Powered by Deep Web Technologies
Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications  

SciTech Connect (OSTI)

Air Products is carrying out a scope of work under DOE Award No. DE-FE0012065 ďDevelopment of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications.Ē The Statement of Project Objectives (SOPO) includes a Task 4f in which a Decision Point shall be reached, necessitating a review of Tasks 2-5 with an emphasis on Task 4f. This Topical Report constitutes the Decision Point Application pertaining to Task 4f. The SOPO under DOE Award No. DE-FE0012065 is aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration scale facility known as the Oxygen Development Facility (ODF). It is anticipated that the completion of the current SOPO will advance the technology significantly along a pathway towards enabling the design and construction of the ODF. Development progress on several fronts is critical before an ODF project can commence; this Topical Report serves as an early update on the progress in critical development areas. Progress was made under all tasks, including Materials Development, Ceramic Processing Development, Engineering Development, and Performance Testing. Under Task 4f, Air Products carried out a cost and performance study in which several process design and cost parameters were varied and assessed with a process model and budgetary costing exercise. The results show that the major variables include ceramic module reliability, ITM operating temperature, module production yield, and heat addition strategy. High-temperature compact heat exchangers are shown to contribute significant cost benefits, while directly firing into the feed stream to an ITM are even a mild improvement on the high-temperature recuperation approach. Based on the findings to-date, Air Products recommends no changes to the content or emphasis in the current SOPO and recommends its completion prior to another formal assessment of these factors.

Armstrong, Phillip

2014-11-01T23:59:59.000Z

2

ITM Syngas and ITM H2: Engineering Development of Ceramic Membrane Reactor Systems for  

E-Print Network [OSTI]

(U.S. DOE) and other members of the ITM Syngas/ITM H2 Team, is developing Ion Transport Membrane (ITM of the ITM membrane to oxygen ions, which diffuse through the membrane under a chemical potential gradientITM Syngas and ITM H2: Engineering Development of Ceramic Membrane Reactor Systems for Converting

3

Experimental characterization of an Ion Transport Membrane (ITM) reactor for methane oxyfuel combustion  

E-Print Network [OSTI]

Ion Transport Membranes (ITM) which conduct both electrons and oxygen ions have been investigated experimentally for oxygen separation and fuel (mostly methane) conversion purposes over the last three decades. The fuel ...

Apo, Daniel Jolomi

2012-01-01T23:59:59.000Z

4

Test-Bed of a Real Time Detection System for L/H & H/L Transitions Implemented with the ITMS Platform  

E-Print Network [OSTI]

Test-Bed of a Real Time Detection System for L/H & H/L Transitions Implemented with the ITMS Platform

5

G. Vlad, annual meeting of the Task Force ITM, Garching 19-21st September 2007 Recent advances in simulations of  

E-Print Network [OSTI]

G. Vlad, annual meeting of the Task Force ITM, Garching 19-21st September 2007 1 Recent advances equation; ∑ Maxwellian, Slowing-down energetic particle distribution functions ≠ self inverted #12;G. Vlad, annual meeting of the Task Force ITM, Garching 19-21st September 2007 9 Bursting

Vlad, Gregorio

6

ITM Timeline  

Broader source: Energy.gov [DOE]

The TNA Timeline lists the completion dates when for the deliverables for the integrated training management components to include the TNA, the annual training plan and the annual training summary report.

7

New Oxygen-Production Technology Proving Successful  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy's National Energy Technology Laboratory has partnered with Air Products and Chemicals Inc. of Allentown, Penn. to develop the Ion Transport Membrane (ITM) Oxygen, a revolutionary new oxygen-production technology that requires less energy and offers lower capital costs than conventional technologies.

8

Pat Gould -5026 Director, ITMS  

E-Print Network [OSTI]

Telecom Support Officer Alan Taylor - 5964 Network Officer Yves Virginie - 6037 Network Support Officer Pavel Stulik - 2187 Telecom Peripherals Officer Network Operations Jurgen Baier - 2182 Storage and Cloud Administrator Abdallah Majed - 5616 Storage and Cloud Administrator Storage Team Jason Dillon - 5966 System

9

Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and InnovationexperimentsTechnology

10

www.it.northwestern.edu NorthwesternUniversityInformationTechnology  

E-Print Network [OSTI]

.it.northwestern.edu/about/departments/ itms/cpo/ Disaster Recovery / Business Continuity Program (DR/BCP): Development, implementation to ensure that systems are responsive and reliable www.it.northwestern.edu/about/departments/ itms/qa.it.northwestern.edu/servicestatus/ Collaborative Programs & Services Integrative, value-added services for the overall effectiveness

Shahriar, Selim

11

E-Print Network 3.0 - atr wg-mox fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(ITM) Reactor - Air Products and Chemicals, Inc. Autothermal Reforming (ATR) - Praxair Inc. 12... Platform technology leading to numerous applications - Hydrogen -...

12

E-Print Network 3.0 - autothermal jp5 fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(ITM) Reactor - Air Products and Chemicals, Inc. Autothermal Reforming (ATR) - Praxair Inc. 12... Platform technology leading to numerous applications - Hydrogen -...

13

Numerical simulations of ion transport membrane oxy-fuel reactors for CO? capture applications  

E-Print Network [OSTI]

Numerical simulations were performed to investigate the key features of oxygen permeation and hydrocarbon conversion in ion transport membrane (ITM) reactors. ITM reactors have been suggested as a novel technology to enable ...

Hong, Jongsup

2013-01-01T23:59:59.000Z

14

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four: business administration, wind farm management, aircraft maintenance, tooling production, quality and safety or selected program track focus. Transfer students must talk to their advisor about transferring their courses

15

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

: business administration, energy management, wind farm management, automation and controls, aircraft, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four students must talk to their advisor about transferring their courses over for WSU credit. Laboratory

16

Categorical Exclusion Determinations: Advanced Technology Vehicles...  

Energy Savers [EERE]

20, 2011 CX-006218: Categorical Exclusion Determination Aptera All-Electric and Hybrid Electric Vehicles CX(s) Applied: B1.31, B5.1 Date: 06202011 Location(s): Grand Rapids,...

17

E-Print Network 3.0 - advanced ceramic reactors Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Advanced Separations Technology ITM Syngas... ) Fossil-Based Hydrogen Production Praxair Praxair SNL TIAX Integrated Ceramic Membrane ... Source: DOE Office of Energy...

18

Faience Technology  

E-Print Network [OSTI]

by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

Nicholson, Paul

2009-01-01T23:59:59.000Z

19

Technology Assessment  

Broader source: Energy.gov (indexed) [DOE]

Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the TechnologySystem ......

20

Engineering Development of Ceramic Membrane Reactor  

E-Print Network [OSTI]

ceramic Ion Transport Membrane (ITM) reactor system for low-cost conversion of natural gas to hydrogen;7 A Revolutionary Technology Using Ceramic Membranes Ion Transport Membranes (ITM) ­ Non-porous multiEngineering Development of Ceramic Membrane Reactor Systems for Converting Natural Gas to Hydrogen

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Department of Engineering Technology Technology Education  

E-Print Network [OSTI]

Department of Engineering Technology Technology Education A Teacher Education Program New Jersey Institute of Technology #12;WHAT WILL YOU LEARN? Technology teachers teach problem-based learning utilizing math, science and technology principles. Technological studies involve students: · Designing

Bieber, Michael

22

Distributed Energy Technology Characterization (Desiccant Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Characterization (Desiccant Technologies), January 2004 Distributed Energy Technology Characterization (Desiccant Technologies), January 2004 The purpose of this report is to...

23

Technology '90  

SciTech Connect (OSTI)

The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

Not Available

1991-01-01T23:59:59.000Z

24

CX-004084: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Development of Reaction-Driven Ionic Transport Membranes (ITM) TechnologyCX(s) Applied: B3.6Date: 09/30/2010Location(s): Allentown, PennsylvaniaOffice(s): Fossil Energy, National Energy Technology Laboratory

25

CX-004090: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Development of Reaction-Driven Ionic Transport Membranes (ITM) TechnologyCX(s) Applied: B3.6Date: 09/30/2010Location(s): University Park, PennsylvaniaOffice(s): Fossil Energy, National Energy Technology Laboratory

26

CX-004087: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Development of Reaction-Driven Ionic Transport Membranes (ITM) TechnologyCX(s) Applied: B3.6Date: 09/30/2010Location(s): Salt Lake City, UtahOffice(s): Fossil Energy, National Energy Technology Laboratory

27

FUEL CELL TECHNOLOGIES PROGRAM Technologies  

E-Print Network [OSTI]

and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially, such as a hydrogen fueling station or hydrogen fuel cell vehicle. Technology validation does not certify, and the Federal Government to evaluate hydrogen fuel cell vehicle and infrastructure technologies together in real

28

Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program Cumulus Humilis,Technologies Available Technologies

29

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division to them in California. TECHNOLOGY TRANSFER PROGRAM MAY 2011, VOL. 3, NO. 1 California's Transition

California at Berkeley, University of

30

Technology Application Centers: Facilitating Technology Transfer  

E-Print Network [OSTI]

transfer plus technology application. A&C Enercom has learned from experience that technology deployment will not occur unless utilities achieve both technology transfer (e.g, the dissemination of information) and technology application (e.g., the direct...

Kuhel, G. J.

31

Manufacturing technology  

SciTech Connect (OSTI)

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

32

FEMP/NTDP Technology Focus New Technology  

E-Print Network [OSTI]

FEMP/NTDP Technology Focus New Technology Demonstration Program Technology Focus FEMPFederal Energy Management Program Trends in Energy Management Technology: BCS Integration Technologies ≠ Open Communications into a complete EMCIS. The first article [1] covered enabling technologies for emerging energy management systems

33

(Environmental technology)  

SciTech Connect (OSTI)

The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

Boston, H.L.

1990-10-12T23:59:59.000Z

34

Manufacturing technologies  

SciTech Connect (OSTI)

The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

NONE

1995-09-01T23:59:59.000Z

35

Vacuum Technology  

SciTech Connect (OSTI)

The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

Biltoft, P J

2004-10-15T23:59:59.000Z

36

Venus Technology Plan Venus Technology Plan  

E-Print Network [OSTI]

Venus Technology Plan May 2014 #12; ii Venus Technology Plan At the Venus Exploration Survey priorities, and (3) develop a Technology Plan for future Venus missions (after a Technology Forum at VEXAG Meeting 11 in November 2013). Here, we present the 2014 Venus Technology Plan

Rathbun, Julie A.

37

CX-010951: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Automotive Technology Analysis CX(s) Applied: A8 Date: 09/17/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

38

CX-012434: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Low Cost Titanium Casting Technology CX(s) Applied: B3.6Date: 41878 Location(s): OhioOffices(s): National Energy Technology Laboratory

39

CX-011416: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program CX(s) Applied: A9, A11 Date: 12/19/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

40

CX-010778: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program CX(s) Applied: A9, A11 Date: 08/23/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CX-012472: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program CX(s) Applied: A9, A11, B3.11Date: 41873 Location(s): OhioOffices(s): National Energy Technology Laboratory

42

Technology and the Box  

E-Print Network [OSTI]

its explorations of technology in partnership with radicalPadma Maitland Technology and the Box The room is thedisciplines. The theme of ďTechnology and the BoxĒ emerged

Maitland, Padma

2013-01-01T23:59:59.000Z

43

Hydrogen Technologies Group  

SciTech Connect (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

44

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle...

45

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

46

Dezincing Technology  

SciTech Connect (OSTI)

Half of the steel produced in the US is derived from scrap. With zinc-coated prompt scrap increasing fivefold since 1980, steel-makers are feeling the effect of increased contaminant loads on their operations. The greatest concern is the cost of treatment before disposal of waste dusts and water that arise from remelting zinc-coated scrap. An economic process is needed to strip and recover the zinc from scrap to provide a low residual scrap for steel- and iron-making. Metal Recovery Technologies, Inc., with the assistance of Argonne National Laboratory, have been developing a caustic leach dezincing process for upgrading galvanized stamping plant scrap into clean scrap with recovery of the zinc. With further development the technology could also process galvanized scrap from obsolete automobiles. This paper will review: (1) the status of recent pilot plant operations and plans for a commercial demonstration facility with a dezincing capacity of up to 250,000 tons/year, (2) the economics of caustic dezincing, and (3) benefits of decreased cost of environmental compliance, raw material savings, and improved operations with use of dezinced scrap.

Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States). Energy Service Div.; Morgan, W.A. [Metal Recovery Technologies, Inc., East Chicago, IN (United States)

1997-08-01T23:59:59.000Z

47

Northwest Regional Technology Center  

E-Print Network [OSTI]

Northwest Regional Technology Center for Homeland Security The Northwest Regional Technology Center and deployment of technologies that are effective homeland security solutions for the region, and accelerate technology transfer to the national user community. Foster a collaborative spirit across agencies

48

CSIR TECHNOLOGY AWARDS -2013  

E-Print Network [OSTI]

CSIR TECHNOLOGY AWARDS - 2013 GUIDELINES & PROFORMAE FOR NOMINATIONS Planning and Performance 2013 #12;CSIR TECHNOLOGY AWARDS BRIEF DETAILS ,,CSIR Technology Awards were instituted in 1990 to encourage multi-disciplinary in- house team efforts and external interaction for technology development

Jayaram, Bhyravabotla

49

INL Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Through collaboration with industry partners, INL's Technology Deployment office makes available to American agencies and international organizations unique...

50

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division of asphalt pavements. TECHNOLOGY TRANSFER PROGRAM JULY 2010, VOL. 2, NO. 1 Warm Mix Asphalt Hits the Road, and California LTAP Field Engineer, Technology Transfer Program, Institute of Transportation Studies, UC Berkeley

California at Berkeley, University of

51

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division solve the very serious problem of waste tire disposal. TECHNOLOGY TRANSFER PROGRAM SEPTEMBER 2009, VOL, University of California Pavement Research Center, and California LTAP Field Engineer, Technology Transfer

California at Berkeley, University of

52

Plasma technology directory  

SciTech Connect (OSTI)

The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

Ward, P.P.; Dybwad, G.L.

1995-03-01T23:59:59.000Z

53

Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology  

E-Print Network [OSTI]

Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology Fujita LaboratoryTokyo Institute of Technology Tokyo Institute of Technology 231 #12;Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology 2 IT #12;Fujita LaboratoryTokyo Instituteof

54

Northwestern University Information Technology  

E-Print Network [OSTI]

... Integrated Technology Classrooms Online Lectures Collaborative Course Management Tools ...in any teaching environment Classroom Laptop Mobile Device www.it.northwestern.edu NUITAcademic&ResearchTechnologiesNorthwestern University Information Technology (NUIT) is committed to supporting faculty research

Shull, Kenneth R.

55

Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Presentation given...

56

Technology Readiness Assessment (TRA)/Technology Maturation Plan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This...

57

Fuel Cell Technologies Office Science and Technology Policy Fellowship...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Science and Technology Policy Fellowship Opportunities Available Fuel Cell Technologies Office Science and Technology Policy Fellowship Opportunities...

58

Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual...  

Energy Savers [EERE]

10 Fuel Technologies R&D Annual Progress Report Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual Progress Report The Fuels Technologies subprogram supports fuels and...

59

2010 DOE EERE Vehicle Technologies Program Merit Review ? Technology...  

Energy Savers [EERE]

Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review Technology Integration Technology integration merit review results 2010amr08.pdf More...

60

States & Emerging Energy Technologies  

Broader source: Energy.gov (indexed) [DOE]

operations and maintenance, and occupant impact, so not only trying to quantify building energy or technology energy performance, but also the impacts of that technology on users....

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydropower Program Technology Overview  

SciTech Connect (OSTI)

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-10-01T23:59:59.000Z

62

Technology Zones (Virginia)  

Broader source: Energy.gov [DOE]

Virginiaís 26 designated Technology Zones offer tax relief in the form of abatements, credits, deductions, deferrals, exemptions, or rebates. Local governments may designate technology zones to...

63

Technology Transfer Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory...

64

Green Purchasing & Green Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

65

Technology To Realize  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Technology To Realize Fusion Energy in the International Context Kathryn A. McCarthy Deputy Associate Laboratory Director Nuclear Science & Technology Idaho National Laboratory...

66

TECHNOLOGY READINESS ASSESSMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DECEMBER 2012 Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) 2012 TECHNOLOGY READINESS ASSESSMENT...

67

Technology Integration Overview  

Broader source: Energy.gov (indexed) [DOE]

Technology Integration Overview Dennis A. Smith - Clean Cities Deployment Connie Bezanson - Vehicle Education June 17, 2014 VEHICLE TECHNOLOGIES OFFICE This presentation does not...

68

Integrated Technology Deployment  

Office of Energy Efficiency and Renewable Energy (EERE)

Integrated technology deployment is a comprehensive approach to implementing solutions that increase the use of energy efficiency and renewable energy technologies. Federal, state, and local...

69

Fuel & Lubricant Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

May 15, 2012 Kevin Stork, Team Lead VTP Annual Merit Review VTP Fuel & Lubricant Technologies eere.energy.gov 2 | Vehicle Technologies Program Mission Enable advanced combustion...

70

Technology Partnering Mechanisms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

expand a business with INL technologies, or require business support our Technology Transfer team is available to discuss the following contractual mechanisms: Cooperative...

71

Vehicle Technologies Office: News  

Broader source: Energy.gov [DOE]

EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

72

Morgantown Energy Technology Center, technology summary  

SciTech Connect (OSTI)

This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

Not Available

1994-06-01T23:59:59.000Z

73

Technology Deployment List | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technologies Technology Deployment Technology Deployment List Technology Deployment List The Federal Energy Management Program's (FEMP) Technology Deployment List features...

74

General com Technology community  

E-Print Network [OSTI]

Campus IT General com m unity Technology community ITsystem owners Campus Council for Information Technology (CCFIT) · ~30 members · Advisory evaluation and review role · Input from faculty, staff, students formal representation on steering team and subcommittees Technology Support Program · Technology support

Ferrara, Katherine W.

75

The Technology & Innovation Centre  

E-Print Network [OSTI]

The Technology & Innovation Centre #12;The Technology and Innovation Centre revolutionises the way in Scotland and further afield ­ including power and energy, renewable technologies, photonics and sensors, for industry, the Technology and Innovation Centre has already attracted major partners including Scottish

Mottram, Nigel

76

Department of Information Technology  

E-Print Network [OSTI]

Department of Information Technology Human-Computer Interaction http://www.it.uu.se/research/hci #12;InformationTechnology-HCI Department of Information Technology | www.it.uu.se Today's menu Who we and collaboration Teaching KoF 2007, effects? Vision and plans Challenges #12;InformationTechnology

Flener, Pierre

77

Predictive Maintenance Technologies  

Broader source: Energy.gov [DOE]

Several diagnostic technologies and best practices are available to assist Federal agencies with predictive maintenance programs.

78

CX-007613: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Next Generation Ultra Lean Burn Powertrain CX(s) Applied: A9 Date: 01/10/2012 Location(s): California Offices(s): National Energy Technology Laboratory

79

CX-003761: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-003761: Categorical Exclusion Determination Ramgen Supersonic Shock Wave Compression and Engine Technology CX(s) Applied: B3.6 Date: 09032010 Location(s):...

80

CX-003518: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003518: Categorical Exclusion Determination Energy from Biomass Research and Technology Transfer Program CX(s) Applied: B3.6 Date: 08232010...

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CX-008264: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 05/24/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

82

CX-008468: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 06/12/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

83

CX-002377: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-002377: Categorical Exclusion Determination Offshore Wind Technology Data Collection Project CX(s) Applied: A9 Date: 05132010...

84

CX-003465: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-003465: Categorical Exclusion Determination Vehicle Technologies Program Advanced Automotive Fuels Research, Development and Commercialization Cluster CX(s) Applied: A9, B2.2,...

85

CX-009272: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Building 94 Facade Restoration CX(s) Applied: B1.3 Date: 09/10/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

86

CX-003132: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Georgia Institute of Technology Research Corporation - Metal Organic Frameworks in Hollow Fiber Membranes for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 06022010...

87

CX-007385: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-007385: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9...

88

CX-012038: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Deepwater Reverse-Circulation Primary Cementing CX(s) Applied: A9 Date: 04/17/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

89

CX-010316: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-010316: Categorical Exclusion Determination "Various Getter Testing for Savannah River National LaboratoryDefense Programs Technology CX(s) Applied: B3.6 Date: 04222013...

90

CX-005582: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Foro Energy, Incorporated - Low-Contact Drilling Technology to Enable Economical Enhance Geothermal System Wells CX(s) Applied: B3.6,...

91

CX-000855: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000855: Categorical Exclusion Determination 25A5208 - Low-contact Drilling Technology to Enable Economical Engineered Geothermal System Wells CX(s) Applied:...

92

CX-005159: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005159: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - Indiana Geological Survey CX(s) Applied: A9,...

93

CX-005156: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005156: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - Lawrence Livermore National Laboratory CX(s)...

94

CX-005154: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005154: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Kentucky CX(s) Applied: A9, A11,...

95

CX-005151: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005151: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Wyoming CX(s) Applied: A9, A11...

96

CX-000734: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

of Methane Hydrates CX(s) Applied: A9 Date: 01222010 Location(s): Stillwater, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory Collect data and...

97

CX-002608: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling CX(s) Applied: A9 Date: 12112009 Location(s): Austin, Texas Office(s):...

98

CX-005198: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005198: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9,...

99

CX-005199: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005199: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9,...

100

CX-012463: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Reliable SOFC Systems CX(s) Applied: A9, B3.6Date: 41877 Location(s): ConnecticutOffices(s): National Energy Technology Laboratory

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

CX-008215: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Small Hydropower Research and Development Technology Project CX(s) Applied: A9 Date: 04/03/2012 Location(s): Colorado Offices(s): Golden Field Office

102

CX-000815: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

0815: Categorical Exclusion Determination CX-000815: Categorical Exclusion Determination Hydrogen Technology Laboratory 140 - Chromatography, Wet Laboratory CX(s) Applied: B3.6...

103

CX-012474: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Refractories/Ceramics Project CX(s) Applied: B3.6Date: 41870 Location(s): OregonOffices(s): National Energy Technology Laboratory

104

CX-010180: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX(s) Applied: A9 Date: 04252013 Location(s): Other Location Offices(s): National Energy Technology Laboratory Develop a predictive turbulent combustion model that is...

105

CX-011149: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-011149: Categorical Exclusion Determination Nonproliferation Technology Section - Nanomaterials Research CX(s) Applied: B3.6 Date: 08162013...

106

CX-007645: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-007645: Categorical Exclusion Determination Nonproliferation Technology Section - Nanomaterials Research CX(s) Applied: B3.6 Date: 01042012...

107

CX-012050: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-012050: Categorical Exclusion Determination Nonproliferation Technology Section - Nanomaterials Research CX(s) Applied: B3.6 Date: 03252014...

108

CX-003216: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003216: Categorical Exclusion Determination Advanced HeatMass Exchanger Technology for Geothermal and Solar Renewable Energy Systems CX(s)...

109

CX-007710: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination United Technologies Research Center - Thermal Storage Using Hybrid Vapor Compression Adsorption System CX(s) Applied: A9, B3.6 Date: 11292011...

110

CX-011707: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Laser Nanoparticle Lab CX(s) Applied: B3.6 Date: 01/15/2014 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

111

CX-010797: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Serration Behavior of High Entropy Alloys CX(s) Applied: A9 Date: 08/14/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory

112

Pretreatment Technology Plan  

SciTech Connect (OSTI)

This technology plan presents a strategy for the identification, evaluation, and development of technologies for the pretreatment of radioactive wastes stored in underground storage tanks at the Hanford Site. This strategy includes deployment of facilities and process development schedules to support the other program elements. This document also presents schedule information for alternative pretreatment systems: (1) the reference pretreatment technology development system, (2) an enhanced pretreatment technology development system, and (3) alternative pretreatment technology development systems.

Barker, S.A. [Westinghouse Hanford Co., Richland, WA (US); Thornhill, C.K.; Holton, L.K. Jr. [Pacific Northwest Lab., Richland, WA (US)

1993-03-01T23:59:59.000Z

113

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary stent is a small,...

114

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Basic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Immobilized Amine Sorbent (BIAS) Process Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Capturing carbon dioxide (CO 2 ) from the flue or...

115

Method of joining ITM materials using a partially or fully-transient liquid phase  

DOE Patents [OSTI]

A method of forming a composite structure includes: (1) providing first and second sintered bodies containing first and second multicomponent metallic oxides having first and second identical crystal structures that are perovskitic or fluoritic; (2) providing a joint material containing at least one metal oxide: (a) containing (i) at least one metal of an identical IUPAC Group as at least one sintered body metal in one of the multicomponent metallic oxides, (ii) a first row D-Block transition metal not contained in the multicomponent metallic oxides, and/or (iii) a lanthanide not contained in the multicomponent metallic oxides; (b) free of metals contained in the multicomponent metallic oxides; (c) free of cations of boron, silicon, germanium, tin, lead, arsenic, antimony, phosphorus and tellurium; and (d) having a melting point below the sintering temperatures of the sintered bodies; and (3) heating to a joining temperature above the melting point and below the sintering temperatures.

Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis

2006-03-14T23:59:59.000Z

116

L3:THM.ITM.P4.02 Igor Bolotnov NCSU  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2 J.N. Shadid, T.M.

117

L3:THM.ITM.P5.01 Mark Christon LANL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2 J.N. Shadid, T.M.P5.01 Mark Christon

118

ITM Benchmark #1: PHASTA Results Igor Bolotnov North Carolina State University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSLthe

119

SHARED TECHNOLOGY TRANSFER PROGRAM  

SciTech Connect (OSTI)

The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

GRIFFIN, JOHN M. HAUT, RICHARD C.

2008-03-07T23:59:59.000Z

120

Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions  

E-Print Network [OSTI]

Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 Advisor Center Navigation: Login #12;Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training

Johnson Jr.,, Ray

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Technology Readiness Assessment Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Cancels DOE G 413.3-4.

2011-09-15T23:59:59.000Z

122

UNIVERSITY of STRATHCLYDE TECHNOLOGY &  

E-Print Network [OSTI]

electricity networks and distribution systems, through to using smart grid technologies for more effective of dynamic collaborations delivering productive outcomes. #12;#12;LOW CARBON POWER AND ENERGY FUTURE CITIES Advanced Manufacturing Future Cities Health Technologies Working collaboratively, programmes within

Mottram, Nigel

123

Diversity and Technological Progress  

E-Print Network [OSTI]

This paper proposes a tractable model to study the equilibrium diversity of technological progress and shows that equilibrium technological progress may exhibit too little diversity (too much conformity), in particular ...

Acemoglu, Daron

2011-12-15T23:59:59.000Z

124

Pinch Technology Without Tears  

E-Print Network [OSTI]

In the mid-eighties engineers were rushing to hear about Pinch Technology. Conference rooms were full. Training courses were over-subscribed. Here was the technology that was going to provide the standard design tool for the energy management...

Polley, G. T.

125

Membrane Technology Workshop  

Broader source: Energy.gov [DOE]

Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

126

Deployment of Emerging Technologies  

Broader source: Energy.gov [DOE]

Presentation covers the FUPWG Deployment of Emerging Technologies. Presented by Brad Gustafson, Department of Energy, held on November 1, 2006.

127

Carbon Fiber Technology Facility  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

128

Consumer Vehicle Technology Data  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

129

States & Emerging Energy Technologies  

Broader source: Energy.gov [DOE]

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on States & Emerging Energy Technologies.

130

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

131

Upgrading through Preprocessing Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

through Preprocessing Technologies The challenges of efficiently converting raw biomass into usable, affordable, customized bioenergy feedstdocks are many. The bioenergy...

132

Does Doctrine Drive Technology or Does Technology Drive Doctrine?  

E-Print Network [OSTI]

Brief No. 4 September 2010 Does Doctrine Drive Technology orDoes Technology Drive Doctrine? Dennis Blasko Summary Wthat emphasizes strategy over technology and may hold some

Blasko, Dennis

2010-01-01T23:59:59.000Z

133

Vehicle Technologies Office Merit Review 2014: Advanced Technology...  

Energy Savers [EERE]

Advanced Technology Vehicle Lab Benchmarking - Level 1 Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking - Level 1 Presentation given by...

134

Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies...  

Energy Savers [EERE]

2 Fuel and Lubricant Technologies R&D Annual Progress Report Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies R&D Annual Progress Report The Fuel & Lubricant...

135

DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...  

Broader source: Energy.gov (indexed) [DOE]

8.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Validation 2008 Annual Merit Review Results Summary - 16. Technology...

136

Vehicle Technologies Office Merit Review 2014: Technology and...  

Broader source: Energy.gov (indexed) [DOE]

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Technology and System Level...

137

Science, technology and innovation  

E-Print Network [OSTI]

Science, technology and innovation Taught degrees MSc in Innovation and Sustainability technologies on individuals and their environment is highly dependent on the choices made by policy makers that science and technology policy choices for sustainable growth and well-being in developing countries need

Sussex, University of

138

University Libraries Technology Plan  

E-Print Network [OSTI]

Libraries Bowling Green State University #12;Table of Contents Introduction ..................................................................19 Page 2 of 19 Technology Plan, 2003-2005 University Libraries Bowling Green State University #12University Libraries Technology Plan 2003-2005 Page 1 of 19 Technology Plan, 2003-2005 University

Moore, Paul A.

139

New Technology Demonstration Program  

E-Print Network [OSTI]

New Technology Demonstration Program Technical Brief FEMPFederal Energy Management Program Tom for saving energy in refrigerated walk-in coolers, and to evaluate the potential for this technology in Federal facilities. The focus of this study was on a single manufacturer of the technology, Nevada Energy

140

Technology Forecasting Scenario Development  

E-Print Network [OSTI]

Technology Forecasting and Scenario Development Newsletter No. 2 October 1998 Systems Analysis was initiated on the establishment of a new research programme entitled Technology Forecasting and Scenario and commercial applica- tion of new technology. An international Scientific Advisory Panel has been set up

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Department of Energy Technology  

E-Print Network [OSTI]

Reservoir Models 42 #12;Page 2.21. Energy Storage 43 2.22. Focusing Solar Collector 43 2.23. Digitizing technology towa^ls energy technology problems in general, at Ris√ł and in the Depart- ment, was made manifestRisa-R-482 Department of Energy Technology Annual Progress Report 1 January - 31 December 1982 Ris

142

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2007 Prepared by: National Institute to present to the President and the Congress this Federal Laboratory Technology Transfer Report summarizing the achievements of Federal technology transfer and partnering programs of the Federal research and development

Perkins, Richard A.

143

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2009 Prepared by: National Institute to submit this fiscal year 2009 Technology Transfer Summary Report to the President and the Congress in accordance with 15 USC Sec 3710(g)(2) for an annual summary on the implementation of technology transfer

Perkins, Richard A.

144

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2008 Prepared by: National Institute to submit this fiscal year 2008 Technology Transfer Summary Report to the President and the Congress transfer authorities established by the Technology Transfer Commercialization Act of 2000 (P.L. 106

Perkins, Richard A.

145

Web Technology (elective package)  

E-Print Network [OSTI]

Web Technology (elective package) Offered by: Department of Mathematics and Computer Science? Computer Science-based approaches and enabling technologies for the web. Course descriptions Human and efficient. Web Technology The web has become the major source of information retrieval and is playing

Franssen, Michael

146

Technology Advertising Contact Information  

E-Print Network [OSTI]

Overview #12;Technology Advertising Contact Information Alex Sheath 8596 4063 asheath Overview Our online Technology section is geared towards an IT professional environment, reaching a range of technology enthusiasts from every day gadget consumers to business decision makers where enterprise solutions

Peters, Richard

147

Department of Science, Technology, &  

E-Print Network [OSTI]

Developing Leaders of Innovation Department of Science, Technology, & Society #12;Understanding the relationship between technology and society is crucial to becoming a successful leader in any field. #12;Our Students The University of Virginia Department of Science, Technology, and Society offers a comprehensive

Acton, Scott

148

Science &Technology Facilities Council  

E-Print Network [OSTI]

and Science & Technology Facilities Council invite you to The ESA Technology Transfer Network SpaceTech2012Science &Technology Facilities Council Innovations Issue 31 October 2012 This issue: 1 STFC International prize for `no needles' breast cancer diagnosis technique 6 CEOI Challenge Workshop ­ Current

149

Microsoft Technology Centers Novosibirsk  

E-Print Network [OSTI]

-depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

Narasayya, Vivek

150

Microsoft Technology Centers Philadelphia  

E-Print Network [OSTI]

-depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

Narasayya, Vivek

151

Microsoft Technology Centers Minneapolis  

E-Print Network [OSTI]

-depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

Hunt, Galen

152

Energy Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Technologies Energy Technologies State, local, and tribal governments can use clean energy technologies to address increasing energy use and costs, economic investment and...

153

Technology, legal knowledge and citizenship†  

E-Print Network [OSTI]

through adjustment. Science, Technology and Human Values 31(3 Technology, legal knowledge and citizenship On the care ofhelp of these adaptive technologies, Jose had become able to

Dominguez Rubio, Fernando; Lezaun, Javier

2014-01-01T23:59:59.000Z

154

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

Colorado: Xcel Energy. 2012 Wind Technologies Market ReportOperator. 2012 Wind Technologies Market Report Chadbourne &Power Company. 2012 Wind Technologies Market Report EnerNex

Wiser, Ryan

2014-01-01T23:59:59.000Z

155

Chevron, GE form Technology Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

form Technology Alliance February 3, 2014 HOUSTON, TX, Feb. 3, 2014-Chevron Energy Technology Company and GE Oil & Gas announced today the creation of the Chevron GE Technology...

156

Technology reviews: Glazing systems  

SciTech Connect (OSTI)

We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology; determine the performance range of available technologies; identify the most promising technologies and promising trends in technology advances; examine market forces and market trends; and develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fag into that class.

Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

157

Environmental Technology Verification of Mobile Sources Control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Environmental Technology Verification of Mobile Sources Control Technologies Environmental Technology Verification of Mobile Sources Control Technologies 2005 Diesel Engine...

158

Technology transfer 1994  

SciTech Connect (OSTI)

This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

Not Available

1994-01-01T23:59:59.000Z

159

Solar Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies.

160

Strategic Technology JET PROPULSION LABORATORY  

E-Print Network [OSTI]

Strategic Technology Directions JET PROPULSION LABORATORY National Aeronautics and Space Administration 2 0 0 9 #12;© 2009 California Institute of Technology. Government sponsorship acknowledged. #12;Strategic Technology Directions 2009 offers a distillation of technologies, their links to space missions

Waliser, Duane E.

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

IIT SCHOOL OF APPLIED TECHNOLOGY  

E-Print Network [OSTI]

INDUSTRIAL TECHNOLOGY AND MANAGEMENT IIT SCHOOL OF APPLIED TECHNOLOGY PREPARING SKILLED INDIVIDUALS, INDUSTRIAL FACILITIES, SUPPLY CHAIN MANAGEMENT, SUSTAINABILITY AND MANUFACTURING TECHNOLOGY. #12;BE ONE to assess, implement, and utilize current technologies, and to learn how to manage industrial operations

Heller, Barbara

162

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced...

163

Geothermal innovative technologies catalog  

SciTech Connect (OSTI)

The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

Kenkeremath, D. (ed.)

1988-09-01T23:59:59.000Z

164

Digital Sensor Technology  

SciTech Connect (OSTI)

The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

2013-07-01T23:59:59.000Z

165

Director, Geothermal Technologies Office  

Broader source: Energy.gov [DOE]

The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

166

HVAC Maintenance and Technologies  

Broader source: Energy.gov [DOE]

Presentation covers the HVAC maintenance and technologies, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

167

Genome Science/Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

student working with Armand Dichosa, Cliff Han and Krista Reitenga. She spends the bulk of her time on projects utilizing gel microdroplet technology. Armand Dichosa, PhD,...

168

Mobile Technology Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The directive will ensure that federal organizations and employees within the Department can use mobile technology to support mission requirements in a safe and secure manner.

2013-11-21T23:59:59.000Z

169

Synchrophasor Technologies Page ii  

Energy Savers [EERE]

and supporting technologies and systems in their electric power transmission systems. This report has two purposes: (1) to describe, for the non-specialist, synchrophasor...

170

Flexible Assembly Solar Technology  

Broader source: Energy.gov (indexed) [DOE]

2007-2010 BrightSource Energy, Inc. All rights reserved. 1 Flexible Assembly Solar Technology Binyamin Koretz Director, Strategic Planning & IP 2 Proprietary &...

171

Lighting Technology Panel  

Broader source: Energy.gov [DOE]

Presentation covers the†Lighting Technology Panel for the Federal Utility Partnership Working Group (FUPWG) meeting, held on†November 18-19, 2009.†

172

Sustainable Environment Technologies (4578)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proposed Action Description: The scope of this Cooperative Research and Development (CRADA) is to develop two types of control access rate to facilities. These two technologies...

173

Advanced Propulsion Technology Strategy  

Broader source: Energy.gov (indexed) [DOE]

Alternative Sources) Hydrogen Time ADVANCED PROPULSION TECHNOLOGY STRATEGY DOWNSIZED TURBO GAS ENGINE CHEVROLET CRUZE 1.4L TURBO ECOTEC Downsized SIDI Turbo Boosting HCCI -...

174

2015 Technology Innovation Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for RTU and Lighting Retrofits Energy Efficiency TIP 140: Energy Efficiency Emerging Technology Assessment and Demonstration Projects TIP 261: Determining and Improving the...

175

Geothermal Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector.

176

Geothermal Technologies Office: Projects  

Broader source: Energy.gov (indexed) [DOE]

Exploration Technologies (6) Geopressured Resources (1) Geothermal Analysis (14) Heat Pumps (8) High-Temperature Cements (2) High-Temperature Downhole MWD Tools for...

177

Technology Integration Overview  

Broader source: Energy.gov (indexed) [DOE]

-Technology Integration Overview - Dennis A. Smith Connie Bezanson U. S. Department of Energy Headquarters Office - Washington, D.C. May 2013 Project ID: TI000 2013 Department of...

178

States & Emerging Energy Technologies  

Broader source: Energy.gov (indexed) [DOE]

States & Emerging Energy Technologies August 15, 2013 DOE's State and Local Technical Assistance Program 2 DOE's Technical Assistance Program * Strategic Energy Planning * Program...

179

Technology Demonstration Partnership Policy  

Broader source: Energy.gov [DOE]

This City Council memorandum establishes a framework for engaging in and evaluating demonstration partnerships with the goal of developing, testing, and demonstrating emerging technologies, product, and service innovations.

180

Benchmarking of Competitive Technologies  

Broader source: Energy.gov (indexed) [DOE]

evaluations and assessments * Compare results with other HEV technologies * Identify new areas of interest * Evaluate advantages and disadvantages of design changes - Example:...

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Navy Technology Evaluation Update  

Broader source: Energy.gov [DOE]

Presentation covers the Navy Technology Evaluation update at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

182

Photovoltaic Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of photovoltaic (PV) technologies supplemented by specific information to apply PV within the Federal sector.

183

Biogas Production Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biogas Production Technologies Ruihong Zhang, Professor Biological and Agricultural Engineering University of California, Davis Email: rhzhang@ucdavis.edu Biogas and Fuel Cell...

184

Technology Integration Overview  

Broader source: Energy.gov (indexed) [DOE]

Portfolio of Technologies Eliminate Alternative Fuels Electric Vehicles Biodiesel Ethanol Hydrogen Propane Natural Gas Fuel Economy More Fuel efficient vehicles, adopting smarter...

185

ENERGY EFFICIENCY TECHNOLOGY ROADMAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to involve more explicit alignment with BPA's newest demand-side roadmap resource, the Demand Response Technology Roadmap. 1 Roadmap chapters have been arranged in stand-alone...

186

Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management Program (FEMP) offers information about energy-efficient and renewable energy technologies through the following areas. Energy-Efficient Product Procurement: Find...

187

Technology Innovation Program 2010ANNUAL REPORT  

E-Print Network [OSTI]

Technology Innovation Program 2010ANNUAL REPORT 2010ANNUAL REPORT Technology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology

188

Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions  

E-Print Network [OSTI]

Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 CUNYfirst Faculty Center Navigation;Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology

Johnson Jr.,, Ray

189

Digital Actuator Technology  

SciTech Connect (OSTI)

There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator technology over legacy analog sensor technology in both quantitative and qualitative ways. 2. To recognize and address the added difficulty of digital technology qualification, especially in regard to software common cause failure (SCCF), that is introduced by the use of digital actuator technology.

Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

2014-09-01T23:59:59.000Z

190

Technology Catalogue. First edition  

SciTech Connect (OSTI)

The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

Not Available

1994-02-01T23:59:59.000Z

191

Testing Technology: A Sandia technology bulletin  

SciTech Connect (OSTI)

Inside this issue is a farewell to Testing Technology message from technical advisor, Ruth David. Also included are articles on: Testing the I-40 bridge over the Rio Grande, simulated reactor meltdown studies, an inexpensive monitor for testing integrated circuits, testing of antihelicoptor mines, and quality assurance on aircraft inspection.

Goetsch, B.; Floyd, H.L.; Doran, L. [eds.

1994-08-01T23:59:59.000Z

192

Name ID# Date General Degree Credit Requirements  

E-Print Network [OSTI]

in history ECON 201 Principles of Macroeconomics Area II core course in a third field Area II core course Topics ITM 105 Spreadsheet Topics ITM 106 Database Topics ITM 310 Business Intelligence ITM 315 Database

Barrash, Warren

193

New Technology Demonstration Program  

E-Print Network [OSTI]

of systems. [1] The selected vendors are: OEM/Equipment Vendor Trane Large Building Controls Vendors Johnson Controls Siemens Building Technologies Small Building Controls Vendors With utility deregulation Technologies Teletrol Systems Software Vendors Tridium Electric Eye 3]. In many of the EMCIS products studied

194

Gasification: A Cornerstone Technology  

ScienceCinema (OSTI)

NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

Gary Stiegel

2010-01-08T23:59:59.000Z

195

Gasification: A Cornerstone Technology  

SciTech Connect (OSTI)

NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

Gary Stiegel

2008-03-26T23:59:59.000Z

196

IITB TECHNOLOGIES DIRECTOR'S MESSAGE  

E-Print Network [OSTI]

is useful to companies who are looking to commercialise new technologies and bring them to the market place technologies under different themes of Healthcare, Energy & Environment, Information & Communication of Microelectronics Lab #12;INDEX 1 Healthcare 1.1 An Enlightening Device for Visually Impaired People

Narayanan, H.

197

TECHNOLOGY INNOVATION PROGRAM National Institute of Standards and Technology  

E-Print Network [OSTI]

TECHNOLOGY INNOVATION PROGRAM National Institute of Standards and Technology Gaithersburg, MD 20899 ADVANCED TECHNOLOGIES FOR CIVIL INFRASTRUCTURE The Technology Innovation Program (TIP) at the National Institute of Standards and Technology was established to assist U.S. businesses and institutions of higher

Magee, Joseph W.

198

Technology Strategic Plan 2013 2016 Office of Information Technology  

E-Print Network [OSTI]

Technology Strategic Plan 2013 ­ 2016 Office of Information Technology June 2013 #12;2 T A B L E O F C O N T E N T S: - Introduction - - Executive Summary - - Terminology - - A Vision for Technology at the City College of New York - - The Mission of the Office for Technology (OIT) - - Technology Guiding

Brinkmann, Peter

199

Information Technology and Management Department of Information Technology and Management  

E-Print Network [OSTI]

Information Technology and Management Department of Information Technology and Management Daniel F Chicago, IL 60616 appliedtech.iit.edu/information-technology-and- management Dean and Chair: C. Robert in the information technology and cyber security fields. The Information Technology and Management degrees apply

Heller, Barbara

200

Robotics Technology Development Program. Technology summary  

SciTech Connect (OSTI)

The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

Not Available

1994-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Technology Innovation Program Advisory Board  

E-Print Network [OSTI]

Technology Innovation Program Advisory Board 2009 Annual Report of the #12;2009 Annual Report of the Technology Innovation Program Advisory Board U.S. Department of Commerce National Institute of Standards and Technology Technology Innovation Program February 2010 #12;For Information regarding the Technology

Magee, Joseph W.

202

The IDA Technology Stan Franklin  

E-Print Network [OSTI]

The IDA Technology Stan Franklin and the `Conscious' Software Research Group #12;FedEx Institute of Technology--The IDA Technology 2 Introducing IDA An intelligent software agent capable of entirely of Technology--The IDA Technology 3 IDA Negotiates IDA negotiates with clients in natural language

Memphis, University of

203

Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies...  

Energy Savers [EERE]

13 Fuel and Lubricant Technologies R&D Annual Progress Report Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies R&D Annual Progress Report This report describes the...

204

OHVT technology roadmap [2000  

SciTech Connect (OSTI)

The OHVT Technology Roadmap for 2000 presents the multiyear program plan of the U.S. DOE's Office of Heavy Vehicle Technologies (OHVT). It is an update of the 1997 plan, reflecting changes in regulations and ongoing discussions with DOE's heavy vehicle customers. The technical plan covers three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); (3) class 1-2 (pickups, vans, and sport utility vehicles) as well as enabling and supporting technologies. The Roadmap documents program goals, schedules, and milestones.

Bradley, R.A.

2000-02-01T23:59:59.000Z

205

DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards...

206

MHK Technologies/Oregon State University Columbia Power Technologies...  

Open Energy Info (EERE)

Jump to: navigation, search << Return to the MHK database homepage Oregon State University Columbia Power Technologies Direct Drive Point Absorber.jpg Technology Profile...

207

COMPUTER SCIENCE INFORMATION TECHNOLOGY  

E-Print Network [OSTI]

COMPUTER SCIENCE and INFORMATION TECHNOLOGY POSTGRADUATE STUDIES 2006 School of Mathematics, Statistics and Computer Science The University of New England Armidale, NSW, Australia Printed courses in computer science and the graduate level topics in computer science which are offered

Dunstan, Neil

208

Membrane Technology Workshop  

Broader source: Energy.gov [DOE]

At the Membrane Technology Workshop (held July 24, 2012, in Rosemont, IL), stakeholders from industry and academia explored the status of membrane research and development (R&D). Participants ...

209

Flexible Assembly Solar Technology  

Broader source: Energy.gov (indexed) [DOE]

Assembly Solar Technology BrightSource DE-EE0005792 | February 15, 2013 | Toister * The proposed assembly process is based on small, cost-effective assembly cells (to be designed...

210

Stage Management & Technology  

E-Print Network [OSTI]

Stage managers provide centralized communication, organization, and task coordination for all individuals in the production team. This study explores the advantages and disadvantages of different and new forms of technology implemented into various...

O'Brien, Madison D

2013-02-04T23:59:59.000Z

211

Mapping healthcare information technology  

E-Print Network [OSTI]

In this thesis I have developed a map of Healthcare Information Technology applications used in the United States for care delivery, healthcare enterprise management, clinical support, research and patient engagement. No ...

Crawford, William Charles Richards

2010-01-01T23:59:59.000Z

212

Technology catalogue. Second edition  

SciTech Connect (OSTI)

The Department of Energy`s (DOE`s) Office of Environmental Management (EM) is responsible for remediating DOE contaminated sites and managing the DOE waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste-management programs within EM. The purpose of the Technology Catalogue is to: (a) provide performance data on OTD-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and other compliance documents for the DOE`s clean-up and waste-management programs; and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community.

NONE

1995-04-01T23:59:59.000Z

213

GeoEnergy technology  

SciTech Connect (OSTI)

The goal of the GeoEnergy Technology Program is to improve the understanding and efficiency of energy extraction and conversion from geologic resources, hence maintaining domestic production capability of fossil energy resources and expanding the usage of geothermal energy. The GeoEnergy Technology Program conducts projects for the Department of Energy in four resource areas--coal, oil and gas, synthetic fuels and geothermal energy. These projects, which are conducted collaboratively with private industry and DOE`s Energy Technology Centers, draw heavily on expertise derived from the nuclear weapons engineering capabilities of Sandia. The primary technologies utilized in the program are instrumentation development and application, geotechnical engineering, drilling and well completions, and chemical and physical process research. Studies in all four resource areas are described.

NONE

1980-12-31T23:59:59.000Z

214

Photonic quantum technologies  

E-Print Network [OSTI]

The first quantum technology, which harnesses uniquely quantum mechanical effects for its core operation, has arrived in the form of commercially available quantum key distribution systems that achieve enhanced security by encoding information in photons such that information gained by an eavesdropper can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, promising exponentially greater computation power for particular tasks. Photonics is destined for a central role in such technologies owing to the need for high-speed transmission and the outstanding low-noise properties of photons. These technologies may use single photons or quantum states of bright laser beams, or both, and will undoubtably apply and drive state-of-the-art developments in photonics.

Jeremy L. O'Brien; Akira Furusawa; Jelena Vu?kovi?

2010-03-20T23:59:59.000Z

215

Geothermal Technologies Newsletter Archives  

Broader source: Energy.gov [DOE]

Here you'll find past issues of the U.S. Department of Energy's (DOE) Geothermal Technologies program newsletter, which features information about its geothermal research and development efforts....

216

Computer Abstractions and Technology  

E-Print Network [OSTI]

& wheel Supersedes roller-ball mechanical mouse #12;Chapter 1 -- Computer Abstractions and Technology to building sized Embedded computers Hidden as components of systems Stringent power of machine instructions executed per operation Processor and memory system Determine how fast instructions

Huang, Chun-Hsi

217

Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

218

Adopting New Technologies for  

E-Print Network [OSTI]

Readiness 6 Organizational Readiness 8 Motivational Readiness 10 Microcultures 12 Conclusion 13 References. The main purpose of IPAS technologies is not to increase administrative efficiency or information. Many authors writing about organizational behavior have sought to understand why particular innova

Qian, Ning

219

Insider protection technology developments  

SciTech Connect (OSTI)

Sandia National Laboratories evaluates and develops new techniques and technologies to ensure the integrity of special nuclear material (SNM) against potential insider threats. We have evaluated several types of sensor technologies and subsystems to monitor and/or track materials and personnel. This past year`s effort has been directed at characterizing commercial developments that meet the Department of Energy`s (DOE) needs in some of these areas. Some of these evaluations are complete and some are still in progress. This paper discusses our work with infrared light (IR), radio frequency (RF), and RF proximity technologies. After these technologies are judged to be applicable to DOE`s needs, we incorporate them into the generic, real time, personnel tracking and material monitoring system.

Foesch, J.; Bortniak, P.; Waddoups, I.

1994-08-01T23:59:59.000Z

220

TECHNOLOGY PROGRAM PLAN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOLID OXIDE FUEL CELLS U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREFACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United...

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ENERGY EFFICIENCY TECHNOLOGY ROADMAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

l d i n g D e s i g n E n v e l o p e R&D Program Summaries Effective, cost competitive solar shingles. Building-integrated photovoltaic (PV) technologies helps make solar power...

222

Technical Report Technologically Enhanced  

E-Print Network [OSTI]

.......................................................................................1-6 Geology and Distribution of Uranium................................................ ..........1Technical Report on Technologically Enhanced Naturally Occurring Radioactive Materials from Uranium of Mines and Geology, and William Chenoweth. EPA is especially appreciative of the comments provided

223

Stimulating Energy Technology Innovation  

E-Print Network [OSTI]

The innovation system has interrelated components of invention, translation, adoption, and diffusion. Energy technology innovation has lagged that in other domains, and there is a compelling public interest in picking up ...

Moniz, Ernest J.

224

Wind Technologies & Evolving Opportunities (Presentation)  

SciTech Connect (OSTI)

This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

Robichaud, R.

2014-07-01T23:59:59.000Z

225

Technology-to-Market Portfolio  

Broader source: Energy.gov [DOE]

BTOís Technology-to-Market (T2M) team drives high impact technologies from R&D to market readiness, preparing these technologies for real building demonstration, market deployment, and ultimately mass-market adoption.

226

The Vehicle Technologies Market Report  

E-Print Network [OSTI]

The Vehicle Technologies Market Report Center for Transportation Analysis 2360 Cherahala Boulevard Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Oak Ridge National Laboratory's Center for Transportation Analysis developed and published the first Vehicle Technologies Market

227

Water Management Technologies from Europe  

E-Print Network [OSTI]

EPRl is cooperating with European companies to apply their know-how and technologies in the United States. One such alliance involves Pell Frischmann (a UK engineering firm) and BG Technology (a UK technology firm). These firms have worked together...

Woinsky, S. G.

228

Nuclear Reactors and Technology  

SciTech Connect (OSTI)

This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

Cason, D.L.; Hicks, S.C. [eds.

1992-01-01T23:59:59.000Z

229

Technology's Impact on Production  

SciTech Connect (OSTI)

As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

Rachel Amann; Ellis Deweese; Deborah Shipman

2009-06-30T23:59:59.000Z

230

Office of Technology Transitions  

Broader source: Energy.gov [DOE]

DOE's Technology Commercialization activities in 2009-13 have involved three broad areas of focus. The primary focus of technology commercialization has continued to be through new technologies developed at the National Laboratories and Facilities. As a second focus, to support and streamline commercialization of these DOE technologies, DOE has carried out a number of new initiatives and pilot projects. Finally, DOE's Department-wide commitment to using commercialization as one mechanism to support U.S. economic growth has led to new cross-cutting programs. U.S. Department of Energy researchers won 31 of the 100 awards in 2014, 36 awards in each of 2013, 2012 and 2011, and 46 in 2010, for a total of 185 over the period of 2009-13. A subset of these awards and other DOE developed technologies are described in Appendix E. These represent a spectrum of commercial areas including DOE mission areas of energy, efficiency, environment and security, as well as spin-off applications in the agricultural, aeronautical, medical, semiconductor and information technology industries, and broad applications in cyber security and sensing/control systems.

231

SCHOOL OF ENGINEERING TECHNOLOGY Surveying Engineering  

E-Print Network [OSTI]

SCHOOL OF ENGINEERING TECHNOLOGY Surveying Engineering Technology practice FOCUSED WHY SURVEYING ENGINEERING TECHNOLOGY? Surveying engineering technology is a practice- focused program that provides students ENGINEERING TECHNOLOGY DEGREE? A graduate with a surveying engineering technology degree can work as a party

Thomas, Andrew

232

NREL: Technology Transfer - Technology Partnership Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of theNews AprilTechnology

233

NREL: Technology Transfer - Technologies Available for Licensing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNicheTechnology Transfer

234

Sscience & technology review; Science Technology Review  

SciTech Connect (OSTI)

This review is published ten times a year to communicate, to a broad audience, Lawrence Livermore National Laboratory`s scientific and technological accomplishments, particularly in the Laboratory`s core mission areas - global security, energy and the environment, and bioscience and biotechnology. This review for the month of July 1996 discusses: Frontiers of research in advanced computations, The multibeam Fabry-Perot velocimeter: Efficient measurement of high velocities, High-tech tools for the American textile industry, and Rock mechanics: can the Tuff take the stress.

NONE

1996-07-01T23:59:59.000Z

235

Animal Waste Technology Fund (Maryland)  

Broader source: Energy.gov [DOE]

A bill passed in 2012 transferred responsibility for animal waste management technology projects to the Maryland Department of Agriculture. The Department will maintain the Animal Waste Technology...

236

Fuel Cell Technologies Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CSD Workshop Washington, DC Fuel Cell Technologies Program Overview Dr. Sunita Satyapal Director, Fuel Cell Technologies Office Energy Efficiency and Renewable Energy U.S....

237

Technology Assistance Program | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assistance Program SHARE Technology Assistance Program Electronics Research Assistance is available for small business licensees of ORNL technologies to leverage ORNL's expertise...

238

Technology Transfer Office November 2009  

E-Print Network [OSTI]

Technology Transfer Office November 2009 INVENTION AGREEMENT In consideration of my employment in writing to Dartmouth through the Technology Transfer Office any such discovery or invention and identify

Myers, Lawrence C.

239

Technology Investment Roadmap 2012 -2017  

E-Print Network [OSTI]

Technology Investment Roadmap 2012 - 2017 20 February 2012 #12;2 Contents Introduction & Overview................................................................... 23 #12;3 Introduction & Overview This Technology Investment Roadmap (TIR) has been developed

Hickman, Mark

240

Video Resources on Geothermal Technologies  

Broader source: Energy.gov [DOE]

Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Vehicle Technologies Office: Information Resources  

Broader source: Energy.gov [DOE]

From here you can access additional information on advanced transportation technologies; view programmatic publications and technical information; learn the basics of hybrid vehicle technology;...

242

Electric Turbo Compounding Technology Update  

Broader source: Energy.gov (indexed) [DOE]

Turbo Compounding Technology Update Electric Turbo Compounding Technology Update 15 August, 2007 Carl Vuk 15 August, 2007 Carl Vuk Electric Turbo Compounding Highlights Electric...

243

Manufacturing Demonstration Facility Technology Collaborations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from industry to assess applicability of new technologies that can reduce manufacturing energy intensity or produce new, energy-efficient products. As part of the technology...

244

Next-Generation Photovoltaic Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Photovoltaic Technologies Next-Generation Photovoltaic Technologies Print Monday, 06 February 2012 15:48 Organic solar cells based on the polymerfullerene bulk...

245

Technology Commercialization Showcase - EERE Commercialization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the country participated. Biomass Program PDF Building Technologies Program PDF Geothermal Energy Program PDF Hydrogen, Fuel Cells and Infrastructure Technologies Program PDF...

246

ORISE: Training and Technology Support  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training and Technology Support ORISE helps train all levels of government personnel for natural disasters and man-made emergencies using latest technology The Oak Ridge Institute...

247

Materials Technologies: Goals, Strategies, and Top Accomplishments...  

Energy Savers [EERE]

Materials Technologies: Goals, Strategies, and Top Accomplishments (Brochure), Vehicle Technologies Program (VTP) Materials Technologies: Goals, Strategies, and Top Accomplishments...

248

Funding Opportunity: Geothermal Technologies Program Seeks Technologie...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS Funding Opportunity: Geothermal Technologies...

249

SMU Geothermal Conference 2011 - Geothermal Technologies Program...  

Energy Savers [EERE]

SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation...

250

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

251

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

252

Building Technologies Program | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across...

253

Ceramic Technology Project  

SciTech Connect (OSTI)

The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

Not Available

1992-03-01T23:59:59.000Z

254

Trusted Computing Technologies, Intel Trusted Execution Technology.  

SciTech Connect (OSTI)

We describe the current state-of-the-art in Trusted Computing Technologies - focusing mainly on Intel's Trusted Execution Technology (TXT). This document is based on existing documentation and tests of two existing TXT-based systems: Intel's Trusted Boot and Invisible Things Lab's Qubes OS. We describe what features are lacking in current implementations, describe what a mature system could provide, and present a list of developments to watch. Critical systems perform operation-critical computations on high importance data. In such systems, the inputs, computation steps, and outputs may be highly sensitive. Sensitive components must be protected from both unauthorized release, and unauthorized alteration: Unauthorized users should not access the sensitive input and sensitive output data, nor be able to alter them; the computation contains intermediate data with the same requirements, and executes algorithms that the unauthorized should not be able to know or alter. Due to various system requirements, such critical systems are frequently built from commercial hardware, employ commercial software, and require network access. These hardware, software, and network system components increase the risk that sensitive input data, computation, and output data may be compromised.

Guise, Max Joseph; Wendt, Jeremy Daniel

2011-01-01T23:59:59.000Z

255

Online map of buildings using radiant technologies  

E-Print Network [OSTI]

data in science, technology and innovation. TechnologicalTopic D1: Smart and mobile technologies ONLINE MAP OFBUILDINGS USING RADIANT TECHNOLOGIES Caroline KARMANN 1,* ,

Karmann, Caroline; Schiavon, Stefano; Bauman, Fred

2014-01-01T23:59:59.000Z

256

Privacy Enhancing Technology Concepts for RFID Technology Scrutinised  

E-Print Network [OSTI]

Privacy Enhancing Technology Concepts for RFID Technology Scrutinised Jan E. Hennig, Peter B)using RFID technology for tracking and profiling individual people. Privacy, data security and civil rights and compile a checklist against which we com- pare proposals to enhance RFID technology to gain privacy

Ladkin, Peter B.

257

FIELD-BASED TECHNOLOGY EDUCATION: JUST IN TIME TECHNOLOGY TRAINING  

E-Print Network [OSTI]

FIELD-BASED TECHNOLOGY EDUCATION: JUST IN TIME TECHNOLOGY TRAINING Sarah Irvine Belson1 and Teresa, Audio Technology, and Physics, American University, 4400 Massachusetts Ave. NW, Washington, DC 20016, tlarkin@american.edu Abstract -- This paper outlines the current status of technology integration

Larkin, Teresa L.

258

Technology Available for Licensing Office of Technology Management  

E-Print Network [OSTI]

Technology Available for Licensing Office of Technology Management The Pennsylvania State University 113 Technology Center, University Park, PA 16802 814.865.6277 phone; 814.865.3591 fax Contact: Matthew D. Smith Sr. Technology Licensing Officer The Pennsylvania State University Phone: (814) 863

Lee, Dongwon

259

Roadmap: Technology Technology Education Licensure Bachelor of Science  

E-Print Network [OSTI]

Roadmap: Technology ­ Technology Education Licensure ­ Bachelor of Science [AT-BS-TECH-TEDL] College of Applied Engineering, Sustainability and Technology Education Minor [EDUC] College of Education Reasoning TECH 10001 Information Technology 3 TECH 13580 Engineering Graphics 3 C US 10097 Destination

Sheridan, Scott

260

Information Technology and Management Information Technology and Management  

E-Print Network [OSTI]

Information Technology and Management Information Technology and Management IIT School of Applied Technology Daniel F. and Ada L. Rice Campus 201 E. Loop Road Wheaton, IL 60187 www.iit.edu/applied tech/ Dean Technology & Management program is to educate and inform students to prepare them to assume technical

Heller, Barbara

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

School of Applied Technology School of Applied Technology  

E-Print Network [OSTI]

School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean Technology and Management Programs: Mazin Safar Director, Marketing & Development: Scott Pfeiffer Director

Heller, Barbara

262

School of Applied Technology School of Applied Technology  

E-Print Network [OSTI]

School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean and Academic Director, Information Technology and Management Programs: C. Robert Carlson Director of Operations

Heller, Barbara

263

Technology transfer 1995  

SciTech Connect (OSTI)

Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

Not Available

1995-01-01T23:59:59.000Z

264

Technology Innovation Program Advisory Board  

E-Print Network [OSTI]

Technology Innovation Program Advisory Board 2009 Annual Report of the Technology Innovation Program Advisory Board 2010 Annual Report of the #12;2010 Annual Report of the Technology Innovation Program Advisory Board U.S. Department of Commerce National Institute of Standards and Technology

265

DEGREE REQUIREMENTS BIOLOGICAL ENGINEERING TECHNOLOGY  

E-Print Network [OSTI]

DEGREE REQUIREMENTS BIOLOGICAL ENGINEERING TECHNOLOGY ENVIRONMENTAL ENGINEERING TECHNOLOGY The curriculum in the technology programs must satisfy the College of Agriculture and Life Sciences (CALS for the technology programs are listed by subject matter in three major categories: (A) Basic Subjects, (B) Advanced

Walter, M.Todd

266

Digital Technology Group Computer Laboratory  

E-Print Network [OSTI]

Digital Technology Group 1/20 Computer Laboratory Digital Technology Group Computer Laboratory William R Carson Building on the presentation by Francisco Monteiro Matlab #12;Digital Technology Group 2/20 Computer Laboratory Digital Technology Group Computer Laboratory The product: MATLAB¬ģ - The Language

Cambridge, University of

267

Technology Deployment Annual Report 2010  

SciTech Connect (OSTI)

This report is a catalog of selected INL technology transfer and commercialization transactions during FY-2010.

Keith Arterburn

2010-12-01T23:59:59.000Z

268

U.S. Department of Energy Office of Fossil Energy  

E-Print Network [OSTI]

is Associated With the Separation of Oxygen from Air Membrane Technology to Eliminate Oxygen Plant Ion Transport · Produces CO and H2 #12;Revolutionary Platform Technology for Syngas Generation · Ion Transport Membranes /day H2 Ion Transport Membrane Reactor (ITM) production unit demonstrating conversion of air

269

State Technologies Advancement Collaborative  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

David S. Terry

2012-01-30T23:59:59.000Z

270

IMPACCT: Carbon Capture Technology  

SciTech Connect (OSTI)

IMPACCT Project: IMPACCTís 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for ďInnovative Materials and Processes for Advanced Carbon Capture Technologies,Ē the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

None

2012-01-01T23:59:59.000Z

271

Passive solar technology  

SciTech Connect (OSTI)

The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

Watson, D

1981-04-01T23:59:59.000Z

272

SPACE TECHNOLOGY Actual Estimate  

E-Print Network [OSTI]

SPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY.6 29.5 29.5 29.5 29.5 29.5 29.5 Crosscutting Space Tech Development 120.4 187.7 293.8 272.1 266.6 259.7 247.0 Exploration Technology Development 144.6 189.9 202.0 215.5 215.7 214.5 216.5 Notional SPACE

273

Emission control technology  

SciTech Connect (OSTI)

Environmental protection is indispensable for preserving the earth for later generations. Indeed, industrial development has made our life rich; however, it also accelerates environmental pollution. Above all, such global problems as acid rain caused by SOx and NOx emissions and air pollution caused by particulates have become serious in recent years. Countermeasures currently in service or under development for these problems include: upgrading of fuel-burning systems; conversion of energy sources to clean fuels; pretreatment of fuels; and flue gas treatment. This chapter focuses on technologies that treat flue gases including the circumstances of the development of the technologies.

Yamaguchi, Fumihiko

1993-12-31T23:59:59.000Z

274

Energy and technology review  

SciTech Connect (OSTI)

The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs. (GHT)

Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O'Neal, E.; Van Dyke, P. (eds.)

1982-07-01T23:59:59.000Z

275

Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions  

E-Print Network [OSTI]

Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 DegreeWorks 4.09 Student Manual Degree is the same account you used when applying to Queens College. #12;Training & Technology Solutions Queens

Johnson Jr.,, Ray

276

Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions  

E-Print Network [OSTI]

Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 How to Pay Your Tuition Using E be navigated to your Student Center page. John Smith 23145678 John's Student Center #12;Training & Technology

Johnson Jr.,, Ray

277

Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions  

E-Print Network [OSTI]

Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 How To Navigate the Finance Section the payment history) · Pending Financial Aid #12;Training & Technology Solutions Queens College ~ Office

Johnson Jr.,, Ray

278

Investigator Title Technology  

E-Print Network [OSTI]

Production of Biobutanol as a Biofuel Advanced/ Alternative Energy $353,521 $548,698 6 $35,000 $150,000 $100 Vehicle Technology Advanced/ Alternative Energy Metrics Not Yet Available Sahai, Yogeshwar Development of Cost Effective MEA and DBFC Advanced/ Alternative Energy Metrics Not Yet Available Alsdorf, Doug ORSP

279

SCIENCE CHINA Technological Sciences  

E-Print Network [OSTI]

SCIENCE CHINA Technological Sciences © Science China Press and Springer-Verlag Berlin Heidelberg HU HongChang, TIAN FuQiang* & HU HePing Department of Hydraulic Engineering, State Key Laboratory as a key soil physical parameter and has been widely used to predict soil hydraulic and other related

Ahmad, Sajjad

280

Science, technology and innovation  

E-Print Network [OSTI]

for International Development 1 year full time/2 years part time Technological innovation lies at the heart-makers, scientists and companies at different levels. International development agencies are increasingly recognising that will prepare you for careers in academia, government agencies, international development agencies, business

Sussex, University of

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nuclear Technology Programs  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

Harmon, J.E. (ed.)

1990-10-01T23:59:59.000Z

282

SCIENCE CHINA Technological Sciences  

E-Print Network [OSTI]

SCIENCE CHINA Technological Sciences © Science China Press and Springer-Verlag Berlin Heidelberg and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; 2 Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China; 3 School of Material Science and Engineering, Georgia Institute

Wang, Zhong L.

283

SCIENCE CHINA Technological Sciences  

E-Print Network [OSTI]

SCIENCE CHINA Technological Sciences © Science China Press and Springer-Verlag Berlin Heidelberg. Density-functional-theory formulation of classical and quantum Hooke's law. Sci China Tech Sci, 2014, 57- sider an equilibrium lattice without strain (=0), but elec- #12;Hu H, et al. Sci China Tech Sci April

Simons, Jack

284

Mobile Technology Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes requirements, assigns responsibilities, and provides guidance for federal mobile technology management and employee use of both government furnished and personally-owned mobile devices within DOE and NNSA. Establishes requirements for use of User Agreements to govern mobile devices used for official duties. Does not cancel other directives.

2014-05-15T23:59:59.000Z

285

Fran Berman Creating Technology  

E-Print Network [OSTI]

for Research Rensselaer Polytechnic Institute #12;Fran Berman What is the potential impact of Global Warming? What plants work best for biofuels? Can we accurately predict market outcomes? "Science is more, and Technology Matter #12;Fran Berman Foundation for a Better World Computers for the Third World Mary Lou Jepsen

Varela, Carlos

286

Information Technology Project Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides Department of Energy recommended guidelines to ensure that the acquisition of information technology capital assets is performed in compliance with DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE N 251.105.

2008-09-12T23:59:59.000Z

287

Technology. Landau-Wang  

E-Print Network [OSTI]

energy. The Speci#12;c Heat displays a very clear pronounced peak at the transition point (54 Society , 21/12/03 Technion - Israel Institute of Technology. 1 #12; ' & $ % Outline The pure Baxter; A three body interaction model on a triangular lattice with the Hamiltonian H = J P i;j;k #27; i #27; j

Adler, Joan

288

Energy and technology review  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory publishes the Energy and Technology Review Monthly. This periodical reviews progress mode is selected programs at the laboratory. This issue includes articles on in-situ coal gasification, on chromosomal aberrations in human sperm, on high speed cell sorting and on supercomputers.

Not Available

1984-03-01T23:59:59.000Z

289

Hydrogen Delivery- Current Technology  

Broader source: Energy.gov [DOE]

Hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube trailers, or by rail or barge. Read on to learn more about current hydrogen delivery and storage technologies.

290

Geothermal Technologies Newsletter  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC)ó a tax-exempt, non-profit, geothermal educational association ó publishes quarterly as an insert in its GRC Bulletin.

291

Science & technology review  

SciTech Connect (OSTI)

This document is the August, 1995 issue of the Science and Technology review, a Lawrence Berkeley Laboratory publication. It contains two major articles, one on Scanning Tunneling Microscopy - as applied to materials engineering studies, and one on risk assessment, in this case looking primarily at a health care problem. Separate articles will be indexed from this journal to the energy database.

NONE

1995-08-01T23:59:59.000Z

292

Technology report INTERIORS IMATERIALS  

E-Print Network [OSTI]

(160 km) or so on a single charge, a short- coming that often leaves little left over for cool- ing- compression refrigeration technology. One of these systems takes advantage of new high-capacity adsorbents battery cell to test out their integrated design. (MIT) great quantities of refrigerant in a small space

293

SELECTING INFORMATION TECHNOLOGY SECURITY  

E-Print Network [OSTI]

be selected and used within the organization's overall program to man age the design, development, and maintenance of its IT security infra structure, and to protect the confiden tiality, integrity objectives and to protect information. Guide to Selecting Information Technology Security Products NIST

294

Environmental Technology Verification Program  

E-Print Network [OSTI]

Environmental Technology Verification Program Quality Management Plan (QMP) for the ETV Materials Management and Remediation Center Version 1.0 #12;QUALITY MANAGEMENT PLAN (QMP) for the ETV MATERIALS MANAGEMENT AND REMEDIATION CENTER Version 1.0 (SIGNATURE ON FILE) Teri Richardson 3-13-09 EPA MMR CENTER

295

Technology Partnership Ombudsman - Roles, Responsibilities, Authoritie...  

Energy Savers [EERE]

Technology Partnership Ombudsman - Roles, Responsibilities, Authorities and Accountabilities Technology Partnership Ombudsman - Roles, Responsibilities, Authorities and...

296

CX-012022: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Reducing the Impacts of Deterioration of Well Cement Technology CX(s) Applied: B3.6 Date: 04/28/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

297

CX-011034: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Monitoring of Advanced Automotive Technologies in Asia CX(s) Applied: A8 Date: 09/10/2013 Location(s): New Mexico Offices(s): National Energy Technology Laboratory

298

CX-010194: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program Phase II Field Trial: Site One - Eagle Ford Shale CX(s) Applied: B3.11 Date: 04/15/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

299

CX-010625: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.22 Date: 07/12/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

300

CX-009845: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Petrophysics/Tight Rock Characterization for Improved Stimulation and Production Technology in Shales CX(s) Applied: A9, B3.6 Date: 01/30/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CX-009844: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Petrophysics/Tight Rock Characterization for Improved Stimulation and Production Technology in Shales CX(s) Applied: A9, B3.6 Date: 01/30/2013 Location(s): Alabama Offices(s): National Energy Technology Laboratory

302

CX-011012: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Development of Solid Oxide Fuel Cell (SOFC) Cell and Stack Technology CX(s) Applied: A1, A9 Date: 09/11/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory

303

CX-011011: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Development of Solid Oxide Fuel Cell (SOFC) Cell and Stack Technology CX(s) Applied: B3.6 Date: 09/11/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory

304

CX-011046: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Dry Solids Pump Coal Feed Technology Program CX(s) Applied: B3.6 Date: 09/10/2013 Location(s): North Dakota Offices(s): National Energy Technology Laboratory

305

CX-011045: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Dry Solids Pump Coal Feed Technology Program CX(s) Applied: A9, A11 Date: 09/10/2013 Location(s): California Offices(s): National Energy Technology Laboratory

306

CX-008290: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Development of High Power and High Energy Electrochemical Storage Technology CX(s) Applied: A1 Date: 05/01/2012 Location(s): Michigan Offices(s): National Energy Technology Laboratory

307

CX-008467: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Smart Grid Data Access Utilizing Science, Technology, Engineering, and Mathematics Education as a Catalyst - Phase 1 CX(s) Applied: A9, A11 Date: 06/12/2012 Location(s): Maine Offices(s): National Energy Technology Laboratory

308

CX-011459: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Environmentally Friendly Drilling (EFD) Technology Integration Program (TIP) CX(s) Applied: A9, A11 Date: 11/05/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

309

CX-011458: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Environmentally Friendly Drilling (EFD) Technology Integration Program (TIP) CX(s) Applied: A9, A11, B3.1 Date: 11/05/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

310

CX-010818: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program - Field Trial - Site Three CX(s) Applied: B3.1 Date: 08/01/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

311

CX-010777: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program CX(s) Applied: A9, B3.6 Date: 08/23/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

312

CX-010820: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program - Field Trial - Site Three CX(s) Applied: B3.1, B3.6 Date: 08/01/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

313

CX-010817: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program - Field Trial - Site Three CX(s) Applied: A9 Date: 08/01/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

314

CX-011417: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program CX(s) Applied: A9, A11, B3.6, B3.11 Date: 12/19/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

315

CX-010819: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program - Field Trial - Site Three CX(s) Applied: B3.1, B3.6 Date: 08/01/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

316

CX-011415: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program CX(s) Applied: A9, A11, B3.6, B3.11 Date: 12/19/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

317

CX-011414: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program CX(s) Applied: A9, A11, B3.6, B3.11 Date: 12/19/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

318

CX-007928: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Game Changing Technology of Polymeric-Surfactants for Tertiary Oil CX(s) Applied: A9, B3.6 Date: 02/22/2012 Location(s): Indiana Offices(s): National Energy Technology Laboratory

319

CX-007922: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Game Changing Technology of Polymeric-Surfactants for Tertiary Oil CX(s) Applied: A9, B3.6 Date: 02/23/2012 Location(s): California Offices(s): National Energy Technology Laboratory

320

CX-009846: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Petrophysics/Tight Rock Characterization for Improved Stimulation and Production Technology in Shales CX(s) Applied: A9, B3.6 Date: 01/30/2013 Location(s): Alabama Offices(s): National Energy Technology Laboratory

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

CX-008450: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Building 93 Heat Exchanger Removal at National Energy Technology Laboratory Pittsburgh CX(s) Applied: B1.23, B1.31 Date: 06/19/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

322

September 2005 ADVISING USERS ON INFORMATION TECHNOLOGY  

E-Print Network [OSTI]

September 2005 ADVISING USERS ON INFORMATION TECHNOLOGY BBuulllleettiinn BIOMETRIC TECHNOLOGIES: HELPING TO PROTECT INFORMATION AND AUTOMATED TRANSACTIONS IN INFORMATION TECHNOLOGY SYSTEMS BIOMETRIC TECHNOLOGIES: HELPING TO PROTECT INFORMATION AND AUTOMATED TRANSACTIONS IN INFORMATION TECHNOLOGY SYSTEMS

323

Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories  

SciTech Connect (OSTI)

Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies] [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

1996-08-01T23:59:59.000Z

324

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

325

Tokyo Institute of Technology Tokyo Institute of Technology  

E-Print Network [OSTI]

Tokyo Institute of Technology 2004 #12; Tokyo Institute of Technology k O(n-k/2) (Efron et al 1996) 2O(B) (Shimodaira 2002, 2004) O(B) #12; Tokyo Institute of Technology of Technology 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 23 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 23 4 5 1 2 3 4 5

Shimodaira, Hidetoshi

326

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

327

Session: Reservoir Technology  

SciTech Connect (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

1992-01-01T23:59:59.000Z

328

Hydrogen Technologies Safety Guide  

SciTech Connect (OSTI)

The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

Rivkin, C.; Burgess, R.; Buttner, W.

2015-01-01T23:59:59.000Z

329

Energy and technology review  

SciTech Connect (OSTI)

Research activities at Lawrence Livermore National Laboratory are described in the Energy and Technology Review. This issue includes articles on measuring chromosome changes in people exposed to cigarette smoke, sloshing-ion experiments in the tandem mirror experiment, aluminum-air battery development, and a speech by Edward Teller on national defense. Abstracts of the first three have been prepared separately for the data base. (GHT)

Brown, P.S. (ed.)

1983-06-01T23:59:59.000Z

330

Benchmarking foreign electronics technologies  

SciTech Connect (OSTI)

This report has been drafted in response to a request from the Japanese Technology Evaluation Center`s (JTEC) Panel on Benchmarking Select Technologies. Since April 1991, the Competitive Semiconductor Manufacturing (CSM) Program at the University of California at Berkeley has been engaged in a detailed study of quality, productivity, and competitiveness in semiconductor manufacturing worldwide. The program is a joint activity of the College of Engineering, the Haas School of Business, and the Berkeley Roundtable on the International Economy, under sponsorship of the Alfred P. Sloan Foundation, and with the cooperation of semiconductor producers from Asia, Europe and the United States. Professors David A. Hodges and Robert C. Leachman are the project`s Co-Directors. The present report for JTEC is primarily based on data and analysis drawn from that continuing program. The CSM program is being conducted by faculty, graduate students and research staff from UC Berkeley`s Schools of Engineering and Business, and Department of Economics. Many of the participating firms are represented on the program`s Industry Advisory Board. The Board played an important role in defining the research agenda. A pilot study was conducted in 1991 with the cooperation of three semiconductor plants. The research plan and survey documents were thereby refined. The main phase of the CSM benchmarking study began in mid-1992 and will continue at least through 1997. reports are presented on the manufacture of integrated circuits; data storage; wireless technology; human-machine interfaces; and optoelectronics. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

Bostian, C.W.; Hodges, D.A.; Leachman, R.C.; Sheridan, T.B.; Tsang, W.T.; White, R.M.

1994-12-01T23:59:59.000Z

331

Supercapacitors specialities - Technology review  

SciTech Connect (OSTI)

Commercial electrochemical capacitors (supercapacitors) are not limited to mobile electronics anymore, but have reached the field of large-scale applications, like smart grid, wind turbines, power for large scale ground, water and aerial transportation, energy-efficient industrial equipment and others. This review gives a short overview of the current state-of-the-art of electrochemical capacitors, their commercial applications and the impact of technological development on performance.

MŁnchgesang, Wolfram; Meisner, Patrick [Institut fŁr Experimentelle Physik, Technische Universitšt Bergakademie Freiberg, Leipziger StraŖe 23, 09596 Freiberg (Germany); Yushin, Gleb [Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30326 (United States)

2014-06-16T23:59:59.000Z

332

Membrane Technology Workshop  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |Charles Page - Air Products &

333

Bioenergy Technologies Office: Publications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdf BSCmemo.pdfBetterBIOENERGY TECHNOLOGIES OFFICEInformation

334

Oil shale technology  

SciTech Connect (OSTI)

Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

1991-01-01T23:59:59.000Z

335

Review of encapsulation technologies  

SciTech Connect (OSTI)

The use of encapsulation technology to produce a compliant waste form is an outgrowth from existing polymer industry technology and applications. During the past 12 years, the Department of Energy (DOE) has been researching the use of this technology to treat mixed wastes (i.e., containing hazardous and radioactive wastes). The two primary encapsulation techniques are microencapsulation and macroencapsulation. Microencapsulation is the thorough mixing of a binding agent with a powdered waste, such as incinerator ash. Macroencapsulation coats the surface of bulk wastes, such as lead debris. Cement, modified cement, and polyethylene are the binding agents which have been researched the most. Cement and modified cement have been the most commonly used binding agents to date. However, recent research conducted by DOE laboratories have shown that polyethylene is more durable and cost effective than cements. The compressive strength, leachability, resistance to chemical degradation, etc., of polyethylene is significantly greater than that of cement and modified cement. Because higher waste loads can be used with polyethylene encapsulant, the total cost of polyethylene encapsulation is significantly less costly than cement treatment. The only research lacking in the assessment of polyethylene encapsulation treatment for mixed wastes is pilot and full-scale testing with actual waste materials. To date, only simulated wastes have been tested. The Rocky Flats Environmental Technology Site had planned to conduct pilot studies using actual wastes during 1996. This experiment should provide similar results to the previous tests that used simulated wastes. If this hypothesis is validated as anticipated, it will be clear that polyethylene encapsulation should be pursued by DOE to produce compliant waste forms.

Shaulis, L.

1996-09-01T23:59:59.000Z

336

Technology Selection Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeignTechnology-Selection-Process Sign In About | Careers |

337

Food Safety and Technology Food Safety and Technology  

E-Print Network [OSTI]

Food Safety and Technology Food Safety and Technology Institute for Food Safety and Health IIT Program Manager: Renee McBrien The Institute for Food Safety and Health (IFSH), with IIT faculty, U ground for individuals seeking graduate edu- cation in food safety and technology and food process

Heller, Barbara

338

ECH Technology Development  

SciTech Connect (OSTI)

Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 Ė 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

Temkin, Richard [MIT

2014-12-24T23:59:59.000Z

339

Graphite Technology Development Plan  

SciTech Connect (OSTI)

This technology development plan is designed to provide a clear understanding of the research and development direction necessary for the qualification of nuclear grade graphite for use within the Next Generation Nuclear Plant (NGNP) reactor. The NGNP will be a helium gas cooled Very High Temperature Reactor (VHTR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Considerable effort will be required to ensure that the graphite performance is not compromised during operation. Based upon the perceived requirements the major data needs are outlined and justified from the perspective of reactor design, reatcor performance, or the reactor safety case. The path forward for technology development can then be easily determined for each data need. How the data will be obtained and the inter-relationships between the experimental and modeling activities will define the technology development for graphite R&D. Finally, the variables affecting this R&D program are discussed from a general perspective. Factors that can significantly affect the R&D program such as funding, schedules, available resources, multiple reactor designs, and graphite acquisition are analyzed.

W. Windes; T. Burchell; R. Bratton

2007-09-01T23:59:59.000Z

340

Clean coal technology applications  

SciTech Connect (OSTI)

{open_quotes}Coal is a stratified rock formed of the more or less altered remains of plants (together with associated mineral matter) which flourished in past ages{hor_ellipsis} The problem of the origin and maturing of coal is complicated by the fact that every coal contains, in addition to carbon, hydrogen and oxygen, variable proportions of nitrogen and sulfur which are combined in unknown ways in the organic molecules...{close_quotes}. The challenge with coal has always been the management of its mineral matter, sulfur and nitrogen contents during use. The carbon content of fuels, including coal, is a more recent concern. With clean coal technologies, there are opportunities for ensuring the sustained use of coal for a very long time. The clean coal technologies of today are already capable of reducing, if not eliminating, harmful emissions. The technologies of the future will allow coal to be burned with greatly reduced emissions, thus eliminating the necessity to treat them after they occur.

Bharucha, N.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Near-Zero NOx Technology  

E-Print Network [OSTI]

Miura Boiler is a world leader in boiler technology with manufacturing facilities in Japan, China, Korea, Taiwan and Brantford, Ontario. The company, which began operations in 1927, is committed to technologies that save fuel, reduce harmful...

Utzinger, M.

2008-01-01T23:59:59.000Z

342

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION Job Title: DIRECTOR Department: CENTER faculty in developing and assessing course goals in support of program and university learning goals for online and blended learning. Provide assistance in evaluating and implementing educational technologies

Endres. William J.

343

February 2000 Advanced Technology Program  

E-Print Network [OSTI]

OF COMMERCE Economic Assessment Office Technology Administration Advanced Technology Program National .................................................................................................6 V. IIH Focused Program Project Selection Process information infrastructure in healthcare. A discussion of the ATP "white paper" process4 notes differences

344

DOE Facilities Technology Partnering Programs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes roles and responsibilities for the oversight, management and administration of technology partnerships and associated technology transfer mechanisms, and clarifies related policies and procedures. Does not cancel other directives.

2001-01-12T23:59:59.000Z

345

Review of Desiccant Dehumidification Technology  

SciTech Connect (OSTI)

This paper overviews applications of desiccant technology for dehumidifying commercial and institutional buildings. Because of various market, policy, and regulatory factors, this technology is especially attractive for dehumidification applications in the I990s.

Pesaran, A. A.

1994-10-01T23:59:59.000Z

346

Transformative Wave Technologies Kent, Washington  

E-Print Network [OSTI]

Transformative Wave Technologies Kent, Washington www.transformativewave.com #12;#12;North America are shifted to off peak times #12;#12;Transformative Wave Technologies www.transformativewave.com #12

California at Davis, University of

347

DCC Technology Watch Papers: DSpace†  

E-Print Network [OSTI]

different functions. This technology watch paper provides an introduction to the features and functionality of the DSpace digital repository system....

Pennock, Maureen

348

Technology Roadmap Biofuels for Transport  

E-Print Network [OSTI]

that we are now on; low-carbon energy technologies will play a crucial role in the energy revolution

349

Innovative Exploration Technologies Subprogram Overview  

Broader source: Energy.gov [DOE]

This overview of GTP's Innovative Exploration Technologies subprogram was given at the GTP Program Peer Review on May 18, 2010.

350

HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY  

SciTech Connect (OSTI)

The Deactivation and Decommissioning (D&D) Technology Assessment Program (TAP) was developed to provide detailed, comparable data for environmental technologies and to disseminate this data to D&D professionals in a manner that will facilitate the review and selection of technologies to perform decontamination and decommissioning. The objectives for this project include the following: Determine technology needs through review of the Site Technology Coordination Group (STCG) information and other applicable websites and needs databases; Perform a detailed review of industries that perform similar activities as those required in D&D operations to identify additional technologies; Define the technology assessment program for characterization and waste management problem sets; Define the data management program for characterization, dismantlement, and waste management problem sets; Evaluate baseline and innovative technologies under standard test conditions at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and other locations and collect data in the areas of performance, cost, health and safety, operations and maintenance, and primary and secondary waste generation; Continue to locate, verify, and incorporate technology performance data from other sources into the multimedia information system; and Develop the conceptual design for a dismantlement technology decision analysis tool for dismantlement technologies.

M.A. Ebadian

1999-10-31T23:59:59.000Z

351

Nuclear Proliferation Technology Trends Analysis  

SciTech Connect (OSTI)

A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

2005-10-04T23:59:59.000Z

352

TECHNOLOGY MASTER PLAN 2013 2015  

E-Print Network [OSTI]

TECHNOLOGY MASTER PLAN 2013 ≠ 2015 Endorsed by Academic Senate On October 25, 2013 & College Council On November 8, 2013 #12;Information Technology Strategic Plan 2013-2015 Prepared by Willie Pritchard & Gene Spencer, Higher Education Technology Consultants on behalf of the many participants

353

Review Article RADIATION SHIELDING TECHNOLOGY  

E-Print Network [OSTI]

Review Article RADIATION SHIELDING TECHNOLOGY J. Kenneth Shultis and Richard E. Faw* Abstract Physics Society INTRODUCTION THIS IS a review of the technology of shielding against the effects to the review. The first treats the evolution of radiation-shielding technology from the beginning of the 20th

Shultis, J. Kenneth

354

Technology transfer @ VUB Hugo Loosvelt  

E-Print Network [OSTI]

13/12/2012 Technology transfer @ VUB Hugo Loosvelt #12;VUB in Brussels www.vub.ac.be including or conclude licensing contracts #12;Technology transfer TTI assists academics to realise knowledge transfer by needed for R&D collaboration, licensing and spin-out company formation Technology transfer is the process

Steels, Luc

355

Technology Performance Exchange (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet, 'The Technology Performance Exchange' will be presented at the ET Summit, held at the Pasadena Convention Center on October 15-17, 2012. The Technology Performance Exchange will be a centralized, Web-based portal for finding and sharing energy performance data for commercial building technologies.

Not Available

2012-10-01T23:59:59.000Z

356

Information Technology and Web Science  

E-Print Network [OSTI]

Rensselaer Graduate Studies Information Technology and Web Science Rensselaer nurtures a "low walls advanced study in the highly creative, interdisci- plinary field of Information Technology and Web Science to gain a breadth of IT knowledge: itws.rpi.edu #12;itws.rpi.edu Information Technology and Web Science

357

E-learning? Technology enhanced  

E-Print Network [OSTI]

9/15/2010 1 E-learning? Technology enhanced teaching and learning in symbol-based disciplines? Swinburne University of Technology, Melbourne, Australia 2 #12;9/15/2010 2 An Example: Make t the subject 2 3 Swinburne University of Technology, Melbourne, Australia 3 HMS111 An Example: Make t the subject 2

Loch, Birgit

358

Georgia Southern University Information Technology  

E-Print Network [OSTI]

Georgia Southern University Information Technology Organization Chart 2013-2014 FINAL: September 18, 2013 R\\Work\\Common:\\OrgCharts\\Rev2014\\ Information Technology \\CIO Produced: Strategic Research of the groups of units reporting there. President Vice President for Information Technology and Chief

Hutcheon, James M.

359

Century Learning through Apple Technology  

E-Print Network [OSTI]

21st Century Learning through Apple Technology July 4 ­ 5, 2013 This exciting institute will appeal to educators who wish to enhance their teaching in support of 21st century learning using Apple technology. This institute begins with a keynote address that looks at how new technologies can enhance 21st century learning

360

Commercialization of clean coal technologies  

SciTech Connect (OSTI)

The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Microsoft Technology Centers Thames Valley  

E-Print Network [OSTI]

-depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

Narasayya, Vivek

362

Microsoft Technology Centers Mexico City  

E-Print Network [OSTI]

-depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

Narasayya, Vivek

363

Microsoft Technology Centers Silicon Valley  

E-Print Network [OSTI]

-depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

Narasayya, Vivek

364

Technology certification and technology acceptance: Promoting interstate cooperation and market development for innovative technologies  

SciTech Connect (OSTI)

In the past two years, public and private efforts to promote development and deployment of innovative environmental technologies have shifted from the analysis of barriers to the implementation of a variety of initiatives aimed at surmounting those barriers. Particular attention has been directed at (1) streamlining fragmented technology acceptance processes within and among the states, and (2) alleviating disincentives, created by inadequate or unverified technology cost and performance data, for users and regulators to choose innovative technologies. Market fragmentation currently imposes significant cost burdens on technology developers and inhibits the investment of private capital in environmental technology companies. Among the responses to these problems are state and federal technology certification/validation programs, efforts to standardize cost/performance data reporting, and initiatives aimed at promoting interstate cooperation in technology testing and evaluation. This paper reviews the current status of these initiatives, identifies critical challenges to their success, and recommends strategies for addressing those challenges.

Brockbank, B.R.

1995-03-01T23:59:59.000Z

365

Microsoft Word - L3 THM ITM P3 01 (Rev 2) - Solution Verification report (2-1-12)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTALHYDROPOWERFebruarySave the Date! @ the FigureSolution

366

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

Joel L. Morrison; Sharon L. Elder

2006-07-06T23:59:59.000Z

367

Implementing Solar Technologies at Airports  

SciTech Connect (OSTI)

Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

Kandt, A.; Romero, R.

2014-07-01T23:59:59.000Z

368

Assessing Software Engineering Technology Transfer  

E-Print Network [OSTI]

, and technology infusion, or the adoption of a new technology by an individual organization. 1 #12;Table ¬Ę ¬° ¬£ ¬° ¬Ę ¬° ¬° ¬Ę ¬° ¬° ¬° ¬Ę ¬° ¬£ ¬§ ¬£ ¬° ¬° ¬Ę ¬° ¬° ¬Ę ¬° ¬° ¬£ ¬§ ¬£ ¬° ¬Ę ¬° ¬° ¬° ¬Ę ¬° ¬° ¬Ę ¬° ¬£ ¬° ¬Ę 15 3.4 Exporting and Infusing Technology ¬° ¬° ¬° ¬Ę ¬° ¬£ ¬§ ¬£ ¬° ¬° ¬Ę ¬° ¬° ¬Ę ¬° ¬° ¬£ ¬§ ¬£ ¬° ¬Ę ¬° ¬° ¬° ¬Ę ¬° ¬° ¬Ę ¬° ¬£ ¬° ¬Ę 16 4 Infusion of Technology 18 4.1 Technologies of Interest

Zelkowitz, Marvin V.

369

Technology in water conservation  

E-Print Network [OSTI]

be accomplished with instruments a#22;ached to pipelines at manholes. #27;ese devices ?listen? to the water #16;ow in the pipe; when they detect the characteristic sound of a leak, they report by radio to permanent or mobile collection points. Even a small... leak can be detected. Rainwater catchment may be a good way to replace water from other potable sources. In some situations, this involves using the simple technology of capturing rainfall runo#21; from a roof or another surface. In a hot, dry...

Finch, Dr. Calvin

2013-01-01T23:59:59.000Z

370

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

371

Residential appliances technology atlas  

SciTech Connect (OSTI)

Residential appliance technology and efficiency opportunities for refrigerators and freezers, cooking appliances, clothes washers and dryers, dishwashers, and some often-ignored household devices such as spas, pool pumps, waterbed heaters, televisions, and home computers are thoroughly covered in this Atlas. The US appliance market, fuel shares, efficiency standards, labeling, and advances in home automation, design for recycling, and CFC issues are also discussed. The resource section contains lists of appliance manufacturers and distributors, and trade, professional, and governmental organizations, a summary of key resources for further information, and an index.

NONE

1994-12-31T23:59:59.000Z

372

Sscience & technology review  

SciTech Connect (OSTI)

This monthly science and technology review features a report about Lawrence Livermore National Laboratory work on an awesome, inevitable, unpredictable, and potentially dangerous natural phenomenon, lightning. This feature article tells of the development of guidance by Laboratory engineers on how to deal with the effects of lightning on Department of Energy facilities, especially those where nuclear and high explosive materials are handled and stored. Other topics are Groundwater Modeling: More Cost Effective Cleanup by Design, Dual- Band Infrared Computed Tomography: Searching for Hidden Defects, and Plating Shop Moves to Finish Off Waste.

NONE

1996-05-01T23:59:59.000Z

373

CONNECTICUT BIOFUELS TECHNOLOGY PROJECT  

SciTech Connect (OSTI)

DBS Energy Inc. (ďDBSĒ) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

BARTONE, ERIK

2010-09-28T23:59:59.000Z

374

Geothermal Technologies Office: Publications  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergy (5 Activities)OctoberGeothermal Technologies

375

Crosscutting Technology Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-GovNaturalInstituteCrosscutting Technology

376

Technology Performance Exchange  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľof Energy StrainClientDesignOffice - 201420122 DOE HydrogenTankTechnology

377

Energy and technology review  

SciTech Connect (OSTI)

Three review articles are presented. The first describes the Lawrence Livermore Laboratory role in the research and development of oil-shale retorting technology through its studies of the relevant chemical and physical processes, mathematical models, and new retorting concepts. Second is a discussion of investigation of properties of dense molecular fluids at high pressures and temperatures to improve understanding of high-explosive behavior, giant-planet structure, and hydrodynamic shock interactions. Third, by totally computerizing the triple-quadrupole mass spectrometer system, the laboratory has produced a general-purpose instrument of unrivaled speed, selectivity, and adaptability for the analysis and identification of trace organic constituents in complex chemical mixtures. (GHT)

Not Available

1983-10-01T23:59:59.000Z

378

Promising Technologies List  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartmentPowerMetalPromising Technologies List

379

Climate Vision: Technology Pathways  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6. Radiative ForcingTECHNOLOGY PATHWAYS

380

The Geothermal Technologies Office  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram (Alabama)Technology forto lead those8Research and

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NREL: Technology Transfer - Ombuds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNicheTechnology Transfer Ombuds

382

National Energy Technology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineeringAnnual Report This work wasTechnology

383

Video Stores, Media Technologies, and Memory  

E-Print Network [OSTI]

a collection entitled Mobile Technology & Place (Routledge,Identity,Ē in Mobile Technologies: From Telecommunicationsin an essay on mobile media technologies and memory, Nicola

Wilken, Rowan

2010-01-01T23:59:59.000Z

384

Mobile Persuasive Technologies for Rural Health  

E-Print Network [OSTI]

the potential of mobile technologies to deliver healthmotivation for using mobile technology in this context, andfeatures of mobile technology could be advantageous for

Ramachandran, Divya Lalitha

2010-01-01T23:59:59.000Z

385

Technology Investment Agreements | Department of Energy  

Office of Environmental Management (EM)

Technology Investment Agreements Technology Investment Agreements Guidance Policy Flash 2006-31 - Technology Investment Agreements Financial Assistance Letter 2006-03 - Guidance...

386

WYSS TECHNOLOGY DEVELOPMENT FELLOWSHIP NOMINATION FORM  

E-Print Network [OSTI]

WYSS TECHNOLOGY DEVELOPMENT FELLOWSHIP NOMINATION FORM 1. Biographical Sketch _____________________________________________ ________________________________________ Wyss Enabling Technology Platform Focus research plans relative to Wyss Enabling Technology Platform. 3. Enclose supporting letter from nominator

387

Achieving and Demonstrating Vehicle Technologies Engine Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2010 DOE Vehicle Technologies and Hydrogen...

388

Mobile Technology Management - DOE Directives, Delegations, and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

203.2, Mobile Technology Management by Denise Hill Functional areas: Mobile Technology, Information Technology, Information Security The order establishes requirements, assigns...

389

Technology Transfer Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure...

390

Technologies Available for Licensing | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies SHARE Available Technologies One of the primary missions of the Technology Transfer Division is to move our intellectual property from the research facility to the...

391

Technology Transfer Ombudsman Program | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November...

392

Advanced Combustion Technologies | Department of Energy  

Energy Savers [EERE]

Science & Innovation Clean Coal Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses...

393

Technology to Market | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology to Market Technology to Market The SunShot Initiative's Technology to Market subprogram builds on SunShot's record of enabling groundbreaking devices and concepts in...

394

Technology Deployment List | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology Deployment List Technology Deployment List Spreadsheet details new and underutilized technologies ranked for Federal deployment by the Federal Energy Management Program....

395

Technology Integration Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ti000smith2013o.pdf More Documents & Publications Technology Integration Overview Technology...

396

Geothermal Technologies Office Releases 2012 Annual Report |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Office Releases 2012 Annual Report Geothermal Technologies Office Releases 2012 Annual Report January 7, 2013 - 3:56pm Addthis The Geothermal Technologies...

397

Erythema ab igne: evolving technology, evolving presentation  

E-Print Network [OSTI]

manifestations of modern technology use. J Cutan Med SurgErythema ab igne: evolving technology, evolving presentationheaters, as in our case. As technology changes, so does the

Kesty, Katarina; Feldman, Steven R

2014-01-01T23:59:59.000Z

398

Hydrogen Education Curriculum Path at Michigan Technological...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Curriculum Path at Michigan Technological University Hydrogen Education Curriculum Path at Michigan Technological University 2009 DOE Hydrogen Program and Vehicle Technologies...

399

Review: Structuring an Energy Technology Revolution  

E-Print Network [OSTI]

Structuring an Energy Technology Revolution By Charles WeissB. Structuring an Energy Technology Revolution. Cambridge,increases in spending on energy technology and innovation,

Kunnas, Jan

2010-01-01T23:59:59.000Z

400

HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY  

SciTech Connect (OSTI)

The final data package has been completed for the Mississippi State University, DIAL FTP Wall Depth Removal Characterization Technology. The package has been sent to DIAL for comments. Work is progressing on completing the transfer of glove boxes and tanks from Rocky Flats to FIU-HCET for the purpose of performing size reduction technology assessments. Vendors are being identified and security measures are being put in place to meet the High Risk Property criteria required by Rocky Flats. The FIU-HCET Technology Assessment Program has been included as one of 11 verification programs across the US and Canada described in the Interstate Technology Regulatory Cooperation (ITRC) document, ''Multi-state Evaluation of Elements Important to the Verification of Remediation Technologies'', dated January 1999. FIU-HCET will also participate in a panel discussion on technology verification programs at the International Environmental Technology Expo '99.

M.A. Ebadian

1999-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Marine and Hydrokinetic Technology Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

DOEís Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

402

Electrolytes - Technology review  

SciTech Connect (OSTI)

Safety, lifetime, energy density, and costs are the key factors for battery development. This generates the need for improved cell chemistries and new, advanced battery materials. The components of an electrolyte are the solvent, in which a conducting salt and additives are dissolved. Each of them plays a specific role in the overall mechanism of a cell: the solvent provides the host medium for ionic conductivity, which originates in the conductive salt. Furthermore, additives can be used to optimize safety, performance, and cyclability. By understanding the tasks of the individual components and their optimum conditions of operation, the functionality of cells can be improved from a holistic point of view. This paper will present the most important technological features and requirements for electrolytes in lithium-ion batteries. The state-of-the-art chemistry of each component is presented, as well as different approaches for their modification. Finally, a comparison of Li-cells with lithium-based technologies currently under development is conducted.

Meutzner, Falk; UreŮa de Vivanco, Mateo [Institut fŁr Experimentelle Physik, Technische Universitšt Bergakademie Freiberg, Leipziger StraŖe 23, 09596 Freiberg (Germany)

2014-06-16T23:59:59.000Z

403

Innovative Separations Technologies  

SciTech Connect (OSTI)

Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

J. Tripp; N. Soelberg; R. Wigeland

2011-05-01T23:59:59.000Z

404

Acoustic Separation Technology  

SciTech Connect (OSTI)

Today's restrictive environmental regulations encourage paper mills to close their water systems. Closed water systems increase the level of contaminants significantly. Accumulations of solid suspensions are detrimental to both the papermaking process and the final products. To remove these solids, technologies such as flotation using dissolved air (DAF), centrifuging, and screening have been developed. Dissolved Air Flotation systems are commonly used to clarify whitewater. These passive systems use high pressure to dissolve air into whitewater. When the pressure is released, air micro-bubbles form and attach themselves to fibers and particles, which then float to the surface where they are mechanically skimmed off. There is an economic incentive to explore alternatives to the DAF technology to drive down the cost of whitewater processing and minimize the use of chemicals. The installed capital cost for a DAF system is significant and a typical DAF system takes up considerable space. An alternative approach, which is the subject of this project, involves a dual method combining the advantages of chemical flocculation and in-line ultrasonic clarification to efficiently remove flocculated contaminants from a water stream

Fred Ahrens; Tim Patterson

2002-02-22T23:59:59.000Z

405

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energyís Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

406

Competitive Analysis of Modeling Technology Handle noise/  

E-Print Network [OSTI]

&k - - - - - - - DRM Technologies - - - - - - - EMA INC - - - - - - - FLIR Systems, INC P - - - - - - Asset

Huang, Samuel H.

407

Technology Support Strategic Plan MISSION STATEMENT  

E-Print Network [OSTI]

1 Technology Support Strategic Plan MISSION STATEMENT Through collaboration and professionalism, the Technology Support Department provides the highest possible quality Information Technology (IT) services, support, and assistance to the University community. VISION STATEMENT Technology Support

Westfall, Peter H.

408

"Infotonics Technology Center"  

SciTech Connect (OSTI)

During this grant period July 15, 2002 thru September 30, 2004, the Infotonics Technology Center developed the critical infrastructure and technical expertise necessary to accelerate the development of sensors, alternative lighting and power sources, and other specific subtopics of interest to Department of Energy. Infotonics fosters collaboration among industry, universities and government and operates as a national center of excellence to drive photonics and microsystems development and commercialization. A main goal of the Center is to establish a unique, world-class research and development facility. A state-of-the-art microsystems prototype and pilot fabrication facility was established to enable rapid commercialization of new products of particular interest to DOE. The Center has three primary areas of photonics and microsystems competency: device research and engineering, packaging and assembly, and prototype and pilot-scale fabrication. Center activities focused on next generation optical communication networks, advanced imaging and information sensors and systems, micro-fluidic systems, assembly and packaging technologies, and biochemical sensors. With targeted research programs guided by the wealth of expertise of Infotonics√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬? business and scientific staff, the fabrication and packaging facility supports and accelerates innovative technology development of special interest to DOE in support of its mission and strategic defense, energy, and science goals.

Fritzemeier, L., Boysel, M.B., and Smith, D.R.

2005-01-14T23:59:59.000Z

409

Hydraulic fracturing technology: Technology evaluation report and application analysis report  

SciTech Connect (OSTI)

Two pilot-scale demonstrations of the hydraulic fracturing technology for enhancing the permeability of contaminated silty clays have been evaluated under the Superfund Innovative Technology Evaluation (SITE) Program. The hydraulic fracturing technology was demonstrated in 1991 and 1992 at a extraction site in Oak Brook, Illinois, and at a bioremediation site near Dayton, Ohio. The technology was jointly developed by the University of Cincinnati (UC) and the Risk Reduction Engineering Laboratory. Tests were also conducted at UC Center Hill Solid and Hazardous Waste Research (Center Hill) Facility by UC. These tests were conducted to determine the factors affecting soil vapor flow through sand-filled hydraulic fractures.

Banerjee, P.

1993-08-01T23:59:59.000Z

410

Vehicle Technologies Office Merit Review 2014: Engine Friction Reduction Technologies  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about engine friction...

411

Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

412

Information Technology Tools for Multifamily Building Programs...  

Energy Savers [EERE]

Information Technology Tools for Multifamily Building Programs Information Technology Tools for Multifamily Building Programs Better Buildings Neighborhood Program Multifamily ...

413

Achieving and Demonstrating Vehicle Technologies Engine Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2009 DOE Hydrogen Program and Vehicle Technologies...

414

Testimonials - Partnerships in Battery Technologies - Capstone...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Technologies - Capstone Turbine Corporation Testimonials - Partnerships in Battery Technologies - Capstone Turbine Corporation Addthis Text Version The words Office of...

415

Geothermal Electricity Technology Evaluation Model (GETEM) Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Technology Evaluation Model (GETEM) Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating...

416

Quadrennial Technology Review Workshop Portfolios | Department...  

Broader source: Energy.gov (indexed) [DOE]

Review Workshop Portfolios Quadrennial Technology Review Workshop Portfolios Department of Energy Quadrennial Technology Review Building & Industrial Efficiency Workshop...

417

Quadrennial Technology Review Workshops | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Workshops Quadrennial Technology Review Workshops Department of Energy Quadrennial Technology Review Building & Industrial Efficiency Workshop Department of Energy Quadrennial...

418

Vehicle Technologies Office: Financial Opportunities - Active...  

Energy Savers [EERE]

Vehicle Technologies Office: Financial Opportunities - Active Solicitations Vehicle Technologies Office: Financial Opportunities - Active Solicitations To explore current financial...

419

Advanced Particulate Filter Technologies for Direct Injection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications...

420

Cathodes - Technological review  

SciTech Connect (OSTI)

Lithium cobalt oxide (LiCoO{sub 2}) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO{sub 2} is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO{sub 2}. Electrochemical and structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented.

Cherkouk, Charaf; Nestler, Tina [Institut fŁr Experimentelle Physik, Technische Universitšt Bergakademie Freiberg, Leipziger StraŖe 23, 09596 Freiberg (Germany)

2014-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ventilation technologies scoping study  

SciTech Connect (OSTI)

This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

Walker, Iain S.; Sherman, Max H.

2003-09-30T23:59:59.000Z

422

Enhanced Geothermal Systems Technologies  

Broader source: Energy.gov [DOE]

Geothermal Energy an?d the Enhanced Geothermal Systems Concept The Navy 1 geothermal power plant near Coso Hot Springs, California, is applying EGS technology. Heat is naturally present everywhere in the earth. For all intents and purposes, heat from the earth is inexhaustible. Water is not nearly as ubiquitous in the earth as heat. Most aqueous fluids are derived from surface waters that have percolated into the earth along permeable pathways such as faults. Permeability is a measure of the ease of fluid flow through rock. The permeability of rock results from pores, fractures, joints, faults, and other openings which allow fluids to move. High permeability implies that fluids can flow rapidly through the rock. Permeability and, subsequently, the amount of fluids tend to decrease with depth as openings in the rocks compress from the weight of the overburden.

423

IMPROVED ROOF STABILIZATION TECHNOLOGIES  

SciTech Connect (OSTI)

Many U.S. Department of Energy (DOE) remediation sites have performed roof repair and roof replacement to stabilize facilities prior to performing deactivation and decommissioning (D&D) activities. This project will review the decision criteria used by these DOE sites, along with the type of repair system used for each different roof type. Based on this information, along with that compiled from roofing experts, a decision-making tool will be generated to aid in selecting the proper roof repair systems. Where appropriate, innovative technologies will be reviewed and applied to the decision-making tool to determine their applicability. Based on the results, applied research and development will be conducted to develop a method to repair these existing roofing systems, while providing protection for the D and D worker in a cost-efficient manner.

M.A. Ebadian, Ph.D.

1999-01-01T23:59:59.000Z

424

Publications on maglev technologies  

SciTech Connect (OSTI)

Magnetically levitated passenger-transportation vehicles, using attractive and repulsive magnetic forces, are currently in the development or prototype-revenue stages in Japan and Germany. The basic principles of these technologies have been understood for several decades, but their practical applications awaited advances in high-power electronic devices, modern controls, superconducting magnets, and improvements in our transportation infrastructures. A considerable amount of work was devoted to magnetic-levitation (maglev) transportation system in the late 1960s and the 1970s. Detailed development was sustained primarily in Germany and Japan. This listing of publications was begun as the initial phase of a design study for a maglev development facility sponsored by the State of Illinois. The listing has been continually updated under programs sponsored by the Federal Railroad Administration and the US Army Corps of Engineers. In 1991, the National Maglev Initiative issued 27 contracts for the study of technical issues related to maglev and four contracts for the definition of maglev systems. In December 1991, the Intermodal Surface Transportation Efficiency Act was enacted, mandating the development of a US-designed maglev system in a six-year period. This listing is offered as an aid to those working on these projects, to help them locate technical papers on relevant technologies. The design and installation of a maglev transportation system will require the efforts of workers in many disciplines, from electronics to economics to safety. Accordingly, the references have been grouped in 14 different sections to expedite review of the listing. In many case, the references are annotated to indicate the general content of the papers. Abstracts are not available. A list of information services from which the listed documents might be obtained and an author index are provided.

He, J.L.; Coffey, H.T.; Rote, D.M.; Wang, Z.

1991-12-01T23:59:59.000Z

425

Ion exchange technology assessment report  

SciTech Connect (OSTI)

In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

Duhn, E.F.

1992-01-01T23:59:59.000Z

426

Ion exchange technology assessment report  

SciTech Connect (OSTI)

In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW`s. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

Duhn, E.F.

1992-12-31T23:59:59.000Z

427

Successfully transfer HPI proprietary technology  

SciTech Connect (OSTI)

Intellectual property such as petrochemical/refining licensed technologies are revenue generators for many operating and E/C companies. Successful transfers of available technologies involve many critical elements beyond the basic design engineering stages. Buyers and sellers both have obligations to the licensing agreements. These obligations will vary widely as to the clients` needs and strengths, especially for facilities to be constructed in developing areas. Using the author`s guidelines can streamline new technology evaluations and acquisitions.

Hassan, N. [BE and K, Newark, DE (United States)

1997-02-01T23:59:59.000Z

428

Operationalizing Anticipatory Governance: Steering Emerging Technologies Towards Sustainability  

E-Print Network [OSTI]

64. CTSI. (2009). "About Clean Technology." Retrieved 11/24,The case of clean technologies." Science Technology & HumanTechnology Assessment Clean Technology and Sustainable

Philbrick, Mark

2010-01-01T23:59:59.000Z

429

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

and local policies pertaining to solar energy technologies, as well as market-based developmentslocal governments have also designed programs to fund energy efficiency and renewable energy development

Price, S.

2010-01-01T23:59:59.000Z

430

Next-Generation Wind Technology  

Broader source: Energy.gov [DOE]

The Wind Program works with industry partners to increase the performance and reliability of next-generation wind technologies while lowering the cost of wind energy.

431

Information Technology Specialist (Applications Software)  

Broader source: Energy.gov [DOE]

(See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Information Technology, (J2600) Operations Systems Computer...

432

Landfill Gas Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector.

433

Biodetection Technologies for First Responders  

SciTech Connect (OSTI)

In a white powder scenario, there are a large number of field-deployable assays that can be used to determine if the suspicious substance contains biological material and warrants further investigation. This report summarizes commercially available technologies that are considered hand portable and can be used by first responders in the field. This is not meant to be an exhaustive list, nor do the authors endorse any of the technologies described herein. Rather, it is meant to provide useful information about available technologies to help end-users make informed decisions about biodetection technology procurement and use.

Baird, Cheryl L.; Seiner, Derrick R.; Ozanich, Richard M.; Bartholomew, Rachel A.; Colburn, Heather A.; Straub, Tim M.; Bruckner-Lea, Cindy J.

2012-10-24T23:59:59.000Z

434

Wind Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

435

Energy Efficiency and Industrial Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Nuclear Plant Docs CONTACT US Center for Advanced Energy Studies Energy Efficiency and Industrial Technology The Department conducts research for DOE, other...

436

Information technology equipment cooling system  

SciTech Connect (OSTI)

According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

Schultz, Mark D.

2014-06-10T23:59:59.000Z

437

Vehicle Technologies Office: Propulsion Systems  

Broader source: Energy.gov [DOE]

Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

438

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

. Experience with GIS and geospatial analysis. Experience with data collection and analysis. Experience of sensor and information technology through mathematical and statistical analysis. The position is based

439

Ames Lab 101: Technology Transfer  

ScienceCinema (OSTI)

Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

Covey, Debra

2012-08-29T23:59:59.000Z

440

Ames Lab 101: Technology Transfer  

SciTech Connect (OSTI)

Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

Covey, Debra

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sandia technology & entrepreneurs improve Lasik  

SciTech Connect (OSTI)

Former Sandian Dan Neal started his company, WaveFront Sciences, based on wavefront sensing metrology technologies licensed from Sandia National Laboratories and by taking advantage of its Entrepreneurial Separation to Transfer Technology (ESTT) program. Abbott Medical Optics since acquired WaveFront and estimates that one million patients have improved the quality of their vision thanks to its products. ESTT is a valuable tool which allows Sandia to transfer technology to the private sector and Sandia employees to leave the Labs in order to start up new technology companies or help expand existing companies.

Neal, Dan; Turner, Tim

2013-11-21T23:59:59.000Z

442

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (Regular; Twelve and ledges and clean fixtures. Maintain building entrances according to conditions by removing snow and ice

Endres. William J.

443

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (9 month, part according to conditions by removing snow and ice, applying sand and salt, and removing debris. Adhere

444

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (9 month, full according to conditions by removing snow and ice, applying sand and salt, and removing debris. Adhere

445

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (9 month, full and clean fixtures. Maintain building entrances according to conditions by removing snow and ice, applying

446

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (Regular; Twelve according to conditions by removing snow and ice, applying sand and salt, and removing debris. Adhere

447

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (12-month, full according to conditions by removing snow and ice, applying sand and salt, and removing debris. Adhere

448

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: BUILDING MECHANIC II (Pay, parking lots, elevators, snow conditions, HVAC equipment temperature control systems, pool systems, ice

449

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN/EVENT ASSOCIATE entrances according to conditions by removing snow and ice, applying sand and salt, and removing debris

450

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (12-month, full and clean fixtures. Maintain building entrances according to conditions by removing snow and ice, applying

451

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (12 month, part according to conditions by removing snow and ice, applying sand and salt, and removing debris. Adhere

452

Technology Demonstrations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

new building technologies can help meet our country's energy goals, stimulate U.S. manufacturing, create jobs, and improve the environment. However, many high-performing...

453

Sandia technology & entrepreneurs improve Lasik  

ScienceCinema (OSTI)

Former Sandian Dan Neal started his company, WaveFront Sciences, based on wavefront sensing metrology technologies licensed from Sandia National Laboratories and by taking advantage of its Entrepreneurial Separation to Transfer Technology (ESTT) program. Abbott Medical Optics since acquired WaveFront and estimates that one million patients have improved the quality of their vision thanks to its products. ESTT is a valuable tool which allows Sandia to transfer technology to the private sector and Sandia employees to leave the Labs in order to start up new technology companies or help expand existing companies.

Neal, Dan; Turner, Tim

2014-02-26T23:59:59.000Z

454

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

wind turbine equipment-related costs are assumed to equal 85% of 2010 Wind Technologies Market Report periods to further avoid ďnoiseĒ

Wiser, Ryan

2012-01-01T23:59:59.000Z

455

Technology-Based Economic Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology-Based Economic Development Idaho National Laboratory (INL), on behalf of corporate funds provided by Battelle Energy Alliance, funds philanthropic projects aimed at...

456

Demand Response Technology Roadmap A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

workshop agendas, presentation materials, and transcripts. For the background to the Demand Response Technology Roadmap and to make use of individual roadmaps, the reader is...

457

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Bolinger, Mark

2013-01-01T23:59:59.000Z

458

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Wiser, Ryan

2012-01-01T23:59:59.000Z

459

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Wind Technologies Market Report References Acker, T. 2007.Industry Annual Market Report: Year Ending 2009. Washington,AWEA Mid-Year 2010 Market Report. Washington, DC: American

Wiser, Ryan

2010-01-01T23:59:59.000Z

460

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Broader source: Energy.gov (indexed) [DOE]

Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Results of two Reports from the National Research Council...

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Biomass Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector.

462

SCR Technologies for NOx Reduction  

Broader source: Energy.gov (indexed) [DOE]

SCR Technology for NOx Reduction Outline Necessity of NOx Exhaust Gas Aftertreatment Air-assisted Dosing Systems (HD applications) Field experience with DENOXTRONIC for MDHD...

463

FY-95 technology catalog. Technology development for buried waste remediation  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

NONE

1995-10-01T23:59:59.000Z

464

Government User Session Translation Memory TechnologyTranslation Memory Technology  

E-Print Network [OSTI]

Rachael Richardson Tucker Maney Naval Research Laboratory Carol Van Ess-Dykema Susan Converse John S Requirements for Multi-Genre Translation · Motivations for TM Technology Assessment · Pilot Study · ResultsPoint slides, etc. #12;Government User Session Translation Memory Technology Assessment: Pilot Study Goals

Gupta, Kalyan Moy

465

GEOSPATIAL TECHNOLOGY The market for geospatial technologies in 2002 was  

E-Print Network [OSTI]

GEOSPATIAL TECHNOLOGY ∑ The market for geospatial technologies in 2002 was estimated at $5 billion, Annulis,Carr) Building the Geospatial Workforce, Urban and Regional Informational Systems Association Special Education Issue, 2002) ∑ Geospatial products and specialists are expected to play a large role

466

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect (OSTI)

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2005-11-04T23:59:59.000Z

467

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect (OSTI)

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2006-05-15T23:59:59.000Z

468

Crosscutting Technology Development at the Center for Advanced Separation Technologies  

SciTech Connect (OSTI)

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2006-09-30T23:59:59.000Z

469

Characterization, monitoring, and sensor technology crosscutting program: Technology summary  

SciTech Connect (OSTI)

The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

NONE

1995-06-01T23:59:59.000Z

470

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

471

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

472

Technology and social communication  

SciTech Connect (OSTI)

For centuries advances in what we now term media have generated concerns about the effect these advances have on values and morality-books, stage drama, movies, TV, and now computer-based fantasy and Internet-based distribution. These media comprise some of the most powerful agents for developing our fundamental strategies for living. Computer-based fantasy can provide waves of sensations that everyday life does not prepare us for; they create a wow effect. The implications are especially, strong for adolescents. Wow effects come to seem ordinary. We can easily overdose on them with a subsequent dulling of sensibility that motivates one to seek the next level. As the wow effect is numbed, socializing restrictions break down. A psychological strategy of distancing is one defense against enhanced imagery - a strategy of cool as antidote. The wow-cool dipole can foster a role as spectator that inhibits empathy and a fundamental distancing from the self. Technology - the source of our concerns-can also help to counteract them. The most powerful drive in children is to learn mastery of the world. New input and output devices and especially properly designed software can enhance the capacity to learn and to be creative, i.e. to gain mastery over the world. These powerful new modes of communication not only give us great access to the world, they give the world great access to us. We must supplant what is now mostly a passive broadcast system with interactive exploration and two-way communication.

Moore, G.A.

1996-12-31T23:59:59.000Z

473

Modeling the technology mix  

SciTech Connect (OSTI)

The electricity industry is now actively considering which combination of advanced technologies can best meet CO{sub 2} emissions reduction targets. The fundamental challenge is to develop a portfolio of options that is technically feasible and can provide affordable electricity to customers. As the US industry considers its investments in research, development and demonstration projects, EPRI's PRISM and MERGE analyses address this challenge and point toward a solution that EPRI describes as 'The Full Portfolio'. The PRISM results show much greater use of nuclear power, renewable energy and coal with carbon capture and storage (CCS) towards 2030, and a sharply lower contribution from natural gas and coal without CCS. The MERGE analysis shows that, assuming CCS would not be available, the use of coal would fall off sharply in favour of natural gas and there would be a fall in electricity demand driven by very high prices. With the Full Portfolio, nuclear power and advanced coal generation with CCS reduce emissions to a point where a much lower demand reduction is needed. By 2050 the Full Portfolio will have decarbonized the electricity sector and reduced the impact on electricity prices to below a fifth that of the limited portfolio. 2 figs.

Douglas, J. [EPRI (United States)

2007-09-30T23:59:59.000Z

474

Technology Transfer Plan  

SciTech Connect (OSTI)

BPF developed the concept of a mobile, on-site NORM remediation and disposal process in late 1993. Working with Conoco and receiving encouragement born the Department of Energy, Metarie Office, and the Texas Railroad Commission the corporation conducted extensive feasibility studies on an on-site disposal concept. In May 1994, the Department of Energy issued a solicitation for cooperative agreement proposal for, "Development and Testing of a Method for Treatment and Underground Disposal of Naturally Occurring Radioactive Materials (NORM)". BPF submitted a proposal to the solicitation in July 1994, and was awarded a cooperative agreement in September 1995. BPF proposed and believed that proven equipment and technology could be incorporated in to a mobile system. The system would allow BPF to demonstrate an environmentally sound and commercially affordable method for treatment and underground disposal of NORM. The key stop in the BPF process incorporates injection of the dissolved radioactive materials into a water injection or disposal well. Disposal costs in the BPF proposal of July 1995 were projected to range from $1000 to $5000 per cubic yard. The process included four separate steps. (1) De-oiling (2) Volume Reduction (3) Chemical Dissolution of the Radium (4) Injection

None

1998-12-31T23:59:59.000Z

475

Andr Laperrire Laboratoire des technologies  

E-Print Network [OSTI]

, meal cooking,...) Probably not critical for an Indoor Hockey Ice Rink #12;Groupe ­ Technologie9 PERIODAndré Laperrière Laboratoire des technologies de l'énergie d'Hydro-Québec Shawinigan Indoor Ice Rinks and LED Technology 2013 Biannual Joint Meeting of CIE/USA and CNC/CIE University of California (UC

California at Davis, University of

476

Careers In Fuel Cell Technologies  

E-Print Network [OSTI]

, to combined heat and power (CHP) units used for distributed electricity generation, to passenger vehicles. Today's Technology and Its Growth Potential Today's fuel cell technology offers cost in hydrogen and fuel cells. Activities have reduced the amount of platinum needed by more than a factor

477

Fuel Cell Technologies Program Overview  

E-Print Network [OSTI]

per kW, 5,000-hr durability Hydrogen Cost Technology Validation: Technologies Techno Barri y g. Benefits · Efficiencies can be 60% (electrical) and 3 60% (electrical) and 85% (with CHP) · > 90% reduction (> 40% increase over 2008) Fuel cells can be a cost-competitive option for critical

478

Learning Outcomes Food Science & Technology  

E-Print Network [OSTI]

for the long-term sustainability of Oregon's food processing industry · Provide service to the professionLearning Outcomes Food Science & Technology Oregon State University The Department's Learning of the Department of Food Science & Technology at Oregon State University is to serve food technologists, food

Escher, Christine

479

National Algal Biofuels Technology Roadmap  

E-Print Network [OSTI]

National Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM #12;#12;U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Visit http://biomass.energy.gov for more information National Algal Biofuels

480

Richland Operations Office technology summary  

SciTech Connect (OSTI)

This document has been prepared by the Department of Energy`s Environmental Management Office of Technology Development to highlight its research, development, demonstration, testing, and evaluation activities funded through the Richland Operations Office. Technologies and processes described have the potential to enhance cleanup and waste management efforts.

Not Available

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "itm technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

David Saacke Chief Technology Officer  

E-Print Network [OSTI]

Classroom Technology Specialist Brandon Bucy Senior Academic Technologist Tom Tinsley Director of Network and Telecommunications Mike Courtney Network Engineer Jason Henley Network Infrastructure Specialist Dana Camper and Administrator Jeff Knudson Senior Technology Architect Not a Position: Datatel Sys Admin (Former Tallman) Mark

Marsh, David

482

Entrepreneurial separation to transfer technology.  

SciTech Connect (OSTI)

Entrepreneurial separation to transfer technology (ESTT) program is that entrepreneurs terminate their employment with Sandia. The term of the separation is two years with the option to request a third year. Entrepreneurs are guaranteed reinstatement by Sandia if they return before ESTT expiration. Participants may start up or helpe expand technology businesses.

Fairbanks, Richard R.

2010-09-01T23:59:59.000Z

483

Composites Technology for Hydrogen Pipelines  

E-Print Network [OSTI]

Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff;Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate of pipeline per day. · $190k/mile capital cost for distribution pipelines · Hydrogen delivery cost below $1

484

National Concrete Pavement Technology Center  

E-Print Network [OSTI]

.5 " concrete overlay with 1" asphalt interlayer (non porous surface mix) ·Pours- one 22' pass and one 16' ftNational Concrete Pavement Technology Center Concrete Overlay Technology TTCC/NC2 Meeting Savannah patches in 2008 Shortcut (2) to CD Drive.lnk #12;Need to Move Concrete Overlays Forward Concrete Overlay

485

HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY  

SciTech Connect (OSTI)

FIU-HCET participated in an ICT meeting at Mound during the second week of December and presented a brief videotape of the testing of the Robotic Climber technology. During this meeting, FIU-HCET proposed the TechXtract technology for possible testing at Mound and agreed to develop a five-page proposal for review by team members. FIU-HCET provided assistance to Bartlett Inc. and General Lasertronics Corporation in developing a proposal for a Program Opportunity Notice (PON). The proposal was submitted by these companies on January 5, 1999. The search for new equipment dismantlement technologies is continuing. The following vendors have responded to requests for demonstration: LUMONICS, Laser Solutions technology; CRYO-BEAM, Cryogenic cutting technology; Waterjet Technology Association, Waterjet Cutting technology; and DIAJET, Waterjet Cutting technology. Based on the tasks done in FY98, FIU-HCET is working closely with Numatec Hanford Corporation (NHC) and Pacific Northwest National Laboratory (PNNL) to revise the plan and scope of work of the pipeline plugging project in FY99, which involves activities of lab-scale flow loop experiments and a large-scale demonstration test bed.

M.A. Ebadian

1999-01-31T23:59:59.000Z

486

Petrick Technology Trends Of Manufacturing  

E-Print Network [OSTI]

#12;323 Petrick Technology Trends chapter 9 The Future Of Manufacturing Irene Petrick Technology Trends This chapter is a story about the future of manufacturing based on three predictions: ∑ that firms sophisticated modeling and simulation of both new products and production processes; ∑ that additive

487

Energy 101: Fuel Cell Technology  

SciTech Connect (OSTI)

Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

None

2014-03-11T23:59:59.000Z

488

Energy 101: Fuel Cell Technology  

ScienceCinema (OSTI)

Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

None

2014-06-06T23:59:59.000Z

489

2010 Solar Technologies Market Report  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) 2010 Solar Technologies Market Report details the market conditions and trends for photovoltaic (PV) and concentrating solar power (CSP) technologies. Produced by the National Renewable Energy Laboratory (NREL), the report provides a comprehensive overview of the solar electricity market and identifies successes and trends within the market from both global and national perspectives.

Not Available

2011-11-01T23:59:59.000Z

490

Cooperative pulses Technologieangebot /Technology offer  

E-Print Network [OSTI]

on issues from the national and international research and technology transfer. To market the patentsCooperative pulses Technologieangebot /Technology offer Referenz /Reference 2010-04E04 Branche at the TUM TUM ForTe Forschungsf√∂rderung & Technologie- transfer Patent- und Lizenzb√ľro Arcisstra√?e 2180333

491

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

492

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

493

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

Joel Morrison

2005-09-14T23:59:59.000Z

494

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

Joel L. Morrison; Sharon L. Elder

2006-05-10T23:59:59.000Z

495

CX-010213: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Wave Energy Technology- New Zealand Multi-Mode Wave Energy Converter Advancement Project CX(s) Applied: A9 Date: 01/08/2013 Location(s): Hawaii, Oregon Offices(s): Golden Field Office

496

CX-008906: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Housatonic River Net-Zero-Energy Building at Berkshire Museum CX(s) Applied: B5.1 Date: 08/29/2012 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory

497

CX-008957: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

National Academy of Sciences Study on Market Barriers to Electric Vehicles CX(s) Applied: A9, A11 Date: 08/08/2012 Location(s): CX: none Offices(s): National Energy Technology Laboratory

498

CX-011047: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Brazing Dissimilar Metals with a Novel Composite Foil CX(s) Applied: B3.6 Date: 09/09/2013 Location(s): Maryland Offices(s): National Energy Technology Laboratory

499

CX-011804: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Building 26 FSARS CX(s) Applied: B1.3, Facility operation and maintenance Date: 01/28/2014 Location(s): Oregon Offices(s): National Energy Technology Laboratory

500

CX-011186: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Fiscal Year 2014 Technology Innovation Portfolio CX(s) Applied: B5.1, B3.6 Date: 08/29/2013 Location(s): Oregon Offices(s): Bonneville Power Administration