Sample records for ix energy plug

  1. Plug Smart | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation, search Name:PipoPleasantonPlug Smart Jump to:

  2. Plugging Vehicles into Clean Energy October, 2012

    E-Print Network [OSTI]

    California at Davis, University of

    Plugging Vehicles into Clean Energy 1 October, 2012 Plugging Vehicles into Clean Energy Max-in electric vehicles and clean energy. Giving consumers options to offset energy and emissions associated briefly summarizes the relationship between clean energy and vehicle electrification and describes five

  3. Energy Department Announces Funding to Develop "Plug-and-Play...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Develop "Plug-and-Play" Solar Energy Systems for Homeowners Energy Department Announces Funding to Develop "Plug-and-Play" Solar Energy Systems for Homeowners April 24, 2012 -...

  4. Power to the Plug: An Introduction to Energy, Electricity, Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Below is...

  5. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    Appropriate Energy Technology Resource Center .IX DOE Appropriate Energy Technology Pilot Program - PartIX DOE Appropriate Energy Technology Pilot Program - Part I;

  6. Title IX | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idahothe New Funding Constructs forofDOETips

  7. Oregon Plugging Record Form | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy Information Fees forInformationPlugging Record Form

  8. SEGS IX Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: WindRiegotec Internacional ltdaSEGS I SolarSolarIX

  9. Novel Spark Plugs Improve Energy Efficiency of Compressed Natural

    E-Print Network [OSTI]

    Novel Spark Plugs Improve Energy Efficiency of Compressed Natural Gas Engines Energy Innovations use affects climate change. Vehicles operating on compressed natural gas reduce petroleum fuel use, the vast majority of compressed natural gas (CNG) engines are used in transit buses serving the public

  10. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric...

  11. Plug Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S APlataformaTexas:PlotWatt JumpPower Inc

  12. Plug in America | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S APlataformaTexas:PlotWatt JumpPower

  13. Plug In Partners | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation, search Name:PipoPleasanton

  14. UnPlug Stuff | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpTypeforUSDOIinUlubelu

  15. Plug IN Hybrid Vehicle Bus | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlanned AuditsPlasticsPleated CeramicPlug

  16. Plug-In Hybrid Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation | Department ofPlug-In

  17. Communities Plug In To Electric Vehicle Readiness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational| DepartmentCommunities Plug In To Electric

  18. Dynamic Programming Applied to Investigate Energy Management Strategies for a Plug-in HEV

    SciTech Connect (OSTI)

    O'Keefe. M. P.; Markel, T.

    2006-11-01T23:59:59.000Z

    This paper explores two basic plug-in hybrid electric vehicle energy management strategies: an electric vehicle centric control strategy and an engine-motor blended control strategy.

  19. Volumetric Global Illumination and Reconstruction via Energy Backprojection Frank Dachille IX, Klaus Mueller, and Arie Kaufman

    E-Print Network [OSTI]

    Mueller, Klaus

    Volumetric Global Illumination and Reconstruction via Energy Backprojection Frank Dachille IX State University of New York at Stony Brook Stony Brook, NY 11794-4400 Abstract Volumetric energy volu- metric backprojection. CR Categories: I.3.1 [Computer Graphics]: Hardware Archi- tecture; I.3

  20. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01T23:59:59.000Z

    of Plug-in Hybrid Electric Vehicle Technology, Nationalof Plug-In Hybrid Electric Vehicles on Energy and Emissionsof Plug-In Hybrid Electric Vehicles on Energy and Emissions

  1. Using GPS Travel Data to Assess the Real World Driving Energy Use of Plug-In Hybrid Electric Vehicles (PHEVs)

    SciTech Connect (OSTI)

    Gonder, J.; Markel, T.; Simpson, A.; Thornton, M.

    2007-05-01T23:59:59.000Z

    Highlights opportunities using GPS travel survey techniques and systems simulation tools for plug-in hybrid vehicle design improvements, which maximize the benefits of energy efficiency technologies.

  2. Title IX: More than Just Sports | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnologyfact sheet summarizes what isTitilayoBrad2014Bill

  3. Project Information Form Project Title Advanced Energy Management Strategy Development for Plug-in Hybrid

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Advanced Energy Management Strategy Development for Plug management strategy, which determines how energy flows in a hybrid powertrain should be managed in response for PHEVs using connected vehicle technology. Different energy management strategies will be developed

  4. Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S

    2010-01-01T23:59:59.000Z

    converted plug-in hybrid vehicles. Transportation ResearchM. , 2006. Plug-In Hybrid Vehicle Analysis. Nationalgas emissions from plug-in hybrid vehicles: implications for

  5. 40th Anniversary of Title IX | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)DepartmentVery5Dryers;under9 TABLE 10ImageDot

  6. ProLogis France IX EURL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPowerPrinceton Public UtilsProLogis France

  7. Article IX, Section 8 of Idaho's Constitution | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansas County,Minnesota:Arthur, North Dakota:

  8. Communities Plug In To Electric Vehicle Readiness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoal CombustionSmart GridforCommunities Plug In To Electric

  9. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect (OSTI)

    Short, W.; Denholm, P.

    2006-04-01T23:59:59.000Z

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  10. Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing and Pontryagin's minimum principle

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing Accepted 14 August 2014 Available online 27 August 2014 Keywords: Plug-in hybrid electric vehicles Fuel-rate Pontryagin's minimum principle Simulated annealing State of health a b s t r a c t In this paper, an energy

  11. Energy-Agile Laptops: Demand Response of Mobile Plug Loads Using Sensor/Actuator Networks

    E-Print Network [OSTI]

    Culler, David E.

    Energy-Agile Laptops: Demand Response of Mobile Plug Loads Using Sensor/Actuator Networks Nathan@me.berkeley.edu Abstract--This paper explores demand response techniques for managing mobile, distributed loads with on observed. Our first simulation study explores a classic demand response scenario in which a large number

  12. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Electrical Energy Conservation Opportunities for Plug Loads and Lighting in UBC

    E-Print Network [OSTI]

    Conservation Opportunities for Plug Loads and Lighting in UBC Office Buildings Natalie Yao University for plug loads and lighting in UBC Office Buildings Natalie Yao University of British Columbia Clean Energy), Robert Padwick (IT group), David Rogers and Alvin Wai (BC Hydro's Power Smart), and all UBC staff who

  13. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint

    SciTech Connect (OSTI)

    Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

    2011-02-01T23:59:59.000Z

    This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

  14. Honey, Did You Plug in the Prius? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of EnergySeacrist,theA12345Savings |BetterHoney

  15. Plug-In Hybrid Electric Vehicles | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCO OCHCOControlGuide to aEnergyPlanning andofPlatts

  16. Plug In Hybrid Development Consortium | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S APlataformaTexas:PlotWatt Jump

  17. Autonomie Plug&Play Software Architecture | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation Worldof EnergyTAGS,Large

  18. Autonomie Plug&Play Software Architecture | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation Worldof EnergyTAGS,Large09 DOE

  19. Plug-and-Play Photovoltaics Funding Opportunity | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea.Work Plan for FY 2013 AThe cityHours |PNP

  20. Plug-and-Play Photovoltaics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation | Department

  1. Plug-and-Play Powertrain Model Architecture | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation | Departmentand-Play

  2. Plug-in Hybrid Battery Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation |Activity |Activityin

  3. Plugging of Exhaust Gas Recirculation Coolers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation |Activity

  4. Plug Load

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38 (1996)representative of thePlug-Load Sign In

  5. Honey, Did You Plug in the Prius? | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FYAffairs,AssessmentInteractive GraphicExcel sheet for7,

  6. Fun Fact Friday: Plug-in Hybrid Edition | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion Study CommentsStolar,NEAC FuelFederalDECEMBER 2009Plug-in

  7. Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Sheppy, M.; Metzger, I.; Cutler, D.; Holland, G.; Hanada, A.

    2014-01-01T23:59:59.000Z

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

  8. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38 (1996)representative of thePlug-Load

  9. Plug-In Electric Vehicle Handbook for Consumers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38 (1996)representative of thePlug-Load Sign

  10. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38 (1996)representative of thePlug-LoadWorkplace

  11. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    Solar Energy For Composting Toilets ..The toilet is a Mullbank composting toilet. CBB 801-127T;:Ee: Award: SOLAR ENERGY FOR COMPOSTING TOILETS Applicant

  12. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    B - Revised Description of: Biogas Energy for Hawaiian Smallprojected. Also, the low pressure biogas requires additional5000 - 5500 cubic feet of biogas (60% methane) daily may be

  13. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    Digester for Small Farms HI-11 Solar Heating for a RuralFor Hawaiian Pig Farm Energy Needs. 29 HI~22 Solar Beeswax

  14. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    within the house includes: passive solar heating and coolingof the house. Technical Details: The passive constructionhouse" (Other technologies include solar domestic water heating, composting toilet, energy efficient conservation devices, passive

  15. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    producing 258 million Btu annually. Over a lifetimewill produce about 2.58 billion Btu. REFERENCES Case, C.W. ,will provide 8.9 million Btu of energy :::nnual or about of

  16. actinides ix behavior: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PT-Symmetric Hamiltonian Hp2+x2(ix)? HEP - Theory (arXiv) Summary: The energy eigenvalues of the class of non-Hermitian PT-symmetric Hamiltonians Hp2+x2(ix)...

  17. Ix-,,"

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-I I ,IsIx-,," aI@

  18. Plugging in the consumer

    E-Print Network [OSTI]

    for senior executives around critical public and private sector issues. This executive brief is basedPlugging in the consumer Innovating utility business models for the future Energy and Utilities IBM and figuratively. But the confluence of climate change concerns, rising energy costs and technology advances

  19. PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I

    E-Print Network [OSTI]

    Case, C.W.

    2011-01-01T23:59:59.000Z

    grant to provide an alternative energy educational program, Project SAW: Solar -grants covered a complete spectrum of small scale energy technologies including solar

  20. Plug Load Behavioral Change Demonstration Project

    SciTech Connect (OSTI)

    Metzger, I.; Kandt, A.; VanGeet, O.

    2011-08-01T23:59:59.000Z

    This report documents the methods and results of a plug load study of the Environmental Protection Agency's Region 8 Headquarters in Denver, Colorado, conducted by the National Renewable Energy Laboratory. The study quantified the effect of mechanical and behavioral change approaches on plug load energy reduction and identified effective ways to reduce plug load energy. Load reduction approaches included automated energy management systems and behavioral change strategies.

  1. Plug-In Electric Vehicle Handbook for Fleet Managers

    E-Print Network [OSTI]

    Plug-In Electric Vehicle Handbook for Fleet Managers #12;Plug-In Electric Vehicle Handbook Infrastructure Successfully deploying plug-in electric vehicles (PEVs) and charging infrastructure requires at www.cleancities.energy.gov. #12;Plug-In Electric Vehicle Handbook for Fleets 3 You've heard the buzz

  2. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01T23:59:59.000Z

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  3. PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I

    E-Print Network [OSTI]

    Case, C.W.

    2011-01-01T23:59:59.000Z

    AZ-41. Solar Air Active Heater/Passive Cooler Collectorgreenhouse areas, a solar water heater system, a wind energy6. Western Pacific Solar Hot Water Heater Construction and

  4. PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I

    E-Print Network [OSTI]

    Case, C.W.

    2011-01-01T23:59:59.000Z

    greenhouse areas, a solar water heater system, a wind energy6. Western Pacific Solar Hot Water Heater Construction andWESTERN PACIFIC SOLAR HOT WATER HEATER CONSTRUCTION AND

  5. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergyCorrective ActionHybrid Wind

  6. Colorado - Colo. Const. Art. IX Sec. 10(1)(c) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: EnergyCoeurLegislative Declaration | OpenColo.

  7. MinWind III-IX Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc JumpMicroPlanet Name:I & II Wind Farm Jump

  8. PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I

    E-Print Network [OSTI]

    Case, C.W.

    2011-01-01T23:59:59.000Z

    usable energy of 14.2 million Btu per year, giving an annualMWh/year or 83.6 million Btu/year. Because the evaporativeper unit of 5.02 million Btu or natural gas of 1.5 MWh of

  9. Measurement of attitudes toward commercial development of geothermal energy in Federal Region IX. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-06-01T23:59:59.000Z

    A survey was conducted of ten target study groups and subgroups for Klamath Falls, Oregon, and Susanville, California: local government, current and potential industry at the site, relocators to the site, current and potential financial community, regulators, and current and potential promoters and developers. The results of benchmark attitudinal measurement is presented separately for each target group. A literature review was conducted and Macro-environmental attitudes of a sample of local government and industry personnel at the sites were assessed. An assessment of capabilities was made which involved two measurements. The first was a measurement of a sample of promoters, developers, and industrial service companies active at the site to determine infrastructure capabilities required by industry for geothermal plants. The second measurement involved analyzing a sample of industry management in the area and defining their requirements for plant retrofit and expansion. Finally, the processes used by the study group to analyze information to reach commitment and regulatory decisions that significantly impact on geothermal energy projects at the site were identified and defined.

  10. After-hours power status of office equipment and energy use of miscellaneous plug-load equipment

    SciTech Connect (OSTI)

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Marageret J.; Busch, John F.

    2004-05-27T23:59:59.000Z

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of miscellaneous plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. For most types of miscellaneous equipment, we also estimated typical unit energy consumption in order to estimate total energy consumption of the miscellaneous devices within our sample. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from sixteen commercial buildings in California, Georgia, and Pennsylvania: four education buildings, two medical buildings, two large offices (> 500 employees each), three medium offices (50-500 employees each), and five small business offices (< 50 employees each). Two buildings are in the San Francisco Bay are a of California, nine (including the five small businesses) are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

  11. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-in Electric Vehicles include plug-in hybrid vehicles and all-electric vehicles. Hybrid Electric Vehicles derive all of their energy from gasoline and cannot be plugged...

  12. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  13. Rotating arc spark plug

    DOE Patents [OSTI]

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27T23:59:59.000Z

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  14. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01T23:59:59.000Z

    market, plug-in hybrid vehicles (PHEVs) are now consideredof Current Knowledge of Hybrid Vehicle Characteristics andalso called PHEV (Plug-in Hybrid Vehicle) because they are

  15. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37EnergySubmitRoad | DepartmentIllinoisHybrids

  16. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect (OSTI)

    Malikopoulos, Andreas [ORNL

    2013-01-01T23:59:59.000Z

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  17. Assessing Energy Impact of Plug-In Hybrid Electric Vehicles: Significance of Daily Distance Variation over Time and Among Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL; Greene, David L [ORNL

    2012-01-01T23:59:59.000Z

    Accurate assessment of the impact of plug-in hybrid electric vehicles (PHEVs) on petroleum and electricity consumption is a necessary step toward effective policies. Variations in daily vehicle miles traveled (VMT) over time and among drivers affect PHEV energy impact, but the significance is not well understood. This paper uses a graphical illustration, a mathematical derivation, and an empirical study to examine the cause and significance of such an effect. The first two methods reveal that ignoring daily variation in VMT always causes underestimation of petroleum consumption and overestimation of electricity consumption by PHEVs; both biases increase as the assumed PHEV charge-depleting (CD) range moves closer to the average daily VMT. The empirical analysis based on national travel survey data shows that the assumption of uniform daily VMT over time and among drivers causes nearly 68% underestimation of expected petroleum use and nearly 48% overestimation of expected electricity use by PHEVs with a 40-mi CD range (PHEV40s). Also for PHEV40s, consideration of daily variation in VMT over time but not among drivers similar to the way the utility factor curve is derived in SAE Standard SAE J2841 causes underestimation of expected petroleum use by more than 24% and overestimation of expected electricity use by about 17%. Underestimation of petroleum use and overestimation of electricity use increase with larger-battery PHEVs.

  18. Plug-In Electric Vehicle R&D on High Energy Materials

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Program Annual Merit Review, FY2008 Hybrid Electric Systems Energy Storage Applied Battery Research This presentation does not contain any proprietary or...

  19. General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpen EnergyOpen Energy

  20. General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpen EnergyOpenEnergy

  1. SPACE RESOURCES ROUNDTABLE IX

    E-Print Network [OSTI]

    Rathbun, Julie A.

    SPACE RESOURCES ROUNDTABLE IX Colorado School of Mines October 25-27, 2007 http://www.ISRUinfo.com Sponsored by: Colorado School of Mines Lunar and Planetary Institute Space Resources Roundtable, Inc. First Space Michael B. Duke, Colorado School of Mines Leslie Gertsch, University of Missouri-Rolla Alex

  2. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01T23:59:59.000Z

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  3. Results from the Plug-and-Play Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof EnhancedRestructuring our

  4. Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRAM-04-07CONFIGURATIONChu atfrom the OfficeofDepartment

  5. Plug-In Electric Vehicle R&D on High Energy Materials | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlanned AuditsPlasticsPleatedEnergy

  6. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department of EnergyWelcome to

  7. Wireless Plug-in Electric Vehicle (PEV) Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofoftoMay 8,EnergyWinning2 DOE Hydrogen

  8. Wireless Plug-in Electric Vehicle (PEV) Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofoftoMay 8,EnergyWinning2 DOE Hydrogen1

  9. General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpen Energy InformationOpen

  10. General Merchandise 2009 TSD Chicago High Plug Load Baseline | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpen Energy

  11. General Merchandise 2009 TSD Chicago Low Plug Load Baseline | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpen EnergyOpen

  12. General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpenEnergy Information General

  13. General Merchandise 2009 TSD Miami Low Plug Load Baseline | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpenEnergy Information

  14. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum TechnologyEnergy Rules4 AUDITIllinois

  15. Charging Your Plug-in Electric Vehicle at Home | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. Feedstock & ProductionChapter 6

  16. Plug-in Electric Vehicles Charge Forward in Oregon | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5Parabolic TroughPhotoCell|Disease | Department

  17. Ford Plug-In Project: Bringing PHEVs to Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen andMeetingonup onFood7,2 DOE

  18. Ford Plug-In Project: Bringing PHEVs to Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen andMeetingonup onFood7,2 DOE1 DOE

  19. Ford Plug-In Project: Bringing PHEVs to Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen andMeetingonup onFood7,2 DOE1

  20. Ford Plug-In Project: Bringing PHEVs to Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen andMeetingonup onFood7,2 DOE109

  1. Plug and Play Solar PV for American Homes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea.Work Plan for FY 2013 AThe city

  2. Going Solar in Record Time with Plug-and-Play PV | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of a downholeReactorsgoal and objectivesofWhenA

  3. Charging Your Plug-in Electric Vehicle at Home | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWasteDepartmentUtilities in many statesChapter

  4. Plug-In Electric Vehicle Integration with Renewables | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlanned AuditsPlasticsPleated

  5. Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead of Contractingof theResearch&

  6. General Merchandise 2009 TSD Miami High Plug Load Baseline | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpen

  7. Energy Department Announces Funding to Develop "Plug-and-Play" Solar

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen O'Kane Tauscher -TheEconomy,Research

  8. Going Solar in Record Time with Plug-and-Play PV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal TechnologiesGeothermalGo for the Gold inDepartment ofSolar

  9. Light Duty Plug-in Hybrid Vehicle Systems Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartmentPresentation from the U.S.

  10. Power to the Plug: An Introduction to Energy, Electricity, Consumption and Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60Power Purchase Agreements Power Purchase Agreements

  11. Power to the Plug: An Introduction to Energy, Electricity, Consumption, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60Power Purchase Agreements Power Purchase

  12. NREL: Energy Storage - Battery Second Use for Plug-In Electric Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletterAcademy AlumniNewsLifetimeSecond

  13. Hybrid and Plug-In Electric Vehicle Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel Cell Hydrogen and Fuel CellVehicles

  14. Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduceNew Hampshire FleettoSurpasses 1in

  15. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31T23:59:59.000Z

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

  16. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

  17. Bellows sealed plug valve

    DOE Patents [OSTI]

    Dukas, Jr., Stephen J. (Idaho Falls, ID)

    1990-01-01T23:59:59.000Z

    A bellows sealed plug valve includes a valve body having an inlet passage and an outlet passage, a valve chamber between the inlet and outlet passages. A valve plug has substantially the same shape as the valve chamber and is rotatably disposed therein. A shaft is movable linearly in response to a signal from a valve actuator. A bellows is sealingly disposed between the valve chamber and the valve actuator and means are located between the bellows and the valve plug for converting linear movement of the shaft connected to the valve actuator to rotational movement of the plug. Various means are disclosed including helical thread mechanism, clevis mechanism and rack and pinion mechanism, all for converting linear motion to rotational motion.

  18. Plugging Abandoned Water Wells

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2002-02-28T23:59:59.000Z

    This brochure explains the threat of abandoned water wells to groundwater resources and the responsibility and liability of Texas property owners. It offers information to landowners on ways to plug such wells....

  19. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01T23:59:59.000Z

    Distributed Generation, Plug-in Electric Vehicles (PEVs), Energy Management, Multi-Building Modeling and Simulation Introduction The Green Islands

  20. Frey, H.C., H.W. Choi, E. Pritchard, and J. Lawrence, "In-Use Measurement of the Activity, Energy Use, and Emissions of a Plug-in Hybrid Electric Vehicle," Paper 2009-A-242-AWMA, Proceedings, 102nd Annual Conference and Exhibition, Air &

    E-Print Network [OSTI]

    Frey, H. Christopher

    . 1 In-Use Measurement of the Activity, Energy Use, and Emissions of a Plug-in Hybrid Electric VehicleFrey, H.C., H.W. Choi, E. Pritchard, and J. Lawrence, "In-Use Measurement of the Activity, Energy Use, and Emissions of a Plug-in Hybrid Electric Vehicle," Paper 2009-A-242-AWMA, Proceedings, 102nd

  1. 2010 Plug-In Hybrid and Electric Vehicle Research

    E-Print Network [OSTI]

    2010 Plug-In Hybrid and Electric Vehicle Research Center TRANSPORTATION ENERGY RESEARCH PIER The PlugIn and Hybrid Electric Vehicle Researc Center conducts research in: · Battery second life applications. Plugin hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are promising

  2. An Experimental Study of Microfabricated Nickel Spark Plug Georgia Institute of technology

    E-Print Network [OSTI]

    electrodeposition through polymer molds. The nickel spark plugs are tested at 20 Hz using spark energies of 5 mAn Experimental Study of Microfabricated Nickel Spark Plug Georgia Institute of technology Atlanta presents experimental. results of the erosion and wear characteristics of micromachined nickel spark plugs

  3. Fiscal year 1993 well plugging and abandonment program, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from December 1992 through August 20, 1993. A total of 70 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the US Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991).

  4. Fiscal Year 1993 Well Plugging and Abandonment Program Summary Report Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from October 1993 through August 1994. A total of 57 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee.

  5. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

  6. Panel 4, CPUCs Energy Storage Mandate

    Broader source: Energy.gov (indexed) [DOE]

    ix CPUC's Energy Storage Mandate: Hydrogen Energy Storage Workshop May 15, 2014 Melicia Charles California Public Utilities Commission ix Overview of CPUC Energy Oversight * The...

  7. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01T23:59:59.000Z

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  8. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01T23:59:59.000Z

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  9. Inflation for Bianchi IX model

    E-Print Network [OSTI]

    R. Bergamini; P. Sedici; P. Verrocchio

    1996-11-29T23:59:59.000Z

    The influence of Inflation on initial (i.e. at Planck's epoch) large anisotropy of the Universe is studied, considering a more general metric than the isotropic one: the locally rotationally symmetric (L.R.S.) Bianchi IX metric. We find, then, a large set of initial conditions of intrinsic curvature and shear allowing an inflationary epoch that make the anisotropy negligible. These are not trivial because of the non-linearity of the Einstein's equations.

  10. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead of Contractingof

  11. Battery Choices and Potential Requirements for Plug-In Hybrids (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2007-02-13T23:59:59.000Z

    Plug-in Hybrid vehicles energy storage and drive cycle impacts presentation given at the 7th Advanced Automotive Battery Conference.

  12. Project Profile: Plug-and-Play Solar Photovoltaics for American Homes

    Broader source: Energy.gov [DOE]

    Fraunhofer USA, Inc., Center for Sustainable Energy Systems and its partners, under the Plug-and-Play Photovoltaics FOA, are developing technologies, components, systems, and standards that enable...

  13. Plug-and-Play Photovoltaics Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Plug-and-Play Photovoltaics program, DOE will advance the development of a commercial plug-and-play photovoltaic (PV) system, an off-the-shelf product that is fully inclusive with...

  14. Hot cell shield plug extraction apparatus

    DOE Patents [OSTI]

    Knapp, Philip A. (Moore, ID); Manhart, Larry K. (Pingree, ID)

    1995-01-01T23:59:59.000Z

    An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.

  15. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulaseFuels andConversionsAssumptions andPlug-InPlug-In

  16. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect (OSTI)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  17. Plug-Load Control and Behavioral Change Research in GSA Office Buildings

    SciTech Connect (OSTI)

    Metzger, I.; Cutler, D.; Sheppy, M.

    2012-10-01T23:59:59.000Z

    The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-load energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.

  18. Progress in year 1995 1. Optically plugged magnetic quadrupole trap

    E-Print Network [OSTI]

    Progress in year 1995 1. Optically plugged magnetic quadrupole trap In 1995, we have demonstrated samples of ultracold atoms at unprecedented densities (>1014 cm-3) and to evaporatively cool atoms to Bose Dressed-StateEnergyMagneticField Atoms During evaporative cooling, the cloud shrunk and finally split up

  19. ESIF Plugs Utility-Scale Hardware into Simulated Grids to Assess Integration Effects (Fact Sheet), Energy Systems Integration (ESI), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11 ENVIROISSUES ESF 12 Events ESFof Energy

  20. The Status of USITER Diagnostic Port Plug Neutronics Analysis Using Attila

    SciTech Connect (OSTI)

    Feder, Russell [1; Youssef, Mahamoud [2; Klabacha, Jonathan [1

    2013-11-01T23:59:59.000Z

    USITER is one of seven partner domestic agencies (DA) contributing components to the ITER project. Four diagnostic port plug packages (two equatorial ports and two upper ports) will be engineered and fabricated by Princeton Plasma Physics Lab (PPPL). Diagnostic port plugs as illustrated in Fig. 1 are large primarily stainless steel structures that serve several roles on ITER. The port plugs are the primary vacuum seal and tritium confinement barriers for the vessel. The port plugs also house several plasma diagnostic systems and other machine service equipment. Finally, each port plug must shield high energy neutrons and gamma photons from escaping and creating radiological problems in maintenance areas behind the port plugs. The optimization of the balance between adequate shielding and the need for high performance, high throughput diagnostics systems is the focus of this paper. Neutronics calculations are also needed for assessing nuclear heating and nuclear damage in the port plug and diagnostic components. Attila, the commercially available discrete-ordinates software package, is used for all diagnostic port plug neutronics analysis studies at PPPL.

  1. Plug-In Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2006-05-08T23:59:59.000Z

    Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

  2. Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology

    SciTech Connect (OSTI)

    Simpson, A.

    2006-11-01T23:59:59.000Z

    This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

  3. Non-plugging injection valve

    DOE Patents [OSTI]

    Carey, Jr., Henry S. (Wilsonville, AL)

    1985-01-01T23:59:59.000Z

    A valve for injecting fluid into a conduit carrying a slurry subject to separation to form deposits capable of plugging openings into the conduit. The valve comprises a valve body that is sealed to the conduit about an aperture formed through the wall of the conduit to receive the fluid to be injected and the valve member of the valve includes a punch portion that extends through the injection aperture to the flow passage, when the valve is closed, to provide a clear channel into the conduit, when the valve is opened, through deposits which might have formed on portions of the valve adjacent the conduit.

  4. Software Roadmap to Plug and Play Petaflop/s

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    1993). LBNL Software Roadmap to Plug and Play Petaflop/s 7.16, 2005. LBNL Software Roadmap to Plug and Play Petaflop/sChombo. LBNL Software Roadmap to Plug and Play Petaflop/s

  5. State-of-Health Aware Optimal Control of Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    energy storage ability of PEV batteries is exploited for frequency regulation, load balancing, etc [2, nuclear power and renewable energy such as wind energy, solar energy and tidal energy. The battery storage, USA {yanzhiwa, siyuyue, pedram}@usc.edu Abstract--Plug-in electric vehicles (PEVs) are key new energy

  6. Education Toolbox Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    energy.goveereeducationdownloadspower-plug-introduction-energy-electricity-consumption-and-efficiency Page Advantages and Challenges of Wind Energy Wind energy offers...

  7. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01T23:59:59.000Z

    solely from stored electric energy during the day. With theIn Hybrid Electric Vehicles on Energy and Emissions UsingIn Hybrid Electric Vehicles on Energy and Emissions Using

  8. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions...

  9. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

  10. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01T23:59:59.000Z

    M. , 2006. Plug-in hybrid vehicle analysis. Milestonegas emissions from plug-in hybrid vehicles: implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

  11. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation 2011 DOE...

  12. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    arravt068vssmiyasato2011o .pdf More Documents & Publications SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid...

  13. Selecting a Control Strategy for Plug and Process Loads

    SciTech Connect (OSTI)

    Lobato, C.; Sheppy, M.; Brackney, L.; Pless, S.; Torcellini, P.

    2012-09-01T23:59:59.000Z

    Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.

  14. Plug and Process Loads Capacity and Power Requirements Analysis

    SciTech Connect (OSTI)

    Sheppy, M.; Gentile-Polese, L.

    2014-09-01T23:59:59.000Z

    This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus of this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.

  15. IX Simpsio Brasileiro de Computao Grfica e

    E-Print Network [OSTI]

    IX Simpósio Brasileiro de Computação Gráfica e Processamento de Imagens Editores: Luiz Velho Brasileiro de Computação Gráfica e Processamento de Imagens. Realização: SBC - Sociedade Brasileira de no Brasil / Printed in Brazil Simpósio Brasileiro de Computação Gráfica e Processamento de Imagens, 9

  16. Plug-in Hybrid Initiative

    SciTech Connect (OSTI)

    Goodman, Angie; Moore, Ray; Rowden, Tim

    2013-09-27T23:59:59.000Z

    Our main project objective was to implement Plug-in Electric Vehicles (PEV) and charging infrastructure into our electric distribution service territory and help reduce barriers in the process. Our research demonstrated the desire for some to be early adopters of electric vehicles and the effects lack of education plays on others. The response of early adopters was tremendous: with the initial launch of our program we had nearly 60 residential customers interested in taking part in our program. However, our program only allowed for 15 residential participants. Our program provided assistance towards purchasing a PEV and installation of Electric Vehicle Supply Equipment (EVSE). The residential participants have all come to love their PEVs and are more than enthusiastic about promoting the many benefits of driving electric.

  17. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  18. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  19. A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Onar, Omer C [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

  20. Integrating Renewable Energy Systems in Buildings (Presentation)

    SciTech Connect (OSTI)

    Hayter, S. J.

    2011-08-01T23:59:59.000Z

    This presentation on integrating renewable energy systems into building was presented at the August, 2011 ASHRAE Region IX CRC meetings.

  1. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 4, MAY 2014 1567 Energy Management for a Power-Split Plug-in

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    ] becomes very essential and important. PHEVs, which are equipped with a larger energy storage system dynamic program- ming (DP). Three types of drive cycles, i.e., highway, urban, and urban (congested

  2. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  3. NREL: Learning - Plug-In Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isDataWorking withFuel CellPlug-In Hybrid

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    concepts of photovoltaics. http:energy.goveereeducationdownloadsexploring-photovoltaics-9-investigations Download Power to the Plug: An Introduction to Energy,...

  5. Comments on "Wall-plug (AC) power consumption of a very high energy e+/e- storage ring collider" by Marc Ross

    E-Print Network [OSTI]

    Blondel, A; Butterworth, A; Janot, P; Zimmermann, F; Aleksan, R; Azzi, P; Ellis, J; Klute, M; Zanetti, M

    2013-01-01T23:59:59.000Z

    The paper arXiv:1308.0735 questions some of the technical assumptions made by the TLEP Steering Group when estimating in arXiv:1305.6498 the power requirement for the very high energy e+e- storage ring collider TLEP. We show that our assumptions are based solidly on CERN experience with LEP and the LHC, as well accelerators elsewhere, and confirm our earlier baseline estimate of the TLEP power consumption.

  6. Essays on the Economics of Environmental Issues: The Environmental Kuznets Curve to Optimal Energy Portfolios

    E-Print Network [OSTI]

    Meininger, Aaron G.

    2012-01-01T23:59:59.000Z

    Renewable Portfolio157 B.2 Renewable Energy Funding and Speci?c Technology161 ix B.3 Renewable Energy Penetration

  7. Plug-In Hybrid Vehicle Analysis (Milestone Report)

    SciTech Connect (OSTI)

    Markel, T.; Brooker, A.; Gonder, J.; O'Keefe, M.; Simpson, A.; Thornton, M.

    2006-11-01T23:59:59.000Z

    NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

  8. Ares I-X 30 Day ReportAres I-X 30 Day Report Bob Ess, Mission Manager

    E-Print Network [OSTI]

    Waliser, Duane E.

    Ares I-X 30 Day ReportAres I-X 30 Day Report Bob Ess, Mission Manager Marshall Smith, SE&I Chief Bob Ess, Mission Manager Marshall Smith, SE&I Chief December 3, 2009December 3, 2009 www.nasa.gov #12

  9. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    Lai, C. Marnay, and V. Battaglia (2010), “Plug-in ElectricBeer, Judy Lai, and Vincent Battaglia Environmental EnergyLai a) , and Vincent Battaglia a) Ernest Orlando Lawrence

  10. Nozzle dam having a unitary plug

    DOE Patents [OSTI]

    Veronesi, L.; Wepfer, R.M.

    1992-12-15T23:59:59.000Z

    Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator is disclosed. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket. 16 figs.

  11. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  12. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and...

  13. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01T23:59:59.000Z

    M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

  14. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01T23:59:59.000Z

    M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

  15. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington D.C. vssarravt068miyasato2010p.pdf More Documents & Publications Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation SCAQMD:Plug-In...

  16. Software Roadmap to Plug and Play Petaflop/s

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Chem. , 14, 1347–1363 (1993). LBNL Software Roadmap to PlugSpain, Sep. 12–16, 2005. LBNL Software Roadmap to Plug andeffective. ANL, ORNL, and LBNL have expertise here. Memory

  17. Bond strength of cementitious borehole plugs in welded tuff

    SciTech Connect (OSTI)

    Akgun, H.; Daemen, J.J.K. [Arizona Univ., Tucson, AZ (USA). Dept. of Mining and Geological Engineering

    1991-02-01T23:59:59.000Z

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

  18. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study IInntteerriimm RReeppoorrtt:: PPhhaassee 11 Government or any agency thereof. ORNL/TM-2008/076 #12;Plug-in Hybrid Electric Vehicle Value Proposition 2009 i ACKNOWLEDGEMENTS The Plug-In Hybrid Electric Vehicle (PHEV) Value Proposition Study

  19. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study Phase 1, Task 3:Phase 1, Task 3: Technic Government or any agency thereof. #12;ORNL/TM-2008/068 Plug-in Hybrid Electric Vehicle Value Proposition The Plug-In Hybrid Electric Vehicle (PHEV) Value Proposition Study is a collaborative effort between

  20. WPCF 2013 - IX Workshop on Particle Correlations and Femtoscopy

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    WPCF 2013 IX Workshop on Particle Correlations and Femtoscopy We are pleased to announce the upcoming IX Workshop on Particle Correlations and Femtoscopy, WPCF 2013. The workshop will be held in the Sicilian town of Acireale (Italy), near Catania, on Nov 5-8, 2013. The meeting is organized by the Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Catania and Laboratori Nazionali del Sud (LNS) and by the Dipartimento di Fisica ed Astronomia of the University of Catania. Scientific information and topics

  1. Anisotropic Bianchi types VIII and IX locally rotationally symmetric cosmologies

    SciTech Connect (OSTI)

    Assad, M.J.D.; Soares, I.D.

    1983-10-15T23:59:59.000Z

    We present a class of exact cosmological solutions of Einstein-Maxwell equations, which are anisotropic and spatially homogeneous of Bianchi types VIII and IX, and class IIIb in the Stewart-Ellis classification of locally rotationally symmetric models. If we take the electromagnetic field equal to zero, a class of Bianchi types VIII/IX spatially homogeneous anisotropic cosmological solutions with perfect fluid is obtained.

  2. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-09-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  3. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eereeducationdownloadspower-plug-introduction-energy-electricity-consumption-and-efficiency Download Electrolysis of Water Students observe the electrolysis of water using...

  5. Compact Fluorescent Plug-In Ballast-in-a-Socket

    SciTech Connect (OSTI)

    Rebecca Voelker

    2001-12-21T23:59:59.000Z

    The primary goal of this program was to develop a ballast system for plug-in CFLs (compact fluorescent lamps) that will directly replace standard metal shell, medium base incandescent lampholders (such as Levition No. 6098) for use with portable lamp fixtures, such as floor, table and desk lamps. A secondary goal was to identify a plug-in CFL that is optimized for use with this ballast. This Plug-in CFL Ballastin-a-Socket system will allow fixture manufacturers to easily manufacture CFL-based high-efficacy portable fixtures that provide residential and commercial consumers with attractive, cost-effective, and energy-efficient fixtures for use wherever portable incandescent fixtures are used today. The advantages of this proposed system over existing CFL solutions are that the fixtures can only be used with high-efficacy CFLs, and they will be more attractive and will have lower life-cycle costs than screw-in or adapter-based CFL retrofit solutions. These features should greatly increase the penetration of CFL's into the North American market. Our work has shown that using integrated circuits it is quite feasible to produce a lamp-fixture ballast of a size comparable to the current Edison-screw 3-way incandescent fixtures. As for price points for BIAS-based fixtures, end-users polled by the Lighting Research Institute at RPI indicated that they would pay as much as an additional $10 for a lamp containing such a ballast. The ballast has been optimized to run with a 26 W amalgam triple biax lamp in the base-down position, yet can accept non-amalgam versions of the lamp. With a few part alterations, the ballast can be produced to support 32 W lamps as well. The ballast uses GE's existing L-Comp[1] power topology in the circuit so that the integrated circuit design would be a design that could possibly be used by other CFL and EFL products with minor modifications. This gives added value by reducing cost and size of not only the BIAS, but also possibly other integral CFL and future dimmable integral and plug-in versions of the EFL products.

  6. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a home energy survey to help you analyze your home energy use. http:energy.goveereeducationdownloadspower-plug-introduction-energy-electricity-consumption-and-efficiency...

  7. Testbeam results for the CDF end plug hadron calorimeter

    SciTech Connect (OSTI)

    Liu, J. [Rochester Univ., NY (United States); CDF Plug Upgrade Group Collaboration

    1997-12-01T23:59:59.000Z

    Preliminary testbeam results for the CDF Tile-Fiber End Plug Upgrade Hadron Calorimeter (Hcal) are presented. Data were taken at incident momentum range of 5 to 230 GeV/c during 1996-7. The discussion of the {pi}-p energy response difference is motivated by the proton contamination in the hadron beam. Three effects which result in the {pi}-p response difference are studied. Measurements of the {pi}-p energy response were done at 5.4 and 13.3 GeV/c. The data agree with a calculation based on the three effects. The calculated proton contamination correction is applied to all the hadron data. The linearity and resolution of Hcal to pions are presented. The e/h parameter is extracted from the measurements of the response of Hcal to pions and positrons.

  8. Photo illustration by George Lange, with Michael Miller (Plug) Popular Mechanics Impact of PlugImpact of Plug--in Hybrids on thein Hybrids on the

    E-Print Network [OSTI]

    1 1 Photo illustration by George Lange, with Michael Miller (Plug) ­Popular Mechanics Impact system Turbo Diesel hybrid Future options Gasoline Turbo Diesel Hybrid plug-in hybrid Battery electric Fuel Cell Audi Turbo Diesel GM Volt Hyundai's Fuel Cell Tesla's Battery electric car #12;7 13 Barriers

  9. Ford Plug-In Project: Bringing PHEVs to Market

    Broader source: Energy.gov (indexed) [DOE]

    projects: - analysis of infield results of the Escape PHEVs, - field demonstration of Smart Meter communication, and - creation of a model studying plug-in vehicles as a grid...

  10. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  11. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  12. Battery Choices for Different Plug-in HEV Configurations (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2006-07-12T23:59:59.000Z

    Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

  13. anal fistula plug: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surplus power they generate. Plugging in the consumer Innovating utility business models for the future, the relationship between utilities and consumers has been rather...

  14. activity plug-in: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surplus power they generate. Plugging in the consumer Innovating utility business models for the future, the relationship between utilities and consumers has been rather...

  15. amplatzer vascular plug: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surplus power they generate. Plugging in the consumer Innovating utility business models for the future, the relationship between utilities and consumers has been rather...

  16. Plug-In Electric Vehicle Handbook for Public Charging

    E-Print Network [OSTI]

    about the new generation of plug-in electric vehicles (PEVs) like the Chevy Volt and Nissan Leaf. You. Gasoline- and diesel-powered ICE vehicles ended

  17. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  18. Electro-thermal-mechanical Simulation and Reliability for Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation Meeting ape026hefner2012o.pdf More Documents & Publications Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy-expos Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of Energy have...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    your home energy use. http:energy.goveereeducationdownloadspower-plug-introduction-energy-electricity-consumption-and-efficiency Download Ocean Power (4 Activities) Areas of...

  1. 2013 IREP Symposium-Bulk Power System Dynamics and Control -IX (IREP), August 25-30, 2013, Rethymnon, Greece A Comparative Assessment of Demand Response and Energy Storage Resource

    E-Print Network [OSTI]

    Gross, George

    , Rethymnon, Greece A Comparative Assessment of Demand Response and Energy Storage Resource Economic system operators, policy makers and other grid stakeholders in the expanded utilization of energy storage amount of grid-scale energy storage (ES) in operation and little participation from the demand

  2. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

  3. Software Roadmap to Plug and Play Petaflop/s Editor: Bill Kramer (wtkramer@lbl.gov)

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    LBNL-59999 Software Roadmap to Plug and Play Petaflop/s Editor: Bill Kramer (wtkramer Software Roadmap to Plug and Play Petaflop/s 1 Software Roadmap to Plug and Play Petaflop/s In the next

  4. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

  5. Coalition Task Support using I-X and  

    E-Print Network [OSTI]

    Tate, Austin

    I-X is a research programme with a number of different aspects in-tended to create a well-founded approach to allow humans and computer systems to cooperate in the creation or modification of some product such as a design, ...

  6. "Catching the second wave" of the Plug in Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    "Catching the second wave" of the Plug in Electric Vehicle Market PEV market update from ITS PHEV on gasoline, diesel, natural gas, biofuels and other liquid or gaseous fuels. · HEV = Hybrid electric vehicles Vehicles are like HEVs, but have bigger batteries, and can store electricity from plugging into the grid

  7. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study Phase 1, Task 2: Select Value Propositions Government or any agency thereof. #12;ORNL/TM-2008/056 Plug-in Hybrid Electric Vehicle Value Proposition-In Hybrid Electric Vehicle (PHEV) Value Propositions Workshop held in Washington, D.C. in December 2007

  8. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  9. Distributed Computing for Plug-and-Play Network Service Configuration

    E-Print Network [OSTI]

    White, Tony

    Distributed Computing for Plug-and-Play Network Service Configuration Abstract Configuration, Distributed Computing, Plug-and-Play, PnP, Mobile Agents, Jini, CORBA 1. Introduction Network Management advertisement over the network. The process of service provisioning is completed with arranging, distributing

  10. Competitive Charging Station Pricing for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Huang, Jianwei

    . To overcome this challenge, we develop a low-complexity algorithm that efficiently computes the pricingCompetitive Charging Station Pricing for Plug-in Electric Vehicles Wei Yuan, Member, IEEE, Jianwei considers the problem of charging station pricing and station selection of plug-in electric vehicles (PEVs

  11. Electric plugs--repair or replace The problem

    E-Print Network [OSTI]

    need s New plug­if your old one cannot be used. (Buy one with a UL label) s A screwdriver s A knife How to 1. Cut the cord off at the damaged part (Fig. 1). 2. Slip the plug back on the cord (Fig. 2). 3

  12. Space Heaters, Computers, Cell Phone Chargers: How Plugged In AreCommercial Buildings?

    SciTech Connect (OSTI)

    Sanchez, Marla; Webber, Carrie; Brown, Richard; Busch, John; Pinckard, Margaret; Roberson, Judy

    2007-02-28T23:59:59.000Z

    Evidenceof electric plug loads in commercial buildings isvisible everyday: space heaters, portable fans, and the IT technician'stwo monitors connected to one PC. The Energy Information Administrationestimates that office and miscellaneous equipment together will consume2.18 quads in 2006, nearly 50 percent of U.S. commercial electricity use.Although the importance of commercial plug loads is documented, its verynature (diverse product types, products not installed when buildinginitially constructed, and products often hidden in closets) makes itdifficult to accurately count and categorize the end use.We auditedsixteen buildings in three cities (San Francisco, Atlanta, Pittsburgh)including office, medical and education building types. We inventoriedthe number and types of office and miscellaneous electric equipment aswell as estimated total energy consumption due to these product types. Intotal, we audited approximately 4,000 units of office equipment and 6,000units of miscellaneous equipment and covered a diverse range of productsranging from electric pencil sharpeners with a unit energy consumption(UEC) of 1 kWh/yr to a kiln with a UEC of 7,000 kWh/yr. Our paperpresents a summary of the density and type of plug load equipment foundas well as the estimated total energy consumption of the equipment.Additionally, we present equipment trends observed and provide insightsto how policy makers can target energy efficiency for this growing enduse.

  13. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    supervises testing in the Hybrid Vehicle Propulsion Systemsbattery for plug-in hybrid vehicle is complicated processstorage for Plug-in Hybrid vehicles EVS24 International

  14. High-Power Electrochemical Storage Devices and Plug-in Hybrid...

    Energy Savers [EERE]

    High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle Battery Development High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle...

  15. Assessing and Reducing Plug and Process Loads in Retail Buildings (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

  16. Office Buildings: Assessing and Reducing Plug and Process Loads in Office Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

  17. Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

  18. Assessing and Reducing Plug and Process Loads in Office Buildings (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

  19. Essays on the Economics of Environmental Issues: The Environmental Kuznets Curve to Optimal Energy Portfolios

    E-Print Network [OSTI]

    Meininger, Aaron G.

    2012-01-01T23:59:59.000Z

    157 B.2 Renewable Energy Funding and Speci?c Technology161 ix B.3 Renewable Energy Penetrationof Renewable Energy Consumption . . . . . . . . . . . . .

  20. Better Building Alliance, Plug and Process Loads in Commercial Buildings: Capacity and Power Requirement Analysis (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    This brochure addresses gaps in actionable knowledge that can help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. This brochure should be used to make these decisions so systems can operate more energy efficiently; upfront capital costs will also decrease. This information can also be used to drive changes in negotiations about PPL energy demands. It should enable brokers and tenants to agree about lower PPL capacities. Owner-occupied buildings will also benefit. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems.

  1. Economics of Plug-In Hybrid Electric Vehicles (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    Plug-In hybrid electric vehicles (PHEVs) have gained significant attention in recent years, as concerns about energy, environmental, and economic securityincluding rising gasoline prices have prompted efforts to improve vehicle fuel economy and reduce petroleum consumption in the transportation sector. PHEVs are particularly well suited to meet these objectives, because they have the potential to reduce petroleum consumption both through fuel economy gains and by substituting electric power for gasoline use.

  2. Education Toolbox Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    energy-expos Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of Energy have...

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sources Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy,...

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    renewable and nonrenewable resources to explore energy options. http:energy.goveereeducationdownloadsenergy-production Download Power to the Plug: An Introduction to...

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    downloadsenergy-production Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of Energy...

  6. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of Energy have...

  7. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of 31 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of Energy have...

  8. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on how to build a solar oven. http:energy.goveereeducationdownloadsbuild-pizza-box-solar-oven-0 Download Power to the Plug: An Introduction to Energy, Electricity,...

  9. Analysis of Plug Load Capacities and Power Requirements in Commercial Buildings: Preprint

    SciTech Connect (OSTI)

    Sheppy, M.; Torcellini, P.; Gentile-Polese, L.

    2014-08-01T23:59:59.000Z

    Plug and process load power requirements are frequently overestimated because designers often use estimates based on 'nameplate' data, or design assumptions are high because information is not available. This generally results in oversized heating, ventilation, and air-conditioning systems; increased initial construction costs; and increased energy use caused by inefficiencies at low, part-load operation. Rightsizing of chillers in two buildings reduced whole-building energy use by 3%-4%. If an integrated design approach could enable 3% whole-building energy savings in all U.S. office buildings stock, it could save 34 TBtu of site energy per year.

  10. Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    John G. Smart; Sera White; Michael Duoba

    2009-05-01T23:59:59.000Z

    Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energy’s (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

  11. Drum plug piercing and sampling device and method

    DOE Patents [OSTI]

    Counts, Kevin T. (Aiken, SC)

    2011-04-26T23:59:59.000Z

    An apparatus and method for piercing a drum plug of a drum in order to sample and/or vent gases that may accumulate in a space of the drum is provided. The drum is not damaged and can be reused since the pierced drum plug can be subsequently replaced. The apparatus includes a frame that is configured for engagement with the drum. A cylinder actuated by a fluid is mounted to the frame. A piercer is placed into communication with the cylinder so that actuation of the cylinder causes the piercer to move in a linear direction so that the piercer may puncture the drum plug of the drum.

  12. Impact of Battery Weight and Charging Patterns on the Economic and Environmental Benefits of Plug-in

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    the transportation sector. Because plug-in vehicles require large batteries for energy storage, battery weight can of gasoline consumption with electricity. While the U.S. transportation sector is overwhelming powered Samaras Engineering and Public Policy Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213

  13. Managing Plug-Loads for Demand Response within Buildings Thomas Weng, Bharathan Balaji, Seemanta Dutta, Rajesh Gupta, Yuvraj Agarwal

    E-Print Network [OSTI]

    Gupta, Rajesh

    Managing Plug-Loads for Demand Response within Buildings Thomas Weng, Bharathan Balaji, Seemanta managers can per- form active energy management, especially during demand response situations that require, allowing them to deal with demand response situations through user- specified actuation policies. At its

  14. Journal of Undergraduate Research, Volume IX, 2009

    SciTech Connect (OSTI)

    Stiner, K. S.; Graham, S.; Khan, M.; Dilks, J.; Mayer, D.

    2009-01-01T23:59:59.000Z

    Each year more than 600 undergraduate students are awarded paid internships at the Department of Energy’s (DOE) National Laboratories. Th ese interns are paired with research scientists who serve as mentors in authentic research projects. All participants write a research abstract and present at a poster session and/or complete a fulllength research paper. Abstracts and selected papers from our 2007–2008 interns that represent the breadth and depth of undergraduate research performed each year at our National Laboratories are published here in the Journal of Undergraduate Research. The fields in which these students worked included: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Science; Materials Science; Medical and Health Sciences; Nuclear Science; Physics; Science Policy; and Waste Management.

  15. alternate tube plugging: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performed by a plug-in privacy component that is put into the communication link between Smart Meter and supplier's back-end systems and requires no change to Smart Meter hardware...

  16. Workplace Plug-in Electric Vehicle Ride and Drive

    Broader source: Energy.gov [DOE]

    Workplace plug-in electric vehicle (PEV) Ride and Drive events are one of the most effective ways to drive PEV adoption. By providing staff the opportunity to experience PEVs first hand, they can...

  17. Modeling medical devices for plug-and-play interoperability

    E-Print Network [OSTI]

    Hofmann, Robert Matthew

    2007-01-01T23:59:59.000Z

    One of the challenges faced by clinical engineers is to support the connectivity and interoperability of medical-electrical point-of-care devices. A system that could enable plug-and-play connectivity and interoperability ...

  18. Plug-in electric vehicle introduction in the EU

    E-Print Network [OSTI]

    Sisternes, Fernando J. de $q (Fernando José Sisternes Jiménez)

    2010-01-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) could significantly reduce gasoline consumption and greenhouse gas (GHG) emissions in the EU's transport sector. However, PEV well-towheel (WTW) emissions depend on improvements in vehicle ...

  19. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01T23:59:59.000Z

    237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

  20. Plug-In Demo Charges up Clean Cities Coalitions | Department...

    Broader source: Energy.gov (indexed) [DOE]

    show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius,...

  1. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01T23:59:59.000Z

    mail: ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-by either gasoline or electricity, but unlike hybrids, PHEVsto use very low-carbon electricity resources, such as

  2. Inert plug formation in the DDT of granular energetic materials

    SciTech Connect (OSTI)

    Son, S.F.; Asay, B.W.; Bdzil, J.B.

    1995-09-01T23:59:59.000Z

    A mechanism is proposed to explain the {open_quotes}plugs{close_quotes} that have been observed in deflagration-to-detonation transition (DDT) of granular explosives. Numerical simulations are performed that demonstrate the proposed mechanism. Observed trends are reproduced.

  3. Plug-In Electric Vehicle Handbook for Electrical

    E-Print Network [OSTI]

    Handbook for Electrical Contractors 3 You've heard about the new generation of plug-in electric vehicles line improved the usabil- ity and affordability of ICE vehicles. Gasoline- and diesel-powered ICE

  4. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01T23:59:59.000Z

    in the context of regional grid structure and operations,and Regional U.S. Power Grids. Part 1: Technical Analysis;ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-In

  5. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  6. Cours-IX/Clavin2015.key

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution AndControllingCoolCorrectiveCosts ofCountingIVIX

  7. Experimental investigations on sodium plugging in narrow flow channels.

    SciTech Connect (OSTI)

    Momozaki, Y.; Cho, D. H.; Sienicki, J. J.; Moisseytsev, A.; Nuclear Engineering Division

    2010-08-01T23:59:59.000Z

    A series of experiments was performed to investigate the potential for plugging of narrow flow channels of sodium by impurities (e.g., oxides). In the first phase of the experiments, clean sodium was circulated through the test sections simulating flow channels in a compact diffusion-bonded heat exchanger such as a printed circuit heat exchanger. The primary objective was to see if small channels whose cross sections are semicircles of 2, 4, and 6 mm in diameter are usable in liquid sodium applications where sodium purity is carefully controlled. It was concluded that the 2-mm channels, the smallest of the three, could be used in clean sodium systems at temperatures even as low as 100 to 110 C without plugging. In the second phase, sodium oxide was added to the loop, and the oxygen concentration in the liquid sodium was controlled by means of varying the cold-trap temperature. Intentional plugging was induced by creating a cold spot in the test sections, and the subsequent plugging behavior was observed. It was found that plugging in the 2-mm test section was initiated by lowering the cold spot temperature below the cold-trap temperature by 10 to 30 C. Unplugging of the plugged channels was accomplished by heating the affected test section.

  8. E-Print Network 3.0 - anhydrase ix correlates Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ix correlates Page: << < 1 2 3 4 5 > >> 1 Prokaryotic carbonic anhydrases Kerry S. Smith *, James G. Ferry Summary: Prokaryotic carbonic anhydrases Kerry S. Smith *, James G....

  9. E-Print Network 3.0 - anhydrase ix biochemical Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ix biochemical Page: << < 1 2 3 4 5 > >> 1 Prokaryotic carbonic anhydrases Kerry S. Smith *, James G. Ferry Summary: Prokaryotic carbonic anhydrases Kerry S. Smith *, James G....

  10. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    pink vertical line represents a driving threshold for plug-vertical lines representing the typical driving thresholds52mi of driving per refueling (chapter 2) At full, red-line

  11. Small-Scale Spray Releases: Orifice Plugging Test Results

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Blanchard, Jeremy; Kimura, Marcia L.; Kurath, Dean E.

    2012-09-01T23:59:59.000Z

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities, is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations published in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials present in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty introduced by extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches in which the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are largely absent. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine the aerosol release fractions and aerosol generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents (AFA) was assessed with most of the simulants. Orifices included round holes and rectangular slots. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of the study described in this report is to provide experimental data for the first key technical area, potential plugging of small breaches, by performing small-scale tests with a range of orifice sizes and orientations representative of the WTP conditions. The simulants used were chosen to represent the range of process stream properties in the WTP. Testing conducted after the plugging tests in the small- and large-scale test stands addresses the second key technical area, aerosol generation. The results of the small-scale aerosol generation tests are included in Mahoney et al. 2012. The area of spray generation from large breaches is covered by large-scale testing in Schonewill et al. 2012.

  12. CsIX/TRU Grout Feasibility Study

    SciTech Connect (OSTI)

    S. J. Losinski; C. M. Barnes; B. K. Grover

    1998-11-01T23:59:59.000Z

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that liquid waste now stored at the Idaho Nuclear Technology Engineering Center (INTEC - formerly the Idaho Chemical Processing Plant, ICPP) will be calcined by the end of year 2012. This study investigates an alternative treatment of the liquid waste that removes undissolved solids (UDS) by filtration and removes cesium by ion exchange followed by cement-based grouting of the remaining liquid into 55-gal drums. Operations are assumed to be from January 2008 through December 2012. The grouted waste will be contact-handled and will be shipped to the Waste Isolation Pilot Plant (WIPP) in New Mexico for disposal. The small volume of secondary wastes such as the filtered solids and cesium sorbent (resin) would remain in storage at the Idaho National Engineering and Environmental Laboratory for treatment and disposal under another project, with an option to dispose of the filtered solids as a r emote-handled waste at WIPP.

  13. Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01T23:59:59.000Z

    Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

  14. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    continued growth of its coal- dominated energy system, Chinasectoral end use from coal China Energy Databook IX-3 (TableAND EXPORTS Net Energy Exports Coal Imports and Exports by

  15. Plug Load Energy Analysis: The Role of Plug Loads in LEED Certification

    E-Print Network [OSTI]

    Fuertes, Gwen; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    the United States Green Building Council. 2008. Proceedingsdepartment at the U.S. Green Building Council for theirdata submitted to the U.S. Green Building Council for LEED

  16. Education Toolbox Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    on how to build a solar oven. http:energy.goveereeducationdownloadsbuild-pizza-box-solar-oven-0 Download Power to the Plug: An Introduction to Energy, Electricity,...

  17. Education Toolbox Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of Energy have...

  18. Field Trial of a Low-Cost, Distributed Plug Load Monitoring System

    SciTech Connect (OSTI)

    Auchter, B.; Cautley, D.; Ahl, D.; Earle, L.; Jin, X.

    2014-03-01T23:59:59.000Z

    Researchers have struggled to inventory and characterize the energy use profiles of the ever-growing category of so-called miscellaneous electric loads (MELs) because plug-load monitoring is cost-prohibitive to the researcher and intrusive to the homeowner. However, these data represent a crucial missing link to our understanding of how homes use energy, and we cannot control what we do not understand. Detailed energy use profiles would enable the nascent automated home energy management (AHEM) industry to develop effective control algorithms that target consumer electronics and other plug loads. If utility and other efficiency programs are to incent AHEM devices, they need large-scale datasets that provide statistically meaningful justification of their investments by quantifying the aggregate energy savings achievable. To address this need, we have investigated a variety of plug-load measuring devices available commercially and tested them in the laboratory to identify the most promising candidates for field applications. The scope of this report centers around the lessons learned from a field validation of one proof-of-concept system, called Smartenit (formerly SimpleHomeNet). The system was evaluated based on the rate of successful data queries, reliability over a period of days to weeks, and accuracy. This system offers good overall performance when deployed with up to ten end nodes in a residential environment, although deployment with more nodes and in a commercial environment is much less robust. We conclude that the current system is useful in selected field research projects, with the recommendation that system behavior is observed over time.

  19. ATTACHMENT IX Review of Air Products Fischer-Tropsch Synthesis Work

    E-Print Network [OSTI]

    Kentucky, University of

    IX.1-Draft ATTACHMENT IX Review of Air Products Fischer-Tropsch Synthesis Work During the 1980s, Air Products & Chemicals worked on several aspects of the Fischer-Tropsch synthesis. These included the development of novel Fischer-Tropsch slurry catalysts and process concepts, the design of a Fischer-Tropsch

  20. AVTA: Plug-In Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    2013 Ford Fusion Energi2013 Ford C-Max Energi Fleet2013 Ford C-Max Energi2012 Chevrolet Volt2012 Toyota Prius2013 Toyota Prius2013 Chevrolet Volt2011 Chrysler Town & Country2010 Quantum...

  1. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy,...

  2. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy,...

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy,...

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewables Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy,...

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy, Electricity,...

  6. NREL: Energy Storage - Battery Ownership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    publications. Updating United States Advanced Battery Consortium and Department of Energy Battery Technology Targets for Battery Electric Vehicles Sensitivity of Plug-In Hybrid...

  7. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency...

  8. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The...

  9. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy,...

  10. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and...

  11. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and...

  12. Search results | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and societal aspects of hydropower to secondary students http:energy.goveereeducationdownloadsexploring-hydroelectricity-9-activities Download Power to the Plug: An...

  13. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    educationdownloadsenergy-production Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department...

  14. Wireless Power May Cut the Cord for Plug-In Devices, Including Cars1 by Will Ferguson for National Geographic News, abbreviated2

    E-Print Network [OSTI]

    South Bohemia, University of

    ), aims to redefine how people use8 energy, making it possible to power devices without ever plugging them inches." WiTricity devices share energy through magnetic fields as well. However, unlike those generated legs at the resonant frequency of a swing to fly through the air, or an opera singer shatters a24 wine

  15. Kansas Consortium Plug-in Hybrid Medium Duty

    SciTech Connect (OSTI)

    None, None

    2012-03-31T23:59:59.000Z

    On September 30, 2008, the US Department of Energy (DoE), issued a cooperative agreement award, DE-FC26-08NT01914, to the Metropolitan Energy Center (MEC), for a project known as “Kansas Consortium Plug-in Hybrid Medium Duty Certification” project. The cooperative agreement was awarded pursuant to H15915 in reference to H. R. 2764 Congressionally Directed Projects. The original agreement provided funding for The Consortium to implement the established project objectives as follows: (1) to understand the current state of the development of a test protocol for PHEV configurations; (2) to work with industry stakeholders to recommend a medium duty vehicle test protocol; (3) to utilize the Phase 1 Eaton PHEV F550 Chassis or other appropriate PHEV configurations to conduct emissions testing; (4) and to make an industry PHEV certification test protocol recommendation for medium duty trucks. Subsequent amendments to the initial agreement were made, the most significant being a revised Scope of Project Objectives (SOPO) that did not address actual field data since it was not available as originally expected. This project was mated by DOE with a parallel project award given to the South Coast Air Quality Management District (SCAQMD) in California. The SCAQMD project involved designing, building and testing of five medium duty plug-in hybrid electric trucks. SCAQMD had contracted with the Electric Power Research Institute (EPRI) to manage the project. EPRI provided the required match to the federal grant funds to both the SCAQMD project and the Kansas Consortium project. The rational for linking the two projects was that the data derived from the SCAQMD project could be used to validate the protocols developed by the Kansas Consortium team. At the same time, the consortium team would be a useful resource to SCAQMD in designating their test procedures for emissions and operating parameters and determining vehicle mileage. The years between award of the cooperative agreements and their completion were problematic for the US and world economies. This resulted in the President and Congress implementing the American Recovery and Reinvestment Act of 2009, abbreviated ARRA (Pub.L. 111-5), commonly referred to as the Stimulus or The Recovery Act. The stimulus money available for transportation projects encouraged the SCAQMD to seek additional funds. In August of 2009, they eventually were awarded an additional $45.5 M, and the scope of their project was expanded to 378 vehicles. However, as a consequence of the stimulus money and the inundation of DOE with applications for new project under the ARRA, the expected time table for producing and testing vehicles was significantly delayed. As a result, these vehicles were not available for validating the protocols developed by the Kansas Consortium. Therefore, in April of 2011, the Scope of Project Objectives (SOPO) for the project was revised, and limited to producing the draft protocol for PHEV certification as its deliverable.

  16. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimentalInfrastructureFuels inDuneCharging Plug-In

  17. Alternative Fuels Data Center: Plug-In Electric Vehicle Readiness Scorecard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulaseFuels andConversionsAssumptions andPlug-In

  18. Secretary Chu Announces up to $10 Million to Support Plug-In...

    Office of Environmental Management (EM)

    0 Million to Support Plug-In Hybrid Electric School Buses Secretary Chu Announces up to 10 Million to Support Plug-In Hybrid Electric School Buses April 17, 2009 - 12:00am Addthis...

  19. Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus 2010 DOE Vehicle...

  20. Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction Fact 856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction...

  1. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Fact 796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales...

  2. Development and Deployment of Generation 3 Plug-In Hybrid Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells Program, and...

  3. EV Everywhere: Electric Drive Systems Bring Power to Plug-in...

    Energy Savers [EERE]

    EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles January 31, 2014 -...

  4. Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid...

    Energy Savers [EERE]

    2: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles Fact 562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles Estimates from the GREET model...

  5. DOE Supports PG&E Development of Next Generation Plug-in Hybrid...

    Energy Savers [EERE]

    DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks February 25, 2015 -...

  6. Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration...

    Broader source: Energy.gov (indexed) [DOE]

    2015 Plug-in Electric Vehicle Penetration by State, 2014 fotw876web.xlsx More Documents & Publications Fact 856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for...

  7. Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)

    E-Print Network [OSTI]

    Zhiping, L.

    2010-01-01T23:59:59.000Z

    capacity came from cogeneration, fuel gas emissionsof waste heat cogeneration capacity, and improvements to theof energy (e.g. , cogeneration); (ix) improving energy

  8. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    and Batteries for Hybrid Vehicle Applications, 23 rdSimulations of Plug-in Hybrid Vehicles using Advancedultracapacitors in plug-in hybrid vehicles (PHEVs) with high

  9. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    detour? Presentation at SAE 2008 Hybrid Vehicle Technologiesdrive vehicles, including plug-in hybrid vehicles. -vi-including plug-in hybrid vehicles. 7.0 References Anderman,

  10. Opportunity to Plug Your Car Into the Electric Grid is Arriving

    SciTech Connect (OSTI)

    Griego, G.

    2010-06-01T23:59:59.000Z

    Plug-in hybrid electric vehicles are hitting the U.S. market for the first time this year. Similar to hybrid electric vehicles, they feature a larger battery and plug-in charger that allows consumers to replace a portion of their fossil fuel by simply plugging their cars into standard 110-volt outlets at home or wherever outlets are available. If these vehicles become widely accepted, consumers and the environment will benefit, according to a computer modeling study by Xcel Energy and the Department of Energy's National Renewable Energy Laboratory. Researchers found that each PHEV would cut carbon dioxide emissions in half and save owners up to $450 in annual fuel costs and up to 240 gallons of gasoline. The study also looked at the impact of PHEVs on the electric grid in Colorado if used on a large scale. Integrating large numbers of these vehicles will depend on the adoption of smart-grid technology - adding digital elements to the electric power system to improve efficiency and enable more dynamic communication between consumers and producers of electricity. Using an intelligent monitoring system that keeps track of all electricity flowing in the system, a smart grid could enable optimal PHEV battery-charging much the same way it would enable users to manage their energy use in household appliances and factory processes to reduce energy costs. When a smart grid is implemented, consumers will have many low-cost opportunities to charge PHEVs at different times of the day. Plug-in vehicles could contribute electricity at peak times, such as summer evenings, while taking electricity from the grid at low-use times such as the middle of the night. Electricity rates could offer incentives for drivers to 'give back' electricity when it is most needed and to 'take' it when it is plentiful. The integration of PHEVs, solar arrays and wind turbines into the grid at larger scales will require a more modern electricity system. Technology already exists to allow customers to feed excess power from their own renewable energy systems back to the grid. As more homes and businesses find opportunities to plan power flows to and from the grid for economic gain using their renewable energy systems and PHEVs, more sophisticated systems will be needed. A smart grid will improve the efficiency of energy consumption, manage real-time power flows and provide two-way metering needed to compensate small power producers. Many states are working toward the smart-grid concept, particularly to incorporate renewable sources into their utility grids. According to the Department of Energy, 30 states have developed and adopted renewable portfolio standards, which require up to 20 percent of a state's energy portfolio to come exclusively from renewable sources by this year, and up to 30 percent in the future. NREL has been laying the foundation for both PHEVs and the smart grid for many years with work including modifying hybrid electric cars with plug-in technology; studying fuel economy, batteries and power electronics; exploring options for recharging batteries with solar and wind technologies; and measuring reductions in greenhouse gas emissions. The laboratory participated in development of smart-grid implementation standards with industry, utilities, government and others to guide the integration of renewable and other small electricity generation and storage sources. Dick DeBlasio, principal program manager for electricity programs, is now leading the Institute of Electrical and Electronics Engineers Standards efforts to connect the dots regarding power generation, communication and information technologies.

  11. Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Simpson, A.

    2006-10-01T23:59:59.000Z

    Presents a cost-benefit of analysis of plug-in hybrid electric vehicle technology, including potential petroleum use reduction.

  12. Prospects for Plug-in Hybrid Electric Vehicles in the United States: A General Equilibrium Analysis

    E-Print Network [OSTI]

    Prospects for Plug-in Hybrid Electric Vehicles in the United States: A General Equilibrium Analysis, Technology and Policy Program #12;#12;3 Prospects for Plug-in Hybrid Electric Vehicles in the United States Engineering ABSTRACT The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions

  13. Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks in

    E-Print Network [OSTI]

    Victoria, University of

    Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks Committee Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks) Departmental Member Plug-in hybrid electric vehicles (PHEVs) represent a promising future direction

  14. Microfluidic cartridges preloaded with nanoliter plugs of reagents: an alternative to 96-well plates for screening

    E-Print Network [OSTI]

    Ismagilov, Rustem F.

    Microfluidic cartridges preloaded with nanoliter plugs of reagents: an alternative to 96-well equipment and techniques required to dispense nanoliter volumes of fluid. Plug-based microfluidics confines techniques that rely on microfluidic cartridges preloaded with nano- liter plugs of reagents. 96-Well plates

  15. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  16. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  17. INFLATABLE PLUG FOR THREAT MITIGATION IN TRANSPORTATION TUNNELS

    E-Print Network [OSTI]

    Barbero, Ever J.

    INFLATABLE PLUG FOR THREAT MITIGATION IN TRANSPORTATION TUNNELS Xavier Martinez1 , Julio Davalos2 and government entities. Fires, noxious fumes, deadly gasses, and flooding threats have occurred in major are of difficult and limited accessibility, but also because most of the potential threats, such as fires, flooding

  18. Plug-and-Play Decentralized Model Predictive Control Stefano Riverso

    E-Print Network [OSTI]

    Ferrari-Trecate, Giancarlo

    Plug-and-Play Decentralized Model Predictive Control Stefano Riverso , Marcello Farina. When this is possible, we show how to automatize the design of local controllers so that it can information with neighboring subsystems. In particular, local controllers exploit tube-based Model Predictive

  19. Why Electric Cars? The Arrival of Plug-in

    E-Print Network [OSTI]

    Minnesota, University of

    Why Electric Cars? Dan Davids President #12;The Arrival of Plug-in Electric Vehicles Dan Davids President #12;#12;Toyota RAV4EV 1997-2003 #12;#12;#12;#12;#12;· Saving Cars ­ GM EV1 ­ Ford Ranger EV;#12;#12;· Saving Cars ­ GM EV1 (destroyed) ­ Ford Ranger EV (some saved) ­ Honda EV Plus (destroyed) ­ Th!nk City

  20. SmartGridCityTM: Plugging renewables into the

    E-Print Network [OSTI]

    - Wisconsin 3.4 million electricity customers 1.9 million natural gas customers Traditionally regulated #12 response Limited real-time data Reactive outage management system #12;5 How it works: Adding Renewable Widespread distributed generation Plug-in hybrid electric vehicles #12;6 Longer-term hypotheses Can we

  1. Inert plug formation in the DDT of granular energetic materials

    SciTech Connect (OSTI)

    Son, S.F.; Asay, B.W.; Bdzil, J.B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States of America)

    1996-05-01T23:59:59.000Z

    A mechanism is proposed to explain the {open_quotes}plugs{close_quotes} that have been observed in deflagration-to-detonation transition (DDT) of granular explosives. Numerical simulations are performed that demonstrate the proposed mechanism. Observed trends are reproduced. {copyright} {ital 1996 American Institute of Physics.}

  2. Sminaire de thme NEI Elveflow Plug and Play microfluidic

    E-Print Network [OSTI]

    Ingrand, François

    Séminaire de thème NEI Elveflow Plug and Play microfluidic Le 12 Mars 2013 à 14h Intervenant in microfluidic. We will present the last brand of Elveflow products for microfluidic: - OB1: pressure and flow rate controller for high precision multi channel microfluidic flow control - AF1 Standard: nomad

  3. Plug-In Electric Vehicle Handbook for Consumers

    E-Print Network [OSTI]

    for Consumers 3 You've heard about the new generation of plug-in electric vehicles (PEVs) like the Chevy Volt. Gasoline- and diesel-powered ICE vehicles ended up dominating trans- portation in the 20th century. However Electric Ranger. Although many vehicles from this generation were discon- tinued in the early 2000s

  4. Increasing Global Renewable Energy Market Share

    E-Print Network [OSTI]

    Peinke, Joachim

    Increasing Global Renewable Energy Market Share: Recent Trends and Perspectives Final Report Prepared for: Beijing International Renewable Energy Conference 2005 Prepared by: The Expert Group .............................................................. ix Message to the Beijing International Renewable Energy Conference from the Secretary General

  5. Tax Deduction Qualified Software: EnergyPlus version 7.0.0.036

    Broader source: Energy.gov (indexed) [DOE]

    exterior lighting controls." (ix) Daylighting (sidelighting, skylights, or tubular daylight devices). "The EnergyPlus software models sidelighting, skylights, and tubular...

  6. Tax Deduction Qualified Software: EnergyPlus version 5.0.0.031

    Broader source: Energy.gov (indexed) [DOE]

    exterior lighting controls." (ix) Daylighting (sidelighting, skylights, or tubular daylight devices). "The EnergyPlus software models sidelighting, skylights, and tubular...

  7. Tax Deduction Qualified Software - EnergyPlus version 3.0.0.028

    Broader source: Energy.gov (indexed) [DOE]

    exterior lighting controls." (ix) Daylighting (sidelighting, skylights, or tubular daylight devices). "The EnergyPlus software models sidelighting, skylights, and tubular...

  8. Tax Deduction Qualified Software: EnergyPlus version 6.0.0.023

    Broader source: Energy.gov (indexed) [DOE]

    exterior lighting controls." (ix) Daylighting (sidelighting, skylights, or tubular daylight devices). "The EnergyPlus software models sidelighting, skylights, and tubular...

  9. Tax Deduction Qualified Software - EnergyPlus version 3.1.0.027

    Broader source: Energy.gov (indexed) [DOE]

    exterior lighting controls." (ix) Daylighting (sidelighting, skylights, or tubular daylight devices). "The EnergyPlus software models sidelighting, skylights, and tubular...

  10. Self-learning control system for plug-in hybrid vehicles

    DOE Patents [OSTI]

    DeVault, Robert C [Knoxville, TN

    2010-12-14T23:59:59.000Z

    A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

  11. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Kammen, Daniel M.

    An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles-in hybrid electric vehicles D M Lemoine1 , D M Kammen1,2,3 and A E Farrell1,4,5 1 Energy and Resources Group.iop.org/ERL/3/014003 Abstract Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity

  12. 2013 IREP Symposium-Bulk Power System Dynamics and Control IX (IREP), August 25-30, 2013, Rethymnon, Greece A Production Simulation Tool for Systems with an Integrated Concentrated Solar

    E-Print Network [OSTI]

    Gross, George

    , Rethymnon, Greece A Production Simulation Tool for Systems with an Integrated Concentrated Solar Plant2013 IREP Symposium-Bulk Power System Dynamics and Control ­IX (IREP), August 25-30, 2013 of the growing interest in effectively harnessing renewable energy resources. The concentrated solar plant (CSP

  13. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

  14. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

  15. Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results

    SciTech Connect (OSTI)

    James E. Francfort

    2009-07-01T23:59:59.000Z

    The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOE’s Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

  16. U.S. DOE Geopressured/Geothermal Program: Final report on well plug and abandonment operations and well site restoration, Louisiana and Texas wells

    SciTech Connect (OSTI)

    None

    1994-08-30T23:59:59.000Z

    Some of the critical operations conducted during the plugging and abandonment of the three producing wells of the U.S. DOE GEOPRESSURED/GEOTHERL PROGRAM were witnessed by D-O-R Engineering personnel. All operations witnessed by D-O-R personnel were in compliance with the respective state regulations and were conducted as per D-O-R's recommendations to the Department of Energy and their prime contractor, EG&G Idaho. It is our belief that competent cement plugs were left in all three wells. The following describes the work actually witnessed by D-O-R personnel.

  17. Determining PHEV Performance Potential – User and Environmental Influences on A123 Systems’ Hymotion™ Plug-In Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    John G. Smart; Huang Iu

    2009-05-01T23:59:59.000Z

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity and recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-50km of charge depleting range. This paper will cover efforts by A123 Systems and the Idaho National Laboratory in studying the on-road performance of this PHEV fleet. The performance potentials of various fleets will be compared in order to determine the major influences on overall performance.

  18. E-Print Network 3.0 - anhydrase ix expression Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ix expression Page: << < 1 2 3 4 5 > >> 1 Prokaryotic carbonic anhydrases Kerry S. Smith *, James G. Ferry Summary: , growth inhibition by cyanate of a cynS deletion strain...

  19. E-Print Network 3.0 - anhydrase ix ca Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anhydrase ix ca Page: << < 1 2 3 4 5 > >> 1 Prokaryotic carbonic anhydrases Kerry S. Smith *, James G. Ferry Summary: during purica- tion 22 conrmed an earlier report of a...

  20. After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment

    SciTech Connect (OSTI)

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret J.; Busch, John F.

    2004-01-22T23:59:59.000Z

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

  1. Plug-in Electric Vehicle Outreach

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea.Work Plan for FY 2013 AThe cityHours

  2. Abstract--This paper examines the problem of optimizing the charge trajectory of a plug-in hybrid electric vehicle (PHEV),

    E-Print Network [OSTI]

    Krstic, Miroslav

    Abstract-- This paper examines the problem of optimizing the charge trajectory of a plug-in hybrid this optimization with two objectives in mind, namely, (i) minimizing the overall cost of daily PHEV energy the power grid. Two objectives are considered in this optimization. First, we minimize the total cost

  3. SWIFT ULTRAVIOLET/OPTICAL TELESCOPE IMAGING OF STAR-FORMING REGIONS IN M81 AND HOLMBERG IX

    SciTech Connect (OSTI)

    Hoversten, E. A.; Gronwall, C.; Siegel, M. H. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Vanden Berk, D. E. [Physics Department, St. Vincent College, Latrobe, PA 15650 (United States); Basu-Zych, A. R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Breeveld, A. A.; Kuin, N. P. M.; Page, M. J. [Mullard Space Science Laboratory/UCL, Holbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Brown, P. J. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Roming, P. W. A. [Space Science and Engineering Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States)

    2011-06-15T23:59:59.000Z

    We present Swift UV/Optical Telescope (UVOT) imaging of the galaxies M81 and Holmberg IX. We combine UVOT imaging in three near-ultraviolet (NUV) filters (uvw2: 1928 A; uvm2: 2246 A; uvw1: 2600 A) with ground-based optical imaging from the Sloan Digital Sky Survey to constrain the stellar populations of both galaxies. Our analysis consists of three different methods. First, we use the NUV imaging to identify UV star-forming knots and then perform spectral energy distribution (SED) modeling on the UV/optical photometry of these sources. Second, we measure surface brightness profiles of the disk of M81 in the NUV and optical. Lastly, we use SED fitting of individual pixels to map the properties of the two galaxies. In agreement with earlier studies, we find evidence for a burst in star formation in both galaxies starting {approx}200 Myr ago coincident with the suggested time of an M81-M82 interaction. In line with theories of its origin as a tidal dwarf, we find that the luminosity-weighted age of Holmberg IX is a few hundred million years. Both galaxies are best fit by a Milky Way dust extinction law with a prominent 2175 A bump. In addition, we describe a stacked median filter technique for modeling the diffuse background light within a galaxy and a Markov chain method for cleaning segment maps generated by SExtractor.

  4. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  5. eVMTeVMT Analysis of OnAnalysis of OnRoad Data fromRoad Data from PlugPlugIn Hybrid Electric andIn Hybrid Electric and

    E-Print Network [OSTI]

    California at Davis, University of

    In Hybrid Electric and gov PlugPlug In Hybrid Electric andIn Hybrid Electric and AllAllElectric Vehicles traveled (eVMT) for· Calculated electric vehicle miles traveled (eVMT) for plug-in hybrid electric vehicleseVMTeVMT Analysis of OnAnalysis of OnRoad Data fromRoad Data from PlugPlugIn Hybrid Electric and

  6. DOE pulls plug on SSC contractor

    SciTech Connect (OSTI)

    Anderson, C.

    1993-08-13T23:59:59.000Z

    From the start, the Superconducting Super Collider (SSC) has been an academic project in every sense: designed, built, and eventually to be operated by companies and researchers working under a consortium of 79 universities called Universities Research Association (URA). No longer. Last week, Energy Secretary Hazel O'Leary took the job of building the $11 billion accelerator away from URA and announced plans to give it to a company more experienced with large construction projects. Clinton Administration officials hope that the change, which followed highly publicized investigations into URA's accounting and management procedures, will help convince the Senate to vote next month to preserve the accelerator and the House of Representatives to reverse its earlier vote to kill the project.

  7. Report on the Field Performance of A123Systems’s HymotionTM Plug-in Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    Huang Iu; John Smart

    2009-04-01T23:59:59.000Z

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity. It recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-40 miles of charge depleting range. If the Hymotion pack is fully depleted, the Prius operates as a normal HEV in charge sustaining mode. The Hymotion L5 PCM is the first commercially available aftermarket product complying with CARB emissions and NHTSA impact standards. Since 2006, over 50 initial production Hymotion Plug-in Conversion Modules have been installed in private fleet vehicles across the United States and Canada. With the help of the Idaho National Laboratory, which conducts the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), A123Systems collects real-time vehicle data from each fleet vehicle using on-board data loggers. These data are analyzed to determine vehicle performance. This paper presents the results of this field evaluation. Data to be presented includes the L5 Prius charge depleting range, gasoline fuel efficiency, and electrical energy efficiency. Effects of driving conditions, driving style, and charging patterns on fuel efficiency are also presented. Data show the Toyota Prius equipped with the Hymotion Plug-in Conversion Module is capable of achieving over 100 mpg in certain driving conditions when operating in charge depleting mode.

  8. Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale

    SciTech Connect (OSTI)

    Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

    2009-07-01T23:59:59.000Z

    Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

  9. U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX...

    Broader source: Energy.gov (indexed) [DOE]

    in Citrix Access Gateway Plug-in for Windows can be exploited by malicious people to compromise a user's system. reference LINKS: Citrix Knowledge Center Secunia...

  10. Plug-in Hybrid Modeling and Application: Cost/Benefit Analysis (Presentation)

    SciTech Connect (OSTI)

    Simpson, A.

    2006-08-24T23:59:59.000Z

    Presents data from a simulation of plug-in hybrid electric vehicle efficiency and cost, including baseline vehicle assumptions, powertrain technology scenarios, and component modeling.

  11. Optimal Control of Plug-In Hybrid Electric Vehicles with Market ...

    E-Print Network [OSTI]

    Lai Wei

    2014-01-13T23:59:59.000Z

    Jan 13, 2014 ... Optimal Control of Plug-In Hybrid Electric Vehicles with Market Impact and Risk Attitude. Lai Wei (laiwei ***at*** ufl.edu) Yongpei Guan (guan ...

  12. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    on fuel cells, advanced batteries, and ultracapacitorof Lithium-ion Batteries of Various Chemistries for Plug-inAdvisor utilizing lithium-ion batteries of the different

  13. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01T23:59:59.000Z

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  14. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  15. Risk of damaging the wires by edges of laser drilled holes in the end plugs

    E-Print Network [OSTI]

    Staude, A; Trefzger, T M

    1998-01-01T23:59:59.000Z

    No sign of damage to the wire by edges of the laser drilled hole has been seen, based on a sample of four end plugs.

  16. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    Considerations for Lithium Batteries for Plug-in Electricfast charging of the lithium batteries should be possiblefast charging of the lithium batteries will be is possible

  17. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01T23:59:59.000Z

    S. Beer, J. Lay and V. Battaglia. 2010. “The added economicJ. Lai, C. Marnay, and V. Battaglia. 2010. “Plug-in Electric

  18. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  19. VOLTTRONTM as an Open Source Platform for Energy Management Applicatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Tech VOLTTRON TM as an Open Source Platform for Energy Management Applications HVAC Controllers Lighting Controllers Lighting circuit(s) Plug load Controllers July 23,...

  20. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    SciTech Connect (OSTI)

    Balducci, Patrick J.

    2008-04-03T23:59:59.000Z

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  1. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31T23:59:59.000Z

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development of a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.

  2. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  3. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

    2008-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

  4. New EUV Fe IX emission line identifications from Hinode/EIS

    E-Print Network [OSTI]

    P. R. Young

    2008-10-28T23:59:59.000Z

    Four Fe IX transitions in the wavelength range 188--198 A are identified for the first time in spectra from the EUV Imaging Spectrometer on board the Hinode satellite. In particular the emission line at 197.86 A is unblended and close to the peak of the EIS sensitivity curve, making it a valuable diagnostic of plasma at around 800,000 K - a critical temperature for studying the interface between the corona and transition region. Theoretical ratios amongst the four lines predicted from the CHIANTI database reveal weak sensitivity to density and temperature with observed values consistent with theory. The ratio of 197.86 relative to the 171.07 resonance line of Fe IX is found to be an excellent temperature diagnostic, independent of density, and the derived temperature in the analysed data set is log T=5.95, close to the predicted temperature of maximum ionization of Fe IX.

  5. Using I-X Process Panels as Intelligent To-Do Lists for Agent Coordination in Emergency Response 

    E-Print Network [OSTI]

    Potter, Stephen; Tate, Austin; Wickler, Gerhard

    The aim of this paper is to describe the I-X system with its principal user interface, the I-X Process Panel, its underlying ontology, , and how this panel can be used as an intelligent to-do list that assists ...

  6. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    pink vertical line represents a driving threshold for plug-vertical lines representing the typical driving thresholds52mi of driving per refueling (chapter 2) At full, red-line

  7. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    pink vertical line represents a driving threshold for plug-vertical lines representing the typical driving thresholds52mi of driving per refueling (chapter 2) At full, red-line

  8. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 of 3 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of Energy have...

  9. Study on plasma parameters and dust charging in an electrostatically plugged multicusp plasma device

    SciTech Connect (OSTI)

    Kakati, B.; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur-782 402, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar- 382 428 (India)

    2011-06-15T23:59:59.000Z

    The effect of the electrostatic confinement potential on the charging of dust grains and its relationship with the plasma parameters has been studied in an electrostatically plugged multicusp dusty plasma device. Electrostatic plugging is implemented by biasing the electrically isolated magnetic multicusp channel walls. The experimental results show that voltage applied to the channel walls can be a controlling parameter for dust charging.

  10. CREATING A PLUG-IN ELECTRIC VEHICLE INDUSTRY CLUSTER IN MICHIGAN

    E-Print Network [OSTI]

    Lyon, Thomas P.

    303 CREATING A PLUG-IN ELECTRIC VEHICLE INDUSTRY CLUSTER IN MICHIGAN: PROSPECTS AND POLICY OPTIONS a Plug-In Electric Vehicle Industry Cluster in Michigan: Prospects and Policy Options, 18 MICH. TELECOMM.......................................................308 II. Will the Electric Vehicle Industry Cluster?....................309 A. Why Do Industries

  11. The Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid Interactions

    E-Print Network [OSTI]

    The Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid investigates consumer interest in plug-in electric vehicles (PEVs), summarizing preliminary results from ownership, electricity use, familiarity with PEV technology, and personal values and lifestyle; vehicle

  12. Optimal Power Market Participation of Plug-In Electric Vehicles Pooled by Distribution Feeder

    E-Print Network [OSTI]

    Caramanis, Michael

    Optimal Power Market Participation of Plug-In Electric Vehicles Pooled by Distribution Feeder : Power system markets, Power system economics Key Words: Load management, Electric vehicle grid Transactions on Power Systems #12;WORKING PAPER 1 Optimal Power Market Participation of Plug-In Electric

  13. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must gaso- line consumption, helping to diminish dependency on imported oil. Recognizing these benefits, US

  14. 1. WELDING SHALL BE PERFORMED IN ACCORDANCE WITH ASME SECTION IX. NO CODE STAMP REQUIRED.

    E-Print Network [OSTI]

    McDonald, Kirk

    NOTES 1. WELDING SHALL BE PERFORMED IN ACCORDANCE WITH ASME SECTION IX. NO CODE STAMP REQUIRED. 2. ALL WELDS SHALL BE DYE PENETRANT INSPECTED. NO RADIOGRAPHY REQUIRED. 3. MATERIAL CERTIFICATIONS HOSE W/TUBING ENDS, 13.5 FACE-TO-FACE N/A 3 1 swagelok 1.0 pipe weld connector SS - 316L SWAGELOK PIPE

  15. 1. WELDING TO BE PERFORMED IN ACCORDANCE WITH ASME SECTION IX. NO CODE STAMP REQUIRED.

    E-Print Network [OSTI]

    McDonald, Kirk

    45° W-1 3/16 G NOTES 1. WELDING TO BE PERFORMED IN ACCORDANCE WITH ASME SECTION IX. NO CODE STAMP AND TOLERANCES PER ASME Y14.5M 3. MACHINED FINISH 125 MICRO- INCHES RMS 4. CONCENTRICITY .010 TIR 5. MACHINED

  16. Universit Paris IX Dauphine Ecole Doctorale de Gestion Comptabilit Finance (EDOGEST)

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Université Paris IX Dauphine Ecole Doctorale de Gestion Comptabilité Finance (EDOGEST) Centre de Recherche Européen en Finance et Gestion (CREFIGE) CONTRIBUTION A L'ANALYSE DES DETERMINANTS DE L'OFFRE D'INFORMATION SUR LE CAPITAL INTELLECTUEL THESE pour l'obtention du titre de DOCTEUR EN SCIENCES DE GESTION (arrêté

  17. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas) reduces the all-electric range of plug-in vehicles by up to 45% compared to milder test cycles (like HWFET

  18. Plugging of intersubassembly gaps by downward flowing molten steel. [LMFBR

    SciTech Connect (OSTI)

    Sienicki, J.J.; Spencer, B.W.

    1984-01-01T23:59:59.000Z

    In the assessment of the meltout phase of an LMFBR hypothetical core disruptive accident, a pathway for the escape of molten fuel from the disrupted core is provided by the narrow channels separating adjacent subassemblies. However, the removal of fuel through intersubassembly gaps might be impeded by steel blockage formation, if molten steel is postulated to enter the gap network ahead of disrupted fuel. Reported here are the results of an analysis of the conduction freezing controlled penetration behavior of molten steel flowing downward through the voided (of sodium) gap channels nominally separating adjacent subassemblies below the active core region. The objective is to determine the range of conditions under which the steel is predicted to be deposited as a thin crust on the channel walls leaving an open pathway remaining for subsequent fuel flow instead of forming a complete plug which closes off the gap channel and obstructs fuel removal immediately thereafter.

  19. Mechanistic Understanding of Microbial Plugging for Improved Sweep Efficiency

    SciTech Connect (OSTI)

    Steven Bryant; Larry Britton

    2008-09-30T23:59:59.000Z

    Microbial plugging has been proposed as an effective low cost method of permeability reduction. Yet there is a dearth of information on the fundamental processes of microbial growth in porous media, and there are no suitable data to model the process of microbial plugging as it relates to sweep efficiency. To optimize the field implementation, better mechanistic and volumetric understanding of biofilm growth within a porous medium is needed. In particular, the engineering design hinges upon a quantitative relationship between amount of nutrient consumption, amount of growth, and degree of permeability reduction. In this project experiments were conducted to obtain new data to elucidate this relationship. Experiments in heterogeneous (layered) beadpacks showed that microbes could grow preferentially in the high permeability layer. Ultimately this caused flow to be equally divided between high and low permeability layers, precisely the behavior needed for MEOR. Remarkably, classical models of microbial nutrient uptake in batch experiments do not explain the nutrient consumption by the same microbes in flow experiments. We propose a simple extension of classical kinetics to account for the self-limiting consumption of nutrient observed in our experiments, and we outline a modeling approach based on architecture and behavior of biofilms. Such a model would account for the changing trend of nutrient consumption by bacteria with the increasing biomass and the onset of biofilm formation. However no existing model can explain the microbial preference for growth in high permeability regions, nor is there any obvious extension of the model for this observation. An attractive conjecture is that quorum sensing is involved in the heterogeneous bead packs.

  20. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    SciTech Connect (OSTI)

    Momber, Ilan; Gomez, Tomás; Venkataramanan, Giri; Stadler, Michael; Beer, Sebastian; Lai, Judy; Marnay, Chris; Battaglia, Vincent

    2010-06-01T23:59:59.000Z

    It is generally believed that plug-in electric vehicles (PEVs) offer environmental and energy security advantages compared to conventional vehicles. Policies are stimulating electric transportation deployment, and PEV adoption may grow significantly. New technology and business models are being developed to organize the PEV interface and their interaction with the wider grid. This paper analyzes the PEVs' integration into a building's Energy Management System (EMS), differentiating between vehicle to macrogrid (V2M) and vehicle to microgrid (V2m) applications. This relationship is modeled by the Distributed Energy Resources Customer Adoption Model (DER-CAM), which finds optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results derive battery value to the building and the possibility of a contractual affiliation sharing the benefit. Under simple annual fixed payments and energy exchange agreements, vehicles are primarily used to avoid peak demand charges supplying cheaper off-peak electricity to the building during workdays.

  1. Preconceptual systems and equipment for plugging of man-made accesses to a repository in basalt

    SciTech Connect (OSTI)

    Taylor, C.L.; O'Rourke, J.E.; Allirot, D.; O'Connor, K.

    1980-09-01T23:59:59.000Z

    This report presents results of a study leading to preconceptual designs for plugging boreholes, shafts, and tunnels to a nuclear waste repository in basalt. Beginning design criteria include a list of preferred plug materials and plugging machines that were selected to suit the environmental conditions, and depths, diameters, and orientations of the accesses to a nuclear waste repository in the Columbia River basalts located in eastern Washington State. The environmental conditions are described. The fiscal year 1979-1980 Task II work is presented in two parts: preliminary testing of materials for plugging of man-made accesses to a repository in basalt (described in a separate report); and preconceptual systems and equipment for plugging of man-made accesses to a repository in basalt (described in this report). To fulfill the scope of the Task II work, Woodward-Clyde Consultants (WCC) was requested to: provide preconceptual systems for plugging boreholes, tunnels, and shafts in basalt; describe preconceptual borehole plugging equipment for placing the selected materials in man-made accesses; utilize the quality assurance program, program plan and schedule, and work plans previously developed for Task II; and prepare a preliminary report.

  2. NEW Fe IX LINE IDENTIFICATIONS USING SOLAR AND HELIOSPHERIC OBSERVATORY/SOLAR ULTRAVIOLET MEASUREMENT OF EMITTED RADIATION AND HINODE/EIS JOINT OBSERVATIONS OF THE QUIET SUN

    SciTech Connect (OSTI)

    Landi, E.; Young, P. R. [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States)

    2009-12-20T23:59:59.000Z

    In this work, we study joint observations of Hinode/EUV Imaging Spectrometer (EIS) and Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation of Fe IX lines emitted by the same level of the high energy configuration 3s {sup 2}3p {sup 5}4p. The intensity ratios of these lines are dependent on atomic physics parameters only and not on the physical parameters of the emitting plasma, so that they are excellent tools to verify the relative intensity calibration of high-resolution spectrometers that work in the 170-200 A and 700-850 A wavelength ranges. We carry out extensive atomic physics calculations to improve the accuracy of the predicted intensity ratio, and compare the results with simultaneous EIS-SUMER observations of an off-disk quiet Sun region. We were able to identify two ultraviolet lines in the SUMER spectrum that are emitted by the same level that emits one bright line in the EIS wavelength range. Comparison between predicted and measured intensity ratios, wavelengths and energy separation of Fe IX levels confirms the identifications we make. Blending and calibration uncertainties are discussed. The results of this work are important for cross-calibrating EIS and SUMER, as well as future instrumentation.

  3. Slide08 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Information Bridge and Energy Citation Database * Useful Enhancements: - Spell Check when using Basic Search - Zotero plug-in integration when using FireFox - DOI display in...

  4. AVTA: 2013 Ford C-Max Energi Fleet PHEV Testing Results

    Broader source: Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford CMAX Energi (a plug-in hybrid electric vehicle).

  5. Simulating the Household Plug-in Hybrid Electric Vehicle Distribution and its Electric Distribution Network Impacts

    SciTech Connect (OSTI)

    Cui, Xiaohui [ORNL] [ORNL; Kim, Hoe Kyoung [ORNL] [ORNL; Liu, Cheng [ORNL] [ORNL; Kao, Shih-Chieh [ORNL] [ORNL; Bhaduri, Budhendra L [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    This paper presents a multi agent-based simulation framework for modeling spatial distribution of plug-in hybrid electric vehicle ownership at local residential level, discovering plug-in hybrid electric vehicle hot zones where ownership may quickly increase in the near future, and estimating the impacts of the increasing plug-in hybrid electric vehicle ownership on the local electric distribution network with different charging strategies. We use Knox County, Tennessee as a case study to highlight the simulation results of the agent-based simulation framework.

  6. 1. Check to make sure all electrical appliances, such as curling irons, toasters, etc. are unplugged. Exceptions are clocks and refrigerators. Keep your refrigerator plugged in!

    E-Print Network [OSTI]

    Minnesota, University of

    . are unplugged. Exceptions are clocks and refrigerators. Keep your refrigerator plugged in! 2. Secure windows

  7. Monthly Energy Review

    SciTech Connect (OSTI)

    NONE

    1996-05-28T23:59:59.000Z

    This publication presents an overview of the Energy information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. Two brief ``energy plugs`` (reviews of EIA publications) are included, as well.

  8. Cost Analysis of Plug-In Hybred Electric Vehicles Using GPS-Based Longitudinal Travel Data

    SciTech Connect (OSTI)

    Wu, Xing [Lamar University] [Lamar University; Dong, Jing [Iowa State University] [Iowa State University; Lin, Zhenhong [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Using spatial, longitudinal travel data of 415 vehicles over 3 18 months in the Seattle metropolitan area, this paper estimates the operating costs of plug-in hybrid electric vehicles (PHEVs) of various electric ranges (10, 20, 30, and 40 miles) for 3, 5, and 10 years of payback period, considering different charging infrastructure deployment levels and gasoline prices. Some key findings were made. (1) PHEVs could help save around 60% or 40% in energy costs, compared with conventional gasoline vehicles (CGVs) or hybrid electric vehicles (HEVs), respectively. However, for motorists whose daily vehicle miles traveled (DVMT) is significant, HEVs may be even a better choice than PHEV40s, particularly in areas that lack a public charging infrastructure. (2) The incremental battery cost of large-battery PHEVs is difficult to justify based on the incremental savings of PHEVs operating costs unless a subsidy is offered for largebattery PHEVs. (3) When the price of gasoline increases from $4/gallon to $5/gallon, the number of drivers who benefit from a larger battery increases significantly. (4) Although quick chargers can reduce charging time, they contribute little to energy cost savings for PHEVs, as opposed to Level-II chargers.

  9. Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Nguyen, Tony B.; Jin, Chunlian; Balducci, Patrick J.; Secrest, Thomas J.

    2010-09-30T23:59:59.000Z

    The US electricity grid is a national infrastructure that has the potential to deliver significant amounts of the daily driving energy of the US light duty vehicle (cars, pickups, SUVs, and vans) fleet. This paper discusses a 2030 scenario with 37 million plug-in hybrid electric vehicles (PHEVs) on the road in the US demanding electricity for an average daily driving distance of about 33 miles (53 km). The paper addresses the potential grid impacts of the PHEVs fleet relative to their effects on the production cost of electricity, and the emissions from the electricity sector. The results of this analysis indicate significant regional difference on the cost impacts and the CO2 emissions. Battery charging during the day may have twice the cost impacts than charging during the night. The CO2 emissions impacts are very region-dependent. In predominantly coal regions (Midwest), the new PHEV load may reduce the CO2 emission intensity (ton/MWh), while in others regions with significant clean generation (hydro and renewable energy) the CO2 emission intensity may increase. Discussed will the potential impact of the results with the valuation of carbon emissions.

  10. A Plug-in Hybrid Consumer Choice Model with Detailed Market Segmentation

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    This paper describes a consumer choice model for projecting U.S. demand for plug-in hybrid electric vehicles (PHEV) in competition among 13 light-duty vehicle technologies over the period 2005-2050. New car buyers are disaggregated by region, residential area, attitude toward technology risk, vehicle usage intensity, home parking and work recharging. The nested multinomial logit (NMNL) model of vehicle choice incorporates daily vehicle usage distributions, refueling and recharging availability, technology learning by doing, and diversity of choice among makes and models. Illustrative results are presented for a Base Case, calibrated to the Annual Energy Outlook (AEO) 2009 Reference Updated Case, and an optimistic technology scenario reflecting achievement of U.S. Department of Energy s (DOE s) FreedomCAR goals. PHEV market success is highly dependent on the degree of technological progress assumed. PHEV sales reach one million in 2037 in the Base Case but in 2020 in the FreedomCARGoals Case. In the FreedomCARGoals Case, PHEV cumulative sales reach 1.5 million by 2015. Together with efficiency improvements in other technologies, petroleum use in 2050 is reduced by about 45% from the 2005 level. After technological progress, PHEV s market success appears to be most sensitive to recharging availability, consumers attitudes toward novel echnologies, and vehicle usage intensity. Successful market penetration of PHEVs helps bring down battery costs for electric vehicles (EVs), resulting in a significant EV market share after 2040.

  11. Prospects for plug-in hybrid electric vehicles in the United States : a general equilibrium analysis

    E-Print Network [OSTI]

    Karplus, Valerie Jean

    2008-01-01T23:59:59.000Z

    The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions in carbon dioxide emissions from personal vehicle transportation in the United States over the next century, depending on the ...

  12. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    2-29678 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results Tyler Gray Jeffrey Wishart Matthew Shirk July 2013 The Idaho National Laboratory is a U.S....

  13. Fact #789: July 22, 2013 Comparison of State Incentives for Plug...

    Broader source: Energy.gov (indexed) [DOE]

    addition to a Federal government tax credit up to 7,500, consumers who purchase plug-in electric vehicles (PEVs) may also receive state government incentives which are different...

  14. activity plug-in hybrid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and H.R. Pota Dynamic voltage vehicle as a DVR including the dynamic behaviour of the battery has been developed and integrated Pota, Himanshu Roy 5 2010 Plug-In Hybrid and...

  15. Moving HomePlug to Industrial Applications with Power-Line Communication Network

    E-Print Network [OSTI]

    Zhao, Z.W.

    Home networking is becoming an attractive application not only for the Internet access but also for home automation. Being a high-speed and dominant standard presently, HomePlug has an important role in home LAN connecting ...

  16. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction - Dataset...

  17. A simulation-based assessment of plug-in hybrid electric vehicle architectures

    E-Print Network [OSTI]

    Sotingco, Daniel (Daniel S.)

    2012-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are vehicles that utilize power from both an internal combustion engine and an electric battery that can be recharged from the grid. Simulations of series, parallel, and split-architecture ...

  18. Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases...

    Broader source: Energy.gov (indexed) [DOE]

    recently released results of a 2008 survey on plug-in hybrid vehicles (PHEVs) show that 42% of respondents said there was some chance that they would buy a PHEV sometime in the...

  19. Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction fotw856web.xlsx More Documents & Publications Quarterly Analysis Review February 2015 Fact 853 December 29,...

  20. V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct...

    Broader source: Energy.gov (indexed) [DOE]

    Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks PLATFORM: Google Chrome prior to 27.0.1453.116 ABSTRACT: A vulnerability was reported in Google Chrome....

  1. Project Profile: Development of a Low-Cost Residential Plug-and-Play Photovoltaic System

    Broader source: Energy.gov [DOE]

    North Carolina State University FREEDM Systems Engineering Center and its partners, under the Plug-and-Play Photovoltaics FOA, are performing analysis, design, and innovation to address each stage...

  2. Education Toolbox Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    3 of 3 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of Energy have...

  3. Education Toolbox Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    6 of 6 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of Energy have...

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy High School (9-12) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy,...

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar High School (9-12) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy,...

  6. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Middle School (6-8) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy, Electricity,...

  7. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of...

  8. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search Showing 1 - 2 of 2 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of...

  9. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search Showing 1 - 3 of 3 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of...

  10. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Showing 1 - 10 of 12 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of...

  11. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search Showing 1 - 6 of 6 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of...

  12. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department...

  13. An Optimization Model for Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

  14. Plug-in privacy for Smart Metering billing

    E-Print Network [OSTI]

    Jawurek, Marek; Kerschbaum, Florian

    2010-01-01T23:59:59.000Z

    Smart Metering is a concept that allows to collect fine-grained consumption profiles from customers by replacing traditional electricity meters with Smart Meters in customers' households. The recorded consumption profile is the basis for the calculation of time-dependent tariffs but also allows deduction of the inhabitant's personal schedules and habits. The current reporting of such consumption profiles only protects this data from 3rd parties but falls short to protect the customer's privacy from illegitimate abuse by the supplier itself. We propose a privacy-preserving profile reporting protocol that enables billing for time-dependent tariffs without disclosing the actual data of the consumption profile to the supplier. Our approach relies on a zero-knowledge proof based on Pedersen Commitments performed by a plug-in privacy component that is put into the communication link between Smart Meter and supplier's back-end systems and requires no change to Smart Meter hardware and only little change to the softw...

  15. Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)

    SciTech Connect (OSTI)

    Denholm, P.; Short, W.

    2006-10-01T23:59:59.000Z

    Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

  16. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    walled pool covered with a PVC framed, polyethelene dome;through 2000 feet of 1~ 11 PVC pipe, giving a head of 208the maintenance. CBB 801-129 PVC Piping Descending to the

  17. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    problems. ) The solar water heater is a small on-siteare the results. The solar air heater greatly enhances theand installing a solar water pre- heater. Additionally, they

  18. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    problems. ) The solar water heater is a small on-siteThe existing electric water heater system provides storagebreadbox solar hot water heaters. Originally the tribe

  19. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    problems. ) The solar water heater is a small on-siteand installing a solar water pre- heater. Additionally, theystructing breadbox solar hot water heaters. Originally the

  20. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    The space heating system compliments the other technologiesOther technologies include solar domestic water heating,technologies incorporated within the house includes: passive solar heating and

  1. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    Methane Gas Plant For Operating Boilers and Generating SteamMETHANE GAS PLANT FOR OPERATING BOILERS AND GENERATING STEAMprocess for generating methane gas from aquatic plants used

  2. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    a Bottle Sterilizing Plant CA-649 Solar/Woodstove DomesticSolar Water Heating in Sugarcane Seed Treatment Plants .t: SOLAR WATER HEATING IN SUGARCANE SEED TREATMENT PLANTS

  3. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    and installed the solar collectors and rock storage, and ahot water heating, Solar collector P&T valve Mixing valvetank. Two separate solar collector systems, each consisting

  4. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    biogas (60% methane) daily may be collected from digesters cover- ing an entire pond farm, with a heating

  5. Demonstration of a Piston Plug feed System for Feeding Coal/Biomass Mixtures across a Pressure Gradient for Application to a Commercial CBTL System

    SciTech Connect (OSTI)

    Santosh Gangwal

    2011-06-30T23:59:59.000Z

    Producing liquid transportation fuels and power via coal and biomass to liquids (CBTL) and integrated gasification combined cycle (IGCC) processes can significantly improve the nation's energy security. The Energy Independence and Security Act of 2007 mandates increasing renewable fuels nearly 10-fold to >2.3 million barrels per day by 2022. Coal is abundantly available and coal to liquids (CTL) plants can be deployed today, but they will not become sustainable without large scale CO{sub 2} capture and storage. Co-processing of coal and biomass in CBTL processes in a 60 to 40 ratio is an attractive option that has the potential to produce 4 million barrels of transportation fuels per day by 2020 at the same level of CO{sub 2} emission as petroleum. In this work, Southern Research Institute (Southern) has made an attempt to address one of the major barriers to the development of large scale CBTL processes - cost effective/reliable dry-feeding of coal-biomass mixtures into a high pressure vessel representative of commercial entrained-flow gasifiers. Present method for dry coal feeding involves the use of pressurized lock-hopper arrangements that are not only very expensive with large space requirements but also have not been proven for reliably feeding coal-biomass mixtures without the potential problems of segregation and bridging. The project involved the development of a pilot-scale 250 lb/h high pressure dry coal-biomass mixture feeder provided by TKEnergi and proven for feeding biomass at a scale up to 6 ton/day. The aim of this project is to demonstrate cost effective feeding of coal-biomass mixtures (50:50 to 70:30) made from a variety of coals (bituminous, lignite) and biomass (wood, corn stover, switch grass). The feeder uses a hydraulic piston-based approach to produce a series of plugs of the mixture that act as a seal against high back-pressure of the gasification vessel in to which the mixture is being fed. The plugs are then fed one by one via a plug breaker into the high pressure gasification vessel. A number of runs involving the feeding of coal and biomass mixtures containing 50 to 70 weight % coal into a high pressure gasification vessel simulator have shown that plugs of sufficient density can be formed to provide a seal against pressures up to 450 psig if homogeneity of the mixture can be maintained. However, the in-homogeneity of coal-biomass mixtures can occur during the mixing process because of density, particle size and moisture differences. Also, the much lower compressibility of coal as opposed to biomass can contribute to non-uniform plug formation which can result in weak plugs. Based on present information, the piston plug feeder offered marginal economic advantages over lock-hoppers. The results suggest a modification to the piston feeder that can potentially seal against pressure without the need for forming plugs. This modified design could result in lower power requirements and potentially better economics.

  6. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.

    2012-08-01T23:59:59.000Z

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

  7. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    wind/fuel cell hybrid energy systems. Energy and Buildings,National Energy Modeling System PHEV plug-in hybrid electrica hybrid DC and AC power system that included energy storage

  8. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01T23:59:59.000Z

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  9. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    E-Print Network [OSTI]

    Momber, Ilan

    2010-01-01T23:59:59.000Z

    Environmental Benefits of Electric Vehicles Integration onusing plug-in hybrid electric vehicle battery packs for gridwith Connection of Electric Vehicles TABLE IV D ECISION V

  10. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    for plug-in hybrid electric vehicles (PHEVs): Goals and thetechnology: California's electric vehicle program. Scienceand Impacts of Hybrid Electric Vehicle Options for a Compact

  11. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    T. et al. (2006), Plug-in hybrid vehicle analysis, Milestonein conversions of hybrid vehicles are being made availablein Table 3: household hybrid vehicle ownership, respondents’

  12. Computer Aided Design Tool for Electric, Hybrid Electric and Plug-in Hybrid Electric Vehicles 

    E-Print Network [OSTI]

    Eskandari Halvaii, Ali

    2012-07-16T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 ix LIST OF TABLES TABLE Page I Average power with full and no regenerative braking for different drive cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 x LIST OF FIGURES FIGURE Page 1 Electric vehicle structure. A.... . . . . . . . . . . . . . . . . . . . 76 66 The power required to run the vehicle: instantaneous, average with and average without regenerative braking. . . . . . . . . . . . . 77 67 Engine operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 68 Power sent...

  13. Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report

    SciTech Connect (OSTI)

    Sikes, Karen [Sentech, Inc.; Gross, Thomas [Sentech, Inc.; Lin, Zhenhong [ORNL; Sullivan, John [University of Michigan Transportation Research Institute; Cleary, Timothy [Sentech, Inc.; Ward, Jake [U.S. Department of Energy

    2010-02-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

  14. AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  15. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    SciTech Connect (OSTI)

    Zhai, Y

    2014-03-03T23:59:59.000Z

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  16. Distributed Energy Systems in California's Future: A Preliminary Report Volume 2

    E-Print Network [OSTI]

    Balderston, F.

    2010-01-01T23:59:59.000Z

    central-receiver solar plants of Table IX-6 require (Holdren, 1975. ) The solar plant probably would have muchfor central-station solar plants in that some of the energy

  17. Project Information Form Project Title The Dynamics of Plug-in Electric Vehicles in the Secondary Market and

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title The Dynamics of Plug-in Electric Vehicles in the Secondary Project Until recently, there were very few used plug-in electric vehicles (PEVs) on the market. However Market and Their Implications for Vehicle Demand, Durability, and Emissions University UC Davis Principal

  18. Hybrid Powertrain Optimization for Plug-In Microgrid Power Generation Automated Modeling Laboratory Slide 1 of 28

    E-Print Network [OSTI]

    Krstic, Miroslav

    PLUG-IN HYBRID ELECTRIC VEHICLE IC ENGINE OR FUEL CELL Use plug-in hybrid electric vehicles (PHEV to minimize fuel consumption BATTERY SIZE POWERPLANT SIZE CONTROL ARCHITECHTURE IC ENGINE OR FUEL CELL CONTROL MANIFOLD COOLER & HUMIDIFIER COMPRESSOR MOTOR Air Supply H2 FUEL CELL STACK Voltage CATHODESIDE ANODESIDE

  19. Alternative Fuels Data Center: Georgia Sets the Pace for Plug...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The AFDC is a resource of the U.S. Department of Energy's Clean Cities program. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 0210...

  20. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    A.A. (2007) “Plug-in Hybrid Vehicles for a SustainableAssessment of Plug-in Hybrid Vehicles on Electric UtilitiesWould You Buy a Hybrid Vehicle? Study #715238, conducted for

  1. The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System

    E-Print Network [OSTI]

    Greer, Mark R

    2012-01-01T23:59:59.000Z

    Ferdowsi, M. (2007). Plug-hybrid vehicles – A vision for thepower: battery, hybrid and fuel cell vehicles as resources2010). Plug-in hybrid electric vehicles as regulating power

  2. Development of a Well Intervention Toolkit to Analyze Initial Wellbore Conditions and Evaluate Injection Pressures, Flow Path, Well Kill, and Plugging Procedures

    E-Print Network [OSTI]

    Paknejad, Amir S

    2009-08-03T23:59:59.000Z

    Every year, many wells are subject to well intervention operations for a variety of different reasons, such as Plug and Abandon (P&A) operations or well control situations. Wells that are not properly plugged, in addition becoming an inherent...

  3. INTERNATIONAL STATIONARY FUEL CELL DEMONSTRATION John Vogel, Plug Power Inc.

    E-Print Network [OSTI]

    control algorithms to improve cost of energy. Cost of Energy Algorithms Ref Air Stack Air Cat Flow Ref Air-TEK 14 February, 2007 Clean, Reliable On-site Energy #12;SAFE HARBOR STATEMENT This presentation Power Inc. #12;ORGANIZATIONAL CHART J. Vogel #12;PROJECT OVERVIEW AND OBJECTIVES Develop, test

  4. A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K

  5. Monthly Energy Review, February 1996

    SciTech Connect (OSTI)

    NONE

    1996-02-26T23:59:59.000Z

    This monthly publication presents an overview of EIA`s recent monthly energy statistics, covering the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. Two brief descriptions (`energy plugs`) on two EIA publications are presented at the start.

  6. Optimization of Trajectories for the Cask and Plug Remote Handling System in Tokamak

    E-Print Network [OSTI]

    Ribeiro,Isabel

    May 2011 Optimization of Trajectories for the Cask and Plug Remote Handling System in Tokamak ­ Trajectories of the Rescue Casks · Task 4 ­ Parking in HCB Cask trajectories in level B1 of Tokamak Building System in Tokamak Building and Hot Cell o Grant Objectives · Trajectories optimization for nominal

  7. Plug-and-play decentralized model predictive control for linear systems

    E-Print Network [OSTI]

    Ferrari-Trecate, Giancarlo

    1 Plug-and-play decentralized model predictive control for linear systems Stefano Riverso, Graduate to automatize the design of local controllers so that it can be carried out in parallel by smart actuators. In particular, local controllers exploit tube-based Model Predictive Control (MPC) in order to guarantee

  8. A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES

    E-Print Network [OSTI]

    Krstic, Miroslav

    A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES on optimizing PHEV power management for fuel economy, subject to charge sustenance constraints, over individual dynamic programming to optimize PHEV power management over a distribution of drive cycles, rather than

  9. Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and

    E-Print Network [OSTI]

    Kemner, Ken

    " for the smart grid ­ How many plug-in electric vehicle purchasers be upset with smart grid costs? ­ Will smart, high income early adopters insist on no-hassle smart grid technology? Renewable performance standards Vehicles By Dan Santini Argonne National Laboratory dsantini@anl.gov Clean Cities Coordinators' Webinar

  10. Oil spill nears the beaches of Florida, and the leak may not be plugged before Christmas

    E-Print Network [OSTI]

    Belogay, Eugene A.

    Oil spill nears the beaches of Florida, and the leak may not be plugged before Christmas By David Gardner Last updated at 11:32 AM on 3rd June 2010 BP's giant oil slick was bearing down on Florida holidaymakers a year visit Florida and state leaders fear the oil will devastate a tourist industry

  11. ABO, D Blood Typing and Subtyping Using Plug-Based Microfluidics

    E-Print Network [OSTI]

    Ismagilov, Rustem F.

    ABO, D Blood Typing and Subtyping Using Plug-Based Microfluidics Timothy R. Kline, Matthew K-based microfluidic approach was used to perform multiple agglutination assays in parallel without cross-chip, a microfluidic device was designed to combine aqueous streams of antibody, buffer, and red blood cells (RBCs

  12. Tracking Progress Last updated 7/26/2013 Plug-in Electric Vehicle 1

    E-Print Network [OSTI]

    ) by 2025. ZEVs include all-electric vehicles, plug-in hybrid vehicles, and fuel cell electric vehicles. The Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP), authorized by Assembly Bill 118 (Nunez, advanced technology cars and trucks, vehicle manufacturing, and fueling infrastructure are intended

  13. PREDICTING THE MARKET POTENTIAL OF PLUG-IN ELECTRIC VEHICLES USING MULTIDAY GPS DATA

    E-Print Network [OSTI]

    Kockelman, Kara M.

    Seattle households illuminate how plug-in electric vehicles can match household needs. The results suggest vehicle (PHEV) with 40-mile all-electric-range. Households owning two or more vehicles can electrify 50 PHEV suggest that when gas prices are $3.50 per gallon and electricity rates at 11.2 ct per k

  14. Building Plug-and-Play Smart Homes Using the Atlas Platform1

    E-Print Network [OSTI]

    Helal, Abdelsalam

    Building Plug-and-Play Smart Homes Using the Atlas Platform1 Raja Bose, Jeffrey King, Steven, hme, helal}@cise.ufl.edu Abstract. Pervasive computing environments such as smart homes require of Atlas in the Gator Tech Smart House -- a real-life smart home dedicated to successful aging

  15. EcoCAR 2 Plugging into the Future

    Broader source: Energy.gov (indexed) [DOE]

    Technical Accomplishments and Progress: Energy Use and Environmental Impact Broad technology demonstration and evaluation Lowest Fuel Consumption - won by E85 PHEV ...

  16. Ford Plug-In Project: Bringing PHEVs to Market

    Broader source: Energy.gov (indexed) [DOE]

    journalists organized by Ford of Canada * PHEV 2009 conference in Montral (http:www.emc-mec.caphevenhomeen.html) * Alternative Energy Rallye (http:www.rallye-alternative...

  17. Orlando Plugs into Electric Vehicle Charging Stations | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergy Online1ofGeothermal and SolarEnergy

  18. Plug-in Hybrid Electric Vehicle Value Proposition Study - Final Report

    SciTech Connect (OSTI)

    Sikes, Karen [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Cleary, Timothy [Sentech, Inc.

    2010-07-01T23:59:59.000Z

    PHEVs have been the subject of growing interest in recent years because of their potential for reduced operating costs, oil displacement, national security, and environmental benefits. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The study Objectives are: (1) To identify and evaluate value-added propositions for PHEVs that will help overcome the initial price premium relative to comparable ICEs and HEVs and (2) to assess other non-monetary benefits and barriers associated with an emerging PHEV fleet, including environmental, societal, and grid impacts. Study results indicate that a single PHEV-30 on the road in 2030 will: (1) Consume 65% and 75% less gasoline than a comparable HEV and ICE, respectively; (2) Displace 7.25 and 4.25 barrels of imported oil each year if substituted for equivalent ICEs and HEVs, respectively, assuming 60% of the nation's oil consumed is imported; (3) Reduce net ownership cost over 10 years by 8-10% relative to a comparable ICE and be highly cost competitive with a comparable HEV; (4) Use 18-22% less total W2W energy than a comparable ICE, but 8-13% more than a comparable HEV (assuming a 70/30 split of E10 and E85 use in 2030); and (5) Emit 10% less W2W CO{sub 2} than equivalent ICEs in southern California and emits 13% more W2W CO{sub 2} than equivalent ICEs in the ECAR region. This also assumes a 70/30 split of E10 and E85 use in 2030. PHEVs and other plug-in vehicles on the road in 2030 may offer many valuable benefits to utilities, business owners, individual consumers, and society as a whole by: (1) Promoting national energy security by displacing large volumes of imported oil; (2) Supporting a secure economy through the expansion of domestic vehicle and component manufacturing; (3) Offsetting the vehicle's initial price premium with lifetime operating cost savings (e.g., lower fuel and maintenance costs); (4) Supporting the use of off-peak renewable energy through smart charging practices. However, smart grid technology is not a prerequisite for realizing the benefits of PHEVs; and (5) Potentially using its bidirectional electricity flow capability to aid in emergency situations or to help better manage a building's or entire grid's load.

  19. Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries |Attacks | Department ofValueDepartment of

  20. Autonomous Intelligent Plug-In Hybrid Electric Vehicles (PHEVs) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation Worldof EnergyTAGS,Large09

  1. Project Sponsors:ADVANCED POWER & ENERGY www.apep.uci.edu

    E-Print Network [OSTI]

    Mease, Kenneth D.

    costs for plug-in electric vehicles. J. of Power Sources, Vol. 240, No. 0, pp. 515-524. OVERVIEW PlugProject Sponsors:ADVANCED POWER & ENERGY PROGRAM www.apep.uci.edu GOALS Evaluate the impact of realistic charging infrastructure options on real travel behavior in order to delineate PEV operating cost

  2. Power Conditioning for Plug-In Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Farhangi, Babak

    2014-07-25T23:59:59.000Z

    Plugin Hybrid Electric Vehicles (PHEVs) propel from the electric energy stored in the batteries and gasoline stored in the fuel tank. PHEVs and Electric Vehicles (EVs) connect to external sources to charge the batteries. Moreover, PHEVs can supply...

  3. PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I

    E-Print Network [OSTI]

    Case, C.W.

    2011-01-01T23:59:59.000Z

    welded together like sewer pipe. Biogas production from theintends to convert the biogas into electricity. The wasteproduce 7.6 million Btu of biogas annually. This estimate

  4. PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I

    E-Print Network [OSTI]

    Case, C.W.

    2011-01-01T23:59:59.000Z

    6. Western Pacific Solar Hot Water Heater Construction andA schedule in pool pump, water heater, clothes dryer, airappliances include the water heater, clothes dryer, and

  5. PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I

    E-Print Network [OSTI]

    Case, C.W.

    2011-01-01T23:59:59.000Z

    like sewer pipe. Biogas production from the digester will behomestead digester will produce 7.6 million Btu of biogasbiogas into electricity. The waste heat from the electric generator will be used to maintain the digester

  6. PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I

    E-Print Network [OSTI]

    Case, C.W.

    2011-01-01T23:59:59.000Z

    building. Storage tank and solar collectors overlooking theThe participants built two solar collectors during the firstsystem and an array of solar collectors. The heat exchanger

  7. PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I

    E-Print Network [OSTI]

    Case, C.W.

    2011-01-01T23:59:59.000Z

    heating winter season. The grantees are reviewing the dataforced flow modes, the grantees are studying problems such

  8. Microsoft Word - Plug-in Hybrids.doc

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National NuclearRegulation;I I D D U.S.DEPARTMENT OFStudy

  9. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation |Activity | Department

  10. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation |Activity |

  11. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation |Activity |Activity |

  12. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation |Activity |Activity

  13. Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.

    2009-01-01T23:59:59.000Z

    my money in my beliefs…and buy a hybrid car to help promotethe production of further hybrid cars…that year they wereCar Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid

  14. Prospects for Plug-in Hybrid Electric Vehicles in the United States and Japan: A General Equilibrium Analysis

    E-Print Network [OSTI]

    Reilly, John M.

    The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low carbon alternative to today's gasoline- and diesel-powered vehicles. A representative vehicle technology that runs on electricity in addition ...

  15. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    Chu, A. (2007). Nanophosphate Lithium-Ion Technology forYomoto (2007). Advanced Lithium-Ion Batteries for Plug- inhydride (NiMH) and lithium-ion (Li-Ion), comparing their

  16. Porous plug gas injection systems for studies of hydrocarbon dissociation and transport in the DIII-D tokamak

    E-Print Network [OSTI]

    McLean, A. G.

    A probe has been designed, constructed, and successfully used to inject methane into the DIII-D lower divertor in a manner imitating natural release by chemical erosion. This porous plug injector (PPI) probe consists of a ...

  17. Vehicle Technologies Office Merit Review 2015: Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about plug-in hybrid medium-duty truck...

  18. A Vehicle Systems Approach to Evaluate Plug-in Hybrid Battery Cold Start, Life and Cost Issues 

    E-Print Network [OSTI]

    Shidore, Neeraj Shripad

    2012-07-16T23:59:59.000Z

    The batteries used in plug-in hybrid electric vehicles (PHEVs) need to overcome significant technical challenges in order for PHEVs to become economically viable and have a large market penetration. The internship at Argonne National Laboratory (ANL...

  19. A Vehicle Systems Approach to Evaluate Plug-in Hybrid Battery Cold Start, Life and Cost Issues

    E-Print Network [OSTI]

    Shidore, Neeraj Shripad

    2012-07-16T23:59:59.000Z

    The batteries used in plug-in hybrid electric vehicles (PHEVs) need to overcome significant technical challenges in order for PHEVs to become economically viable and have a large market penetration. The internship at Argonne National Laboratory (ANL...

  20. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    SciTech Connect (OSTI)

    Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

    2009-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

  1. An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NMPerformance | DepartmentAnDow.com

  2. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    SciTech Connect (OSTI)

    Markel, T.

    2010-04-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs)--which include all-electric vehicles and plug-in hybrid electric vehicles--provide a new opportunity for reducing oil consumption by drawing power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure--from battery manufacturing to communication and control between the vehicle and the grid--must provide access to clean electricity, satisfy stakeholder expectations, and ensure safety. Currently, codes and standards organizations are collaborating on a PEV infrastructure plan. Establishing a PEV infrastructure framework will create new opportunities for business and job development initiating the move toward electrified transportation. This paper summarizes the components of the PEV infrastructure, challenges and opportunities related to the design and deployment of the infrastructure, and the potential benefits.

  3. The architecture of a plug-and-play kernel for oilfield software applications

    SciTech Connect (OSTI)

    Ward, V.L.; Seaton, C.P. [Schlumberger Dowell, Tulsa, OK (United States)

    1996-12-01T23:59:59.000Z

    It is now common practice for engineers to use PC software to design and evaluate oilfield services. Rapidly changing technology in PC software has made it necessary for organizations to release new applications quickly to remain competitive. The authors designed a plug-and-play kernel for the computer aided design and evaluation (CADE) applications to reduce development time and time to market. The paper discusses the kernel used in the CADE software in detail.

  4. An Integrated Onboard Charger and Accessary Power Converter for Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2013-01-01T23:59:59.000Z

    Abstract: In this paper, an integrated onboard battery charger and accessary dc-dc converter for plug-in electric vehicles (PEVs) is presented. The idea is to utilize the already available traction drive inverters and motors of a PEV as the frond converter of the charger circuit and the transformer of the 14 V accessary dc-dc converter to provide galvanic isolation. The topology was verified by modeling and experimental results on a 5 kW charger prototype

  5. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01T23:59:59.000Z

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  6. Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer toSensor Technologies forInnovationR&D Gary L. Smith -

  7. Assignment 4 BS4a Actuarial Science Oxford MT 2011 IX A.4 Inflation, taxation and project appraisal

    E-Print Network [OSTI]

    Winkel, Matthias

    Assignment 4 ­ BS4a Actuarial Science ­ Oxford MT 2011 IX A.4 Inflation, taxation and project are indexed by reference to the value of a retail price index with a time lag of 8 months. The retail price index value in September 1996 was Q(-8/12) = 200 and in March 1997 was Q(-2/12) = 206. The issue price

  8. Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and Vehicle-to-Grid Services

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2009-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and by improving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEV fleet of up to 15% of light-duty vehicles can actually decrease net generator NO{sub x} emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO{sub 2}, SO{sub 2}, and NO{sub x} emissions can be reduced even further.

  9. What's Possible for Clean Energy

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Building Efficiency 45 Concentrating Solar Power 59 Construction Materials 71 Geothermal 81 Nuclear 91 Plug authors and endorsers. Go to gigatonthrowdown.org for report downloads, supplemental material for clean energy technologies, and entrepreneurs can starting building the leading clean energy companies

  10. Electric Vehicle Preparedness Task 3: Detailed Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Joint Base Lewis McChord

    SciTech Connect (OSTI)

    Steve Schey; Jim Francfort

    2014-10-01T23:59:59.000Z

    This report provides an assessment of charging infrastructure required to support the suggested plug-in electric vehicle replacements at Joint Base Lewis McChord.

  11. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    Assessment for Battery Electric Vehicles, PowerAssist Hybrid Electric Vehicles, and Plug-in Hybrid Electric Vehicles. EPRI: Palo Alto, CA.

  12. DAVE: A plug and play model for distributed multimedia application development

    SciTech Connect (OSTI)

    Mines, R.F.; Friesen, J.A.; Yang, C.L.

    1994-07-01T23:59:59.000Z

    This paper presents a model being used for the development of distributed multimedia applications. The Distributed Audio Video Environment (DAVE) was designed to support the development of a wide range of distributed applications. The implementation of this model is described. DAVE is unique in that it combines a simple ``plug and play`` programming interface, supports both centralized and fully distributed applications, provides device and media extensibility, promotes object reuseability, and supports interoperability and network independence. This model enables application developers to easily develop distributed multimedia applications and create reusable multimedia toolkits. DAVE was designed for developing applications such as video conferencing, media archival, remote process control, and distance learning.

  13. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Momber, Ilan; Megel, Olivier; Gomez, Tomás; Marnay, Chris; Beer, Sebastian; Lai, Judy; Battaglia, Vincent

    2010-08-25T23:59:59.000Z

    Connection of electric storage technologies to smartgrids or microgrids will have substantial implications for building energy systems. In addition to potentially supplying ancillary services directly to the traditional centralized grid (or macrogrid), local storage will enable demand response. As an economically attractive option, mobile storage devices such as plug-in electric vehicles (EVs) are in direct competition with conventional stationary sources and storage at the building. In general, it is assumed that they can improve the financial as well as environmental attractiveness of renewable and fossil based on-site generation (e.g. PV, fuel cells, or microturbines operating with or without combined heat and power). Also, mobile storage can directly contribute to tariff driven demand response in commercial buildings. In order to examine the impact of mobile storage on building energy costs and carbon dioxide (CO2) emissions, a microgrid/distributed-energy-resources (DER) adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs applying CO2 taxes/CO2 pricing schemes. The problem is solved for a representative office building in the San Francisco Bay Area in 2020. By using employees' EVs for energy management, the office building can arbitrage its costs. But since the car battery lifetime is reduced, a business model that also reimburses car owners for the degradation will be required. In general, the link between a microgrid and an electric vehicle can create a win-win situation, wherein the microgrid can reduce utility costs by load shifting while the electric vehicle owner receives revenue that partially offsets his/her expensive mobile storage investment. For the California office building with EVs connected under a business model that distributes benefits, it is found that the economic impact is very limited relative to the costs of mobile storage for the site analyzed, i.e. cost reductions from electric vehicle connections are modest. Nonetheless, this example shows that some economic benefit is created because of avoided demand charges and on-peak energy. The strategy adopted by the office building is to avoid these high on-peak costs by using energy from the mobile storage in the business hours. CO2 emission reduction strategy results indicate that EVs' contribution at the selected office building are minor.

  14. Healthcare Energy End-Use Monitoring

    SciTech Connect (OSTI)

    Sheppy, M.; Pless, S.; Kung, F.

    2014-08-01T23:59:59.000Z

    NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers, and engineers in the healthcare sector will be able to use these results to more effectively prioritize and refine the scope of investments in new metering and energy audits.

  15. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b s t r a c t Federal electric vehicle (EV) policies in the United States currently include vehicle

  16. AVTA: Plug-In Hybrid Electric School Buses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving,Response3.pdfNovemberATOMSAbout UsAUDITIncidents

  17. Power to the Plug: An Introduction to Energy, Electricity, Consumption, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev next > Sun Mon Tue Wed May

  18. Well-To-Wheels Energy and Greenhouse Gas Analysis of Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew England MEDIA CONTACT:

  19. Impact of Plug-in Hybrid Vehicles on the Electric Grid

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL

    2006-11-01T23:59:59.000Z

    Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging occurred in the early evening, then peak loads were raised and demands were met largely by combustion turbines and combined cycle plants. Nighttime recharging had less impact on peak loads and generation adequacy, but the increased use of coal-fired generation changed the relative amounts of air emissions. Costs of generation also fluctuated greatly depending on the timing. However, initial analysis shows that even charging at peak times may be less costly than using gasoline to operate the vehicles. Even if the overall region may have sufficient generating power, the region's transmission system or distribution lines to different areas may not be large enough to handle this new type of load. A largely residential feeder circuit may not be sized to have a significant proportion of its customers adding 1.4 to 6 kW loads that would operate continuously for two to six hours beginning in the early evening. On a broader scale, the transmission lines feeding the local substations may be similarly constrained if they are not sized to respond to this extra growth in demand. This initial analysis identifies some of the complexities in analyzing the integrated system of PHEVs and the grid. Depending on the power level, timing, and duration of the PHEV connection to the grid, there could be a wide variety of impacts on grid constraints, capacity needs, fuel types used, and emissions generated. This paper provides a brief description of plug-in hybrid vehicle characteristics in Chapter 2. Various charging strategies for vehicles are discussed, with a consequent impact on the grid. In Chapter 3 we describe the future electrical demand for a region of the country and the impact on this demand with a number of plug-in hybrids. We apply that demand to an inventory of power plants for the region using the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate the change in power production and emissions. In Chapter 4 we discuss the impact of demand increases on local distribution systems. In Chapter 5 we conclude and provide insights into the impacts of plug-ins. Future

  20. Influence of steam generator plugging and break size on large-break loss-of-collant accidents

    SciTech Connect (OSTI)

    Stritar, A.; Mavko, B. [Jozef Stefan Institute, Ljubljana (El Salvador)

    1991-07-01T23:59:59.000Z

    The large-break loss-of-coolant accident (LBLOCA) is the design-basis accident in the Krsko pressurized-water reactor, the only power reactor in Slovenia. Because numbers of steam generator tubes are plugged as the steam generator ages, and this directly influences the primary system behavior during an LBLOCA, this accident was re-examined assuming various proportions of blocked tube from 0 to 22%. The size of the break was changes from 25 to 45% of the initial cold-leg cross section. The analysis was made with RELAP4/MOD6 as the main code in the conservative mode rather than as the best-estimate code. The methodology separately considers the blowdown phase, the refill phase, and the reflood phase. It was found that the peak clad temperature rises as plugging increases up to about 10% plugging and tends to be constant or even decrease as the plugging increases beyond this point. It was also found that results are strongly dependent on the methodology used. 17 refs., 9 figs., 3 tabs.

  1. The challenges and policy options for integrating plug-in hybrid electric vehicle into the electric grid

    SciTech Connect (OSTI)

    Srivastava, Anurag K.; Annabathina, Bharath; Kamalasadan, Sukumar

    2010-04-15T23:59:59.000Z

    Plug-in hybrid electric vehicle may be prime candidates for the next generation of vehicles, but they offer several technological and economical challenges. This article assesses current progress in PHEV technology, market trends, research needs, challenges ahead and policy options for integrating PHEVs into the electric grid. (author)

  2. Plug-in HEVs: A Near-Term Option to Reduce Petroleum Consumption from FY05 Milestone Report (Presentation)

    SciTech Connect (OSTI)

    Markel, T.; O'Keefe, M.; Simpson, A.; Gonder, J.; Brooker, A.

    2006-01-19T23:59:59.000Z

    Presented to DOE management staff on September 14, 2005 at the DOE headquarters in Washington DC. Content was updated January 19, 2006 for publication. This presentation addresses plug-in hybrid electric vehicle (PHEV) market and technology issues for research and development efforts.

  3. IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS

    E-Print Network [OSTI]

    National Laboratory(a) ABSTRACT The U.S. electric power infrastructure is a strategic national asset.S. electric infrastructure is designed to meet the highest expected demand for power and, as a resultIMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS

  4. Augmenting a Microbial Selective Plugging Technique with Polymer Flooding to Increase the Efficiency of Oil Recovery - A Search for Synergy

    SciTech Connect (OSTI)

    Brown, Lewis R.; Pittman Jr., Charles U.; Lynch, F. Leo; Vadie, A. Alex

    2003-02-10T23:59:59.000Z

    The overall objective of this project was to improve the effectiveness of a microbial selective plugging technique of improving oil recovery through the use of polymer floods. More specifically, the intent was to increase the total amount of oil recovered and to reduce the cost per barrel of incremental oil.

  5. Evolution of Catalysts Directed by Genetic Algorithms in a Plug-Based Microfluidic Device Tested with Oxidation of

    E-Print Network [OSTI]

    Ismagilov, Rustem F.

    Evolution of Catalysts Directed by Genetic Algorithms in a Plug-Based Microfluidic Device Tested with Oxidation of Methane by Oxygen Jason E. Kreutz, Anton Shukhaev, Wenbin Du, Sasha Druskin, Olafs Daugulis catalysts using the oxidation of methane by molecular oxygen as a model system. The parameters of the GA

  6. Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    Impact of battery weight and charging patterns on the economic and environmental benefits of plug, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890, USA c Department of Civil and Environmental Engineering Article history: Received 22 July 2008 Accepted 24 February 2009 Available online 1 April 2009 Keywords

  7. Experimental study of zone isolation in horizontal wells using a new straddle-chemical-wellbore-plug system

    E-Print Network [OSTI]

    Lilledal, Lars Ove

    1998-01-01T23:59:59.000Z

    (phase 1) to study the use of chemical wellbore plugs for zone isolation.' The earlier experiments were conducted using PVC pipes up to 2-in. diameter and 3-ft. length. The encouraging results from these earlier experiments led to testing the method in a...

  8. Prospects for plug-in hybrid electric vehicles in the United States and Japan: A general equilibrium analysis

    E-Print Network [OSTI]

    internal combustion engine (ICE) vehicles are flex-fuel, hydrogen fuel cell, and compressed natural gas Received in revised form 19 March 2010 Accepted 24 April 2010 Keywords: Alternative fuel vehicles Plug-powered vehicles. A representative vehicle tech- nology that runs on electricity in addition to conventional fuels

  9. The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas

    E-Print Network [OSTI]

    Victoria, University of

    and wind power in three Canadian jurisdictions, namely British Columbia, Ontario and Alberta. An Optimal baseload mixtures. The large premium paid for displacing hydro or nuclear power with wind power does littleThe Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse

  10. Mass transport, corrosion, plugging, and their reduction in solar dish/Stirling heat pipe receivers

    SciTech Connect (OSTI)

    Adkins, D.R.; Andraka, C.E.; Bradshaw, R.W.; Goods, S.H.; Moreno, J.B.; Moss, T.A.

    1996-07-01T23:59:59.000Z

    Solar dish/Stirling systems using sodium heat pipe receivers are being developed by industry and government laboratories here and abroad. The unique demands of this application lead to heat pipe wicks with very large surface areas and complex three-dimensional flow patterns. These characteristics can enhance the mass transport and concentration of constituents of the wick material, resulting in wick corrosion and plugging. As the test times for heat pipe receivers lengthen, we are beginning to see these effects both indirectly, as they affect performance, and directly in post-test examinations. We are also beginning to develop corrective measures. In this paper, we report on our test experiences, our post-test examinations, and on our initial effort to ameliorate various problems.

  11. A New Integrated Onboard Charger and Accessory Power Converter for Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2014-01-01T23:59:59.000Z

    In this paper, a new approach is presented for integrating the function of onboard battery charging into the traction drive system and accessory dc-dc converter of a plug-in electric vehicle (PEV). The idea is to utilize the segmented traction drive system of a PEV as the frond converter of the charging circuit and the transformer and high voltage converter of the 14 V accessory dc-dc converter to form a galvanically isolated onboard charger. Moreover, a control method is presented for suppressing the battery current ripple component of twice the grid frequency with the reduced dc bus capacitor in the segmented inverter. The resultant integrated charger has lower cost, weight, and volume than a standalone charger due to a substantially reduced component count. The proposed integrated charger topology was verified by modeling and experimental results on a 5.8 kW charger prototype.

  12. A Dynamic Algorithm for Facilitated Charging of Plug-In Electric Vehicles

    E-Print Network [OSTI]

    Taheri, Nicole; Ye, Yinyu

    2011-01-01T23:59:59.000Z

    Plug-in Electric Vehicles (PEVs) are a rapidly developing technology that can reduce greenhouse gas emissions and change the way vehicles obtain power. PEV charging stations will most likely be available at home and at work, and occasionally be publicly available, offering flexible charging options. Ideally, each vehicle will charge during periods when electricity prices are relatively low, to minimize the cost to the consumer and maximize societal benefits. A Demand Response (DR) service for a fleet of PEVs could yield such charging schedules by regulating consumer electricity use during certain time periods, in order to meet an obligation to the market. We construct an automated DR mechanism for a fleet of PEVs that facilitates vehicle charging to ensure the demands of the vehicles and the market are met. Our dynamic algorithm depends only on the knowledge of a few hundred driving behaviors from a previous similar day, and uses a simple adjusted pricing scheme to instantly assign feasible and satisfactory c...

  13. A Queueing Based Scheduling Approach to Plug-In Electric Vehicle Dispatch in Distribution Systems

    E-Print Network [OSTI]

    Li, Qiao; Ilic, Marija D

    2012-01-01T23:59:59.000Z

    Large-scale integration of plug-in electric vehicles (PEV) in power systems can cause severe issues to the existing distribution system, such as branch congestions and significant voltage drops. As a consequence, smart charging strategies are crucial for the secure and reliable operation of the power system. This paper tries to achieve high penetration level of PEVs with the existing distribution system infrastructure by proposing a smart charging algorithm that can optimally utilize the distribution system capacity. Specifically, the paper proposes a max-weight PEV dispatch algorithm to control the PEV charging rates, subject to power system physical limits. The proposed max-weight PEV dispatch algorithm is proved to be throughput optimal under very mild assumptions on the stochastic dynamics in the system. This suggests that the costly distribution system infrastructure upgrade can be avoided, or failing that, at least successfully deferred. The proposed PEV dispatch algorithm is particularly attractive in ...

  14. Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Pesaran, A. A.; Kim, G. H.; Keyser, M.

    2009-05-01T23:59:59.000Z

    The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

  15. Energy Related Research Expertise Mechanical Engineering Department

    E-Print Network [OSTI]

    Anderson, Richard

    a combustion process, bubbles in the cooling system in nuclear plants. Amy Shen: nanotechnology, bioenergy materials acquisition (e.g., mining, agriculture) through materials processing, energy conversion of Agriculture, and the US Department of Energy as well as by Ford, Boeing, and Plug Power. Some research

  16. IX International Materials Research Congress: Cancun 2002 A Hybrid Multijunction Photoelectrode for Hydrogen ProductionA Hybrid Multijunction Photoelectrode for Hydrogen Production

    E-Print Network [OSTI]

    for Hydrogen ProductionA Hybrid Multijunction Photoelectrode for Hydrogen Production Fabricated with Amorphous light H2 O2 Good Hydrogen Efficiency Long Term Chemical Stability Low Cost Materials ­ SS substrates....Bandgap engineered TiO2? SOME CHOICES: Fe2O3 Selected for Initial Hybrid Photoelectrode Development #12;6IX IMRC

  17. Modeling of Casting, Welding and Advanced Solidification Processes IX Edited by Peter R. Sahm, Preben N. Hansen and James G. Conley

    E-Print Network [OSTI]

    Taylor, Gary

    Modeling of Casting, Welding and Advanced Solidification Processes IX Edited by Peter R. Sahm to the Modelling of Welding Phenomena G. A. Taylor, M. Hughes and K. Pericleous Centre for Numerical Modelling of welding phenomena is presented. The framework includes models from both the fields of Computational Fluid

  18. 2013 IREP Symposium-Bulk Power System Dynamics and Control -IX (IREP), August 25-30, 2013, Rethymnon, Greece Effects of Various Uncertainty Sources on

    E-Print Network [OSTI]

    Liberzon, Daniel

    , Rethymnon, Greece Effects of Various Uncertainty Sources on Automatic Generation Control Systems D is the automatic generation control (AGC), which is responsible for maintaining the nominal system frequency2013 IREP Symposium-Bulk Power System Dynamics and Control -IX (IREP), August 25-30, 2013

  19. Data Summary Report for the Annual Fourmile Branch and F- and H-Area Seeplines, Appendix IX Metals and Radionuclides, 1998

    SciTech Connect (OSTI)

    Koch, J.

    1999-08-23T23:59:59.000Z

    This report presents a summary of the definitive data validation and verification for the 1998 RFI/RI annual Appendix IX metals and radionuclides survey for Fourmile Branch and the F- and H-Area Seeplines. The validation process began with project mobilization and continued through the delivery of EDDs and this report.

  20. Optimal Energy Management Strategy including Battery Health through Thermal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimal Energy Management Strategy including Battery Health through Thermal Management for Hybrid: Energy management strategy, Plug-in hybrid electric vehicles, Li-ion battery aging, thermal management, Pontryagin's Minimum Principle. 1. INTRODUCTION The interest for energy management strategy (EMS) of Hybrid