green Energy (OSTI)

Highlights opportunities using GPS travel survey techniques and systems simulation tools for plug-in hybrid vehicle design improvements, which maximize the benefits of energy efficiency technologies.

Gonder, J.; Markel, T.; Simpson, A.; Thornton, M.

2007-05-01T23:59:59.000Z

36

Plug-in Hybrid Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Links Plug-in Hybrid Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Plug-in Hybrid Vehicles and Manufacturers Chevrolet Volt Official site for the Chevrolet Volt Cadillac ELR Official site for the Cadillac ELR (arriving early 2014) Ford C-MAX Energi Plug-in Hybrid Official site for the C-MAX Energi Plug-in Hybrid Ford Fusion Energi Plug-in Hybrid Official site for the Fusion Energi Plug-in Hybrid Honda Accord Plug-in Official site for the Honda Accord Plug-in Hybrid Toyota Prius Plug-in Official site for the Toyota Prius Plug-in Hybrid Plug-in-Related Information and Tools

37

Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles  

E-Print Network (OSTI)

converted plug-in hybrid vehicles. Transportation ResearchM. , 2006. Plug-In Hybrid Vehicle Analysis. Nationalgas emissions from plug-in hybrid vehicles: implications for

Axsen, Jonn; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

38

Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles, vol. 1. Nationwidecompetitive plug-in hybrid electric vehicles. EnvironmentalDriving plug-in hybrid electric vehicles: reports from US

Axsen, Jonn; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

39

Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets  

DOE Green Energy (OSTI)

This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

Short, W.; Denholm, P.

2006-04-01T23:59:59.000Z

40

Power to the Plug: An Introduction to Energy, Electricity, Consumption...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

more crude oil deposits in a short time. Renewable energy sources include biomass, geothermal energy, hydropower, solar energy, and wind energy. They are called renewable because...

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles June 6, 2013 - 11:02am Addthis A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? If you're shopping for a new hybrid car this summer, FuelEconomy.gov's side-by-side comparisons can help you pick the right one. I love to look at new cars! Even though I'm not interested at buying one, I love looking at all the cool features. Back-up cameras and GPSes! Music, playlists, touchpads and phones! There are so many cool things

42

Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles June 6, 2013 - 11:02am Addthis A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? If you're shopping for a new hybrid car this summer, FuelEconomy.gov's side-by-side comparisons can help you pick the right one. I love to look at new cars! Even though I'm not interested at buying one, I love looking at all the cool features. Back-up cameras and GPSes! Music, playlists, touchpads and phones! There are so many cool things

43

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

Cost-benefit Analysis of Plug-in Hybrid Electric Vehicle Technology, National Renewable EnergyCost and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory, National Renewable

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

44

The "Other" Energy in Buildings: Wireless Power Metering of Plug-in  

NLE Websites -- All DOE Office Websites (Extended Search)

The "Other" Energy in Buildings: Wireless Power Metering of Plug-in The "Other" Energy in Buildings: Wireless Power Metering of Plug-in Devices in Building 90 and Homes Speaker(s): Steven Lanzisera Date: June 17, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Although these devices have been studied for 30 years, they are not as well understood as the other end-uses due to their great variety and difficulty in collecting representative energy data for them. This talk describes a method for collecting device-level energy use data for these devices using a relatively low-cost wireless mesh networking technology. Over 600 meters were deployed across B90 and three homes to

45

Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint  

SciTech Connect

This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

2011-02-01T23:59:59.000Z

46

Energy Department Announces Funding to Develop "Plug-and-Play...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Energy Department believes that similar innovations can be made in the solar energy industry to reduce costs and simplify installations. As part of a planned five-year...

47

General Merchandise 2009 TSD Miami High Plug Load 50% Energy...  

Open Energy Info (EERE)

Energy Savings Model Target Type ASHRAE 90.1 2004 Model Year 2009 IDF file http:apps1.eere.energy.govbuildingsenergyplusmodelsMiami2009TSDGeneralMerchHPL50percent.idf...

48

General Merchandise 2009 TSD Chicago High Plug Load 50% Energy...  

Open Energy Info (EERE)

Energy Savings Model Target Type ASHRAE 90.1 2004 Model Year 2009 IDF file http:apps1.eere.energy.govbuildingsenergyplusmodelsChicago2009TSDGeneralMerchHPL50percent.idf...

49

New Degree Programs Plug Students in to Energy Fields - Materials ...  

Science Conference Proceedings (OSTI)

Aug 25, 2009 ... ESTEC now has four energy system programs and plans to add a nuclear operations degree in January and hydroelectric and geothermal...

50

IXS 2008 Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

IXS 2008 Home About High-Res. IXS Registration Program Support Location Organizing Committee Sponsors Workshop to Introduce High-Resolution Inelastic X-ray Scattering on Earth...

51

Field Testing Plug-in Hybrid Electric Vehicles with Charge Control Technology in the Xcel Energy Territory  

DOE Green Energy (OSTI)

Results of a joint study by Xcel Energy and NREL to understand the fuel displacement potential, costs, and emissions impacts of market introduction of plug in hybrid electric vehicles.

Markel, T.; Bennion K.; Kramer, W.; Bryan, J.; Giedd, J.

2009-08-01T23:59:59.000Z

52

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-In Electric Vehicle Handbook Plug-In Electric Vehicle Handbook for Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14 Installing and Maintaining Charging Stations . . . . . . . . . . . . . . . . . . . 15 Electrifying the Future . . . . . . . . . . . . . . 19 Clean Cities Helps Establish PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Department of Energy's flagship alterna- tive-transportation

53

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network (OSTI)

B - Revised Description of: Biogas Energy for Hawaiian Smallprojected. Also, the low pressure biogas requires additional5000 - 5500 cubic feet of biogas (60% methane) daily may be

Case, C.W.

2012-01-01T23:59:59.000Z

54

Plug valve  

SciTech Connect

This patent describes an improved plug valve wherein a novel shape for the valve plug and valve chamber provide mating surfaces for improved wear characteristics. The novel shape of the valve plug is a frustum of body of revolution of a curved known as a tractrix, a solid shape otherwise known as a peudosphere.

Wordin, J.J.

1989-11-07T23:59:59.000Z

55

Plug valve  

DOE Patents (OSTI)

An improved plug valve wherein a novel shape for the valve plug and valve chamber provide mating surfaces for improved wear characteristics. The novel shape of the valve plug is a frustum of a body of revolution of a curved known as a tractrix, a solid shape otherwise known as a peudosphere.

Wordin, John J. (Shelley, ID)

1989-01-01T23:59:59.000Z

56

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network (OSTI)

within the house includes: passive solar heating and coolingof the house. Technical Details: The passive constructionhouse" (Other technologies include solar domestic water heating, composting toilet, energy efficient conservation devices, passive

Case, C.W.

2012-01-01T23:59:59.000Z

57

Cementing plug  

SciTech Connect

A wellbore plug is described for use in a cased wellbore wherein breakaway plugs protrude into the casing, the wellbore plug comprising: shaft means, first flexible wiper means mounted on the shaft means, breaking means for breaking the breakaway plugs, the breaking means mounted on the shaft means and spaced apart from the first flexible wiper means, the breaking means having insert means for providing rigidity to enhance the breaking means ability to break the breakaway plugs, second flexible wiper means mounted on the shaft means and spaced apart from the breaking means, the breaking means mounted at an intermediate position between the first flexible wiper means and the second flexible wiper means, the first flexible wiper means flexible enough to bypass one or more of the breakaway plugs without breaking them, and the breaking means rigid enough for breaking one or more of the breakaway plugs bypassed by the first flexible wiper means.

Schneider, D.E.

1988-07-12T23:59:59.000Z

58

Charging Your Plug-in Electric Vehicle at Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home May 13, 2013 - 3:45pm Addthis Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute.

59

Charging Your Plug-in Electric Vehicle at Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home May 13, 2013 - 3:45pm Addthis Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute.

60

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Public Charging Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14 Installing and Maintaining Charging Stations . . . . . . . . . . . . . . . . . . . 15 Electrifying the Future . . . . . . . . . . . . . . 19 Clean Cities Helps Establish PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Department of Energy's flagship alterna- tive-transportation deployment initiative . It is supported

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure  

SciTech Connect

This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

Dong, Jing [ORNL; Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

62

Intelligent energy management: impact of demand response and plug-in electric vehicles in a smart grid environment  

Science Conference Proceedings (OSTI)

Modernization of the power grid to meet the growing demand requires significant amount of operational, technological, and infrastructural overhaul. The Department of Energy's "Grid 2030" strategic vision outlines the action plan to alleviate the concerns ... Keywords: controlled charging, demand response, plug in hybrid electric vehicles, smart grid

Seshadri Srinivasa Raghavan; Alireza Khaligh

2012-03-01T23:59:59.000Z

63

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

E-Print Network (OSTI)

Analyzed distribution of vehicles by last trip ending time for each region Generated PHEVs load profiles PSAT were adjusted to on-road values for this analysis PHEV miles driven by grid electricity and onWell-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad

64

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

NLE Websites -- All DOE Office Websites (Extended Search)

Costs and Emissions Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K. Parks, P. Denholm, and T. Markel Technical Report NREL/TP-640-41410 May 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K. Parks, P. Denholm, and T. Markel Prepared under Task No. WR61.2001 Technical Report NREL/TP-640-41410 May 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

65

Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.  

SciTech Connect

Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution from varying kWh storage capability of battery packs in HEVs and PHEVs from {approx}16 to 64 km of charge depleting distance. Sensitivity analysis is conducted with respect to the effect of replacing the battery once during the vehicle's life. The paper includes one appendix that examines several recent studies of interactions of PHEVs with patterns of electric generation and one that provides definitions, acronyms, and fuel consumption estimation steps.

Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

2008-01-01T23:59:59.000Z

66

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network (OSTI)

to the western Pacific alternative energy development. Thisgrant to provide an alternative energy educational program,and promoting alternative energy technologies in homes and

Case, C.W.

2011-01-01T23:59:59.000Z

67

Plug-In Electric Vehicle Handbook for Workplace Charging Hosts (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Workplace Workplace Charging Hosts Plug-In Electric Vehicle Handbook for Workplace Charging Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Benefits of Workplace Charging . . . . . . . . . . . . . . . . . . . . . . 8 Evaluating and Planning for Workplace Charging . . . . . . . 9 Workplace Charging Management and Policy Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Workplace Charging Installation . . . . . . . . . . . . . . . . . . . . . . 16 Electrifying Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Clean Cities Helps Establish Charging Infrastructure The U .S . Department of Energy's Clean Cities program supports local actions to reduce petroleum use in transportation . Nearly 100 Clean Cities coalitions across the country work

68

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network (OSTI)

Results: Energy Savings: F-Chart computer calculations showResults Energy Savings: F-Chart calculations show primaryto the system. By using F~Chart calculations and assuming an

Case, C.W.

2011-01-01T23:59:59.000Z

69

Plugging in the consumer  

E-Print Network (OSTI)

of 1,900 energy consumers and nearly 100 industry executives across the globe reveal major changes commercial customers were satisfied with leaving all the decisions about their energy supply to their trustedPlugging in the consumer Innovating utility business models for the future Energy and Utilities IBM

70

Plug-In Demo Charges up Clean Cities Coalitions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions January 27, 2011 - 4:07pm Addthis Dennis A. Smith Director, National Clean Cities The closest most people get to a vehicle before it is offered to the general public is seeing it on TV or at an auto show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius, which is expected to be released in 2012. Clean Cities is an initiative in the Department's Vehicle Technologies Program that is focused on reducing petroleum use in transportation - which makes this demonstration a perfect fit. A PHEV Prius can run for up to 13 miles on all-electric power before

71

Plug-In Demo Charges up Clean Cities Coalitions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions January 27, 2011 - 4:07pm Addthis Dennis A. Smith Director, National Clean Cities The closest most people get to a vehicle before it is offered to the general public is seeing it on TV or at an auto show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius, which is expected to be released in 2012. Clean Cities is an initiative in the Department's Vehicle Technologies Program that is focused on reducing petroleum use in transportation - which makes this demonstration a perfect fit. A PHEV Prius can run for up to 13 miles on all-electric power before

72

RECIPIENT: Plug Power Inc U.S. DEPARTlVIENT OF ENERGY EERE PROJECT...  

NLE Websites -- All DOE Office Websites (Extended Search)

: The objective for this Plug Power Project is to deploy and test hybrid hydrogen I LPG or natural gas Emergency Backup Power Systems. Twenty units would be installed at two...

73

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network (OSTI)

greenhouse areas, a solar water heater system, a wind energy6. Western Pacific Solar Hot Water Heater Construction anda package of solar hot water heater components which

Case, C.W.

2011-01-01T23:59:59.000Z

74

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network (OSTI)

energy savings by solar heating a public building. They arefrom solar space heating of other Eureka public buildingssolar heating and cooling concepts, adobe wall construction, and the uniform building

Case, C.W.

2011-01-01T23:59:59.000Z

75

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network (OSTI)

ol8GY PILOT PROGRAM- PART I DOE APPROPRIATE ENERG c. w. , F.the Department of Energy- DOE), responding to the 1977 ERDAto a company or product name does not imply approval or

Case, C.W.

2011-01-01T23:59:59.000Z

76

Q&A: Plugging In with a Power Lineman | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Q&A: Plugging In with a Power Lineman Q&A: Plugging In with a Power Lineman Q&A: Plugging In with a Power Lineman October 18, 2012 - 4:17pm Addthis To commemorate what BPA considers a 75-year partnership with the Columbia River, which is the cornerstone of BPA's relationship with the people and utilities of the Northwest, BPA releases the second video of a series detailing its history. You can see the rest of the series on BPA's 75th Anniversary YouTube channel. Teresa Waugh Public Affairs Specialist, Bonneville Power Administration What does a power lineman do? Linemen work on the complex electrical systems that power our homes and businesses. They climb poles to perform maintenance and work to restore downed power lines after storms. This Q&A and video are part of a series produced by the Bonneville Power

77

Measurement of attitudes toward commercial development of geothermal energy in Federal Region IX. Final report  

DOE Green Energy (OSTI)

A survey was conducted of ten target study groups and subgroups for Klamath Falls, Oregon, and Susanville, California: local government, current and potential industry at the site, relocators to the site, current and potential financial community, regulators, and current and potential promoters and developers. The results of benchmark attitudinal measurement is presented separately for each target group. A literature review was conducted and Macro-environmental attitudes of a sample of local government and industry personnel at the sites were assessed. An assessment of capabilities was made which involved two measurements. The first was a measurement of a sample of promoters, developers, and industrial service companies active at the site to determine infrastructure capabilities required by industry for geothermal plants. The second measurement involved analyzing a sample of industry management in the area and defining their requirements for plant retrofit and expansion. Finally, the processes used by the study group to analyze information to reach commitment and regulatory decisions that significantly impact on geothermal energy projects at the site were identified and defined.

Not Available

1981-06-01T23:59:59.000Z

78

How Plug-in Hybrids Save Money  

NLE Websites -- All DOE Office Websites (Extended Search)

of gasoline's widespread availability and quick refueling. Plug-in hybrids also save energy through regenerative braking, which recovers much of the energy typically lost when...

79

Plug Load Behavioral Change Demonstration Project  

SciTech Connect

This report documents the methods and results of a plug load study of the Environmental Protection Agency's Region 8 Headquarters in Denver, Colorado, conducted by the National Renewable Energy Laboratory. The study quantified the effect of mechanical and behavioral change approaches on plug load energy reduction and identified effective ways to reduce plug load energy. Load reduction approaches included automated energy management systems and behavioral change strategies.

Metzger, I.; Kandt, A.; VanGeet, O.

2011-08-01T23:59:59.000Z

80

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

DOE Green Energy (OSTI)

The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

Parks, K.; Denholm, P.; Markel, T.

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cementing plug  

SciTech Connect

A plug for use in wellbore operations is described comprising: shaft means having a first end and a second end, first hollow cup-shaped conical wiper means mounted on the shaft means with its apex pointed in the direction of the first end of the shaft means; second hollow cup-shaped conical wiper means disposed on the shaft means, the second conical wiper means inverted with respect to the first conical wiper means and the second hollow conical wiper means with its apex pointed away from the apex of the first hollow conical wiper means, and the outer edges of the first and second conical wiper means are in contact.

Schneider, D.E.

1987-11-17T23:59:59.000Z

82

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad Elgowainy and Michael Wang Center for Transportation Research Argonne National Laboratory LDV Workshop July26, 2010 2 2 2 Team Members 2  ANL's Energy Systems (ES) Division  Michael Wang (team leader)  Dan Santini  Anant Vyas  Amgad Elgowainy  Jeongwoo Han  Aymeric Rousseau  ANL's Decision and Information Sciences (DIS) Division:  Guenter Conzelmann  Leslie Poch  Vladimir Koritarov  Matt Mahalik  Thomas Veselka  Audun Botterud  Jianhui Wang  Jason Wang 3 3 3 Scope of Argonne's PHEV WTW Analysis: Vehicle Powertrain Systems and Fuel Pathways 3  Vehicle powertrain systems:  Conventional international combustion engine vehicles (ICEVs)

83

Plug & Play Sensors Sites  

Science Conference Proceedings (OSTI)

... Documents. Plug & Play Sensors Sites. ... Plug & Play Sensors Sites. By selecting some of the links below, you will be leaving NIST webspace. ...

2012-06-05T23:59:59.000Z

84

How Plug-in Hybrids Save Money  

NLE Websites -- All DOE Office Websites (Extended Search)

How Plug-in Hybrids Save Money How Plug-in Hybrids Save Money Plug-in hybrid recharging Plug-in hybrids reduce fuel costs by Using high-capacity batteries that allow them to operate on electricity from the outlet for significant distances-electricity typically costs less than half as much as gasoline Using a larger electric motor that typically allows the vehicle to use electricity at higher speeds than regular hybrids Using regenerative braking to recover energy typically wasted when you apply the brakes Plug-in hybrid designs differ, and your driving habits, especially the distance you drive between re-charging, can have a big effect on your fuel bill. My Plug-in Hybrid Calculator estimates gasoline and electricity costs for any available plug-in hybrid using your driving habits and fuel costs.

85

After-hours power status of office equipment and energy use of miscellaneous plug-load equipment  

Science Conference Proceedings (OSTI)

This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of miscellaneous plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. For most types of miscellaneous equipment, we also estimated typical unit energy consumption in order to estimate total energy consumption of the miscellaneous devices within our sample. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from sixteen commercial buildings in California, Georgia, and Pennsylvania: four education buildings, two medical buildings, two large offices (> 500 employees each), three medium offices (50-500 employees each), and five small business offices (< 50 employees each). Two buildings are in the San Francisco Bay are a of California, nine (including the five small businesses) are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Marageret J.; Busch, John F.

2004-05-27T23:59:59.000Z

86

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

supervises testing in the Hybrid Vehicle Propulsion SystemsChemistries for Plug-in Hybrid Vehicles Andrew Burke,batteries, plug-in hybrid vehicles, energy density, pulse

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

87

Photon Sciences | Beamlines | IXS: Inelastic X-ray Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

IXS: Inelastic X-ray Scattering IXS: Inelastic X-ray Scattering Poster | Fact Sheet | Preliminary Design Report Scientific Scope Many hot topics related to the high frequency dynamics of condensed matter require both a narrower and steeper resolution function and access to a broader dynamic range than what are currently available. This represents a sort of "no man's land" that falls right in the dynamic gap lying between the high frequency spectroscopies, such as inelastic x-ray scattering (IXS), and the low frequency ones. New IXS spectrometers with improved energy and momentum resolutions would be required to fill this gap. To achieve this goal, a new x-ray optics concept for both the monochromatization and energy analysis of x-rays will be implemented at the NSLS-II Inelastic X-ray Scattering beamline. This solution exploits the

88

Charge It: The Promise of Plug-in Electric Hybrids  

E-Print Network (OSTI)

Impacts of Plug-In Hybrid Electric Vehicles on Energy andthe plug-in hybrid electric vehicle, a variant of theknown self-charging hybrid electric vehicle, is fast gaining

Recker, W.W.; Kang, J.E.

2011-01-01T23:59:59.000Z

89

Charge It: The Promise of Plug-in Electric Hybrids  

E-Print Network (OSTI)

Impacts of Plug-In Hybrid Electric Vehicles on Energy andthe plug-in hybrid electric vehicle, a variant of theknown self-charging hybrid electric vehicle, is fast gaining

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

90

Alternative Fuels Data Center: Plug-In Electric Vehicle Charging...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Vehicle Charging Rate Reduction - DTE Energy to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Reduction - DTE...

91

Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles  

E-Print Network (OSTI)

energy impacts that can be anticipated with signi?cant PHEV market penetration if we add information

Axsen, Jonn; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

92

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network (OSTI)

Early Markets for Hybrid Electric Vehicles," University ofof Plug-In Hybrid Electric Vehicles on Wind Energy Markets,"Power Assist Hybrid Electric Vehicles, and Plug-In Hybrid

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

93

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

94

Reducing Plug and Process Loads for a Large Scale, Low Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

cases are considered for business or other justified reasons. Elevators. The RSF employs energy-efficient regenerative traction elevators rather than the standard hydraulic...

95

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

market, plug-in hybrid vehicles (PHEVs) are now consideredof Current Knowledge of Hybrid Vehicle Characteristics andalso called PHEV (Plug-in Hybrid Vehicle) because they are

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

96

Improved plug valve  

DOE Patents (OSTI)

An improved plug valve wherein a novel shape for the valve plug and valve chamber provide mating surfaces for improved wear characteristics is described. The novel shape of the valve plug is a frustum of a body of revolution of a curve known as a tractrix, a solid shape otherwise known as a pseudosphere.

Wordin, J.J.

1986-05-09T23:59:59.000Z

97

Assessing Energy Impact of Plug-In Hybrid Electric Vehicles: Significance of Daily Distance Variation over Time and Among Drivers  

Science Conference Proceedings (OSTI)

Accurate assessment of the impact of plug-in hybrid electric vehicles (PHEVs) on petroleum and electricity consumption is a necessary step toward effective policies. Variations in daily vehicle miles traveled (VMT) over time and among drivers affect PHEV energy impact, but the significance is not well understood. This paper uses a graphical illustration, a mathematical derivation, and an empirical study to examine the cause and significance of such an effect. The first two methods reveal that ignoring daily variation in VMT always causes underestimation of petroleum consumption and overestimation of electricity consumption by PHEVs; both biases increase as the assumed PHEV charge-depleting (CD) range moves closer to the average daily VMT. The empirical analysis based on national travel survey data shows that the assumption of uniform daily VMT over time and among drivers causes nearly 68% underestimation of expected petroleum use and nearly 48% overestimation of expected electricity use by PHEVs with a 40-mi CD range (PHEV40s). Also for PHEV40s, consideration of daily variation in VMT over time but not among drivers similar to the way the utility factor curve is derived in SAE Standard SAE J2841 causes underestimation of expected petroleum use by more than 24% and overestimation of expected electricity use by about 17%. Underestimation of petroleum use and overestimation of electricity use increase with larger-battery PHEVs.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2012-01-01T23:59:59.000Z

98

Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction  

Science Conference Proceedings (OSTI)

Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

Malikopoulos, Andreas [ORNL

2013-01-01T23:59:59.000Z

99

U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities  

DOE Green Energy (OSTI)

The U.S. Department of Energys (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOEs Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

James E. Francfort; Donald Karner; John G. Smart

2009-05-01T23:59:59.000Z

100

Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Managers Fleet Managers Plug-In Electric Vehicle Handbook for Fleets 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the ac- curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Plug-In Electric Vehicle Handbook for Consumers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Consumers Consumers Plug-In Electric Vehicle Handbook for Consumers 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the ac- curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and

102

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

DOE Green Energy (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

103

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of veh

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

104

IX disposition project, project management plan  

SciTech Connect

This subproject management plan defines the roles, responsibilities, and actions required for the execution of the IX Disposition Project.

WILLIAMS, N.H.

1999-05-11T23:59:59.000Z

105

Plug-in Hybrid Electric Vehicle Charging Infrastructure Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Program - Advanced Vehicle Testing Activity Plug-in Hybrid Electric Vehicle Charging Infrastructure Review Final Report Battelle Energy Alliance Contract...

106

IX. Acronyms and Abbreviations  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Platform (DOE Program Title) LDV Light-duty vehicle LED Light-emitting diode LEEM Low-energy electron microscopy LEIS Low-energy ion scattering LEMSYS Local...

107

Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle Charging Rate Incentive - NV Energy to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on AddThis.com...

108

New Plug-in Hybrids  

NLE Websites -- All DOE Office Websites (Extended Search)

Cars 2014 Midsize Cars Fuel Economy Specs 2013 Chevrolet Volt 2012 Fisker Karma Plug-in Hybrid Vehicle 2012 Chevy Volt Plug-in Hybrid Vehicle 2012 Karma Fisker Configuration...

109

2010 Plug-In Hybrid and Electric Vehicle Research  

E-Print Network (OSTI)

2010 Plug-In Hybrid and Electric Vehicle Research Center TRANSPORTATION ENERGY RESEARCH PIER The PlugIn and Hybrid Electric Vehicle Researc Center conducts research in: · Battery second life applications. Plugin hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are promising

110

Plug-In Hybrid Electric Vehicles - PHEV and HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne is a major player in the Department of Energy's (DOE's) plug-in hybrid electric vehicle (PHEV) energy storage research and development (R&D) program. DOE has...

111

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Digg

112

Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

113

Plug-In Hybrid Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Downloadable Dynanometer Database (D3) * Modeling * Prototypes * Testing * Assessment PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Argonne Leads DOE's Effort to Evaluate Plug-in Hybrid Technology aprf testing Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles such as PHEVs. Argonne's Research Argonne National Laboratory is the U.S. Department of Energy's lead national laboratory for the simulation, validation and laboratory evaluation of plug-in hybrid electric vehicles and the advanced

114

Space cooling demands from office plug loads  

Science Conference Proceedings (OSTI)

Undersizing space cooling systems for office buildings can result in uncomfortable and angry tenants on peak cooling days. However, oversizing wastes money because more capacity is installed than is needed, and oversized systems have a lower energy efficiency which makes operating costs higher than necessary. Oversizing can adversely affect comfort as well, because oversized systems may provide poor humidity control and large temperature variations. Correct system sizing requires estimating building heat loads accurately. This paper discusses the heat load generated by the plug load, which includes any electrical equipment that is plugged into outlets.

Komor, P.

1997-12-01T23:59:59.000Z

115

Clean Cities Now, Vol. 15, No. 1, April 2011: Plugging In, Cities are planning for electric vehicle infrastructure (Brochure), Energy Efficiency & Renewable Energy (EERE)  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 April 2011 Clean Cities TV to Broadcast Coalition Successes Keeping Trash from Going to Waste with Renewable Natural Gas Renewable Fuels in New Jersey Raleigh, NC Los Angeles, CA Houston, TX Oregon Cities are planning for electric vehicle infrastructure Plugging In Dear Readers, In preparation for the widespread adoption of all-electric and plug-in hybrid electric vehicles, city officials, utility companies, and local leaders are working together to speed up permitting processes for installing home charging equipment. To help cities navigate this new territory, Clean Cities devel- oped case studies detailing the experiences of four electric vehicle pacesetters-the state of Oregon, Houston, Los Angeles, and Raleigh, North Carolina-that are leading the charge. Our feature article on

116

Plug-In Hybrid Electric Vehicles - Prototypes  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototypes Prototypes A PHEV prototype being prepared for testing. A plug-in electric vehicle (PHEV) prototype is prepared for testing at Argonne National Laboratory. What is a PHEV? A plug-in hybrid electric vehicle, or PHEV, is similar to today's hybrid electric vehicles on the market today, but with a larger battery that is charged both by the vehicle's gasoline engine and from plugging into a standard 110 V electrical outlet for a few hours each day. PHEVs and HEVs both use battery-powered motors and gasoline-powered engines for high fuel efficiency, but PHEVs can further reduce fuel usage by employing electrical energy captured through daily charging. Prototype as Rolling Test Bed As part of Argonne's multifaceted PHEV research program, Argonne researchers have constructed a PHEV prototype that serves as a rolling test

117

Microsoft Word - Plug-in Hybrids.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Released on the Potential of Plug- Released on the Potential of Plug- In Hybrid Electric Vehicles JANUARY 2007 A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts would be of very high market penetrations of PHEVs. Researchers also found that in the Midwest and East there is sufficient

118

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

assessment for fuel cell electric vehicles." Argonne, Ill. :of Plug-In Hybrid Electric Vehicles on Wind Energy Markets,"Recharging and Household Electric Vehicle Market: A Near-

Williams, Brett D

2010-01-01T23:59:59.000Z

119

Microsoft Word - PLUG_IN_HYBRID_Manual Rev 2.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

INLEXT-07-12536 U.S. Department of Energy Vehicle Technologies Program Battery Test Manual For Plug-In Hybrid Electric Vehicles REVISION 2 DECEMBER 2010 The Idaho National...

120

Burst Test Qualification Analysis of DWPF Canister-Plug Weld  

SciTech Connect

The DWPF canister closure system uses resistance welding for sealing the canister nozzle and plug to ensure leak tightness. The welding group at SRTC is using the burst test to qualify this seal weld in lieu of the shear test in ASME B&PV Code, Section IX, paragraph QW-196. The burst test is considered simpler and more appropriate than the shear test for this application. Although the geometry, loading and boundary conditions are quite different in the two tests, structural analyses show similarity in the failure mode of the shear test in paragraph QW-196 and the burst test on the DWPF canister nozzle Non-linear structural analyses are performed using finite element techniques to study the failure mode of the two tests. Actual test geometry and realistic stress strain data for the 304L stainless steel and the weld material are used in the analyses. The finite element models are loaded until failure strains are reached. The failure modes in both tests are shear at the failure points. Based on these observations, it is concluded that the use of a burst test in lieu of the shear test for qualifying the canister-plug weld is acceptable. The burst test analysis for the canister-plug also yields the burst pressures which compare favorably with the actual pressure found during burst tests. Thus, the analysis also provides an estimate of the safety margins in the design of these vessels.

Gupta, N.K.; Gong, Chung

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Holmberg Ix: The Nearest Young Galaxy  

E-Print Network (OSTI)

Deep images taken with the Wide Field Channel of the Advanced Camera for Surveys on board the Hubble Space Telescope provide the basis for study the resolved stellar population of the M81 companion dwarf irregular galaxy Holmberg IX. Based on color-magnitude diagrams the stellar population toward Holmberg IX contains numerous stars with ages of <~200 Myr as well as older red giant stars. By charting the spatial distribution of the red giant stars and considering their inferred metallicities, we concluded that most of these older stars are associated with M81 or its tidal debris. At least 20% of the stellar mass in Holmberg IX was produced in the last ~200 Myr, giving it the youngest stellar populations if any nearby galaxy. The location of Holmberg IX, its high gas content, and its youthful stellar population suggests that it is a tidal dwarf galaxy, perhaps formed during the last close passage of M82 around M81.

Sabbi, E; Smith, L J; De Mello, D F; Mountain, M

2008-01-01T23:59:59.000Z

122

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

in and Batttery Electric Vehicles, The 5 th IEEE VehiclePlug-in and Battery Electric Vehicles, The 1 st IEEE EnergyE. Plug-in Hybrid-Electric Vehicle Powertrain Design and

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

123

NREL: Fleet Test and Evaluation - Electric and Plug-In Hybrid Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric and Plug-In Hybrid Electric Drive Systems Electric and Plug-In Hybrid Electric Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of electric and plug-in hybrid electric drive systems in medium-duty trucks operated by fleets. Photo of medium-duty truck with the words "All Electric Vehicle" and "Plug-in" written on its side. NREL evaluates the performance of electric and plug-in hybrid electric vehicles in fleet operation. All-electric vehicles (EVs) use batteries to store the electric energy that powers the motor. EV batteries are charged by plugging the vehicle into an electric power source. Plug-in hybrid electric vehicles (PHEVs) are powered by an internal combustion engine that can run on conventional or alternative fuels and an electric motor that uses energy stored in batteries. The vehicle can be

124

Managing plug-loads for demand response within buildings  

Science Conference Proceedings (OSTI)

Detailed and accurate energy accounting is an important first step in improving energy efficiency within buildings. Based on this information, building managers can perform active energy management, especially during demand response situations that require ... Keywords: energy management, energy metering, plug-loads management, wireless sensor network

Thomas Weng; Bharathan Balaji; Seemanta Dutta; Rajesh Gupta; Yuvraj Agarwal

2011-11-01T23:59:59.000Z

125

Rotating plug bearing and seal  

DOE Patents (OSTI)

A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

Wade, Elman E. (Ruffs Dale, PA)

1977-01-01T23:59:59.000Z

126

Glovebox plug for glove changing  

DOE Patents (OSTI)

A plug for use in plugging a glove opening of a glovebox when the glove is eplaced. An inflated inner tube which is retained between flat plates mounted on a threaded rod is compressed in order to expand its diameter to equal that of the inside of the glove opening.

Carlson, David O. (Tesuque, NM); Shalkowski, Jr., Edward (Los Alamos, NM)

1992-01-01T23:59:59.000Z

127

Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure  

Science Conference Proceedings (OSTI)

This paper studies the role of public charging infrastructure in increasing PHEV s share of driving on electricity and the resulting petroleum use reduction. Using vehicle activity data obtained from the GPS-tracking household travel survey in Austin, Texas, gasoline and electricity consumptions of PHEVs in real world driving context are estimated. Driver s within-day recharging behavior, constrained by travel activities and public charger network, is modeled as a boundedly rational decision and incorporated in the energy use estimation. The key findings from the Austin dataset include: (1) public charging infrastructure makes PHEV a competitive vehicle choice for consumers without a home charger; (2) providing sufficient public charging service is expected to significantly reduce petroleum consumption of PHEVs; and (3) public charging opportunities offer greater benefits for PHEVs with a smaller battery pack, as within-day recharges compensate battery capacity.

Dong, Jing [ORNL; Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

128

Battery Choices and Potential Requirements for Plug-In Hybrids (Presentation)  

DOE Green Energy (OSTI)

Plug-in Hybrid vehicles energy storage and drive cycle impacts presentation given at the 7th Advanced Automotive Battery Conference.

Pesaran, A.

2007-02-13T23:59:59.000Z

129

EV Everywhere: Americas Plug-In Electric Vehicle Market Charges Forward  

Energy.gov (U.S. Department of Energy (DOE))

Find out how the Energy Department, partnering with industry and national laboratories, is helping make plug-in electric vehicles more affordable and convenient for American families.

130

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 4, NO. 3, JULY 2013 577 Optimal Operation of Plug-In Electric Vehicles in  

E-Print Network (OSTI)

storage with vehicle-to-grid (V2G) function may transfer power from or to the grid when the electric cars-In Electric Vehicles in Power Systems With High Wind Power Penetrations Weihao Hu, Member, IEEE, Chi Su in the power generation, which must be balanced by other sources. The battery storage-based Plug-In Electric

Bak-Jensen, Birgitte

131

Study Released on the Potential of Plug-In Hybrid Electric Vehicles |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles January 19, 2007 - 10:44am Addthis Study Released on the Potential of Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts

132

Study Released on the Potential of Plug-In Hybrid Electric Vehicles |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles January 19, 2007 - 10:44am Addthis Study Released on the Potential of Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts

133

Sodium Plugging Test Loop - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium Plugging Test Loop Sodium Plugging Test Loop Sodium Plugging Test Loop Overview Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sodium Plugging Test Loop This experimental setup is part of the Global Nuclear Energy Partnership (GNEP) Advanced Fuel Cycle R&D work carried out at Argonne on advanced sodium component technology. Bookmark and Share For long range sodium technology research and development, employing supercritical CO2 Brayton cycle power conversion technology as an advanced balance of plant technology is being considered. The component that provides the interface between the sodium and supercritical CO2 is a compact heat exchanger known as a printed circuit heat exchanger (PCHE). This heat exchanger has very small coolant flow passages that may foul or

134

Green Power: Make Your Plug-in Vehicle Even Greener  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Power: Make Your Plug-in Vehicle Even Greener Green Power: Make Your Plug-in Vehicle Even Greener Your plug-in hybrid or all-electric vehicle can help reduce oil dependence. It can also reduce emissions of greenhouse gases (GHGs) that lead to climate change if the electricity you use is produced by renewable energy. Even if most of the electricity in your area is generated by coal or other fossil fuels, you may be able to purchase green power for your vehicle. What Is Green Power? Green Power is electricity generated wholly or in part from renewable energy sources, such as wind and solar power, geothermal, hydropower, and various forms of biomass. The actual electricity delivered to your outlet may not be green, but your purchase of green power ensures that the power company generates that amount of power from renewable energy or purchases it from another provider

135

Introduction to the OR Forum Article: Modeling the Impacts of Electricity Tariffs on Plug-in Hybrid Electric Vehicle Charging, Costs, and Emissions by Ramteen Sioshansi  

Science Conference Proceedings (OSTI)

Comment on Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions by Ramteen Sieshansi. Keywords: energy, environment, plug-in hybrid electric vehicles, pricing

Edieal J. Pinker

2012-05-01T23:59:59.000Z

136

Plug and Play Distributed Power Systems for Smart-Grid Connected Building |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Plug and Play Distributed Power Systems Emerging Technologies » Plug and Play Distributed Power Systems for Smart-Grid Connected Building Plug and Play Distributed Power Systems for Smart-Grid Connected Building The U.S. Department of Energy (DOE) is currently conducting research into plug-and-play distributed power systems for smart- grid connected buildings. Project Description This project seeks to advance and demonstrate a plug-and-play building energy micro-grid concept for integrating energy storage, loads, and sources at the building level with the external utility grid. The micro-grid demonstration is expected to include the following: Diesel synchronous generator Energy storage device Otis regenerative elevator system representing building critical loads Smart interface with the utility grid

137

Integrating Renewable Energy Systems in Buildings (Presentation)  

SciTech Connect

This presentation on integrating renewable energy systems into building was presented at the August, 2011 ASHRAE Region IX CRC meetings.

Hayter, S. J.

2011-08-01T23:59:59.000Z

138

Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs  

E-Print Network (OSTI)

with 85% ethanol EIA ­ Energy Information Administration EVSE ­ Electric vehicle supply equipment gPlug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size to get this thesis finished. #12;iv Intentionally blank #12;v Abstract Plug-in hybrid electric vehicles

139

Optimization of Trajectories for the Cask and Plug Remote Handling System in Tokamak  

E-Print Network (OSTI)

May 2011 Optimization of Trajectories for the Cask and Plug Remote Handling System in Tokamak Building and Hot Cell Fusion for Energy Grant: F4E-GRT-276-01 (MS-RH) | April.2011-Oct.2011 o Partners| Project IST (F4E ­ ITER) #12;May 2011 Optimization of Trajectories for the Cask and Plug Remote Handling

Ribeiro,Isabel

140

DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Million for Plug-in Hybrid Electric Vehicle 0 Million for Plug-in Hybrid Electric Vehicle Projects DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects June 12, 2008 - 1:30pm Addthis Adds Plug-in Hybrid Vehicle to Department's Fleet WASHINGTON - U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced up to $30 million in funding over three years for three cost-shared Plug-in Hybrid Electric Vehicles (PHEVs) demonstration and development projects. The selected projects will accelerate the development of PHEVs capable of traveling up to 40 miles without recharging, which includes most daily roundtrip commutes and satisfies 70 percent of the average daily travel in the U. S. The projects will also address critical barriers to achieving

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

How Green Is My Plug-In?  

Science Conference Proceedings (OSTI)

A few analysts forecast that by 2020, plug-in vehicles, including plug-in hybrids and purely electric cars, will make up almost a third of new-car sales in the United States. And by 2050, plug-ins could account for most of China's burgeoning vehicular ...

J. Voelcker

2009-03-01T23:59:59.000Z

142

U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

Kevin Morrow; Donald Darner; James Francfort

2008-11-01T23:59:59.000Z

143

Plug-Load Control and Behavioral Change Research in GSA Office Buildings  

SciTech Connect

The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-load energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.

Metzger, I.; Cutler, D.; Sheppy, M.

2012-10-01T23:59:59.000Z

144

Some remarks on Bianchi type-II, VIII and IX models  

E-Print Network (OSTI)

Within the scope of anisotropic non-diagonal Bianchi type-II, VIII and IX spacetime it is shown that the off-diagonal components of the corresponding metric impose severe restrictions on the components of the energy momentum tensor in general. If the energy momentum tensor is considered to be diagonal one, the spacetime, expect a partial case of BII, becomes locally rotationally symmetric.

Bijan Saha

2011-07-22T23:59:59.000Z

145

Argonne Transportation - Plug-in Hybrid Electric Vehicle Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicle Research Capabilities at Argonne National Laboratory and Idaho National Laboratory Plug-in Hybrid Electric Vehicle Research Capabilities at Argonne National Laboratory and Idaho National Laboratory Prius testing by Argonne researchers. The U.S. Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FCVT) Program is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical technical barriers to commercializing PHEVs. Argonne National Laboratory, working together with Idaho National Laboratory, leads DOE's efforts to evaluate PHEVs and PHEV technology with the nation’s best vehicle technology evaluation tools and expertise. These two national laboratories are Centers for Excellence that combine state-of-the-art facilities; world-class expertise; long-term collaborative relationships with other DOE national laboratories, industry, and academia;

146

Hot cell shield plug extraction apparatus  

DOE Patents (OSTI)

An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.

Knapp, Philip A. (Moore, ID); Manhart, Larry K. (Pingree, ID)

1995-01-01T23:59:59.000Z

147

Investigating Plug-in Electric Vehicle Charging Stations in Microgrid  

Science Conference Proceedings (OSTI)

PHEVs/PEVs have received increasing attention because of their low pollution emissions, low energy dependence, and high fuel economy. In the near future, most PHEV/PEV enabled parking decks are expected to be powered by small-scale and onsite distributed ... Keywords: Plug-in Electric Vehicle, Microgrid, Smart Grid

Mengqi Wang; Tao Jin

2012-10-01T23:59:59.000Z

148

DOE and Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sweden Sign MOU to Advance Market Integration of Plug-in Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid Vehicles DOE and Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid Vehicles July 7, 2008 - 2:15pm Addthis GOTLAND, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Director General of the Swedish Energy Agency, Tomas Kåberger today signed a memorandum of understanding (MOU) to collaboratively work on accelerating consumer acceptance and commercialization of plug-in hybrid vehicles. The MOU outlines a one year, $1 million cost-sharing arrangement that will be equally funded by DOE and the Swedish Energy Agency. "Today's announcement furthers the historic energy cooperation commitment between the United States and Sweden as we work together to advance the

149

Bianchi Type IX M-Branes  

E-Print Network (OSTI)

We present new M2 and M5 brane solutions in M-theory based on transverse self-dual Bianchi type IX space. All the other recently M2 and M5 branes constructed on transverse self-dual Taub-NUT, Egughi-Hanson and Atiyah-Hitchin spaces are special cases of this solution. The solution provides a smooth transition from Eguchi-Hanson type I based M branes to corresponding branes based on Eguchi-Hanson type II space. All the solutions can be reduced down to ten dimensional fully localized intersecting brane configurations.

A. M. Ghezelbash

2006-06-21T23:59:59.000Z

150

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

and compared emissions and energy usages. HEVs were found toforecasting emission and energy usages. Time frames play ansimilar emission and energy usage as current ICV operation.

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

151

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

of light-duty vehicles in Xcel Energy service territory inVehicle Charging in the Xcel Energy Colorado Service

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

152

NREL: Continuum Magazine - Maximizing the Benefits of Plug-in Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing the Benefits of Plug-in Electric Vehicles Maximizing the Benefits of Plug-in Electric Vehicles Issue 4 Print Version Share this resource Maximizing the Benefits of Plug-in Electric Vehicles Advancing electric vehicle charging options and grid readiness reduces oil consumption and vehicle emissions. A photo of two electric vehicles in a research facility. Enlarge image Electric vehicle charging stations in NREL's parking garage. Photo by Dennis Schroder, NREL Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles-offer the opportunity to reduce oil consumption and vehicle emissions by drawing on power from the utility grid. When the grid uses electricity generated from clean, domestic energy sources, the emerging PEV infrastructure will increasingly maximize

153

Statement of Secretaries Salazar and Chu on the Permanent Plugging of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretaries Salazar and Chu on the Permanent Plugging Secretaries Salazar and Chu on the Permanent Plugging of Macondo well Statement of Secretaries Salazar and Chu on the Permanent Plugging of Macondo well September 19, 2010 - 12:00am Addthis WASHINGTON, DC - Secretary of the Interior Ken Salazar and Energy Secretary Steven Chu today issued the following statement regarding the permanent plugging of BP's Macondo well. "With the successful first intercept by the relief well and our confirmation through pressure tests that the cement plugs are secure, we can now declare BP's Macondo well effectively dead. At the direction of President Obama and under the leadership of National Incident Commander Thad Allen, we have worked tirelessly and relentlessly as a US Team to reach this point and to provide oversight and direction to the source

154

Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology  

DOE Green Energy (OSTI)

This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

Simpson, A.

2006-11-01T23:59:59.000Z

155

Fault-Delayed Voltage Recovery Control with Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

This paper presents an investigation into the impact that plug-in hybrid electric vehicles (PHEVs) could have to mitigate the effects of fault-delayed voltage recovery. The energy storage and conversion system in PHEVs, given potentially high levels ...

Curtis Roe; Yousef M. Al-Abdullah; Dhwanil Desai; George K. Stefopoulos; George J. Cokkinides; A. P. Meliopoulos

2010-01-01T23:59:59.000Z

156

Secretary Chu Announces up to $10 Million to Support Plug-In Hybrid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Million to Support Plug-In Hybrid 0 Million to Support Plug-In Hybrid Electric School Buses Secretary Chu Announces up to $10 Million to Support Plug-In Hybrid Electric School Buses April 17, 2009 - 12:00am Addthis WASHINGTON, DC -- As part of the Department of Energy's commitment to advancing the next generation of electric vehicles in the United States, Energy Secretary Steven Chu today announced the selection of a new demonstration and testing project to develop a plug-in hybrid electric vehicle (PHEV) school bus to be used in fleets across the country. Navistar Corporation (Fort Wayne, IN) has been selected by the Department of Energy (DOE) for negotiation of a cost-shared award of up to $10 million to develop, test, and deploy an electric hybrid school bus. PHEVs will play an important role in achieving America's energy independence by

157

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

2005). Considering the energy markets shift in demand toPHEV impact on wind energy market (Short et al. , 2006) andVehicles in California Energy Markets, Transportation

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

158

Plug and Abandonment_FINAL_edited.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

DOERMOTC-020152 DOERMOTC-020152 Cementing Solutions Plug and Abandonment (P&A) Project Final Report for the Period October 31, 2001 - November 09, 2001 Date Published: October 23, 2002 R. Schulte PREPARED FOR THE UNITED STATES DEPARTMENT OF ENERGY/ROCKY MOUNTAIN OILFIELD TESTING CENTER (RMOTC) Work Performed Under Rocky Mountain Oilfield Testing Center (RMOTC) CRADA No. 2001-009 Distribution A - Approved for public release; further dissemination unlimited (Unclassified) 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the U. S. Government nor any agency thereof, nor any of their employees, make any warranty, expressed or implied, nor assumes any legal liability or responsibility for the accuracy, completeness,

159

Plug-In Hybrid Electric Vehicles (Presentation)  

DOE Green Energy (OSTI)

Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

Markel, T.

2006-05-08T23:59:59.000Z

160

Hot cell shield plug extraction apparatus  

DOE Patents (OSTI)

A hot cell installation for the handling of highly radioactive material may comprise a dozen or more interconnected high density concrete vaults, the concrete vault walls having a thickness of approximately three feet. Typically, hot cells are constructed in rows so as to share as many shielding walls as possible. A typical overall length of a row of cells might be 70 yards. A secondary mechanism exists for placing certain objects into a cell. A typical hot cell has been constructed with 8 inch diameter holes through the exterior shielded walls in the vicinity of, and usually above, the viewing windows. It became evident that if the hot cell plugs could be removed and replaced conveniently significant savings in time and personnel exposure could be realized by using these 8 inch holes as entry ports. Fifteen inch cylindrical steel plugs with a diameter of eight inches weigh about two hundred pounds. The shield plug swing mechanism comprises a steel shielding plug mounted on a retraction device that enables the plug to be pulled out of the wall and supports the weight of the pulled out plug. The retraction device is mounted on a hinge, which allows the plug to be swung out of the way so that an operator can insert material into or remove it from the interior of the hot cell and then replace the plug quickly. The hinge mounting transmits the load of the retracted plug to the concrete wall.

Knapp, P.A.; Manhart, L.K.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Plug-In Hybrid Electric Vehicles - Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

EPRI and Argonne Assess Commercial Viability of Plug-In Hybrid Electric Vehicles The Electric Power Research Institute (EPRI) and Argonne National Laboratory are engaged in a...

162

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

W. YEN APPROPRIATE ENERGY TECHNOLOGIES K. DAO M.A. WAHLIGWahlig Appropriate Energy Technology C. Case, H.IX DOE Appropriate Energy Technology pilot Program - Part

Cairns, E.J.

2010-01-01T23:59:59.000Z

163

Energy Policy Act of 2005 (Ultra-deepwater and Unconventional...  

NLE Websites -- All DOE Office Websites (Extended Search)

for completed RPSEA administered projects under Title IX, Subtitle J, Section 999 of the Energy Policy Act of 2005 are listed below. Title IX, Subtitle J, Section 999 of the...

164

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Basics to someone by E-mail Share Vehicle Technologies Office: Plug-in Electric Vehicle Basics on Facebook Tweet about Vehicle Technologies Office: Plug-in...

165

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network (OSTI)

Impacts of Plug-In Hybrid Electric Vehicles on Regionalsuch as plug-in hybrid electric vehicles (PHEVs) and batteryof Plug-In Hybrid Vehicles on Electric Utilities and

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

166

Department of Education Title IX and Access to STEM Education...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the requirements of Title IX relate to STEM. It also offers recommendations to assist schools in ensuring that their STEM courses and programs do not have the purpose or effect of...

167

Andromeda IX: A New Dwarf Spheroidal Satellite of M31  

E-Print Network (OSTI)

We report the discovery of a new dwarf spheroidal satellite of M31, Andromeda IX, based on resolved stellar photometry from the Sloan Digital Sky Survey (SDSS). Using both SDSS and public archival data we have estimated its distance and other physical properties, and compared these to the properties of a previously known dwarf spheroidal companion, Andromeda V, also observed by SDSS. Andromeda IX is the lowest surface brightness galaxy found to date (mu_{V} ~ 26.8 mag arcsec^-2), and at the distance we estimate from the position of the tip of Andromeda IX's red giant branch, (m - M)_{0} ~ 24.5 (805 kpc), Andromeda IX would also be the faintest galaxy known (M_{V} ~ -8.3).

Daniel B. Zucker; Alexei Y. Kniazev; Eric F. Bell; David Martinez-Delgado; Eva K. Grebel; Hans-Walter Rix; Constance M. Rockosi; Jon A. Holtzman; Rene A. M. Walterbos; James Annis; Donald G. York; Zeljko Ivezic; J. Brinkmann; Howard Brewington; Michael Harvanek; Greg Hennessy; S. J. Kleinman; Jurek Krzesinski; Dan Long; Peter R. Newman; Atsuko Nitta; Stephanie A. Snedden

2004-04-14T23:59:59.000Z

168

Andromeda IX: A New Dwarf Spheroidal Satellite of M31  

E-Print Network (OSTI)

We report the discovery of a new dwarf spheroidal satellite of M31, Andromeda IX, based on resolved stellar photometry from the Sloan Digital Sky Survey (SDSS). Using both SDSS and public archival data we have estimated its distance and other physical properties, and compared these to the properties of a previously known dwarf spheroidal companion, Andromeda V, also observed by SDSS. Andromeda IX is the lowest surface brightness galaxy found to date (mu_{V} ~ 26.8 mag arcsec^-2), and at the distance we estimate from the position of the tip of Andromeda IX's red giant branch, (m - M)_{0} ~ 24.5 (805 kpc), Andromeda IX would also be the faintest galaxy known (M_{V} ~ -8.3).

Zucker, D B; Bell, E F; Martnez-Delgado, D; Grebel, E K; Rix, H W; Rockosi, C M; Holtzman, J A; Walterbos, R A M; Annis, J; York, D G; Ivezic, Z; Brinkmann, J; Brewington, H; Harvanek, M; Hennessy, G; Kleinman, S J; Krzesnski, J; Long, D; Newman, P R; Nitta, A; Snedden, S A; Zucker, Daniel B.; Kniazev, Alexei Y.; Bell, Eric F.; Martinez-Delgado, David; Grebel, Eva K.; Rix, Hans-Walter; Rockosi, Constance M.; Holtzman, Jon A.; Walterbos, Rene A. M.; Annis, James; York, Donald G.; Ivezic, Zeljko; Brewington, Howard; Harvanek, Michael; Hennessy, Greg; Krzesinski, Jurek; Long, Dan; Newman, Peter R.; Nitta, Atsuko; Snedden, Stephanie A.

2004-01-01T23:59:59.000Z

169

Selecting a Control Strategy for Plug and Process Loads  

Science Conference Proceedings (OSTI)

Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.

Lobato, C.; Sheppy, M.; Brackney, L.; Pless, S.; Torcellini, P.

2012-09-01T23:59:59.000Z

170

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. , 2006. Plug-in hybrid vehicle analysis. Milestonegas emissions from plug-in hybrid vehicles: implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

171

Environmental Assessment of Plug-In Hybrid Electric Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:...

172

Space Heaters, Computers, Cell Phone Chargers: How Plugged In...  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Heaters, Computers, Cell Phone Chargers: How Plugged In Are Commercial Buildings? Title Space Heaters, Computers, Cell Phone Chargers: How Plugged In Are Commercial...

173

A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

Onar, Omer C [ORNL

2011-01-01T23:59:59.000Z

174

Plug-In Electric Vehicle Evaluation and Test Data Analysis  

Science Conference Proceedings (OSTI)

The goal of this analysis was to investigate the different impacts that driver behavior and environment can have on fuel economy and battery energy consumption in plug-in hybrid electric vehicles (PHEVs). Specifically, the PHEVs studied were part of the Ford Escape Advanced Research Fleet, which is composed of over 20 vehicles used by utilities and government agencies during a multi-year project. Results of this analysis can be used to educate drivers with more optimal driving practices to maximize ...

2012-12-20T23:59:59.000Z

175

Plug-in Hybrid Initiative  

SciTech Connect

Our main project objective was to implement Plug-in Electric Vehicles (PEV) and charging infrastructure into our electric distribution service territory and help reduce barriers in the process. Our research demonstrated the desire for some to be early adopters of electric vehicles and the effects lack of education plays on others. The response of early adopters was tremendous: with the initial launch of our program we had nearly 60 residential customers interested in taking part in our program. However, our program only allowed for 15 residential participants. Our program provided assistance towards purchasing a PEV and installation of Electric Vehicle Supply Equipment (EVSE). The residential participants have all come to love their PEVs and are more than enthusiastic about promoting the many benefits of driving electric.

Goodman, Angie; Moore, Ray; Rowden, Tim

2013-09-27T23:59:59.000Z

176

HomePlug Green PHY Performance Evaluation: An Assessment at Sampled Field Sites  

Science Conference Proceedings (OSTI)

The HomePlug Green PHY specification was created by the HomePlug Powerline Alliance to target smart grid and smart energy applications. The focus of the Green PHY implementation was cost, coverage, and performance driven by input from utilities and end device manufacturers.Electric Power Research Institute (EPRI) member utilities requested an evaluation of Green PHY in some real-world scenarios to determine the capabilities of devices using this specification. To accomplish this, the ...

2013-04-15T23:59:59.000Z

177

Energy efficiency, innovation, and job creation in California  

E-Print Network (OSTI)

change. EPA Region IX, California Energy Commission. SanstadProtection Agency and the California Energy Commission, ARBCEPA (6/14/2008). California Energy Commission, California

Roland-Holst, David

2008-01-01T23:59:59.000Z

178

AN ANALYSIS OF THE ENERGY IMPACTS OF THE DOE APPROPRIATE ENERGY TECHNOLOGY SMALL GRANTS PROGRAM: METHODS AND RESULTS  

E-Print Network (OSTI)

Region IX Appropriate Energy Technology Grants Programl___A_THE DOE APPROPRIATE ENERGY TECHNOLOGY SMALL GRANTS PROGRAM:the DOE APPROPRIATE ENERGY TECHNOLOGY SMALL GRANTS PROGRAM:

Lucarelli, Bart

2013-01-01T23:59:59.000Z

179

HomePlug AV Specification Assessment  

Science Conference Proceedings (OSTI)

This report describes and evaluates the HomePlug AV (HPAV) Home Area Network (HAN) protocol as described in the HomePlug Power Alliance's "HomePlug AV Specification Version 1.1," May 21, 2007. The report introduces HPAV features and capabilities. Its focus is on information required by developers and evaluators of HPAV-enabled applications. It also includes an in-depth description of necessary processes required to establish and maintain a HPAV network over Power Line Communication (PLC) as well as commu...

2009-12-22T23:59:59.000Z

180

Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ready for Electric Drive: the Plug-In Vehicle and Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop August 18, 2010 - 5:30pm Addthis Matt Rogers Matt Rogers McKinsey & Company Blogs have been abuzz on electric vehicles and advanced batteries recently, and likely in no small part due to some of the programs that are kicking into high gear at the Department of Energy right now. On July 22, we hosted a Plug-In Vehicle & Infrastructure Workshop that brought together nearly 200 attendees and 600 web participants to discuss near-term actions to accelerate deployment of electric-drive vehicles. The program demonstrated how federal leadership can speed up preparation for vehicles expected in showrooms at the end of this year. This leadership complements the Obama

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Comments on "Wall-plug (AC) power consumption of a very high energy e+/e- storage ring collider" by Marc Ross  

E-Print Network (OSTI)

The paper arXiv:1308.0735 questions some of the technical assumptions made by the TLEP Steering Group when estimating in arXiv:1305.6498 the power requirement for the very high energy e+e- storage ring collider TLEP. We show that our assumptions are based solidly on CERN experience with LEP and the LHC, as well accelerators elsewhere, and confirm our earlier baseline estimate of the TLEP power consumption.

Blondel, A; Butterworth, A; Janot, P; Zimmermann, F; Aleksan, R; Azzi, P; Ellis, J; Klute, M; Zanetti, M

2013-01-01T23:59:59.000Z

182

Executive Summary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration ix ... Transportation tariffs for interstate pipeline companies are few years have increased the availability of some natural gas

183

Plug-In Hybrid Vehicle Analysis (Milestone Report)  

DOE Green Energy (OSTI)

NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

Markel, T.; Brooker, A.; Gonder, J.; O'Keefe, M.; Simpson, A.; Thornton, M.

2006-11-01T23:59:59.000Z

184

The U.S. Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FCVT) Program is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical technical barriers to  

E-Print Network (OSTI)

for use in hybrid vehicles as well as electric-only vehicles · Hardware-in-the-loop evaluation of advanced is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical and capacitor scaling, thermal management, capacity, and power fade · Using hybrid electric vehicles in fleets

Kemner, Ken

185

Effect of plug-in hybrid electric vehicles charging/discharging management on planning of smart microgrid  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles(PHEVs) are recently being widely touted as a viable alternative to conventional vehicles due to their environment friendly and energy-wise features. Assuming that moving into the future

S. M. Hakimi; S. M. Moghaddas-Tafreshi

2012-01-01T23:59:59.000Z

186

Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle Initiatives to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle Initiatives All solicitation documents that include the purchase of passenger

187

Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

188

Nozzle dam having a unitary plug  

DOE Patents (OSTI)

Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket.

Veronesi, Luciano (O' Hara Twp., Allegheny County, PA); Wepfer, Robert M. (Export, PA)

1992-01-01T23:59:59.000Z

189

Nozzle dam having a unitary plug  

DOE Patents (OSTI)

Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator is disclosed. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket. 16 figs.

Veronesi, L.; Wepfer, R.M.

1992-12-15T23:59:59.000Z

190

Plug-In Hybrid Electric Vehicle Performance Analysis  

Science Conference Proceedings (OSTI)

This report describes the performance testing of two configurations of the Plug-in Hybrid-Electric Vehicle (PHEV) Sprinter van developed by EPRI and Daimler for use in delivering cargo, carrying passengers, or fulfilling a variety of specialty applications. One configuration, California 1 (CA-1) has a Nickel Metal Hydride (NiMH) battery pack. The other, California 2 (CA-2) has a Lithium Ion (Li-Ion) battery pack. California 2 showed better fuel and energy economy in all aspects of testing.

2008-03-27T23:59:59.000Z

191

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, ... Significant potential for plug-in vehicles exists in U.S. housing stock.

192

New Plug-Together Digital Multimeter  

E-Print Network (OSTI)

in sections that plug together to form a compactnstrument, giving the user a chorce of capabilities By Albert Gookin 'TtHS PHOTO below shows Hewlett-Packard's section (Model 347o1A) that measures only dc in I newest a-digit voltmeter, the Model 3470 Mea- four ranges from 1 volt full-scale to 1000 volts. Future plug-on sections will include autoranging, high-sensitivity current measurements and other functional capabilities. For those who wish to design their own signal-conditioning circuits, an empty bottom section is also available Iouter shells are cast aluminum]. Center sections can be placed between the top and

unknown authors

1972-01-01T23:59:59.000Z

193

Property:Buildings/ModelName | Open Energy Information  

Open Energy Info (EERE)

ModelName ModelName Jump to: navigation, search This is a property of type String. Pages using the property "Buildings/ModelName" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + General Merchandise 2009 TSD Chicago High Plug Load Baseline + General Merchandise 2009 TSD Chicago High Plug Load Baseline + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings +

194

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Infrastructure Information Resource to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on

195

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Infrastructure Promotion to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on AddThis.com... More in this section... Federal

196

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

197

SIGMA PLUG WELDING OF SPUN-OVER FUEL CANS  

SciTech Connect

Efforts made to employ the sigma welding process for plug welding Closures in spun-over fuel cans were unsuccessful. No combination of welding conditions was found which would produce satisfactory, leak-tight, plug welds in aluminum. (auth)

Winsor, F.J.

1952-12-01T23:59:59.000Z

198

Vehicle Technologies Office: Plug-in Electric Vehicle Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Research and Development to someone by E-mail Share Vehicle Technologies Office: Plug-in Electric Vehicle Research and Development on Facebook Tweet about...

199

Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Plug-In Hybrid Electric Vehicle R&D Plan to someone by E-mail Share Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle R&D Plan on Facebook Tweet about...

200

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

202

Vehicle Technologies Office: Fact #798: September 23, 2013 Plug...  

NLE Websites -- All DOE Office Websites (Extended Search)

8: September 23, 2013 Plug-in Hybrid Vehicle Driving Range to someone by E-mail Share Vehicle Technologies Office: Fact 798: September 23, 2013 Plug-in Hybrid Vehicle Driving...

203

Plug in Electric Vehicle Interactions with a small office Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug in Electric Vehicle Interactions with a small office Building: An Economic Analysis Using DER-CAM Title Plug in Electric Vehicle Interactions with a small office Building: An...

204

NREL: Learning - Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-In Hybrid Electric Vehicles Photo of a parked blue compact car with large decals on the doors stating that it is a plug-in hybrid achieving more than 120 miles per gallon....

205

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

including the Hybrid and Electric Vehicle Act of 1976. Suchfor plug- in hybrid electric vehicles: analysis and2007. Plug-in Hybrid Electric Vehicle R&D Plan: Working

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

206

Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids

207

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on AddThis.com... More in this section...

208

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Impact on Fuel Efficiency Technologies Impact on Fuel Efficiency One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle (PHEV) R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. Overall fuel efficiency is affected by component technologies from a component sizing and efficiency aspect. To properly define component requirements, several technologies for each of the main components (energy storage, engine and electric machines) are being compared at Argonne using PSAT. Per the R&D plan, several Li-ion battery materials are being modeled to evaluate their impacts on fuel efficiency and vehicle mass. Different Power to Energy ratios are being considered to understand the relative impact of power and energy.

209

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Not Available

2008-03-01T23:59:59.000Z

210

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-09-01T23:59:59.000Z

211

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-12-01T23:59:59.000Z

212

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network (OSTI)

steam Thus, for vehicles that plug into the grid, characterizing the emissions associated with electricity generation and distribution

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

213

Bond strength of cementitious borehole plugs in welded tuff  

Science Conference Proceedings (OSTI)

Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

Akgun, H.; Daemen, J.J.K. [Arizona Univ., Tucson, AZ (USA). Dept. of Mining and Geological Engineering

1991-02-01T23:59:59.000Z

214

Steam Generator Management Program: Assessment of Steam Generator Tube Plugs  

Science Conference Proceedings (OSTI)

EPRI Steam Generator Management Program guidelines require that utilities perform integrity assessments of all steam generator (SG) components, including tube plugs. SG inspection outages should specifically include monitoring of degradation in tube hardware such as plugs. This report provides guidance for utility engineers to use in determining tube plug inspection requirements, including scope, technique, and periodicity.BackgroundGenerally, utilities perform ...

2013-08-28T23:59:59.000Z

215

Edmund G. Brown, Jr. PLUG-IN HYBRID ELECTRIC VEHICLE  

E-Print Network (OSTI)

Edmund G. Brown, Jr. Governor PLUG-IN HYBRID ELECTRIC VEHICLE RESEARCH ROADMAP Davis Plug-In Hybrid Electric Vehicle Research Center June 2011 CEC-500-2010-039 #12; #12; Prepared By: UC Davis Plug-In Hybrid Electric Vehicle Research Center Dr. Thomas Turrentine, University

216

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network (OSTI)

H 2 FCVs, plug- in hybrids, and vehicle-to-grid (V2G) power.markets using primarily hybrid vehicles in fleet and otherin hybrid, Plug-out hybrid, Vehicle-to-grid power, Vehicular

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

217

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network (OSTI)

Plug-in Hybrid Kits for Toyota and Ford Hybrids," in Greenfactsheet.pdf, 2006. J. Rosebro, "Toyota Ratchets Up Plug-InCongress, 23 April ed, 2006. "Toyota to Unveil Prius with

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

218

Geothermal Well Site Restoration and Plug and Abandonment of Wells  

DOE Green Energy (OSTI)

A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana-the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete, utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports and procedures, daily workover and current conditions report, and cost and salvage reports. Site locations, grid maps, and photographs are provided.

Rinehart, Ben N.

1994-08-01T23:59:59.000Z

219

Heavy-atom neutral beams for tandem-mirror end plugs  

DOE Green Energy (OSTI)

The advantages of neutral beams with Z greater than or equal to 3 formed from negative ions, accelerated to 0.5 to 1.0 MeV/amu, and neutralized with high efficiency, are investigated for use in tandem mirror reactor end plugs. These beams can produce Q's of 20 to 30, and thus can replace the currently proposed 200 to 500 keV neutral proton beams presently planned for tandem mirror reactors. Thus, these Z greater than or equal to 3 neutral beams increase the potential attractiveness of tandem mirror reactors by offering a substitute for difficult high energy neutral hydrogen end plug beams.

Post, D.E.; Grisham, L.R.; Santarius, J.F.; Emmert, G.A.

1981-05-01T23:59:59.000Z

220

DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Provide up to $14 Million to Develop Advanced Batteries for to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles April 5, 2007 - 12:17pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will provide up to $14 million in funding for a $28 million cost-shared solicitation by the United States Advanced Battery Consortium (USABC), for plug-in hybrid electric vehicle (PHEV) battery development. This research aims to find solutions to improving battery performance so vehicles can deliver up to 40 miles of electric range without recharging. This would include most roundtrip daily commutes. "President Bush is committed to developing alternative fuels and

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles | Open  

Open Energy Info (EERE)

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Agency/Company /Organization: International Energy Agency Focus Area: Vehicles Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf The primary role of this EV/PHEV Roadmap is to help establish a vision for technology deployment; set approximate, feasible targets; and identify steps required to get there. It also outlines the role for different stakeholders and how they can work together to reach common objectives, and the role for government policy to support the process. References

222

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and plug-in electric vehicles Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three cat- egories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use. Hybrid Electric Vehicles HEVs are powered by an internal combus- tion engine or other propulsion source that runs on conventional or alternative fuel and an electric motor that uses energy stored in a battery. The extra power provided by the electric motor allows for a smaller engine, resulting in better fuel

223

Plug-in Hybrid Electric Vehicles and Petroleum Displacement: A Regional Economic Impact Assessment  

Science Conference Proceedings (OSTI)

Interest in alternatives to conventional vehicles such as plug-in hybrid electric vehicles (PHEVs) has risen because of the environmental and energy security concerns associated with petroleum dependence, but what would be the economic impact of the widespread use of such vehicles? This study quantified the regional economic impacts associated with an increased market penetration of PHEVs in the household vehicle market.

2007-11-27T23:59:59.000Z

224

Ne IX emission-line ratios in solar active regions  

Science Conference Proceedings (OSTI)

Emission-line ratios for Ne IX are derived and compared with observational data for solar active regions obtained with the SOLEX B spectrometer on the P78-1 satellite. Excellent agreement is obtained, providing support for the atomic data adopted in the calculations and resolving discrepancies between existing theoretical calculations and solar data. The calculated R-ratio for the low-density limit agrees well with the SOLEX observations. 47 references.

Keenan, F.P.; Mccann, S.M.; Kingston, A.E.; Mckenzie, D.L.

1987-07-01T23:59:59.000Z

225

Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Printable Version Share this resource Send a link to Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop to someone by E-mail Share Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Facebook Tweet about Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Twitter Bookmark Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Google Bookmark Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Delicious Rank Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Digg Find More places to share Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on AddThis.com... Conferences & Workshops

226

Compact Fluorescent Plug-In Ballast-in-a-Socket  

Science Conference Proceedings (OSTI)

The primary goal of this program was to develop a ballast system for plug-in CFLs (compact fluorescent lamps) that will directly replace standard metal shell, medium base incandescent lampholders (such as Levition No. 6098) for use with portable lamp fixtures, such as floor, table and desk lamps. A secondary goal was to identify a plug-in CFL that is optimized for use with this ballast. This Plug-in CFL Ballastin-a-Socket system will allow fixture manufacturers to easily manufacture CFL-based high-efficacy portable fixtures that provide residential and commercial consumers with attractive, cost-effective, and energy-efficient fixtures for use wherever portable incandescent fixtures are used today. The advantages of this proposed system over existing CFL solutions are that the fixtures can only be used with high-efficacy CFLs, and they will be more attractive and will have lower life-cycle costs than screw-in or adapter-based CFL retrofit solutions. These features should greatly increase the penetration of CFL's into the North American market. Our work has shown that using integrated circuits it is quite feasible to produce a lamp-fixture ballast of a size comparable to the current Edison-screw 3-way incandescent fixtures. As for price points for BIAS-based fixtures, end-users polled by the Lighting Research Institute at RPI indicated that they would pay as much as an additional $10 for a lamp containing such a ballast. The ballast has been optimized to run with a 26 W amalgam triple biax lamp in the base-down position, yet can accept non-amalgam versions of the lamp. With a few part alterations, the ballast can be produced to support 32 W lamps as well. The ballast uses GE's existing L-Comp[1] power topology in the circuit so that the integrated circuit design would be a design that could possibly be used by other CFL and EFL products with minor modifications. This gives added value by reducing cost and size of not only the BIAS, but also possibly other integral CFL and future dimmable integral and plug-in versions of the EFL products.

Rebecca Voelker

2001-12-21T23:59:59.000Z

227

Plug-in Electric Vehicle Adoption Forecasts  

Science Conference Proceedings (OSTI)

The imminent introduction of plug-in electric vehicles (PEVs) into the automotive marketplace has the potential to dramatically affect electricity service providers. The vehicles will require infrastructure that facilitates recharging, and the resulting electric load could have a combination of positive and negative effects on utility systems. To characterize the effects, it is necessary to forecast the size of the PEV fleet and its electricity consumption. The electricity use must be analyzed over long ...

2010-12-22T23:59:59.000Z

228

Plug-in Electric Vehicle Fleet Valuation  

Science Conference Proceedings (OSTI)

This project investigated the value of plug-in electric vehicles (PEVs) as a grid resource and has created a PEV Fleet Simulator tool and framework for analyzing and reporting on fleet performance. The report is intended for electric utility managers and engineers and automobile manufacturers interested in PEV fleet grid services and their value.Results & FindingsThe report describes the fleet driving behavior and electricity market price data, and it ...

2012-12-14T23:59:59.000Z

229

Energy Department Announces New SunShot Investment in Solar Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Related Articles Energy Department Announces Funding to Develop "Plug-and-Play" Solar Energy Systems for Homeowners A plug-and-play PV system is envisioned as a consumer...

230

Photo illustration by George Lange, with Michael Miller (Plug) Popular Mechanics Impact of PlugImpact of Plug--in Hybrids on thein Hybrids on the  

E-Print Network (OSTI)

- in Hybrid Vehicles on Electric Utilities and regional U.S. Power Grid. 4 BackgroundBackground About 230 of PlugImpact of Plug--in Hybrids on thein Hybrids on the Electrical System in the NorthwestElectrical the Impact of Advanced Vehicle and Fuel technologies in U.S. Light-duty Vehicle Fleet " Michael Kinter

231

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Infrastructure Evaluation to someone by E-mail Infrastructure Evaluation to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on AddThis.com... More in this section... Federal State Advanced Search

232

CsIX/TRU Grout Feasibility Study  

SciTech Connect

A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that liquid waste now stored at the Idaho Nuclear Technology Engineering Center (INTEC - formerly the Idaho Chemical Processing Plant, ICPP) will be calcined by the end of year 2012. This study investigates an alternative treatment of the liquid waste that removes undissolved solids (UDS) by filtration and removes cesium by ion exchange followed by cement-based grouting of the remaining liquid into 55-gal drums. Operations are assumed to be from January 2008 through December 2012. The grouted waste will be contact-handled and will be shipped to the Waste Isolation Pilot Plant (WIPP) in New Mexico for disposal. The small volume of secondary wastes such as the filtered solids and cesium sorbent (resin) would remain in storage at the Idaho National Engineering and Environmental Laboratory for treatment and disposal under another project, with an option to dispose of the filtered solids as a r emote-handled waste at WIPP.

S. J. Losinski; C. M. Barnes; B. K. Grover

1998-11-01T23:59:59.000Z

233

Plug-in Hybrid Electric Vehicles (PHEVs) Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Program, Advanced Vehicle Testing Activity (AVTA) Plug-in Hybrid Electric Vehicles (PHEVs) Overview Jim Francfort AVTA Principle Investigator Local Climate Leadership Summit May...

234

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Charging Rate Incentive - Hawaiian Electric Company to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Incentive - Hawaiian...

235

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Grants to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Infrastructure Grants on Facebook Tweet about Alternative Fuels...

236

Hybrid and Plug-In Electric Vehicles (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-05-01T23:59:59.000Z

237

Hybrid and Plug-In Electric Vehicles (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-10-01T23:59:59.000Z

238

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced...

239

Environmental Impacts of Plug-in Hybrid Electric Vehicles.  

E-Print Network (OSTI)

??The environmental and electric utility system impacts from plug?in hybrid electric vehicle (PHEV) infiltration in Michigan were examined from years 2010 to 2030 as part (more)

Camere, Aaron; Schafer, Allison; de Monasterio, Caroline

2010-01-01T23:59:59.000Z

240

Electrically Distributed Optically Pumped Laser Spark Plug and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Optically Pumped Laser Spark Plug and Ignition System Opportunity Research is active on the patent-pending technology, titled "Electrically Distributed Optically Pumped...

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

and Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwideand Impacts of Hybrid Electric Vehicle Options, EPRI, Palo

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

242

Vehicle Technologies Office: Plug-in Electric Vehicle Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Dramatic improvements in plug-in electric vehicle (PEV) performance and cost will require a well-coordinated research and development effort between DOE...

243

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

and Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwideand Impacts of Hybrid Electric Vehicle Options, EPRI, Palo

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

244

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

and impacts of hybrid electric vehicle options for compactof plug-in hybrid electric vehicles, vol. 1: nationwideimpacts of hybrid electric vehicle options. Report #1000349,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

245

News and Information about Plug-in Hybrids  

NLE Websites -- All DOE Office Websites (Extended Search)

New & Upcoming Plug-in Hybrids New 2014 Models Vehicle EPA MPG Estimates Availability & Price (MSRP) 2014 Honda Accord Midsize Car Chevrolet Volt Chart: Electricity, 115 mpge;...

246

Battery Choices for Different Plug-in HEV Configurations (Presentation)  

DOE Green Energy (OSTI)

Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

Pesaran, A.

2006-07-12T23:59:59.000Z

247

Optimization of a plug-in hybrid electric vehicle .  

E-Print Network (OSTI)

??A plug-in hybrid electric vehicle (PHEV) is a vehicle powered by a combination of an internal combustion engine and an electric motor with a battery (more)

Golbuff, Sam

2006-01-01T23:59:59.000Z

248

Platform Engineering Applied to Plug-In Hybrid Electric Vehicles  

SciTech Connect

This paper quantifies the relative impacts of each platform engineering step on conventional, hybrid, and plug-in hybrid vehicle architectures.

Markel, T.

2007-05-01T23:59:59.000Z

249

Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)  

DOE Green Energy (OSTI)

This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

Not Available

2012-04-01T23:59:59.000Z

250

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

including the Hybrid and Electric Vehicle Act of 1976. Suchand Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

251

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

including the Hybrid and Electric Vehicle Act of 1976. Suchand Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

252

SunShot Initiative: Plug-and-Play Photovoltaics  

NLE Websites -- All DOE Office Websites (Extended Search)

Homeowners can install the system without special training or tools. The homeowner simply plugs the system into a PV-ready circuit, and an automatic PV discovery...

253

Category:Building Models | Open Energy Information  

Open Energy Info (EERE)

Models Models Jump to: navigation, search This category uses the form Buildings Model. Pages in category "Building Models" The following 12 pages are in this category, out of 12 total. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings General Merchandise 2009 TSD Chicago High Plug Load Baseline General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings General Merchandise 2009 TSD Chicago Low Plug Load Baseline G cont. General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings General Merchandise 2009 TSD Miami High Plug Load Baseline General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings General Merchandise 2009 TSD Miami Low Plug Load Baseline G cont. Grocery 2009 TSD Chicago 50% Energy Savings Grocery 2009 TSD Chicago Baseline

254

IXS-CDT, APS Sign Memorandum of Understanding for Sector 30  

NLE Websites -- All DOE Office Websites (Extended Search)

27th, 2003 27th, 2003 IXS-CDT, APS Sign Memorandum of Understanding for Sector 30 With strokes from four ceremonial pens, the Inelastic X-ray Scattering Collaborative Development Team (IXS-CDT) became the twenty-second research group to sign up for construction of x-ray beamlines at Argonne National Laboratory's Advanced Photon Source (APS). As the diagram below shows, only 5 of a possible 35 pairs of APS x-ray beamlines remain uncommitted. The September 15, 2003, Memorandum of Understanding signing ceremony formalized the relationship between IXS-CDT and the APS. APS staff will construct the IXS-CDT beamline at sector 30 on the APS experiment hall floor. The IXS sector aims to be the best in the world for inelastic x-ray scattering, a very important application that takes full-advantage of the

255

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network (OSTI)

Toyota Ratchets Up Plug-In Prius Talk," in Green Cared, 2006. "Toyota to Unveil Prius with Large Auxiliary Powerfive, including several Prius conversions in various stages

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

256

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network (OSTI)

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."plug-out hydrogen-fuel- cell vehicles: Mobile Electricity"

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

257

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Requirement  

NLE Websites -- All DOE Office Websites (Extended Search)

Requirement Definition for PHEVs Requirement Definition for PHEVs One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. PSAT has been used to design and evaluate a series of PHEVs to define the requirements of different components, focusing on the energy storage system's power and energy. Several vehicle classes (including midsize car, crossover SUV and midsize SUV) and All Electric Range (AER from 10 to 40 miles) were considered. The preliminary simulations were performed at Argonne using a pre-transmission parallel hybrid configuration with an energy storage system sized to run the Urban Dynanometer Driving Schedule (UDDS) in electric mode. Additional powertrain configurations and sizing algorithm are currently being considered. Trade-off studies are being performed as ways to achieve some level of performance while easing requirements on one area or another. As shown in the figure below, the FreedomCAR Energy Storage Technical Team selected a short term and a long term All Electric Range (AER) goals based on several vehicle simulations.

258

Space Heaters, Computers, Cell Phone Chargers: How Plugged In AreCommercial Buildings?  

SciTech Connect

Evidenceof electric plug loads in commercial buildings isvisible everyday: space heaters, portable fans, and the IT technician'stwo monitors connected to one PC. The Energy Information Administrationestimates that office and miscellaneous equipment together will consume2.18 quads in 2006, nearly 50 percent of U.S. commercial electricity use.Although the importance of commercial plug loads is documented, its verynature (diverse product types, products not installed when buildinginitially constructed, and products often hidden in closets) makes itdifficult to accurately count and categorize the end use.We auditedsixteen buildings in three cities (San Francisco, Atlanta, Pittsburgh)including office, medical and education building types. We inventoriedthe number and types of office and miscellaneous electric equipment aswell as estimated total energy consumption due to these product types. Intotal, we audited approximately 4,000 units of office equipment and 6,000units of miscellaneous equipment and covered a diverse range of productsranging from electric pencil sharpeners with a unit energy consumption(UEC) of 1 kWh/yr to a kiln with a UEC of 7,000 kWh/yr. Our paperpresents a summary of the density and type of plug load equipment foundas well as the estimated total energy consumption of the equipment.Additionally, we present equipment trends observed and provide insightsto how policy makers can target energy efficiency for this growing enduse.

Sanchez, Marla; Webber, Carrie; Brown, Richard; Busch, John; Pinckard, Margaret; Roberson, Judy

2007-02-28T23:59:59.000Z

259

Assessing and Reducing Plug and Process Loads in Office Buildings (Brochure)  

SciTech Connect

Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

Not Available

2011-06-01T23:59:59.000Z

260

Office Buildings: Assessing and Reducing Plug and Process Loads in Office Buildings (Fact Sheet)  

SciTech Connect

Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)  

SciTech Connect

Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

2013-04-01T23:59:59.000Z

262

Assessing and Reducing Plug and Process Loads in Retail Buildings (Brochure)  

SciTech Connect

Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

Not Available

2011-06-01T23:59:59.000Z

263

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fun, you head back to your rental car, which is plugged in at an electric vehicle (EV) charging station in the parking lot. http:energy.govarticlesorlando-plugs-electric-veh...

264

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and fun, you head back to your rental car, which is plugged in at an electric vehicle (EV) charging station in the parking lot. http:energy.govarticlesorlando-plugs-electric-...

265

Saving Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

perform a number of electrical functions, including measuring the power and energy consumption of plug-in electrical appliances and devices. November 30, 2009 Energy Efficiency...

266

Integrating plug-in electric vehicles into the electric power system.  

E-Print Network (OSTI)

??This dissertation contributes to our understanding of how plug-in hybrid electric vehicles (PHEVs) and plug-in battery-only electric vehicles (EVs)collectively termed plug-in electric vehicles (PEVs)could be (more)

Wu, Di

2012-01-01T23:59:59.000Z

267

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

Burke, Andrew

2009-01-01T23:59:59.000Z

268

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

design. Simulations of Prius plug-in hybrids were performedpresented for a plug-in Prius-type vehicle using differentchemistries Simulations of Prius plug-in hybrids have been

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

269

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andUC Davis Plug-in Hybrid Electric Vehicle Research Center and

Burke, Andrew

2009-01-01T23:59:59.000Z

270

PHEV Energy Storage and Drive Cycle Impacts (Presentation)  

DOE Green Energy (OSTI)

Plug-in Hybrid vehicles energy storage and drive cycle impacts, presented at the 7th Advanced Automotive Battery Conference.

Markel, T.; Pesaran, A.

2007-05-17T23:59:59.000Z

271

General Merchandise 50% Energy Savings Technical Support Document 2009 |  

Open Energy Info (EERE)

General Merchandise 50% Energy Savings Technical Support Document 2009 General Merchandise 50% Energy Savings Technical Support Document 2009 Jump to: navigation, search Publication Name General Merchandise 50% Energy Savings Technical Support Document Publication Type Technical Support Document Report Number NREL/TP-550-46100 Publication Year 2009 URL http://www.nrel.gov/docs/fy09osti/46100.pdf Building Models General Merchandise 2009 TSD Chicago High Plug Load Baseline, General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings, General Merchandise 2009 TSD Chicago Low Plug Load Baseline, General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings, General Merchandise 2009 TSD Miami High Plug Load Baseline, General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings, General Merchandise 2009 TSD Miami Low Plug Load Baseline, General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings

272

Electrically heated particulate matter filter with recessed inlet end plugs  

DOE Patents (OSTI)

A particulate matter (PM) filter includes filter walls having inlet ends and outlet ends. First adjacent pairs of the filter walls define inlet channels. Second adjacent pairs of the filter walls define outlet channels. Outlet end plugs are arranged in the inlet channels adjacent to the output ends. Inlet end plugs arranged in the outlet channels spaced from the inlet ends.

Gonze, Eugene V. (Pinckney, MI); Ament, Frank (Troy, MI)

2012-02-21T23:59:59.000Z

273

662-E solid waste silo-plug lifting analysis  

SciTech Connect

The Intermediate Level Tritium Vault No. 1, 662-E, Cell No. 1 contains 140 waste silos. Each silo is approximately 25 feet deep, 30 inches in diameter at the top and covered by a reinforced concrete plug. Two No. 4 reinforcing bars project from the top of each plug for lifting. During lifting operations, the 1.5 inch concrete cover over the lifting bars spelled off 16% of the silo plugs. The No. 4 reinforcing bars were also distorted on many of the silo plugs. Thirteen of the plugs have been repaired to date. The existing silo plug lifting bars have a safe working load of 480 pounds per plug, which is less than 1/3 of the dead weight of the silo plug. The safe working load was calculated using the minimum design factor of 3 based on the yield strength or 5 based on the ultimate strength of the material, as per the Savannah River Site Hoisting and Rigging Manual. The existing design calculations were reviewed, and the following items are noted: (1) Adequate concrete cover was not provided over the horizontal portion of the lifting bars. (2) The lifting bars were allowed to yield in bending, which violates the requirements of the Savannah River Site Hoisting and Rigging Manual. (3) The ultimate strain of the lifting bars would be exceeded before the calculated ultimate strength was achieved. Alternative lifting devices are also identified.

Mertz, G.E.

1993-03-01T23:59:59.000Z

274

Achieving Controllability of Plug-in Electric Ian Hiskens  

E-Print Network (OSTI)

aggregator. The aggregator acquires data from plug-in electric vehicle loads in its area, and builds loads are distributed throughout the grid, they provide the opportunity to devise spatially precise reAchieving Controllability of Plug-in Electric Vehicles Ian Hiskens Electrical Engineering

Hiskens, Ian A.

275

Chemical wellbore plug for zone isolation in horizontal wells  

E-Print Network (OSTI)

A new technique for zone isolation in horizontal wells has been proposed. The new technique consists of three sequential stages: (i) setting a chemical wellbore plug in the horizontal section upstream of the zone to be isolated, (ii) spotting a gel just downstream of the wellbore plug and squeezing the gel into the zone to be isolated, and (iii) washing or drilling through excess gel and the wellbore plug to clean the borehole prior to production. The main objective of this research is to investigate the feasibility of setting a chemical wellbore plug in a horizontal wellbore. Two main problems associated with the wellbore plug were investigated: (a) method of placement of the plug so that slumping would not occur, and (b) selection and testing of chemicals that could be used to make wellbore plugs with sufficiently high holding pressures. Three chemicals, used in the oil industry for gas and/or water shut-off, were selected for the study. The commercial names of these chemicals were SEAL, PERMASEAL and TEXPLUG. Experimental apparatus were designed and constructed to study placement techniques and to measure the holding pressures of the wellbore plugs. The horizontal wellbore models consisted of PVC pipes internally lined with sand. The X-ray CT scanner was used to obtain cross-sectional images of the plug to help understand the shear mechanisms involved. The experimental results indicate that a plug could be placed in a horizontal wellbore with minimum slumping, if the plug is introduced into a viscous completion brine pill. For TEXPLUG, a suitable completion brine would contain 100,000 ppm NaCi and 4 lb/bbl CMC (carboxyl methyl cellulose). Further, results indicate that only TEXPLUG has a sufficiently high holding pressure (about 340 psi for 37 in. long, 1 in. I.D. plug) necessary for a wellbore plug. Based on experimental results, the proposed new isolation technique appears to be viable. However, further experimental studies are required, particularly to evaluate the effectiveness of the wellbore plug in conjunction with displacement of formation gels.

Saavedra, Nestor Fernando

1996-01-01T23:59:59.000Z

276

A Special Application Coiled Tubing Applied Plug for Geothermal Well Casing Remediation  

DOE Green Energy (OSTI)

Casing deformation in wells is a common problem in many geothermal fields. Casing remediation is necessary to keep wells in production and occasionally, to even enter the well for an approved plug and abandonment procedure. The costly alternative to casing remediation is to incur the expense of drilling a new well to maintain production or drilling a well to intersect a badly damaged well below the deformation for abandonment purposes. The U.S. Department of Energy and the Geothermal Drilling Organization sponsor research and development work at Sandia National Laboratories in an effort to reduce these remediation expenditures. Sandia, in cooperation with Halliburton Energy Services, has developed a low cost, commercially available, bridge-plug-type packer for use in geothermal well environments. This report documents the development and testing of this tool for use in casing remediation work.

Knudsen, S.D.; Sattler, A.R.; Staller, G.E.

1999-05-13T23:59:59.000Z

277

Summary Report: Clean Cities Plug-In Electric Vehicle Community Readiness Partners Discussion Group  

NLE Websites -- All DOE Office Websites (Extended Search)

2101 Wilson Blvd., Suite 550 | Arlington, VA 22201 | 703-516-4146 | www.C2ES.org 2101 Wilson Blvd., Suite 550 | Arlington, VA 22201 | 703-516-4146 | www.C2ES.org MAY 7, 2012 4:30 PM - 6:00 PM LOS ANGELES, CA SUMMARY REPORT: CLEAN CITIES PLUG-IN ELECTRIC VEHICLE COMMUNITY READINESS PARTNERS DISCUSSION GROUP By: Nick Nigro, Center for Climate and Energy Solutions An opportunity to discuss challenges and share best practices regarding efforts to prepare your community/region for plug-in electric vehicles and charging infrastructure deployment Center for Climate and Energy Solutions 2 Table of Contents Table of Contents 2 About this Report 3 Disclaimer 3 Acknowledgements 3 Session Overview 4 Vehicle Demand and Availability 4 Law and Regulatory Environment 5 Public EVSE Signage 5 ADA Compliance 7 Multi-unit Dwellings 7

278

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network (OSTI)

Mgel. 2011. Modeling Electric Vehicle Benefits Connectedenvironmental value of plug-in electric vehicles connectedBattaglia. 2010. Plug-in Electric Vehicle Interactions with

Mendes, Goncalo

2013-01-01T23:59:59.000Z

279

Modeling of Plug-in Electric Vehicles' Interactions with a Sustainable...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Plug-in Electric Vehicles' Interactions with a Sustainable Community Grid in the Azores Title Modeling of Plug-in Electric Vehicles' Interactions with a Sustainable Community...

280

Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energys (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

John G. Smart; Sera White; Michael Duoba

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Homes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

perform a number of electrical functions, including measuring the power and energy consumption of plug-in electrical appliances and devices. December 3, 2009 Have You Used LED...

282

Power Quality Analysis of On-Board Plug-in Electric Vehicle Chargers  

Science Conference Proceedings (OSTI)

As society begins to pay more attention to energy efficiency and alternate forms of transportation, plug in electric vehicles (PEVs) are likely to become more prevalent as car manufacturers turn toward this technology. Before widespread adoption of PEV charging can occur, the impacts of these chargers must be evaluated. Electric utilities and Electric Power Research Institute (EPRI) are working together to test both on-board and off-board systems with respect to system loading, transformer life, and powe...

2011-12-30T23:59:59.000Z

283

Preliminary Assessment of Plug-In Hybrid and Electric Vehicle Value Elements  

Science Conference Proceedings (OSTI)

Plug-in Hybrid Electric Vehicles (PHEVs) are expected to start production in late 2010. Their batteries are a potential energy storage resource that could supply power to the grid in peak hours or provide ancillary services by providing emergency reserves and helping regulate voltage and frequency during short-term variations in the power balance. This report estimates what the value of PHEV-supplied ancillary services and electric power would have been in the California Independent System Operator (ISO)...

2008-09-30T23:59:59.000Z

284

Audit predictions of commercial lighting and plug loads  

SciTech Connect

Energy audits may be conducted at low or no cost to point our cost-effective conservation measures that could be adopted by the building owners. Alternatively, evaluating of the level of conservation measures that should be installed at utility expense. The energy and peak load savings resulting from audit programs are influenced by both the rate of adoption and the installed effectiveness of conservation measures recommended by audits. The accuracy of savings predicted by the audits has long been in question, and affects both the rate of adoption (via ''word-of-mouth'' and media communication of customer satisfaction) as well as the actual benefits to the utility for installed measures. Hence, assessing the accuracy of the audits is an essential element in the implementation and evaluation of effective audit programs designed to utilize the conservation resource. This paper presents an end-use view of audit accuracy for lighting and plug loads. Other analysis of the data from the overall building point of view has been conducted elsewhere. 3 refs., 8 figs., 3 tabs.

Pratt, R.G.

1989-05-01T23:59:59.000Z

285

Development of a Special Application Coiled Tubing Applied Plug for Geothermal Well Casing Remediation  

DOE Green Energy (OSTI)

Casing deformation in producing geothermal wells is a common problem in many geothermal fields, mainly due to the active geologic formations where these wells are typically located. Repairs to deformed well casings are necessary to keep the wells in production and to occasionally enter a well for approved plugging and abandonment procedures. The costly alternative to casing remediation is to drill a new well to maintain production and/or drill a well to intersect the old well casing below the deformation for abandonment purposes. The U.S. Department of Energy and the Geothermal Drilling Organization sponsored research and development work at Sandia National Laboratories in an effort to reduce these casing remediation expenditures. Sandia, in cooperation with Halliburton Energy Services, developed a low cost, bridge-plug-type, packer for use in casing remediation work in geothermal well environments. This report documents the development and testing of this commercially available petal-basket packer called the Special Application Coiled Tubing Applied Plug (SACTAP).

STALLER,GEORGE E.; KNUDSEN,STEVEN D.; SATTLER,ALLAN R.

1999-10-01T23:59:59.000Z

286

Property:Buildings/ModelYear | Open Energy Information  

Open Energy Info (EERE)

Buildings/ModelYear Buildings/ModelYear Jump to: navigation, search This is a property of type Date. Pages using the property "Buildings/ModelYear" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Chicago High Plug Load Baseline + 2009 + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + 2009 + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Miami High Plug Load Baseline + 2009 + General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Miami Low Plug Load Baseline + 2009 +

287

Golden Valley Electric Association - Residential Energy Efficiency...  

Open Energy Info (EERE)

Eligible Technologies Lighting, Water Heaters, Vehicle Engine Preheating Plug-Ins, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

288

NREL: Vehicle Systems Analysis - Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles NREL's vehicle systems analysts work to advance the technology of plug-in hybrid electric vehicles (PHEVs), also known as grid-connected or grid-charged hybrids. Technology Targets and Metrics Analysis We use our Technical Targets Tool to determine pathways for maximizing the potential national impact of plug-in hybrid electric vehicles. This assessment includes consideration of how consumers will value the new vehicle technology based on attributes such as: Acceleration Fuel economy and consumption Cargo capacity Cost. We use the resulting competitiveness index to predict the vehicle's market penetration rate. Then, we can create a total national benefits picture after adding in other factors such as: Existing fleet turnover

289

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network (OSTI)

mail: ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-by either gasoline or electricity, but unlike hybrids, PHEVsto use very low-carbon electricity resources, such as

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

290

Modeling medical devices for plug-and-play interoperability  

E-Print Network (OSTI)

One of the challenges faced by clinical engineers is to support the connectivity and interoperability of medical-electrical point-of-care devices. A system that could enable plug-and-play connectivity and interoperability ...

Hofmann, Robert Matthew

2007-01-01T23:59:59.000Z

291

Plug-in electric vehicle introduction in the EU  

E-Print Network (OSTI)

Plug-in electric vehicles (PEVs) could significantly reduce gasoline consumption and greenhouse gas (GHG) emissions in the EU's transport sector. However, PEV well-towheel (WTW) emissions depend on improvements in vehicle ...

Sisternes, Fernando J. de $q (Fernando Jos Sisternes Jimnez)

2010-01-01T23:59:59.000Z

292

Vehicle Technologies Office: Fact #798: September 23, 2013Plug...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Driving Range For the 2013 model year (MY) there are four plug-in hybrid electric vehicles (PHEVs) available to consumers. PHEVs offer a limited amount of all-electric...

293

Cooperative Regulation of Emissions Using Plug-in Hybrid Vehicles  

Science Conference Proceedings (OSTI)

We exploit new types of vehicles, such as Plug-in Hybrid Electric Vehicles (PHEVs), to control transport related emissions in urban environments. By appropriately choosing whether single power-split hybrid vehicles should be operated in fully electric ...

A. Schlote, F. Hausler, T. Hecker, A. Bergmann, E. Crisostomi, I. Radusch, R. Shorten

2012-12-01T23:59:59.000Z

294

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Sorted by Type Plug-In Electric Vehicle (PEV) Charging Discount - GWP Glendale Water and Power (GWP) offers an electricity bill discount of 0.33 per day to residential...

295

Control and shim rod arrangement with moveable plugs  

DOE Patents (OSTI)

This invention relates to a control and shim rod arrangement for a nuclear reactor. A second shield of concrete completely encloses a biological shield. Moveable plugs are mounted in said shield.

Smith, Montford H. (Richland, WA)

1976-03-30T23:59:59.000Z

296

Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)  

DOE Green Energy (OSTI)

Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

297

Size influence on the sealing performance of cementitious borehole plugs  

Science Conference Proceedings (OSTI)

Flow tests have been conducted on cement plugs with diameters of 158.8 mm and 196.9 mm, and length to diameter ratios of one, in boreholes in basalt blocks and in steel pipes. Expansion strains and curing temperatures have been monitored on cement plugs in boreholes in basalt blocks, in PVC and in steel pipes with diameters from 25.4 mm to 196.9 mm and length to diameter ratios of one and two. During permeability tests, basalt blocks have fractured, presumably due to water injection pressure, cement expansion and packer pressure. Falling head tests have been performed on some block fractures to study the influence of the complicated interaction between a cement borehole plug (e.g. swelling and shrinkage alternations) and the rock, as well as of the normal stress across the fracture, on the hydraulic conductivity of a fracture intersecting a plugged borehole. The hydraulic conductivity of the cement plugs in the steel pipes varies between 3.57 x 10/sup -11/ cm/min and 3.65 x 10/sup -9/ cm/min. Cement swelling tests remain inconclusive about size effects, primarily because of instrumentation problems. Cement curing temperatures increase from small to large diameter cement plugs.

Akgun, H.; Daemen, J.J.K.

1986-09-01T23:59:59.000Z

298

Experimental investigations on sodium plugging in narrow flow channels.  

SciTech Connect

A series of experiments was performed to investigate the potential for plugging of narrow flow channels of sodium by impurities (e.g., oxides). In the first phase of the experiments, clean sodium was circulated through the test sections simulating flow channels in a compact diffusion-bonded heat exchanger such as a printed circuit heat exchanger. The primary objective was to see if small channels whose cross sections are semicircles of 2, 4, and 6 mm in diameter are usable in liquid sodium applications where sodium purity is carefully controlled. It was concluded that the 2-mm channels, the smallest of the three, could be used in clean sodium systems at temperatures even as low as 100 to 110 C without plugging. In the second phase, sodium oxide was added to the loop, and the oxygen concentration in the liquid sodium was controlled by means of varying the cold-trap temperature. Intentional plugging was induced by creating a cold spot in the test sections, and the subsequent plugging behavior was observed. It was found that plugging in the 2-mm test section was initiated by lowering the cold spot temperature below the cold-trap temperature by 10 to 30 C. Unplugging of the plugged channels was accomplished by heating the affected test section.

Momozaki, Y.; Cho, D. H.; Sienicki, J. J.; Moisseytsev, A.; Nuclear Engineering Division

2010-08-01T23:59:59.000Z

299

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

Plug-in Hybrid Kits for Toyota and Ford Hybrids," in Greenfactsheet.pdf, 2006. J. Rosebro, "Toyota Ratchets Up Plug-InCongress, 23 April ed, 2006. "Toyota to Unveil Prius with

Williams, Brett D

2010-01-01T23:59:59.000Z

300

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

Plug-in Hybrid Kits for Toyota and Ford Hybrids," in Greenfactsheet.pdf, 2006. J. Rosebro, "Toyota Ratchets Up Plug-InCongress, 23 April ed, 2006. "Toyota to Unveil Prius with

Williams, Brett D

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Small-Scale Spray Releases: Orifice Plugging Test Results  

SciTech Connect

One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities, is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations published in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials present in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty introduced by extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches in which the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are largely absent. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine the aerosol release fractions and aerosol generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents (AFA) was assessed with most of the simulants. Orifices included round holes and rectangular slots. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of the study described in this report is to provide experimental data for the first key technical area, potential plugging of small breaches, by performing small-scale tests with a range of orifice sizes and orientations representative of the WTP conditions. The simulants used were chosen to represent the range of process stream properties in the WTP. Testing conducted after the plugging tests in the small- and large-scale test stands addresses the second key technical area, aerosol generation. The results of the small-scale aerosol generation tests are included in Mahoney et al. 2012. The area of spray generation from large breaches is covered by large-scale testing in Schonewill et al. 2012.

Mahoney, Lenna A.; Gauglitz, Phillip A.; Blanchard, Jeremy; Kimura, Marcia L.; Kurath, Dean E.

2012-09-01T23:59:59.000Z

302

Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)  

DOE Green Energy (OSTI)

Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

Pesaran, A.

2007-12-01T23:59:59.000Z

303

EERE News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding for Biomass Research and Development Initiative April 13, 2011 Department of Energy Announces Advanced Vehicle Technology Competition, EcoCar2: Plugging into the...

304

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle (PEV) Tax Credit

305

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Rebate - PECO to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle (PEV) Rebate - PECO

306

Orlando Plugs into Electric Vehicle Charging Stations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orlando Plugs into Electric Vehicle Charging Stations Orlando Plugs into Electric Vehicle Charging Stations Orlando Plugs into Electric Vehicle Charging Stations September 8, 2010 - 2:00pm Addthis Nearly 300 electric vehicle charging stations are scheduled to be available throughout the Orlando area next year. File photo Nearly 300 electric vehicle charging stations are scheduled to be available throughout the Orlando area next year. File photo Lindsay Gsell What are the key facts? Coulomb highlighted in the Vice President's report on 100 Recovery Act Projects That Are Changing America Orlando will receive nearly 300 electric vehicle charging systems. 1 of 9 cities receiving charging systems from Coulomb-$15 million in Recovery Act funding. This scene is closer to reality as Orlando, Fla., prepares to get nearly

307

NETL: Gasification Systems - Mitigation of Syngas Cooler Plugging and  

NLE Websites -- All DOE Office Websites (Extended Search)

Mitigation of Syngas Cooler Plugging and Fouling Mitigation of Syngas Cooler Plugging and Fouling Project No.: DE-FE0007952 Reaction Engineering International (REI) is working to develop practical solutions to mitigate the plugging and fouling of syngas coolers (SC) - fire tube heat exchangers located between the coal gasifier and the combustion turbine. Syngas coolers used in Integrated Gasification Combined Cycle (IGCC) plants offer high efficiency, but their reliability is generally lower than other process equipment in the gasification island. The principle downtime events associated with syngas coolers are typically a result of ash deposits that: form on (wall) surfaces upstream of the syngas cooler, break loose, and then lodge in the tubes; or form on the fireside surface of the syngas cooler tubes that lead to fouling and reduced heat transfer. Both ash deposit mechanisms result in reduced equipment life and increased maintenance costs.

308

List of Companies in Vehicles Sector | Open Energy Information  

Open Energy Info (EERE)

EV Energy Co Ltd PEVE Pengcheng Electric Taxi Company Phylion Battery Pihsiang Electric Vehicle Manufacturing Co Ltd Pihsiang Energy Technology PHET Plug In Hybrid Development...

309

MFTF-. cap alpha. +T end plug magnet design  

SciTech Connect

The conceptual design of the end-plug magnets for MFTF-..cap alpha..+T is described. MFTF-..cap alpha..+ T is a near-term upgrade of MFTF-B, which features new end plugs to improve performance. The Fusion Engineering Design Center has performed the engineering design of MFTF-..cap alpha..+T under the overall direction of Lawrence Livermore National Laboratory. Each end plug consists of two Yin-Yang pairs, each with approx.2.5:1 mirror ratio and approx.5-T peak field on axis; two transition coils; and a recircularizing solenoid. This paper describes the end-plug magnet system functional requirements and presents a conceptual design that meets them. The peak field at the windings of the end-plug coils is approx.6-T. These coils are designed using the NbTi MFTF-B conductor and cooled by a 4.2K liquid helium bath. All the end-plug magnets are designed to operate in the cryostable mode with adequate quench protection for safety. Shielding requirements are stated and a summary of heat loads is provided. Field and force calculations are discussed. The field on axis is shown to meet the functional requirements. Force resultants are reported in terms of winding running loads and resultant coil forces are also given. The magnet structural support is described. A trade study to determine the optimum end-cell coil internal nuclear shield thickness and the resulting coil size based on minimizing the end-cell life cycle cost is summarized.

Srivastava, V.C.; O'Toole, J.A.

1983-01-01T23:59:59.000Z

310

On-Board Smart Charging Requirements for Plug-in Electric Vehicles  

Science Conference Proceedings (OSTI)

The first plug-in electric vehicles (PEVs) are expected to start production in late 2010. Both vehicle owners and utility companies would benefit if PEVs could draw power during off peak periods, but implementing a demand response program will require grid-to-PEV bidirectional communications to allow the utility system to influence the timing and amount of energy the PEV draws from the grid. This report defines the technology needed for such "Smart Charging" and reviews the current status of the initiati...

2008-09-30T23:59:59.000Z

311

Method for preventing plugging in the pyrolysis of agglomerative coals  

SciTech Connect

To prevent plugging in a pyrolysis operation where an agglomerative coal in a nondeleteriously reactive carrier gas is injected as a turbulent jet from an opening into an elongate pyrolysis reactor, the coal is comminuted to a size where the particles under operating conditions will detackify prior to contact with internal reactor surfaces while a secondary flow of fluid is introduced along the peripheral inner surface of the reactor to prevent backflow of the coal particles. The pyrolysis operation is depicted by two equations which enable preselection of conditions which insure prevention of reactor plugging.

Green, Norman W. (Upland, CA)

1979-01-23T23:59:59.000Z

312

Opportunity to Plug Your Car Into the Electric Grid is Arriving  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles are hitting the U.S. market for the first time this year. Similar to hybrid electric vehicles, they feature a larger battery and plug-in charger that allows consumers to replace a portion of their fossil fuel by simply plugging their cars into standard 110-volt outlets at home or wherever outlets are available. If these vehicles become widely accepted, consumers and the environment will benefit, according to a computer modeling study by Xcel Energy and the Department of Energy's National Renewable Energy Laboratory. Researchers found that each PHEV would cut carbon dioxide emissions in half and save owners up to $450 in annual fuel costs and up to 240 gallons of gasoline. The study also looked at the impact of PHEVs on the electric grid in Colorado if used on a large scale. Integrating large numbers of these vehicles will depend on the adoption of smart-grid technology - adding digital elements to the electric power system to improve efficiency and enable more dynamic communication between consumers and producers of electricity. Using an intelligent monitoring system that keeps track of all electricity flowing in the system, a smart grid could enable optimal PHEV battery-charging much the same way it would enable users to manage their energy use in household appliances and factory processes to reduce energy costs. When a smart grid is implemented, consumers will have many low-cost opportunities to charge PHEVs at different times of the day. Plug-in vehicles could contribute electricity at peak times, such as summer evenings, while taking electricity from the grid at low-use times such as the middle of the night. Electricity rates could offer incentives for drivers to 'give back' electricity when it is most needed and to 'take' it when it is plentiful. The integration of PHEVs, solar arrays and wind turbines into the grid at larger scales will require a more modern electricity system. Technology already exists to allow customers to feed excess power from their own renewable energy systems back to the grid. As more homes and businesses find opportunities to plan power flows to and from the grid for economic gain using their renewable energy systems and PHEVs, more sophisticated systems will be needed. A smart grid will improve the efficiency of energy consumption, manage real-time power flows and provide two-way metering needed to compensate small power producers. Many states are working toward the smart-grid concept, particularly to incorporate renewable sources into their utility grids. According to the Department of Energy, 30 states have developed and adopted renewable portfolio standards, which require up to 20 percent of a state's energy portfolio to come exclusively from renewable sources by this year, and up to 30 percent in the future. NREL has been laying the foundation for both PHEVs and the smart grid for many years with work including modifying hybrid electric cars with plug-in technology; studying fuel economy, batteries and power electronics; exploring options for recharging batteries with solar and wind technologies; and measuring reductions in greenhouse gas emissions. The laboratory participated in development of smart-grid implementation standards with industry, utilities, government and others to guide the integration of renewable and other small electricity generation and storage sources. Dick DeBlasio, principal program manager for electricity programs, is now leading the Institute of Electrical and Electronics Engineers Standards efforts to connect the dots regarding power generation, communication and information technologies.

Griego, G.

2010-06-01T23:59:59.000Z

313

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

of using plug-in hybrid electric vehicle battery packs forImpacts of Plug-In Hybrid Electric Vehicles on RegionalDispatched Plug-in Hybrid Electric Vehicles, National

Momber, Ilan

2010-01-01T23:59:59.000Z

314

Property:Buildings/ModelType | Open Energy Information  

Open Energy Info (EERE)

ModelType ModelType Jump to: navigation, search This is a property of type String. The allowed values for this property are: Baseline Minimum Cost Max Tech PV Takeoff Cost Neutral 30% Energy Savings 50% Energy Savings 70% Energy Savings Other Pages using the property "Buildings/ModelType" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + 50% Energy Savings + General Merchandise 2009 TSD Chicago High Plug Load Baseline + Baseline + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + 50% Energy Savings + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + Baseline + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings + 50% Energy Savings + General Merchandise 2009 TSD Miami High Plug Load Baseline + Baseline +

315

Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Qualified Plug-In Qualified Plug-In Electric Drive Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on AddThis.com... More in this section...

316

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate - APS to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

317

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Demonstration Grants to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

318

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Parking Regulation to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

319

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on AddThis.com...

320

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Digg Find More places to share Alternative Fuels Data Center: Plug-In

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Information Disclosure to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on AddThis.com... More in this section... Federal State Advanced Search

322

Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

323

Plug-in Electric Vehicle Interactions with a Small Office Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM Title Plug-in Electric Vehicle Interactions with a Small Office Building: An...

324

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

Chemistries for Plug-in Hybrid Vehicles, EVS-24, Stavanger,ion batteries in the Hybrid Vehicle Propulsion System Lab atIn the case of plug-in hybrid vehicles, there is much design

Burke, Andrew

2009-01-01T23:59:59.000Z

325

DOE Hydrogen Analysis Repository: Impact of Plug-in Hybrid Vehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Plug-in Hybrid Vehicles on the Electric Grid Project Summary Full Title: Impact of Plug-in Hybrid Vehicles on the Electric Grid Project ID: 228 Principal Investigator:...

326

V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks June 24, 2013 -...

327

U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities...

328

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Parking Requirement to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

329

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Charging Regulation Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on AddThis.com...

330

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on

331

Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Provision for Plug-In Provision for Plug-In Electric Vehicle (PEV) Charging Incentives to someone by E-mail Share Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Facebook Tweet about Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Twitter Bookmark Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Google Bookmark Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Delicious Rank Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Digg Find More places to share Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on AddThis.com...

332

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Digg Find More places to share Alternative Fuels Data Center: Plug-In

333

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and Plug-In Hybrid and Plug-In Electric Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles

334

Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on AddThis.com...

335

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Digg Find More places to share Alternative Fuels Data Center: Plug-In

336

Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Access to Plug-In Access to Plug-In Electric Vehicle (PEV) Registration Records to someone by E-mail Share Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Facebook Tweet about Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Twitter Bookmark Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Google Bookmark Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Delicious Rank Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Digg Find More places to share Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on AddThis.com...

337

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Promotion and Coordination to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on AddThis.com... More in this section...

338

Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid and Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on AddThis.com...

339

FISCAL YEAR 1997 WELL INSTALLATION, PLUGGING AND ABANDONMENT, AND REDEVELOPMENT SUMMARY REPORT Y-12 PLANT, OAK RIDGE, TENNESSEE  

Science Conference Proceedings (OSTI)

This report summarizes the well installation, plugging and abandonment and redevelopment activities conducted during the federal fiscal year (FY) 1997 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. No new groundwater monitoring wells were installed during FY 1997. However, 13 temporary piezometers were installed around the Upper East Fork Poplar Creek (UEFPC) in the Y-12 Plant. An additional 36 temporary piezometers, also reported in this document, were installed in FY 1996 and, subsequently, assigned GW-series identification. A total of 21 monitoring wells at the Y-12 Plant were decommissioned in FY 1997. Three existing monitoring wells underwent redevelopment during FY 1997. All well installation and development (including redevelopment) was conducted following industry-standard methods and approved procedures in the Environmental Surveillance Procedures Quality Control Program (Energy Systems 1988), the {ital Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document} (EPA 19?6), and {ital Guidelines for Installation of Monitoring Wells at the Y-12 Plant} (Geraghty & Miller 1985). All wells were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991). Health and safety monitoring and field screening of drilling returns and development waters were conducted in accordance with approved Lockheed Martin Energy Systems, Inc. (Energy Systems) guidelines.

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

1997-09-01T23:59:59.000Z

340

Self-learning control system for plug-in hybrid vehicles  

DOE Patents (OSTI)

A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

DeVault; Robert C. (Knoxville, TN)

2010-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

Environmental Benefits of Electric Vehicles Integration onof using plug-in hybrid electric vehicle battery packs forN ATIONAL L ABORATORY Plug-in Electric Vehicle Interactions

Momber, Ilan

2010-01-01T23:59:59.000Z

342

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

Environmental Benefits of Electric Vehicles Integration onusing plug-in hybrid electric vehicle battery packs for gridL ABORATORY Plug-in Electric Vehicle Interactions with a

Momber, Ilan

2010-01-01T23:59:59.000Z

343

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

detour? Presentation at SAE 2008 Hybrid Vehicle Technologiesdrive vehicles, including plug-in hybrid vehicles. -vi-including plug-in hybrid vehicles. 7.0 References Anderman,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

344

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

and Batteries for Hybrid Vehicle Applications, 23 rdSimulations of Plug-in Hybrid Vehicles using Advancedultracapacitors in plug-in hybrid vehicles (PHEVs) with high

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

345

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

of advanced batteries for plug-in hybrid electric vehicle (Advanced Lithium-Ion Batteries for Plug- in Hybrid-Electric Vehicles,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

346

Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology (Presentation)  

DOE Green Energy (OSTI)

Presents a cost-benefit of analysis of plug-in hybrid electric vehicle technology, including potential petroleum use reduction.

Pesaran, A.; Markel, T.; Simpson, A.

2006-10-01T23:59:59.000Z

347

Description of a Basic Vehicle Control Strategy for a Plug-In Hybrid Vehicle  

Science Conference Proceedings (OSTI)

This report describes development of a basic powertrain control strategy for a plug-in hybrid electric vehicle (PHEV).

2007-03-28T23:59:59.000Z

348

Fuel Economy: Where the Energy Goes  

NLE Websites -- All DOE Office Websites (Extended Search)

and lighter-weight technologies. Hybrids, plug-in hybrids, and electric vehicles use regenerative braking to recover some braking energy that would otherwise be lost. more......

349

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

rch-initiative-2010-annual-report Download Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions http:energy.govoe...

350

A mixed plug flow anaerobic digester for dairy manure  

SciTech Connect

In 1982, a ''mixed plug-flow'' anaerobic digester has been built to produce biogas from the manure of 350 dairy cows and, subsequently, to produce electricity for on-farm use only. This paper describes the digester and presents the main results of one year of technical follow-up.

Cournoyer, M.S.; Delisle, U.; Ferland, D.; Chagnon, R.

1985-01-01T23:59:59.000Z

351

Plug-In Electric Vehicle Infrastructure Installation Guidelines  

Science Conference Proceedings (OSTI)

In the next five years, major automobile manufacturers are poised to deliver over a dozen electric vehicle (EV) and plug-in hybrid electric (PHEV) models. The cost savings to consumers and the positive impact on the environment will be significant. One of the chief remaining obstacles to widespread adoption of electric vehicles, however, is the scarcity of recharging facilities for PEVs.

2009-09-25T23:59:59.000Z

352

Plug-in Electric Vehicle to Grid Interface Requirements  

Science Conference Proceedings (OSTI)

This document provides technical requirements to ensure that plug-in electric vehicles (PEVs) will be designed for electric grid compatibility. It organizes the applicable current and future standards in an overview format, as well as providing a context as to the importance and usefulness of these standards to the utility industry.

2009-12-08T23:59:59.000Z

353

Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)  

DOE Green Energy (OSTI)

Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

Not Available

2012-04-01T23:59:59.000Z

354

Plug-In Electric Vehicle Handbook for Consumers (Brochure)  

DOE Green Energy (OSTI)

Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

Not Available

2011-09-01T23:59:59.000Z

355

Communications Requirements for Plug-in Electric Vehicles  

Science Conference Proceedings (OSTI)

This report describes a set of functional requirements for Plug-in Electric Vehicle communications in a manner that can be utilized to evaluate multiple technologies. In conjunction with another technical update focusing on test requirements for the communications technologies, this document provides a roadmap to selecting an appropriate communications technology for SAE (Society of Automotive Engineers) Standard J2931.

2010-12-31T23:59:59.000Z

356

Plug-In Electric Vehicle Handbook for Electrical  

E-Print Network (OSTI)

-based fuel while driving and produce no tailpipe emissions . EVSE (electric vehicle supply equipment) deliv a PEV requires plugging in to elec- tric vehicle supply equipment (EVSE, Figure 1). There are various communicates with the vehicle to ensure that an appropriate and safe flow of electricity is supplied. EVSE

357

NS-2 model of HomePlug AV PLC technology  

Science Conference Proceedings (OSTI)

Power-Line Communication (PLC) technology has received considerable attention over the last few years because of its connectivity advantages and its transmission capacity. However, to the best of our knowledge, there is a lack of simulation tools to ... Keywords: HomePlug AV, PLC, access network, in-home network, power line communication, simulation

Mortharia Meftah; Laurent Toutain; David Ros; Abdesselem Kortebi

2011-03-01T23:59:59.000Z

358

Plug-In Hybrid Electric Vehicle Value Proposition Study  

E-Print Network (OSTI)

data for modeling the 2030 power system. The load forecasts, fuel price forecasts, and generation.37 Electrical Accessory Load (W) 260 260 260 A/C Load (W)8 1088 1088 1344 Engine Specific Power (W/kg) 920 920Plug-In Hybrid Electric Vehicle Value Proposition Study Phase 1, Task 2: Select Value Propositions

Pennycook, Steve

359

Plug-in-hybrid electric vehicles park as virtual DVR  

E-Print Network (OSTI)

Plug-in-hybrid electric vehicles park as virtual DVR F.R. Islam and H.R. Pota Dynamic voltage in a real-life low voltage power system. Hybrid-electric power technologies and advances in batteries make electric vehicle (PHEV) batteries and their bidirectional charger in a charging station as virtual dynamic

Pota, Himanshu Roy

360

Load Scheduling and Dispatch for Aggregators of Plug-In Electric Vehicles  

E-Print Network (OSTI)

and environmental problems worldwide [2], [3]. PEVs--either plug-in hybrid electric vehicles or pure electric1 Load Scheduling and Dispatch for Aggregators of Plug-In Electric Vehicles Di Wu, Student Member proposes an operating framework for aggregators of plug-in electric vehicles (PEVs). First, a minimum- cost

Tesfatsion, Leigh

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Investigation of Enabling Wind Generations Employing Plug-in Hybrid Electric Vehicles  

E-Print Network (OSTI)

1 Investigation of Enabling Wind Generations Employing Plug-in Hybrid Electric Vehicles Mahdi challenges such as mitigating variability. Plug-in hybrid Electric Vehicles (PHEVs) have been considered the variability in wind generation could be to use a fleet of Plug-in Hybrid Electric Vehicles (PHEVs

362

Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks in  

E-Print Network (OSTI)

Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks Committee Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks) Departmental Member Plug-in hybrid electric vehicles (PHEVs) represent a promising future direction

Victoria, University of

363

A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES  

E-Print Network (OSTI)

A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES.e., the engine and electric machines) in a plug-in hybrid electric vehicle (PHEV). Existing studies focus mostly. INTRODUCTION This paper examines plug-in hybrid electric vehicles (PHEVs), i.e., automobiles that can extract

Krstic, Miroslav

364

Polysaccharides and bacterial plugging. Final report, 1992--1993  

Science Conference Proceedings (OSTI)

In situ core plugging experiments and transport experiments, using the model bacteria Leuconostoc m., have been conducted. Results demonstrated that cellular polysaccharide production increases cell distribution in porous media and caused an overall decrease in media permeability. Further, a parallel core plugging experiment was conducted and showed the feasibility of this system to divert injection fluid from high permeability zones into low permeability zones within porous media as is needed for profile modification. To implement this type of application, however, controlled placement of cells and rates of polymer production are needed. Therefore, kinetic studies were performed. A kinetic model was subsequently developed for Leuconostoc m. bacteria. This model is based on data generated from batch growth experiments and allows for the prediction of saccharide utilization, cell generation, and dextran production. These predictions can be used to develop injection strategies for field implementation. Transport and in situ growth micromodel experiments have shown how dextran allow cells to remain as clusters after cell division which enhanced cell capture and retention in porous media. Additional Damkohler experiments have been performed to determine the effects of the nutrient injection rate and nutrient concentration on the rate of porous media plugging. As shown experimentally and as predicted by a model for in situ growth, an increase in nutrient concentration and/or its injection rate will result in a faster rate of porous media plugging. Through continuum model simulations, it has been shown that the initial cell profiles play a key role on the core plugging rate. Controlling the location of the inoculating cells is thus another key factor in using bacteria for profile modification.

Fogler, H.S.

1995-02-01T23:59:59.000Z

365

EERE: Energy Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

increase energy efficiency nationwide. Photo of residential home with roof covered in solar panels Photo of the exterior of an energy-efficient office building Photo of a plug-in...

366

After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment  

Science Conference Proceedings (OSTI)

This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret J.; Busch, John F.

2004-01-22T23:59:59.000Z

367

Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results  

DOE Green Energy (OSTI)

The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOEs Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

James E. Francfort

2009-07-01T23:59:59.000Z

368

Use of Cre/loxP recombination to swap cell binding motifs on the adenoviral capsid protein IX  

Science Conference Proceedings (OSTI)

We used Cre/loxP recombination to swap targeting ligands present on the adenoviral capsid protein IX (pIX). A loxP-flanked sequence encoding poly-lysine (pK-binds heparan sulfate proteoglycans) was engineered onto the 3'-terminus of pIX, and the resulting fusion protein allowed for routine virus propagation. Growth of this virus on Cre-expressing cells removed the pK coding sequence, generating virus that could only infect through alternative ligands, such as a tyrosine kinase receptor A (TrkA)-binding motif engineered into the capsid fibre protein for enhanced infection of neuronal cells. We used a similar approach to swap the pK motif on pIX for a sequence encoding a single-domain antibody directed towards CD66c for targeted infection of cancer cells; Cre-mediated removal of the pK-coding sequence simultaneously placed the single-domain antibody coding sequence in frame with pIX. Thus, we have developed a simple method to propagate virus lacking native viral tropism but containing cell-specific binding ligands. - Highlights: > We describe a method to grow virus lacking native tropism but containing novel cell-binding ligands. > Cre/loxP recombination was used to modify the adenovirus genome. > A targeting ligand present on capsid protein IX was removed or replaced using recombination. > Cre-loxP was also used to 'swap' the identity of the targeting ligand present on pIX.

Poulin, Kathy L. [Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario (Canada); Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario (Canada); Tong, Grace; Vorobyova, Olga [Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario (Canada); Pool, Madeline [Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario (Canada); Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario (Canada); Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario (Canada); Kothary, Rashmi [Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario (Canada); Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario (Canada); Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario (Canada); Department of Medicine, University of Ottawa, Ottawa, Ontario (Canada); Parks, Robin J., E-mail: rparks@ohri.ca [Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario (Canada); Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario (Canada); Department of Medicine, University of Ottawa, Ottawa, Ontario (Canada); Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario (Canada)

2011-11-25T23:59:59.000Z

369

Determining PHEV Performance Potential User and Environmental Influences on A123 Systems Hymotion Plug-In Conversion Module for the Toyota Prius  

DOE Green Energy (OSTI)

A123Systemss HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity and recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-50km of charge depleting range. This paper will cover efforts by A123 Systems and the Idaho National Laboratory in studying the on-road performance of this PHEV fleet. The performance potentials of various fleets will be compared in order to determine the major influences on overall performance.

John G. Smart; Huang Iu

2009-05-01T23:59:59.000Z

370

Factors Affecting the Fuel Consumption of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Primary Factors that Impact the Fuel Consumption of Plug-In Hybrid Electric Vehicles RICHARD BARNEY CARLSON, MATTHEW G. SHIRK Idaho National Laboratory 2525 N. Fremont Ave., Idaho Falls, ID 83415, USA richard.carlson@inl.gov Abstract Plug-in Hybrid Electric Vehicles (PHEV) have proven to significantly reduce petroleum consumption as compared to conventional internal combustion engine vehicles (ICE) by utilizing electrical energy for propulsion. Through extensive testing of PHEVs, analysis has shown that the fuel consumption of PHEVs is more significantly affected than conventional vehicles by either the drivers input or by the environmental inputs around the vehicle. Six primary factors have been identified that significantly affect the fuel consumption of PHEVs. In this paper, these primary factors are analyzed from on-road driving and charging data from over 200 PHEVs throughout North America that include Hymotion Prius conversions and Hybrids Plus Escape conversions. The Idaho National Laboratory (INL) tests plug-in hybrid electric (PHEV) vehicles as part of its conduct of DOEs Advanced Vehicle Testing Activity (AVTA). In collaboration with its 75 testing partners located in 23 states and Canada, INL has collected data on 191 PHEVs, comprised of 12 different PHEV models (by battery manufacturer). With more than 1 million PHEV test miles accumulated to date, the PHEVs are fleet, track, and dynamometer tested. Six Primary Factors The six primary factors that significantly impact PHEV fuel consumption are listed below. Some of the factors are unique to plug-in vehicles while others are common for all types of vehicles. 1. Usable Electrical Energy is dictated by battery capacity, rate of depletion as well as when the vehicle was last plugged-in. With less electrical energy available the powertrain must use more petroleum to generate the required power output. 2. Driver Aggressiveness impacts the fuel consumption of nearly all vehicles but this impact is greater for high efficiency powertrains. 3. Accessory Utilization like air conditioner systems or defroster systems can use a significant amount of additional energy that is not contributing to the propulsion of the vehicle. 4. Route Type such as city, highway or mountainous driving can affect the fuel consumption since it can involve stop and go driving or ascending a step grade. 5. Cold Start / Key On includes control strategies to improve cold start emissions as well as control routines to quickly supply cabin heat. These control strategies are necessary for consumer acceptance even though fuel consumption is negatively impacted. 6. Ambient Temperature can reduce the efficiency of many powertrain components by significantly increasing fluid viscosity. For vehicles that utilize battery energy storage systems, the temperature of the battery system can greatly affect the power output capability therefore reducing its system effectiveness. The analysis of the six primary factors that impact fuel economy of PHEVs helped to identify areas of potential further development as well as may assist in informing drivers of these effects in an effort to modify driving behavior to reduce petroleum consumption.

Richard "Barney" Carlson; Matthew G. Shirk; Benjamin M. Geller

2001-11-01T23:59:59.000Z

371

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

Toyota Ratchets Up Plug-In Prius Talk," in Green Cared, 2006. "Toyota to Unveil Prius with Large Auxiliary Powerfive, including several Prius conversions in various stages

Williams, Brett D

2007-01-01T23:59:59.000Z

372

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

Toyota Ratchets Up Plug-In Prius Talk," in Green Cared, 2006. "Toyota to Unveil Prius with Large Auxiliary Powerfive, including several Prius conversions in various stages

Williams, Brett D

2010-01-01T23:59:59.000Z

373

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."plug-out hydrogen-fuel- cell vehicles: Mobile Electricity"

Williams, Brett D

2007-01-01T23:59:59.000Z

374

NEW Fe IX LINE IDENTIFICATIONS USING SOLAR AND HELIOSPHERIC OBSERVATORY/SOLAR ULTRAVIOLET MEASUREMENT OF EMITTED RADIATION AND HINODE/EIS JOINT OBSERVATIONS OF THE QUIET SUN  

Science Conference Proceedings (OSTI)

In this work, we study joint observations of Hinode/EUV Imaging Spectrometer (EIS) and Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation of Fe IX lines emitted by the same level of the high energy configuration 3s {sup 2}3p {sup 5}4p. The intensity ratios of these lines are dependent on atomic physics parameters only and not on the physical parameters of the emitting plasma, so that they are excellent tools to verify the relative intensity calibration of high-resolution spectrometers that work in the 170-200 A and 700-850 A wavelength ranges. We carry out extensive atomic physics calculations to improve the accuracy of the predicted intensity ratio, and compare the results with simultaneous EIS-SUMER observations of an off-disk quiet Sun region. We were able to identify two ultraviolet lines in the SUMER spectrum that are emitted by the same level that emits one bright line in the EIS wavelength range. Comparison between predicted and measured intensity ratios, wavelengths and energy separation of Fe IX levels confirms the identifications we make. Blending and calibration uncertainties are discussed. The results of this work are important for cross-calibrating EIS and SUMER, as well as future instrumentation.

Landi, E.; Young, P. R. [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States)

2009-12-20T23:59:59.000Z

375

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Digg

376

Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Oregon Leads the Oregon Leads the Charge for Plug-In Vehicles and Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Google Bookmark Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Delicious Rank Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Digg Find More places to share Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on AddThis.com...

377

Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deployment of Hybrid Deployment of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

378

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Digg

379

Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Plug-In Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power to someone by E-mail Share Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Facebook Tweet about Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Twitter Bookmark Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Google Bookmark Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Delicious Rank Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Digg Find More places to share Alternative Fuels Data Center: Commercial

380

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle (PEV) Definition A PEV is defined as a vehicle that:

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maintenance and Safety Maintenance and Safety of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on AddThis.com...

382

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

383

Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Availability of Hybrid Availability of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

384

Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

UC Davis Pioneers UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on AddThis.com...

385

Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fisher Coachworks Fisher Coachworks Develops Plug-In Electric Bus in Michigan to someone by E-mail Share Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Facebook Tweet about Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Twitter Bookmark Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Google Bookmark Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Delicious Rank Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Digg Find More places to share Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on AddThis.com...

386

Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

North Carolina Airport North Carolina Airport Advances With Plug-In Electric Buses to someone by E-mail Share Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Facebook Tweet about Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Twitter Bookmark Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Google Bookmark Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Delicious Rank Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Digg Find More places to share Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on AddThis.com...

387

Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Authorization for Authorization for Plug-In Electric Vehicle Charging Rate Incentives to someone by E-mail Share Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Facebook Tweet about Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Twitter Bookmark Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Google Bookmark Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Delicious Rank Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Digg Find More places to share Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on

388

Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Batteries for Hybrid Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

389

Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Developing Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on AddThis.com...

390

Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Los Angeles' Sets the Los Angeles' Sets the Stage for Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on AddThis.com... April 18, 2011

391

Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Los Angeles Saves With Los Angeles Saves With Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on AddThis.com...

392

Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions from Hybrid Emissions from Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

393

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Digg

394

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Digg

395

Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

2013-04-01T23:59:59.000Z

396

Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains  

E-Print Network (OSTI)

assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas, 2009­04­11). Plug-in vehicles, including plug-in hybrid electric vehicles (PHEVs) and battery electric

Michalek, Jeremy J.

397

Review of M-1 Plugging in Pipeline Results  

NLE Websites -- All DOE Office Websites (Extended Search)

PIPELINE PLUG PREVENTION: PIPELINE PLUG PREVENTION: Enlightenment Yielded From Initiative M-1 Testing Results Principal Investigator: Adam Poloski Presenter: Harold Adkins May 21, 2009 Outline Test purpose & design Invaluable literature information Stability map concept development Results/sedimentation observations General conclusions 2 M-1 Initiative Testing: Purpose & Design Investigate critical deposition velocity for slurries with wide range of properties to mimic large cross section of Hanford waste to be processed (WTP-RPT-175, Rev 0) Particle density (2.5 g/cc - 8 g/cc) Particle size (10 µm - 100 µm) Rheology (0, 3, 6 Pa) koalin composition Investigate influence of complex piping geometry (WTP- RPT-178, Rev 0) Investigate critical deposition velocity for a representative

398

Bacterial systems for selective plugging in secondary oil production  

SciTech Connect

In order to improve the secondary recovery of petroleum from Lower Cretaceous bitumen and heavy oil deposits in Alberta, Canada, plugging studies of anaerobic bacteria, capable of the controlled production of slime, in situ were undertaken. Known cultures of L. mesenteroides (NRRL B512, B512F, B742 and B523) and 75 wild strains were tested in a model core flooding apparatus for their ability to produce stable, water insoluble polysaccharide slimes. Slime was not formed using glucose/fructose nutrient but was formed by the known cultures and four wild strains when sucrose nutrient media was used. However, wherein the polysaccharides slime produced by the wild strains was found to be water soluble dextran polymers and thus unstable, that produced by the known L. mesenteroides strains was water insoluble and stable. It is thus possible to produce a water stable core plug by injecting an appropriate strain of L. mesenteroides followed by an injection of sucrose solution.

Jack, T.R.; Diblasio, E.; Thompson, B.G.; Ward, V.

1983-03-01T23:59:59.000Z

399

Polymer grouts for plugging lost circulation in geothermal wells.  

DOE Green Energy (OSTI)

We have concluded a laboratory study to evaluate the survival potential of polymeric materials used for lost circulation plugs in geothermal wells. We learned early in the study that these materials were susceptible to hydrolysis. Through a systematic program in which many potential chemical combinations were evaluated, polymers were developed which tolerated hydrolysis for eight weeks at 500 F. The polymers also met material, handling, cost, and emplacement criteria. This screening process identified the most promising materials. A benefit of this work is that the components of the polymers developed can be mixed at the surface and pumped downhole through a single hose. Further strength testing is required to determine precisely the maximum temperature at which extrusion through fractures or voids causes failure of the lost circulation plug.

Galbreath, D. (Green Mountain International, Waynesvile, NC); Mansure, Arthur James; Bauer, Stephen J.

2004-12-01T23:59:59.000Z

400

Thermowell and Radiographic Testing Plug Design Recommendations and Typical Practices  

Science Conference Proceedings (OSTI)

Thermowells and radiographic testing (RT) plugs are used universally in power generation plants. This Electric Power Research Institute (EPRI) report provides recommendations and explains the design and installation practices for these products that are common to the power industry. Numerous instances of thermowell failure are addressed and examined for the purposes of optimization.The report is intended to provide design, installation, and operation recommendations for power ...

2012-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced Battery Testing for Plug-in Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

The Sprinter van is a Plug-in Hybrid-Electric Vehicle (PHEV) developed by EPRI and Daimler for use in delivering cargo, carrying passengers, or fulfilling a variety of specialty applications. This report provides details of testing conducted on two different types of batteries used in these vehicles: VARTA nickel-metal hydride batteries and SAFT lithium ion batteries. Testing focused on long-term battery durability, using a test profile developed to simulate the battery duty cycle of a PHEV Sprinter

2008-12-18T23:59:59.000Z

402

Plug-in Hybrid Electric Vehicle Powertrain Requirements  

Science Conference Proceedings (OSTI)

This study examines the prospects for near-term commercialization of plug-in hybrid electric vehicles (PHEVs) assuming that current commercial hybrid electric vehicle powertrains are scaled up to allow increased electric range. Based on the strict performance requirements of the automotive industry and the requirements for minimizing emissions, these near-term PHEVs will require the engine to be used, even during grid-powered operation. The reasons for this are explained by comparing the acceleration cap...

2006-11-21T23:59:59.000Z

403

Comparative Modeling Analysis of Plug-in Electric Vehicle Architectures  

Science Conference Proceedings (OSTI)

This report describes the assumptions and results for advanced vehicle simulation analysis. A midsize sedan was used to investigate the conventional, pre-transmission parallel, input power-split, series, and full electric architectures. Variations of these architectures were also investigated such as charge-sustaining hybrid electric vehicles, charge-depleting plug-in hybrid electric vehicles, and extended-range electric-vehicles (EREVs). The differences in these vehicle architectures and variations are ...

2010-12-21T23:59:59.000Z

404

Energy Policy Act of 2005 (Ultra-deepwater and Unconventional...  

NLE Websites -- All DOE Office Websites (Extended Search)

Title IX, Subtitle J, Section 999 of the Energy Policy Act of 2005 is implemented by NETL. RPSEA administers select elements of the R&D program for DOE. Use the links below to...

405

Energy Policy Act of 2005 (Ultra-deepwater and Unconventional...  

NLE Websites -- All DOE Office Websites (Extended Search)

a NETL researcher at work in lab NETLORD Project Information Title IX, Subtitle J of the Energy Policy Act of 2005 assigns the NETL the task of carrying out a complementary...

406

Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

951 951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative Transportation Electrification Symposium Cambridge, Massachusetts April 8, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

407

Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

7951 7951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative Transportation Electrification Symposium Cambridge, Massachusetts April 8, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

408

Comparison between the radial density buildup in the TARA plugs using hydrogen versus deuterium neutral beams  

DOE Green Energy (OSTI)

The WOLF code is used to compare the beam divergences from a TARA source using hydrogen and deuterium. Factors which influence the divergence which are investigated are the electron temperature, initial ion energy, electrode positions and ion beam current density. The beam divergence for 20 keV hydrogen is found to be only 20% smaller than for 25 keV deuterium for the same electrode positions. Since the optimal positioning of the electrodes is found to be independent of mesh spacing, a large parameter study is undertaken using little computer time. A time-dependent radial Fokker-Planck code is next used to examine the radial density buildup in a plug of the TARA tandem mirror. For both hydrogen and deuterium neutral beams, the influences of beam positioning, current and energy, edge neutral pressure and assumed electron temperature are studied.

Blackfield, D.T.

1983-11-01T23:59:59.000Z

409

Report on the Field Performance of A123Systemss HymotionTM Plug-in Conversion Module for the Toyota Prius  

DOE Green Energy (OSTI)

A123Systemss HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity. It recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-40 miles of charge depleting range. If the Hymotion pack is fully depleted, the Prius operates as a normal HEV in charge sustaining mode. The Hymotion L5 PCM is the first commercially available aftermarket product complying with CARB emissions and NHTSA impact standards. Since 2006, over 50 initial production Hymotion Plug-in Conversion Modules have been installed in private fleet vehicles across the United States and Canada. With the help of the Idaho National Laboratory, which conducts the U.S. Department of Energys (DOE) Advanced Vehicle Testing Activity (AVTA), A123Systems collects real-time vehicle data from each fleet vehicle using on-board data loggers. These data are analyzed to determine vehicle performance. This paper presents the results of this field evaluation. Data to be presented includes the L5 Prius charge depleting range, gasoline fuel efficiency, and electrical energy efficiency. Effects of driving conditions, driving style, and charging patterns on fuel efficiency are also presented. Data show the Toyota Prius equipped with the Hymotion Plug-in Conversion Module is capable of achieving over 100 mpg in certain driving conditions when operating in charge depleting mode.

Huang Iu; John Smart

2009-04-01T23:59:59.000Z

410

Pressure drop of two-phase dry-plug flow in round mini-channels: Effect of moving contact line  

SciTech Connect

In the present experimental study, the pressure drop of the two-phase dry-plug flow (dry wall condition at the gas portions) in round mini-channels was investigated. The air-water mixtures were flowed through the round mini-channels made of polyurethane and Teflon, respectively, with their inner diameters ranging from 1.62 to 2.16 mm. In the dry-plug flow regime, the pressure drop measured became larger either by increasing the liquid superficial velocity or by decreasing the gas superficial velocity due to the increase of the number of the moving contact lines in the test section. In such a case, the role of the moving contact lines turned out to be significant. Therefore, a pressure drop model of dry-plug flow was proposed through modification of the dynamic contact angle analysis taking account of the energy dissipation by the moving contact lines, which represents the experimental data within the mean deviation of 4%. (author)

Lee, Chi Young; Lee, Sang Yong [Department of Mechanical Engineering, KAIST, Science Town, Daejeon 305-701 (Korea)

2010-01-15T23:59:59.000Z

411

Energy Education and Workforce Development: Explore Careers in...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the transportation sector: Lesson Plan: Cut Pollution & Save Money Lesson Plan: Transportation Fuels: The Future is Today Electric Vehicles: Plugging In to Smarter Energy...

412

IX Encontro de tecnologia em Acstica Submarina IX ETAS FIELD CALIBRATION A TOOL FOR ACOUSTIC NOISE PREDICTION  

E-Print Network (OSTI)

, as in our case, the problem of predicting the distribution of acoustic noise due to a wave energy power farms, will likely grow in the future. Such a power plant, composed by several generators, will produce management policies. In the other hand there is an increasing demand for wave energy installations that

Jesus, Sérgio M.

413

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

In Electric In Electric Vehicle (PEV) Charging Signage and Parking Regulations to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on

414

Exxon Mobil QuestAir Plug Power Ben Gurion University Hydrogen JV | Open  

Open Energy Info (EERE)

Exxon Mobil QuestAir Plug Power Ben Gurion University Hydrogen JV Exxon Mobil QuestAir Plug Power Ben Gurion University Hydrogen JV Jump to: navigation, search Name Exxon Mobil, QuestAir, Plug Power , & Ben Gurion University Hydrogen JV Place New York Zip 12110 Sector Hydro, Hydrogen Product Plug Power has entered a JV with Exxon Mobil Corporation, QuestAir Technologies and Ben Gurion University. It plans to commercialize an on-vehicle hydrogen production system for use in a fuel cell-powered lift truck application. References Exxon Mobil, QuestAir, Plug Power , & Ben Gurion University Hydrogen JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Exxon Mobil, QuestAir, Plug Power , & Ben Gurion University Hydrogen JV is

415

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

SCE to someone by E-mail SCE to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on AddThis.com... More in this section... Federal State Advanced Search

416

Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Digg Find More places to share Alternative Fuels Data Center: Alternative

417

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

in Electric in Electric Vehicle (PEV) Charging Regulation Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on AddThis.com...

418

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Inspection Exemption to someone by E-mail Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on AddThis.com... More in this section...

419

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Digg

420

Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

in Public to someone by E-mail in Public to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Delicious Rank Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Digg Find More places to share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Charging at Home Charging in Public

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions In the most comprehensive environmental assessment of electric transportation to date, the Electric Power Research Institute (EPRI) and the Natural Resources Defense Council (NRDC) are examining the greenhouse gas emissions and air quality impacts of plug-in hybrid electric vehicles (PHEV). Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions More Documents & Publications Asia/ITS Vehicle Electrification is Key to Reducing Petroleum Dependency and Greenhouse Gas Emission Plug-In Hybrid Electric Vehicles

422

U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX 5: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities August 1, 2012 - 5:37am Addthis PROBLEM: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities PLATFORM: Citrix Access Gateway 9.x ABSTRACT: Two vulnerabilities in Citrix Access Gateway Plug-in for Windows can be exploited by malicious people to compromise a user's system. reference LINKS: Citrix Knowledge Center Secunia Advisory SA45299 Secunia Research Secunia Research CVE-2011-2592 CVE-2011-2593 IMPACT ASSESSMENT: High Discussion: Research has discovered two vulnerabilities in Citrix Access Gateway Plug-in for Windows, which can be exploited by malicious people to

423

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Clean Cities coalitions all across the country are using local knowledge to help their communities get ready for plug-in electric vehicles

424

Preparation and Characterization of Chemical Plugs Based on Selected Hanford Waste Simulants  

Science Conference Proceedings (OSTI)

This report presents the results of preparation and characterization of chemical plugs based on selected Hanford Site waste simulants. Included are the results of chemical plug bench testing conducted in support of the M1/M6 Flow Loop Chemical Plugging/Unplugging Test (TP-RPP-WTP-495 Rev A). These results support the proposed plug simulants for the chemical plugging/ unplugging tests. Based on the available simulant data, a set of simulants was identified that would likely result in chemical plugs. The three types of chemical plugs that were generated and tested in this task consisted of: 1. Aluminum hydroxide (NAH), 2. Sodium aluminosilicate (NAS), and 3. Sodium aluminum phosphate (NAP). While both solvents, namely 2 molar (2 M) nitric acid (HNO3) and 2 M sodium hydroxide (NaOH) at 60C, used in these tests were effective in dissolving the chemical plugs, the 2 M nitric acid was significantly more effective in dissolving the NAH and NAS plugs. The caustic was only slightly more effecting at dissolving the NAP plug. In the bench-scale dissolution tests, hot (60C) 2 M nitric acid was the most effective solvent in that it completely dissolved both NAH and NAS chemical plugs much faster (1.5 2 x) than 2 M sodium hydroxide. So unless there are operational benefits for the use of caustic verses nitric acid, 2 M nitric acid heated to 60C C should be the solvent of choice for dissolving these chemical plugs. Flow-loop testing was planned to identify a combination of parameters such as pressure, flush solution, composition, and temperature that would effectively dissolve and flush each type of chemical plug from preformed chemical plugs in 3-inch-diameter and 4-feet-long pipe sections. However, based on a review of the results of the bench-top tests and technical discussions, the Waste Treatment Plant (WTP) Research and Technology (R&T), Engineering and Mechanical Systems (EMS), and Operations concluded that flow-loop testing of the chemically plugged pipe sections would not provide any additional information or useful data. The decision was communicated through a Sub Contract Change Notice (SCN-070) that included a revised scope as follows: Photographing the chemical plugs in the pipes before extrusion to compare the morphology of aged gels with that of fresh gels. Setting up an extrusion apparatus and extruding the chemical plugs. Documenting the qualitative observations on the efforts to remove the chemical plug materials from the pipe sections. Performing X-ray diffraction (XRD) analysis of extruded gel samples to detect any crystallization of gel during storage. Disposing of the extruded gel as a waste. Documenting the analytical results in a test report. There were no significant morphological differences between the fresh and aged plugs except for an overgrowth of small transparent crystals on the surface of the aged NAS gel plug. An initial pressure of 15 KPa for the NAS plug and from ~2 to 6 KPa for the NAH plug. Following extrusion, the NAP plug sections were thixotropic. The bulk of all the aged gel plugs consisted of amorphous material with nitratine constituting the crystalline phase. A separate question about the whether the current in-tank waste conditions will bound the future multi-tank blended feed conditions for the Waste Treatment Plant is outside the scope of this study.

Mattigod, Shas V.; Wellman, Dawn M.; Parker, Kent E.; Cordova, Elsa A.; Gunderson, Katie M.; Baum, Steven R.; Crum, Jarrod V.; Poloski, Adam P.

2008-09-15T23:59:59.000Z

425

Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Local Government Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements to someone by E-mail Share Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Facebook Tweet about Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Twitter Bookmark Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Google Bookmark Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Delicious Rank Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Digg Find More places to share Alternative Fuels Data Center: Local

426

Alternative Fuels Data Center: Electricity Provider and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Provider Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations to someone by E-mail Share Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Facebook Tweet about Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Twitter Bookmark Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Google Bookmark Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Delicious Rank Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Digg Find More places to share Alternative Fuels Data Center: Electricity

427

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cities Coalitions Charge Up Plug-In Electric Vehicles Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Clean Cities coalitions all across the country are using local knowledge to help their communities get ready for plug-in electric vehicles

428

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

LADWP to someone by E-mail LADWP to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on AddThis.com... More in this section... Federal State

429

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Charging Requirements to someone by E-mail Charging Requirements to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

430

Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

at Home to someone by E-mail at Home to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Delicious Rank Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Digg Find More places to share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Charging at Home Charging in Public Vehicles

431

MERIX - medium resolution (R)IXS at the APS  

NLE Websites -- All DOE Office Websites (Extended Search)

MERIX MERIX MERIX is a medium energy resolution 6 circle diffractometer for non-resonant and resonant inelastic x-ray measurements. Detect Strip detector: dramatically more collected phonons at a given energy resolution compared to conventional detectors (principle of operation). Pin diode detector mounted on the two theta arm for final sample alignment Fluorescence detector: for absorption measurements on samples Spot size: focused horizontal x vertical = 45 um x 6 um, unfocussed = 2.2 mm x 0.4 mm Momentum resolution varies with incident energy but the angular acceptance of the analyzer is 5.7 degrees. This can be reduced with slits. Maximum two-theta is 90 (horizontal) and 62 (vertical). chi range is -15 to 20 or 75 to 110 (depending on which phi circle is used)

432

Three Mile Island Plugged Tube Severance: A Study of Damage Mechanisms  

Science Conference Proceedings (OSTI)

During Fall 2001 outages, eddy-current inspections at Three Mile Island Unit 1 and Oconee Nuclear Station Unit 1 revealed wear scars on tubes surrounding previously plugged tubes. In both cases, investigations determined that the plugged tubes had severed and impacted neighboring tubes. As a result, the Nuclear Regulatory Commission (NRC) issued Information Notice 2002-02, which did not require a response but did suggest the industry investigate the generic problem of plugged tubes damaging neighboring t...

2003-05-19T23:59:59.000Z

433

2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

434

Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

2008-01-01T23:59:59.000Z

435

Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

2008-01-01T23:59:59.000Z

436

Plug-in Electric Vehicle Interactions with a Small Office Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM Ilan Momber, Toms Gmez, Giri Venkataramanan, Michael Stadler, Sebastian...

437

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network (OSTI)

storage. Keywords: Distributed Generation, Plug-in Electrichighly efficient distributed generation sources such as fuelprofiles of a set of distributed generation technologies

Mendes, Goncalo

2013-01-01T23:59:59.000Z

438

Plug-in Hybrid Modeling and Application: Cost/Benefit Analysis (Presentation)  

DOE Green Energy (OSTI)

Presents data from a simulation of plug-in hybrid electric vehicle efficiency and cost, including baseline vehicle assumptions, powertrain technology scenarios, and component modeling.

Simpson, A.

2006-08-24T23:59:59.000Z

439

Understanding the effects and infrastrcuture needs of plug-in electric vehicle (pev) charging.  

E-Print Network (OSTI)

??Plug-in electric vehicles (PEV) are any vehicle that uses electricity to propel the vehicle, potentially in combination with other fuels like gasoline, diesel or hydrogen. (more)

Davis, Barbara Morgan

2010-01-01T23:59:59.000Z

440

Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

Gonder, J.; Simpson, A.

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Advanced Vehicle Testing Activity - Plug-in Hybrid ElectricVehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

INL and testing partner Electric Transportation Engineering Corporation conduct Plug-in Hybrid Electric Vehicle (PHEV) and Extended Range Electric Vehicle (EREV) testing as part...

442

Significant potential for plug-in vehicles exists in U.S. housing ...  

U.S. Energy Information Administration (EIA)

Certain housing characteristics limit potential for electric (either plug-in hybrid or all-electric) vehicles, especially the type of housing.

443

Plug-in 2011: Initial PEV and Charging Infrastructure Test Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug in 2011: Initial PEV and Charging in 2011: Initial PEV and Charging Infrastructure Test Results Infrastructure Test Results Jim Francfort Jim Francfort Jim Francfort Jim...

444

Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale  

DOE Green Energy (OSTI)

Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

2009-07-01T23:59:59.000Z

445

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)  

DOE Green Energy (OSTI)

This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

Not Available

2012-04-01T23:59:59.000Z

446

Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

Gonder, J.; Simpson, A.

2007-01-01T23:59:59.000Z

447

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology  

DOE Green Energy (OSTI)

This paper presents a comparison of the costs and benefits (reduced petroleum consumption) of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

Markel, T.; Simpson, A.

2006-01-01T23:59:59.000Z

448

Field Testing Plug-in Hybrid Electric Vehicles with Charge Control...  

NLE Websites -- All DOE Office Websites (Extended Search)

over future resource availability and the environmental impacts of continued fossil-fuel consumption. Plug-in hybrid electric vehicles (PHEVs), electric vehicles, and fuel cell...

449

Fielding a Plug Load Self Audit -- A Case Study  

Science Conference Proceedings (OSTI)

This report summarizes the efforts of the Snohomish County Public Utility District and the Electric Power Research Institute (EPRI) in developing a low-cost and accurate plug load study. This project had the following three objectives: To use low-cost, self-installed metering equipment to collect and analyze end-use load data for a large number of residential customers, To develop a list of lessons learned about collecting end-use data that could be shared with other utility members conducting similar p...

2011-11-24T23:59:59.000Z

450

Plug-In Electric Vehicle Adoption and Load Forecasting  

Science Conference Proceedings (OSTI)

This report provides a status update on the Electric Power Research Institutes (EPRIs) ongoing research into the market adoption of plug-in electric vehicles (PEVs). The PEV market currently includes 13 passenger vehicle models, with 5 more expected by the end of 2013. More than 58,000 PEVs were sold during the 23 months since vehicles became available from major manufacturers, and cumulative sales are expected to surpass 500,000 vehicles by 2015.To help utility planners ...

2012-12-31T23:59:59.000Z

451

Plug-In Hybrid Electric Vehicle Penetration Scenarios  

DOE Green Energy (OSTI)

This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

Balducci, Patrick J.

2008-04-03T23:59:59.000Z

452

Advanced Components for Plug-in Electric Vehicles  

Science Conference Proceedings (OSTI)

Adoption of plug-in electric vehicles (PEVs) and battery electric vehicles (BEVs) is expected to grow in the near future. The cost of several key subcomponents must decrease in order to make them a commercial success. The battery and power train are some of these key components. This report looks at the cost of lithium-ion batteries, the status of current technologies, feasibility and prospects of advanced technologies such as lithium-air, and recent developments in electric propulsion motors. The first ...

2011-12-23T23:59:59.000Z

453

Geothermal direct heat use: market potential/penetration analysis for Federal Region IX (Arizona, California, Hawaii, Nevada)  

DOE Green Energy (OSTI)

A preliminary study was made of the potential for geothermal direct heat use in Arizona, California, Hawaii, and Nevada (Federal Region IX). The analysis for each state was performed by a different team, located in that state. For each state, the study team was asked to: (1) define the resource, based on the latest available data; (2) assess the potential market growth for geothermal energy; and (3) estimate the market penetration, projected to 2020. Each of the four states of interest in this study is unique in its own way. Rather than impose the same assumptions as to growth rates, capture rates, etc. on all of the study teams, each team was asked to use the most appropriate set of assumptions for its state. The results, therefore, should reflect the currently accepted views within each state. The four state reports comprise the main portion of this document. A brief regional overview section was prepared by the Jet Propulsion Laboratory, following completion of the state reports.

Powell, W.; Tang, K. (eds.) [eds.

1980-05-01T23:59:59.000Z

454

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network (OSTI)

problems. ) The solar water heater is a small on-sitestructing breadbox solar hot water heaters. Originally theTT-1 Western Pacific Solar Hot Water Heater Construction and

Case, C.W.

2012-01-01T23:59:59.000Z

455

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network (OSTI)

at the pond bottom via anaerobic digestion percolates to thewas to involve the anaerobic digestion of hog wastes forThird, the anaerobic and aerobic digestion processes result

Case, C.W.

2012-01-01T23:59:59.000Z

456

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network (OSTI)

hydroelectric system using a Pelton impulse wheel, generator,hydroelectric system" The logistics for op- erating a portable generator

Case, C.W.

2012-01-01T23:59:59.000Z

457

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network (OSTI)

solar hydronic heating systems, Liquid piston engines are usually simple, rug- ged, low-cost, low-thermal efficiency

Case, C.W.

2012-01-01T23:59:59.000Z

458

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network (OSTI)

wood- stove; active solar domestic hot water and space heating; andheating system, and the builders have installed plumbing for a Hydrostove, water circulating woodwood heat. A complete list of alternative technologies incorporated within the house includes: passive solar heating and

Case, C.W.

2012-01-01T23:59:59.000Z

459

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network (OSTI)

selective coating on the heat pipe coupled surface or aheat conducting rod (heat pipe) conducts heat from anescape but not heat. A pivoting 3 11 pipe standing in a 7.

Case, C.W.

2012-01-01T23:59:59.000Z

460

Property:Buildings/ModelTargetType | Open Energy Information  

Open Energy Info (EERE)

ModelTargetType ModelTargetType Jump to: navigation, search This is a property of type String. The allowed values for this property are: ASHRAE 90.1 2007 ASHRAE 90.1 2004 ASHRAE 189.1 LEED Pages using the property "Buildings/ModelTargetType" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Chicago High Plug Load Baseline + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Miami High Plug Load Baseline + ASHRAE 90.1 2004 +

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Rock mass sealing: experimental assessment of borehole plug performance. Annual report, June 1983-May 1984  

Science Conference Proceedings (OSTI)

This report describes experimental field and laboratory borehole plugging performance assessment studies that have been performed, completed, started, or planned during the period June 1, 1983-May 31, 1984. Results are given from field flow tests on three cement plugs installed in vertical boreholes in basalt and on one nearly horizontal cement plug. The horizontal plus seals the borehole very well, as does one of the vertical plugs. The initial hydraulic conductivity of the other two vertical field plugs has been relatively high, and remedial action is described. Laboratory simulations have been performed to study the influence of dynamic loading on cement plug performance, and no detrimental effects have been detected. Conversely, drying of cement plugs, especially over extended periods of time and at elevated temperatures does increase the hydraulic conductivity of the plugs severely, as well as reducing their bond strength along the plug-rock interface. Microscopic inspection, strength and flow tests on boreholes in basalt have been used to identify the characteristics of a drilling-induced damaged zone in basalt. While such a damaged zone exists, and has typical features (e.g., fracture density, size, location, orientation) determined by the drilling method and the rock characteristics, it is thin and not likely to be a preferential flowpath. A comprehensive suite of standard engineering characterization tests has been performed on seven commercial bentonites, complemented by flow tests on bentonite plugs, chemical analysis and swelling tests. Experimental designs are given for the study of size and of thermal effects on plug performance, and a few preliminary results are presented. Results are included from ongoing cement push-out tests and swelling measurements.

Daemen, J.J.K.; Greer, W.B.; Adisoma, G.S.; Fuenkajorn, K.; Sawyer, W.D. Jr.; Yazdandoost, A.; Akgun, H.; Kousari, B.

1985-03-01T23:59:59.000Z

462

Class I Disposal Well Plugging and Abandonment Cost Estimate  

E-Print Network (OSTI)

Per your request, Petrotek Engineering Corporation (Petrotek) has prepared a plugging and abandonment cost estimate for the proposed COGEMA DW No. 4 and No. 5 wells. Because the well design and completion for both wells are very similar, one cost is provided that is representative for each of the wells. The procedures included herein are based on COGEMA's permit modification application to Wyoming Department of Environmental Quality (WDEQ) UIC Permit 00-340 which applies to both wells, and WDEQ regulations and guidance. A time and materials cost estimate for plugging either of the wells follows. The cost is based on information provided by COGEMA, WDEQ requirements, our field experience, and recent quotes from applicable vendors. The costs are based on the following assumptions:> A falloff test and Radioactive Tracer log (RAT) may be required. Based on historical WDEQ requirements, (1) a falloff test would be required if more than six months has elapsed since the last falloff test, and (2) a Part II mechanical integrity test (e.g., a RAT log) would be required if more than 2 years had elapsed since the last RAT log.> Materials disposal (e.g., tubing, packer, wellhead and other debris) will be

Christensen Ranch; Disposal Wellfield; Donna Wichers

2007-01-01T23:59:59.000Z

463

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2013 0, 2013 Carbon Pollution Being Captured, Stored and Used to Produce More Domestic Oil A breakthrough project in Texas is using carbon capture, utilization and storage technology to safely secure carbon dioxide pollution underground while providing an economic benefit and increasing our energy security. May 9, 2013 Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Clean Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities coalitions all across the country are helping their communities get ready for plug-in electric vehicles. May 9, 2013 Green Button: Enabling Energy Innovation The Green Button Initiative is enabling energy innovation for millions of

464

The Efficacy of Electric Vehicle Time-of-Use Rates in Guiding Plug-in Hybrid Electric Vehicle Charging Behavior  

Science Conference Proceedings (OSTI)

This paper presents a series of analyses that seek to enhance understanding of the extent to which time-of-use (TOU) rates can economically incentivize off-peak charging of plug-in hybrid electric vehicles (PHEV). The total cost of fueling a PHEV under modeled and real-world TOU rates is compared to the total cost of fueling a PHEV under constant rates. Time-resolved vehicle energy consumption and fueling costs for a variety of PHEV designs are derived from travel survey data and charging behavior models...

2011-12-20T23:59:59.000Z

465

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

experiences with plug-in hybrid vehicles (PHEVs). At theA.A. (2007) Plug-in Hybrid Vehicles for a SustainableAssessment of Plug-in Hybrid Vehicles on Electric Utilities

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

466

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

2010). Plug-in hybrid electric vehicles as regulating powervalue of plug-in hybrid electric vehicles as grid resources.of using plug-in hybrid electric vehicle battery packs for

Greer, Mark R

2012-01-01T23:59:59.000Z

467

Method of locating a partially plugged port fuel injector using misfire monitor  

SciTech Connect

This patent describes the method of locating a partially plugged port fuel injector in an internal combustion engine comprising using a misfire monitor to determine that the lean-roll frequency has decreased or ceased after the cylinder associated with the partially plugged port fuel injector is disabled.

Blanke, J.D.

1989-06-27T23:59:59.000Z

468

Steam Generator Tube-Plugging and Tube-Sleeving Criteria: Assessment of Current Practices  

Science Conference Proceedings (OSTI)

This report presents a survey of current utility practices regarding steam generator tube plugging and tube sleeving. It also describes an analytic and experimental evaluation of mechanical strain as a parameter for use in tube-plugging and tube-sleeving criteria.

1983-03-01T23:59:59.000Z

469

Tracking Progress Last updated 5/24/2013 Plug-in Electric Vehicle 1  

E-Print Network (OSTI)

Tracking Progress Last updated 5/24/2013 Plug-in Electric Vehicle 1 Plug-in Electric Vehicles Over 26 million cars and almost one million trucks consume 40 million gallons of gasoline and 7 million, advanced technology cars and trucks, vehicle manufacturing, and fueling infrastructure are intended

470

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic  

E-Print Network (OSTI)

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation Jul 2010, Minneapolis MNis MN 1 Abstract--It is generally believed that plug-in electric vehicles

471

Volante -Principal A minha vida com o Toyota Prius Plug-In  

E-Print Network (OSTI)

Volante - Principal A minha vida com o Toyota Prius Plug-In Autor: N.D. Editora: Medipress, Lda Id A minha vida com o Toyota Prius Plug-In Autor: N.D. Editora: Medipress, Lda Id: 1633751 Data Publicação

Instituto de Sistemas e Robotica

472

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles  

E-Print Network (OSTI)

is the 2004 Toyota Prius HEV, the other is a plug-in HEV (PHEV), whose powertrain architecture is the same as that of the 2004 Toyota Prius HEV. The vehicle-level benefits from the introduction of the SiC devices is the 2004 Toyota Prius HEV, which has a split powertrain architecture shown in Fig. 1. The other is a plug

Tolbert, Leon M.

473

Study on plasma parameters and dust charging in an electrostatically plugged multicusp plasma device  

Science Conference Proceedings (OSTI)

The effect of the electrostatic confinement potential on the charging of dust grains and its relationship with the plasma parameters has been studied in an electrostatically plugged multicusp dusty plasma device. Electrostatic plugging is implemented by biasing the electrically isolated magnetic multicusp channel walls. The experimental results show that voltage applied to the channel walls can be a controlling parameter for dust charging.

Kakati, B.; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur-782 402, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar- 382 428 (India)

2011-06-15T23:59:59.000Z

474

Optimized Parameter Matching Method of Plug-in Series Hybrid Electric Bus  

Science Conference Proceedings (OSTI)

This research attempts to deal with the coupling-influence among different powertrain parameters in the parameter matching process of Plug-in Series Hybrid Electric Bus(PSHEB), the research target is a PSHEB (with no gearbox) which is currently under ... Keywords: Plug-in, hybrid electric vehicle, parameter matching, Matlab simulation

Kai Xu, Bin Qiu

2012-12-01T23:59:59.000Z

475

Demand Dispatch Based on Smart Charging of Plug-in Electric Vehicles  

Science Conference Proceedings (OSTI)

Uncontrolled charging of Plug-in Electric Vehicles (PEVs) has a negative impact on the peak load and brings potential challenges to electric utility. In this paper, we apply a statistical load model of PEVs charging demand to simulate the driving habits ... Keywords: Plug-in Electric Vehicles, Demand dispatch, Smart charging, Driving habits, Load model

Ting Wu, Gang Wu, Zhejing Bao, Wenjun Yan, Yiyan Zhang

2012-07-01T23:59:59.000Z

476

Axial strength of cement borehole plugs in granite and basalt. Topical report on rock mass sealing  

SciTech Connect

This report describes experimental and theoretical studies of the axial strength of cement plugs installed in boreholes drilled coaxially in granite and in basalt cylinders. Experimental work has consisted of loading the cement plugs to failure while measuring loads and displacements. Such tests have been performed on borehole plugs with a diameter and a length ranging from 2.5 cm to 10 cm. Results from over one hundred experiments show that the strength is high, sufficient for anticipated loads at repository depths, but very variable, complicating the design of very short plugs. Significant residual strength (thirty to fifty percent of the peak strength) is observed. A frictional model of the interface shear strength, tau = c + sigma(tan phi), in combination with the assumption of an exponential shear stress distribution or plug-rock load transfer, provides the simplest realistic model for plug strength characterization. The integrated strength thus calculated compares moderately well with experimental results. An extensive review is given of more sophisticated analysis procedures that should be of value for general plug design applications. Generic analyses and their implications for plug performance are included. Variability of experimental results complicates the assessment of their direct detailed applicability. 115 references, 70 figures, 19 tables.

Stormont, J.C.; Daemen, J.J.K.

1983-12-01T23:59:59.000Z

477

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles Solutions and torque ripples. Keywords- Electric Vehicle, Plug-in Hybrid Vehicle, On-board Battery Charger, H on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger

Paris-Sud XI, Université de

478

Monthly Energy Review  

Science Conference Proceedings (OSTI)

This publication presents an overview of the Energy information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. Two brief ``energy plugs`` (reviews of EIA publications) are included, as well.

NONE

1996-05-28T23:59:59.000Z

479

Do herbivorous minnows have plug-flow reactor guts? Evidence from digestive enzyme activities, gastrointestinal fermentation, and luminal nutrient concentrations  

E-Print Network (OSTI)

minnows have plug-Xow reactor guts? Evidence fromin the context of chemical reactor models. In this study,function as plug-Xow reactors (PFRs). Four of the species,

German, Donovan P.

2009-01-01T23:59:59.000Z

480

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology | Open  

Open Energy Info (EERE)

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Focus Area: Electricity Topics: Policy Impacts Website: www.nrel.gov/vehiclesandfuels/vsa/pdfs/40485.pdf Equivalent URI: cleanenergysolutions.org/content/cost-benefit-analysis-plug-hybrid-ele Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Fuel Efficiency Standards This paper presents a comparison of the costs and benefits of plug-in hybrid electric vehicles (PHEVs) relative to hybrid electric and conventional vehicles. A detailed simulation model is used to predict

Note: This page contains sample records for the topic "ix energy plug" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Natural Gas Infrastructure Charging Rate Reduction - and Natural Gas Infrastructure Charging Rate Reduction - SDG&E to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Digg

482

Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales  

NLE Websites -- All DOE Office Websites (Extended Search)

1: October 29, 1: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China to someone by E-mail Share Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Facebook Tweet about Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Twitter Bookmark Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Google Bookmark Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Delicious Rank Vehicle Technologies Office: Fact #751: October 29, 2012

483

Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

5: November 2, 5: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost to someone by E-mail Share Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Facebook Tweet about Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Twitter Bookmark Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Google Bookmark Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Delicious Rank Vehicle Technologies Office: Fact #595: November 2, 2009

484

Self locking drive system for rotating plug of a nuclear reactor  

DOE Patents (OSTI)

This disclosure describes a self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event should occur during reactor refueling. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm.

Brubaker, James E. (Pittsburgh, PA)

1979-01-01T23:59:59.000Z

485

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

for Flex-Fuel Vehicles Including E85, Plug-in Hybrids Peakfor-flex-fuel-vehicles-including-e85-plug-in- hybrids-peak-

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

486

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 15320 of 26,764 results. 11 - 15320 of 26,764 results. Contributor Pilar Thomas Pilar Thomas (Pascua Yaqui) is the Deputy Director in the Office of Indian Energy Policy and Programs. As Deputy Director, Ms. Thomas assists the Director in developing national... http://energy.gov/indianenergy/contributors/pilar-thomas Page Title IX Title IX of the Education Amendments of 1972, as amended, prohibits discrimination on the basis of sex in all educational programs and activities of institutions that receive federal financial... http://energy.gov/diversity/services/protecting-civil-rights/title-ix Download EIS-0361: Draft Environmental Impact Statement Western Greenbrier Co-Production Demonstration Project http://energy.gov/nepa/downloads/eis-0361-draft-environmental-impact-statement-0

487

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 - 14490 of 26,764 results. 81 - 14490 of 26,764 results. Page Limited English Proficiency On August 11, 2000, President Clinton signed Executive Order 13166, "Improving Access to Services for Persons with Limited English Proficiency." The Executive Order requires federal agencies,... http://energy.gov/diversity/services/protecting-civil-rights/limited-english-proficiency Article Title IX: More than Just Sports Title IX isn't just about sports or the law. It's about securing a clean energy future by closing the gender gap in math and science. http://energy.gov/articles/title-ix-more-just-sports Article Who Wants To Be A Millionaire? Test your math and science smarts. http://energy.gov/articles/who-wants-be-millionaire Download Westinghouse Lighting: Proposed Penalty (2010-CE-09/1001)

488

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71 - 28880 of 31,917 results. 71 - 28880 of 31,917 results. Article Title IX: More than Just Sports Title IX isn't just about sports or the law. It's about securing a clean energy future by closing the gender gap in math and science. http://energy.gov/articles/title-ix-more-just-sports Article Maine Community Seeing Things in a New Light As one of the northernmost communities in the "Lower 48," Fort Fairfield, Maine (population 3,500) averages less sunlight every year than towns in the southern part of the state. http://energy.gov/articles/maine-community-seeing-things-new-light Article Cool Roofs: Your Questions Answered When Secretary Chu announced that the Department of Energy had installed a "cool roof" atop the west building of our Washington, DC headquarters,

489

Smart Charging Development for Plug-In Hybrid and Electric Vehicles - Preliminary Use-Case Development for SAE Recommended Practice J2836  

Science Conference Proceedings (OSTI)

This technical update covers the complete set of functional requirements for integrating plug-in electric vehicles (PEVs) into the smart grid, along with the utility programs they will be able to participate in and a vision for getting these requirements into standardized implementations. The document will help utility and OEM staff gain a complete understanding of how they should go about developing PEV-utility requirements that will support programs for demand response and energy efficiency through the...

2008-12-22T23:59:59.000Z

490

Hybrid Powertrain Optimization for Plug-In Microgrid Power Generation Automated Modeling Laboratory Slide 1 of 28  

E-Print Network (OSTI)

Hybrid Powertrain Optimization for Plug-In Microgrid Power Generation Automated Modeling LaboratoryPlug--InIn MicrogridMicrogrid Power GenerationPower Generation Scott J. MouraScott J. Moura DongsukDongsuk KumKum Hosam Powertrain Optimization for Plug-In Microgrid Power Generation Automated Modeling Laboratory Slide 2 of 28

Krstic, Miroslav

491

Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gary L. Smith - Office of Waste Processing (EM-21) Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop 1 Dr. Gary L. Smith - Office of Waste Processing (EM-21) Dr. Adam P. Poloski - PNNL Michael W. Rinker - PNNL Rick Demmer - INL Dr. Arthur W. Etchells III - Consultant Benjamin E. Lewis, Jr. - ORNL Sharon L. Marra - SRNL November 6, 2008 PNNL-SA-63183 Slurry Handling Workshop  Background: A critical responsibility of DOE's Office of Environmental Management is the design, construction, and operation of equipment and facilities to process legacy radioactive waste slurries for safe, long-term disposal.  Goal: DOE Office of Engineering and Technology, Office of Environmental Management sponsored a slurry handling workshop.  Identify technical vulnerabilities and to reduce risk.  Understand and disseminate lessons learned and best practices

492

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Powertrain Configuration  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Powertrain Configuration on Fuel Efficiency To evaluate the fuel efficiency potential of plug-in hybrid electric vehicles, it is necessary to compare the advantages and drawbacks of several powertrain configurations, ranging from power split to parallel and series. PSAT offers the unique ability to simulate and compare hundreds of powertrain configurations. The goal of the effort is to define the most promising configurations depending on the particular usage. Component sizes, fuel efficiency and cost will be used to make appropriate decisions. The configurations currently being considered include, but are not limited to: Pre-transmission parallel HEV Post-transmission parallel HEV Power split HEV (including THS II and GM 2 Mode) Series The figure below shows an example comparison of three powertrain configurations (parallel, series and power split).

493

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Control Strategy  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Strategy Assessment of PHEVs Control Strategy Assessment of PHEVs A generic global optimization algorithm for plug-in hybrid electric vehicle (PHEV) powertrain flows has been developed based on the Bellman optimality principle. Optimization results are used to isolate control patterns, both dependent and independent of the cycle characteristics, in order to develop real-time control strategies in Simulink/Stateflow. These controllers are then implemented in PSAT to validate their performances. Heuristic optimization algorithms (such as DIRECT or genetic algorithms) are then used to tune the parameters of the real-time controller implemented in PSAT. The control strategy development process is described below. PHEV control strategy development process diagram Control Strategy Development Process

494

Mechanistic Understanding of Microbial Plugging for Improved Sweep Efficiency  

DOE Green Energy (OSTI)

Microbial plugging has been proposed as an effective low cost method of permeability reduction. Yet there is a dearth of information on the fundamental processes of microbial growth in porous media, and there are no suitable data to model the process of microbial plugging as it relates to sweep efficiency. To optimize the field implementation, better mechanistic and volumetric understanding of biofilm growth within a porous medium is needed. In particular, the engineering design hinges upon a quantitative relationship between amount of nutrient consumption, amount of growth, and degree of permeability reduction. In this project experiments were conducted to obtain new data to elucidate this relationship. Experiments in heterogeneous (layered) beadpacks showed that microbes could grow preferentially in the high permeability layer. Ultimately this caused flow to be equally divided between high and low permeability layers, precisely the behavior needed for MEOR. Remarkably, classical models of microbial nutrient uptake in batch experiments do not explain the nutrient consumption by the same microbes in flow experiments. We propose a simple extension of classical kinetics to account for the self-limiting consumption of nutrient observed in our experiments, and we outline a modeling approach based on architecture and behavior of biofilms. Such a model would account for the changing trend of nutrient consumption by bacteria with the increasing biomass and the onset of biofilm formation. However no existing model can explain the microbial preference for growth in high permeability regions, nor is there any obvious extension of the model for this observation. An attractive conjecture is that quorum sensing is involved in the heterogeneous bead packs.

Steven Bryant; Larry Britton

2008-09-30T23:59:59.000Z

495

2007. Impacts Assessment of Plug-in Hybrid Vehicles on Electric  

E-Print Network (OSTI)

The U.S. electric power infrastructure is a strategic national asset that is underutilized most of the time. With the proper changes in the operational paradigm, it could generate and deliver the necessary energy to fuel the majority of the U.S. light-duty vehicle (LDV) fleet. In doing so, it would reduce greenhouse gas emissions, improve the economics of the electricity industry, and reduce the U.S. dependency on foreign oil. Two companion papers investigate the technical potential and economic impacts of using the existing idle capacity of the electric infrastructure in conjunction with the emerging plug-in hybrid electric vehicle (PHEV) technology to meet the majority of the daily energy needs of the U.S. LDV fleet. This initial paper estimates the regional percentages of the energy requirements for the U.S. LDV stock that could potentially be supported by the existing infrastructure, based on the 12 modified North American Electric Reliability Council regions, as of 2002. For the United States as a whole, up to 84% of U.S. cars, pickup trucks, and sport utility vehicles (SUVs) could be supported by the existing infrastructure, although the local percentages vary by region. Using the LDV fleet classification, which includes cars, pickup trucks, SUVs, and vans, the technical potential is 73%. This has an estimated gasoline displacement potential of 6.5 million barrels of oil equivalent per day, or approximately 52 % of

Michael Kintner-meyer; Kevin Schneider; Robert Pratt

2007-01-01T23:59:59.000Z

496

New Bridge Plug and Retrieving Tool that Aids Completion of Geothermal Steam Wells  

DOE Green Energy (OSTI)

A typical completion procedure requires placement of a bridge plug near the liner top of a producing steam well so the well can be loaded to permit cementing of the tieback casing string by conventional cementing techniques. A drillable bridge plug has been used in the past so that it could be removed with a conventional toothed, cone-type drill bit. All components could not be drilled out because the bridge plug would separate from the casing when drilling through its top slips. This created a hazardous situation because heavy components remaining in the well could blowout after placing the well into production and damage or destroy surface equipment. A bridge plug and its companion milling-type retrieving tool were developed to perform the bridging operation and accomplish removal in a producing geothermal steam well environment. The bridge plug features an internal briding plug that is designed to permit the release of differential pressure buildup from below before releasing the bridge plug by milling away the top slips. The millinog-type retrieving tool has a catcher mechanism designed to function in the high-velocity steam flow of a producing well to catch the released bridge plug. After the released bridge plug components are caught, they may be returned to the surface in a controlled manner. This removes the massive components so that they will not be blown out by the steam of a producing well. Field use has demonstrated that this equipment is a practical completion aid, and it is currently being used in The Geysers field of northern California. Examples of field usage are discussed in the paper.

Harris, A.; Thompson, P.; Ash, D.

1981-01-01T23:59:59.000Z

497

Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid  

Science Conference Proceedings (OSTI)

The US electricity grid is a national infrastructure that has the potential to deliver significant amounts of the daily driving energy of the US light duty vehicle (cars, pickups, SUVs, and vans) fleet. This paper discusses a 2030 scenario with 37 million plug-in hybrid electric vehicles (PHEVs) on the road in the US demanding electricity for an average daily driving distance of about 33 miles (53 km). The paper addresses the potential grid impacts of the PHEVs fleet relative to their effects on the production cost of electricity, and the emissions from the electricity sector. The results of this analysis indicate significant regional difference on the cost impacts and the CO2 emissions. Battery charging during the day may have twice the cost impacts than charging during the night. The CO2 emissions impacts are very region-dependent. In predominantly coal regions (Midwest), the new PHEV load may reduce the CO2 emission intensity (ton/MWh), while in others regions with significant clean generation (hydro and renewable energy) the CO2 emission intensity may increase. Discussed will the potential impact of the results with the valuation of carbon emissions.

Kintner-Meyer, Michael CW; Nguyen, Tony B.; Jin, Chunlian; Balducci, Patrick J.; Secrest, Thomas J.