National Library of Energy BETA

Sample records for item control number

  1. Item Management Control System

    Energy Science and Technology Software Center (OSTI)

    1993-08-06

    The Item Management Control System (IMCS) has been developed at Idaho National Engineering Laboratory to assist in organizing collections of documents using an IBM-PC or similar DOS system platform.

  2. Control of Suspect/Counterfeit and Defective Items

    SciTech Connect (OSTI)

    Sheriff, Marnelle L.

    2013-09-03

    This procedure implements portions of the requirements of MSC-MP-599, Quality Assurance Program Description. It establishes the Mission Support Alliance (MSA) practices for minimizing the introduction of and identifying, documenting, dispositioning, reporting, controlling, and disposing of suspect/counterfeit and defective items (S/CIs). employees whose work scope relates to Safety Systems (i.e., Safety Class [SC] or Safety Significant [SS] items), non-safety systems and other applications (i.e., General Service [GS]) where engineering has determined that their use could result in a potential safety hazard. MSA implements an effective Quality Assurance (QA) Program providing a comprehensive network of controls and verification providing defense-in-depth by preventing the introduction of S/CIs through the design, procurement, construction, operation, maintenance, and modification of processes. This procedure focuses on those safety systems, and other systems, including critical load paths of lifting equipment, where the introduction of S/CIs would have the greatest potential for creating unsafe conditions.

  3. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" ... be shipped from the United States to the ITER International Organization in Cadarache, ...

  4. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for the products (equipment, components and/or materials) and if applicable the nonproprietary associated installation/maintenance documentation that will be shipped from the United States to the ITER International Organization in Cadarache, France or to ITER Members worldwide on behalf of the Company. In rare instances an

  5. Action Items

    Office of Environmental Management (EM)

    ACTION ITEMS Presentation to the DOE High Level Waste Corporate Board July 29, 2009 Kurt Gerdes Office of Waste Processing DOE-EM Office of Engineering & Technology 2 ACTION ITEMS...

  6. SF 6432-CI Commercial Items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    150,000 APPLY TO ALL CONTRACTS EXCEEDING 5,000,000 Control : SF 6432-CI Title: Standard Terms and Conditions for Commercial Items Owner: Procurement Policy Department...

  7. Estimated general population control limits for unitary agents in drinking water, milk, soil, and unprocessed food items

    SciTech Connect (OSTI)

    Watson, A.P.; Adams, J.D.; Cerar, R.J.; Hess, T.L.; Kistner, S.L.; Leffingwell, S.S.; MacIntosh, R.G.; Ward, J.R.

    1992-01-01

    In the event of an unplanned release of chemical agent during any stage of the Chemical Stockpile Disposal Program (CSDP), the potential exists for contamination of drinking water, forage crops, grains, garden produce, and livestock. Persistent agents such as VX or sulfur mustard pose the greatest human health concern for reentry. This White Paper has been prepared to provide technical bases for these decisions by developing working estimates of agent control limits in selected environmental media considered principal sources of potential human exposure. To date, control limits for public exposure to unitary agents have been established for atmospheric concentrations only. The current analysis builds on previous work to calculate working estimates of control limits for ingestion and dermal exposure to potentially contaminated drinking water, milk, soil, and unprocessed food items such as garden produce. Information characterizing agent desorption from, and detection on or in, contaminated porous media are presently too developed to permit reasonable estimation of dermal exposure from this source. Thus, dermal contact with potentially contaminated porous surfaces is not considered in this document.

  8. CONTROL CHART DASHBOARDS MANAGING YOUR NUMBERS INSTEAD OF YOU NUMBER MANAGING YOU

    SciTech Connect (OSTI)

    PREVETTE, S.S.

    2006-11-15

    This paper, which documents Fluor Hanford's application of Statistical Process Control (SPC) and Dashboards to support planning and decision making, is a sequel to ''Leading with Leading Indicators'' that was presented at WM 05. This year's paper provides more detail on management's use of SPC and control charts and discusses their integration into an executive summary using the popular color-cod3ed dashboard methodology. Fluor Hanford has applied SPC in a non-traditional (that is non-manufacturing) manner. Dr. Shewhart's 75-year-old control-chart methodologies have been updated to modern data processing, but are still founded on his sound, tried and true principles. These methods are playing a key role in safety and quality at what has been called the world's largest environmental cleanup project. The US Department of Energy's (DOE's) Hanford Site played a pivotal role in the nation's defense, beginning in the 1940s when it was established as part of the Manhattan Project. After more than 50 years of producing nuclear weapons, Hanford--which covers 586 square miles in southeastern Washington state--is now focused on three outcomes: (1) restoring the Columbia River corridor for multiple uses; (2) transitioning the central plateau to support long-term waste management; and (3) putting DOE assets to work for the future.

  9. Toxic Substances Control Act (TSCA) chemical substances inventory: PMN number to EPA accession number link (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The PMN Number to EPA Accession Number Link Diskette provides a cross-reference of these numbers for commenced PMNs on the confidential portion of the Toxic Substances Control Act (TSCA) Master Inventory File. Neither this cross-reference nor the additional information included is TSCA Confidential Business Information. Provided on the diskette for each confidential commenced PMN are the PMN Case Number, EPA Accession Number, Generic Name, and EPA special flags. For more detailed information on the confidential portion of the TSCA Inventory, including generic names, users can consult the introductory material of the printed TSCA Inventory: 1985 Edition and its 1990 Supplement. New versions of this file may be issued in the future.

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control of chain conformation; combinatorial discovery technologies; therapeutic, vaccine and diagnostic applications; sequence-defined polymers; protein mimetic materials;...

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control of reflection and diffraction, absorption and emission, phase and amplitude dispersion, and state of polarization. I will further discuss that enhanced and active...

  12. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New measures adopted in 2013 by the San Joaquin Valley Air Pollution Control District aim to target particulate sources for mitigation that present the highest health risk to area ...

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2014 Time: 11:00 am Speaker: Dr. Frank Q. Zhu, HGST Title: Controlled Nucleation Growth of Granular Thin Films by Templating Effect and Self-Assembly Location: 67-3111 Chemla...

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Switchable Control of Nanowire Growth SEM images of GaN nanowire arrays illustrating their growth orientations with respect to the GaN crystal structure Scientific Achievement A team of multidisciplinary researchers at the Berkeley Lab's Molecular Foundry used catalyst composition to control the crystallographic growth of GaN nanowires Significance and Impact Manipulating GaN nanostructures offers the ability to custom design bulk material properties in unique ways, potentially leading to new

  15. CRAD, Suspect/Counterfeit Item

    Broader source: Energy.gov [DOE]

    Management should have a formal system under Quality Assurance with adequate controls defined and implemented to identify and preclude Suspect/Counterfeit Items (S/CI) from being introduced into safety systems and applications that create potential hazards.

  16. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2016 Time: 11:00 am Speaker: Paul Voyles, University of Wisconsin-Madison Title: Solving Structurally Complex Materials Using Methods from Image Science and Optimization Location: 67-3111 Chemla Room Abstract: Crystallography offers tremendously powerful approaches based on diffraction for solving structures with translation symmetry and a limited number of degrees of freedom. Nanostructures with a large fraction of surface atoms and glasses have much higher structural complexity - up to 3N

  17. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that earth-abundant

  18. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maker Movement Turns Scientists into Tinkerers Researchers in growing numbers are starting to enlist do-it-yourself 3-D printers, cheap electronics, sensors and more to advance their work. Over at the Lawrence Berkeley National Laboratory, nanobiochemist Ronald Zuckermann prints flexible 3-D plastic models of peptide-like polymers to study how they fold into stable structures. The shape and dynamics of the polymer chain dictate its properties for medical use. "The understanding I have

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beyond fluorescence. Nature 467, 407-408. 3. Ostrowski, A.D., Chan, E.M., Gargas, D.J., Katz, E.M., Han, G., Schuck, P.J., Milliron, D.J., & Cohen, B.E. (2012) Controlled synthesis...

  20. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29, 2014 Time: 11:00 am Speaker: Prof. Kevin Webb, Purdue University Title: Nanostructured Materials for Optical Sensing, Control and Signal Processing Location: 67-3111 Chemla Room Hosted by Alex Weber-Bargioni Abstract: I summarize some of our recent accomplishments related to metamaterials, including the proposal of a graphene stack as the blackest material. Relying on fundamental principles, I suggest opportunities for the synthesis of new material mixtures, including active materials that

  1. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Raising the IQ of Smart Windows Researchers at the Molecular Foundry have designed a thin coating of nanocrystals embedded in glass that can dynamically modify sunlight as it passes through a window. Unlike existing technologies, the coating provides selective control over visible light and heat-producing near-infrared (NIR) light, so windows can maximize both energy savings and occupant comfort in a wide range of climates. The work was published in the journal Nature by a team of Foundry

  2. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2016 Time: 11:00 am Speaker: Luis Campos, Columbia University Title: Thiophene Rust in Single-Molecule Electronics and Singlet Fission Location: 67-3111 Chemla Room Abstract: The combination of Barbarella's pioneering work on thiophene-1,1-dioxide (TDO) coupled with the development of Rozen's reagent has allowed us to engineer materials for organic electronics. The controlled chemical oxidation of thiophene engages the lone- pair electrons in sulfur to bond with oxygen, generating TDO, a

  3. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Precision Growth of Light-emitting Nanowires A novel approach to growing nanowires promises a new means of control over their light-emitting and electronic properties. In a recent issue of Nano Letters, scientists from the Molecular Foundry demonstrated a new growth technique that uses specially engineered catalysts. These catalysts, which are precursors to growing the nanowires, have given scientists more options than ever in turning the color of light-emitting nanowires. The new approach could

  4. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique for Imaging Surface and Bulk Atoms Scientific Achievement A team of users and staff at the Molecular Foundry developed a new analytic technique able to image the atoms that make up a material's surface at the same time as those in the bulk. Significance and Impact The atomic structure of a surface is often very different from the bulk material, and controls the majority of chemical properties at the nanoscale including catalysis and corrosion. Research Details Scanning electron

  5. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Structure of Inorganic Nanocrystals in Solution by Transmission Electron Microscopy Scientific Achievement Measured the locations of all of the atoms in colloidal nanocrystals for the first time, with resolution of 2.15 Å. Significance and Impact Nanocrystals are a fundamental building block of nanoscience, yet until now we have only known the average positions of atom within them. This will enable scientists to control nanocrystals which are used in solar cells, batteries, displays,

  6. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding and Predicting Self-Assembly Scientific Achievement Molecular Foundry staff worked with users to discover a new design rule that controls the way in which polymers adjoin to form the backbones that run the length of biomimetic nanosheets. Significance and Impact Understanding the rules that govern self-assembly could be used to piece together complex nanosheet structures and other peptoid assemblies such as nanotubes and crystalline solids. Research Details Scientists aspire to

  7. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlled Porous Membranes for Better Batteries Scientific Achievement Molecular Foundry staff and users have combined to develop membranes for lithium-sulfur batteries made from polymers of intrinsic microporosity (PIMs) that are 500 times more effective than conventional membranes. Significance and Impact Lithium-sulfur batteries are well poised to provide high-density, long-term and low-cost electrochemical energy storage but current designs have limited efficiency and lifetimes due to the

  8. Seminar Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, 2014 Time: 11:00 am Speaker: Lukas Novotny, ETH Zürich Title: Optical Antennas for Enhanced Light-Matter Interactions Location: 67-3111 Chemla Room Abstract: Optical antennas consisting of plasmonic materials provide extreme light localization and small mode volumes, thereby boosting the sensitivity and signal-to-noise ratio in appli- cations ranging from single photon sources to photodetection. Optical antennas can also be employed to efficiently control and manipulate light on the

  9. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuesday, March 11, 2014 Time: 11:00 am Speaker: Dr. Peter Fischer, Center for X-ray Optics, LBNL Title: Full-field soft x-ray microscopy: a unique tool for nano- and mesoscience Location: 67-3111 Chemla Room Image of Peter Fischer Abstract: For more than a decade research has focused on a fundamental understanding and control of nanoscale behavior. Recently, it has been recognized, that the next step beyond the nanoscale will be governed by mesoscale phenomena [1], since those are supposed to

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seeing Atoms and Molecules in Action with an Electron 'Eye' A unique rapid-fire electron source-originally built as a prototype for driving next-generation X-ray lasers-will help scientists at Berkeley Lab study ultrafast chemical processes and changes in materials at the atomic scale. This could provide new insight in how to make materials with custom, controllable properties and improve the efficiency and output of chemical reactions. This newly launched setup, dubbed HiRES (for High

  11. ADMIN Citation Item Title Item Summary Sub Item 1 Title Sub Item 2 Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADMIN 1 Revision September 2015 Previous ADMIN 1 guidance edition: http://www.energy.gov/cio/downloads/administrative-records-schedule-1-personnel-records-revision-3 ADMIN Citation Item Title Item Summary Sub Item 1 Title Sub Item 2 Summary Sub Item 2 Applicability Media Applicability Disposition NARA Approved Citation a. Transferred employees. Department-wide Media-neutral See Chapter 7 of The Guide to Personnel Recordkeeping for instructions relating to folders of employees transferred to

  12. Toxic Substances Control Act (TSCA) chemical substances inventory: PMN number to EPA accession number link (for microcomputers). Data file

    SciTech Connect (OSTI)

    1995-11-01

    The PMN Number to EPA Accession Number Link Diskette provides a cross-reference of these numbers for commenced PMNs on the confidential portion of the TSCA Master Inventory File. Neither this cross-reference nor the additional information included is TSCA Confidential Business Information. Provided on the diskette for each confidential commenced PMN are the PMN Case Number, EPA Accession Number, Generic Name, and EPA special flags. The sequence of the file is in ascending PMN Case Number order with `P` case numbers sorted first, followed by `Y` case numbers. For more detailed information on the confidential portion of the TSCA Inventory, including generic names, users can consult the introductory material of the printed TSCA Inventory: 1985 Edition and its 1990 Supplement. New versions of this file may be issued in the future. No search software is provided with this DOS formatted diskette.

  13. Action Item Review and Status

    Office of Environmental Management (EM)

    Board Action Items Action Item Resolution Action Item Strategic Planning Initiative Optimization Study Resolution Presentation by S. Schneider (HLW System Integrated Project...

  14. Estimated general population control limits for unitary agents in drinking water, milk, soil, and unprocessed food items. For use in reentry decision-making

    SciTech Connect (OSTI)

    Watson, A.P.; Adams, J.D.; Cerar, R.J.; Hess, T.L.; Kistner, S.L.; Leffingwell, S.S.; MacIntosh, R.G.; Ward, J.R.

    1992-01-01

    In the event of an unplanned release of chemical agent during any stage of the Chemical Stockpile Disposal Program (CSDP), the potential exists for contamination of drinking water, forage crops, grains, garden produce, and livestock. Persistent agents such as VX or sulfur mustard pose the greatest human health concern for reentry. This White Paper has been prepared to provide technical bases for these decisions by developing working estimates of agent control limits in selected environmental media considered principal sources of potential human exposure. To date, control limits for public exposure to unitary agents have been established for atmospheric concentrations only. The current analysis builds on previous work to calculate working estimates of control limits for ingestion and dermal exposure to potentially contaminated drinking water, milk, soil, and unprocessed food items such as garden produce. Information characterizing agent desorption from, and detection on or in, contaminated porous media are presently too developed to permit reasonable estimation of dermal exposure from this source. Thus, dermal contact with potentially contaminated porous surfaces is not considered in this document.

  15. Implementing New Methods of Laser Marking of Items in the Nuclear Material Control and Accountability System at SSC RF-IPPE: An Automated Laser Marking System

    SciTech Connect (OSTI)

    Regoushevsky, V I; Tambovtsev, S D; Dvukhsherstnov, V G; Efimenko, V F; Ilyantsev, A I; Russ III, G P

    2009-05-18

    For over ten years SSC RF-IPPE, together with the US DOE National Laboratories, has been working on implementing automated control and accountability methods for nuclear materials and other items. Initial efforts to use adhesive bar codes or ones printed (painted) onto metal revealed that these methods were inconvenient and lacked durability under operational conditions. For NM disk applications in critical stands, there is the additional requirement that labels not affect the neutron characteristics of the critical assembly. This is particularly true for the many stainless-steel clad disks containing highly enriched uranium (HEU) and plutonium that are used at SSC RF-IPPE for modeling nuclear power reactors. In search of an alternate method for labeling these disks, we tested several technological options, including laser marking and two-dimensional codes. As a result, the method of laser coloring was chosen in combination with Data Matrix ECC200 symbology. To implement laser marking procedures for the HEU disks and meet all the nuclear material (NM) handling standards and rules, IPPE staff, with U.S. technical and financial support, implemented an automated laser marking system; there are also specially developed procedures for NM movements during laser marking. For the laser marking station, a Zenith 10F system by Telesis Technologies (10 watt Ytterbium Fiber Laser and Merlin software) is used. The presentation includes a flowchart for the automated system and a list of specially developed procedures with comments. Among other things, approaches are discussed for human-factor considerations. To date, markings have been applied to numerous steel-clad HEU disks, and the work continues. In the future this method is expected to be applied to other MC&A items.

  16. Commercial Items Test Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached for your information is a copy of Civilian Agency Acquisition Council (CAAC) Letter 2009-04. It advises that the National Defense Authorization Act for Fiscal Year 201 0, Section 8 16 authorizes extension of the Commercial Items Test Program from January 1,20 10 to January 1,20 12 and that an expedited FAR Case is being processed to insert the new date at FAR 13.500(d). Also attached is a class deviation authorizing the use of simplified acquisition procedures for commercial items up to $5.5 million [$I1 million for acquisitions of commercial items under FAR 13.500(e)

  17. Notes and Action Items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes and Action Items Notes and Action Items ERSUG Action Items from June 1996 meeting at Germantown, MD Get DOE staff on mailers for broadcast of ERSUG issues Responsibility: Kendall and Kitchens Review and comment on ERSUG Proposal to SAC Responsibility: All of ERSUG Comments to Rick Kendall by July 17th email: ra_kendall@pnl.gov Fax : (509) 375-6631 Review and comment on Requirements Document "Greenbook" Responsibility: All of ERSUG Comments to Rick Kendall by August 7th email:

  18. Voluntary Self-Identification of Disability Form CC-305 OMB Control Number 1250-0005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Voluntary Self-Identification of Disability Form CC-305 OMB Control Number 1250-0005 Expires 1/31/2017 Page 1 of 2 Why are you being asked to complete this form? Because we do business with the government, we must reach out to, hire, and provide equal opportunity to qualified people with disabilities. i To help us measure how well we are doing, we are asking you to tell us if you have a disability or if you ever had a disability. Completing this form is voluntary, but we hope that you will

  19. Notes and Action Items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes and Action Items Notes and Action Items Report on the NUGEX business meeting of June 6, 2000, in Oak Ridge Minute notes by Bas Braams First of all, many thanks to the organizers of the preceding NUG meeting: Roberta Boucher, David Dean, Brian Hingerty, Bill Kramer, Donald Spong and Malcolm Stocks. Likewise thanks to Brian Hingerty and Mike Minkoff for organizing the Users Helping Users events, and to Tom DeBoni, Osni Marques, Jeffrey Squyres and David Turner for the NERSC training classes.

  20. SF6432-CI (02-01-12) Commercial Items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    who will enter a government site to perform Control : SF 6432-CI Title: Standard Terms and Conditions for Commercial Items Owner: Procurement Policy & Quality Dept Release...

  1. Feed mechanism and method for feeding minute items

    DOE Patents [OSTI]

    Stringer, Timothy Kent; Yerganian, Simon Scott

    2012-11-06

    A feeding mechanism and method for feeding minute items, such as capacitors, resistors, or solder preforms. The mechanism is adapted to receive a plurality of the randomly-positioned and randomly-oriented extremely small or minute items, and to isolate, orient, and position the items in a specific repeatable pickup location wherefrom they may be removed for use by, for example, a computer-controlled automated assembly machine. The mechanism comprises a sliding shelf adapted to receive and support the items; a wiper arm adapted to achieve a single even layer of the items; and a pushing arm adapted to push the items into the pickup location. The mechanism can be adapted for providing the items with a more exact orientation, and can also be adapted for use in a liquid environment.

  2. Feed mechanism and method for feeding minute items

    DOE Patents [OSTI]

    Stringer, Timothy Kent; Yerganian, Simon Scott

    2009-10-20

    A feeding mechanism and method for feeding minute items, such as capacitors, resistors, or solder preforms. The mechanism is adapted to receive a plurality of the randomly-positioned and randomly-oriented extremely small or minute items, and to isolate, orient, and position one or more of the items in a specific repeatable pickup location wherefrom they may be removed for use by, for example, a computer-controlled automated assembly machine. The mechanism comprises a sliding shelf adapted to receive and support the items; a wiper arm adapted to achieve a single even layer of the items; and a pushing arm adapted to push the items into the pickup location. The mechanism can be adapted for providing the items with a more exact orientation, and can also be adapted for use in a liquid environment.

  3. Pre-2012 News Items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pre-2012 News Items Project and Communication Milestones: April 4, 2011: MINERvA receives Secretary's Award of Achievement March 14, 2012: Scientists send encoded message through rock via neutrino beam A particle physics private eye takes on the great interaction caper 2006 Fermilab Today Series: February 2, 2006: MINERvA Takes Point-Blank Aim at Neutrino Mysteries February 22, 2006: MINERvA Recycles to Tap Many Lab Resources March 1, 2006: Students on MINERvA Get to see End Result March 8,

  4. W-026 acceptance test plan plant control system hardware (submittal {number_sign} 216)

    SciTech Connect (OSTI)

    Watson, T.L., Fluor Daniel Hanford

    1997-02-14

    Acceptance Testing of the WRAP 1 Plant Control System Hardware will be conducted throughout the construction of WRAP I with the final testing on the Process Area hardware being completed in November 1996. The hardware tests will be broken out by the following functional areas; Local Control Units, Operator Control Stations in the WRAP Control Room, DMS Server, PCS Server, Operator Interface Units, printers, DNS terminals, WRAP Local Area Network/Communications, and bar code equipment. This document will contain completed copies of each of the hardware tests along with the applicable test logs and completed test exception reports.

  5. Toxic Substances Control Act (TSCA)-PMN file: ASCII text data. TSCA chemical substances inventory: PMN number to EPA accession number link, August 1996 (for microcomputers). Data file

    SciTech Connect (OSTI)

    1996-08-01

    The PMN Number to EPA Accession Number Link Diskette provides a cross-reference of these numbers for commenced PMNs on the confidential portion of the TSCA Master Inventory File. Neither this cross-reference nor the additional information included is TSCA Confidential Business Information. Provided on the diskette for each confidential commenced PMN are the PMN Case Number, EPA Accession Number, Generic Name, and EPA special flags. The sequence of the file is in ascending PMN case Number order with `P` case numbers sorted first, followed by `Y` case numbers.

  6. DOE - NNSA/NFO -- Featured Items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Featured Items includeslanguage.htm Featured Items The Nevada Field Office Featured Items section provides quick access to brief program updates and some of the more popular new ...

  7. New technologies for item monitoring

    SciTech Connect (OSTI)

    Abbott, J.A.; Waddoups, I.G.

    1993-12-01

    This report responds to the Department of Energy`s request that Sandia National Laboratories compare existing technologies against several advanced technologies as they apply to DOE needs to monitor the movement of material, weapons, or personnel for safety and security programs. The authors describe several material control systems, discuss their technologies, suggest possible applications, discuss assets and limitations, and project costs for each system. The following systems are described: WATCH system (Wireless Alarm Transmission of Container Handling); Tag system (an electrostatic proximity sensor); PANTRAK system (Personnel And Material Tracking); VRIS (Vault Remote Inventory System); VSIS (Vault Safety and Inventory System); AIMS (Authenticated Item Monitoring System); EIVS (Experimental Inventory Verification System); Metrox system (canister monitoring system); TCATS (Target Cueing And Tracking System); LGVSS (Light Grid Vault Surveillance System); CSS (Container Safeguards System); SAMMS (Security Alarm and Material Monitoring System); FOIDS (Fiber Optic Intelligence & Detection System); GRADS (Graded Radiation Detection System); and PINPAL (Physical Inventory Pallet).

  8. Toxic Substances Control Act (TSCA) chemical substances inventory: PMN number to EPA accession number link, February 1996 (for microcomputers). Data file

    SciTech Connect (OSTI)

    1996-02-01

    The PMN Number to EPA Accession Number Link Diskette provides a cross-reference of these numbers for commenced PMNs on the confidential portion of the TSCA Master Inventory File. Neither this cross-reference nor the additional information included is TSCA Confidential Business Information. Provided on the diskette for each confidential commenced PMN are the PMN Case Number, EPA Accession Number, Generic Name, an EPA special flags. The sequence of the file is in ascending PMN case Number order with `P` case numbers sorted first, followed by `Y` case numbers. For more detailed information on the confidential portion of the TSCA Inventory, including generic names, users can consult the introductory material of the printed TSCA Inventory: 1985 Edition (PB87-129409) and its 1990 Supplement (PB91-159665 and PB91-145458). New versions of this file may be issued in the future. No search software is provided with this DOS formatted diskette.

  9. Control of a high Reynolds number Mach 0.9 heated jet using plasma actuators

    SciTech Connect (OSTI)

    Kearney-Fischer, M.; Kim, J.-H.; Samimy, M.

    2009-09-15

    The results of particle image velocimetry (PIV) measurements in a high subsonic, heated, jet forced using localized arc filament plasma actuators (LAFPAs) show that LAFPAs can consistently produce significant mixing enhancement over a wide range of temperatures. These actuators have been used successfully in high Reynolds number, high-speed unheated jets. The facility consists of an axisymmetric jet with different nozzle blocks of exit diameter of 2.54 cm and variable jet temperature in an anechoic chamber. The focus of this paper is on a high subsonic (M{sub j}=0.9) jet. Twelve experiments with various forcing azimuthal modes (m=0, 1, and {+-}1) and temperatures (T{sub o}/T{sub a}=1.0, 1.4, and 2.0) at a fixed forcing Strouhal number (St{sub DF}=0.3) have been conducted and PIV results compared with the baseline results to characterize the effectiveness of LAFPAs for mixing enhancement. Centerline velocity and turbulent kinetic energy as well as jet width are used for determining the LAFPAs' effectiveness. The characteristics of large-scale structures are analyzed through the use of Galilean streamlines and swirling strength. Across the range of temperatures collected, the effectiveness of LAFPAs improves as temperature increases. Possible reasons for the increase in effectiveness are discussed.

  10. SU-E-T-199: How Number of Control Points Influences the Dynamic IMRT Plan Quality and Deliverability

    SciTech Connect (OSTI)

    Sharma, S; Manigandan, D; Chander, S; Subramani, V; Julka, P; Rath, G

    2014-06-01

    Purpose: To study the influence of number of control points on plan quality and deliverability. Methods: Five previously treated patients of carcinoma of rectum were selected. Planning target volume (PTV) and organs at risk (OARs) i.e. bladder and bowel were contoured. Dynamic IMRT plans (6MV, 7-fields, 45Gy/25 fractions and prescribed at 95% isodose) were created in Eclipse (Varian medical system, Palo Alto, CA) treatment planning system (TPS) for Varian CL2300C/D linear-accelerator. Base plan was calculated with 166 control points, variable mode (Eclipse Default). For generating other plans, all parameters were kept constant, only number of control points (Fixed mode) was varied as follows: 100, 166 and 200. Then, plan quality was analyzed in terms of maximum and mean dose received by the PTV and OARs. For plan deliverability, TPS calculated fluence was verified with ImatriXX (IBA Dosimetry, Germany) array and compared with TPS dose-plane using gamma index criteria of 3% dose difference and 3mm distance to agreement (DTA). Total number of monitor units (MU) required to deliver a plan was also noted. Results: The maximum variation for the PTV maximum with respect to eclipse default control point (166) was 0.28% (0.14Gy). Similarly, PTV mean varied only up to 0.22 %( 0.11Gy). Bladder maximum and bladder mean varied up to 0.51% (0.24Gy) and 0.16% (0.06Gy). The variation for the bowel maximum and bowel mean was also only 0.39% (0.19Gy) and 0.33% (0.04Gy). Total MU was within 0.32 % (4MU). Average gamma pass rate using different control points for five patients are 98.750.33%, 99.370.09%, 99.290.12%, 98.140.13% and 99.250.14% respectively. Conclusion: Slight variation (<1%) in PTV and OARs maximum and mean doses was observed with varying number of control points. Monitor unit was also not varied much. Reducing number of control points did not showed any comprise in plan deliverability in terms of gamma index pass rate.

  11. Method of data mining including determining multidimensional coordinates of each item using a predetermined scalar similarity value for each item pair

    DOE Patents [OSTI]

    Meyers, Charles E.; Davidson, George S.; Johnson, David K.; Hendrickson, Bruce A.; Wylie, Brian N.

    1999-01-01

    A method of data mining represents related items in a multidimensional space. Distance between items in the multidimensional space corresponds to the extent of relationship between the items. The user can select portions of the space to perceive. The user also can interact with and control the communication of the space, focusing attention on aspects of the space of most interest. The multidimensional spatial representation allows more ready comprehension of the structure of the relationships among the items.

  12. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    SciTech Connect (OSTI)

    Rapp, Vi H.; Singer, Brett C.

    2014-03-01

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase

  13. Suspect/Counterfeit Items Information Guide for Subcontractors/Suppliers

    SciTech Connect (OSTI)

    Tessmar, Nancy D.; Salazar, Michael J.

    2012-09-18

    Counterfeiting of industrial and commercial grade items is an international problem that places worker safety, program objectives, expensive equipment, and security at risk. In order to prevent the introduction of Suspect/Counterfeit Items (S/CI), this information sheet is being made available as a guide to assist in the implementation of S/CI awareness and controls, in conjunction with subcontractor's/supplier's quality assurance programs. When it comes to counterfeit goods, including industrial materials, items, and equipment, no market is immune. Some manufactures have been known to misrepresent their products and intentionally use inferior materials and processes to manufacture substandard items, whose properties can significantly cart from established standards and specifications. These substandard items termed by the Department of Energy (DOE) as S/CI, pose immediate and potential threats to the safety of DOE and contractor workers, the public, and the environment. Failure of certain systems and processes caused by an S/CI could also have national security implications at Los Alamos National Laboratory (LANL). Nuclear Safety Rules (federal Laws), DOE Orders, and other regulations set forth requirements for DOE contractors to implement effective controls to assure that items and services meet specified requirements. This includes techniques to implement and thereby minimizing the potential threat of entry of S/CI to LANL. As a qualified supplier of goods or services to the LANL, your company will be required to establish and maintain effective controls to prevent the introduction of S/CI to LANL. This will require that your company warrant that all items (including their subassemblies, components, and parts) sold to LANL are genuine (i.e. not counterfeit), new, and unused, and conform to the requirements of the LANL purchase orders/contracts unless otherwise approved in writing to the Los Alamos National Security (LANS) contract administrator

  14. JOBAID-SELF ASSIGNING COURSES (ITEMS)

    Broader source: Energy.gov [DOE]

    In this jobaid you will learn to use the Course Catalog, Browse Catalog, Recommended Items, Locate and Self-Assign Items (Courses) Using the Search Catalog features, Narrow Course Searches using...

  15. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    Item Not Found Item Not Found The item you requested, OSTI ID 1115360, is not available in this collection. If you followed a link to this page, that link is outdated or contains an error. Search SciTech Connect SciTech Connect Home

  16. SF 6432-CI Commercial Items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11/17/15 Page 1 of 16 Printed copies of this document are uncontrolled. Retrieve latest version electronically. SANDIA CORPORATION SF 6432-CI (11/2015) SECTION II STANDARD TERMS AND CONDITIONS FOR COMMERCIAL ITEMS THE FOLLOWING CLAUSES APPLY TO THIS CONTRACT AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE COVER PAGE OR SECTION I. (CTRL+CLICK ON A LINK BELOW TO ADVANCE DIRECTLY TO THAT SECTION) ACCEPTANCE OF TERMS

  17. Integrated emissions control system for residential CWS furnace. Annual status report number 1, 20 September 1989--30 September 1990

    SciTech Connect (OSTI)

    Balsavich, J.C.; Breault, R.W.

    1990-10-01

    One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. A reactor provides high sorbent particle residence time within the reactor to control SO{sub 2} emissions, while providing a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any flyash exiting the reactor is completed with the use of high-efficiency bag filters. Tecogen Inc. developed a residential-scale Coal Water Slurry (CWS) combustor which makes use of centrifugal forces to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled to minimize NO{sub x} emissions. During the first year of the program, work encompassed a literature search, developing an analytical model of the SO{sub 2} reactor, fabricating and assembling the initial prototype components, testing the prototype component, and estimating the operating and manufacturing costs.

  18. Advanced emissions control development program. Quarterly technical progress report {number_sign}4, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Farthing, G.A.

    1995-12-31

    Babcock and Wilcox (B and W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls will likely arise as the US Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendments of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B and W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF will provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. The specific objectives of the project are to: (1) measure and understand the production and partitioning of air toxics species for a variety of steam coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems (ESPs, baghouses, scrubbers), (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. Development work is currently concentrated on the capture of mercury, fine particulate, and a variety of inorganic species such as the acid gases (hydrogen chloride, hydrogen fluoride, etc.).

  19. SF 6432-CI Commercial Items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IN QUANTITY ORDER OF PRECEDENCE PAYMENT PERFORMANCE EVALUATION PROGRAM RECYCLED ... the court and a listing of the contract numbers for which final payment has not been made. ...

  20. Binary classification of items of interest in a repeatable process

    DOE Patents [OSTI]

    Abell, Jeffrey A; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo

    2015-01-06

    A system includes host and learning machines. Each machine has a processor in electrical communication with at least one sensor. Instructions for predicting a binary quality status of an item of interest during a repeatable process are recorded in memory. The binary quality status includes passing and failing binary classes. The learning machine receives signals from the at least one sensor and identifies candidate features. Features are extracted from the candidate features, each more predictive of the binary quality status. The extracted features are mapped to a dimensional space having a number of dimensions proportional to the number of extracted features. The dimensional space includes most of the passing class and excludes at least 90 percent of the failing class. Received signals are compared to the boundaries of the recorded dimensional space to predict, in real time, the binary quality status of a subsequent item of interest.

  1. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3023307 Name: Madeleine Brown Organization: nJa Address: --- -------- -------- -- Country: Phone Number: United States Fax Number: n/a E-mail: --- -------- --------_._------ --- Reasonably Describe Records Description: Please send me a copy of the emails and records relating to the decision to allow the underage son of Bill Gates to tour Hanford in June 2010. Please also send the emails and records that justify the Department of Energy to prevent other minors from visiting B Reactor. Optional

  2. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1074438 Name: Gayle Cooper Organization: nla Address: _ Country: United States Phone Number: Fax Number: nla E-mail: . ~===--------- Reasonably Describe Records Description: Information pertaining to the Department of Energy's cost estimate for reinstating pension benefit service years to the Enterprise Company (ENCO) employees who are active plan participants in the Hanford Site Pension Plan. This cost estimate was an outcome of the DOE's Worker Town Hall Meetings held on September 17-18, 2009.

  3. Calorimetry of low mass Pu239 items

    SciTech Connect (OSTI)

    Cremers, Teresa L; Sampson, Thomas E

    2010-01-01

    Calorimetric assay has the reputation of providing the highest precision and accuracy of all nondestructive assay measurements. Unfortunately, non-destructive assay practitioners and measurement consumers often extend, inappropriately, the high precision and accuracy of calorimetric assay to very low mass items. One purpose of this document is to present more realistic expectations for the random uncertainties associated with calorimetric assay for weapons grade plutonium items with masses of 200 grams or less.

  4. Suspect/Counterfeit Item Awareness Training Manual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Suspect/Counterfeit Items Awareness Training U.S. Department of Energy Health, Safety and Security Office of Corporate Safety Analysis This training document is in the process of being revised by the Office of Analysis (HS-24) through a partnership with the Energy Facility Contractors Group. In the interim, the Suspect/ Counterfeit Headmark List (page 11) has been updated with the most current version. June 2007 Revision 6 Suspect/Counterfeit Items Training Sponsored by the Office of Analysis

  5. (Document Number)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A TA-53 TOUR FORM/RADIOLOGICAL LOG (Send completed form to MS H831) _____________ _____________________________ _________________________________ Tour Date Purpose of Tour or Tour Title Start Time and Approximate Duration ___________________________ ______________ _______________________ _________________ Tour Point of Contact/Requestor Z# (if applicable) Organization/Phone Number Signature Locations Visited: (Check all that apply, and list any others not shown. Prior approval must be obtained

  6. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Date: M-16-04-04 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. May 27, 2004 Originator: K. A. Klein Phone:...

  7. Federal Acquisition Circular 2005-52 Item Subject FAR...

    Office of Environmental Management (EM)

    Federal Acquisition Circular 2005-52 Item Subject FAR case I Sustainable Acquisition ... VI Technical Amendments NA Item I--Sustainable Acquisition (FAR Case 2010-001) ...

  8. Integrated Program Management Report (IPMR) Data Item Description...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Program Management Report (IPMR) Data Item Description (DID) Integrated Program Management Report (IPMR) Data Item Description (DID) Integrated Program Management Report...

  9. Consensus Action Items from CHP Roadmap Process, June 2001 |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consensus Action Items from CHP Roadmap Process, June 2001 Consensus Action Items from CHP Roadmap Process, June 2001 This paper discusses three main objectives in the CHP ...

  10. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the M-016 Series Milestones Description/Justification of Change The Hanford Federal Facility Agreement and Consent Order (TPA) contains commitments for the U.S.

  11. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the Central Plateau 200 Area Non-Tank Farm Remedial Action Work Plans (M-013 Series Milestones) Description/Justification of Change The Hanford Federal Facility

  12. CHAPS: status of issues and action items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2007 CHAPS: status of issues and action items. Items to watch are shown in bold. 1. Our most recent 'off-line' conference call was on March 30, with Yin-Nan, Liz, John J. Betsy, and John H. Details of AMS plumbing were discussed. 2. Status of CVI: a. It has been installed and test flown, 3/14 & 3/16. b. We are working on an instability in one of the flow meters (feedback with the zero-air regulator?) c. Will be flown again with nephs and psaps, and again with AMS d. See full status of

  13. CITSS Configurable Item List: COTS Software | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Configurable Item List: COTS Software CITSS Configurable Item List: COTS Software CITSS Configurable Item List: COTS Software CITSS Configurable Item List: COTS Software (44.56 KB) More Documents & Publications CITSS Project Plan CITSS Project Plan Software Configuration Management Plan

  14. AVOID BECOMING A VICTIM OF COUNTERFEIT ITEMS

    SciTech Connect (OSTI)

    WARRINER RD

    2011-07-13

    In today's globalized economy, we cannot live without imported products. Most people do not realize how thin the safety net of regulation and inspection really is. Less than three percent of imported products receive any form of government inspection prior to sale. Avoid flea markets, street vendors and deep discount stores. The sellers of counterfeit wares know where to market their products. They look for individuals who are hungry for a brand name item but do not want to pay a brand name price for it. The internet provides anonymity to the sellers of counterfeit products. Unlike Europe, U.S. law does not hold internet-marketing organizations, responsible for the quality of the products sold on their websites. These organizations will remove an individual vendor when a sufficient number of complaints are lodged, but they will not take responsibility for the counterfeit products you may have purchased. EBay has a number of counterfeit product guides to help you avoid being a victim of the sellers of these products. Ten percent of all medications taken worldwide are counterfeit. If you do buy medications on-line, be sure that the National Association of Boards of Pharmacy Verified Internet Pharmacy Practice Sites (VIPPS) recommends the pharmacy you choose to use. Inspect all medication purchases and report any change in color, shape, imprinting or odor to your pharmacist. If you take generic medications these attributes may change from one manufacturer to another. Your pharmacist should inform you of any changes when you refill your prescription. If they do not, get clarification prior to taking the medication. Please note that the Federal Drug Administration (FDA) does not regulate supplements. The FDA only steps in when a specific supplement proves to cause physical harm or contains a regulated ingredient. Due to counterfeiting, Underwriters Laboratories (UL) changed their label design three times since 1996. The new gold label should be attached to the cord or

  15. Suspect and Counterfeit Items Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Suspect and Counterfeit Items Memo Suspect and Counterfeit Items Memo The issue of Suspect/Counterfeit Items (S/CI), specifically electronic components and integrated circuits, is an increasing problem throughout the nuclear industry. Suspect and Counterfeit Items Memo (381.26 KB) More Documents & Publications Technical Standards Newsletter - October 2015 Suspect/Counterfeit Items Awareness Training Manual Visiting Speaker Program - May 12, 2011

  16. Guide to good practices for the development of test items

    SciTech Connect (OSTI)

    1997-01-01

    While the methodology used in developing test items can vary significantly, to ensure quality examinations, test items should be developed systematically. Test design and development is discussed in the DOE Guide to Good Practices for Design, Development, and Implementation of Examinations. This guide is intended to be a supplement by providing more detailed guidance on the development of specific test items. This guide addresses the development of written examination test items primarily. However, many of the concepts also apply to oral examinations, both in the classroom and on the job. This guide is intended to be used as guidance for the classroom and laboratory instructor or curriculum developer responsible for the construction of individual test items. This document focuses on written test items, but includes information relative to open-reference (open book) examination test items, as well. These test items have been categorized as short-answer, multiple-choice, or essay. Each test item format is described, examples are provided, and a procedure for development is included. The appendices provide examples for writing test items, a test item development form, and examples of various test item formats.

  17. Calorimeter measurements of low wattage items

    SciTech Connect (OSTI)

    Cremers, T.L.; Camp, K.L.; Hildner, S.S.; Sedlacek, W.A.

    1993-08-01

    The transition of DOE facilities from production to decontamination and decommissioning has led to more measurements of waste, scrap, and other less attractive materials. The difficulty that these materials pose for segmented gamma scanning and neutron counting has increased the use of calorimetric assay for very low wattage items (< 250 millwatts). We have measured well characterized {sup 238}Pu oxide ranging in wattage from 25 to 500 milliwatts in the calorimeters at the Los Alamos Plutonium Facility and report the error and the precision of the measurements.

  18. Vindicator Lidar Assessment for Wind Turbine Feed-Forward Control Applications: Cooperative Research and Development Final Report, CRADA Number CRD-09-352

    SciTech Connect (OSTI)

    Wright, A.

    2014-01-01

    Collaborative development and testing of feed-forward and other advanced wind turbine controls using a laser wind sensor.

  19. Central Characterization Program (CCP) TRU Nonconforming Item Reporting and Control

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  20. Binary classification of items of interest in a repeatable process

    SciTech Connect (OSTI)

    Abell, Jeffrey A.; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo

    2014-06-24

    A system includes host and learning machines in electrical communication with sensors positioned with respect to an item of interest, e.g., a weld, and memory. The host executes instructions from memory to predict a binary quality status of the item. The learning machine receives signals from the sensor(s), identifies candidate features, and extracts features from the candidates that are more predictive of the binary quality status relative to other candidate features. The learning machine maps the extracted features to a dimensional space that includes most of the items from a passing binary class and excludes all or most of the items from a failing binary class. The host also compares the received signals for a subsequent item of interest to the dimensional space to thereby predict, in real time, the binary quality status of the subsequent item of interest.

  1. Safety Evaluation for Packaging (onsite) T Plant Canyon Items

    SciTech Connect (OSTI)

    OBRIEN, J.H.

    2000-07-14

    This safety evaluation for packaging (SEP) evaluates and documents the ability to safely ship mostly unique inventories of miscellaneous T Plant canyon waste items (T-P Items) encountered during the canyon deck clean off campaign. In addition, this SEP addresses contaminated items and material that may be shipped in a strong tight package (STP). The shipments meet the criteria for onsite shipments as specified by Fluor Hanford in HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments.

  2. Suspect/Counterfeit Items Awareness Training Manual | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Suspect/Counterfeit Items Awareness Training Manual Suspect/Counterfeit Items Awareness Training Manual June 2007 The Suspect/Counterfeit Items Awareness Training manual provides information on individual components identified as suspect or counterfeit. The DOE Office of Environmental Protection, Sustainability Support & Corporate Safety Analysis has taken a corporate leadership role and is accountable for ensuring the effective implementation of the Department's S/CI process. The manual

  3. Seasonality in the Natural Gas Balancing Item: Historical Trends and

    U.S. Energy Information Administration (EIA) Indexed Site

    Corrective Measures Analysis > Seasonality in the Natural Gas Balancing Item: Historical Trends and Corrective Measures Seasonality in the Natural Gas Balancing Item: Historical Trends and Corrective Measures Released: June 4, 2010 Download Full Report (PDF) This special report examines an underlying cause of the seasonal pattern in the balancing item published in the Natural Gas Monthly. Research finds that a significant portion of data collected on EIA’s primary monthly natural gas

  4. Advanced Emissions Control Development Program. Quarterly Technical Progress Report {number_sign}7 for the period: April 1 to June 30, 1996

    SciTech Connect (OSTI)

    Evans, A.P.

    1996-12-31

    Babcock {ampersand} Wilcox (B{ampersand}W) is conducting a five-year project aimed at the development of practical, cost- effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B{ampersand}W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  5. Advanced Emissions Control Development Program. Quarterly Technical Progress Report {number_sign}5 for the period October 1 to December 31, 1995

    SciTech Connect (OSTI)

    Farthing, George A.

    1996-12-31

    Babcock {ampersand} Wilcox (B{ampersand}W) is conducting a five year project aimed at the development of practical, cost- effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls will likely arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendments of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF will provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. The specific objectives of the project are to: (1) measure and understand the production and partitioning of air toxics species for a variety of steam coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems (ESPs, baghouses, scrubbers), (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. Development work is currently concentrated on the capture of mercury, fine particulate, and a variety of inorganic species such as the acid gases (hydrogen chloride, hydrogen fluoride, etc.).

  6. Advanced Emissions Control Development Program. Quarterly Technical Progress Report {number_sign}6 for the period: January 1 to March 31, 1996

    SciTech Connect (OSTI)

    Farthing, George A.

    1996-12-31

    Babcock {ampersand} Wilcox (B{ampersand}W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls will likely arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the clean Air Act Amendments of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B{ampersand}W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF will provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. The specific objectives of the project are to: (1) measure and understand the production and partitioning of air toxics species for a variety of steam coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems (ESPs, baghouses, scrubbers), (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self- consistent air toxics data library. Development work is currently concentrated on the capture of mercury, fine particulate, and a variety of inorganic species such as the acid gases (hydrogen chloride, hydrogen fluoride, etc.).

  7. Microsoft Word - Class 1 PMN_7_Items_9_30_15_Rev. 13

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEP 3 0 2015 Mr. John E. Kieling, Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Class 1 Permit Modification Notifications to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number: NM4890 139088-TSDF Dear Mr. Kieling: Enclosed is a Notification of Class 1 Permit Modifications for the following items: * Clarifications to Inspections of Liquid-Fueled Vehicles in Attachment E * Addition

  8. Microsoft Word - Class_1_6_Items_02_10_16

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FEB 1 7 2016 Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Class 1 Permit Modification Notifications to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number: NM4890139088-TSDF Dear Mr. Kieling: Enclosed is a Notification of Class 1 Permit Modifications for the following items: * Technical Training Organizational Change * Descriptive Changes Regarding

  9. Testing of a low-cost item monitoring system

    SciTech Connect (OSTI)

    Frank, D.J.; Cunningham, K.R.; Hoover, C.E.; Trujillo, A.A.

    1988-01-01

    Material control is an important element of any security system which seeks to address the insider threat. Sandia has developed Wireless Alarm Transmission of Container Handling (WATCH) which is a remote sensor system that provides a low-cost, convenient way of monitoring item movement. Rockwell International/Rocky Flats Plant (RFP) and Sandia have conducted a long-term evaluation of the WATCH system in an operating production facility. Testing was conducted in a large scale, remote access storage vault for Special Nuclear Materials (SNM). A total of fourteen WATCH units were placed on storage containers in the vault. A schedule was established which provided prearranged movement of monitored containers on a regular basis. The test objectives were to determine (1) the feasibility of using the WATCH system technology to implement material control concepts, (2) the system performance in an active production area, and high radiation environment, (3) the sensitivity settings required for optimum system performance, and (4) the spatial resolution of the transmitter/receiver utilized.

  10. Testing of a low-cost item monitoring system

    SciTech Connect (OSTI)

    Frank, D.J.; Cunningham, K.R.; Hoover, C.E.; Trujillo, A.A.

    1988-01-01

    Material control is an important element of any security system which seeks to address the insider threat. Sandia has developed Wireless Alarm Transmission of Container Handling (WATCH) which is a remote sensory system that provides a low-cost, convenient way of monitoring item movement. Rockwell International/Rocky Flats Plant (RFP) and Sandia have conducted a long-term evaluation of the WATCH system in an operating production facility. Testing was conducted in a large scale, remote access storage vault for Special Nuclear Materials (SNM). A total of fourteen WATCH units were placed on storage containers in the vault. A schedule was established which provided prearranged movement of monitored containers on a regular basis. The test objectives were to determine 1) the feasibility of using the WATCH system technology to implement material control concepts, 2) the system performance in an active production area, and high radiation environment, 3) the sensitivity settings required for optimum system performance, and 4) the spatial resolution of the transmitter/receiver utilized.

  11. OMB Control No.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    300.3 (09-93) (All other editions are obsolete) OMB Control No. 1910-0500 OMB Burden Disclosure Statement on Page 4 U.S. Department of Energy Semi-Annual Summary Report of DOE-Owned Plant and Capital Equipment (P&CE) Contractor Name Address Location of Property (City, State) Contracting Office Contract No. Asset Type Code Beginning Balance As of No. of Items $ Acquisitions No. of Items $ Dispositions No. of Items $ Ending Balance As of No. of Items $ Total Plant and Capital Equipment 1 2 3 4

  12. New casing for salt problems ''hot item''

    SciTech Connect (OSTI)

    Rountree, R.

    1983-10-01

    Operators in the Williston Basin indicate interest in the high performance casing, which is designed to resist collapse. Lone Star Steel Co. offers custom designed, high performance casing to withstand high pressures and H/sub 2/S encroachment. A number of companies will continue to evaluate the results of the casing programs that employ high performance pipe with considerable interest.

  13. Number | Open Energy Information

    Open Energy Info (EERE)

    Property:NumOfPlants Property:NumProdWells Property:NumRepWells Property:Number of Color Cameras Property:Number of Devices Deployed Property:Number of Plants included in...

  14. Gathering total items count for pagination | OpenEI Community

    Open Energy Info (EERE)

    Gathering total items count for pagination Home > Groups > Utility Rate Hi I'm using the following base link plus some restrictions to sector, utility, and locations to poll for...

  15. Microsoft Word - foi 2013-00964.Item 3.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Each item of your request is re-stated below: 1. "Any and all records reflecting correspondence (including letters and emails) between the Department of Energy offices at Hanford ...

  16. SUMMARY OF FINAL RULES Item Subject FAR Case

    Broader source: Energy.gov (indexed) [DOE]

    SUMMARY OF FINAL RULES Item Subject FAR Case FAC 56-Miscellaneous I. Women-Owned Small Business Program 2010-015 II. Proper Use and Management of Cost-Reimbursement Contracts...

  17. LLNL line-item construction projects Master Site Plan

    SciTech Connect (OSTI)

    1996-04-15

    This interim submittal is an updated 1996 overview of the Master Plan based on the 1995 LLNL Site Development Plan, illustrating the future land use considerations, and the locations of proposed facilities as documented through the line item development process and keyed to the summary table. The following components in addition to the line-item proposals remain key elements in the implementation strategy of the Master Plan: personnel migration, revitalization, space reduction, classified core contraction, utility systems, and environmental restoration.

  18. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  19. OMB Control Number: 1910-5165

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1910-5165 Expires: 01312018 SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT Please submit this form to DBAEnforcementReports@hq.doe.gov with a copy to EECBG@ee.doe.gov. This form is...

  20. OMB Control Number: 1910-5165

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Contract Work Hours and Safety Standards Act (Overtime Violations): o 8. Amount of back wages in paid: Davis-Bacon and Related Acts: oi Contract Work Hours and Safety Standards ...

  1. OMB Control Number: 1910-5165

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enforcement Report to your site DOENNSA Contractor Human Resource Division (CHRD) Office. ... to: Office of Information Resources Management Policy, Plans, and Oversight, ...

  2. OMB Control Number: 1910-5165

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1910-5165 Expires: 01312018 SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT For State Energy Grant and Energy Efficiency and Conservation Block Grant Recipients, please submit this...

  3. OMB Control Number: 1910-5165

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1910-5165 Expires: xx/xx/201x SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT Please submit this Semi-Annual Davis-Bacon Enforcement Report to your site DOE/NNSA Contractor Human Resource Division (CHRD) Office. If you do not have a DOE/NNSA CHRD Office, please submit the report to: DBAEnforcementReports@hq.doe.gov. The following questions regarding enforcement activity (Davis-Bacon and Related Acts) by this Agency are required by 29 CFR, Part 5.7(b), and Department of Labor, All Agency Memorandum

  4. OMB Control Number: 1910-5165

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1910-5165 Expires: 01/31/2018 SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT Please submit this form to DBAEnforcementReports@hq.doe.gov with a copy to EECBG@ee.doe.gov. This form is due by April 21 st and October 21 st of each year. The following questions regarding enforcement activity (Davis-Bacon and Related Acts) by this Agency are required by 29 CFR, Part 5.7(b), and Department of Labor, All Agency Memorandum #189. Please refer to the instructions with definitions on page 2. If you have

  5. An Integrated RFID and Barcode Tagged Item Inventory System for Deployment at New Brunswick Laboratory

    SciTech Connect (OSTI)

    Younkin, James R; Kuhn, Michael J; Gradle, Colleen; Preston, Lynne; Thomas, Brigham B.; Laymance, Leesa K; Kuziel, Ron

    2012-01-01

    New Brunswick Laboratory (NBL) has a numerous inventory containing thousands of plutonium and uranium certified reference materials. The current manual inventory process is well established but is a lengthy process which requires significant oversight and double checking to ensure correctness. Oak Ridge National Laboratory has worked with NBL to develop and deploy a new inventory system which utilizes handheld computers with barcode scanners and radio frequency identification (RFID) readers termed the Tagged Item Inventory System (TIIS). Certified reference materials are identified by labels which incorporate RFID tags and barcodes. The label printing process and RFID tag association process are integrated into the main desktop software application. Software on the handheld computers syncs with software on designated desktop machines and the NBL inventory database to provide a seamless inventory process. This process includes: 1) identifying items to be inventoried, 2) downloading the current inventory information to the handheld computer, 3) using the handheld to read item and location labels, and 4) syncing the handheld computer with a designated desktop machine to analyze the results, print reports, etc. The security of this inventory software has been a major concern. Designated roles linked to authenticated logins are used to control access to the desktop software while password protection and badge verification are used to control access to the handheld computers. The overall system design and deployment at NBL will be presented. The performance of the system will also be discussed with respect to a small piece of the overall inventory. Future work includes performing a full inventory at NBL with the Tagged Item Inventory System and comparing performance, cost, and radiation exposures to the current manual inventory process.

  6. LLWnotes - Volume 11, Number 4

    SciTech Connect (OSTI)

    1996-05-01

    This document is the May 1996 issue of LLWnotes. It contains articles and news items on the following topics: news items related to states and compacts; Low-Level Radioactive Waste (LLW) Forum activities; court rulings and calendars; US DOE testing at Ward Valley; US BLM contract with Lawrence Livermore National Laboratory; Mixed Waste Pilot Project Schedule; extension of US EPA`s mixed waste enforcement moratorium; EPA Advisory Committee on research program operation; and decommissioning.

  7. Determining importance and grading of items and activities for the Yucca Mountain Project

    SciTech Connect (OSTI)

    DeKlever, R.; Verna, B.

    1993-12-31

    Raytheon Services Nevada (RSN), in support of the Department of Energy`s (DOE) Yucca Mountain Project, has been responsible for the Title 2 designs of the initial structures, systems, and components for the Exploratory Studies Facility (ESF), and the creation of the design output documents for the Surface-Based Testing (SBT) programs. The ESF and SBT programs are major scientific contributors to the overall site characterization program which will determine the suitability of Yucca Mountain to contain a proposed High Level Nuclear Waste (HLNW) repository. Accurate, traceable and objective characterization and testing documentation that is germane to the protection of public health and safety, and the environment, and that satisfies all the requirements of 10 CFR Part 60(1), must be established, evaluated and accepted. To assure that these requirements are satisfied, specific design functions and products, including items and activities depicted within respective design output documents, are subjected to the requirements of an NRC and DOE-approved Quality Assurance (QA) program. An evaluation (classification) is applied to these items and activities to determine their importance to radiological safety (ITS) and waste isolation (ITWI). Subsequently, QA program controls are selected (grading) for the items and activities. RSN has developed a DOE-approved classification process that is based on probabilistic risk assessment (PRA) techniques and that uses accident/impact scenarios. Results from respective performance assessment and test interference evaluations are also integrated into the classification analyses for various items. The methodology and results of the RSN classification and grading processes, presented herein, relative to ESF and SBT design products, demonstrates a solid, defensible methodological basis for classification and grading.

  8. Method using a density field for locating related items for data mining

    DOE Patents [OSTI]

    Wylie, Brian N.

    2002-01-01

    A method for locating related items in a geometric space transforms relationships among items to geometric locations. The method locates items in the geometric space so that the distance between items corresponds to the degree of relatedness. The method facilitates communication of the structure of the relationships among the items. The method makes use of numeric values as a measure of similarity between each pairing of items. The items are given initial coordinates in the space. An energy is then determined for each item from the item's distance and similarity to other items, and from the density of items assigned coordinates near the item. The distance and similarity component can act to draw items with high similarities close together, while the density component can act to force all items apart. If a terminal condition is not yet reached, then new coordinates can be determined for one or more items, and the energy determination repeated. The iteration can terminate, for example, when the total energy reaches a threshold, when each item's energy is below a threshold, after a certain amount of time or iterations.

  9. DOE Hosts Festival to Collect Items for Area Food Banks

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Deputy Secretary of Energy Daniel Poneman and a representative of the Capital Area Food Bank are among the guest speakers at an event this Tuesday, July 31, to collect food items for the DOE Feeds Families drive.

  10. New York Natural Gas Number of Commercial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New York Number of Natural Gas ...

  11. New Mexico Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) New Mexico Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New Mexico Number of Natural ...

  12. North Dakota Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers North Dakota Number of Natural ...

  13. Quantum random number generator

    DOE Patents [OSTI]

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  14. DOE/ID-Number

    Office of Environmental Management (EM)

    in the energy sector NSTB National SCADA Test Bed Common Cyber Security Vulnerabilities ... of the National Supervisory Control and Data Acquisition (SCADA) Test Bed (NSTB) program. ...

  15. U.S. Natural Gas Balancing Item (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Balancing Item (Million Cubic Feet) U.S. Natural Gas Balancing Item (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 634,809 -111,218 2000's -240,342 134,346 -13,339 -38,495 356,956 134,293 61,404 -196,323 33,472 -89,392 2010's 124,358 -130,108 -123,053 -15,729 -44,437 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  16. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  17. Quantum random number generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing

    2016-06-28

    Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at amore » high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  18. Controlling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations K. A. Mirus and J. C. Sprott Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 ͑Received 29 June 1998͒ The effect of applying a periodic perturbation to an accessible parameter of various chaotic systems is examined. Numerical results indicate that perturbation frequencies near the natural frequencies of the unstable periodic orbits of the chaotic systems can result in limit

  19. ALARA notes, Number 8

    SciTech Connect (OSTI)

    Khan, T.A.; Baum, J.W.; Beckman, M.C.

    1993-10-01

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

  20. DOE/ID-Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Summary of Control System Security Standards Activities in the Energy Sector October 2005 National SCADA Test Bed A Summary of Control System Security Standards Activities in the Energy Sector October 2005 Sandia National Laboratories Idaho National Laboratory Argonne National Laboratory Pacific Northwest National Laboratory Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 iii ABSTRACT This document is a compilation of the activities and

  1. Document Details Document Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document Details Document Number Date of Document Document Title/Description [Links below to each document] D195066340 Not listed. N/A REVISIONS IN STRATIGRAPHIC NOMENCLATURE OF COLUMBIA RIVER BASALT GROUP D196000240 Not listed. N/A EPA DENIAL OF LINER LEACHATE COLLECTION SYSTEM REQUIREMENTS D196005916 Not listed. N/A LATE CENOZOIC STRATIGRAPHY AND TECTONIC EVOLUTION WITHIN SUBSIDING BASIN SOUTH CENTRAL WASHINGTON D196025993 RHO-BWI-ST-14 N/A SUPRABASALT SEDIMENTS OF COLD CREEK SYNCLINE AREA

  2. Contract Number DE-AC27-10RV15051

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract Number DE-AC27-10RV15051 Modification 106 SF-30 Attachment Attachment DE-AC27-10RV15051 MODIFICATION 106 Replacement Pages (Total: 53, including this Cover Page)  Section B.1, Type of Contract - Items Being Acquired, Page B-8  Section H, Special Contract Requirements, Pages i, ii, and H-27  Section I, Contract Clauses, Pages I-1 thru I-48 222-S LAS&T Contract DE-AC27-10RV15051 Conformed thru Contract Modification No. 106 B-8 (e) OPTION PERIOD III: CLIN Number Description

  3. Modular redundant number systems

    SciTech Connect (OSTI)

    1998-05-31

    With the increased use of public key cryptography, faster modular multiplication has become an important cryptographic issue. Almost all public key cryptography, including most elliptic curve systems, use modular multiplication. Modular multiplication, particularly for the large public key modulii, is very slow. Increasing the speed of modular multiplication is almost synonymous with increasing the speed of public key cryptography. There are two parts to modular multiplication: multiplication and modular reduction. Though there are fast methods for multiplying and fast methods for doing modular reduction, they do not mix well. Most fast techniques require integers to be in a special form. These special forms are not related and converting from one form to another is more costly than using the standard techniques. To this date it has been better to use the fast modular reduction technique coupled with standard multiplication. Standard modular reduction is much more costly than standard multiplication. Fast modular reduction (Montgomery`s method) reduces the reduction cost to approximately that of a standard multiply. Of the fast multiplication techniques, the redundant number system technique (RNS) is one of the most popular. It is simple, converting a large convolution (multiply) into many smaller independent ones. Not only do redundant number systems increase speed, but the independent parts allow for parallelization. RNS form implies working modulo another constant. Depending on the relationship between these two constants; reduction OR division may be possible, but not both. This paper describes a new technique using ideas from both Montgomery`s method and RNS. It avoids the formula problem and allows fast reduction and multiplication. Since RNS form is used throughout, it also allows the entire process to be parallelized.

  4. Apparatus and method for identification and recognition of an item with ultrasonic patterns from item subsurface micro-features

    DOE Patents [OSTI]

    Perkins, R.W.; Fuller, J.L.; Doctor, S.R.; Good, M.S.; Heasler, P.G.; Skorpik, J.R.; Hansen, N.H.

    1995-09-26

    The present invention is a means and method for identification and recognition of an item by ultrasonic imaging of material microfeatures and/or macrofeatures within the bulk volume of a material. The invention is based upon ultrasonic interrogation and imaging of material microfeatures within the body of material by accepting only reflected ultrasonic energy from a preselected plane or volume within the material. An initial interrogation produces an identification reference. Subsequent new scans are statistically compared to the identification reference for making a match/non-match decision. 15 figs.

  5. Apparatus and method for identification and recognition of an item with ultrasonic patterns from item subsurface micro-features

    DOE Patents [OSTI]

    Perkins, Richard W.; Fuller, James L.; Doctor, Steven R.; Good, Morris S.; Heasler, Patrick G.; Skorpik, James R.; Hansen, Norman H.

    1995-01-01

    The present invention is a means and method for identification and recognition of an item by ultrasonic imaging of material microfeatures and/or macrofeatures within the bulk volume of a material. The invention is based upon ultrasonic interrogation and imaging of material microfeatures within the body of material by accepting only reflected ultrasonic energy from a preselected plane or volume within the material. An initial interrogation produces an identification reference. Subsequent new scans are statistically compared to the identification reference for making a match/non-match decision.

  6. Method of locating related items in a geometric space for data mining

    DOE Patents [OSTI]

    Hendrickson, B.A.

    1999-07-27

    A method for locating related items in a geometric space transforms relationships among items to geometric locations. The method locates items in the geometric space so that the distance between items corresponds to the degree of relatedness. The method facilitates communication of the structure of the relationships among the items. The method is especially beneficial for communicating databases with many items, and with non-regular relationship patterns. Examples of such databases include databases containing items such as scientific papers or patents, related by citations or keywords. A computer system adapted for practice of the present invention can include a processor, a storage subsystem, a display device, and computer software to direct the location and display of the entities. The method comprises assigning numeric values as a measure of similarity between each pairing of items. A matrix is constructed, based on the numeric values. The eigenvectors and eigenvalues of the matrix are determined. Each item is located in the geometric space at coordinates determined from the eigenvectors and eigenvalues. Proper construction of the matrix and proper determination of coordinates from eigenvectors can ensure that distance between items in the geometric space is representative of the numeric value measure of the items' similarity. 12 figs.

  7. Method of locating related items in a geometric space for data mining

    DOE Patents [OSTI]

    Hendrickson, Bruce A.

    1999-01-01

    A method for locating related items in a geometric space transforms relationships among items to geometric locations. The method locates items in the geometric space so that the distance between items corresponds to the degree of relatedness. The method facilitates communication of the structure of the relationships among the items. The method is especially beneficial for communicating databases with many items, and with non-regular relationship patterns. Examples of such databases include databases containing items such as scientific papers or patents, related by citations or keywords. A computer system adapted for practice of the present invention can include a processor, a storage subsystem, a display device, and computer software to direct the location and display of the entities. The method comprises assigning numeric values as a measure of similarity between each pairing of items. A matrix is constructed, based on the numeric values. The eigenvectors and eigenvalues of the matrix are determined. Each item is located in the geometric space at coordinates determined from the eigenvectors and eigenvalues. Proper construction of the matrix and proper determination of coordinates from eigenvectors can ensure that distance between items in the geometric space is representative of the numeric value measure of the items' similarity.

  8. Dream controller

    SciTech Connect (OSTI)

    Cheng, George Shu-Xing; Mulkey, Steven L; Wang, Qiang; Chow, Andrew J

    2013-11-26

    A method and apparatus for intelligently controlling continuous process variables. A Dream Controller comprises an Intelligent Engine mechanism and a number of Model-Free Adaptive (MFA) controllers, each of which is suitable to control a process with specific behaviors. The Intelligent Engine can automatically select the appropriate MFA controller and its parameters so that the Dream Controller can be easily used by people with limited control experience and those who do not have the time to commission, tune, and maintain automatic controllers.

  9. New Hampshire Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) New Hampshire Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  10. New Hampshire Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  11. New Hampshire Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  12. Virginia Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  13. Utah Natural Gas Number of Industrial Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  14. Wisconsin Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  15. Virginia Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. Utah Natural Gas Number of Residential Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  17. Vermont Natural Gas Number of Residential Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  18. Utah Natural Gas Number of Commercial Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  19. Virginia Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  20. West Virginia Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  1. Wisconsin Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. Vermont Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  3. West Virginia Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  4. Washington Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Washington Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  5. Washington Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  6. Washington Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  7. Wisconsin Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  8. Vermont Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  9. West Virginia Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  10. New York Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  11. New Mexico Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  12. New Jersey Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) New Jersey Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  13. New Mexico Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  14. North Carolina Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  15. North Carolina Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  16. North Dakota Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  17. North Dakota Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  18. North Carolina Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  19. DATA SHARING REPORT CHARACTERIZATION OF THE SURVEILLANCE AND MAINTENANCE PROJECT MISCELLANEOUS PROCESS INVENTORY WASTE ITEMS OAK RIDGE NATIONAL LABORATORY, Oak Ridge TN

    SciTech Connect (OSTI)

    Weaver, Phyllis C

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, to provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a sampling and analysis campaign to target certain items associated with URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing for final disposal. This waste was generated during processing, surveillance, and maintenance activities associated with the facilities identified in the process knowledge (PK) provided in Appendix A. A list of items for sampling and analysis were generated from a subset of materials identified in the WHP populations (POPs) 4, 5, 6, 7, and 8, plus a small number of items not explicitly addressed by the WHP. Specifically, UCOR S&M project personnel identified 62 miscellaneous waste items that would require some level of evaluation to identify the appropriate pathway for disposal. These items are highly diverse, relative to origin; composition; physical description; contamination level; data requirements; and the presumed treatment, storage, and disposal facility (TSDF). Because of this diversity, ORAU developed a structured approach to address item-specific data requirements necessary for acceptance in a presumed TSDF that includes the Environmental Management Waste Management Facility (EMWMF)—using the approved Waste Lot (WL) 108.1 profile—the Y-12 Sanitary Landfill (SLF) if appropriate; Energy

  20. Contract Number DE-AC27-10RV15051

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract Number DE-AC27-10RV15051 Modification 100 SF-30 Attachment Attachment DE-AC27-10RV15051 MODIFICATION 100 Replacement Pages (Total: 37, including this Cover Page)  Section B.1, Type of Contract - Items Being Acquired, Page B-i and B-1  Section G.1(d), Electronic Media for Reports/Plans/Documents, Page G-1  Section J, Attachment 1, DOE Directives Applicable to the 222-S Lab, Pages J-1 thru J-3  Section J, Attachment 4, Washington Department of Labor Wage Determination, Pages

  1. NQA-1 Requirements for Commercial Grade Item Acceptance: ICONE20-54738

    SciTech Connect (OSTI)

    Van Valkenburg, Taunia S.; Holmes, Richard A.; Tepley, Daniel J.; Sandquist, Gary

    2012-07-19

    Objectives are: (1) Present the DOE Chemistry and Metallurgy Research Replacement (CMRR) Project Commercial Grade Item (CGI) Dedication Process; and (2) Present CMRR Project CGI Lessons-Learned.

  2. Meeting Action Items and Highlights from the Bio-Derived Liquids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reforming Working Group (BILIWG) & Hydrogen Production Technical Team Research Review Meeting Action Items and Highlights from the Bio-Derived Liquids to Hydrogen Distributed ...

  3. Seasonality in the Natural Gas Balancing Item: Historical Trends and Corrective Measures

    Reports and Publications (EIA)

    2010-01-01

    This special report examines an underlying cause of the seasonal pattern in the balancing item published in the Natural Gas Monthly.

  4. Doubles counting of highly multiplying items in reflective surroundings

    SciTech Connect (OSTI)

    Croft, Stephen; Evans, Louise G; Schear, Melissa A; Tobin, Stephen J

    2010-11-18

    When a neutrons are counted from a spontaneously fissile multiplying item in a reflecting environment the temporal behavior of the correlated signal following neutron birth is complex. At early times the signal is dominated by prompt fission events coming from spontaneous fission bursts and also from prompt fast-neutron induced fission events. At later times neutrons 'returning' from the surroundings induce fission and give rise to an additional chain of correlated events. The prompt and returning components probe the fissile and fertile constituents of the item in different ways and it is potentially beneficial to exploit this fact. In this work we look at how the two components can be represented using a linear combination of two simple functions. Fitting of the composite function to the capture time distribution represents one way of quantifying the proportion of each contribution. Another approach however is to use a dual shift register analysis where after each triggering event two coincidence gates are opened, one close to the trigger that responds preferentially to the prompt dynamics and one later in time which is more sensitive to the returning neutron induced events. To decide on the best gate positions and gate widths and also to estimate the counting precision we can use the analytical fit to work out the necessary gate utilization factors which are required in both these calculations. In this work, we develop the approach. Illustrative examples are given using spent Low Enriched Uranium (LEU) Pressurized light Water Reactor (LWR) fuel assemblies submersed in borated water and counted in a ring of {sup 3}He gas-filled proportional counters. In this case the prompt component is dominated by {sup 244}Cm spontaneous fission and induced fast neutron fission in for example {sup 238}U while the returning low energy neutrons induce fission mainly in the fissile nuclides such as {sup 239}Pu, {sup 241}Pu and {sup 235}U. One requirement is to calculate the Random

  5. Number

    Office of Legacy Management (LM)

    engaged in the production of thorium compounds. The purpose of the trip vas to: l 1. Learn the type of chemical processes employed in the thorium industry (thorium nitrate). 2. ...

  6. Verification Challenges at Low Numbers

    SciTech Connect (OSTI)

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-06-01

    Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  7. Laboratory Equipment Donation Program - Equipment List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment List Already know the item control number? Submit Reset Item Control Number Equipment Name Date Entered Condition Picture 89022961820152 75164 VACUUM CONDENSER 07272016 ...

  8. LLWnotes - Volume 11, Number 6 August/September 1996

    SciTech Connect (OSTI)

    1996-09-01

    This document is the August/September 1996 issue of LLWnotes. It contains articles and news items on the following topics: California Department of Health Services questions accuracy of waste data; NRC authority over land transfers; Southeast Commission funding of North Carolina project; study of federal siting criteria; court rulings and calendar; wetland classifications; DOE tritium purchase options; control over licensed devices; revised EPA risk assessment model; EPA environmental justice guidance; possible effects of EPA guidance on LLRW disposal; elements of an adequate LLRW program; NRC Information Notice on on-site land burials; and a decommissioning schedule petition.

  9. Archived News Item: August 5, 2009 - President Obama Announces...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Two companies, A123 and Johnson Controls, will receive a total of approximately 550 ... will receive a total of over 300 million for manufacturing battery cells and materials. ...

  10. SF6432-CI (02-01-12) Commercial Items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Any Contractor personnel who will enter a government site to perform Control : SF 6432-CI Title: Standard Terms and ... premises are subject to search. (e) Contractor will ...

  11. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of Natural

  12. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of Natural Gas Industrial

  13. ARM - Measurement - Particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle number concentration The number of particles present in any given volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  14. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  15. Compendium of Experimental Cetane Numbers

    SciTech Connect (OSTI)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  16. Greener Commercial A/C Units Becoming a Cool Item | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greener Commercial A/C Units Becoming a Cool Item Greener Commercial A/C Units Becoming a Cool Item July 1, 2010 - 5:11pm Addthis Greener Commercial A/C Units Becoming a Cool Item Stephen Graff Former Writer & editor for Energy Empowers, EERE A new federal tax credit is helping McQuay International expand its line of energy-efficient HVAC products at two of its plants and bring back furloughed workers. With the help of a 48C manufacturing tax credit worth $2 million under the American

  17. Maine Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 73 73 74 1990's 80 81 80 66 89 74 87 81 110 108 2000's 178 233 66 65 69 69 73 76 82 85 2010's 94 102 108 120 126 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring

  18. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  19. Wyoming Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 190 200 230 1990's 284 228 244 194 135 126 170 194 317 314 2000's 308 295 877 179 121 127 133 133 155 130 2010's 120 123 127 132 131 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  20. Nevada Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93 98 100 1990's 100 113 114 117 119 120 121 93 93 109 2000's 90 90 96 97 179 192 207 220 189 192 2010's 184 177 177 195 218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  1. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  2. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  3. Florida Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 575 552 460 1990's 452 377 388 433 481 515 517 561 574 573 2000's 520 518 451 421 398 432 475 467 449 607 2010's 581 630 507 528 520 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  4. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  5. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  6. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016

  7. Commercial Grade Item (CGI) Dedication for Leak Detection Relays

    SciTech Connect (OSTI)

    KOCH, M.R.

    1999-10-26

    This Test Plan provides a test method to dedicate the leak detection relays used on the new Pumping and Instrumentation Control (PIC) skids. The new skids are fabricated on-site. The leak detection system is a safety class system per the Authorization Basis.

  8. Techniques for reducing error in the calorimetric measurement of low wattage items

    SciTech Connect (OSTI)

    Sedlacek, W.A.; Hildner, S.S.; Camp, K.L.; Cremers, T.L.

    1993-08-01

    The increased need for the measurement of low wattage items with production calorimeters has required the development of techniques to maximize the precision and accuracy of the calorimeter measurements. An error model for calorimetry measurements is presented. This model is used as a basis for optimizing calorimetry measurements through baseline interpolation. The method was applied to the heat measurement of over 100 items and the results compared to chemistry assay and mass spectroscopy.

  9. Meeting Action Items and Highlights from the Bio-Derived Liquids to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Distributed Reforming Working Group (BILIWG) & Hydrogen Production Technical Team Research Review | Department of Energy Action Items and Highlights from the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) & Hydrogen Production Technical Team Research Review Meeting Action Items and Highlights from the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) & Hydrogen Production Technical Team Research Review This is the

  10. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-27

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  11. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-05

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  12. Indiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Indiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 116,571 119,458 122,803 1990's 124,919 128,223 129,973 131,925 134,336 137,162 139,097 140,515 141,307 145,631 2000's 148,411 148,830 150,092 151,586 151,943 159,649 154,322 155,885 157,223 155,615 2010's 156,557 161,293 158,213 158,965 159,596 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Indiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,497 5,696 6,196 1990's 6,439 6,393 6,358 6,508 6,314 6,250 6,586 6,920 6,635 19,069 2000's 10,866 9,778 10,139 8,913 5,368 5,823 5,350 5,427 5,294 5,190 2010's 5,145 5,338 5,204 5,178 5,098 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  14. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267

  15. Iowa Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Iowa Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 80,797 81,294 82,549 1990's 83,047 84,387 85,325 86,452 86,918 88,585 89,663 90,643 91,300 92,306 2000's 93,836 95,485 96,496 96,712 97,274 97,767 97,823 97,979 98,144 98,416 2010's 98,396 98,541 99,113 99,017 99,182 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  16. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Kansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 861,092 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 1,780 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 760,131 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  5. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  6. Louisiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 952,079 946,970 934,472 1990's 934,007 936,423 940,403 941,294 945,387 957,558 945,967 962,786 962,436 961,925 2000's 964,133 952,753 957,048 958,795 940,400 905,857 868,353 879,612 886,084 889,570 2010's 893,400 897,513 963,688 901,635 899,378 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maine Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,435 3,731 3,986 1990's 4,250 4,455 4,838 4,979 5,297 5,819 6,414 6,606 6,662 6,582 2000's 6,954 6,936 7,375 7,517 7,687 8,178 8,168 8,334 8,491 8,815 2010's 9,084 9,681 10,179 11,415 11,810 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Maine Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,134 11,933 11,902 1990's 12,000 12,424 13,766 13,880 14,104 14,917 14,982 15,221 15,646 15,247 2000's 17,111 17,302 17,921 18,385 18,707 18,633 18,824 18,921 19,571 20,806 2010's 21,142 22,461 23,555 24,765 27,047 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,222 5,397 5,570 1990's 5,646 520 514 496 516 481 430 479 1,472 536 2000's 329 795 1,434 1,361 1,354 1,325 1,340 1,333 1,225 1,234 2010's 1,255 1,226 1,163 1,173 1,179 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  11. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 - = No Data Reported; -- = Not

  12. Massachusetts Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Massachusetts Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 84,636 93,005 92,252 1990's 85,775 88,746 85,873 102,187 92,744 104,453 105,889 107,926 108,832 113,177 2000's 117,993 120,984 122,447 123,006 125,107 120,167 126,713 128,965 242,693 153,826 2010's 144,487 138,225 142,825 144,246 139,556 - = No Data Reported; -- = Not Applicable;

  13. Massachusetts Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,626 7,199 13,057 1990's 6,539 5,006 8,723 7,283 8,019 10,447 10,952 11,058 11,245 8,027 2000's 8,794 9,750 9,090 11,272 10,949 12,019 12,456 12,678 36,928 19,208 2010's 12,751 10,721 10,840 11,063 10,946 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  14. Massachusetts Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,082,777 1,100,635 1,114,920 1990's 1,118,429 1,127,536 1,137,911 1,155,443 1,179,869 1,180,860 1,188,317 1,204,494 1,212,486 1,232,887 2000's 1,278,781 1,283,008 1,295,952 1,324,715 1,306,142 1,297,508 1,348,848 1,361,470 1,236,480 1,370,353 2010's 1,389,592 1,408,314 1,447,947

  15. Michigan Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Michigan Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 178,469 185,961 191,474 1990's 195,766 198,890 201,561 204,453 207,629 211,817 214,843 222,726 224,506 227,159 2000's 230,558 225,109 247,818 246,123 246,991 253,415 254,923 253,139 252,382 252,017 2010's 249,309 249,456 249,994 250,994 253,127 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Michigan Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,885 11,117 11,452 1990's 11,500 11,446 11,460 11,425 11,308 11,454 11,848 12,233 11,888 14,527 2000's 11,384 11,210 10,468 10,378 10,088 10,049 9,885 9,728 10,563 18,186 2010's 9,332 9,088 8,833 8,497 8,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,452,554 2,491,149 2,531,304 1990's 2,573,570 2,609,561 2,640,579 2,677,085 2,717,683 2,767,190 2,812,876 2,859,483 2,903,698 2,949,628 2000's 2,999,737 3,011,205 3,110,743 3,140,021 3,161,370 3,187,583 3,193,920 3,188,152 3,172,623 3,169,026 2010's 3,152,468 3,153,895 3,161,033 3,180,349

  18. Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 88,789 90,256 92,916 1990's 95,474 97,388 99,707 93,062 102,857 103,874 105,531 108,686 110,986 114,127 2000's 116,529 119,007 121,751 123,123 125,133 126,310 129,149 128,367 130,847 131,801 2010's 132,163 132,938 134,394 135,557 136,382 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  19. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,585 2,670 2,638 1990's 2,574 2,486 2,515 2,477 2,592 2,531 2,564 2,233 2,188 2,267 2000's 2,025 1,996 2,029 2,074 2,040 1,432 1,257 1,146 1,131 2,039 2010's 2,106 1,770 1,793 1,870 1,878 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Minnesota Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 872,148 894,380 911,001 1990's 946,107 970,941 998,201 1,074,631 1,049,263 1,080,009 1,103,709 1,134,019 1,161,423 1,190,190 2000's 1,222,397 1,249,748 1,282,751 1,308,143 1,338,061 1,364,237 1,401,362 1,401,623 1,413,162 1,423,703 2010's 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 - = No

  1. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 50,238 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  2. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  3. Mississippi Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 444,423 - = No Data Reported; -- = Not

  4. Missouri Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Missouri Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,711 97,939 99,721 1990's 105,164 117,675 125,174 125,571 132,378 130,318 133,445 135,553 135,417 133,464 2000's 133,969 135,968 137,924 140,057 141,258 142,148 143,632 142,965 141,529 140,633 2010's 138,670 138,214 144,906 142,495 143,024 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Missouri Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,832 2,880 3,063 1990's 3,140 3,096 2,989 3,040 3,115 3,033 3,408 3,097 3,151 3,152 2000's 3,094 3,085 2,935 3,115 3,600 3,545 3,548 3,511 3,514 3,573 2010's 3,541 3,307 3,692 3,538 3,497 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,180,546 1,194,985 1,208,523 1990's 1,213,305 1,211,342 1,220,203 1,225,921 1,281,007 1,259,102 1,275,465 1,293,032 1,307,563 1,311,865 2000's 1,324,282 1,326,160 1,340,726 1,343,614 1,346,773 1,348,743 1,353,892 1,354,173 1,352,015 1,348,781 2010's 1,348,549 1,342,920 1,389,910 1,357,740

  7. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Wyoming Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,342 15,093 14,012 1990's 13,767 14,931 15,064 15,315 15,348 15,580 17,036 15,907 16,171 16,317 2000's 16,366 16,027 16,170 17,164 17,490 17,904 18,016 18,062 19,286 19,843 2010's 19,977 20,146 20,387 20,617 20,894 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Wyoming Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113,175 112,126 113,129 1990's 113,598 113,463 114,793 116,027 117,385 119,544 131,910 125,740 127,324 127,750 2000's 129,274 129,897 133,445 135,441 137,434 140,013 142,385 143,644 152,439 153,062 2010's 153,852 155,181 157,226 158,889 160,896 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nebraska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,707 61,365 60,377 1990's 60,405 60,947 61,319 60,599 62,045 61,275 61,117 51,661 63,819 53,943 2000's 55,194 55,692 56,560 55,999 57,087 57,389 56,548 55,761 58,160 56,454 2010's 56,246 56,553 56,608 58,005 57,191 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 675 684 702 1990's 712 718 696 718 766 2,432 2,234 11,553 10,673 10,342 2000's 10,161 10,504 9,156 9,022 8,463 7,973 7,697 7,668 11,627 7,863 2010's 7,912 7,955 8,160 8,495 8,791 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  13. Nebraska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400,218 403,657 406,723 1990's 407,094 413,354 418,611 413,358 428,201 427,720 439,931 444,970 523,790 460,173 2000's 475,673 476,275 487,332 492,451 497,391 501,279 499,504 494,005 512,013 512,551 2010's 510,776 514,481 515,338 527,397 522,408 - = No Data Reported; -- = Not Applicable; NA = Not

  14. Nevada Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nevada Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18,294 18,921 19,924 1990's 20,694 22,124 22,799 23,207 24,521 25,593 26,613 27,629 29,030 30,521 2000's 31,789 32,782 33,877 34,590 35,792 37,093 38,546 40,128 41,098 41,303 2010's 40,801 40,944 41,192 41,710 42,338 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Ohio Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,601 219,257 225,347 1990's 233,075 236,519 237,861 240,684 245,190 250,223 259,663 254,991 258,076 266,102 2000's 269,561 269,327 271,160 271,203 272,445 277,767 270,552 272,555 272,899 270,596 2010's 268,346 268,647 267,793 269,081 269,758 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Ohio Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,929 8,163 8,356 1990's 8,301 8,479 8,573 8,678 8,655 8,650 8,672 7,779 8,112 8,136 2000's 8,267 8,515 8,111 8,098 7,899 8,328 6,929 6,858 6,806 6,712 2010's 6,571 6,482 6,381 6,554 6,526 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 -

  19. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,063 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Oregon Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Oregon Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 676 1,034 738 1990's 699 787 740 696 765 791 799 704 695 718 2000's 717 821 842 926 907 1,118 1,060 1,136 1,075 1,051 2010's 1,053 1,066 1,076 1,085 1,099 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016

  4. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Pennsylvania Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 - = No Data Reported; -- = Not

  6. Pennsylvania Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,089 6,070 6,023 1990's 6,238 6,344 6,496 6,407 6,388 6,328 6,441 6,492 6,736 7,080 2000's 6,330 6,159 5,880 5,577 5,726 5,577 5,241 4,868 4,772 4,745 2010's 4,624 5,007 5,066 5,024 5,084 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547

  8. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  9. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not