National Library of Energy BETA

Sample records for issues global climate

  1. Global climate change: Social and economic research issues

    SciTech Connect (OSTI)

    Rice, M.; Snow, J.; Jacobson, H.

    1992-05-01

    This workshop was designed to bring together a group of scholars, primarily from the social sciences, to explore research that might help in dealing with global climate change. To illustrate the state of present understanding, it seemed useful to focus this workshop on three broad questions that are involved in coping with climate change. These are: (1) How can the anticipated economic costs and benefits of climate change be identified; (2) How can the impacts of climate change be adjusted to or avoided; (3) What previously studied models are available for institutional management of the global environment? The resulting discussions may (1) identify worthwhile avenues for further social science research, (2) help develop feedback for natural scientists about research information from this domain needed by social scientists, and (3) provide policymakers with the sort of relevant research information from the social science community that is currently available. Individual papers are processed separately for the database.

  2. Global Climate Change and the Transportation Sector: An Update on Issues and Mitigation Options

    SciTech Connect (OSTI)

    Geffen, CA; Dooley, JJ; Kim, SH

    2003-08-24

    It is clear from numerous energy/economic modeling exercises that addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and all consumers on the planet. Yet, these and similar modeling exercises indicate that large stationary CO2 point sources (e.g., refineries and fossil-fired electric power plants) are often the first targets considered for serious CO2 emissions mitigation. Without participation of all sectors of the global economy, however, the challenges of climate change mitigation will not be met. Because of its operating characteristics, price structure, dependence on virtually one energy source (oil), enormous installed infrastructure, and limited technology alternatives, at least in the near-term, the transportation sector will likely represent a particularly difficult challenge for CO2 emissions mitigation. Our research shows that climate change induced price signals (i.e., putting a price on carbon that is emitted to the atmosphere) are in the near term insufficient to drive fundamental shifts in demand for energy services or to transform the way these services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector. This paper presents an update of ongoing research into a variety of technological options that exist for decarbonizing the transportation sector and the various tradeoffs among them.

  3. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Participated in the 2013 Domenici Public Policy Conference Carbon Capture & Storage, Carbon Storage, Climate, Earth Sciences Research Center, Energy, Global Climate & Energy, Global Climate & Energy, News, News & Events, Systems Analysis, Systems Engineering, Water Security Sandia Participated in the 2013 Domenici Public Policy Conference Marianne Walck, Director of Sandia's Geoscience, Climate, and Consequence Effects Center, spoke on "Hydraulic Fracturing: The Role of

  4. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Global Climate & Energy Home/Tag:Global Climate & Energy - Electricity use by water service sector and county. Shown are electricity use by (a) large-scale conveyance, (b) groundwater irrigation pumping, (c) surface water irrigation pumping, (d) drinking water, and (e) wastewater. Aggregate electricity use across these sectors (f) is also mapped. Permalink Gallery Sandians Recognized in Environmental Science & Technology's Best Paper

  5. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Team Attends World Water Week in Stockholm Climate, Energy, Global Climate & Energy, Modeling, Modeling & Analysis, News, News & Events, Water Security Sandia Team Attends World Water Week in Stockholm Stephanie Kuzio, Vince Tidwell, and Tom Lowry (all from Sandia's Earth Systems Analysis Dept.), represented Sandia's Water and Environment Program (part of the Sandia's Climate & Environment Program Area) at World Water Week in Stockholm August 31-September 5th. The theme for this

  6. Identification and preliminary characterization of global water resource issues which may be affected by CO/sub 2/-induced climate change

    SciTech Connect (OSTI)

    Callaway, J.M.; Cohen, M.L.; Currie, J.W.

    1984-04-01

    The objectives were to: (1) identify, characterize, and define existing or projected regional and global water resource management issues which may be affected by CO/sub 2/-induced climate changes; and (2) develop research priorities for acquiring additional information about the potential effects of a CO/sub 2/-induced climate change on the availability and allocation of freshwater supplies. The research was broken into four work elements: (1) identification of water resource management issues on a global and regional basis; (2) identification of a subset of generic CO/sub 2/-related water resource management issues believed to have the highest probability of being affected, beneficially or adversely, by a CO/sub 2/-induced climate change; (3) selection of specific sites for examining the potential effect of a CO/sub 2/-induced climate change on these issues; and (4) conducting detailed case studies at these sites, the results from which will be used to identify future research and data needs in the area of water resources. This report summarizes the research related to the first three work elements. 6 figures, 9 tables.

  7. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia, DOE Energy Storage Program, GeneSiC Semiconductor, U.S. Army ARDEC: Ultra-High-Voltage Silicon Carbide Thyristors Capabilities, Distribution Grid Integration, Energy, Energy Efficiency, Energy Storage Systems, Global Climate & Energy, Grid Integration, Infrastructure Security, Materials Science, Partnership, Research & Capabilities, SMART Grid, Systems Engineering, Transmission Grid Integration Sandia, DOE Energy Storage Program, GeneSiC Semiconductor, U.S. Army ARDEC:

  8. Global strategies for environmental issues

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This is the 19th Annual NAEP conference proceedings, containing abstracts of oral presentations and poster sessions. Broad areas covered include the following: Environmental Management; Biodiversity/sustainable development; Gulf Regional Issues; Environmental ethics/equity; NEPA workshop and symposium; International environmental issues; global Environmental Effects; Risk Assessment; and Environmental effects of nuclear waste management.

  9. Global climate feedbacks

    SciTech Connect (OSTI)

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  10. Global Climate Change Institute | Open Energy Information

    Open Energy Info (EERE)

    Change Institute Jump to: navigation, search Name: Global Climate Change Institute Place: Tsinghua University, Beijing Municipality, China Zip: 100084 Product: Global Climate...

  11. Brazil Interministerial Commission on Global Climate Change ...

    Open Energy Info (EERE)

    Interministerial Commission on Global Climate Change Jump to: navigation, search Name: Brazil Interministerial Commission on Global Climate Change Place: Distrito Federal...

  12. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  13. Global Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  14. Global Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  15. Global Climate Change and Agriculture

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.

    2009-01-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change released in 2007 significantly increased our confidence about the role that humans play in forcing climate change. There is now a high degree of confidence that the (a) current atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) far exceed those of the pre-industrial era, (b) global increases in CO2 arise mainly from fossil fuel use and land use change while those of CH4 and N2O originate primarily from agricultural activities, and (c) the net effect of human activities since 1750 has led to a warming of the lower layers of the atmosphere, with an increased radiative forcing of 1.6 W m-2. Depending on the scenario of human population growth and global development, mean global temperatures could rise between 1.8 and 4.0 C by the end of the 21st century.

  16. Supercomputers Fuel Global High-Resolution Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers Fuel Global High-Resolution Climate Models Supercomputers Fuel Global High-Resolution Climate Models Berkeley Lab Researcher Says Climate Science is Entering New...

  17. Sandia Energy - Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Science and Actuarial Practice" This Fall event was a follow-up to a Climate and Environment Program Area meeting with the California governor's office in July. There, the...

  18. Global Catastrophes in Perspective: Asteroid Impacts vs. Climate...

    Office of Scientific and Technical Information (OSTI)

    Global Catastrophes in Perspective: Asteroid Impacts vs. Climate Change. Citation Details In-Document Search Title: Global Catastrophes in Perspective: Asteroid Impacts vs. Climate ...

  19. Financing a Global Deal on Climate Change | Open Energy Information

    Open Energy Info (EERE)

    Financing a Global Deal on Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financing a Global Deal on Climate Change AgencyCompany Organization: United...

  20. Pew Center on Global Climate Change | Open Energy Information

    Open Energy Info (EERE)

    Pew Center on Global Climate Change Jump to: navigation, search Name: Pew Center on Global Climate Change Place: Arlington, Virginia Zip: 22201 Product: Established in 1998 as a...

  1. Financing Global Climate Change Mitigation | Open Energy Information

    Open Energy Info (EERE)

    Global Climate Change Mitigation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financing Global Climate Change Mitigation AgencyCompany Organization: United Nations...

  2. Global climate change and international security

    SciTech Connect (OSTI)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  3. Global climate change crosses state boundaries

    SciTech Connect (OSTI)

    Changnon, S.A.

    1996-12-31

    The hot, dry summer of 1988 brought the specter of global warming a bit too close for comfort. {open_quotes}Scorching heat, not scientific models, attracted media attention,{close_quotes} says Stanley A. Changnon, senior scientist with the Illinois State Water Survey in Champaign, Illinois. Rising temperatures in the late 1980`s prompted individual states to begin to take action to curb greenhouse-gas emissions. A 1990 report by the National Governors Association identified two guiding principles for addressing climate change issues. {open_quotes}First, that energy policy must be at the center of any efforts to control greenhouse-gas emissions. Second, that state can...restrict emissions through state policies related to public utilities, land use, transportation, and even taxation,{close_quotes} Changnon says. Even if concerns for global warming prove to be overblown, states decided to act for broader economic and environmental reasons. Such initiatives not only save money, but they improve air quality and leave the nation more energy independent,{close_quotes} Changnon says.

  4. Global climate change and international security.

    SciTech Connect (OSTI)

    Karas, Thomas H.

    2003-11-01

    This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national and international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.

  5. Engineering change in global climate

    SciTech Connect (OSTI)

    Schneider, S.H.

    1996-12-31

    {open_quotes}With increased public focus on global warming and in the wake of the intense heat waves, drought, fires, and super-hurricanes that occurred in 1988 and 1989, interest in geoengineering has surged,{close_quotes} says Stephen H. Schneider, professor of biological science at Stanford University in Stanford, California. One scheme set forth in a National Research Council report proposes using 16-inch naval guns to fire aerosol shells into the stratosphere in hopes of offsetting {open_quotes}the radiative effects of increasing carbon dioxide,{close_quotes} Schneider says. Schneider, however, would prefer that we {open_quotes}seek measures that can cure our global {open_quote}addiction{close_quote} to polluting practices.{close_quotes} Rather than playing God, he says we should {open_quotes}stick to being human and pursue problem - solving methods currently within our grasp.{close_quotes} Such strategies include efforts to promote energy efficiency and reduce our reliance on automobiles.

  6. Global fish production and climate change

    SciTech Connect (OSTI)

    Brander, K.M.

    2007-12-11

    Current global fisheries production of {approx}160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but there is low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El Nino-Southern Oscillation. Future production may increase in some high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are giverned by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipiation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the pricipal feasible means of reducing the impacts of climate change.

  7. Global Climate Change Alliance Training Workshops on Mainstreaming...

    Open Energy Info (EERE)

    Change Alliance Training Workshops on Mainstreaming Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Climate Change Alliance Training Workshop on...

  8. Climate Effects of Global Land Cover Change

    SciTech Connect (OSTI)

    Gibbard, S G; Caldeira, K; Bala, G; Phillips, T; Wickett, M

    2005-08-24

    There are two competing effects of global land cover change on climate: an albedo effect which leads to heating when changing from grass/croplands to forest, and an evapotranspiration effect which tends to produce cooling. It is not clear which effect would dominate in a global land cover change scenario. We have performed coupled land/ocean/atmosphere simulations of global land cover change using the NCAR CAM3 atmospheric general circulation model. We find that replacement of current vegetation by trees on a global basis would lead to a global annual mean warming of 1.6 C, nearly 75% of the warming produced under a doubled CO{sub 2} concentration, while global replacement by grasslands would result in a cooling of 0.4 C. These results suggest that more research is necessary before forest carbon storage should be deployed as a mitigation strategy for global warming. In particular, high latitude forests probably have a net warming effect on the Earth's climate.

  9. The economics of long-term global climate change

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This report is intended to provide an overview of economic issues and research relevant to possible, long-term global climate change. It is primarily a critical survey, not a statement of Administration or Department policy. This report should serve to indicate that economic analysis of global change is in its infancy few assertions about costs or benefits can be made with confidence. The state of the literature precludes any attempt to produce anything like a comprehensive benefit-cost analysis. Moreover, almost all the quantitative estimates regarding physical and economic effects in this report, as well as many of the qualitative assertions, are controversial. Section I provides background on greenhouse gas emissions and their likely climatic effects and on available policy instruments. Section II considers the costs of living with global change, assuming no substantial efforts to reduce greenhouse gas emissions. Section III considers costs of reducing these emissions, though the available literature does not contain estimates of the costs of policies that would, on the assumptions of current climate models, prevent climate change altogether. The individual sections are not entirely compartmentalized, but can be read independently if necessary.

  10. A tropical influence on global climate

    SciTech Connect (OSTI)

    Schneider, E.K.; Kirtman, B.P.; Lindzen, R.S.

    1997-05-15

    A potential influence of tropical sea surface temperature on the global climate response to a doubling of the CO{sub 2} concentration is tested using an atmospheric general circulation model coupled to a slab mixed layer ocean. The warming is significantly reduced when sea surface temperatures in the eastern equatorial Pacific cold tongue region between latitudes 2.25{degrees}N and 2.25{degrees}S are held at the control simulation values. Warming of the global mean temperature outside of the cold tongue region is reduced from 2.4{degrees}C in the unconstrained case to 1.9{degrees}C when the sea surface temperature constraint is applied. The decrease in the warming results from a positive net heat flux into the ocean cold tongue region and implicit heat storage in the subsurface ocean, induced by horizontal atmospheric heat fluxes. The reduced surface temperature warming outside of the cold tongue region is due to reduction in the downward longwave radiative flux at the surface, caused in turn by reduced atmospheric temperature and moisture. The global mean surface temperature responds to the heat storage in the ocean as if the global mean radiative forcing due to the doubled CO{sub 2} (approximately 4 W m{sup {minus}2}) was reduced by the value of the global mean heat flux into the ocean. This mechanism also provides a possible explanation for the observed high correlation on interannual timescales between the global mean tropospheric temperature and sea surface temperature in the eastern tropical Pacific. The results emphasize the importance of correctly modeling the dynamical processes in the ocean and atmosphere that help determine the sea surface temperature in the equatorial eastern Pacific, in addition to the thermodynamical processes, in projecting global warming. 23 refs., 8 figs.

  11. Third Climate Change Science Program Report Issued; Report Details Effects

    Office of Science (SC) Website

    of Climate Change on Energy Production and Use in the United States | U.S. DOE Office of Science (SC) Third Climate Change Science Program Report Issued; Report Details Effects of Climate Change on Energy Production and Use in the United States News News Home Featured Articles Science Headlines 2015 2014 2013 2016 2012 2011 2010 2009 2008 2007 2006 2005 Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S.

  12. White House Conference on Global Climate Change

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    President Clinton has directed the White House office on Environmental Policy to coordinate an interagency process to develop a plan to fulfill the commitment he made in his Earth Day address on April 21, 1993. This plan will become the cornerstone of the Climate Change Plan that will be completed shortly after the Rio Accord enters into force. The Office on Environmental Policy established the Interagency Climate Change Mitigation Group to draw on the expertise of federal agencies including the National Economic Council; the Council of Economic Advisors; the Office of Science and Technology Policy; the Office of Management and Budget; the National Security Council; the Domestic Policy Council; the Environmental Protection Agency; and the Departments of Energy, Transportation, Agriculture, Interior, Treasury, Commerce, and State. Working groups have been established to examine six key policy areas: energy demand, energy supply, joint implementation, methane and other gases, sinks, and transportation. The purpose of the White House Conference on Global Climate Change was to ``tap the real-world experiences`` of diverse participants and seek ideas and information for meeting the President`s goals. During the opening session, senior administration officials defined the challenge ahead and encouraged open and frank conversation about the best possible ways to meet it.

  13. 19th Annual conference & exposition: Global strategies for environmental issues

    SciTech Connect (OSTI)

    1994-12-31

    The 19th Annual conference and exposition on Global Strategies for Environmental Issues was held June 12-15, 1994 in New Orleans, Louisiana. This volume contains abstracts of the oral presentations. They are organized into the following sections: Environmental Management; Biodiversity/sustainable Development; Gulf Regional Issues; Environmental Ethics/Equity; NEPA Symposium; International Environmental Issues; Global Environmental Effects; and, Risk Assessment. Abstracts of poster sessions are also included.

  14. Financing Innovation to Address Global Climate Change | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy DOE-LPO_Report_Financing-Innovation-Climate-Change.pdf More Documents & Publications LPO Financial Performance Report PORTFOLIO PERFORMANCE Financing Innovation to Address Global Climate Change Powering New Markets: Utility-scale Photovoltaic Solar

  15. THE IMPACT OF THERMAL ENGINEERING RESEARCH ON GLOBAL CLIMATE CHANGE

    SciTech Connect (OSTI)

    Phelan, Patrick; Abdelaziz, Omar; Otanicar, Todd; Phelan, Bernadette; Prasher, Ravi; Taylor, Robert; Tyagi, Himanshu

    2014-01-01

    Global climate change is recognized by many people around the world as being one of the most pressing issues facing our society today. The thermal engineering research community clearly plays an important role in addressing this critical issue, but what kind of thermal engineering research is, or will be, most impactful? In other words, in what directions should thermal engineering research be targeted in order to derive the greatest benefit with respect to global climate change? To answer this question we consider the potential reduction in greenhouse gas (GHG) emissions, coupled with potential economic impacts, resulting from thermal engineering research. Here a new model framework is introduced that allows a technological, sector-by-sector analysis of GHG emissions avoidance. For each sector, we consider the maximum reduction in CO2 emissions due to such research, and the cost effectiveness of the new efficient technologies. The results are normalized on a country-by-country basis, where we consider the USA, the European Union, China, India, and Australia as representative countries or regions. Among energy supply-side technologies, improvements in coal-burning power generation are seen as having the most beneficial CO2 and economic impacts. The one demand-side technology considered, residential space cooling, offers positive but limited impacts. The proposed framework can be extended to include additional technologies and impacts, such as water consumption.

  16. Global Climate Change and the Unique (?) Challenges Posed by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Change and the Unique (?) Challenges Posed by the Transportation Sector Global Climate Change and the Unique (?) Challenges Posed by the Transportation Sector 2002 DEER Conference ...

  17. U.S. Global Change Research Program publishes "National Climate...

    Open Energy Info (EERE)

    U.S. Global Change Research Program publishes "National Climate Assessment" report for United States Home > Groups > OpenEI Community Central Graham7781's picture Submitted by...

  18. Global Climate Change: Risk to Bank Loans | Open Energy Information

    Open Energy Info (EERE)

    Risk to Bank Loans Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Climate Change: Risk to Bank Loans AgencyCompany Organization: United Nations...

  19. Stanford- Global Climate and Energy Project | Open Energy Information

    Open Energy Info (EERE)

    :"","visitedicon":"" Hide Map References: Stanford- Global Climate and Energy Project Web Site1 This article is a stub. You can help OpenEI by expanding it. Stanford- Global...

  20. Supercomputers Fuel Global High-Resolution Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers Fuel Global High-Resolution Climate Models Supercomputers Fuel Global High-Resolution Climate Models Berkeley Lab Researcher Says Climate Science is Entering New Golden Age November 12, 2014 Contact: Julie Chao, jchao@lbl.gov, 510.486.6491 wehnerclimate2 Simulated and observed annual maximum 5 day accumulated precipitation over land points, averaged. Observations are calculated from the period 1979 to 1999. Model results are calculated from the period 1979 to 2005. Not long ago,

  1. Secretary Chu Stresses Global Cooperation on Energy, Economic and Climate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges in Talks with World Energy Ministers | Department of Energy Stresses Global Cooperation on Energy, Economic and Climate Challenges in Talks with World Energy Ministers Secretary Chu Stresses Global Cooperation on Energy, Economic and Climate Challenges in Talks with World Energy Ministers March 13, 2009 - 12:00am Addthis Washington, DC - In recent discussions with a broad range of world energy ministers, U.S. Energy Secretary Steven Chu has stressed the need for global cooperation

  2. Advancing Climate Science with Global Research Facilities

    Broader source: Energy.gov [DOE]

    Learn how scientists are collecting and studying data to develop a better understanding of the Earth's climate.

  3. Environmental Justice: Made-for-Television-Climate Change: A Global

    Energy Savers [EERE]

    Reality | Department of Energy Justice: Made-for-Television-Climate Change: A Global Reality Environmental Justice: Made-for-Television-Climate Change: A Global Reality July 2, 2015 - 11:31am Addthis What does this project do? Goal 1. Protect human health and the environment. The U.S. Department of Energy was invited to be a panelist for a made-for-television educational program in Columbia, South Carolina, titled Climate Change: A Global Reality. DOE also co-sponsored the program. John

  4. Energy Department Issues Tribal Energy System Vulnerabilities to Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change and Extreme Weather Report, $6M for Native American Clean Energy Projects | Department of Energy Energy System Vulnerabilities to Climate Change and Extreme Weather Report, $6M for Native American Clean Energy Projects Energy Department Issues Tribal Energy System Vulnerabilities to Climate Change and Extreme Weather Report, $6M for Native American Clean Energy Projects September 2, 2015 - 3:30pm Addthis NEWS MEDIA CONTACT 202-586-4940 DOENews@hq.doe.gov The U.S. Department of Energy

  5. Global Climate Change Assessment Report Shows Nations Not Doing...

    Open Energy Info (EERE)

    Global Climate Change Assessment Report Shows Nations Not Doing Enough Home > Blogs > Dc's blog Dc's picture Submitted by Dc(266) Contributor 5 November, 2014 - 14:49 The latest...

  6. Clouds and climate: Unraveling a key piece of global warming

    SciTech Connect (OSTI)

    Seinfeld, J.H.

    2000-02-01

    Federal policy decisions relating to mitigation of greenhouse gas and other emissions have the potential to exert an enormous impact on industries in which chemical engineers play a prominent role. Many in these industries keep close watch on the development of scientific understanding associated with predictions of global climate change. The authors review one of the most critical, and most uncertain, pieces of the climate puzzle, the role of aerosols and clouds in the global energy balance.

  7. Global Catastrophes in Perspective: Asteroid Impacts vs. Climate Change.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Global Catastrophes in Perspective: Asteroid Impacts vs. Climate Change. Citation Details In-Document Search Title: Global Catastrophes in Perspective: Asteroid Impacts vs. Climate Change. Abstract not provided. Authors: Boslough, Mark Bruce Elrick ; Harris, Alan W. Publication Date: 2008-08-01 OSTI Identifier: 1142731 Report Number(s): SAND2008-5552C 511673 DOE Contract Number: DE-AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: American

  8. Global Climate and Energy Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Energy Project Global Climate and Energy Project 2003 DEER Conference Presentation: U.S. Department of Energy FreedomCAR and Vehicle Technologies Program PDF icon deer_2003_edwards.pdf More Documents & Publications ORAU Science Education Program (SEP) Global Change Education Program (GCEP) PIA, Office of Information Resources Biomass Indirect Liquefaction Presentation Audit Report: IG-0678

  9. Integrated Assessment of Global Climate Change | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Integrated Assessment of Global Climate Change Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling

  10. FactSheetOnGlobalClimateChange.pdf | Department of Energy

    Office of Environmental Management (EM)

    FactSheetOnGlobalClimateChange.pdf FactSheetOnGlobalClimateChange.pdf PDF icon U More Documents & Publications U Twenty In Ten: Strengthening America's Energy Security Climate Vision Progress Report 2007

  11. Global Climate Change and the Unique (?) Challenges Posed by the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Sector | Department of Energy Change and the Unique (?) Challenges Posed by the Transportation Sector Global Climate Change and the Unique (?) Challenges Posed by the Transportation Sector 2002 DEER Conference Presentation: Joint Global Change Research Institute - Battelle PDF icon 2002_deer_dooley.pdf More Documents & Publications There is no Silver Bullet: Regionalization and Market Fragmentation in Greenhouse Gas Mitigation Strategies EAC Presentation - Roadmap 2050: A

  12. Global climate change and the mitigation challenge

    SciTech Connect (OSTI)

    Frank Princiotta

    2009-10-15

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO{sub 2}), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8{sup o}C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO{sub 2} emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5{sup o}C in 2100, the recent annual 3% CO{sub 2} emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required. 20 refs., 18 figs., 4 tabs.

  13. Global climate feedbacks: Conclusions and recommendations of the June 1990 BNL workshop

    SciTech Connect (OSTI)

    Manowitz, B.

    1990-08-01

    The issue of global change initiated by increases in the concentrations of CO{sub 2} and other greenhouse gases is a scientific issue with major policy implications. The best means to examine the response of the Earth's climate to prospective perturbations in radiative forcing caused by such changes, and to other industrial activities, is modeling, specifically by means of general circulation models (GCMs) of the Earth's atmosphere and of the coupled atmosphere-ocean system. The purpose of this workshop was to identify the feedbacks inherent in the Earth's climate that actually or potentially govern the system's response to perturbations, to identify gaps in knowledge that preclude the accurate representation of these feedbacks in models, and to identify research required to represent these feedbacks accurately in models.

  14. A Global Climate Model Agent for High Spatial and Temporal Resolution Data

    SciTech Connect (OSTI)

    Wood, Lynn S.; Daily, Jeffrey A.; Henry, Michael J.; Palmer, Bruce J.; Schuchardt, Karen L.; Dazlich, Donald A.; Heikes, Ross P.; Randall, David

    2015-02-01

    Fine cell granularity in modern climate models can produce terabytes of data in each snapshot, causing significant I/O overhead. To address this issue, a method of reducing the I/O latency of high-resolution climate models by identifying and selectively outputting regions of interest is presented. Working with a Global Cloud Resolving Model and running with up to 10240 processors on a Cray XE6, this method provides significant I/O bandwidth reduction depending on the frequency of writes and size of the region of interest. The implementation challenges of determining global parameters in a strictly core-localized model and properly formatting output files that only contain subsections of the global grid are addressed, as well as the overall bandwidth impact and benefits of the method. The gains in I/O throughput provided by this method allow dual output rates for high-resolution climate models: a low-frequency global snapshot as well as a high-frequency regional snapshot when events of particular interest occur.

  15. Climate Models from the Joint Global Change Research Institute

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Staff at the Joint Institute develop and use models to simulate the economic and physical impacts of global change policy options. The GCAM, for example, gives analysts insight into how regional and national economies might respond to climate change mitigation policies including carbon taxes, carbon trading, and accelerated deployment of energy technology. Three available models are Phoenix, GCAM, and EPIC. Phoenix is a global, dynamic recursive, computable general equilibrium model that is solved in five-year time steps from 2005 through 2100 and divides the world into twenty-four regions. Each region includes twenty-six industrial sectors. Particular attention is paid to energy production in Phoenix. There are nine electricity-generating technologies (coal, natural gas, oil, biomass, nuclear, hydro, wind, solar, and geothermal) and four additional energy commodities: crude oil, refined oil products, coal, and natural gas. Phoenix is designed to answer economic questions related to international climate and energy policy and international trade. Phoenix replaces the Second Generation Model (SGM) that was formerly used for general equilibrium analysis at JGCRI. GCAM is the Global Change Assessment Model, a partial equilibrium model of the world with 14 regions. GCAM operates in 5 year time steps from 1990 to 2095 and is designed to examine long-term changes in the coupled energy, agriculture/land-use, and climate system. GCAM includes a 151-region agriculture land-use module and a reduced form carbon cycle and climate module in addition to its incorporation of demographics, resources, energy production and consumption. The model has been used extensively in a number of assessment and modeling activities such as the Energy Modeling Forum (EMF), the U.S. Climate Change Technology Program, and the U.S. Climate Change Science Program and IPCC assessment reports. GCAM is now freely available as a community model. The Environmental Policy Integrated Climate (EPIC) Model is a process-based agricultural systems model composed of simulation components for weather, hydrology, nutrient cycling, pesticide fate, tillage, crop growth, soil erosion, crop and soil management and economics. Staff at PNNL have been involved in the development of this model by integrating new sub-models for soil carbon dynamics and nitrogen cycling.

  16. Structural Design Feasibility Study for the Global Climate Experiment

    SciTech Connect (OSTI)

    Lewin,K.F.; Nagy, J.

    2008-12-01

    Neon, Inc. is proposing to establish a Global Change Experiment (GCE) Facility to increase our understanding of how ecological systems differ in their vulnerability to changes in climate and other relevant global change drivers, as well as provide the mechanistic basis for forecasting ecological change in the future. The experimental design was initially envisioned to consist of two complementary components; (A) a multi-factor experiment manipulating CO{sub 2}, temperature and water availability and (B) a water balance experiment. As the design analysis and cost estimates progressed, it became clear that (1) the technical difficulties of obtaining tight temperature control and maintaining elevated atmospheric carbon dioxide levels within an enclosure were greater than had been expected and (2) the envisioned study would not fit into the expected budget envelope if this was done in a partially or completely enclosed structure. After discussions between NEON management, the GCE science team, and Keith Lewin, NEON, Inc. requested Keith Lewin to expand the scope of this design study to include open-field exposure systems. In order to develop the GCE design to the point where it can be presented within a proposal for funding, a feasibility study of climate manipulation structures must be conducted to determine design approaches and rough cost estimates, and to identify advantages and disadvantages of these approaches including the associated experimental artifacts. NEON, Inc requested this design study in order to develop concepts for the climate manipulation structures to support the NEON Global Climate Experiment. This study summarizes the design concepts considered for constructing and operating the GCE Facility and their associated construction, maintenance and operations costs. Comparisons and comments about experimental artifacts, construction challenges and operational uncertainties are provided to assist in selecting the final facility design. The overall goal of this report is to provide a cost and technological basis for selection of the appropriate GCE Facility design.

  17. CEQ Issues Revised Draft NEPA Guidance on GHG Emissions and Climate Change

    Energy Savers [EERE]

    | Department of Energy NEPA Guidance on GHG Emissions and Climate Change CEQ Issues Revised Draft NEPA Guidance on GHG Emissions and Climate Change March 3, 2015 - 10:37am Addthis CEQ Issues Revised Draft NEPA Guidance on GHG Emissions and Climate Change What are the key facts? CEQ issued revised draft guidance in December to "provide Federal agencies direction on when and how to consider the effects of greenhouse gas (GHG) emissions and climate change" in NEPA reviews. The revised

  18. Thermohaline circulations and global climate change. Final report

    SciTech Connect (OSTI)

    Hanson, H.P.

    1994-09-01

    This research is ultimately concerned with investigating the hypothesis that changes in surface thermal and hydrological forcing of the North Atlantic, changes that might be expected to accompany CO2-induced global warming, could result in ocean-atmosphere interactions` exerting a positive feedback on the climate system. This report concerns research conducted with funding from the Carbon Dioxide Research Program (now the Global Climate Change Program) of the US Department of Energy via grant no. DE-FG02-90ER61019 during the period 15 July 1990 - 14 July 1994. This was a three-year award, extended to a fourth year (15 July 1993 - 14 July 1994) via a no-cost extension. It is important to emphasize that this award has been renewed for an additional two years (15 July 1993 - 14 July 1995) via grant no. DE-FG03-93ER61646 (with the same title). Because the project was originally envisioned to be a five-year effort, many of the important results and conclusions will be available for the Final Report of that second award. This report therefore concerns mainly preliminary conclusions and a discussion of progress toward understanding the central hypothesis of the research.

  19. Biogeophysical effects of CO2-fertilization on global climate

    SciTech Connect (OSTI)

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C; Phillips, T J

    2006-04-26

    CO{sub 2}-fertilization affects plant growth, which modifies surface physical properties, altering the surface albedo, and fluxes of sensible and latent heat. We investigate how such CO{sub 2}-fertilization effects on vegetation and surface properties would affect the climate system. Using a global three-dimensional climate-carbon model that simulates vegetation dynamics, we compare two multi-century simulations: a ''Control'' simulation with no emissions, and a ''Physiol-noGHG'' simulation where physiological changes occur as a result of prescribed CO{sub 2} emissions, but where CO{sub 2}-induced greenhouse warming is not included. In our simulations, CO{sub 2}-fertilization produces warming; we obtain an annual- and global-mean warming of about 0.65 K (and land-only warming of 1.4 K) after 430 years. This century-scale warming is mostly due to a decreased surface albedo associated with the expansion of the Northern Hemisphere boreal forests. On decadal time scales, the CO{sub 2} uptake by afforestation should produce a cooling effect that exceeds this albedo-based warming; but if the forests remain in place, the CO{sub 2}-enhanced-greenhouse effect would diminish as the ocean equilibrates with the atmosphere, whereas the albedo effect would persist. Thus, on century time scales, there is the prospect for net warming from CO{sub 2}-fertilization of the land biosphere. Further study is needed to confirm and better quantify our results.

  20. Third U.S. Climate Change Science Program Report Issued | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy U.S. Climate Change Science Program Report Issued Third U.S. Climate Change Science Program Report Issued October 18, 2007 - 3:21pm Addthis Report Details Effects of Climate Change on Energy Production and Use in the United States WASHINGTON, DC - The U.S. Climate Change Science Program (CCSP) today announced the release of its third in a series of 21 Synthesis and Assessment Products (SAPs). Coordinated by the U.S. Department of Energy (DOE), this report, numbered 4.5 and titled

  1. U.S. Global Climate Change program | OpenEI Community

    Open Energy Info (EERE)

    U.S. Global Climate Change program Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 18 January, 2013 - 15:46 U.S. Global Change Research Program publishes...

  2. Second Major U.S. Climate Change Science Program Report Issued | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Major U.S. Climate Change Science Program Report Issued Second Major U.S. Climate Change Science Program Report Issued July 10, 2007 - 2:54pm Addthis Report Evaluates the Emissions, Energy, and Economic Implications of Stabilizing Greenhouse Gas Concentrations WASHINGTON, DC - The U.S. Climate Change Science Program (CCSP) today announced the release of the second in a series of 21 Synthesis and Assessment (S&A) reports. Coordinated by the U.S. Department of Energy (DOE), this

  3. China energy, environment, and climate study: Background issues paper

    SciTech Connect (OSTI)

    Sinton, Jonathan E.; Fridley, David G.; Logan, Jeffrey; Guo, Yuan; Wang, Bangcheng; Xu, Qing

    2000-10-10

    The total costs and impacts of expanding energy use in China will depend, in part, on a number of important factors, an understanding of which is vital for China's policy-makers. These issues include the additional environmental and public health impacts associated with energy use, the economic costs of infrastructure expansion to meet growing energy needs, and the potential role that renewable energy technologies could play if pushed hard in China's energy future. This short report summarizes major trends and issues in each of these three areas.

  4. Climate Mitigation Policy Implications for Global Irrigation Water Demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

    2013-08-22

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of alternative land-use emissions mitigation policy optionsone which values terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to lead to increased demand for water for agricultural systems (+200%), even in the absence of climate change. In general policies to mitigate climate change will increase agricultural demands for water, regardless of whether or not terrestrial carbon is valued or not. Burgeoning demands for water are driven by the demand for bioenergy in response to emissions mitigation policies. We also find that the policy matters. Increases in the demand for water when terrestrial carbon emissions go un-prices are vastly larger than when terrestrial system carbon emissions are prices at the same rate as fossil fuel and industrial emissions. Our estimates for increased water demands when terrestrial carbon systems go un-priced are larger than earlier studies. We find that the deployment of improved irrigation delivery systems could mitigate some of the increase in water demands, but cannot reverse the increases in water demands when terrestrial carbon emissions go un-priced. Finally we estimates that the geospatial pattern of water demands could stress some parts of the world, e.g. China, India and other countries in south and east Asia, earlier and more intensely than in other parts of the world, e.g. North America.

  5. ARM - What is the ARM Climate Research Facility Doing About Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WarmingWhat is the ARM Climate Research Facility Doing About Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What is the ARM Climate Research Facility Doing About Global Warming? Atmospheric Radiation Measurement (ARM) scientists are studying the effects of clouds on weather

  6. California Wintertime Precipitation in Regional and Global Climate Models

    SciTech Connect (OSTI)

    Caldwell, P M

    2009-04-27

    In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California (CA) and compared. Several averaging methodologies are considered and all are found to give similar values when model grid spacing is less than 3{sup o}. This suggests that CA is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict CA precipitation. This appears to be due mainly to overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge/satellite observations which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait which doesn't seem tied to model resolution. GCM daily and interannual variability is generally underpredicted.

  7. Intercomparison of the Cloud Water Phase among Global Climate Models

    SciTech Connect (OSTI)

    Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

    2014-03-27

    Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earths atmosphere and influence the Earths energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

  8. Collaborative Proposal: Transforming How Climate System Models are Used: A Global, Multi-Resolution Approach

    SciTech Connect (OSTI)

    Estep, Donald

    2013-04-15

    Despite the great interest in regional modeling for both weather and climate applications, regional modeling is not yet at the stage that it can be used routinely and effectively for climate modeling of the ocean. The overarching goal of this project is to transform how climate models are used by developing and implementing a robust, efficient, and accurate global approach to regional ocean modeling. To achieve this goal, we will use theoretical and computational means to resolve several basic modeling and algorithmic issues. The first task is to develop techniques for transitioning between parameterized and high-fidelity regional ocean models as the discretization grid transitions from coarse to fine regions. The second task is to develop estimates for the error in scientifically relevant quantities of interest that provide a systematic way to automatically determine where refinement is needed in order to obtain accurate simulations of dynamic and tracer transport in regional ocean models. The third task is to develop efficient, accurate, and robust time-stepping schemes for variable spatial resolution discretizations used in regional ocean models of dynamics and tracer transport. The fourth task is to develop frequency-dependent eddy viscosity finite element and discontinuous Galerkin methods and study their performance and effectiveness for simulation of dynamics and tracer transport in regional ocean models. These four projects share common difficulties and will be approach using a common computational and mathematical toolbox. This is a multidisciplinary project involving faculty and postdocs from Colorado State University, Florida State University, and Penn State University along with scientists from Los Alamos National Laboratory. The completion of the tasks listed within the discussion of the four sub-projects will go a long way towards meeting our goal of developing superior regional ocean models that will transform how climate system models are used.

  9. International impacts of global climate change: Testimony to House Appropriations Subcommittee on Foreign Operations, Export Financing and Related Programs

    SciTech Connect (OSTI)

    Fulkerson, W.; Cushman, R.M.; Marland, G.; Rayner, S.

    1989-02-21

    International impacts of global climate change are those for which the important consequences arise because of national sovereignty. Such impacts could be of two types: (1) migrations across national borders of people, of resources (such as agricultural productivity, or surface water, or natural ecosystems), of effluents, or of patterns of commerce; and (2) changes to the way nations use and manage their resources, particularly fossil fuels and forests, as a consequence of international concern over the global climate. Actions by a few resource-dominant nations may affect the fate of all. These two types of international impacts raise complex equity issues because one nation may perceive itself as gaining at the expense of its neighbors, or it may perceive itself as a victim of the actions of others. 11 refs., 2 figs., 1 tab.

  10. Global Framework for Climate Risk Exposure | Open Energy Information

    Open Energy Info (EERE)

    October 2006. Investors require this information in order to analyze a company's business risks and opportunities resulting from climate change, as well as the company's...

  11. Regional & Global Climate Modeling (RGCM) Program | U.S. DOE...

    Office of Science (SC) Website

    ... Current descriptions of the RGCM and other Climate and Earth System Modeling projects, ... Metrics to evaluate components of the Earth system, such as the carbon cycle, ocean ...

  12. ARM Data Help Improve Precipitation in Global Climate Models...

    Office of Science (SC) Website

    Image courtesy of the Atmospheric Radiation Measurement (ARM) Climate Research Facility ... of Graciosa Island where Atmospheric Radiation Measurement observations were collected ...

  13. DOE-Sponsored Beaufort Sea Expedition Studies Methane's Role in Global Climate Cycle

    Broader source: Energy.gov [DOE]

    Washington, D.C. -- Increased understanding of methane's role in the global climate cycle and the potential of methane hydrate as a future energy resource could result from a recent joint research...

  14. Impact of Heavy Duty Vehicle Emissions Reductions on Global Climate

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Thomson, Allison M.

    2010-08-01

    The impact of a specified set of emissions reductions from heavy duty vehicles on climate change is calculated using the MAGICC 5.3 climate model. The integrated impact of the following emissions changes are considered: CO2, CH4, N2O, VOC, NOx, and SO2. This brief summarizes the assumptions and methods used for this calculation.

  15. National Conference and Global Forum on Science, Policy and the Environment Energy and Climate Change

    Broader source: Energy.gov [DOE]

    The 15th National Conference and Global Forum on Science, Policy and the Environment: Energy and Climate Change will develop and advance partnerships that focus on transitioning the world to a new "low carbon" and "climate resilient" energy system. It will emphasize putting ideas into action - moving forward on policy and practice.

  16. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas intensity by 18% over the 2002 to 2012 time frame. For the purposes of the initiative, greenhouse gas intensity is defined as the ratio of total U.S. greenhouse gas emissions to economic output.

  17. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas (GHG) intensity-defined as the ratio of total U.S. GHG emissions to economic output-by 18% over the 2002 to 2012 time frame.

  18. Posters Radiation Impacts on Global Climate Models F. Baer, N. Arsky, and K. Rocque

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters Radiation Impacts on Global Climate Models F. Baer, N. Arsky, and K. Rocque University of Maryland College Park, Maryland Climate Prediction and Radiative Heating Climate models are driven by forcing, and these forces are seen primarily by the thermal field in general circulation models (GCMs). The major forces that affect the thermal field are longwave radiative (LWR) heating, shortwave radiative (SWR) heating, and convection (cumulus, etc.). These forcing effects are cycled through

  19. Zooming in: From global to regional climate models | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to explore climate changes that occur on a diurnal scale, such as thunderstorms or urban heat islands. With Mira, approximately 1 million core-hours are needed to run a one-year...

  20. Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model

    SciTech Connect (OSTI)

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

    2005-02-17

    In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO{sub 2} emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO{sub 2} reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In our simulation, the rate of emissions peak at over 30 PgC yr{sup -1} early in the 22nd century. Even at year 2300, nearly 50% of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

  1. Moisture Flux Convergence in Regional and Global Climate Models: Implications for Droughts in the Southwestern United States Under Climate Change

    SciTech Connect (OSTI)

    Gao, Yanhong; Leung, Lai-Yung R.; Salathe, E.; Dominguez, Francina; Nijssen, Bart; Lettenmaier, D. P.

    2012-05-10

    The water cycle of the southwestern United States (SW) is dominated by winter storms that maintain a positive annual net precipitation. Analysis of the control and future climate from four pairs of regional and global climate models (RCMs and GCMs) shows that the RCMs simulate a higher fraction of transient eddy moisture fluxes because the hydrodynamic instabilities associated with flow over complex terrain are better resolved. Under global warming, this enables the RCMs to capture the response of transient eddies to increased atmospheric stability that allows more moisture to converge on the windward side of the mountains by blocking. As a result, RCMs simulate enhanced transient eddy moisture convergence in the SW compared to GCMs, although both robustly simulate drying due to enhanced moisture divergence by the divergent mean flow in a warmer climate. This enhanced convergence leads to reduced susceptibility to hydrological change in the RCMs compared to GCMs.

  2. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate

    SciTech Connect (OSTI)

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong; Leung, Lai-Yung R.

    2015-08-25

    Abstract In this study, the effects of irrigation on global surface water (SW) and groundwater (GW) resources are investigated by performing simulations using Community Land Model 4.0 (CLM4) at 0.5-degree resolution driven by downscaled/bias-corrected historical simulations and future projections from five General Circulation Models (GCMs) for 1950-2099. For each climate scenario, three sets of numerical experiments were configured: (1) a control experiment (CTRL) in which all crops are assumed to be rainfed; (2) an irrigation experiment (IRRIG) in which the irrigation module using only SW for irrigation is activated; and (3) a groundwater pumping experiment (PUMP) in which a groundwater pumping scheme coupled with the irrigation module is activated for conjunctive use of SW and GW for irrigation. The parameters associated with irrigation and groundwater pumping are calibrated based on a global inventory of census-based SW and GW use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major opposing effects: SW depletion/GW accumulation in regions with irrigation primarily fed by SW, and SW accumulation/GW depletion in regions with irrigation fed primarily by GW. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions, suggesting the potential to increase vulnerability to drought. By the end of the 21st century (2070-2099), climate change significantly increases (relative to 1971-2000) irrigation water demand across the world. Combined with the increased temporal-spatial variability of water supply, this may lead to severe issues of local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate/alleviate climate-induced changes of SW/GW although such effects are negligible when averaged globally. Our results emphasize the importance of accounting for irrigation effects and irrigation sources in regional climate change impact assessment.

  3. Global Climate Change Response Program: Potential regional impacts of global warming on precipitation in the western United States. Final report

    SciTech Connect (OSTI)

    Leverson, V.

    1997-01-01

    This study was designed to build upon a previous Global Climate Change Response Program investigation in which an initial `first guess` climate change scenario was derived for the Western United States. Using the scenario`s hypothesized northward shift in the mean wintertime storm track, historical upper-air patterns in the atmosphere were searched to identify winter months (December, January, or February) that would serve as appropriate global warming analogues (GWA). Contour charts were generated of four geopotential height parameters. Specific pattern configurations of the four parameters were identified that reflected the altered storm track pattern, and guidelines for selecting suitable analogues based on the configurations were developed. Monthly mean precipitation values for the GWA months at three climatological divisions in Western Montana, northern Utah, and east central Arizona were compared with median values for the 1946-89 period to determine if any significant differences existed.

  4. The contribution of future agricultural trends in the US Midwest to global climate change mitigation

    SciTech Connect (OSTI)

    Thomson, Allison M.; Kyle, G. Page; Zhang, Xuesong; Bandaru, Varaprasad; West, Tristram O.; Wise, Marshall A.; Izaurralde, Roberto C.; Calvin, Katherine V.

    2014-01-19

    Land use change is a complex response to changing environmental and socioeconomic systems. Historical drivers of land use change include changes in the natural resource availability of a region, changes in economic conditions for production of certain products and changing policies. Most recently, introduction of policy incentives for biofuel production have influenced land use change in the US Midwest, leading to concerns that bioenergy production systems may compete with food production and land conservation. Here we explore how land use may be impacted by future climate mitigation measures by nesting a high resolution agricultural model (EPIC Environmental Policy Indicator Climate) for the US Midwest within a global integrated assessment model (GCAM Global Change Assessment Model). This approach is designed to provide greater spatial resolution and detailed agricultural practice information by focusing on the climate mitigation potential of agriculture and land use in a specific region, while retaining the global economic context necessary to understand the far ranging effects of climate mitigation targets. We find that until the simulated carbon prices are very high, the US Midwest has a comparative advantage in producing traditional food and feed crops over bioenergy crops. Overall, the model responds to multiple pressures by adopting a mix of future responses. We also find that the GCAM model is capable of simulations at multiple spatial scales and agricultural technology resolution, which provides the capability to examine regional response to global policy and economic conditions in the context of climate mitigation.

  5. ENERGY INVESTMENTS UNDER CLIMATE POLICY: A COMPARISON OF GLOBAL MODELS

    SciTech Connect (OSTI)

    McCollum, David; Nagai, Yu; Riahi, Keywan; Marangoni, Giacomo; Calvin, Katherine V.; Pietzcker, Robert; Van Vliet, Jasper; van der Zwaan, Bob

    2013-11-01

    The levels of investment needed to mobilize an energy system transformation and mitigate climate change are not known with certainty. This paper aims to inform the ongoing dialogue and in so doing to guide public policy and strategic corporate decision making. Within the framework of the LIMITS integrated assessment model comparison exercise, we analyze a multi-IAM ensemble of long-term energy and greenhouse gas emissions scenarios. Our study provides insight into several critical but uncertain areas related to the future investment environment, for example in terms of where capital expenditures may need to flow regionally, into which sectors they might be concentrated, and what policies could be helpful in spurring these financial resources. We find that stringent climate policies consistent with a 2C climate change target would require a considerable upscaling of investments into low-carbon energy and energy efficiency, reaching approximately $45 trillion (range: $30$75 trillion) cumulative between 2010 and 2050, or about $1.1 trillion annually. This represents an increase of some $30 trillion ($10$55 trillion), or $0.8 trillion per year, beyond what investments might otherwise be in a reference scenario that assumes the continuation of present and planned emissions-reducing policies throughout the world. In other words, a substantial "clean-energy investment gap" of some $800 billion/yr exists notably on the same order of magnitude as present-day subsidies for fossil energy and electricity worldwide ($523 billion). Unless the gap is filled rather quickly, the 2C target could potentially become out of reach.

  6. Towards a Fine-Resolution Global Coupled Climate System for Prediction on

    Office of Scientific and Technical Information (OSTI)

    Decadal/Centennial Scales (Technical Report) | SciTech Connect Towards a Fine-Resolution Global Coupled Climate System for Prediction on Decadal/Centennial Scales Citation Details In-Document Search Title: Towards a Fine-Resolution Global Coupled Climate System for Prediction on Decadal/Centennial Scales The over-arching goal of this project was to contribute to the realization of a fully coupled fine resolution Earth System Model simulation in which a weather-scale atmosphere is coupled to

  7. Global vegetation model diversity and the risks of climate-driven ecosystem shifts

    SciTech Connect (OSTI)

    Bond-Lamberty, Benjamin

    2013-11-08

    Climate change is modifying global biogeochemical cycles, and is expected to exert increasingly large effects in the future. How these changes will in turn affect and interact with the structure and function of particular ecosystems is unclear, however, both because of scientific uncertainties and the very diversity of global vegetation models in use. Writing in Environmental Research Letters, Warszawski et al. (1) aggregate results from a group of models, across a range of emissions scenarios and climate data, to investigate these risks. Although the models frequently disagree about which specific regions are at risk, they consistently predict a greater chance of ecosystem restructuring with more warming; this risk roughly doubles between 2 and 3 C increases in global mean temperature. The innovative work of Warszawski et al. represents an important first step towards fully consistent multi-model, multi-scenario assessments of the future risks to global ecosystems.

  8. Posters Cloud Parameterizations in Global Climate Models: The Role of Aerosols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Posters Cloud Parameterizations in Global Climate Models: The Role of Aerosols J. E. Penner and C. C. Chuang Lawrence Livermore National Laboratory Livermore, California Introduction Aerosols influence warm clouds in two ways. First, they determine initial drop size distributions, thereby influencing the albedo of clouds. Second, they determine the lifetime of clouds, thereby possibly changing global cloud cover statistics. At the present time, neither effect of aerosols on clouds is included

  9. Accounting for Global Climate Model Projection Uncertainty in Modern Statistical Downscaling

    SciTech Connect (OSTI)

    Johannesson, G

    2010-03-17

    Future climate change has emerged as a national and a global security threat. To carry out the needed adaptation and mitigation steps, a quantification of the expected level of climate change is needed, both at the global and the regional scale; in the end, the impact of climate change is felt at the local/regional level. An important part of such climate change assessment is uncertainty quantification. Decision and policy makers are not only interested in 'best guesses' of expected climate change, but rather probabilistic quantification (e.g., Rougier, 2007). For example, consider the following question: What is the probability that the average summer temperature will increase by at least 4 C in region R if global CO{sub 2} emission increases by P% from current levels by time T? It is a simple question, but one that remains very difficult to answer. It is answering these kind of questions that is the focus of this effort. The uncertainty associated with future climate change can be attributed to three major factors: (1) Uncertainty about future emission of green house gasses (GHG). (2) Given a future GHG emission scenario, what is its impact on the global climate? (3) Given a particular evolution of the global climate, what does it mean for a particular location/region? In what follows, we assume a particular GHG emission scenario has been selected. Given the GHG emission scenario, the current batch of the state-of-the-art global climate models (GCMs) is used to simulate future climate under this scenario, yielding an ensemble of future climate projections (which reflect, to some degree our uncertainty of being able to simulate future climate give a particular GHG scenario). Due to the coarse-resolution nature of the GCM projections, they need to be spatially downscaled for regional impact assessments. To downscale a given GCM projection, two methods have emerged: dynamical downscaling and statistical (empirical) downscaling (SDS). Dynamic downscaling involves configuring and running a regional climate model (RCM) nested within a given GCM projection (i.e., the GCM provides bounder conditions for the RCM). On the other hand, statistical downscaling aims at establishing a statistical relationship between observed local/regional climate variables of interest and synoptic (GCM-scale) climate predictors. The resulting empirical relationship is then applied to future GCM projections. A comparison of the pros and cons of dynamical versus statistical downscaling is outside the scope of this effort, but has been extensively studied and the reader is referred to Wilby et al. (1998); Murphy (1999); Wood et al. (2004); Benestad et al. (2007); Fowler et al. (2007), and references within those. The scope of this effort is to study methodology, a statistical framework, to propagate and account for GCM uncertainty in regional statistical downscaling assessment. In particular, we will explore how to leverage an ensemble of GCM projections to quantify the impact of the GCM uncertainty in such an assessment. There are three main component to this effort: (1) gather the necessary climate-related data for a regional SDS study, including multiple GCM projections, (2) carry out SDS, and (3) assess the uncertainty. The first step is carried out using tools written in the Python programming language, while analysis tools were developed in the statistical programming language R; see Figure 1.

  10. Global situational awareness and early warning of high-consequence climate change.

    SciTech Connect (OSTI)

    Backus, George A.; Carr, Martin J.; Boslough, Mark Bruce Elrick

    2009-08-01

    Global monitoring systems that have high spatial and temporal resolution, with long observational baselines, are needed to provide situational awareness of the Earth's climate system. Continuous monitoring is required for early warning of high-consequence climate change and to help anticipate and minimize the threat. Global climate has changed abruptly in the past and will almost certainly do so again, even in the absence of anthropogenic interference. It is possible that the Earth's climate could change dramatically and suddenly within a few years. An unexpected loss of climate stability would be equivalent to the failure of an engineered system on a grand scale, and would affect billions of people by causing agricultural, economic, and environmental collapses that would cascade throughout the world. The probability of such an abrupt change happening in the near future may be small, but it is nonzero. Because the consequences would be catastrophic, we argue that the problem should be treated with science-informed engineering conservatism, which focuses on various ways a system can fail and emphasizes inspection and early detection. Such an approach will require high-fidelity continuous global monitoring, informed by scientific modeling.

  11. National Environmental Health Association position on global climate change adopted July 2, 1997

    SciTech Connect (OSTI)

    Radtke, T.; Gist, G.L.; Wittkopf, T.E.

    1997-11-01

    The National Environmental Health Association (NEHA) supports the precept that anthropogenic sources, specifically greenhouse gases, are responsible for a significant portion of the measured change in global climate. Further, NEHA supports the concept of an association between global warming and an increased risk to public health. Reducing the amount of greenhouse gases released into the atmosphere will benefit human health. This position paper reviews current information on the status of global climate change with particular emphasis on the implications for environmental and public health. It is intended to be used as a basis from which environmental and public health practitioners and colleagues in related fields can initiate discussions with policy makers at all levels -- local, state, national, and worldwide.

  12. Climate mitigations impact on global and regional electric power sector water use in the 21st Century

    SciTech Connect (OSTI)

    Dooley, James J.; Kyle, G. Page; Davies, Evan

    2013-08-05

    Over the course of this coming century, global electricity use is expected to grow at least five fold and if stringent greenhouse gas emissions controls are in place the growth could be more than seven fold from current levels. Given that the electric power sector represents the second largest anthropogenic use of water and given growing concerns about the nature and extent of future water scarcity driven by population growth and a changing climate, significant concern has been expressed about the electricity sectors use of water going forward. In this paper, the authors demonstrate that an often overlooked but absolutely critical issue that needs to be taken into account in discussions about the sustainability of the electric sectors water use going forward is the tremendous turn over in electricity capital stock that will occur over the course of this century; i.e., in the scenarios examined here more than 80% of global electricity production in the year 2050 is from facilities that have not yet been built. The authors show that because of the large scale changes in the global electricity system, the water withdrawal intensity of electricity production is likely to drop precipitously with the result being relatively constant water withdrawals over the course of the century even in the face of the large growth in electricity usage. The ability to cost effectively reduce the water intensity of power plants with carbon dioxide capture and storage systems in particular is key to constraining overall global water use.

  13. Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios

    SciTech Connect (OSTI)

    Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

    2012-10-01

    This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

  14. Climate Change Modeling and Downscaling Issues and Methodological Perspectives for the U.S. National Climate Assessment

    SciTech Connect (OSTI)

    Janetos, Anthony C.; Collins, William D.; Wuebbles, D.J.; Diffenbaugh, Noah; Hayhoe, Katharine; Hibbard, Kathleen A.; Hurtt, George

    2012-03-31

    This is the full workshop report for the modeling workshop we did for the National Climate Assessment, with DOE support.

  15. Issue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties of metals to their micro- and nanostructure. While this issue may seem straightforward, it is anything but trivial. Materials are intrinsically inhomogeneous, but the...

  16. Global warming and climate change - predictive models for temperate and tropical regions

    SciTech Connect (OSTI)

    Malini, B.H.

    1997-12-31

    Based on the assumption of 4{degree}C increase of global temperature by the turn of 21st century due to the accumulation of greenhouse gases an attempt is made to study the possible variations in different climatic regimes. The predictive climatic water balance model for Hokkaido island of Japan (a temperate zone) indicates the possible occurrence of water deficit for two to three months, which is a unknown phenomenon in this region at present. Similarly, India which represents tropical region also will experience much drier climates with increased water deficit conditions. As a consequence, the thermal region of Hokkaido which at present is mostly Tundra and Micro thermal will change into a Meso thermal category. Similarly, the moisture regime which at present supports per humid (A2, A3 and A4) and Humid (B4) climates can support A1, B4, B3, B2 and B1 climates indicating a shift towards drier side of the climatic spectrum. Further, the predictive modes of both the regions have indicated increased evapotranspiration rates. Although there is not much of change in the overall thermal characteristics of the Indian region the moisture regime indicates a clear shift towards the aridity in the country.

  17. Validation of Global Weather Forecast and Climate Models Over the North

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slope of Alaska Validation of Global Weather Forecast and Climate Models Over the North Slope of Alaska Xie, Shaocheng Lawrence Livermore National Laboratory Klein, Stephen Lawrence Livermore National Laboratory Boyle, Jim Lawrence Livermore National Laboratory Fiorino, Michael DOE/Lawrence Livermore National Laboratory Hnilo, Justin DOE/Lawrence Livermore National Laboratory Phillips, Thomas PCMDI/LLNL Potter, Gerald Lawrence Livermore National Laboratory Beljaars, Anton ECMWF Category:

  18. CEQ Issues Revised Draft NEPA Guidance on GHG Emissions and Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The revised draft guidance states that consideration of climate change "falls squarely ... that consideration of climate change "falls squarely within NEPA's focus" and ...

  19. Carbon dioxide and global climate change: The birth and arrested development of an idea

    SciTech Connect (OSTI)

    Mudge, F.B.

    1996-12-31

    G.S. Callendar (1897--1964) is regarded the originator of the modern theory of carbon dioxide and global climate change. However, this paper shows that the theory was developed and became well accepted during the nineteenth century. Carbon dioxide was discovered by Black in 1752. From 1820 to 1890 a steadily growing number of measurements of its atmospheric concentration were made using steadily improving techniques; the average results fell from around 500 ppm in 1820 to about 300 ppm in 1890. By the end of the following decade the greenhouse theory of global climate change seemed widely accepted. However in 1900 and 1901 Aangstroem appeared to demolish the theory when he reported that changes in the carbon dioxide level can have little effect because of the overlap of the water and carbon dioxide spectral bands. At a stroke, all interest in the measurement of atmospheric carbon dioxide levels seemed to disappear, although during the 1920s and 1930s a few workers resumed the work but for reasons unconnected to climate change. Over the next thirty years the writers of authoritative textbooks dismissed the theory of carbon dioxide and climate change as an example of misguided speculation. Then in 1938 Callendar`s first paper appeared, reviving the theory which had lain forgotten for nearly forty years.

  20. Physically-Based Global Downscaling: Climate Change Projections for a Full Century

    SciTech Connect (OSTI)

    Ghan, Steven J.; Shippert, Timothy R.

    2006-05-01

    A global atmosphere/land model with an embedded subgrid orography scheme is used to simulate the period 1977-2100 using ocean surface conditions and radiative constituent concentrations for a climate change scenario. Climate variables simulated for multiple elevation classes are mapping according to the high-resolution of topography in ten regions with complex terrain. Analysis of changes in the simulated climate lead to the following conclusions. Changes in precipitation vary widely, with precipitation increasing more with increasing altitude in some region, decreasing more with altitude in others, and changing little in still others. In some regions the sign of the precipitation change depends on surface elevation. Changes in surface air temperature are rather uniform, with at most a two-fold difference between the largest and smallest changes within a region. In most cases the warming increases with altitude. Changes in snow water are highly dependent on altitude. Absolute changes usually increase with altitude, while relative changes decrease. In places where snow accumulates, an artificial upper bound on snow water limits the sensitivity of snow water to climate change considerably. The simulated impact of climate change on regional mean snow water varies widely, with little impact in regions in which the upper bound on snow water is the dominant snow water sink, moderate impact in regions with a mixture of seasonal and permanent snow, and profound impacts on regions with little permanent snow.

  1. Physically-Based Global Downscaling Climate Change Projections for a Full Century

    SciTech Connect (OSTI)

    Ghan, Steven J.; Shippert, Timothy R.

    2005-04-15

    A global atmosphere/land model with an embedded subgrid orography scheme is used to simulate the period 1977-2100 using ocean surface conditions and radiative constituent concentrations for a climate change scenario. Climate variables simulated for multiple elevation classes are mapping according to a high-resolution elevation dataset in ten regions with complex terrain. Analysis of changes in the simulated climate leads to the following conclusions. Changes in precipitation vary widely, with precipitation increasing more with increasing altitude in some region, decreasing more with altitude in others, and changing little in still others. In some regions the sign of the precipitation change depends on surface elevation. Changes in surface air temperature are rather uniform, with at most a two-fold difference between the largest and smallest changes within a region; in most cases the warming increases with altitude. Changes in snow water are highly dependent on altitude. Absolute changes usually increase with altitude, while relative changes decrease. In places where snow accumulates, an artificial upper bound on snow water limits the sensitivity of snow water to climate change considerably. The simulated impact of climate change on regional mean snow water varies widely, with little impact in regions in which the upper bound on snow water is the dominant snow water sink, moderate impact in regions with a mixture of seasonal and permanent snow, and profound impacts on regions with little permanent snow.

  2. Agriculture and Climate Change in Global Scenarios: Why Don't the Models Agree

    SciTech Connect (OSTI)

    Nelson, Gerald; van der Mensbrugghe, Dominique; Ahammad, Helal; Blanc, Elodie; Calvin, Katherine V.; Hasegawa, Tomoko; Havlik, Petr; Heyhoe, Edwina; Kyle, G. Page; Lotze-Campen, Hermann; von Lampe, Martin; Mason d'Croz, Daniel; van Meijl, Hans; Mueller, C.; Reilly, J. M.; Robertson, Richard; Sands, Ronald; Schmitz, Christoph; Tabeau, Andrzej; Takahashi, Kiyoshi; Valin, Hugo; Willenbockel, Dirk

    2014-01-01

    Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs makes direct use of weather inputs. Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes of key variables such as prices, production, and trade. These divergent outcomes arise from differences in model inputs and model specification. The goal of this paper is to review climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. By providing common productivity drivers that include climate change effects, differences in model outcomes are reduced. All models show higher prices in 2050 because of negative productivity shocks from climate change. The magnitude of the price increases, and the adaptation responses, differ significantly across the various models. Substantial differences exist in the structural parameters affecting demand, area, and yield, and should be a topic for future research.

  3. U.S. Global Change Research Program Recommended Citation: Global Climate Change Impacts in the United States, Thomas R. Karl, Jerry M. Melillo, and Thomas C. Peterson,

    National Nuclear Security Administration (NNSA)

    A State of Knowledge Report from the U.S. Global Change Research Program Recommended Citation: Global Climate Change Impacts in the United States, Thomas R. Karl, Jerry M. Melillo, and Thomas C. Peterson, (eds.). Cambridge University Press, 2009. The bars at the bottom of the front cover show the global annual average temperature from 1900-2008, see page 17. CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi Cambridge University Press 32

  4. Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model

    SciTech Connect (OSTI)

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

    2014-05-13

    Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

  5. Russia-USAID Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    Russia Eastern Europe References USAID Russia1 "Currently, USAIDRussia addresses global climate change issues through its support to the U.S. Forest Service (USFS)....

  6. Energy and Climate Change: 15th National Conference and Global Forum on Science, Policy, and the Environment

    Broader source: Energy.gov [DOE]

    The 15th National Conference and Global Forum on Science, Policy and the Environment: Energy and Climate Change will develop and advance partnerships that focus on transitioning the world to a new ...

  7. Global climate change and international security. Report on a conference held at Argonne National Laboratory, May 8--10, 1991

    SciTech Connect (OSTI)

    Rice, M.

    1991-12-31

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  8. Sensitivity of a global climate model to the critical Richardson number in the boundary layer parameterization

    SciTech Connect (OSTI)

    Zhang, Ning; Liu, Yangang; Gao, Zhiqiu; Li, Dan

    2015-04-27

    The critical bulk Richardson number (Ricr) is an important parameter in planetary boundary layer (PBL) parameterization schemes used in many climate models. This paper examines the sensitivity of a Global Climate Model, the Beijing Climate Center Atmospheric General Circulation Model, BCC_AGCM to Ricr. The results show that the simulated global average of PBL height increases nearly linearly with Ricr, with a change of about 114 m for a change of 0.5 in Ricr. The surface sensible (latent) heat flux decreases (increases) as Ricr increases. The influence of Ricr on surface air temperature and specific humidity is not significant. The increasing Ricr may affect the location of the Westerly Belt in the Southern Hemisphere. Further diagnosis reveals that changes in Ricr affect stratiform and convective precipitations differently. Increasing Ricr leads to an increase in the stratiform precipitation but a decrease in the convective precipitation. Significant changes of convective precipitation occur over the inter-tropical convergence zone, while changes of stratiform precipitation mostly appear over arid land such as North Africa and Middle East.

  9. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, S.; Wang, M.; Ghan, S. J.; Ding, A.; Wang, H.; Zhang, K.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Takeamura, T.; et al

    2015-09-02

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (?500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascendmore(?500 ?1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is as large as that in stratocumulus regimes, which indicates that regimes with strong large-scale ascend are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm d?1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes than that globally, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.less

  10. Sensitivity of a global climate model to the critical Richardson number in the boundary layer parameterization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Ning; Liu, Yangang; Gao, Zhiqiu; Li, Dan

    2015-04-27

    The critical bulk Richardson number (Ricr) is an important parameter in planetary boundary layer (PBL) parameterization schemes used in many climate models. This paper examines the sensitivity of a Global Climate Model, the Beijing Climate Center Atmospheric General Circulation Model, BCC_AGCM to Ricr. The results show that the simulated global average of PBL height increases nearly linearly with Ricr, with a change of about 114 m for a change of 0.5 in Ricr. The surface sensible (latent) heat flux decreases (increases) as Ricr increases. The influence of Ricr on surface air temperature and specific humidity is not significant. The increasingmore » Ricr may affect the location of the Westerly Belt in the Southern Hemisphere. Further diagnosis reveals that changes in Ricr affect stratiform and convective precipitations differently. Increasing Ricr leads to an increase in the stratiform precipitation but a decrease in the convective precipitation. Significant changes of convective precipitation occur over the inter-tropical convergence zone, while changes of stratiform precipitation mostly appear over arid land such as North Africa and Middle East.« less

  11. Measures used to tackle environmental problems related to global warming and climate change resulting from the use of coal

    SciTech Connect (OSTI)

    Hoppe, J.A.

    1996-12-31

    Environmental issues continue to play a major role in strategic planning associated with the use of coal for power generation. Problems, such as Acid Rain resulting from SO{sub 2} emissions produced from the sulfur content of coal during coal combustion, have recently cornered the attention of policy makers and planners. More recently the carbon content of coal, which provides for most of the coals heating value, has been identified as the major contributor to the production of CO{sub 2} and other emissions associated with Global Warming and Climate Change. Total world carbon emissions resulting from the burning of fossil fuels were approximately 6 billion metric tons in 1990, of which 44% were from the consumption of oil, 39% from coal, and 17% from natural gas. Assuming no change in current regulations, carbon emissions are anticipated to grow by 1.5% per year, and are predicted to reach more than 8 billion tons by the year 2010. Most of this increase in carbon emissions is expected to come from developing countries in the Asian Pacific Region such as China where coal use dominates the power production industry and accounts for 71% of its total CO{sub 2} emissions. Asian Pacific coal demand is expected to double over the next 15 years accounting for a 46% increase in total primary energy demand, and China currently produces approximately 11% of the world`s global greenhouse gas emissions which is expected to grow to 15% by the year 2010.

  12. Managing the global commons decision making and conflict resolution in response to climate change

    SciTech Connect (OSTI)

    Rayner, S. ); Naegeli, W.; Lund, P. )

    1990-07-01

    A workshop was convened to develop a better understanding of decision-making matters concerning management of the global commons and to resolve conflicts in response to climate change. This workshop report does not provide a narrative of the proceedings. The workshop program is included, as are the abstracts of the papers that were presented. Only the introductory paper on social science research by William Riebsame and the closing summary by Richard Rockwell are reprinted here. This brief report focuses instead on the deliberations of the working groups that developed during the workshop. 4 figs., 1 tab.

  13. US National Climate Assessment (NCA) Scenarios for Assessing Our Climate Future: Issues and Methodological Perspectives Background Whitepaper for Participants

    SciTech Connect (OSTI)

    Moss, Richard H.; Engle, Nathan L.; Hall, John; Jacobs, Kathy; Lempert, Rob; Mearns, L. O.; Melillo, Jerry; Mote, Phil; O'Brien, Sheila; Rosenzweig, C.; Ruane, Alex; Sheppard, Stephen; Vallario, Robert W.; Wiek, Arnim; Wilbanks, Thomas

    2011-10-01

    This whitepaper is intended to provide a starting point for discussion at a workshop for the National Climate Assessment (NCA) that focuses on the use and development of scenarios. The paper will provide background needed by participants in the workshop in order to review options for developing and using scenarios in NCA. The paper briefly defines key terms and establishes a conceptual framework for developing consistent scenarios across different end uses and spatial scales. It reviews uses of scenarios in past U.S. national assessments and identifies potential users of and needs for scenarios for both the report scheduled for release in June 2013 and to support an ongoing distributed assessment process in sectors and regions around the country. Because scenarios prepared for the NCA will need to leverage existing research, the paper takes account of recent scientific advances and activities that could provide needed inputs. Finally, it considers potential approaches for providing methods, data, and other tools for assessment participants. We note that the term 'scenarios' has many meanings. An important goal of the whitepaper (and portions of the workshop agenda) is pedagogical (i.e., to compare different meanings and uses of the term and make assessment participants aware of the need to be explicit about types and uses of scenarios). In climate change research, scenarios have been used to establish bounds for future climate conditions and resulting effects on human and natural systems, given a defined level of greenhouse gas emissions. This quasi-predictive use contrasts with the way decision analysts typically use scenarios (i.e., to consider how robust alternative decisions or strategies may be to variation in key aspects of the future that are uncertain). As will be discussed, in climate change research and assessment, scenarios describe a range of aspects of the future, including major driving forces (both human activities and natural processes), changes in climate and related environmental conditions (e.g., sea level), and evolution of societal capability to respond to climate change. This wide range of scenarios is needed because the implications of climate change for the environment and society depend not only on changes in climate themselves, but also on human responses. This degree of breadth introduces and number of challenges for communication and research.

  14. Impacts of global warming on climate change over East Asia as simulated by 15 GCMs

    SciTech Connect (OSTI)

    Zong-ci Zhao; Xiaodong Li

    1997-12-31

    About 15 GCMs (GFDL1, GISS, LLNL, MPI, OSU, UKMOL, UKMOH, GCMs90-92, GFDL2, NCAR, OPYC, LSG, HADL, GCMs95) obtained from the IPCC WG 1 1990, 1992 and 1995 reports have been chosen to examine the impacts of global warming, on the climate chance over East Asia. Although the models scenarios of the human activities were different for the different GCMs, the climate change over East Asia (70E-140E, 15N-60N) for tile doubled CO{sub 2} as simulated by about 15 GCMs have been analysed. The Simulations shown that the temperature might increased by about 0.5 - 1.5 C over East Asia, especially in winter and northwestern parts of East Asia. The precipitation might increase in northwestern and northeastern parts of East Asia and decrease in the central part of East Asia. The evaluations and assessments of the GCMs over East Asia have indicated that the GCMs have the abilities to simulate the climate change over East Asia, especially for the temperature and the winter season. There are some uncertainties for the simulations to compare with the observations, especially for tile precipitation and tile summer season.

  15. LEDS Global Partnership in Action: Advancing Climate-Resilient Low Emission Development Around the World (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Many countries around the globe are designing and implementing low emission development strategies (LEDS). These LEDS seek to achieve social, economic, and environmental development goals while reducing long-term greenhouse gas (GHG) emissions and increasing resiliency to climate change impacts. The LEDS Global Partnership (LEDS GP) harnesses the collective knowledge and resources of more than 120 countries and international donor and technical organizations to strengthen climate-resilient low emission development efforts around the world.

  16. International potential of IGCC technology for use in reducing global warming and climate change emissions

    SciTech Connect (OSTI)

    Lau, F.S.

    1996-12-31

    High efficiency advanced coal-based technologies such as Integrated Gasification Combined Cycle (IGCC) that can assist in reducing CO{sub 2} emissions which contribute to Global Warming and Climate Change are becoming commercially available. U-GAS is an advanced gasification technology that can be used in many applications to convert coal in a high efficiency manner that will reduce the total amount of CO{sub 2} produced by requiring less coal-based fuel per unit of energy output. This paper will focus on the status of the installation and performance of the IGT U-GAS gasifiers which were installed at the Shanghai Cooking and Chemical Plant General located in Shanghai, China. Its use in future IGCC project for the production of power and the benefits of IGCC in reducing CO{sub 2} emissions through its high efficiency operation will be discussed.

  17. Estimates of the long-term U.S. economic impacts of global climate change-induced drought.

    SciTech Connect (OSTI)

    Ehlen, Mark Andrew; Loose, Verne W.; Warren, Drake E.; Vargas, Vanessa N.

    2010-01-01

    While climate-change models have done a reasonable job of forecasting changes in global climate conditions over the past decades, recent data indicate that actual climate change may be much more severe. To better understand some of the potential economic impacts of these severe climate changes, Sandia economists estimated the impacts to the U.S. economy of climate change-induced impacts to U.S. precipitation over the 2010 to 2050 time period. The economists developed an impact methodology that converts changes in precipitation and water availability to changes in economic activity, and conducted simulations of economic impacts using a large-scale macroeconomic model of the U.S. economy.

  18. Towards a Fine-Resolution Global Coupled Climate System for Prediction...

    Office of Scientific and Technical Information (OSTI)

    58 GEOSCIENCES climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale eddies climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale...

  19. Integrated Assessment of Global Water Scarcity over the 21st Century under Multiple Climate Change Mitigation Policies

    SciTech Connect (OSTI)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2014-01-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model namely, the Global Water Availability Model (GWAM) is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and a global population of 14 billion by 2095, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demand for water exceeds the amount of water availability in two GCAM regions, the Middle East and India. Additionally, in years 2050 and 2095, 20% and 27% of the global population, respectively, is projected to live in areas (grid cells) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). This study implies an increasingly prominent role for water in future human decisions, and highlights the importance of including water in integrated assessment of global change.

  20. Selected translated abstracts of Russian-language climate-change publications: II, Clouds. Issue 159

    SciTech Connect (OSTI)

    Burtis, M.D.

    1994-01-01

    This report presents abstracts (translated into English) of important Russian-language literature concerning clouds as they relate to climate change. In addition to the bibliographic citations and abstracts translated into English, this report presents the original citations and abstracts in Russian. Author and title indexes are included to assist the reader in locating abstracts of particular interest.

  1. What is the ARM Climate Research Facility: Is Global Warming a Real Bias or a Statistical Anomaly?

    SciTech Connect (OSTI)

    Egami, Takeshi; Sisterson, Douglas L.

    2010-03-10

    The Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) is a U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research national user facility. With multi-laboratory management of distributed facilities worldwide, the ACRF does not fit the mold of a traditional user facility located at a national laboratory. The ACRF provides the world's most comprehensive 24/7 observational capabilities for obtaining atmospheric data specifically for climate change research. Serving nearly 5,000 registered users from 15 federal and state agencies, 375 universities, and 67 countries, the ACRF Data Archive collects and delivers over 5 terabytes of data per month to its users. The ACRF users provide critical information about cloud formation processes, water vapor, and aerosols, and their influence on radiative transfer in the atmosphere. This information is used to improve global climate model predictions of climate change.

  2. Evaluating Clouds, Aerosols, and their Interactions in Three Global Climate Models using COSP and Satellite Observations

    SciTech Connect (OSTI)

    Ban-Weiss, George; Jin, Ling; Bauer, S.; Bennartz, Ralph; Liu, Xiaohong; Zhang, Kai; Ming, Yi; Guo, Huan; Jiang, Jonathan

    2014-09-23

    Accurately representing aerosol-cloud interactions in global climate models is challenging. As parameterizations evolve, it is important to evaluate their performance with appropriate use of observations. In this work we compare aerosols, clouds, and their interactions in three climate models (AM3, CAM5, ModelE) to MODIS satellite observations. Modeled cloud properties were diagnosed using the CFMIP Observations Simulator Package (COSP). Cloud droplet number concentrations (N) were derived using the same algorithm for both satellite-simulated model values and observations. We find that aerosol optical depth tau simulated by models is similar to observations. For N, AM3 and CAM5 capture the observed spatial pattern of higher values in near-coast versus remote ocean regions, though modeled values in general are higher than observed. In contrast, ModelE simulates lower N in most near-coast versus remote regions. Aerosol- cloud interactions were computed as the sensitivity of N to tau for marine liquid clouds off the coasts of South Africa and Eastern Asia where aerosol pollution varies in time. AM3 and CAM5 are in most cases more sensitive than observations, while the sensitivity for ModelE is statistically insignificant. This widely used sensitivity could be subject to misinterpretation due to the confounding influence of meteorology on both aerosols and clouds. A simple framework for assessing the N tau sensitivity at constant meteorology illustrates that observed sensitivity can change from positive to statistically insignificant when including the confounding influence of relative humidity. Satellite simulated values of N were compared to standard model output and found to be higher with a bias of 83 cm-3.

  3. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies

    SciTech Connect (OSTI)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2014-08-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model namely, the Global Water Availability Model (GWAM) is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops.

  4. The response of mangroves to projected impacts of global climate change

    SciTech Connect (OSTI)

    Twilley, R.R.; Chen, R.H.

    1995-06-01

    A hierarchical classification system for mangroves together with a community-based ecological model (ESA abstract by Chen and Twilley, 1995) were used to asses the response of mangroves to global climate change. The hierarchical classification includes a matrix of the ecological type (riverine, fringe, basin, and dwarf mangroves) and the geomorphologic environmental setting (delta, estuarine, lagoon, carbonate platform systems). The significance of this hierarchical classification, referred to as a eco-geomorphic system, is demonstrated with a summary of the spatial variation in ecosystem function among different coastal settings. Changes in sea level, frequency of frost, and frequency of hurricanes were simulated and results of forest community composition, tree density and dominance, and forest biomass were compared to field sites of known disturbance. For lagoon basin forests, hurricane frequency increase from 28 yrs to 15 yrs had less impact on total biomass than increase in frost from 12 yrs to 8 yrs. Both disturbances changed the community composition of the forests. The patterns of recovery vary among geomorphic types due to nutrient limitation of regrowth.

  5. Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change

    SciTech Connect (OSTI)

    Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

    1994-09-01

    The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

  6. The Future of Scenarios: Issues in Developing New Climate Change Scenarios

    SciTech Connect (OSTI)

    Pitcher, Hugh M.

    2009-06-01

    Research, analysis and commnetary since the release of the Special Report on Emissions Scenarios has suggested a number of areas, e.g. rates of economic growth, downscaling and scenario likelihood, where additional research would make the next set of scenarios of greater use and increased credibility. This essary reviews the work on the areas mentioned above and makes suggestions about possible ways to improve the next set of climate scenarios, to be developed by the research community without a specific IPCC terms of reference to guide the work.

  7. Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Co-Hosts "Climate Risk Forum: Bridging Climate Science and Actuarial Practice" This Fall event was a follow-up to a Climate and Environment Program Area meeting with the California governor's office in July. There, the California Insurance Commissioner, Dave Jones, recognized the value of Sandia's climate-impact modeling and analysis work, led by Stephen Conrad (manager of Sandia's Resilience and Regulatory Effects Dept.), and wanted to connect that [...] By

  8. Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation

    SciTech Connect (OSTI)

    Meskhidze, N.; Xu, J.; Gantt, Brett; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2011-11-23

    Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplanktonproduced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS{sup -}) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr{sup -1}, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS{sup -} (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr{sup -1}, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ngm{sup -3}, with values up to 400 ngm{sup -3} over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increases and decreases in the concentration of CCN over different parts of the ocean. The sign of the CCN change due to the addition of marine organics to seasalt aerosol is determined by the relative significance of the increase in mean modal diameter due to addition of mass, and the decrease in particle hygroscopicity due to compositional changes in marine aerosol. Based on emerging evidence for increased CCN concentration over biologically active surface ocean areas/periods, our study suggests that treatment of sea spray in global climate models (GCMs) as an internal mixture of marine organic aerosols and sea-salt will likely lead to an underestimation in CCN number concentration.

  9. The monitoring, evaluation, reporting, and verification of climate change mitigation projects: Discussion of issues and methodologies and review of existing protocols and guidelines

    SciTech Connect (OSTI)

    Vine, E.; Sathaye, J.

    1997-12-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations (i.e., joint implementation), climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG impacts (i.e., environmental, economic, and social impacts). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects in order to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues and methodologies involved in MERV activities. In addition, they review protocols and guidelines that have been developed for MERV of GHG emissions in the energy and non-energy sectors by governments, nongovernmental organizations, and international agencies. They comment on their relevance and completeness, and identify several topics that future protocols and guidelines need to address, such as (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other impacts; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  10. Post-2020 climate agreements in the major economies assessed in the light of global models

    SciTech Connect (OSTI)

    Tavoni, Massimo; Kriegler, Elmar; Riahi, Keywan; Van Vuuren, Detlef; Aboumahboub, Tino; Bowen, Alex; Calvin, Katherine V.; Campiglio, Emanuele; Kober, Tom; Jewell, Jessica; Luderer, Gunnar; Marangoni, Giacomo; McCollum, David; van Sluisveld, Mariesse; Zimmer, Anne; van der Zwaan, Bob

    2014-12-15

    Integrated assessment models can help in quantifying the implications of international climate agreements and regional climate action. This paper reviews scenario results from model intercomparison projects to explore different possible outcomes of post-2020 climate negotiations, recently announced pledges and their relation to the 2C target. We provide key information for all the major economies, such as the year of emission peaking, regional carbon budgets and emissions allowances. We highlight the distributional consequences of climate policies, and discuss the role of carbon markets for financing clean energy investments, and achieving efficiency and equity.

  11. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Home/Climate - subter_intern Permalink Gallery Subsurface Technology & Engineering Research (SubTER) Internship Opportunities Climate, News Subsurface Technology & Engineering Research (SubTER) Internship Opportunities Sandia National Laboratories will offer a Subsurface Technology & Engineering Research (SubTER) oriented summer internship mid-May through early August 2016 and focus on subjects including geophysical data processing, tomographic imaging, automatic picking, and

  12. How Do We Know that Human Activities Have Influenced Global Climate?

    SciTech Connect (OSTI)

    Santer, Benjamin D.

    2007-11-05

    Human activities have significantly altered not only the chemical composition of Earth's atmosphere, but also the climate system. Human influences have led to increases in well-mixed greenhouse gases, decreases in stratospheric ozone, and changes in the atmospheric burdens of sulfate and soot aerosols. All of these atmospheric constituents interact with incoming solar and outgoing terrestrial radiation. Human-induced changes in the concentrations of these constituents modify the natural radiative balance of Earth's atmosphere, and therefore perturb climate. Quantifying the size of the human effect on climate is a difficult statistical problem. 'Fingerprint' methods are typically used for this purpose. These methods involve rigorous statistical comparisons of modeled and observed climate change patterns. Fingerprinting assumes that each individual influence on climate has a unique signature in climate records. The climate fingerprints in response to different forcing factors are typically estimated with computer models, which can be used to perform the controlled experiments that we cannot conduct in the real world. One criticism of the findings of previous scientific assessments is that they have relied heavily on fingerprint studies involving changes in near-surface temperature. Recent fingerprint work, however, has considered a variety of other climate variables, such as ocean heat content, stratospheric temperatures, Northern Hemisphere sea ice extent, sea level pressure, atmospheric water vapor, and the height of the tropopause. These studies illustrate that a human-induced climate change signal is identifiable in many different variables and geographic regions, and that the climate system is telling us an internally- and physically-consistent story.

  13. Modelling vegetation dynamics at global scale due to climate changes: Comparison of two approaches

    SciTech Connect (OSTI)

    Belotelov, N.V.; Bogatyrev, B.G.; Lobanov, A.I.

    1996-12-31

    Climate changes will influence vegetation dynamics. One of the ways of forecasting these changes is the creation of mathematical models describing vegetation dynamics. Computer experiments can then be conducted under climate change scenarios. Two main approaches are used to create such models. The first approach is based on a bioclimatic dynamic approach. The second approach is based on modelling the main eco-physiological processes. The bioclimatic dynamic approach consists of hypotheses about vegetation types or biomes, and their interrelationships with climate. In the eco-physiological approach, a detailed description of the processes, such as production, mortality, plants migration and their competition is presented. A number of computer experiments has been conducted for several climatic scenario for Russia and the whole world. A qualitative comparison of the results with the results of an earlier bioclimatic model has been done.

  14. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Climate Home/Tag:Climate - Electricity use by water service sector and county. Shown are electricity use by (a) large-scale conveyance, (b) groundwater irrigation pumping, (c) surface water irrigation pumping, (d) drinking water, and (e) wastewater. Aggregate electricity use across these sectors (f) is also mapped. Permalink Gallery Sandians Recognized in Environmental Science & Technology's Best Paper Competition Analysis, Capabilities,

  15. Are we seeing global warming?

    SciTech Connect (OSTI)

    Hasselmann, K.

    1997-05-09

    Despite considerable progress, the question of whether the observed gradual increase in global mean temperature over the last century is indeed caused by human activities or is simply an expression of natural climate variation on a larger spatial and temporal scales remains a controversial issue. To answer this question three things are needed: prediction of the anthropogenic climate change signal; determination of the natural climate variability noise; and computation of the signal-to-noise ratio and test of whether the ratio exceeds some predefined statistical detection threshold. This article discusses all these issues and the uncertainties involved in getting definitive answers. 12 refs., 1 fig.

  16. Global Climate Change: Some Implications, Opportunities, and Challenges for US Forestry

    DOE R&D Accomplishments [OSTI]

    Marland, G.

    1991-06-01

    It is widely agreed that the concentration of greenhouse gases in the earth`s atmosphere is increasing, that this increase is a consequence of man`s activities, and that there is significant risk that this will lead to changes in the earth`s climate. The question is now being discussed what, if anything, we should be doing to minimize and/or adapt to changes in climate. Virtually every statement on this matter; from the US Office of Technology Assessment, to the National Academy of Science, to the Nairobi Declaration on Climatic Change, includes some recommendation for planting and protecting forests. In fact, forestry is intimately involved in the climate change debate for several reasons: changing climate patterns will affect existing forests, tropical deforestation is one of the major sources of greenhouse gases to the atmosphere, reforestation projects could remove additional carbon dioxide from the atmosphere and there is renewed interest in wood-based or other renewable fuels to replace fossil fuels. Part of the enthusiasm for forestry-related strategies in a greenhouse context is the perception that forests not only provide greenhouse benefits but also serve other desirable social objectives. This discussion will explore the current range of thinking in this area and try to stimulate additional thinking on the rationality of the forestry-based approaches and the challenges posed for US forestry.

  17. Climate variability and climate change vulnerability and adaptation. Workshop summary

    SciTech Connect (OSTI)

    Bhatti, N.; Cirillo, R.R.; Dixon, R.K.

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  18. Global warming: Science or politics. Part 1

    SciTech Connect (OSTI)

    Dorweiler, V.P.

    1998-04-01

    ``The balance of evidence suggests that there has been a discernible influence of human activity on global climate`` is a statement employed as the foundation basis to intervene on behalf of the globe and the future. That statement, as scientific evidence of human-produced greenhouse gases (primarily CO{sub 2}) having a warming effect on global climate is a political statement only. Further, the Kyoto conference to consider intervention in human activities regarding global warming was a political conference. Political and treaty issues were the focus; scientific issues were not much discussed. What change is needed then to scientifically determine global warming and to ascertain whether human activity is involved? A better understanding of the natural climate variations related to solar variation can improve understanding of an anthropogenic greenhouse effect on the climate. The purpose of this article is to pose the scientific question. Part 2 will present an answer.

  19. Final scientific report for DOE award title: Improving the Representation of Ice Sedimentation Rates in Global Climate Models

    SciTech Connect (OSTI)

    Mitchell, David L.

    2013-09-05

    It is well known that cirrus clouds play a major role in regulating the earth’s climate, but the details of how this works are just beginning to be understood. This project targeted the main property of cirrus clouds that influence climate processes; the ice fall speed. That is, this project improves the representation of the mass-weighted ice particle fall velocity, Vm, in climate models, used to predict future climate on global and regional scales. Prior to 2007, the dominant sizes of ice particles in cirrus clouds were poorly understood, making it virtually impossible to predict how cirrus clouds interact with sunlight and thermal radiation. Due to several studies investigating the performance of optical probes used to measure the ice particle size distribution (PSD), as well as the remote sensing results from our last ARM project, it is now well established that the anomalously high concentrations of small ice crystals often reported prior to 2007 were measurement artifacts. Advances in the design and data processing of optical probes have greatly reduced these ice artifacts that resulted from the shattering of ice particles on the probe tips and/or inlet tube, and PSD measurements from one of these improved probes (the 2-dimensional Stereo or 2D-S probe) are utilized in this project to parameterize Vm for climate models. Our original plan in the proposal was to parameterize the ice PSD (in terms of temperature and ice water content) and ice particle mass and projected area (in terms of mass- and area-dimensional power laws or m-D/A-D expressions) since these are the microphysical properties that determine Vm, and then proceed to calculate Vm from these parameterized properties. But the 2D-S probe directly measures ice particle projected area and indirectly estimates ice particle mass for each size bin. It soon became apparent that the original plan would introduce more uncertainty in the Vm calculations than simply using the 2D-S measurements to directly calculate Vm. By calculating Vm directly from the measured PSD, ice particle projected area and estimated mass, more accurate estimates of Vm are obtained. These Vm values were then parameterized for climate models by relating them to (1) sampling temperature and ice water content (IWC) and (2) the effective diameter (De) of the ice PSD. Parameterization (1) is appropriate for climate models having single-moment microphysical schemes whereas (2) is appropriate for double-moment microphysical schemes and yields more accurate Vm estimates. These parameterizations were developed for tropical cirrus clouds, Arctic cirrus, mid-latitude synoptic cirrus and mid-latitude anvil cirrus clouds based on field campaigns in these regions. An important but unexpected result of this research was the discovery of microphysical evidence indicating the mechanisms by which ice crystals are produced in cirrus clouds. This evidence, derived from PSD measurements, indicates that homogeneous freezing ice nucleation dominates in mid-latitude synoptic cirrus clouds, whereas heterogeneous ice nucleation processes dominate in mid-latitude anvil cirrus. Based on these findings, De was parameterized in terms of temperature (T) for conditions dominated by (1) homo- and (2) heterogeneous ice nucleation. From this, an experiment was designed for global climate models (GCMs). The net radiative forcing from cirrus clouds may be affected by the means ice is produced (homo- or heterogeneously), and this net forcing contributes to climate sensitivity (i.e. the change in mean global surface temperature resulting from a doubling of CO2). The objective of this GCM experiment was to determine how a change in ice nucleation mode affects the predicted global radiation balance. In the first simulation (Run 1), the De-T relationship for homogeneous nucleation is used at all latitudes, while in the second simulation (Run 2), the De-T relationship for heterogeneous nucleation is used at all latitudes. For both runs, Vm is calculated from De. Two GCMs were used; the Community Atmosphere Model version 5 (CAM5) and a European GCM known as ECHAM5 (thanks to our European colleagues who collaborated with us). Similar results were obtained from both GCMs in the Northern Hemisphere mid-latitudes, with a net cooling of ~ 1.0 W m-2 due to heterogeneous nucleation, relative to Run 1. The mean global net cooling was 2.4 W m-2 for the ECHAM5 GCM while CAM5 produced a mean global net cooling of about 0.8 W m-2. This dependence of the radiation balance on nucleation mode is substantial when one considers the direct radiative forcing from a CO2 doubling is 4 W m-2. The differences between GCMs in mean global net cooling estimates may demonstrate a need for improving the representation of cirrus clouds in GCMs, including the coupling between microphysical and radiative properties. Unfortunately, after completing this GCM experiment, we learned from the company that provided the 2D-S microphysical data that the data was corrupted due to a computer program coding problem. Therefore the microphysical data had to be reprocessed and reanalyzed, and the GCM experiments were redone under our current ASR project but using an improved experimental design.

  20. Global climate change and maize production in Spain: Risk assessment and impacts of weather on yields

    SciTech Connect (OSTI)

    Feijoo, M.L.; Mestre, F.; Iglesias, A.; Rosenzweig, C.

    1996-12-31

    The study evaluates the potential effect of climate change on maize production in Spain, combining climate models, a crop productivity model, a decision support system and a yield-response model. The study was carried out for two agricultural regions that include the largest areas of Spain where maize is grown as a high input crop. The paper combines the output from a crop model with different techniques of analysis. The scenarios used in this study were generated from the output of two General Circulation Models (GCMs): the Goddard Institute for Space Studies model (GISS) and the Canadian Climate Change Model (CCCM). The study also includes a preliminary evaluation of the potential changes in monetary returns taking into account the possible variability of grain yields and prices, using mean-Gini stochastic dominance (MGSD). A yield response model was estimated using simulated data from the crop model. Weather variables are included. Typically, temperature and precipitation are the only weather variables included in these models. However, solar radiation is another important climate factor for plant growth and development and were included in the yield response model.

  1. Impact of modern climate change on the intercommunication: Global ocean-land (Northern Hemisphere)

    SciTech Connect (OSTI)

    Lobanova, H.V.; Lobanov, V.A.; Stepanenko, S.R.

    1996-12-31

    Two main temperature gradients define the synoptic and climatic conditions on the earth in general: equator-pole gradient and ocean-land gradient. The analysis of temperature on the basis of new cyclic-different-scales conception has been fulfilled in every important part of the climatic system in the Northern Hemisphere for assessment of their vulnerability to modern climate change. Historical time series of monthly surface temperature have been used for this aim in the points of regular grid over the Northern Hemisphere from 1891 to 1992. The main feature of the temperature in main climatic parts of the earth is a complexity of its spatial structure. New methods of spatial decomposition have been developed for the division of this complex fields structure into characteristics of mean value of the field and index of its non-homogeneity or spatial variation. It has been established, that the temperature gradient between ocean and land is increasing that is characterized of the increasing of an intensity of synoptic processes, their spatial non-homogeneity and more frequent appearance of the extreme synoptic events. The models of intercommunications between coefficients of temperature spatial decomposition over the ocean and land have been developed for two time period and the increasing of the relationships closeness has been established between ocean and land as well as the decrease of main planet gradient: the pole(the Polar ocean)-equator.

  2. The role of water vapor feedback in unperturbed climate variability and global warming

    SciTech Connect (OSTI)

    Hall, A.; Manabe, Syukuro

    1999-08-01

    To understand the role of water vapor feedback in unperturbed surface temperature variability, a version of the Geophysical Fluid Dynamics Laboratory coupled ocean-atmosphere model is integrated for 1,000 yr in two configurations, one with water vapor feedback and one without. To understand the role of water vapor feedback in global warming, two 500-yr integrations were also performed in which CO{sub 2} was doubled in both model configurations. The final surface global warming in the model with water vapor feedback is 3.38 C, while in the one without it is only 1.05 C. However, the model`s water vapor feedback has a larger impact on surface warming in response to a doubling of CO{sub 2} than it does on internally generated, low-frequency, global-mean surface temperature anomalies. Water vapor feedback`s strength therefore depends on the type of temperature anomaly it affects. Finally, the authors compare the local and global-mean surface temperature time series from both unperturbed variability experiments to the observed record. The experiment without water vapor feedback does not have enough global-scale variability to reproduce the magnitude of the variability in the observed global-mean record, whether or not one removes the warming trend observed over the past century. In contrast, the amount of variability in the experiment with water vapor feedback is comparable to that of the global-mean record, provided the observed warming trend is removed. Thus, the authors are unable to simulate the observed levels of variability without water vapor feedback.

  3. Overview of the Special Issue: A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    SciTech Connect (OSTI)

    Waldhoff, Stephanie T.; Martinich, Jeremy; Sarofim, Marcus; DeAngelo, B. J.; McFarland, Jim; Jantarasami, Lesley; Shouse, Kate C.; Crimmins, Allison; Ohrel, Sara; Li, Jia

    2015-07-01

    The Climate Change Impacts and Risk Analysis (CIRA) modeling exercise is a unique contribution to the scientific literature on climate change impacts, economic damages, and risk analysis that brings together multiple, national-scale models of impacts and damages in an integrated and consistent fashion to estimate climate change impacts, damages, and the benefits of greenhouse gas (GHG) mitigation actions in the United States. The CIRA project uses three consistent socioeconomic, emissions, and climate scenarios across all models to estimate the benefits of GHG mitigation policies: a Business As Usual (BAU) and two policy scenarios with radiative forcing (RF) stabilization targets of 4.5 W/m2 and 3.7 W/m2 in 2100. CIRA was also designed to specifically examine the sensitivity of results to uncertainties around climate sensitivity and differences in model structure. The goals of CIRA project are to 1) build a multi-model framework to produce estimates of multiple risks and impacts in the U.S., 2) determine to what degree risks and damages across sectors may be lowered from a BAU to policy scenarios, 3) evaluate key sources of uncertainty along the causal chain, and 4) provide information for multiple audiences and clearly communicate the risks and damages of climate change and the potential benefits of mitigation. This paper describes the motivations, goals, and design of the CIRA modeling exercise and introduces the subsequent papers in this special issue.

  4. The analysis of climate variability at local and regional scales in the global warming context

    SciTech Connect (OSTI)

    Mares, I.; Mares, C.

    1996-12-31

    The time series of the seasonal and annual temperatures and precipitation amounts from two stations with observations for more than 100 years and from one mountain station (data since 1928), in Romania have been analyzed. For the entire territory of Romania, 33 stations have also been studied using EOF components, for the 1950--1993 period. In order to find climate change-points, nonparametric tests Pettitt and Mann-Kendall have been used. Quantification of the significant change-points was made estimating the signal-to-noise ratio. Some of the change-points in the temperature and precipitation fields could be associated with the changes in the geopotential field at 500hPa, represented by EOFs and blocking index calculated for the Atlantic-European region. The comparison with other results obtained from the European stations or from the entire Northern Hemisphere shows several common points, but also some differences in the climate jumps, reflecting the local peculiarities.

  5. Modeling U.S. Energy Use Changes with Global Climate Change

    SciTech Connect (OSTI)

    Hadley, Stanton W; Erickson III, David J; Hernandez Figueroa, Jose L

    2006-09-01

    Using a general circulation model of Earth climate (PCM-IBIS) to drive an energy use model (DD-NEMS), we calculated the energy use changes for each year from 2003-2025 for the nine U.S. Census regions. We used five scenarios: 1) a reference with no change in temperatures from the 1970-2003 average, 2) a gradual 1 F rise in temperature by 2025, 3) a gradual 3 F rise by 2025, 4) a climate simulation with low temperature response to CO2 doubling in the atmosphere, and 5) a climate simulation with a more extreme response. The low-?T scenario had a cumulative reduction in energy of 2.1 Quads but an increase in cost of $14.8 billion. The northern states had reductions in cost over the entire period, but most other regions had increases in costs because increases in cooling costs outweighed reductions in heating and other energy uses. Higher temperature sensitivity resulted in increased warming, especially in the winter months. Because heating needs decreased, total energy requirements declined by a cumulative 4.2 Quads. However, total cost still increased $6.1 billion and carbon emissions still rose as coal-based electricity for cooling needs grew.

  6. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  10. Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permalink EC, DHS's S&T Directorate, Federal Emergency Management Agency: SUMMIT Analysis, Capabilities, Facilities, Global, Infrastructure Security, Modeling, Modeling & Analysis, NISAC, Partnership, Research & Capabilities EC, DHS's S&T Directorate, Federal Emergency Management Agency: SUMMIT Natural disasters create emergency situations that must be dealt with quickly and effectively in order to minimize injury and loss of life. Simulating such events before they occur can

  11. Global climate change mitigation and sustainable forest management--The challenge of monitoring and verification

    SciTech Connect (OSTI)

    Makundi, Willy R.

    1997-12-31

    In this paper, sustainable forest management is discussed within the historical and theoretical framework of the sustainable development debate. The various criteria and indicators for sustainable forest management put forth by different institutions are critically explored. Specific types of climate change mitigation policies/projects in the forest sector are identified and examined in the light of the general criteria for sustainable forest management. Areas of compatibility and contradiction between the climate mitigation objectives and the minimum criteria for sustainable forest management are identified and discussed. Emphasis is put on the problems of monitoring and verifying carbon benefits associated with such projects given their impacts on pre-existing policy objectives on sustainable forest management. The implications of such policy interactions on assignment of carbon credits from forest projects under Joint Implementation/Activities Implemented Jointly initiatives are discussed. The paper concludes that a comprehensive monitoring and verification regime must include an impact assessment on the criteria covered under other agreements such as the Biodiversity and/or Desertification Conventions. The actual carbon credit assigned to a specific project should at least take into account the negative impacts on the criteria for sustainable forest management. The value of the impacts and/or the procedure to evaluate them need to be established by interested parties such as the Councils of the respective Conventions.

  12. Energy Efficiency & Renewable Energy: Meeting US global climate change action plan commitments

    SciTech Connect (OSTI)

    Anderson, A.F.

    1994-12-31

    The subject describes how the US Department of Energy Office of Energy Efficiency and Renewable Energy will help meet the US goal of returning US greenhouse gas emissions to their 1990 levels by the year 2000. On October 19, 1993, President Clinton and Vice President Gore announced the publication of the Climate Change Action Plan. The DOE Office of Energy Efficiency and Renewable Energy has a major role in implementing many of the initiatives contained in the Plan. The paper will outline the initiatives current programs, and demonstrate how once implemented, the strategy will help to stem US greenhouse gas emissions. The paper will also discuss how DOE in implementing it`s Climate Change Action Plan strategy, will work with the EPA to achieve a cost-effective strategy that will stem greenhouse gas emissions through public/private partnerships. Although the focus of this paper will be the connection between current programs and Clinton Administration`s year 2000 goal, it will also discuss a longer-term vision for reducing atmospheric concentrations of greenhouse gases beyond the year 2000.

  13. President Issues Executive Order Aimed at Preparing for the Impacts of Climate Change; Tribal Leaders to Serve on Task Force

    Broader source: Energy.gov [DOE]

    Learn how a new federal task force that includes tribal leaders will assist the Administration in facilitating state, local, and tribal efforts to strengthen their resilience to the impacts of climate change.

  14. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; Link, Robert P.; Bond-Lamberty, Benjamin

    2015-04-01

    Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganicmore » carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.« less

  15. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0

    SciTech Connect (OSTI)

    Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; Link, Robert P.; Bond-Lamberty, Benjamin

    2015-04-01

    Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganic carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.

  16. Do Coupled Climate Models Correctly SImulate the Upward Branch of the Deept Ocean Global Conveyor?

    SciTech Connect (OSTI)

    Sarmiento, Jorge L; Downes, Stephanie; Bianchi, Daniele

    2013-01-17

    The large-scale meridional overturning circulation (MOC) connects the deep ocean, a major reservoir of carbon, to the other components of the climate system and must therefore be accurately represented in Earth System Models. Our project aims to address the specific question of the pathways and mechanisms controlling the upwelling branch of the MOC, a subject of significant disagreement between models and observational syntheses, and among general circulation models. Observations of these pathways are limited, particularly in regions of complex hydrography such as the Southern Ocean. As such, we rely on models to examine theories of the overturning circulation, both physically and biogeochemically. This grant focused on a particular aspect of the meridional overturning circulation (MOC) where there is currently significant disagreement between models and observationally based analyses of the MOC, and amongst general circulation models. In particular, the research focused on addressing the following questions: 1. Where does the deep water that sinks in the polar regions rise to the surface? 2. What processes are responsible for this rise? 3. Do state-of-the-art coupled GCMs capture these processes? Our research had three key components: observational synthesis, model development and model analysis. In this final report we outline the key results from these areas of research for the 2007 to 2012 grant period. The research described here was carried out primarily by graduate student, Daniele Bianchi (now a Postdoc at McGill University, Canada), and Postdoc Stephanie Downes (now a Research Fellow at The Australian national University, Australia). Additional support was provided for programmers Jennifer Simeon as well as Rick Slater.

  17. Human choice and climate change. Four volume set

    SciTech Connect (OSTI)

    Rayner, S.; Malone, E.L.

    1997-12-31

    The four-volume set assesses social science research relevant to global climate change from a wide-ranging interdisciplinary perspective. Taking human choice within social institutions as the starting point, noted researchers examine climate change issues in the context of societal issues such as population and consumption; cultural, institutional, and economic arrangements for human well-being; and the social processes by which decisions are made from local to global levels. This four-volume assessment is intended to complement the work of the intergovernmental Panel on Climate Change.

  18. Use of North American and European air quality networks to evaluate global chemistry-climate modeling of surface ozone

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schnell, J. L.; Prather, M. J.; Josse, B.; Naik, V.; Horowitz, L. W.; Cameron-Smith, P.; Bergmann, D.; Zeng, G.; Plummer, D. A.; Sudo, K.; et al

    2015-04-16

    We test the current generation of global chemistry-climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1° × 1° grid cells, allowing commensurate model-measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (~ 15:00) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is less successfully matched. The observedmore » summertime diurnal range (~ 25 ppb) is underestimated in all regions by about 7 ppb, and the observed seasonal range (~ 21 ppb) is underestimated by about 5 ppb except in the most polluted regions where it is overestimated by about 5 ppb. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80% of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The observed linear relationship showing increases in ozone by up to 6 ppb for larger-sized episodes is also matched.« less

  19. A Cross-model Comparison of Global Long-term Technology Diffusion under a 2?C Climate Change Control Target

    SciTech Connect (OSTI)

    van der Zwaan, Bob; Rosler, Hilke; Kober, Tom; Aboumahboub, Tino; Calvin, Katherine V.; Gernaat, David; Marangoni, Giacomo; McCollum, David

    2013-11-01

    We investigate the long-term global energy technology diffusion patterns required to reach a stringent climate change target with a maximum average atmospheric temperature increase of 2C. If the anthropogenic temperature increase is to be limited to 2C, total CO2 emissions have to be reduced massively, so as to reach substantial negative values during the second half of the century. Particularly power sector CO2 emissions should become negative from around 2050 onwards according to most models used for this analysis in order to compensate for GHG emissions in other sectors where abatement is more costly. The annual additional capacity deployment intensity (expressed in GW/yr) for solar and wind energy until 2030 needs to be around that recently observed for coal-based power plants, and will have to be several times higher in the period 20302050. Relatively high agreement exists across models in terms of the aggregated low-carbon energy system cost requirements on the supply side until 2050, which amount to about 50 trillion US$.

  20. Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing

    SciTech Connect (OSTI)

    Gantt, Brett; Xu, Jun; Meskhidze, N.; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2012-07-25

    A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm{sup -2} (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm{sup -3} (1.5 %) and 0.22 gm{sup -2} (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

  1. Aspen Global Change Institute (AGCI) Interdisciplinary Science Workshop: Decadal Climate Prediction; Aspen, CO; June 22-28, 2008

    SciTech Connect (OSTI)

    Katzenberger, John

    2010-03-12

    Decadal prediction lies between seasonal/interannual forecasting and longer-term climate change projections, and focuses on time-evolving regional climate conditions over the next 10?30 yr. Numerous assessments of climate information user needs have identified this time scale as being important to infrastructure planners, water resource managers, and many others. It is central to the information portfolio required to adapt effectively to and through climatic changes.

  2. Climate Mag_27JUN2013_ms07022013.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CLIMATE AND IMPACT RESEARCH at Los Alamos National Laboratory Climate Research and National Security Los Alamos National Laboratory is truly a national security science laboratory, tackling some of the world's most challenging science and engineering issues. We are interested in the potential future impacts of climate change on global security, such as the coastal e ects of sea level rise, increased number of extreme storms, and the consequences of extensive regional tree mortality. Gaining a

  3. Comparison of the Vertical Velocity Used to Calculate the Cloud Droplet Number Concentration in a Cloud Resolving and a Global Climate Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric, Oceanic and Space Sciences University of Michigan Ann Arbor, Michigan Introduction Anthropogenic aerosols are effective cloud condensation nuclei (CCN). The availability of CCN affects the initial cloud droplet number concentration (CDNC) and droplet size; therefore, cloud optical

  4. Use of North American and European air quality networks to evaluate global chemistry–climate modeling of surface ozone

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schnell, J. L.; Prather, M. J.; Josse, B.; Naik, V.; Horowitz, L. W.; Cameron-Smith, P.; Bergmann, D.; Zeng, G.; Plummer, D. A.; Sudo, K.; et al

    2015-09-25

    We test the current generation of global chemistry–climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1° × 1° grid cells, allowing commensurate model–measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (~ 15:00 local time (LT)) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is less successfullymore » matched. The observed summertime diurnal range (~ 25 ppb) is underestimated in all regions by about 7 ppb, and the observed seasonal range (~ 21 ppb) is underestimated by about 5 ppb except in the most polluted regions, where it is overestimated by about 5 ppb. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80 % of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The models also match the observed linear relationship between episode size and a measure of episode intensity, which shows increases in ozone abundance by up to 6 ppb for larger-sized episodes. We conclude that the skill of the models evaluated here provides confidence in their projections of future surface ozone.« less

  5. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Fricke, Brian A; Vineyard, Edward Allan

    2012-01-01

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  6. Assessing the impacts of climate change on natural resource systems

    SciTech Connect (OSTI)

    Frederick, K.D.; Rosenberg, N.J. [eds.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  7. What does the 2C Target Imply for a Global Climate Agreement in 2020? The LIMITS Study on Durban Action Platform Scenarios

    SciTech Connect (OSTI)

    Kriegler, Elmar; Tavoni, Massimo; Aboumahboub, Tino; Luderer, Gunnar; Calvin, Katherine V.; DeMaere, Gauthier; Krey, Volker; Riahi, Keywan; Rosler, Hilke; Schaeffer, Michiel; Van Vuuren, Detlef

    2013-11-01

    This paper provides a novel and comprehensive model?based assessment of possible outcomes of the Durban Platform negotiations with a focus on emissions reduction requirements, the consistency with the 2C target and global economic impacts. The Durban Action scenarios investigated in the LIMITS studyall assuming the implementation of comprehensive global emission reductions after 2020, but assuming different 2020 emission reduction levels and different long?term stabilization targetsshow that the probability of exceeding the 2C limit increases with stabilization target from below one third for 450?470 ppm to 40?60% for 490?510 ppm in 2100. Global time?averaged economic costs of the Durban Action scenarios are limited across models, and are largely unaffected by the stringency of 2020 pledges. By contrast, the economic impact of delaying action beyond 2030 is much stronger on transitional costs. The main significance of short term action in the period 2010?2030 lies in preparing the ground for steep emissions reductions thereafter by inducing global emissions to peak and decline. The institutional challenges of all scenarios with fragmented near?term climate policy can be expected to be high as reflected in a steep rise of carbon prices and decarbonization rates until 2040. We conclude that an agreement on comprehensive emissions reductions to be implemented from 2020 onwards has particular significance for meeting long term climate policy objectives.

  8. Climate Leadership Conference

    Broader source: Energy.gov [DOE]

    The annual Climate Leadership Conference convenes a global audience of climate, energy, and sustainability professionals to address climate change through policy, innovation, and business solutions. Now in its fifth year, the 2016 event will host the first U.S. climate conference post-Paris to further accelerate climate solutions and a low-carbon economy.

  9. Long-Term Regional Climate Simulations Driven by Two Global Reanalyses and a GCM for the Western United States

    SciTech Connect (OSTI)

    Leung, Lai R.; Bian, Xindi; Qian, Yun

    2002-01-01

    To take advantage of recent development in the NCAR/Penn State Mesoscale Model (MM5), an effort has been organized to develop and evaluate an MM5-based community regional climate model. Several modifications such as the implementation of the PNNL subgrid parameterization of orographic precipitation, representation of cloud-radiation interaction, and additional output capabilities have been made to the recently released MM5 Version 3.4. To evaluate the model, several long-term simulations have been performed over the western U.S. These simulations were driven by the NCEP/NCAR and ECMWF reanalyses respectively for 20 and 13 years beginning at 1980. The western U.S. is marked by diverse topographic features and varied climate conditions such as the maritime climate in the coastal area and the semi-arid climate in the southwest. We will present results based on two domain configurations: a nested domain with a fine domain covering the western U.S. at 40 km resolution, and a single domain at 60 km resolution with the subgrid orographic precipitation scheme applied in the western U.S. Analyses are being performed to evaluate the simulations of the averaged climate and interannual variability and examine the model sensitivity to different boundary conditions. Our analyses focus on the relationships between large-scale circulation and regional climate features, surface energy and water budgets, orographic precipitation, and hydrologic conditions within selected river basins. Regional simulations are also being performed using large-scale conditions simulated by the NCAR/DOE Parallel Climate Model (PCM). The regional model was used to downscale the ensemble PCM climate change scenarios for periods of 10-20 years in the current and future climate. Results will be analyzed to study the impacts of greenhouse warming on regional water resources in the western U.S.

  10. ARM - Climate Change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SitesClimate Change Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Climate Change A Student's Guide to Global Climate Change The U.S. Environmental Protection Agency (EPA) developed A Student's Guide to Global Climate Change to help provide students and educators with clear, accurate

  11. Five-years of microenvironment data along an urban-rural transect; temperature and CO2 concentrations in urban area at levels expected globally with climate change.

    SciTech Connect (OSTI)

    George, Kate; Ziska, Lewis H; Bunce, James A; Quebedeaux, Bruno

    2007-11-01

    The heat island effect and the high use of fossil fuels in large city centers is well documented, but by how much fossil fuel consumption is elevating atmospheric CO2 concentrations and whether elevations in both atmospheric CO2 and air temperature are consistent from year to year are less well known. Our aim was to record atmospheric CO2 concentrations, air temperature and other environmental variables in an urban area and compare it to suburban and rural sites to see if urban sites are experiencing climates expected globally in the future with climate change. A transect was established from Baltimore city center (Urban site), to the outer suburbs of Baltimore (suburban site) and out to an organic farm (rural site). At each site a weather station was set-up to monitor environmental variables annually for five years. Atmospheric CO2 was significantly increased on average by 66 ppm from the rural to the urban site over the five years of the study. Air temperature was significantly higher at the urban site (14.8 oC) compared to the suburban (13.6 oC) and rural (12.7 oC) sites. Relative humidity was not different between sites but vapor pressure deficit (VPD) was significantly higher at the urban site compared to the suburban and rural sites. During wet years relative humidity was significantly increased and VPD significantly reduced. Increased nitrogen deposition at the rural site (2.1 % compared to 1.8 and 1.2 % at the suburban and urban sites) was small enough not to affect soil nitrogen content. Dense urban areas with large populations and high vehicular traffic have significantly different microclimates compared to outlying suburban and rural areas. The increases in atmospheric CO2 and air temperature are similar to changes predicted in the short term with global climate change, therefore providing an environment suitable for studying future effects of climate change on terrestrial ecosystems.

  12. Greenland and Antarctic mass balances for present and doubled atmospheric CO{sub 2} from the GENESIS version-2 global climate model

    SciTech Connect (OSTI)

    Thompson, S.L.; Pollard, D.

    1997-05-01

    As anthropogenic greenhouse warming occurs in the next century, changes in the mass balances of Greenland and Antarctica will probably accelerate and may have significant effects on global sea level. Recent trends and possible future changes in these mass balances have received considerable attention in the glaciological literature, but until recently relatively few general circulation modeling (GCM) studies have focused on the problem. However, there are two significant problems in using GCMs to predict mass balance distributions on ice sheets: (i) the relatively coarse GCM horizontal resolution truncates the topography of the ice-sheet flanks and smaller ice sheets such as Greenland, and (ii) the snow and ice physics in most GCMs does not include ice-sheet-specific processes such as the refreezing of meltwater. Two techniques are described that attack these problems, involving (i) an elevation-based correction to the surface meteorology and (ii) a simple a posteriori correction for the refreezing of meltwater following Pfeiffer et al. Using these techniques in a new version 2 of the Global Environmental and Ecological Simulation of Interactive Systems global climate model, the authors present global climate and ice-sheet mass-balance results from two equilibrated runs for present and doubled atmospheric CO{sub 2}. This GCM is well suited for ice-sheet mass-balance studies because (a) the surface can be represented at a finer resolution (2{degrees} lat x 2{degrees} long) than the atmospheric GCM, (b) the two correction techniques are included as part of the model, and the model`s mass balances for present-day Greenland and Antarctica are realistic. 131 refs., 23 figs., 2 tabs.

  13. Military implications of global warming. Strategy research project

    SciTech Connect (OSTI)

    Greene, P.E.

    1999-05-20

    The 1998 National Security Strategy repeatedly cites global environmental issues as key to the long-term security of the United States. Similarly, US environmental issues also have important global implications. This paper analyzes current US Policy as it pertains to global warming and climate change. It discusses related economic factors and environmental concerns. It assesses current White House policy as it relates to the US military. It reviews the Department of Defense strategy for energy conservation and reduction of greenhouse gases. Finally, it offers recommendations and options for military involvement to reduce global warming. Global warming and other environmental issues are important to the US military. As the United States leadership in environmental matters encourages global stability, the US military will be able to focus more on readiness and on military training and operations.

  14. Response of precipitation extremes to idealized global warming in an aqua-planet climate model: Towards robust projection across different horizontal resolutions

    SciTech Connect (OSTI)

    Li, F.; Collins, W.D.; Wehner, M.F.; Williamson, D.L.; Olson, J.G.

    2011-04-15

    Current climate models produce quite heterogeneous projections for the responses of precipitation extremes to future climate change. To help understand the range of projections from multimodel ensembles, a series of idealized 'aquaplanet' Atmospheric General Circulation Model (AGCM) runs have been performed with the Community Atmosphere Model CAM3. These runs have been analysed to identify the effects of horizontal resolution on precipitation extreme projections under two simple global warming scenarios. We adopt the aquaplanet framework for our simulations to remove any sensitivity to the spatial resolution of external inputs and to focus on the roles of model physics and dynamics. Results show that a uniform increase of sea surface temperature (SST) and an increase of low-to-high latitude SST gradient both lead to increase of precipitation and precipitation extremes for most latitudes. The perturbed SSTs generally have stronger impacts on precipitation extremes than on mean precipitation. Horizontal model resolution strongly affects the global warming signals in the extreme precipitation in tropical and subtropical regions but not in high latitude regions. This study illustrates that the effects of horizontal resolution have to be taken into account to develop more robust projections of precipitation extremes.

  15. U.S. Climate Change Science Program Scientific Assessment of the Effects of Global Change on the United States.

    National Nuclear Security Administration (NNSA)

    Scientific Assessment of the Effects of Global Change on the United States A Report of the Committee on Environment and Natural Resources National Science and Technology Council May 2008 Scientific Assessment of the Effects of Global Change on the United States ii Committee on the Environment and Natural Resources National Science and Technology Council George Gray Environmental Protection Agency Conrad Lautenbacher National Oceanic and Atmospheric Administration Sharon Hays Office of Science

  16. THE APPLICATION OF A STATISTICAL DOWNSCALING PROCESS TO DERIVE 21{sup ST} CENTURY RIVER FLOW PREDICTIONS USING A GLOBAL CLIMATE SIMULATION

    SciTech Connect (OSTI)

    Werth, D.; Chen, K. F.

    2013-08-22

    The ability of water managers to maintain adequate supplies in coming decades depends, in part, on future weather conditions, as climate change has the potential to alter river flows from their current values, possibly rendering them unable to meet demand. Reliable climate projections are therefore critical to predicting the future water supply for the United States. These projections cannot be provided solely by global climate models (GCMs), however, as their resolution is too coarse to resolve the small-scale climate changes that can affect hydrology, and hence water supply, at regional to local scales. A process is needed to downscale the GCM results to the smaller scales and feed this into a surface hydrology model to help determine the ability of rivers to provide adequate flow to meet future needs. We apply a statistical downscaling to GCM projections of precipitation and temperature through the use of a scaling method. This technique involves the correction of the cumulative distribution functions (CDFs) of the GCM-derived temperature and precipitation results for the 20{sup th} century, and the application of the same correction to 21{sup st} century GCM projections. This is done for three meteorological stations located within the Coosa River basin in northern Georgia, and is used to calculate future river flow statistics for the upper Coosa River. Results are compared to the historical Coosa River flow upstream from Georgia Power Companys Hammond coal-fired power plant and to flows calculated with the original, unscaled GCM results to determine the impact of potential changes in meteorology on future flows.

  17. Climate Leadership Conference

    Broader source: Energy.gov [DOE]

    The Climate Leadership Conference is your annual exchange for addressing global climate change through policy, innovation, and business solutions. Forward-thinking lead­ers from busi­ness, gov­ern...

  18. Regional-Scale Climate Change: Observations and Model Simulations

    SciTech Connect (OSTI)

    Raymond S. Bradley; Henry F. Diaz

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth??s climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  19. Application of global weather and climate model output to the design and operation of wind-energy systems

    SciTech Connect (OSTI)

    Curry, Judith

    2015-05-21

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatory environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.

  20. Geoengineering the Earth's Climate

    ScienceCinema (OSTI)

    Google Tech Talks

    2009-09-01

    Emergency preparedness is generally considered to be a good thing, yet there is no plan regarding what we might do should we be faced with a climate emergency. Such an emergency could take the form of a rapid shift in precipitation patterns, a collapse of the great ice sheets, the imminent triggering of strong climate system feedbacks, or perhaps the loss of valuable ecosystems. Over the past decade, we have used climate models to investigate the potential to reverse some of the effects of greenhouse gases in the atmosphere by deflecting some incoming sunlight back to space. This would probably be most cost-effectively achieved with the placement of small particles in or above the stratosphere. Our model simulations indicate that such geoengineering approaches could potentially bring our climate closer to the state is was in prior to the introduction of greenhouse gases. This talk will present much of what is known about such geoengineering approaches, and raise a range of issues likely to stimulate lively discussion. Speaker: Ken Caldeira Ken Caldeira is a scientist at the Carnegie Institution Department of Global Ecology and a Professor (by courtesy) at the Stanford University Department of Environmental and Earth System Sciences. Previously, he worked for 12 years in the Energy and Environment Directorate at the Lawrence Livermore National Laboratory (Department of Energy). His research interests include the numerical simulation of Earth's climate, carbon, and biogeochemistry; ocean acidification; climate emergency response systems; evaluating approaches to supplying environmentally-friendly energy services; ocean carbon sequestration; long-term evolution of climate and geochemical cycles; and marine biogeochemical cycles. Caldeira has a B.A. in Philosophy from Rutgers College and an M.S. and Ph.D. in Atmospheric Sciences from New York University.

  1. Issue: K

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issue: K Author: Mark D. Ivey Page 1 of 24 DR 6 / 30 / 2010 ES&H STANDARD OPERATING PROCEDURE (ES&H SOP) Title: ATMOSPHERIC RADIATION MEASUREMENT CLIMATE RESEARCH FACILITY/NORTH SLOPE OF ALASKA/ADJACENT ARCTIC OCEAN (ACRF/NSA/AAO) PROJECT OPERATING PLAN (U) Location: North Slope of Alaska and Adjacent Arctic Ocean Owners: Mark D Ivey, Department 6383, Manager Mark D Ivey, Department 6383, ACRF/NSA/AAO Site Project Manager and Site ES&H Coordinator Document Release or Change History:

  2. An open letter to the 2008 presidential candidates: get the facts right on what's responsible for global climate change

    SciTech Connect (OSTI)

    Linden, Henry R.

    2008-07-15

    The two remaining presidential candidates have adopted policies for reducing anthropogenic greenhouse gas emissions that address factors that are mistakenly held responsible as the primary cause of global warming. Here's what they need to keep in mind in order to craft genuinely efficacious policies. (author)

  3. ARM - Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Climate Climate refers to the long-term changes in atmospheric conditions including temperature, rainfall, wind, humidity, pressure and cloudiness. One would need to take into account the fact that superimposed on the arithmetical average of

  4. 2007 Radiation & Climate GRC ( July 29-August 3, 2007)

    SciTech Connect (OSTI)

    William Collins Nancy Ryan Gray

    2008-06-01

    The theme of the fifth Gordon Research Conference on Radiation and Climate is 'Integrating multiscale measurements and models for key climate questions'. The meeting will feature lectures, posters, and discussion regarding these issues. The meeting will focus on insights from new types of satellite and in situ data and from new approaches to modeling processes in the climate system. The program on measurements will highlight syntheses of new satellite data on cloud, aerosols, and chemistry and syntheses of satellite and sub-orbital observations from field programs. The program on modeling will address both the evaluation of cloud-resolving and regional aerosol models using new types of measurements and the evidence for processes and physics missing from global models. The Conference will focus on two key climate questions. First, what factors govern the radiative interactions of clouds and aerosols with regional and global climate? Second, how well do we understand the interaction of radiation with land surfaces and with the cryosphere?

  5. A process oriented analysis of the ``declaration of German industry on global warming prevention'' and its implications for the role of voluntary approaches in post-Kyoto climate policy

    SciTech Connect (OSTI)

    Ramesohl, S.; Kristof, K.

    1999-07-01

    Challenged by industry's growing claim for higher self-responsibility and more flexibility, energy and climate policy-makers need to define a future role of voluntary approaches (VA) which realizes the benefits but guarantees environmental effectiveness and political efficiency of these initiatives. Taking the 1996 ``Declaration of German industry on global warming prevention (DGWP)'' as an example of an energy related VA, the paper pursues a dual approach for policy analysis in order to evaluate the static performance and the dynamic process features of the DFWP approach. Transferred to a dynamic model of co-evolutionary climate policy-making, the general conclusions of the German case for climate policy are discussed.

  6. Accelerated Climate Modeling For Energy Marcia Branstetter Katherine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on local to global scales? - How do biogeochemical cycles interact with global climate change? - How do rapid changes in cryospheric systems interact with the climate system? *...

  7. Safety Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Safety Orientation April, 2015 Atmospheric Radiation Measurement Climate Research ... with operations at the Atmospheric Radiation Measurement Climate Research Facility...

  8. ARM - Global Experts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experts Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Global Experts Welcome to our Global Experts! These pages provide detailed information about global climate change. We hope you'll gain a good understanding of how our earth's climate is changing and how human activities are influencing

  9. ARM - Global Thinkers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thinkers Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Global Thinkers What is Global Warming? Investigate global warming and the conditions which lead to climatic changes. What Causes Global Warming? Information about the conditions in the atmosphere that lead to global warming. What are

  10. Effect of Terrestrial and Marine Organic Aerosol on Regional and Global Climate: Model Development, Application, and Verification with Satellite Data

    SciTech Connect (OSTI)

    Meskhidze, Nicholas; Zhang, Yang; Kamykowski, Daniel

    2012-03-28

    In this DOE project the improvements to parameterization of marine primary organic matter (POM) emissions, hygroscopic properties of marine POM, marine isoprene derived secondary organic aerosol (SOA) emissions, surfactant effects, new cloud droplet activation parameterization have been implemented into Community Atmosphere Model (CAM 5.0), with a seven mode aerosol module from the Pacific Northwest National Laboratory (PNNL)???¢????????s Modal Aerosol Model (MAM7). The effects of marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) on microphysical properties of clouds were explored by conducting 10 year CAM5.0-MAM7 model simulations at a grid resolution 1.9???????°????????2.5???????° with 30 vertical layers. Model-predicted relationship between ocean physical and biological systems and the abundance of CCN in remote marine atmosphere was compared to data from the A-Train satellites (MODIS, CALIPSO, AMSR-E). Model simulations show that on average, primary and secondary organic aerosol emissions from the ocean can yield up to 20% increase in Cloud Condensation Nuclei (CCN) at 0.2% Supersaturation, and up to 5% increases in droplet number concentration of global maritime shallow clouds. Marine organics were treated as internally or externally mixed with sea salt. Changes associated with cloud properties reduced (absolute value) the model-predicted short wave cloud forcing from -1.35 Wm-2 to -0.25 Wm-2. By using different emission scenarios, and droplet activation parameterizations, this study suggests that addition of marine primary aerosols and biologically generated reactive gases makes an important difference in radiative forcing assessments. All baseline and sensitivity simulations for 2001 and 2050 using global-through-urban WRF/Chem (GU-WRF) were completed. The main objective of these simulations was to evaluate the capability of GU-WRF for an accurate representation of the global atmosphere by exploring the most accurate configuration of physics options in GWRF for global scale modeling in 2001 at a horizontal grid resolution of 1???????° x 1???????°. GU-WRF model output was evaluated using observational datasets from a variety of sources including surface based observations (NCDC and BSRN), model reanalysis (NCEP/ NCAR Reanalysis and CMAP), and remotely-sensed data (TRMM) to evaluate the ability of GU-WRF to simulate atmospheric variables at the surface as well as aloft. Explicit treatment of nanoparticles produced from new particle formation in GU-WRF/Chem-MADRID was achieved by expanding particle size sections from 8 to 12 to cover particles with the size range of 1.16 nm to 11.6 ???????µm. Simulations with two different nucleation parameterizations were conducted for August 2002 over a global domain at a 4???????º by 5???????º horizontal resolution. The results are evaluated against field measurement data from the 2002 Aerosol Nucleation and Real Time Characterization Experiment (ANARChE) in Atlanta, Georgia, as well as satellite and reanalysis data. We have also explored the relationship between ???¢????????clean marine???¢??????? aerosol optical properties and ocean surface wind speed using remotely sensed data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the CALIPSO satellite and the Advanced Microwave Scanning Radiometer (AMSR-E) on board the AQUA satellite. Detailed data analyses

  11. Global surface temperature changes since the 1850s

    SciTech Connect (OSTI)

    Jones, P.D.

    1996-12-31

    Temperature data from land and marine areas form the basis for many studies of climatic variations on local, regional and hemispheric scales, and the global mean temperature is a fundamental measure of the state of the climate system. In this paper it is shown that the surface temperature of the globe has warmed by about 0.5{degrees}C since the mid-nineteenth century. This is an important part of the evidence in the {open_quote}global warming{close_quote} debate. How certain are we about the magnitude of the warming? Where has it been greatest? In this paper, these and related issues will be addressed.

  12. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    SciTech Connect (OSTI)

    Nicholson, W.J.

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  13. Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate

    SciTech Connect (OSTI)

    Deng, Yi

    2014-11-24

    DOE-GTRC-05596 11/24/2104 Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate PI: Dr. Yi Deng (PI) School of Earth and Atmospheric Sciences Georgia Institute of Technology 404-385-1821, yi.deng@eas.gatech.edu El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The projection of future changes in the ENSO and AM variability, however, remains highly uncertain with the state-of-the-science climate models. This project conducted a process-resolving, quantitative evaluations of the ENSO and AM variability in the modern reanalysis observations and in climate model simulations. The goal is to identify and understand the sources of uncertainty and biases in models’ representation of ENSO and AM variability. Using a feedback analysis method originally formulated by one of the collaborative PIs, we partitioned the 3D atmospheric temperature anomalies and surface temperature anomalies associated with ENSO and AM variability into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. In the past 4 years, the research conducted at Georgia Tech under the support of this project has led to 15 peer-reviewed publications and 9 conference/workshop presentations. Two graduate students and one postdoctoral fellow also received research training through participating the project activities. This final technical report summarizes key scientific discoveries we made and provides also a list of all publications and conference presentations resulted from research activities at Georgia Tech. The main findings include: 1) the distinctly different roles played by atmospheric dynamical processes in establishing surface temperature response to ENSO at tropics and extratropics (i.e., atmospheric dynamics disperses energy out of tropics during ENSO warm events and modulate surface temperature at mid-, high-latitudes through controlling downward longwave radiation); 2) the representations of ENSO-related temperature response in climate models fail to converge at the process-level particularly over extratropics (i.e., models produce the right temperature responses to ENSO but with wrong reasons); 3) water vapor feedback contributes substantially to the temperature anomalies found over U.S. during different phases of the Northern Annular Mode (NAM), which adds new insight to the traditional picture that cold/warm advective processes are the main drivers of local temperature responses to the NAM; 4) the overall land surface temperature biases in the latest NCAR model (CESM1) are caused by biases in surface albedo while the surface temperature biases over ocean are related to multiple factors including biases in model albedo, cloud and oceanic dynamics, and the temperature biases over different ocean basins are also induced by different process biases. These results provide a detailed guidance for process-level model turning and improvement, and thus contribute directly to the overall goal of reducing model uncertainty in projecting future changes in the Earth’s climate system, especially in the ENSO and AM variability.

  14. Sensitivity of global-scale climate change attribution results to inclusion of fossil fuel black carbon aerosol - article no. L14701

    SciTech Connect (OSTI)

    Jones, G.S.; Jones, A.; Roberts, D.L.; Stott, P.A.; Williams, K.D.

    2005-07-16

    It is likely that greenhouse gas emissions caused most of the global mean warming observed during the 20th century, and that sulphate aerosols counteracted this warming to some extent, by reflecting solar radiation to space and thereby cooling the planet. However, the importance of another aerosol, namely black carbon, could be underestimated. Here we include fossil fuel black carbon aerosol in a detection and attribution analysis with greenhouse gas and sulphate aerosols. We find that most of the warming of the 20th Century is attributable to changes in greenhouse gases offset by net aerosol cooling. However the pattern of temperature change due to black carbon is currently indistinguishable from the sulphate aerosol pattern of temperature change. The attribution of temperature change due to greenhouse gases is not sensitive to the inclusion of black carbon. We can be confident about the overall attribution of total aerosols, but less so about the contributions of black carbon emissions to 20th century climate change. This work presents no evidence that black carbon aerosol forcing outweighed the cooling due to sulphate aerosol.

  15. Wanted: Global Clean Energy Partners | OpenEI Community

    Open Energy Info (EERE)

    Super contributor 24 February, 2010 - 13:51 imported OpenEI Global climate change. Global sustainability. Global economic development. There's no doubt about it-if the...

  16. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earths surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earths energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  17. U.S. Mayor's Climate Protection Agreement: Climate Action Handbook...

    Open Energy Info (EERE)

    Action Handbook offers examples of actions that local governments can take to reduce global warming emissions and implement the commitments for climate protection called out...

  18. Sandia Energy - Global Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gallery Computational Fluid Dynamics & Large-Scale Uncertainty Quantification for Wind Energy Highlights - HPC Computational Fluid Dynamics & Large-Scale Uncertainty...

  19. Global Climate Change Impacts & Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Overview Report Overview I. The Business Case for Energy Efficiency II. Pew Center Survey Results III. The 7-Habits of Highly Efficient Companies IV. Best Practices a) ...

  20. Sandia Energy Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Team Attends World Water Week in Stockholm http:energy.sandia.govsandia-team-attends-world-water-week-in-stockholm http:energy.sandia.govsandia-team-attends-world-water-week...

  1. Managing the global environmental risks in Russia: The missing links and external influences

    SciTech Connect (OSTI)

    Sokolov, V.

    1996-12-31

    Based on analysis of management history of three global environmental issues in Russia--climate change, ozone depletion and acid rains--the author suggests a few explanations of failure to build-up the nationwide strategy to manage global risks. Among them are specific factors related to the science-policy relationship on global changes processes and impacts. Particular attention is given to such internal factors as: the monopolization of these issues by the single state agency Hydromet until the late 1980s; the interest of the Soviet military in global atmospheric issues; the absence of any major input from the public or the media; and the manner in which the discussion of these issues was nested within the Soviet government`s broader foreign policy agenda.

  2. Climate Change Adaptation/Resilience

    Broader source: Energy.gov [DOE]

    DOE facilities are located in all eight climate regions identified in the 2014 National Climate Assessment (as established by the U.S. Global Change Research Program), and are vulnerable to identified climate change impacts in those regions. To assist with establishing and maintaining an effective climate adaptation process, DOE is working to integrate climate adaptation concerns into all applicable DOE orders, policies, and planning documents.

  3. ARM - Different Climates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListDifferent Climates Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Different Climates The earth's climate varies from place to place. Locations near the Equator tend to be constantly hot and wet, such as the Pacific islands and the Amazon Basins. Some places near the North and South

  4. Secretary Chu to Focus on Opportunities for Global Cooperation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Energy, Economic and Climate Challenges During 6-Day European Trip Secretary Chu to Focus on Opportunities for Global Cooperation on Energy, Economic and Climate ...

  5. Study forecasts disappearance of conifers due to climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    due to climate change New results, reported in a paper released today in the journal Nature Climate Change, suggests that global models may underestimate predictions of forest...

  6. Global warming, global research, and global governing

    SciTech Connect (OSTI)

    Preining, O.

    1997-12-31

    The anticipated dangers of Global Warming can be mitigated by reducing atmospheric greenhouse gas concentrations, especially CO{sub 2}. To reach acceptable, constant levels within the next couple of centuries it might be necessary to accept stabilization levels higher than present ones, The annual CO{sub 2} emissions must be reduced far below today`s values. This is a very important result of the models discussed in the 1995 IPCC report. However, any even very modest scenario for the future must take into account a substantial increase in the world population which might double during the 21st century, There is a considerable emission reduction potential of the industrialized world due to efficiency increase, However, the demand for energy services by the growing world population will, inspite of the availability of alternative energy resources, possibly lead to a net increase in fossil fuel consumption. If the climate models are right, and the science community believes they are, we will experience a global warming of the order of a couple of degrees over the next century; we have to live with it. To be prepared for the future it is essential for us to use new research techniques embracing not only the familiar fields of hard sciences but also social, educational, ethical and economic aspects, We must find a way to build up the essential intellectual capacities needed to deal with these kinds of general problems within all nations and all societies. But this is not Although, we also have to find the necessary dynamical and highly flexible structures for a global governing using tools such as the environmental regime. The first step was the Framework Convention On Climate Change, UN 1992; for resolution of questions regarding implementations the Conference of the Parties was established.

  7. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Issues Open Issues MPI errors from cray-mpich7.3.0 January 6, 2016 by Ankit Bhagatwala A change in the MPICH2 library that now strictly enforces non-overlapping buffers in...

  8. Nature Climate Change features Los Alamos forest research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature Climate Change Features Forest Research Nature Climate Change features Los Alamos forest research The print issue features as its cover story the tree-stress research of...

  9. Nature climate change features Los Alamos forest research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature climate change features forest research Nature climate change features Los Alamos forest research The print issue features as its cover story the tree-stress research of...

  10. DOE Project Taps HPC for Next-Generation Climate Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    complete climate and Earth system model to address the most challenging and demanding climate change issues. Eight Department of Energy (DOE) national laboratories, including...

  11. ARM - Predictions of Climate Change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TeachersTopic ListPredictions of Climate Change Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Predictions of Climate Change There are no accurate predictions of what will happen to earth's climate with an increase in greenhouse gases. The climate system is very complex, so that scientists

  12. Secretary Chu Stresses Global Cooperation on Energy, Economic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stresses Global Cooperation on Energy, Economic and Climate Challenges in Talks with World Energy Ministers Secretary Chu Stresses Global Cooperation on Energy, Economic and ...

  13. Burkina Faso-National Adaptation Plan Global Support Programme...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  14. Global Timber Market and Forestry Data Project | Open Energy...

    Open Energy Info (EERE)

    data has been used in analysis should visit the Forests, Economics and Global Climate Change website." References "Global Timber Market and Forestry Data Project" Retrieved...

  15. Djibouti-National Adaptation Plan Global Support Programme (NAP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  16. Central African Republic-National Adaptation Plan Global Support...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  17. Niger-National Adaptation Plan Global Support Programme (NAP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  18. Rwanda-National Adaptation Plan Global Support Programme (NAP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  19. Lesotho-National Adaptation Plan Global Support Programme (NAP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  20. Liberia-National Adaptation Plan Global Support Programme (NAP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  1. Malawi-National Adaptation Plan Global Support Programme (NAP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  2. Comoros-National Adaptation Plan Global Support Programme (NAP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  3. Tanzania-National Adaptation Plan Global Support Programme (NAP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  4. Bangladesh-National Adaptation Plan Global Support Programme...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  5. The Gambia-National Adaptation Plan Global Support Programme...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  6. Democratic Republic of Congo-National Adaptation Plan Global...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  7. Uganda-National Adaptation Plan Global Support Programme (NAP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  8. Mozambique-National Adaptation Plan Global Support Programme...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  9. Mauritania-National Adaptation Plan Global Support Programme...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  10. Sudan-National Adaptation Plan Global Support Programme (NAP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  11. Cambodia-National Adaptation Plan Global Support Programme (NAP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  12. Benin-National Adaptation Plan Global Support Programme (NAP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  13. Modeling international cooperation for the global environmental problematique

    SciTech Connect (OSTI)

    Sadeh, E.

    1997-12-31

    The focus of this study is on international cooperative decision-making related to global change issues concerning stratospheric ozone depletion and global climate warming. Such anthropogenic alteration of the Earth`s biosphere has given rise to a global environmental problematique that is demarcated by two dimensions. The first dimension is that global environmental Issues are demarcated by international environmental commons. Commons are defined as physical or biological systems that lie outside the jurisdiction of any individual state and are valued environmental resources globally. A second dimension pertains to tile collective action problem which results from a {open_quotes}tragedy of the commons.{close_quotes} According to traditional realist conception of international relations, that states behave in their rational self-interest, a {open_quotes}tragedy of the commons{close_quotes} ensues. The tragedy is a function of damage to the global environment, such as the production of economic resources that release greenhouse gases into the Earth`s biosphere, that is nonappropriable. Commons resources relative to the Earth`s biosphere are not limitless. At issue, is the realization of sustainable economic development promoted by cooperative political patterns that mitigate the negative consequences of this tragedy.

  14. The Challenges and Potential of Nuclear Energy for Addressing Climate Change

    SciTech Connect (OSTI)

    Kim, Son H.; Edmonds, James A.

    2007-10-24

    The response to climate change and the stabilization of atmospheric greenhouse gas concentrations has major implications for the global energy system. Stabilization of atmospheric carbon dioxide (CO2) concentrations requires a peak and an indefinite decline of global CO2 emissions. Nuclear energy, along with other technologies, has the potential to contribute to the growing demand for energy without emitting CO2. Nuclear energy is of particular interest because of its global prevalence and its current significant contribution, nearly 20%, to the worlds electricity supply. We have investigated the value of nuclear energy in addressing climate change, and have explored the potential challenges for the rapid and large-scale expansion of nuclear energy as a response to climate change. The scope of this study is long-term and the modeling time frame extends out a century because the nature of nuclear energy and climate change dictate that perspective. Our results indicate that the value of the nuclear technology option for addressing climate change is denominated in trillions of dollars. Several-fold increases to the value of the nuclear option can be expected if there is limited availability of competing carbon-free technologies, particularly fossil-fuel based technologies that can capture and sequester carbon. Challenges for the expanded global use of nuclear energy include the global capacity for nuclear construction, proliferation, uranium availability, and waste disposal. While the economic costs of nuclear fuel and power are important, non-economic issues transcend the issues of costs. In this regard, advanced nuclear technologies and new vision for the global use of nuclear energy are important considerations for the future of nuclear power and climate change.

  15. Global environmental security: Research and policy strategies for the 1990s

    SciTech Connect (OSTI)

    Lazaro, M.A.; Wang, Hua

    1992-09-01

    The subject of global environmental change is emerging as one of the most hotly debated international issues for the 1990s. In fact, our earth system has undergone a nature-induced gradual change in climate on both a temporal scale that spans over millions of years and a spatial scale ranging from regional to transcontinental. Pollutant emissions associated with population growth and industrial activities manifest the anthropogenic climatic forcing that has been superimposed on the background of natural climate fluctuations. Our incomplete understanding of the global impacts of environmental pollution on the earth systems (atmosphere, biosphere, hydrosphere, cryosphere, and lithosphere), however, make the prediction of the timing, magnitude, and patterns of future global change uncertain. This paper examines the science and policy background of global environmental change. The major scientific uncertainties and policy issues confronting decision makers are identified; and the scientific framework, as well as current national and international research programs aimed at resolving the scientific uncertainties, are discussed. A coherent, stable, and flexible policy is needed to provide a foundation for coordinated international-interagency programs of observation, research, analysis, and international negotiation toward a policy consensus concerning global environmental security. On the basis of what is currently known about global change, recommendations are presented on both near-term and long-term policy option decisions.

  16. Global environmental security: Research and policy strategies for the 1990s

    SciTech Connect (OSTI)

    Lazaro, M.A.; Wang, Hua.

    1992-01-01

    The subject of global environmental change is emerging as one of the most hotly debated international issues for the 1990s. In fact, our earth system has undergone a nature-induced gradual change in climate on both a temporal scale that spans over millions of years and a spatial scale ranging from regional to transcontinental. Pollutant emissions associated with population growth and industrial activities manifest the anthropogenic climatic forcing that has been superimposed on the background of natural climate fluctuations. Our incomplete understanding of the global impacts of environmental pollution on the earth systems (atmosphere, biosphere, hydrosphere, cryosphere, and lithosphere), however, make the prediction of the timing, magnitude, and patterns of future global change uncertain. This paper examines the science and policy background of global environmental change. The major scientific uncertainties and policy issues confronting decision makers are identified; and the scientific framework, as well as current national and international research programs aimed at resolving the scientific uncertainties, are discussed. A coherent, stable, and flexible policy is needed to provide a foundation for coordinated international-interagency programs of observation, research, analysis, and international negotiation toward a policy consensus concerning global environmental security. On the basis of what is currently known about global change, recommendations are presented on both near-term and long-term policy option decisions.

  17. Known Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Known Issues Known Issues There are a number of known issues to be aware of when using the Burst Buffer on Cori Phase 1. This page will be updated as problems are discovered, and as they are fixed. General Issues When running a job that accesses the BB in the shared queue, the job will use all 32 cores in the node, regardless of how many cores you actually requested. This may mean that your job takes longer to get scheduled than you might expect if you use the shared queue. Data is at risk in a

  18. New Climate Research Centers Forecast Changes and Challenges

    Broader source: Energy.gov [DOE]

    Two new observation stations -– in Alaska and the Azore islands -– should reduce uncertainties and improve global climate models.

  19. climate change | OpenEI Community

    Open Energy Info (EERE)

    climate change Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 18 January, 2013 - 15:46 U.S. Global Change Research Program publishes "National Climate...

  20. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    SciTech Connect (OSTI)

    SA Edgerton; LR Roeder

    2008-09-30

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  1. MATCH: Metadata Access Tool for Climate and Health Datasets

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    MATCH is a searchable clearinghouse of publicly available Federal metadata (i.e. data about data) and links to datasets. Most metadata on MATCH pertain to geospatial data sets ranging from local to global scales. The goals of MATCH are to: 1) Provide an easily accessible clearinghouse of relevant Federal metadata on climate and health that will increase efficiency in solving research problems; 2) Promote application of research and information to understand, mitigate, and adapt to the health effects of climate change; 3) Facilitate multidirectional communication among interested stakeholders to inform and shape Federal research directions; 4) Encourage collaboration among traditional and non-traditional partners in development of new initiatives to address emerging climate and health issues. [copied from http://match.globalchange.gov/geoportal/catalog/content/about.page

  2. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using house July 6, 2012 Description There have been a lot of issues recently with NFS hangs on the gpint machines. The origin of the gpint hanging has been determined to be...

  3. All Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All Issues All Issues Bi-monthly publication connecting our alumni with news, information and former colleagues from the Lab. Archive - 2015 September July May March January Archive - 2014 November September June Publications 1663 Actinide Research Quarterly (ARQ) AlumniLink Publications Archive Connections National Security Science Strategic Plan VISTAS Contact Us Annual Report Matt Nerzig (505) 665-9178 Email 1663 Magazine Craig Tyler (505) 667-1447 Email National Security Science Clay

  4. Climate Change Science Program Issues Report on Climate Models...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The lead authors include David Bader (coordinating lead author) and Curt Covey, Lawrence Livermore National Laboratory; William J. Gutowski Jr., Iowa State University; Isaac Held, ...

  5. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2013 [FIXED] JGI data loss in /projectb/sandbox area [purge] August 19, 2013 by Kjiersten Fagnan We have discovered a serious bug in our purge scripts on /global/projectb. The */global/projectb/sandbox* areas are supposed to be immune from the purge (like the project directories); however, there is a bug in the purge script that caused some files to be deleted if they had not been touched for 90+ days (like data in the scratch directories). *The sandbox areas are not backed up*, so if

  6. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Issues Open Issues runtime error message: "readControlMsg: System returned error Connection timed out on TCP socket fd" June 30, 2015 Symptom User jobs with sinlge or multiple apruns in a batch script may get this run time error: "readControlMsg: System returned error Connection timed out on TCP socket fd". This problem is intermittent, sometimes resubmit works. This error message started to appear after the Hopper OS upgrade to CLE52UP02 on March 11, 2015. Read the full

  7. Climate and Environmental Sciences Division (CESD) | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Climate and Environmental Sciences Division (CESD) Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate

  8. Bush Administration Plays Leading Role in Studying and Addressing Global

    Energy Savers [EERE]

    Climate Change | Department of Energy Plays Leading Role in Studying and Addressing Global Climate Change Bush Administration Plays Leading Role in Studying and Addressing Global Climate Change February 27, 2007 - 3:49pm Addthis Washington, DC - Continuing to take the lead in addressing global climate change, Energy Secretary Samuel Bodman, Environmental Protection Agency (EPA) Administrator Stephen Johnson, and National Oceanic and Atmospheric Administration (NOAA) Administrator Vice

  9. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2012 Resolved: Reports of Hanging Jobs on Hopper March 1, 2012 by Katie Antypas Issue: A number of users have reported intermittent large jobs hanging on Hopper. A job appears to start and then hangs shortly after producing no output. The job stops when the wall clock limit has been reached

  10. Energy Department Issues Tribal Energy System Vulnerabilities...

    Broader source: Energy.gov (indexed) [DOE]

    202-586-4940 DOENews@hq.doe.gov The U.S. Department of Energy issued a report today showing that threats to tribal energy infrastructure are expected to increase as climate change ...

  11. Toxicological and epidemiological aspects of global warming on human health

    SciTech Connect (OSTI)

    Ando, M.; Yamamoto, S.; Wakamatsu, K.; Kawahara, I.; Asanuma, S.

    1996-12-31

    Since human activities are responsible for anthropogenic greenhouse gases emissions, climate models project an increase in the global surface temperature of 0.9 C to 4.0 C by 2100. For human health, it is projected that global warming may have a critical effect on the increased periods of severe heat stress in summer throughout the world. Global warming may have a critical issue on the increased periods of severe heat stress that have a potential impact on peroxidative damage in humans and animals. Lipid peroxidative damage is markedly related to GSH peroxidase activities, therefore the study was carried out to analyze the relationship between biochemical adaptability and the lipid peroxidative damage especially intracellular structure, such as mitochondria and endoplasmic reticulum depending on the exposure time of heat stress.

  12. Carbon dioxide and climate. [Appendix includes names and addresses of the Principal Investigators for the research projects funded in FY1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    Global climate change is a serious environmental concern, and the US has developed An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO{sub 2} Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO{sub 2} concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration.

  13. CEQ Issues Revised Draft Guidance on Consideration of Greenhouse...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Change in NEPA Reviews CEQ Issues Revised Draft Guidance on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in NEPA Reviews December 22, 2014 - ...

  14. Global warming: A Northwest perspective

    SciTech Connect (OSTI)

    Scott, M.J.; Counts, C.A.

    1990-02-01

    The Northwest Power Planning Council convened a symposium in Olympia, Washington, on the subject of global climate change ( the greenhouse effect'') and its potential for affecting the Pacific Northwest. The symposium was organized in response to a need by the Power Council to understand global climate change and its potential impacts on resource planning and fish and wildlife planning for the region, as well as a need to understand national policy developing toward climate change and the Pacific Northwest's role in it. 40 figs., 15 tabs.

  15. President Issues

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    President Issues Executive Order on Alternative Fuels On December 13, 1996, President Clinton signed Exec- utive Order 13031, which calls on each Federal agency to develop and implement ways to meet the alternative fuel vehicle (AFV) acquisition requirements of the Energy Policy Act (EPAct) of 1992. The executive order requires each agency to submit detailed reports within 60 days of the signing of the order to the Office of Management and Budget detailing its compliance with the EPAct sections

  16. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2011 "Unable to open kgni version file /sys/class/gemini/kgni0/version" error April 13, 2011 by Helen He Symptom: Dynamic executables built with compiler wrappers running directly on the external login nodes are getting the following error message: Read the full post Resolved -- Default version not shown in "module avail module_name" command April 13, 2011 by Helen He Symptom: The default software version is not shown when "module avail module_name" is issued.

  17. Role of the research standpoint in integrating global-scale and local-scale research

    SciTech Connect (OSTI)

    Malone, Elizabeth L.; Rayner, Stephen F.

    2001-12-01

    Climate change research is hampered by the gap between two styles of research, raising fundamental issues of standpoint. Interpretive-style researchers see themselves as at the center of the environment, experiencing it from within; their involvement is what allows them to gain knowledge. Descriptive-style researchers see themselves as outside the environment they analyze; their distance is what allows them to gain knowledge. This fundamental difference indicates that attempts to meld the two styles in articulating global-local links are both wrong-headed and doomed to failure. Instead, we should look for complementarities and attempt to bring the differently achieved knowledge to bear on global problems.

  18. A Hierarchical Evaluation of Regional Climate Simulations

    SciTech Connect (OSTI)

    Leung, Lai-Yung R.; Ringler, Todd; Collins, William D.; Taylor, Mark; Ashfaq, Moetasim

    2013-08-20

    Global climate models (GCMs) are the primary tools for predicting the evolution of the climate system. Through decades of development, GCMs have demonstrated useful skill in simulating climate at continental to global scales. However, large uncertainties remain in projecting climate change at regional scales, which limit our ability to inform decisions on climate change adaptation and mitigation. To bridge this gap, different modeling approaches including nested regional climate models (RCMs), global stretch-grid models, and global high-resolution atmospheric models have been used to provide regional climate simulations (Leung et al. 2003). In previous efforts to evaluate these approaches, isolating their relative merits was not possible because factors such as dynamical frameworks, physics parameterizations, and model resolutions were not systematically constrained. With advances in high performance computing, it is now feasible to run coupled atmosphere-ocean GCMs at horizontal resolution comparable to what RCMs use today. Global models with local refinement using unstructured grids have become available for modeling regional climate (e.g., Rauscher et al. 2012; Ringler et al. 2013). While they offer opportunities to improve climate simulations, significant efforts are needed to test their veracity for regional-scale climate simulations.

  19. Mali-National Adaptation Plan Global Support Programme (NAP-GSP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  20. Climate change and water supply, management and use: A literature review

    SciTech Connect (OSTI)

    Chang, L.H.; Draves, J.D.; Hunsaker, C.T.

    1992-05-01

    There is evidence that atmospheric concentrations Of C0{sub 2}, tropospheric 0{sub 3}, and CH{sub 4}, among other gases that contribute to the greenhouse effect, have increased in recent decades, and that these changes may induce changes in global air temperatures and regional climate features in coming years. A literature review was conducted to sample the literature base on which our understanding of the water resource impacts of climate change rests. Water resource issues likely to be important include hydrologic response to climate change, the resilience of water supply systems to changing climatic and hydrologic conditions, and the effects of climate change on water quality and water uses (such as navigation and energy generation). A computer-assisted search of literature on the effects of climate change on these subjects was conducted. All studies were classified by type of paper (e.g., review, discussion, case study), region, water resource variable studied, and source of climate scenario. The resulting bibliography containing more than 200 references was largely annotated. Case studies of potential hydrologic impacts have been more common than studies of impacts on water management or water use, but this apparent research gap is decreasing. Case studies demonstrating methods of incorporating potential risks of climate change into water project planning and management have been performed. Considerable variability in regional coverage exists; the Great Lakes basin and California receive relatively more attention than such regions as New England and the Missouri River basin. General circulation model-based and hypothetical climate scenarios have been the dominant sources of climate scenarios used in case studies, although a variety of other methods for developing climate scenarios have been developed.

  1. Climate Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Action Plan Climate Action Plan Since President Obama's announcement of the Climate Action Plan (CAP) on June 25, 2013, the Department of Energy (DOE) has moved forward to lead initiatives and support interagency efforts that cut carbon pollution, augment resilience and preparedness in the face of climate impacts, and strengthen international partnerships addressing the issue. This effort involves activities all across the Department, including actions led by the Office of International

  2. CEQ Issues Revised Draft Guidance on Consideration of Greenhouse Gas

    Energy Savers [EERE]

    Emissions and the Effects of Climate Change in NEPA Reviews | Department of Energy Guidance on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in NEPA Reviews CEQ Issues Revised Draft Guidance on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in NEPA Reviews December 22, 2014 - 12:59pm Addthis The Council on Environmental Quality (CEQ) issued revised draft guidance on consideration of greenhouse gas (GHG) emissions and the effects of

  3. Watershed response and land energy feedbacks under climate change depend upon groundwater.

    SciTech Connect (OSTI)

    Maxwell, R M; Kollet, S J

    2008-06-10

    Human induced climate change will have a significant impact on the hydrologic cycle, creating changes in fresh water resources, land cover, and feedbacks that are difficult to characterize, which makes it an issue of global importance. Previous studies have not included subsurface storage in climate change simulations and feedbacks. A variably-saturated groundwater flow model with integrated overland flow and land surface model processes is used to examine the interplay between coupled water and energy processes under climate change conditions. A case study from the Southern Great Plains (SGP) USA, an important agricultural region that is susceptible to drought, is used as the basis for three scenarios simulations using a modified atmospheric forcing dataset to reflect predicted effects due to human-induced climate change. These scenarios include an increase in the atmospheric temperature and variations in rainfall amount and are compared to the present-day climate case. Changes in shallow soil saturation and groundwater levels are quantified as well as the corresponding energy fluxes at the land surface. Here we show that groundwater and subsurface lateral flow processes are critical in understanding hydrologic response and energy feedbacks to climate change and that certain regions are more susceptible to changes in temperature, while others to changes in precipitation. This groundwater control is critical for understanding recharge and drought processes, possible under future climate conditions.

  4. Aspen Global Change Institute Summer Science Sessions

    SciTech Connect (OSTI)

    Katzenberger, John; Kaye, Jack A

    2006-10-01

    The Aspen Global Change Institute (AGCI) successfully organized and convened six interdisciplinary meetings over the course of award NNG04GA21G. The topics of the meetings were consistent with a range of issues, goals and objectives as described within the NASA Earth Science Enterprise Strategic Plan and more broadly by the US Global Change Research Program/Our Changing Planet, the more recent Climate Change Program Strategic Plan and the NSF Pathways report. The meetings were chaired by two or more leaders from within the disciplinary focus of each session. 222 scholars for a total of 1097 participants-days were convened under the auspices of this award. The overall goal of each AGCI session is to further the understanding of Earth system science and global environmental change through interdisciplinary dialog. The format and structure of the meetings allows for presentation by each participant, in-depth discussion by the whole group, and smaller working group and synthesis activities. The size of the group is important in terms of the group dynamics and interaction, and the ability for each participant's work to be adequately presented and discussed within the duration of the meeting, while still allowing time for synthesis

  5. Lab joins in global Earth Day celebrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab joins in global Earth Day celebrations Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2015-Jan. 2016 all...

  6. Global Warming and Human Health

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Geophysical Union Global Warming and Human Health WHEN: Jul 27, 2015 5:30 PM - 6:30 PM WHERE: Eldorado Hotel 309 W San Francisco Street, Santa Fe SPEAKER: Robert Davis, University of Virginia CONTACT: Shermonta Grant (202) 777-7329 CATEGORY: Community Science TYPE: Lecture INTERNAL: Calendar Login Event Description The main reason we are concerned about human-induced climate change is that climate shifts might impact the health of Earth's populace. These impacts can be direct, such as

  7. Integrated Global System Modeling Framework | Open Energy Information

    Open Energy Info (EERE)

    System Modeling Framework AgencyCompany Organization: MIT Joint Program on the Science and Policy of Global Change Sector: Climate, Energy Focus Area: Renewable Energy...

  8. Radiation Measurement (ARM) Climate Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    overview Sponsored by the U.S. Department of Energy's (DOE) Office of Science, the Atmospheric Radiation Measurement (ARM) Climate Research Facility was established in 1990 to improve global climate models by increasing understanding of clouds and radiative feedbacks. Through the ARM Facility, DOE funded the development of highly instrumented research sites at strategic locations around the world: the Southern Great Plains (SGP), Tropical Western Pacific (TWP), and North Slope of Alaska (NSA).

  9. ARM - Climate Change Through History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change Through History Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Climate Change Through History Scientists know that there have been many climatic changes throughout the earth's history. For example, the overall temperature across the globe is at least 5.5 degrees Celsius (10 degrees

  10. Regional Projections of Climate on Decadal Time Scales: High...

    Office of Scientific and Technical Information (OSTI)

    Regional Projections of Climate on Decadal Time Scales: High resolution global ... Country of Publication: United States Language: English Word Cloud More Like This Full Text ...

  11. Forest phenology and a warmer climate - Growing season extension...

    Office of Scientific and Technical Information (OSTI)

    ... Resource Type: Journal Article Resource Relation: Journal Name: Global Change ... Country of Publication: United States Language: English Subject: Climate change; phenology; ...

  12. Opening Remarks, Achieving Air Quality and Climate Change Goals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    exposure to pollutants and toxics Stable Global Climate Reduce greenhouse gases (GHG) 80% below 1990 levels by 2050 Driving Forces Behind CARB Policies 2 Source: ...

  13. FY08 LDRD Final Report Regional Climate

    SciTech Connect (OSTI)

    Bader, D C; Chin, H; Caldwell, P M

    2009-05-19

    An integrated, multi-model capability for regional climate change simulation is needed to perform original analyses to understand and prepare for the impacts of climate change on the time and space scales that are critical to California's future environmental quality and economic prosperity. Our intent was to develop a very high resolution regional simulation capability to address consequences of climate change in California to complement the global modeling capability that is supported by DOE at LLNL and other institutions to inform national and international energy policies. The California state government, through the California Energy Commission (CEC), institutionalized the State's climate change assessment process through its biennial climate change reports. The bases for these reports, however, are global climate change simulations for future scenarios designed to inform international policy negotiations, and are primarily focused on the global to continental scale impacts of increasing emissions of greenhouse gases. These simulations do not meet the needs of California public and private officials who will make major decisions in the next decade that require an understanding of climate change in California for the next thirty to fifty years and its effects on energy use, water utilization, air quality, agriculture and natural ecosystems. With the additional development of regional dynamical climate modeling capability, LLNL will be able to design and execute global simulations specifically for scenarios important to the state, then use those results to drive regional simulations of the impacts of the simulated climate change for regions as small as individual cities or watersheds. Through this project, we systematically studied the strengths and weaknesses of downscaling global model results with a regional mesoscale model to guide others, particularly university researchers, who are using the technique based on models with less complete parameterizations or coarser spatial resolution. Further, LLNL has now built a capability in state-of-the-science mesoscale climate modeling that complements that which it has in global climate simulation, providing potential sponsors with an end-to-end simulation and analysis program.

  14. U.S. Energy Secretary Moniz’ Statement on Papal Encyclical on Climate Change

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Ernest Moniz issues statement on Pope Francis' call to action on climate change.

  15. Study forecasts disappearance of conifers due to climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study forecasts disappearance of conifers due to climate change Study forecasts disappearance of conifers due to climate change New results, reported in a paper released today in the journal Nature Climate Change, suggest that global models may underestimate predictions of forest death. December 21, 2015 Los Alamos scientist Nate McDowell discusses how climate change is killing trees with PBS NewsHour reporter Miles O'Brien. Los Alamos scientist Nate McDowell discusses how climate change is

  16. Global environmental change: Its nature and impact

    SciTech Connect (OSTI)

    Hidore, J.J.

    1996-12-31

    This book is intended as an entry-level textbook on environmental science for nonscience majors. Twenty chapters address topics from historical geology and climatic change to population dynamics, land-use, water pollution, ozone depletion and biodiversity, global warming.

  17. Climate Education Update_Jan07.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the two poles. Global climate models have diffculty reproducing the current The sun sets over the Arctic Ocean off the coast of Barrow, Alaska. (continued on page 2) January 2007 ...

  18. Climate, Earth system project draws on science powerhouses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate, Earth system project draws on science powerhouses Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Climate, Earth system project draws on science powerhouses The project will focus initially on three climate-change science drivers and corresponding questions to be answered during the project's initial phase. November 1, 2014 Computer modeling provides policymakers with essential information on such data as

  19. Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for

    Energy Savers [EERE]

    Global Environmental Quality, and for the Challenge of Global Climate Change | Department of Energy S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change December 5, 2008 - 4:58pm Addthis The U.S. is committed to working together with China to tackle current energy

  20. Welcome to this Issue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Welcome National Security Science Latest Issue:July 2015 past issues All Issues submit Welcome to this Issue The nation's scientific credibility now plays a key role in national...

  1. Development based climate change adaptation and mitigation-conceptual...

    Open Energy Info (EERE)

    based climate change adaptation and mitigation-conceptual issues and lessons learned in studies in developing countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  2. The Center for Climate Strategies (CCS) | Open Energy Information

    Open Energy Info (EERE)

    2,000 stakeholders through high level, high visibility projects to address complex issues and opportunities related to climate change. CCS is headquartered in Washington, DC...

  3. ARM - Lesson Plans: Historical Climate Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Historical Climate Statistics Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Historical Climate Statistics Objective The objective of this activity is to demonstrate the concept of climate change at a sample locality where the historical temperature records are available.

  4. Regional Climate Modeling: Progress, Challenges, and Prospects

    SciTech Connect (OSTI)

    Wang, Yuqing; Leung, Lai R.; McGregor, John L.; Lee, Dong-Kyou; Wang, Wei-Chyung; Ding, Yihui; Kimura, Fujio

    2004-12-01

    Regional climate modeling with regional climate models (RCMs) has matured over the past decade and allows for meaningful utilization in a broad spectrum of applications. In this paper, latest progresses in regional climate modeling studies are reviewed, including RCM development, applications of RCMs to dynamical downscaling for climate change assessment, seasonal climate predictions and climate process studies, and the study of regional climate predictability. Challenges and potential directions of future research in this important area are discussed, with the focus on those to which less attention has been given previously, such as the importance of ensemble simulations, further development and improvement of regional climate modeling approach, modeling extreme climate events and sub-daily variation of clouds and precipitation, model evaluation and diagnostics, applications of RCMs to climate process studies and seasonal predictions, and development of regional earth system models. It is believed that with both the demonstrated credibility of RCMs capability in reproducing not only monthly to seasonal mean climate and interannual variability but also the extreme climate events when driven by good quality reanalysis and the continuous improvements in the skill of global general circulation models (GCMs) in simulating large-scale atmospheric circulation, regional climate modeling will remain an important dynamical downscaling tool for providing the needed information for assessing climate change impacts and seasonal climate predictions, and a powerful tool for improving our understanding of regional climate processes. An internationally coordinated effort can be developed with different focuses by different groups to advance regional climate modeling studies. It is also recognized that since the final quality of the results from nested RCMs depends in part on the realism of the large-scale forcing provided by GCMs, the reduction of errors and improvement in physics parameterizations in both GCMs and RCMs remain a priority for climate modeling community.

  5. Global warming. (Latest citations from the NTIS database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    The bibliography contains citations concerning policies and general studies on global warming. Topics include the greenhouse effect, global climatic models, and climatic effects from combustion of fossil fuels. (Contains a minimum of 173 citations and includes a subject term index and title list.)

  6. Climate change: Update on international negotiations

    SciTech Connect (OSTI)

    Silverman, L.

    1997-12-31

    This paper outlines the following: United Nations` framework convention on climatic change; the United States` climate change action plan; current issues to be resolved (targets/timetables, policies, advancing commitments of all parties, and compliance); and implications for clean coal technologies.

  7. Climate Sensitivity of the Community Climate System Model, Version 4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bitz, Cecilia M.; Shell, K. M.; Gent, P. R.; Bailey, D. A.; Danabasoglu, G.; Armour, K. C.; Holland, M. M.; Kiehl, J. T.

    2012-05-01

    Equilibrium climate sensitivity of the Community Climate System Model Version 4 (CCSM4) is 3.20°C for 1° horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient climate sensitivity of CCSM4 at 1° resolution is 1.72°C, which is about 0.2°C higher than in CCSM3. These higher climate sensitivities in CCSM4 cannot be explained by the change to a preindustrial baseline climate. We use the radiative kernel technique to show that from CCSM3 to CCSM4, the global mean lapse-rate feedback declines in magnitude, and the shortwave cloud feedback increases. These twomore » warming effects are partially canceled by cooling due to slight decreases in the global mean water-vapor feedback and longwave cloud feedback from CCSM3 to CCSM4. A new formulation of the mixed-layer, slab ocean model in CCSM4 attempts to reproduce the SST and sea ice climatology from an integration with a full-depth ocean, and it is integrated with a dynamic sea ice model. These new features allow an isolation of the influence of ocean dynamical changes on the climate response when comparing integrations with the slab ocean and full-depth ocean. The transient climate response of the full-depth ocean version is 0.54 of the equilibrium climate sensitivity when estimated with the new slab ocean model version for both CCSM3 and CCSM4. We argue the ratio is the same in both versions because they have about the same zonal mean pattern of change in ocean surface heat flux, which broadly resembles the zonal mean pattern of net feedback strength.« less

  8. Climate Sensitivity of the Community Climate System Model, Version 4

    SciTech Connect (OSTI)

    Bitz, Cecilia M.; Shell, K. M.; Gent, P. R.; Bailey, D. A.; Danabasoglu, G.; Armour, K. C.; Holland, M. M.; Kiehl, J. T.

    2012-05-01

    Equilibrium climate sensitivity of the Community Climate System Model Version 4 (CCSM4) is 3.20°C for 1° horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient climate sensitivity of CCSM4 at 1° resolution is 1.72°C, which is about 0.2°C higher than in CCSM3. These higher climate sensitivities in CCSM4 cannot be explained by the change to a preindustrial baseline climate. We use the radiative kernel technique to show that from CCSM3 to CCSM4, the global mean lapse-rate feedback declines in magnitude, and the shortwave cloud feedback increases. These two warming effects are partially canceled by cooling due to slight decreases in the global mean water-vapor feedback and longwave cloud feedback from CCSM3 to CCSM4. A new formulation of the mixed-layer, slab ocean model in CCSM4 attempts to reproduce the SST and sea ice climatology from an integration with a full-depth ocean, and it is integrated with a dynamic sea ice model. These new features allow an isolation of the influence of ocean dynamical changes on the climate response when comparing integrations with the slab ocean and full-depth ocean. The transient climate response of the full-depth ocean version is 0.54 of the equilibrium climate sensitivity when estimated with the new slab ocean model version for both CCSM3 and CCSM4. We argue the ratio is the same in both versions because they have about the same zonal mean pattern of change in ocean surface heat flux, which broadly resembles the zonal mean pattern of net feedback strength.

  9. The Global Energy Challenge

    ScienceCinema (OSTI)

    Crabtree, George

    2010-01-08

    The expected doubling of global energy demand by 2050 challenges our traditional patterns of energy production, distribution and use.   The continued use of fossil fuels raises concerns about supply, security, environment and climate.  New routes are needed for the efficient conversion of energy from chemical fuel, sunlight, and heat to electricity or hydrogen as an energy carrier and finally to end uses like transportation, lighting, and heating. Opportunities for efficient new energy conversion routes based on nanoscale materials will be presented, with emphasis on the sustainable energy technologies they enable.

  10. VIDEO: Moniz Talks Energy and Climate Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moniz Talks Energy and Climate Policy VIDEO: Moniz Talks Energy and Climate Policy August 27, 2013 - 1:06pm Addthis Secretary Moniz delivers remarks at Columbia University's Center on Global Energy Policy in New York City. | Video courtesy of Columbia University's Center on Global Energy Policy. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs "I'm not here to debate what is not debatable ... The threat from climate change is real and urgent."

  11. No Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Problems » No Open Issues No Open Issues There are currently no open issues with Euclid. Subscribe via RSS Subscribe Browse by Date January 2016 Last edited: 2011-03-15 10:01:46

  12. Energy for sustainable development: Key issues and challenges

    SciTech Connect (OSTI)

    Kaygusuz, K.

    2007-07-01

    Energy generation and use are strongly linked to all elements of sustainable development such as economic, social, and environmental. The history of human development rests on the availability and use of energy, the transformation from the early use of fire and animal power that improved lives, to the present world with use of electricity and clean fuels for a multitude of purposes. Energy is the neglected issue of the development debate. The lack of access to reliable and clean energy supplies is a major barrier to improving human well-being around the globe. There are an estimated 1.6 billion people living in the rural areas of developing countries who lack access to electricity, and so dependence on fossil fuels. Combustion of fossil fuels produces large amounts of CO{sub 2}, an important greenhouse gas. In response to increasing concern about the effect of anthropogenic greenhouse gases on global climate, international action has been agreed to reduce these emissions. On the other hand, renewable energy is the great, barely tapped solution to the two great challenges of the coming century such as poverty and global warming. Not only can renewable energy provide a clean, flexible power source for homes, schools and hospitals, at the micro-to-medium scale it has huge potential to create meaningful and useful jobs.

  13. A global warning for global warming

    SciTech Connect (OSTI)

    Paepe, R.

    1996-12-31

    The problem of global warming is a complex one not only because it is affecting desert areas such as the Sahel leading to famine disasters of poor rural societies, but because it is an even greater threat to modern well established industrial societies. Global warming is a complex problem of geographical, economical and societal factors together which definitely are biased by local environmental parameters. There is an absolute need to increase the knowledge of such parameters, especially to understand their limits of variance. The greenhouse effect is a global mechanism which means that in changing conditions at one point of the Earth, it will affect all other regions of the globe. Industrial pollution and devastation of the forest are quoted as similar polluting anthropogenic activities in far apart regions of the world with totally different societies and industrial compounds. The other important factor is climatic cyclicity which means that droughts are bound to natural cycles. These natural cycles are numerous as is reflected in the study of geo-proxydata from several sequential geological series on land, ice and deepsea. Each of these cycles reveals a drought cycle which occasionally interfere at the same time. It is believed that the present drought might well be a point of interference between the natural cycles of 2,500 and 1,000 years and the man induced cycle of the last century`s warming up. If the latter is the only cycle involved, man will be able to remediate. If not, global warming will become even more disastrous beyond the 21st century.

  14. Senior International Energy Officials Issue Joint Statement in Support of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Global Nuclear Energy Partnership | Department of Energy International Energy Officials Issue Joint Statement in Support of the Global Nuclear Energy Partnership Senior International Energy Officials Issue Joint Statement in Support of the Global Nuclear Energy Partnership May 21, 2007 - 12:55pm Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today announced that the U.S. Department of Energy (DOE) and senior energy officials from some of the world's leading economies

  15. Climate, Environmental, and Socioeconomic Change Weighing up the Balance in Vector-Borne Disease Transmission

    SciTech Connect (OSTI)

    Parham, Paul; Waldock, Johanna; Christophides, George; Hemming, Deborah; Agusto, Folashade; Evans, Katherine J; Fefferman, Nina; Gaff, Holly; Gumel, Abba; LaDeau, Shannon; Lenhart, Suzanne; Mickens, Ronald; Naumova, Elena; Ostfeld, Richard; Ready, Paul; Thomas, Matthew; Velasco-Hernandez, Jorge; Edwin, Michael

    2015-01-01

    Arguably one of the most important effects of climate change is the potential impact on human health. While this is likely to take many forms, the implications for future transmission of vector-borne diseases (VBDs), given their ongoing contribution to global disease burden, are both extremely important and highly uncertain. In part, this is due not only to data limitations and methodological challenges when integrating climate-driven VBD models and climate change projections, but, perhaps most crucially, the multitude of epidemiological, ecological, and socioeconomic factors that drive VBD transmission, and this complexity has generated considerable debate over the last 10-15 years. In this article, and Theme Issue, we seek to elucidate current knowledge around this topic, identify key themes and uncertainties, evaluate ongoing challenges and open research questions, and, crucially, offer some solutions for the field moving forwards. Although many of these challenges are ubiquitous across multiple VBDs, more specific issues also arise in different vector-pathogen systems. This Theme Issue seeks to cover both, reflected in the breadth and depth of the topics and VBD-systems considered, itself strongly indicative of the challenging, but necessary, multidisciplinary nature of this research field.

  16. Overview of different aspects of climate change effects on soils.

    SciTech Connect (OSTI)

    Qafoku, Nikolla

    2014-08-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (?400 ppm); increasing air temperatures (2-4C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2 and create organic carbon (C) that is either reprocessed to CO2 or stored in soils, are the subject of active current investigations with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries and identifies key research needs required to understand the effects of climate change on soils.

  17. Global decarbonization strategies

    SciTech Connect (OSTI)

    Messner, S.

    1996-12-31

    The presentation covers a brief summary of the research activities of the Environmentally Compatible Energy Strategies Project (ECS) at IIASA. The overall research focuses on long-term global energy development and emissions of greenhouse gases (GHG). The ultimate goal is to analyze strategies that achieve decarbonization of global energy systems during the next century. The specific activities range from mitigation of GHG emissions to an integrated assessment of climate change. One focal point is the GHG mitigation technology inventory CO{sub 2}DB, which presently covers approximately 1,400 technologies related to energy and the greenhouse effect. Another integral part is the development of global energy and emissions scenarios, an effort involving a number of formal models to assess the implications. A large number of global scenarios for the next century has been developed, that could be grouped into three families. All of them include energy efficiency improvements and some degree of decarbonization in the world. They are based on different economic and technological development trajectories, and their emissions range from very high to a stabilization of atmospheric carbon dioxide emissions. The presentation will outline the salient characteristics of the three scenario families and provide some regional implications of these alternative futures.

  18. Time varying arctic climate change amplification

    SciTech Connect (OSTI)

    Chylek, Petr [Los Alamos National Laboratory; Dubey, Manvendra K [Los Alamos National Laboratory; Lesins, Glen [DALLHOUSIE U; Wang, Muyin [NOAA/JISAO

    2009-01-01

    During the past 130 years the global mean surface air temperature has risen by about 0.75 K. Due to feedbacks -- including the snow/ice albedo feedback -- the warming in the Arctic is expected to proceed at a faster rate than the global average. Climate model simulations suggest that this Arctic amplification produces warming that is two to three times larger than the global mean. Understanding the Arctic amplification is essential for projections of future Arctic climate including sea ice extent and melting of the Greenland ice sheet. We use the temperature records from the Arctic stations to show that (a) the Arctic amplification is larger at latitudes above 700 N compared to those within 64-70oN belt, and that, surprisingly; (b) the ratio of the Arctic to global rate of temperature change is not constant but varies on the decadal timescale. This time dependence will affect future projections of climate changes in the Arctic.

  19. Regional Projections of Climate on Decadal Time Scales: High resolution

    Office of Scientific and Technical Information (OSTI)

    global predictions and regionally resolved source response studies (Technical Report) | SciTech Connect Regional Projections of Climate on Decadal Time Scales: High resolution global predictions and regionally resolved source response studies Citation Details In-Document Search Title: Regional Projections of Climate on Decadal Time Scales: High resolution global predictions and regionally resolved source response studies Authors: Tribbia, Joe [1] ; Zhang, Minghua [2] + Show Author

  20. The Effects of Climate Sensitivity and Carbon Cycle Interactions on

    Office of Scientific and Technical Information (OSTI)

    Mitigation Policy Stringency (Journal Article) | SciTech Connect The Effects of Climate Sensitivity and Carbon Cycle Interactions on Mitigation Policy Stringency Citation Details In-Document Search Title: The Effects of Climate Sensitivity and Carbon Cycle Interactions on Mitigation Policy Stringency Climate sensitivity and climate-carbon cycle feedbacks interact to determine how global carbon and energy cycles will change in the future. While the science of these connections is well

  1. Global Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Global Warming and Methane Global warming, an increase in Earth's near-surface temperature, is believed to result from the buildup of what scientists refer to as "greenhouse gases." These gases include water vapor, carbon dioxide, methane, nitrous oxide, ozone, perfluorocarbons, hydrofluoro- carbons, and sulfur hexafluoride. Greenhouse gases can absorb outgoing infrared (heat) radiation and re-emit it back to Earth, warming the surface. Thus, these gases act like the glass of a

  2. Mississippi Climate & Hydrology Conference

    SciTech Connect (OSTI)

    Lawford, R.; Huang, J.

    2002-05-01

    The GEWEX Continental International Project (GCIP), which started in 1995 and completed in 2001, held its grand finale conference in New Orleans, LA in May 2002. Participants at this conference along with the scientists funded through the GCIP program are invited to contribute a paper to a special issue of Journal of Geophysical Research (JGR). This special JGR issue (called GCIP3) will serve as the final report on scientific research conducted by GCIP investigators. Papers are solicited on the following topical areas, but are not limited to, (1) water energy budget studies; (2) warm season precipitation; (3) predictability and prediction system; (4) coupled land-atmosphere models; (5) climate and water resources applications. The research areas cover observations, modeling, process studies and water resources applications.

  3. Welcome to this Issue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Welcome National Security Science Latest Issue:July 2015 past issues All Issues » submit Welcome to this Issue The nation's scientific credibility now plays a key role in national security and nuclear deterrence in an increasingly dangerous and unstable world. July 1, 2015 Welcome to this Issue Craig Leasure Contact Managing Editor Clay Dillingham Email The world remains a dangerous and unstable place, as Russia rattles its sabers, North Korea seems intent on developing intercontinental

  4. Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  5. Special Lecture - Climate Prisms: Understanding Climate Change...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Special Lecture - Climate Prisms Special Lecture - Climate Prisms: Understanding Climate Change for All WHEN: Feb 17, 2015 5:30 PM - 7:00 PM WHERE: Bradbury Science Museum, 1350...

  6. Our Changing Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Our Changing Climate Is our climate really changing? How do we measure climate change? How can we predict what Earth's climate will be like for generations to come? One focus of...

  7. A Regional Climate Change Assessment Program for North America

    SciTech Connect (OSTI)

    Mearns, L. O.; Gutowski, William; Jones, Richard; Leung, Lai-Yung R.; McGinnis, Seth; Nunes, A.; Qian, Yun

    2009-09-08

    There are two main uncertainties in determining future climate: the trajectories of future emissions of greenhouse gases and aerosols, and the response of the global climate system to any given set of future emissions [Meehl et al., 2007]. These uncertainties normally are elucidated via application of global climate models, which provide information at relatively coarse spatial resolutions. Greater interest in, and concern about, the details of climate change at regional scales has provided the motivation for the application of regional climate models, which introduces additional uncertainty [Christensen et al., 2007a]. These uncertainties in fi ne- scale regional climate responses, in contrast to uncertainties of coarser spatial resolution global models in which regional models are nested, now have been documented in numerous contexts [Christensen et al., 2007a] and have been found to extend to uncertainties in climate impacts [Wood et al., 2004; Oleson et al., 2007]. While European research in future climate projections has moved forward systematically to examine combined uncertainties from global and regional models [Christensen et al., 2007b], North American climate programs have lagged behind. To fi ll this research gap, scientists developed the North American Regional Climate Change Assessment Program (-NARCCAP). The fundamental scientifi c motivation of this international program is to explore separate and combined uncertainties in regional projections of future climate change resulting from the use of multiple atmosphere- ocean general circulation models (AOGCMs) to drive multiple regional climate models (RCMs). An equally important, and related, motivation for this program is to provide the climate impacts and adaptation community with high- resolution regional climate change scenarios that can be used for studies of the societal impacts of climate change and possible adaptation strategies.

  8. Climate-Energy Nexus

    SciTech Connect (OSTI)

    Gary Sayler; Randall Gentry; Jie Zhuang

    2010-07-01

    The 140-page published proceedings of the workshop include individual articles and PowerPoint slides for all workshop presentations. The proceedings also contain pertinent background information on the China-US Joint Research Center, partnering organizations, and workshop goals and objectives. Overall, the workshop increased the understanding of the impacts of climate change on energy use and renewable energy production as well as the complex relationships among land use, energy production, and ecological restoration. The workshop served as an international platform for scientists and students of different research backgrounds to develop a unified perspective on energy and climate relationships. Such understanding will benefit future cooperation between China and the US in mitigating global climate change. The workshop’s agenda, which is highly interdisciplinary, explored many potential opportunities for international collaboration in ecosystem management, climate modeling, greenhouse gas emissions, and bioenergy sustainability. International research groups have been suggested in the areas of genomes and biotechnology of energy plants, sustainable management of soil and water resources, carbon sequestration, and microbial processes for ecological cycles. The project has attracted considerable attention from institutes beyond the China-US Joint Research Center partners, and several of them (such as Institute of Qing-Tibet Plateau Research, Institute of Soil and Water Conservation, Institute of Applied Ecology, CAS) have expressed interest in joining the partnership. In addition, the workshop played a significant role in facilitating establishment of private-public partnerships between government and private bioenergy companies (such as L.R. Shugarts and Associates, Inc.), including seed providers (Blade Energy Crops, Thousand Oaks, CA), pilot demonstration projects at coal-producing cities (e.g., Huaibei, Anhui province, China), and the development of methodology for assessment of the sustainable production of biofuels (such as life-cycle analysis, sustainability metrics, and land-use policy). Establishment of two US-China scientific research networks in the area of bioenergy and environmental science is a significant result of the workshop.

  9. Past Issues | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inquiry Magazine Past Issues To view past issues of Inquiry magazine, click on the links below. Inquiry 2014, Issue 2 Inquiry 2014, Issue 1 Image Inquiry 2013, Issue 2 Image Inquiry 2013, Issue 1 Image Inquiry 2012. Issue 2 Image Inquiry 2012, Issue 1 Image Inquiry 2011, Issue 2 Image Inquiry 2011, Issue 1 Image Inquiry 2010, Issue 2 Image Inquiry 2010, Issue 1 Inq10-1cover.jpg

  10. Implications of simultaneously mitigating and adapting to climate change: Initial experiments using GCAM

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Wise, Marshall A.; Clarke, Leon E.; Edmonds, James A.; Kyle, G. Page; Luckow, Patrick W.; Thomson, Allison M.

    2013-04-01

    Historically climate impacts research and climate mitigation research have been two separate and independent domains of inquiry. Climate mitigation research has investigated greenhouse gas emissions assuming that climate is unchanging. At the same time climate mitigation research has investigated the implications of climate change on the assumption that climate mitigation will proceed without affecting the degree of climate impacts or the ability of human and natural systems to adapt. The Global Change Assessment Model (GCAM) has largely been employed to study climate mitigation. Here we explore the development of capabilities to assess climate change impacts and adaptation within the GCAM model. These capabilities are being developed so as to be able to simultaneously reconcile the joint implications of climate change mitigation, impacts and adaptive potential. This is an important step forward in that it enables direct comparison between climate mitigation activities and climate impacts and the opportunity to understand interactions between the two.

  11. Front Burner- Issue 14

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 14 highlights the 2013 National Cybersecurity Awareness Month (NCSAM) Campaign and Phishing Scams.

  12. Front Burner- Issue 15

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 15 addresses the DOE eSCRM Program and Secure Online Shopping.

  13. Connections: All Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications » Connections Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Community Connections Monthly news and opportunities for the Laboratory's neighbors and friends, with a primary focus on economic development, education and community giving. All Issues Connections Newsletter March 2016 March 2016 My Brother's Keeper event sparks interest in STEM careers for Santa Fe Indian Schoool

  14. DOE-LPO-MiniReport_CLIMATE-Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation drives the U.S. economy and is a key to combating the global challenge of climate change. The U.S. Department of Energy's Loan Programs O ce (LPO) is helping meet this challenge by providing the critical financing needed to deploy some of the world's largest and most innovative clean energy and advanced technology vehicles manufacturing projects. The low-carbon energy and auto manufacturing projects in LPO's portfolio currently play a significant role in addressing climate change in

  15. From Risk to Opportunity. How Insurers Can Proactively and Profitably Manage Climate Change

    SciTech Connect (OSTI)

    Mills, E.; Lecomte, E.

    2006-08-15

    Last year's USD 45 billion of insured losses from Hurricane Katrina was only the latest reminder of why investors and consumers are concerned about the impacts of climate change on the insurance industry. Twelve months after the devastating storm hit New Orleans, insurers and their shareholders are still feeling the ripples. Record insured losses, rating downgrades, coverage pullbacks and class-action lawsuits are just a few of the reverberations that have been felt across the industry. Meanwhile, consumers are feeling the combined sting of price shocks and reduced availability. So serious is the issue that 20 leading investors, representing over $800 billion in assets, called on the nation's largest insurance companies to disclose their financial exposure from climate change and steps they are taking to reduce those financial impacts. But, while most of the attention is focused on the growing risks, climate change also creates vast business opportunities to be part of the solution to global warming. Just as the industry has historically asserted its leadership to minimize risks from building fires and earthquakes, insurers have a huge opportunity today to develop creative loss-prevention products and services that will reduce climate-related losses for consumers, governments and insurers, while trimming the emissions causing global warming. This report focuses on the encouraging progress made by insurers to develop these new products and services. It identifies more than 190 concrete examples available, or soon-to-be-available, from dozens of insurance providers in 16 countries. In addition to benefiting insurers' core business and investment activities, these programs afford insurers the opportunity to differentiate their products from their competitors, while also enhancing their reputation with customers who are increasingly looking for all sectors of the industry to come forward with effective responses to the threats caused by climate change. More than half of the products come from U.S. companies, covering such services as green building design, hurricane-resistant construction, carbon emissions trading and renewable energy.

  16. Global Arrays

    Energy Science and Technology Software Center (OSTI)

    2006-02-23

    The Global Arrays (GA) toolkit provides an efficient and portable “shared-memory” programming interface for distributed-memory computers. Each process in a MIMD parallel program can asynchronously access logical blocks of physically distributed dense multi-dimensional arrays, without need for explicit cooperation by other processes. Unlike other shared-memory environments, the GA model exposes to the programmer the non-uniform memory access (NUMA) characteristics of the high performance computers and acknowledges that access to a remote portion of the sharedmore » data is slower than to the local portion. The locality information for the shared data is available, and a direct access to the local portions of shared data is provided. Global Arrays have been designed to complement rather than substitute for the message-passing programming model. The programmer is free to use both the shared-memory and message-passing paradigms in the same program, and to take advantage of existing message-passing software libraries. Global Arrays are compatible with the Message Passing Interface (MPI).« less

  17. Tribal Climate Change Webinars: BIA's Climate Change Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Climate Change Webinars: BIA's Climate Change Competitive Award Process Overview Tribal Climate Change Webinars: BIA's Climate Change Competitive Award Process Overview...

  18. MCA4Climate - Guidance for scientifically sound climate change...

    Open Energy Info (EERE)

    MCA4Climate - Guidance for scientifically sound climate change planning Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Multicriteria Analysis for Climate (MCA4climate)...

  19. CO2 emissions mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    SciTech Connect (OSTI)

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine V.; Wada, Kenichi; Van Vuuren, Detlef

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher and decrease with mitigation. A first deviation from the optimal transition pathway relaxes global emission targets until 2030, in accordance with the Copenhagen pledges and regionally-specific low-carbon technology targets. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger - twice and more - than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear cut across models, as we find carbon leakage effects ranging from positive to negative because leakage and substitution patterns of coal, oil, and gas differ. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.

  20. CO₂ emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    SciTech Connect (OSTI)

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine; Wada, Kenichi; van Vuuren, Detlef

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher than coal prices. A first deviation from optimal transition pathways is delayed action that relaxes global emission targets until 2030 in accordance with the Copenhagen pledges. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger—twice and more—than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects to balance the full-century carbon budget. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear-cut across models, as we find carbon leakage effects ranging from positive to negative because trade and substitution patterns of coal, oil, and gas differ across models. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.

  1. Global change research: Science and policy

    SciTech Connect (OSTI)

    Rayner, S.

    1993-05-01

    This report characterizes certain aspects of the Global Change Research Program of the US Government, and its relevance to the short and medium term needs of policy makers in the public and private sectors. It addresses some of the difficulties inherent in the science and policy interface on the issues of global change. Finally, this report offers some proposals for improving the science for policy process in the context of global environmental change.

  2. Developing public awareness for climate change: Support from international research programs

    SciTech Connect (OSTI)

    Barnes, F.J.; Clements, W.E.

    1998-12-31

    Developing regional and local public awareness and interest in global climate change has been mandated as an important step for increasing the ability for setting policy and managing the response to climate change. Research programs frequently have resources that could help reach regional or national goals for increasing the capacity for responding to climate change. To obtain these resources and target recipients appropriately, research investigators need clear statements of national and regional strategies or priorities as a guide. One such program, the Atmospheric Radiation Measurement (ARM) Program, has a requirement to develop local or regional education enrichment programs at their observational sites in the central US, the tropical western Pacific (TWP), and on the north slope of alaska. ARM's scientific goals will result in a flow of technical data and as well as technical expertise that can assist with regional needs to increase the technical resources needed to address climate change issues. Details of the ARM education program in the Pacific will be presented.

  3. How We Solve Climate Change | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We Solve Climate Change How We Solve Climate Change December 5, 2015 - 3:00am Addthis How We Solve Climate Change Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy World leaders are gathering in Paris this week for the 21st United Nations climate conference, known as COP21. Our mission: Secure an ambitious global agreement to reduce carbon dioxide emissions and minimize climate change. As negotiators hammer out the details of an agreement, I will be meeting with energy ministers, mayors,

  4. Scientific American: "Tall Trees Sucked Dry by Global Warming"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" Scientific American: "Tall Trees Sucked Dry by Global Warming" Climate change will challenge tall trees like California's redwoods. June 7, 2015 Scientific American: "Tall Trees Sucked Dry by Global Warming" Climate change will challenge tall trees like California's redwoods Scientific American: "Tall Trees Sucked Dry by Global Warming" A well-known scientific principle describing how water

  5. Predictability and Diagnosis of Low-Frequency Climate Processes in the Pacific

    SciTech Connect (OSTI)

    Dr. Arthur J. Miller

    2008-10-15

    Predicting the climate for the coming decades requires understanding both natural and anthropogenically forced climate variability. This variability is important because it has major societal impacts, for example by causing floods or droughts on land or altering fishery stocks in the ocean. Our results fall broadly into three topics: evaluating global climate model predictions; regional impacts of climate changes over western North America; and regional impacts of climate changes over the eastern North Pacific Ocean.

  6. Building a Global Low-Carbon Technology Pathway

    Broader source: Energy.gov [DOE]

    At COP 20 in Lima, Peru, Department of Energy staff will discuss actions we're taking to help implement the United States' commitments to fight global climate change.

  7. Community Issues - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    header-communityissues Community Issues As part of its mission to speak with an informed, unified voice on behalf of a five-county region in two states, the SRSCRO is proactive in identifying and analyzing issues that have the potential to affect the future of the Savannah River Site and the associated economic growth potential of the surrounding region. Detailed information about these issues is developed and reported in layman's terms to local elected officials, business leaders, economic

  8. Sustainable Transport and Climate Process | Open Energy Information

    Open Energy Info (EERE)

    &listPL4E336BF2242B8441 Transport Toolkit Region(s): Global This video provides an introduction to the United Nations Framework on Climate Change and discusses the future of land...

  9. Human choice and climate change. Volume 2: Resources and technology

    SciTech Connect (OSTI)

    Rayner, S.; Malone, E.L.

    1997-12-31

    Foreward: Preface; Introduction; The natural science of global climate change; Land and water use; Coastal zones and oceans; Energy and industry; Energy and social systems; Technological change; and Sponsoring organizations, International Advisory Board, and project participants.

  10. The Climate Policy Narrative for a Dangerously Warming World

    SciTech Connect (OSTI)

    Sanford, Todd; Frumhoff, Peter; Luers, Amy; Gulledge, Jay

    2014-01-01

    It is time to acknowledge that global average temperatures will likely rise above the 2 C policy target and consider how that deeply troubling prospect should affect priorities for communicating and managing the risks of a dangerously warming climate.

  11. Front Burner- Issue 13

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 13 contained a message from the Associate Chief Information Officer (ACIO) for Cybersecurity as well as a listing of recommended cybersecurity practices.

  12. Front Burner- Issue 18

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 18 addresses keeping kids safe on the Internet, cyber crime, and DOE Cyber awareness and training initiatives.

  13. Tribal Utility Policy Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Policy Issues New Mexico July 27, 2015 Margaret ... *US Energy Information Administration New ... nation in utility-scale electricity generation from solar ...

  14. U.S. commitments and responsibilities to reduce global warmings: Contributions of state-level policies and programs

    SciTech Connect (OSTI)

    Wilt, C.A.; Feldman, D.L.

    1995-12-01

    Global warming is one of the most contentious and complex environmental issues confronting scientists and public policy makers. The scope and potential impacts of global warming are immense, affecting virtually all natural processes at many levels, including coastal zone erosion, estuarine habitat, forests, and agriculture. We hypothesize that managing the natural and societal impacts of global warming, including the costs of its management, abatement, and adaptation, requires not only the cooperation of international agencies and national government, but of individual states and provinces as well. There has been a considerable increase in state-level activity to reduce global warming in the United States, but there has been little assessment of its extent or state motivations. This paper will provide an overview of possible U.S. states` commitments and responsibilities under international treaties and agreements, as well as national policy decrees such as the Clinton Administrations` Climate Change Action Plan. A review of current states` activities with brief case studies of the more progressive state programs (Connecticut, Iowa, California, Missouri, Oregon), their achievements, and their significance. We focus upon federally-mandated global change activities imposed upon states (e.g., national regulations to conserve energy or reduce emissions) and state-motivated policies not required by any national regulation (e.g., land use, transportation, regional planning policies with impacts on global change.) The latter policies may be aimed specifically at global warming prevention or mitigation or they may be incidental, beneficial by-products of policies intended for other purposes--so called `no regrets` policies. We compare the performance of state policies in these two categories in order to ascertain their relative effectiveness and promise for addressing climate change problems.

  15. DOE Issues 82nd Lessons Learned Quarterly Report | Department of Energy

    Energy Savers [EERE]

    Issues 82nd Lessons Learned Quarterly Report DOE Issues 82nd Lessons Learned Quarterly Report March 3, 2015 - 10:08am Addthis The 82nd Lessons Learned Quarterly Report (LLQR) features recently issued Council on Environmental Quality (CEQ) revised draft guidance on considering greenhouse gas emissions and climate change in NEPA reviews, and a new Executive Order that establishes a federal flood risk management standard to respond to climate change. For more LLQR, click here. Addthis Related

  16. Global Energy Futures Model

    Energy Science and Technology Software Center (OSTI)

    2004-01-01

    The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 13 other measures of environmental impact. It includes historical data frommore » 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2002 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of what ir scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.« less

  17. Global environmental change: Modifying human contributions through education

    SciTech Connect (OSTI)

    Carter, L.M.

    1997-12-31

    The 1995 Intergovernmental Panel on Climate Change (IPCC) Science report concludes that evidence now available {open_quotes}points toward a discernible human influence on global climate{close_quotes}. Reductions in emissions will require changes in human behavior. Knowledge, often through education, is an important moderator of human environmental behavior. This study assessed whether gains in global environmental change knowledge would lead to changes in human behaviors that could be deemed environmentally responsible.

  18. Climate Data Operators (CDO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Data Operators (CDO) Climate Data Operators (CDO) Description and Overview CDO is a large tool set for working on climate data. NetCDF 34, GRIB including SZIP compression,...

  19. U.S. OpenLabs - Climate Change | Open Energy Information

    Open Energy Info (EERE)

    capacity building and training activities address climate change issues? Retrieved from "http:en.openei.orgwindex.php?titleGateway:U.S.OpenLabsTraining&oldid386198...

  20. Statement by Secretary Moniz on National Climate Assessment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy by Secretary Moniz on National Climate Assessment Statement by Secretary Moniz on National Climate Assessment May 6, 2014 - 10:01am Addthis News Media Contact (202) 586-4940 WASHINGTON -- Today, Energy Secretary Ernest Moniz issued the following statement on the 3rd U.S. National Climate Assessment: "The scientific community has been sounding the alarm over climate change for decades, and the 3rd U.S. National Climate Assessment released today offers the most comprehensive

  1. A special issue on the RCPs

    SciTech Connect (OSTI)

    Van Vuuren, Detlef; Edmonds, James A.; Kainuma, M.; Riahi, Keywan; Weyant, John

    2011-11-01

    This paper provides an editors' introduction to the special issue of Climatic Change on the RCPs. Scenarios form a crucial element in climate change research. They allow researchers to explore the long-term consequences of decisions today, while taking account of the inertia in both the socio-economic and physical system. Scenarios also form an integrating element among the different research disciplines of those studying climate change, such as economists, technology experts, climate researchers, atmospheric chemists and geologists. In 2007, the IPCC requested the scientific community to develop a new set of scenarios, as the existing scenarios (published in the Special Report on Emissions Scenarios, (Nakicenovic and Swart 2000), and called the 'SRES scenarios') needed to be updated and expanded in scope (see Moss et al. (2010) for a detailed discussion). Researchers from different disciplines worked together to develop a process to craft these new scenarios, as summarized by Moss, et al. (2010). The Integrated Assessment Modeling Consortium (IAMC), founded in response to the IPCC call, played a key role in this process.1 The scenario development process aims to develop a set of new scenarios that facilitate integrated analysis of climate change across the main scientific communities. The process comprises 3 main phases: (1) an initial phase, developing a set of pathways for emissions, concentrations and radiative forcing, (2) a parallel phase, comprising both the development of new socio-economic storylines and climate model projections, and (3) an integration phase, combining the information from the first phases into holistic mitigation, impacts and vulnerability assessments. The pathways developed in the first phase were called 'Representative Concentration Pathways (RCPs)'. They play an important role in providing input for prospective climate model experiments, including both the decadal and long-term projections of climate change. The RCPs also provide an important reference point for new research within the integrated assessment modeling (IAM) community by standardizing on a common set of year-2100 conditions, and exploring alternative pathways and policies that could produce these outcomes. By design, the RCPs, as a set, cover the range of radiative forcing levels examined in the open literature and contain relevant information for climate model runs. This Special Issue documents the main assumptions and characteristics of the RCPs, and, in particular, the various steps that were involved in their development. A number of collaborative activities were initiated and finalized during the last 2-3 years to develop the RCPs. This required the cooperation of researchers from various disciplines involved in climate research, including emission experts, climate modelers, atmospheric chemistry modelers, land use modelers and experts involved in integrated assessment. The four RCPs together reflect the range of year-2100 radiative forcing values found in the literature, i.e. from 2.6 to 8.5 W/m{sup 2}. The papers in this Special Issue describe the individual RCPs, but also the various integrative steps that were necessary within the RCP development process to provide a harmonized set of pathways, that show a smooth transition from the past and extend far into the future for very long-term experiments. Important outcomes of this process included, for instance, the development of new emission inventories, new methods for the harmonization of spatial land use patterns, as well as extensions of the RCP trends beyond 2100. They briefly discuss the content of the individual papers.

  2. Geographical features of global water cycle during warm geological epochs

    SciTech Connect (OSTI)

    Georgiadi, A.G.

    1996-12-31

    The impact of global warming on the water cycle can be extremely complex and diverse. The goal of the investigation was to estimate the geographic features of the mean annual water budget of the world during climatic optimums of the Holocene and the Eemian interglacial periods. These geological epochs could be used as analogs of climatic warming on 1 degree, centigrade and 2 degrees, centigrade. The author used the results of climatic reconstructions based on a simplified version of a GCM.

  3. Outage management and health physics issue, 2007

    SciTech Connect (OSTI)

    Agnihotri, Newal (ed.)

    2007-05-15

    The focus of the May-June issue is on outage management and health physics. Major articles/reports in this issue include: India: a potential commercial opportunity, a U.S. Department of Commerce Report, by Joe Neuhoff and Justin Rathke; The changing climate for nuclear energy, by Skip Bowman, Nuclear Energy Insitute; Selecting protective clothing, by J. Mark Price, Southern California Edison; and Succssful refurbishment outage, by Sudesh K. Gambhir, Omaha Public Power District. Industry innovation articles in this issue are: Containment radiation monitoring spiking, by Michael W. Lantz and Robert Routolo, Arizona Public Service Company; Improved outage performance, by Michael Powell and Troy Wilfong, Arizona Public Service Company, Palo Verde Nuclear Generating Station; Stop repacking valves and achieve leak-free performance, by Kenneth Hart, PPL Susquehanna LLC; and Head assembly upgrade package, by Timothy Petit, Dominion Nuclear.

  4. CORRECTED: DOE Issues 85th Lessons Learned Quarterly Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy CORRECTED: DOE Issues 85th Lessons Learned Quarterly Report CORRECTED: DOE Issues 85th Lessons Learned Quarterly Report December 2, 2015 - 8:22am Addthis The 85th Lessons Learned Quarterly Report features Administration changes in environmental policy to better account for climate change and improve watershed- and landscape-scale planning. Addthis Related Articles DOE Issues 85th Lessons Learned Quarterly Report 77th Lessons Learned Quarterly Report Issued DOE Issues 82nd Lessons

  5. Climate, Earth system project draws on science powerhouses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate, Earth system project draws on science powerhouses Climate, Earth system project draws on science powerhouses The project will focus initially on three climate-change science drivers and corresponding questions to be answered during the project's initial phase. September 25, 2014 Computer modeling provides policymakers with essential information on such data as global sea surface temperatures related to specific currents. Computer modeling provides policymakers with essential information

  6. ARM - Lesson Plans: Climate in the Pacific Region

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate in the Pacific Region Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Climate in the Pacific Region Objective The objective is to enable students to understand the main features of the climate of the Tropical Pacific region: high temperatures with little seasonal change

  7. Statement by Secretary Moniz on IPCC's Working Group Report on Climate

    Energy Savers [EERE]

    Change Mitigation | Department of Energy IPCC's Working Group Report on Climate Change Mitigation Statement by Secretary Moniz on IPCC's Working Group Report on Climate Change Mitigation April 13, 2014 - 6:45pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- Today, Energy Secretary Ernest Moniz issued the following statement on the Intergovernmental Panel on Climate Change's Working Group report on climate change mitigation: "The Intergovernmental Panel on Climate Change's

  8. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    during years with abnormally wet winters While we cannot observe future climate, Williams said, we can consider projections of future climate trends produced by a collection of...

  9. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality...

  10. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate change cripples forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality...

  11. Climate Change Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Interior Climate Change Response "From the Everglades to the Great Lakes to Alaska and everywhere in between, climate change is a leading threat to natural and cultural ...

  12. Computer modeling of the global warming effect

    SciTech Connect (OSTI)

    Washington, W.M.

    1993-12-31

    The state of knowledge of global warming will be presented and two aspects examined: observational evidence and a review of the state of computer modeling of climate change due to anthropogenic increases in greenhouse gases. Observational evidence, indeed, shows global warming, but it is difficult to prove that the changes are unequivocally due to the greenhouse-gas effect. Although observational measurements of global warming are subject to ``correction,`` researchers are showing consistent patterns in their interpretation of the data. Since the 1960s, climate scientists have been making their computer models of the climate system more realistic. Models started as atmospheric models and, through the addition of oceans, surface hydrology, and sea-ice components, they then became climate-system models. Because of computer limitations and the limited understanding of the degree of interaction of the various components, present models require substantial simplification. Nevertheless, in their present state of development climate models can reproduce most of the observed large-scale features of the real system, such as wind, temperature, precipitation, ocean current, and sea-ice distribution. The use of supercomputers to advance the spatial resolution and realism of earth-system models will also be discussed.

  13. Global carbon budget 2014

    SciTech Connect (OSTI)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chini, L. P.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A. K.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peng, S.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2015-05-08

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ;, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr⁻¹,ELUC 0.9 ± 0.5 GtC yr⁻¹, GATM 4.3 ± 0.1 GtC yr⁻¹, SOCEAN 2.6 ± 0.5 GtC yr⁻¹, and SLAND 2.9 ± 0.8 GtC yr⁻¹. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr⁻¹, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr⁻¹, GATM was 5.4 ± 0.2 GtC yr⁻¹, SOCEAN was 2.9 ± 0.5 GtC yr⁻¹, and SLAND was 2.5 ± 0.9 GtC yr⁻¹. GATM was high in 2013, reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr⁻¹), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870–2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).

  14. Global carbon budget 2014

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; et al

    2015-05-08

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissionsmore » from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ;, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr⁻¹,ELUC 0.9 ± 0.5 GtC yr⁻¹, GATM 4.3 ± 0.1 GtC yr⁻¹, SOCEAN 2.6 ± 0.5 GtC yr⁻¹, and SLAND 2.9 ± 0.8 GtC yr⁻¹. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr⁻¹, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr⁻¹, GATM was 5.4 ± 0.2 GtC yr⁻¹, SOCEAN was 2.9 ± 0.5 GtC yr⁻¹, and SLAND was 2.5 ± 0.9 GtC yr⁻¹. GATM was high in 2013, reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr⁻¹), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870–2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).« less

  15. Global temperature deviations as a random walk

    SciTech Connect (OSTI)

    Karner, O.

    1996-12-31

    Surface air temperature is the main parameter to represent the earth`s contemporary climate. Several historical temperature records on a global/monthly basis are available. Time-series analysis shows that they can be modelled via autoregressive moving average models closely connected to the classical random walk model. Fitted models emphasize a nonstationary character of the global/monthly temperature deviation from a certain level. The nonstationarity explains all trends and periods, found in the last century`s variability of global mean temperature. This means that the short-term temperature trends are inevitable and may have little in common with a currently increasing carbon dioxide amount. The calculations show that a reasonable understanding of the contemporary global mean climate is attainable, assuming random forcing to the climate system and treating temperature deviation as a response to it. The forcings occur due to volcanic eruptions, redistribution of cloudiness, variations in snow and ice covered areas, changes in solar output, etc. Their impact can not be directly estimated from changes of the earth`s radiation budget at the top of the atmosphere, because actual measurements represent mixture of the forcings and responses. Thus, it is impossible empirically to separate the impact of one particular forcing (e.g., that due to increase of CO{sub 2} amount) from the sequence of all existing forcings in the earth climate system. More accurate modelling involving main feedback loops is necessary to ease such a separation.

  16. Hydrologic responses of a tropical catchment in Thailand and two temperate/cold catchments in north America to global warming

    SciTech Connect (OSTI)

    Gan, T.Y.; Ahmad, Z.

    1997-12-31

    The hydrologic impact or sensitivities of three medium-sized catchments to global warming, one of tropical climate in Northern Thailand and two of temperate climate in the Sacramento and San Joaquin River basins of California, were investigated.

  17. Global warming: Science or politics? Part 2

    SciTech Connect (OSTI)

    Dorweiler, V.P.

    1998-05-01

    Supplementing the conclusion that ``there has been a discernible influence of human activity on global climate`` is a set of dire consequences to the globe and human population. One consequence is the spread of tropical diseases. It has not been concluded whether the spread of disease is due to global conditions or to opening of tropical forests to commerce, allowing spread by travelers. Whether these forecasts abet the claimed relation of human activity to global warming, they are not a new phenomenon. In the space of several decades, dire consequences have been forecast in three sectors: natural resource consumption, energy resources and environmental fate. These three areas are reviewed.

  18. Implementation of global energy sustainability

    SciTech Connect (OSTI)

    Grob, G.R.

    1998-02-01

    The term energy sustainability emerged from the UN Conference on Environment and Development in Rio 1992, when Agenda 21 was formulated and the Global Energy Charter proclaimed. Emission reductions, total energy costing, improved energy efficiency, and sustainable energy systems are the four fundamental principles of the charter. These principles can be implemented in the proposed financial, legal, technical, and education framework. Much has been done in many countries toward the implementation of the Global Energy Charter, but progress has not been fast enough to ease the disastrous effects of the too many ill-conceived energy systems on the environment, climate, and health. Global warming is accelerating, and pollution is worsening, especially in developing countries with their hunger for energy to meet the needs of economic development. Asian cities are now beating all pollution records, and greenhouse gases are visibly changing the climate with rising sea levels, retracting glaciers, and record weather disasters. This article presents why and how energy investments and research money have to be rechanneled into sustainable energy, rather than into the business-as-usual of depleting, unsustainable energy concepts exceeding one trillion dollars per year. This largest of all investment sectors needs much more attention.

  19. President Barack Obama at UN Climate Change Summit

    ScienceCinema (OSTI)

    Obama, Barack

    2013-05-29

    In his first address to the United Nations as Commander-in- Chief, President Obama addresses the pressing issue of climate change. The one-day UN summit brought together delegations from 90 nations. September 22, 2009 (Public Domain)

  20. President Barack Obama at UN Climate Change Summit

    Broader source: Energy.gov [DOE]

    In his first address to the United Nations as Commander-in-Chief, President Obama addresses the pressing issue of climate change. The one-day UN summit brought together delegations from 90 nations.

  1. Task Force on Climate Preparedness and Resilience Announces Tribal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Tribes are at the forefront of many climate issues, so we are excited to work in a more ... leaders loud and clear: when the federal family combines its efforts, we get better ...

  2. Climate selection and development of climate indicators

    SciTech Connect (OSTI)

    Bowen, W.M.; Moreno, S.; Olsen, A.R.

    1982-09-01

    A climate analysis procedure for selecting climate locations which would represent the variation in climate conditions throughout the United States is documented. Separate energy analysis projects for three building categories were to use the results of the climate location project. The categories are: commercial buildings (including multifamily residences), single family residences, and mobile homes. The overall objectives, approach, and method used for all three categories are presented, then the specific application of the general method to each building category is discussed. Climate selection results, conclusions, recommendations, and limits for each building category are presented within the description of the application of the method for that category. (LEW)

  3. Global change monitoring with lichens

    SciTech Connect (OSTI)

    Insarov, G.

    1997-12-31

    Environmental monitoring involves observations and assessment of changes in ecosystems and their components caused by anthropogenetic influence. An ideal monitoring system enables quantification of the contemporary state of the environment and detect changes in it. An important function of monitoring is to assess environment quality of areas that are not affected by local anthropogenic impacts, i.e. background areas. In background areas terrestrial ecosystems are mainly affected by such anthropogenic factors as lowered air pollution and global climate change. Assessment of biotic responses to altered climatic and atmospheric conditions provides an important basis for ecosystem management and environmental decision making. Without the ability to make such assessment, sustainability of ecosystems as a support system for humans remains uncertain.

  4. From global change science to action with social sciences

    SciTech Connect (OSTI)

    Weaver, C. P.; Mooney, Sian; Allen, D.; Beller-Simms, Nancy; Fish, T.; Grambsch, A.; Hohenstein, W.; Jacobs, Kathy; Kenney, Melissa A.; Lane, Meredith A.; Langner, L.; Larson, E.; McGinnis, D. L.; Moss, Richard H.; Nichols, L. G.; Nierenberg, Claudia; Seyller, E. A.; Stern, Paul; Winthrop, R.

    2014-08-01

    US efforts to integrate social and biophysical sciences to address the issue of global change exist within a wider movement to understand global change as a societal challenge and to inform policy. Insights from the social sciences can help transform global change research into action.

  5. DOE Issues Noncompliance Notices

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Office of Enforcement issued a Notice of Noncompliance Determination to Haier America Trading, L.L.C., regarding Haier compact chest freezer model number HNCM070,...

  6. DOE Issues Noncompliance Notices

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Office of Enforcement issued Notices of Noncompliance Determinations to Midea America Corporation and Felix Storch, Inc. for a compact freezer that, as determined by...

  7. Climate Action Champions: Resilience and Equity Webinar | Department of

    Office of Environmental Management (EM)

    Energy Action Champions: Resilience and Equity Webinar Climate Action Champions: Resilience and Equity Webinar Climate Action Champions: Resilience and Equity (July 9, 2015) This webinar was hosted jointly by the Department of Energy and the Department of Housing and Urban Development (HUD). Presenters from the Boston Metropolitan Area Planning Council, PolicyLink, and the National Institute of Environmental Health Sciences discussed issues of climate change resilience and equity, including

  8. Biofuels Issues and Trends

    Gasoline and Diesel Fuel Update (EIA)

    Biofuels Issues and Trends October 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Biofuels Issues and Trends i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government.

  9. EPA Climate Leadership Conference

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA), in collaboration with the Association of Climate Change Officers (ACCO), Center for Climate and Energy Solutions (C2ES), and the Climate Registry, is hosting the Climate Leadership Conference in Washington, D.C., on Feb. 23-25, 2015.

  10. Climate Leadership Conference

    Broader source: Energy.gov [DOE]

    Hosted and organized by the Association of Climate Change Officers (ACCO), Center for Climate and Energy Solutions (C2ES), and the Climate Registry, the three-day conference will showcase how new business opportunities, current policies, technologies, climate solutions and energy transformation will drive our low-carbon future.

  11. Climate Change What We Know and What We Need to Learn

    ScienceCinema (OSTI)

    LLNL - University of California Television

    2009-09-01

    How is human activity changing the climate and what are the consequences? Is global warming the cause of more frequent droughts, stronger storms and less snow in the mountains? Lawrence Livermore National Laboratory Scientist Dave Bader explores what scientists know about climate change and the research tools used to study the climate. Series: Science on Saturday [10/2006] [Science] [Show ID: 11544

  12. Climate Change What We Know and What We Need to Learn

    SciTech Connect (OSTI)

    LLNL - University of California Television

    2008-05-01

    How is human activity changing the climate and what are the consequences? Is global warming the cause of more frequent droughts, stronger storms and less snow in the mountains? Lawrence Livermore National Laboratory Scientist Dave Bader explores what scientists know about climate change and the research tools used to study the climate. Series: Science on Saturday [10/2006] [Science] [Show ID: 11544

  13. Energy Secretary Moniz Launches Initiatives to Advance Clean Energy Technologies, Combat Climate Change at Energy Ministerials in Mexico

    Broader source: Energy.gov [DOE]

    Energy Secretary Ernest Moniz joined global energy leaders in launching new initiatives at two major climate and clean energy conferences in Mexico.

  14. Investing in Oil and Natural Gas A Few Key Issues

    Gasoline and Diesel Fuel Update (EIA)

    Strategic Advisors in Global Energy Strategic Advisors in Global Energy Strategic Advisors in Global Energy Investing in Oil and Natural Gas: A Few Key Issues Prepared for EIA Conference Susan Farrell, Senior Director PFC Energy April 8, 2009 Investing in Oil and Gas| PFC Energy| Page 2 The Top 20 IOCs and Top 20 NOCs Account for Over Half of E&P Spend Source: PFC Energy, Global E&P Surveys Investing in Oil and Gas| PFC Energy| Page 3 Oil Prices Rose, But So Did Costs + 52% $0 $20 $40

  15. Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis

    SciTech Connect (OSTI)

    Marten, Alex; Kopp, Robert E.; Shouse, Kate C.; Griffiths, Charles; Hodson, Elke L.; Kopits, Elizabeth; Mignone, Bryan K.; Moore, Chris; Newbold, Steve; Waldhoff, Stephanie T.; Wolverton, Ann

    2013-04-01

    The social cost of carbon (SCC) is a monetized metric for evaluating the benefits associated with marginal reductions in carbon dioxide (CO2) emissions. It represents the expected welfare loss from the future damages caused by the release of one tonne of CO2 in a given year, expressed in consumption equivalent terms. It is intended to be a comprehensive measure, taking into account changes in agricultural productivity, human health risks, loss of ecosystem services and biodiversity, and the frequency and severity of flooding and storms, among other possible impacts. Estimating the SCC requires long-term modeling of global economic activity, the climate system, and the linkages between the two through anthropogenic greenhouse gas (GHG) emissions and the effects of changing climatic conditions on economic activity and human well-being. The United States government currently uses the SCC in regulatory benefit-cost analyses to assess the welfare effects of changes in CO2 emissions. Consistent application of the SCC to federal rulemaking analyses began in 2009-2010 with the development of a set of global SCC estimates that employed three prominent integrated assessment models (IAMs) -- DICE, FUND, and PAGE. The U.S. government report identified a number of limitations associated with SCC estimates in general and its own assumptions in particular: an incomplete treatment of damages, including potential “catastrophic” impacts; uncertainty regarding the extrapolation of damage functions to high temperatures; incomplete treatment of adaptation and technological change; and the evaluation of uncertain outcomes in a risk-neutral fashion. External experts have identified other potential issues, including how best to model long-term socio-economic and emissions pathways, oversimplified physical climate and carbon cycle modeling within the IAMs, and an inconsistency between non-constant economic growth scenarios and constant discount rates. The U.S. government has committed to updating the estimates regularly as modeling capabilities and scientific and economic knowledge improves. To help foster further improvements in estimating the SCC, the U.S. Environmental Protection Agency and the U.S. Department of Energy hosted a pair of workshops on “Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis.” The first focused on conceptual and methodological issues related to integrated assessment modeling and the second brought together natural and social scientists to explore methods for improving damage assessment for multiple sectors. These two workshops provide the basis for the 13 papers in this special issue.

  16. Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan B Remedy for Global Warming Andrew A. Lacis NASA Goddard Institute for Space Studies Accelerated melting of Greenland ice is a clear indication that consequences of global warming are real and impending. The underlying causes of global warming are well enough understood, but the necessary reduction of greenhouse gases to prevent irreversible climate change is unlikely to happen before the point of no return is reached. To reverse the impending sea level rise, geoengineering counter-

  17. ARM - What Are the Effects of Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What Are the Effects of Global Warming? As greenhouse gases continue to increase, the earth may experience significant climate changes. In addition, there are many other impacts that global warming can have on the earth. You can learn more

  18. Picture of the Week: The art of climate modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    02 The art of climate modeling The paint-like swirls of this visualization from Los Alamos National Laboratory depict global water-surface temperatures, with the surface texture driven by vorticity. March 12, 2015 The paint-like swirls of this visualization from Los Alamos National Laboratory depict global water-surface temperatures, with the surface texture driven by vorticity. . The paint-like swirls of this visualization from Los Alamos National Laboratory depict global water-surface

  19. Selected Translated Abstracts of Chinese-Language Climate Change Publications

    SciTech Connect (OSTI)

    Cushman, R.M.; Burtis, M.D.

    1999-05-01

    This report contains English-translated abstracts of important Chinese-language literature concerning global climate change for the years 1995-1998. This body of literature includes the topics of adaptation, ancient climate change, climate variation, the East Asia monsoon, historical climate change, impacts, modeling, and radiation and trace-gas emissions. In addition to the biological citations and abstracts translated into English, this report presents the original citations and abstracts in Chinese. Author and title indexes are included to assist the reader in locating abstracts of particular interest.

  20. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    SciTech Connect (OSTI)

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (?400 ppm); increasing air temperatures (2-4C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  1. Formulating Climate Change Scenarios to Inform Climate - Resilient...

    Open Energy Info (EERE)

    Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Formulating Climate Change...

  2. Tools for Teaching Climate Change Studies

    SciTech Connect (OSTI)

    Maestas, A.M.; Jones, L.A.

    2005-03-18

    The Atmospheric Radiation Measurement Climate Research Facility (ACRF) develops public outreach materials and educational resources for schools. Studies prove that science education in rural and indigenous communities improves when educators integrate regional knowledge of climate and environmental issues into school curriculum and public outreach materials. In order to promote understanding of ACRF climate change studies, ACRF Education and Outreach has developed interactive kiosks about climate change for host communities close to the research sites. A kiosk for the North Slope of Alaska (NSA) community was installed at the Iupiat Heritage Center in 2003, and a kiosk for the Tropical Western Pacific locales will be installed in 2005. The kiosks feature interviews with local community elders, regional agency officials, and Atmospheric Radiation Measurement (ARM) Program scientists, which highlight both research and local observations of some aspects of environmental and climatic change in the Arctic and Pacific. The kiosks offer viewers a unique opportunity to learn about the environmental concerns and knowledge of respected community elders, and to also understand state-of-the-art climate research. An archive of interviews from the communities will also be distributed with supplemental lessons and activities to encourage teachers and students to compare and contrast climate change studies and oral history observations from two distinct locations. The U.S. Department of Energy's ACRF supports education and outreach efforts for communities and schools located near its sites. ACRF Education and Outreach has developed interactive kiosks at the request of the communities to provide an opportunity for the public to learn about climate change from both scientific and indigenous perspectives. Kiosks include interviews with ARM scientists and provide users with basic information about climate change studies as well as interviews with elders and community leaders discussing the impacts of climate change on land, sea, and other aspects of village life.

  3. Global crop yield losses from recent warming

    SciTech Connect (OSTI)

    Lobell, D; Field, C

    2006-06-02

    Global yields of the world-s six most widely grown crops--wheat, rice, maize, soybeans, barley, sorghum--have increased since 1961. Year-to-year variations in growing season minimum temperature, maximum temperature, and precipitation explain 30% or more of the variations in yield. Since 1991, climate trends have significantly decreased yield trends in all crops but rice, leading to foregone production since 1981 of about 12 million tons per year of wheat or maize, representing an annual economic loss of $1.2 to $1.7 billion. At the global scale, negative impacts of climate trends on crop yields are already apparent. Annual global temperatures have increased by {approx}0.4 C since 1980, with even larger changes observed in several regions (1). While many studies have considered the impacts of future climate changes on food production (2-5), the effects of these past changes on agriculture remain unclear. It is likely that warming has improved yields in some areas, reduced them in others, and had negligible impacts in still others; the relative balance of these effects at the global scale is unknown. An understanding of this balance would help to anticipate impacts of future climate changes, as well as to more accurately assess recent (and thereby project future) technologically driven yield progress. Separating the contribution of climate from concurrent changes in other factors--such as crop cultivars, management practices, soil quality, and atmospheric carbon dioxide (CO{sub 2}) levels--requires models that describe the response of yields to climate. Studies of future global impacts of climate change have typically relied on a bottom-up approach, whereby field scale, process-based models are applied to hundreds of representative sites and then averaged (e.g., ref 2). Such approaches require input data on soil and management conditions, which are often difficult to obtain. Limitations on data quality or quantity can thus limit the utility of this approach, especially at the local scale (6-8). At the global scale, however, many of the processes and impacts captured by field scale models will tend to cancel out, and therefore simpler empirical/statistical models with fewer input requirements may be as accurate (8, 9). Empirical/statistical models also allow the effects of poorly modeled processes (e.g., pest dynamics) to be captured and uncertainties to be readily quantified (10). Here we develop new, empirical/statistical models of global yield responses to climate using datasets on broad-scale yields, crop locations, and climate variability. We focus on global average yields for the six most widely grown crops in the world: wheat, rice, maize, soybeans, barley, and sorghum. Production of these crops accounts for over 40% of global cropland area (11). 55% of non-meat calories, and over 70% of animal feed (12).

  4. A new scenario framework for climate change research: background, process, and future directions

    SciTech Connect (OSTI)

    Ebi, Kristie L.; Hallegatte, Stephane; Kram, Tom; Arnell, Nigel; Carter, Tim; Edmonds, James A.; Kriegler, Elmar; Mathur, Ritu; O'Neill, Brian; Riahi, Keywan; Winkler, Harald; Van Vuuren, Detlef; Zwickel, Timm

    2014-02-01

    The scientific community is developing new integrated global, regional, and sectoral scenarios to facilitate interdisciplinary research and assessment to explore the range of possible future climates and related physical changes could pose to human and natural systems; how these could interact with social, economic, and environmental development pathways; the degree to which mitigation and adaptation policies can avoid and reduce those risks; the costs and benefits of various policy mixes; residual impacts under alternative pathways; and the relationship with sustainable development. This paper provides the background to, and process of, developing the conceptual framework for these scenarios, described in three other papers in this Special Issue (van Vuuren et al.; O'Neill et al.; Kriegler et al.). The paper also discusses research needs to further develop and apply this framework. The goal is to encourage climate change researchers from a broad range of perspectives and disciplines to work together to develop policy-relevant scenarios and explore the implications of different possible futures for the challenges and opportunities human and natural systems could face with increasing climate change.

  5. (Managing the global environment)

    SciTech Connect (OSTI)

    Rayner, S.F.

    1989-10-03

    The conference was stimulated by concern that policy makers increasingly have to make environmental management decisions in the absence of solidly established scientific consensus about ecological processes and the consequences of human actions. Often, as in the case of climate change, some decisions may have to be made in the absence of information that is desirable but may not be available for years to come, if ever. Six topics were identified as running throughout the Congress. These were: the epistemology and history of the sciences or disciplines concerned with the environment, including the scientific basis of rationality and modes of dealing with uncertainty and complexity; the social, economic, and institutional conditions for the production of knowledge bearing on the environment, including the politics of research and the improvement of scientific data; the structuring and institutionalization of expert assessments on national and international levels, including the global distribution of expertise; the means of establishing scientific information, the role of the media in transmitting and processing knowledge about the environment, and the organization of public environmental debate; and decision making and management under conditions of uncertainty; and, finally the relationship between science and ethics. 13 refs.

  6. Detection and Attribution of Regional Climate Change

    SciTech Connect (OSTI)

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and ocean circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.

  7. Environmental Compliance Issue Coordination

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-01-07

    To establish the Department of Energy (DOE) requirements for coordination of significant environmental compliance issues to ensure timely development and consistent application of Departmental environmental policy and guidance. Cancels DOE O 5400.2. Para. 5a(2) and 5a(7) canceled by DOE O 231.1.

  8. DOE Issues 85th Lessons Learned Quarterly Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Issues 85th Lessons Learned Quarterly Report DOE Issues 85th Lessons Learned Quarterly Report December 1, 2015 - 4:22pm Addthis The 85th Lessons Learned Quarterly Report features Administration changes in environmental policy to better account for climate change and improve watershed- and landscape-scale planning. Addthis Related Articles CORRECTED: DOE Issues 85th Lessons Learned Quarterly Report DOE Issues 82nd Lessons Learned Quarterly Report DOE Announces Webinars on Geography of

  9. REGIONAL CLIMATE CHANGE IMPACT WEBINAR SERIES U.S. Department of Energy

    Energy Savers [EERE]

    REGIONAL CLIMATE CHANGE IMPACT WEBINAR SERIES U.S. Department of Energy U.S. Global Climate Change Research Program THE QUADRENNIAL ENERGY REVIEW WITH KATE MARKS U.S. Department of Energy QUADRENNIAL ENERGY REVIEW (QER) QUADRENNIAL ENERGY REVIEW ENERGY TRANSMISSION, STORAGE, AND DISTRIBUTION INFRASTRUCTURE Minorities in Energy Climate Change Series August 2015 Changing U.S. Energy Landscape * Climate change impacts * Vulnerabilities more evident: aging infrastructure, physical and cyber threats

  10. Climatic Solar | Open Energy Information

    Open Energy Info (EERE)

    Climatic Solar Jump to: navigation, search Logo: Climatic Solar Name: Climatic Solar Address: 650 2nd Lane Place: Vero Beach, Florida Zip: 32962 Sector: Solar Product: solar energy...

  11. Eos Climate | Open Energy Information

    Open Energy Info (EERE)

    Eos Climate Place: South San Francisco, California Zip: 94080 Product: California-based firm focused on developing climate change mitigation strategies. References: Eos Climate1...

  12. Public Health-Related Impacts of Climate Change inCalifornia

    SciTech Connect (OSTI)

    Drechsler, D.M.; Motallebi, N.; Kleeman, M.; Cayan, D.; Hayhoe,K.; Kalkstein, L.S.; Miller, N.L.; Jin, J.; VanCuren, R.A.

    2005-12-01

    In June 2005 Governor Arnold Schwarzenegger issued Executive Order S-3-05 that set greenhouse gas emission reduction targets for California, and directed the Secretary of the California Environmental Protection Agency to report to the governor and the State legislature by January 2006 and biannually thereafter on the impacts to California of global warming, including impacts to water supply, public health, agriculture, the coastline, and forestry, and to prepare and report on mitigation and adaptation plans to combat these impacts. This report is a part of the report to the governor and legislature, and focuses on public health impacts that have been associated with climate change. Considerable evidence suggests that average ambient temperature is increasing worldwide, that temperatures will continue to increase into the future, and that global warming will result in changes to many aspects of climate, including temperature, humidity, and precipitation (McMichael and Githeko, 2001). It is expected that California will experience changes in both temperature and precipitation under current trends. Many of the changes in climate projected for California could have ramifications for public health (McMichael and Githeko, 2001), and this document summarizes the impacts judged most likely to occur in California, based on a review of available peer-reviewed scientific literature and new modeling and statistical analyses. The impacts identified as most significant to public health in California include mortality and morbidity related to temperature, air pollution, vector and water-borne diseases, and wildfires. There is considerable complexity underlying the health of a population with many contributing factors including biological, ecological, social, political, and geographical. In addition, the relationship between climate change and changes in public health is difficult to predict for the most part, although more detailed information is available on temperature-related mortality and air pollution effects than the other endpoints discussed in this document. Consequently, these two topics are discussed in greater detail. Where possible, estimates of the magnitude and significance of these impacts are also discussed, along with possible adaptations that could reduce climate-related health impacts. In the context of this review, weather refers to meteorological conditions at a specific place and time over a relatively short time frame, such as up to a year or two. Climate, on the other hand, refers to the same meteorological conditions, but over a longer time frame, such as decades or centuries.

  13. Climate-derived tensions in Arctic security.

    SciTech Connect (OSTI)

    Backus, George A.; Strickland, James Hassler

    2008-09-01

    Globally, there is no lack of security threats. Many of them demand priority engagement and there can never be adequate resources to address all threats. In this context, climate is just another aspect of global security and the Arctic just another region. In light of physical and budgetary constraints, new security needs must be integrated and prioritized with existing ones. This discussion approaches the security impacts of climate from that perspective, starting with the broad security picture and establishing how climate may affect it. This method provides a different view from one that starts with climate and projects it, in isolation, as the source of a hypothetical security burden. That said, the Arctic does appear to present high-priority security challenges. Uncertainty in the timing of an ice-free Arctic affects how quickly it will become a security priority. Uncertainty in the emergent extreme and variable weather conditions will determine the difficulty (cost) of maintaining adequate security (order) in the area. The resolution of sovereignty boundaries affects the ability to enforce security measures, and the U.S. will most probably need a military presence to back-up negotiated sovereignty agreements. Without additional global warming, technology already allows the Arctic to become a strategic link in the global supply chain, possibly with northern Russia as its main hub. Additionally, the multinational corporations reaping the economic bounty may affect security tensions more than nation-states themselves. Countries will depend ever more heavily on the global supply chains. China has particular needs to protect its trade flows. In matters of security, nation-state and multinational-corporate interests will become heavily intertwined.

  14. Biofuels: A Solution for Climate Change

    SciTech Connect (OSTI)

    Woodward, S.

    1999-10-04

    Our lives are linked to weather and climate, and to energy use. Since the late 1970s, the U.S. Department of Energy (DOE) has invested in research and technology related to global climate change. DOE's Office Fuels Development (OFD) manages the National Biofuels Program and is the lead technical advisor on the development of biofuels technologies in the United States. Together with industry and other stakeholders, the program seeks to establish a major biofuels industry. Its goals are to develop and commercialize technologies for producing sustainable, domestic, environmentally beneficial, and economically viable fuels from dedicated biomass feedstocks.

  15. Reducing Our Carbon Footprint: Frontiers in Climate Forecasting (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Collins, Bill

    2011-05-09

    Bill Collins directs Berkeley Lab's research dedicated to atmospheric and climate science. Previously, he headed the development of one of the leading climate models used in international studies of global warming. His work has confirmed that man-made greenhouse gases are probably the main culprits of recent warming and future warming poses very real challenges for the environment and society. A lead author of the most recent assessment of the science of climate change by the United Nations' Integovernmental Panel on Climate Change, Collins wants to create a new kind of climate model, one that will integrate cutting-edge climate science with accurate predictions people can use to plan their lives

  16. ARM - Global Beginners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beginners Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Global Beginners What is Global Warming? Have you noticed a change in the temperature outside? Learn about global warming. What Causes Global Warming? Greenhouse gases, cars, and coal are just a few of the factors that cause global

  17. Climate Impacts of Ice Nucleation

    SciTech Connect (OSTI)

    Gettelman, A.; Liu, Xiaohong; Barahona, Donifan; Lohmann, U.; Chen, Chih-Chieh

    2012-10-27

    Several different ice nucleation parameterizations in two different General Circulation Models are used to understand the effects of ice nucleation on the mean climate state, and the climate effect of aerosol perturbations to ice clouds. The simulations have different ice microphysical states that are consistent with the spread of observations. These different states occur from different parameterizations of the ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. At reasonable efficiencies, consistent with laboratory measurements and constrained by the global radiative balance, black carbon has a small (-0.06 Wm?2) and not statistically significant climate effect. Indirect effects of anthropogenic aerosols on cirrus clouds occur mostly due to increases in homogeneous nucleation fraction as a consequence of anthropogenic sulfur emissions. The resulting ice indirect effects do not seem strongly dependent on the ice micro-physical balance, but are slightly larger for those states with less homogeneous nucleation in the base state. The total ice AIE is estimated at 0.260.09 Wm?2 (1? uncertainty). This represents an offset of 20-30% of the simulated total Aerosol Indirect Effect for ice and liquid clouds.

  18. Indigenous Climate Justice Symposium

    Broader source: Energy.gov [DOE]

    The Indigenous Climate Justice Symposium brings together Native speakers who are working to keep fossil fuels in the ground, by stopping coals terminals, oil trains and fracking, and protecting treaty resources from the threat of climate change.

  19. Sandia Energy - Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Home Analysis Permalink Gallery Results from the Human Resilience Index and Modeling project were reported recently in the National Intelligence Council's Global Trends 2030...

  20. Near-Term Climate Mitigation by Short-Lived Forcers

    SciTech Connect (OSTI)

    Smith, Steven J.; Mizrahi, Andrew H.

    2013-08-12

    Emissions reductions focused on anthropogenic climate forcing agents with relatively short atmospheric lifetimes such as methane (CH4) and black carbon (BC) have been suggested as a strategy to reduce the rate of climate change over the next several decades. We find that reductions of methane and BC would likely have only a modest impact on near-term climate warming. Even with maximally feasible reductions phased in from 2015 to 2035, global mean temperatures in 2050 are reduced by 0.16 C, with an uncertainty range of 0.04-0.36C, with the high end of this range only possible if total historical aerosol forcing is small. More realistic mitigation scenarios would likely provide a smaller climate benefit. The climate benefits from targeted reductions in short-lived forcing agents are smaller than previously estimated and are not substantially different in magnitude from the benefits due to a comprehensive climate policy.

  1. Cleantech Professional Resource Global Limited CPR Global | Open...

    Open Energy Info (EERE)

    Professional Resource Global Limited CPR Global Jump to: navigation, search Name: Cleantech Professional Resource Global Limited (CPR Global) Place: London, United Kingdom Zip:...

  2. Before House Subcommittee on Africa, Global Health, Global Human...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subcommittee on Africa, Global Health, Global Human Rights, and International Organizations, Committee on Foreign Affairs Before House Subcommittee on Africa, Global Health, Global ...

  3. Issue Development sheet Example

    Broader source: Energy.gov [DOE]

    ISSUE DEVELOPMENT SHEET INFORMATION ONLY The information provided below indicates that a potential concern for finding has been identified. Please provide any objective evidence you may have that could either alleviate the concern or eliminate the finding. If no objective evidence is available/can be provided by the end of this audit (at the scheduled end of field work), this information will be included in the audit report and reported as a concern or an audit finding as appropriate.

  4. Issues Management Tool

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    IMTool performs the following: • The IMTool can manage issues, actions, and activities from one screen. • Provides enhanced and intuitive searching, sorting, and filtering capabilities. Grids allow for filtering any column instantly by any data heading. • IMTool uses drop-down menus to ensure date is entered accurately with consistency. • User-friendly system – highly utilized commitment tracking screen functions. Information is viewed on the left side of the screen and managed on the right.

  5. Issue Development sheet Blank

    Broader source: Energy.gov [DOE]

    ISSUE DEVELOPMENT SHEET INFORMATION ONLY The information provided below indicates that a potential concern for finding has been identified. Please provide any objective evidence you may have that could either alleviate the concern or eliminate the finding. If no objective evidence is available/can be provided by the end of this audit (at the scheduled end of field work), this information will be included in the audit report and reported as a concern or an audit finding as appropriate.

  6. Trends `91: A compendium of data on global change---highlights

    SciTech Connect (OSTI)

    Boden, T.A.; Sepanski, R.J.; Stoss, F.W.

    1992-03-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) has been prompted to produce the series Trends, a concise inventory of data in response to heightened concern about global environmental issues, in particular climate changes induced by the greenhouse effect. This report contains extracts from Trends `91 to illustrate the content, style, and presentation of data contained in the full 700-page report. This report includes a listing of the investigators contributing data for Trends `91. In addition, it contains the abstract, foreword, and acknowledgments, as well as the introduction and a sample data record from each of the reports`s five chapters. The chapters are ``Atmospheric CO{sub 2},`` ``Atmospheric CH{sub 4},`` ``Other Trace Gases,`` ``CO{sub 2} Emissions,`` and ``Temperature.`` Appendix A provides information about CDIAC and its activities related to global environmental issues. Appendix B lists the contents of the full report. An order form for obtaining a free copy of Trends `91 is found in Appendix C.

  7. Trends '91: A compendium of data on global change---highlights

    SciTech Connect (OSTI)

    Boden, T.A.; Sepanski, R.J.; Stoss, F.W.

    1992-03-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) has been prompted to produce the series Trends, a concise inventory of data in response to heightened concern about global environmental issues, in particular climate changes induced by the greenhouse effect. This report contains extracts from Trends '91 to illustrate the content, style, and presentation of data contained in the full 700-page report. This report includes a listing of the investigators contributing data for Trends '91. In addition, it contains the abstract, foreword, and acknowledgments, as well as the introduction and a sample data record from each of the reports's five chapters. The chapters are Atmospheric CO[sub 2],'' Atmospheric CH[sub 4],'' Other Trace Gases,'' CO[sub 2] Emissions,'' and Temperature.'' Appendix A provides information about CDIAC and its activities related to global environmental issues. Appendix B lists the contents of the full report. An order form for obtaining a free copy of Trends '91 is found in Appendix C.

  8. US forests and global change - precolonization to the 21st century

    SciTech Connect (OSTI)

    Zerbe, J.I.

    1997-12-31

    The forests of the United States and manufacture of products from raw materials produced in the forests are significant for the international global economy and for amelioration of threatening global climate change. This paper explores the conditions of the forests as a result of changing anthropogenic influences, and how these conditions might impact on global change.

  9. Climate Action Champions: Resilience and Equity Webinar

    Broader source: Energy.gov [DOE]

    This webinar was hosted jointly by the Department of Energy and the Department of Housing and Urban Development (HUD). Presenters from the Boston Metropolitan Area Planning Council, PolicyLink, and the National Institute of Environmental Health Sciences discussed issues of climate change resilience and equity, including the impacts of climate change on different regions and socioeconomic groups. In addition, HUD provided tools and resources to assist with community resilience planning, as well as an introduction to the U.S. Governments Environmental Justice interagency working group.

  10. DOE - NNSA/NSO -- SiteLines - Issue 140

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November/December 2009 - Issue 140 A publication for all members of the NNSA/NSO family U.S., Russian Teams Work Toward Global Threat Reduction Before President Obama proposed his plan to decrease the dangers of nuclear terrorism and globally secure at-risk nuclear materials, the Remote Sensing Laboratory personnel already had several decades of experience detecting and handling nuclear materials and sealed sources. They had also teamed with Russian scientists more than 10 years ago to help

  11. Global Biogeochemistry Models and Global Carbon Cycle Research at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Covey, C; Caldeira, K; Guilderson, T; Cameron-Smith, P; Govindasamy, B; Swanston, C; Wickett, M; Mirin, A; Bader, D

    2005-05-27

    The climate modeling community has long envisioned an evolution from physical climate models to ''earth system'' models that include the effects of biology and chemistry, particularly those processes related to the global carbon cycle. The widely reproduced Box 3, Figure 1 from the 2001 IPCC Scientific Assessment schematically describes that evolution. The community generally accepts the premise that understanding and predicting global and regional climate change requires the inclusion of carbon cycle processes in models to fully simulate the feedbacks between the climate system and the carbon cycle. Moreover, models will ultimately be employed to predict atmospheric concentrations of CO{sub 2} and other greenhouse gases as a function of anthropogenic and natural processes, such as industrial emissions, terrestrial carbon fixation, sequestration, land use patterns, etc. Nevertheless, the development of coupled climate-carbon models with demonstrable quantitative skill will require a significant amount of effort and time to understand and validate their behavior at both the process level and as integrated systems. It is important to consider objectively whether the currently proposed strategies to develop and validate earth system models are optimal, or even sufficient, and whether alternative strategies should be pursued. Carbon-climate models are going to be complex, with the carbon cycle strongly interacting with many other components. Off-line process validation will be insufficient. As was found in coupled atmosphere-ocean GCMs, feedbacks between model components can amplify small errors and uncertainties in one process to produce large biases in the simulated climate. The persistent tropical western Pacific Ocean ''double ITCZ'' and upper troposphere ''cold pole'' problems are examples. Finding and fixing similar types of problems in coupled carbon-climate models especially will be difficult, given the lack of observations required for diagnosis and validation of biogeochemical processes.

  12. Can reducing black carbon emissions counteract global warming?

    SciTech Connect (OSTI)

    Tami C. Bond; Haolin Sun

    2005-08-15

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. Black carbon is produced by poor combustion, from our example hard coal cooking fires for and industrial pulverized coal boilers. The authors review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. It is argued that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. Results from published climate-modeling studies are synthesized to obtain a global warming potential for black carbon relative to that of CO{sub 2} (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. It is found that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, a role for black carbon in climate mitigation strategies is proposed that is consistent with the apparently conflicting arguments raised during the discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement. 31 refs., 3 figs., 1 tab.

  13. Multi-institutional project to study climate change's effect on tropical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forests Multi-institutional project to study climate change's effect on tropical forests Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Multi-institutional project to study climate change's effect on tropical forests An expansive new project called Next Generation Ecosystem Experiments-Tropics aims to bring the future of tropical forests into much clearer focus May 1, 2015 Overhead view of Amazon forest, at risk

  14. Global warming, January 1988-March 1991 (citations from the NTIS database). Rept. for Jan 88-Mar 91

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    The bibliography contains citations concerning policies and general studies on global warming. Topics include the greenhouse effect, global climatic models, and climatic effects from combustion of fossil fuels. (The new bibliography contains 150 citations.) (Also includes title list and subject index.)

  15. Tribal Utility Policy Issues

    Energy Savers [EERE]

    Utility Policy Issues New Mexico July 27, 2015 Margaret Schaff Kanim Associates, LLC (An Indian Owned Consulting Firm) 303-443-0182 mschaff@att.net *US Energy Information Administration New Mexico Energy Stats  Sixth in crude oil production in the nation in 2013.  5% of U.S. marketed natural gas production in 2012  Largest coal-fired electric power plants in NM both on Navajo Nation  2,100-megawatt Four Corners (Navajo Mine) (APS)  1,643-megawatt San Juan (San Juan Mines) (Public

  16. Global Scratch File System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scratch Global Scratch File System Status: Retired Overview The global scratch file system (or "global scratch") can be accessed by multiple NERSC systems. Its default quota is much larger than the Global Home quota, so it can be used to temporarily store large amounts of data. This file system is periodically purged. Platforms Using Global Scratch The global scratch file system is available on all NERSC systems. Quotas Default global scratch quotas are 20 TB and 4,000,000 inodes. If

  17. GE Global Research Leadership | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About GE Global Research > Leadership Leadership GE Global Research Centers rely on the guidance of visionary leaders with deep technical knowledge on the ground at each of our sites. A photo of Vic Abate Vic Abate Chief Technology Officer GE Global Research As senior vice president and chief technology officer for GE, Vic is responsible for one of the world's largest and most diversified industrial research and technology organizations. Vic leads GE's 50,000 engineers and scientists and G...

  18. GE Global Research Locations | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations GE Global Research is innovating around the clock. Select one of our locations to learn more about operations there.GE Global Research is innovating around the clock. Select a location to learn more about our operations. Home > Locations GE Global Research is ALWAYS OPEN Already know about our locations? Experience a special look at a day in our life around the world! See What We're Doing Dhahran, Saudi Arabia Founded: 2015 Employees: 15 Focus Areas: Material Characterization,

  19. Malaria and global change: Insights, uncertainties and possible surprises

    SciTech Connect (OSTI)

    Martin, P.H.; Steel, A.

    1996-12-31

    Malaria may change with global change. Indeed, global change may affect malaria risk and malaria epidemiology. Malaria risk may change in response to a greenhouse warming; malaria epidemiology, in response to the social, economic, and political developments which a greenhouse warming may trigger. To date, malaria receptivity and epidemiology futures have been explored within the context of equilibrium studies. Equilibrium studies of climate change postulate an equilibrium present climate (the starting point) and a doubled-carbon dioxide climate (the end point), simulate conditions in both instances, and compare the two. What happens while climate changes, i.e., between the starting point and the end point, is ignored. The present paper focuses on malaria receptivity and addresses what equilibrium studies miss, namely transient malaria dynamics.

  20. Bioenergy in Energy Transformation and Climate Management

    SciTech Connect (OSTI)

    Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

    2014-04-01

    Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectivesreducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

  1. GE Global Research Careers | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finding solutions in energy, health and home, transportation and finance. Building, ... path at GE Global Research guides scientists' and engineers' individual development. ...

  2. Global Home Filesystem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Global Home Filesystem Overview Global home directories (or "global homes") provide a convenient means for a user to have access to dotfiles, source files, input files, configuration files, etc., regardless of the platform the user is logged in to. Quotas, Performance, and Usage Default global home quotas are 40 GB and 1,000,000 inodes. Quota increases in global homes are approved only in extremely unusual circumstances; users are encouraged to use the various scratch, project,

  3. Global warming policy: A coherent-sequential approach

    SciTech Connect (OSTI)

    Manicke, R.L.

    1996-12-31

    This paper addresses these two closely related themes: (1) the need for structuring and evaluating global climate policy sequentially and (2) the need to incorporate the analysis of real options which may contribute significantly to global climate policy. This paper is organized into four sections. The first section deals with benefit-cost analysis and capital budgeting as they are generally practiced and discusses the reasons why the traditional benefit-cost formulation is inadequate. The second section then discusses the case of one financial option, namely, the European Call Option and discusses some important results. The third section of the paper addresses some of the important results or principles derived in the literature on real options, and while most of the mathematics is not easily transferred nor relevant to the global climate policy, there are many principles that can be applied. In the fourth section the author discusses the implications of a real option environment for the policy process.

  4. Pax Global: Noncompliance Determination (2013-SE-1413)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Pax Global, Inc. finding that freezer basic models (1) Crosley CCF51; (2) Crosley CCF69; (3) Crosley CCF106; and (4) Daewoo DCF-106W do not comport with the energy conservation standards.

  5. US State Climate Action Plans | Open Energy Information

    Open Energy Info (EERE)

    team members have been involved in a wide range of policy and technical issues related to global warming, energy, economic and environmental policy in the U.S. and abroad. Through...

  6. CO₂ emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; et al

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher than coal prices. A first deviation from optimal transition pathways is delayed action that relaxes global emission targets until 2030 in accordance with the Copenhagen pledges. Fossil fuel markets revert back to the no-policy case: though coal use increasesmore » strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger—twice and more—than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects to balance the full-century carbon budget. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear-cut across models, as we find carbon leakage effects ranging from positive to negative because trade and substitution patterns of coal, oil, and gas differ across models. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.« less

  7. The climate change and energy security nexus

    SciTech Connect (OSTI)

    King, Marcus Dubois; Gulledge, Jay

    2013-01-01

    The study of the impacts of climate change on national and interna-tional security has grown as a research field, particularly in the last five years. Within this broad field, academic scholarship has concentrated primarily on whether climate change is, or may become, a driver of violent conflict. This relationship remains highly contested. However, national security policy and many non-governmental organizations have identified climate change as a threat multiplier in conflict situations. The U.S. Department of Defense and the United Kingdom's Ministry of Defense have incorporated these findings into strategic planning documents such as the Quadrennial Defense Review and the Strategic Defence and Security Review. In contrast to the climate-conflict nexus, our analysis found that academic scholarship on the climate change and energy security nexus is small and more disciplinarily focused. In fact, a search of social science litera-ture found few sources, with a significant percentage of these works attribut-able to a single journal. Assuming that policymakers are more likely to rely on broader social science literature than technical or scientific journals, this leaves a limited foundation. This then begged the question: what are these sources? We identified a body of grey literature on the nexus of climate change and energy security of a greater size than the body of peer-reviewed social science literature. We reviewed fifty-eight recent reports, issue briefs, and transcripts to better understand the nexus of climate change and energy security, as well as to gain insight about the questions policymakers need answered by those undertaking the research. In this article, we describe the nature of the sources reviewed, highlight possible climate change and energy security linkages found within those sources, identify emerging risks, and offer conclusions that can guide further research.

  8. Effects of Climate Change on Federal Hydropower (Report to Congress)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Climate Change on Federal Hydropower Report to Congress August 2013 United States Department of Energy Washington, DC 20585 Message from the Assistant Secretary for Energy Efficiency and Renewable Energy The Department of Energy is responding to Section 9505 of the Secure Water Act of 2009 {Omnibus Public Lands Act, Pub. L. No 111-11, Subtitle F}, which requested the Department to submit a report to Congress on the observed and projected impacts of global climate change on federal

  9. Global Climate and Energy Project | Open Energy Information

    Open Energy Info (EERE)

    the globe, from both private industry and research institutions. GCEP sponsors will invest a total of 225 million over the course of a decade to support the exploration of...

  10. Silicon-32 is an Important Radiotracer in Assessing Global Climate...

    Office of Science (SC) Website

    ... transformed to sugars by the diatoms consuming large amounts of the green-house gas. ... Efficient production of the Si-32 tracer requires the use of high energy proton beams ...

  11. Active Climate Stabilization: Practical Physics-Based Approaches to Prevention of Climate Change

    DOE R&D Accomplishments [OSTI]

    Teller, E.; Hyde, T.; Wood, L.

    2002-04-18

    We offer a case for active technical management of the radiative forcing of the temperatures of the Earth's fluid envelopes, rather than administrative management of atmospheric greenhouse gas inputs, in order to stabilize both the global- and time-averaged climate and its mesoscale features. We suggest that active management of radiative forcing entails negligible--indeed, likely strongly negative--economic costs and environmental impacts, and thus best complies with the pertinent mandate of the UN Framework Convention on Climate Change. We propose that such approaches be swiftly evaluated in sub-scale in the course of an intensive international program.

  12. The Role of Snow and Ice in the Climate System

    SciTech Connect (OSTI)

    Barry, Roger G.

    2007-12-19

    Global snow and ice cover (the 'cryosphere') plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback. Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and ice extent are discussed.

  13. The Role of Snow and Ice in the Climate System

    ScienceCinema (OSTI)

    Barry, Roger G.

    2009-09-01

    Global snow and ice cover (the 'cryosphere') plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback. Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and ice extent are discussed.

  14. Climate Change Response

    Office of Environmental Management (EM)

    Interior Climate Change Response "From the Everglades to the Great Lakes to Alaska and everywhere in between, climate change is a leading threat to natural and cultural resources across America, and tribal communities are often the hardest hit by severe weather events such as droughts, floods and wildfires" - Secretary of the Interior Sally Jewell "Impacts of climate change are increasingly evident for American Indian and Alaska Native communities and, in some cases, threaten the

  15. Global Potential of Energy Efficiency Standards and Labeling Programs

    SciTech Connect (OSTI)

    McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane

    2008-06-15

    This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration with other strategies under consideration.

  16. Climate Change Webinar Series

    Broader source: Energy.gov [DOE]

    Experts will provide findings from the Quadrennial Energy Review (QER) and outline federal energy policy objectives, proposals, and actions as they relate to climate change and resilience for...

  17. Climate & Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear...

  18. Climate Data Operators (CDO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Data Operators (CDO) Climate Data Operators (CDO) Description and Overview CDO is a large tool set for working on climate data. NetCDF 3/4, GRIB including SZIP compression, EXTRA, SERVICE and IEG are supported as IO-formats. Apart from that cdo can be used to analyse any kind gridded data not related to climate science. CDO has very small memory requirements and can process files larger than the physical memory. How to Use CDO module load cdo cdo [Options] Operators ... Further

  19. Climate Prisms Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment (NGEE-Arctic); and has amassed photos, videos, and data charting Arctic climate change. Mark Petersen Mark Petersen, Scientist Mark Petersen works at the...

  20. Data Quality Assessment and Control for the ARM Climate Research Facility

    SciTech Connect (OSTI)

    Peppler, R

    2012-06-26

    The mission of the Atmospheric Radiation Measurement (ARM) Climate Research Facility is to provide observations of the earth climate system to the climate research community for the purpose of improving the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their coupling with the Earth's surface. In order for ARM measurements to be useful toward this goal, it is important that the measurements are of a known and reasonable quality. The ARM data quality program includes several components designed to identify quality issues in near-real-time, track problems to solutions, assess more subtle long-term issues, and communicate problems to the user community.

  1. Climate change: Clinton affirms binding emissions reduction policy

    SciTech Connect (OSTI)

    Fairley, P.

    1996-12-04

    In Australia last month President Clinton called for an international agreement to negotiate {open_quotes}legally binding commitments to fight climate change.{close_quotes} His comments affirmed the line the Administration adopted in July and lent prominence to the effort to bring about a treaty by December 1997. Environmentalists welcomed Clinton`s comments, but industry response is divided. The Global Climate Coalition (Washington), of which CMA is a member, has tried to slow negotiations by questioning the scientific consensus on climate change and suggesting {open_quotes}serious damage to the American economy{close_quotes} could result from emissions reduction.

  2. Advocate- Issue 47- July 2012

    Broader source: Energy.gov [DOE]

    Here are some of the topics from this issue: Wild West Tour, EM SSAB Chairs’ Meeting, and Reservation Updates.

  3. Uncertainty in Simulating Wheat Yields Under Climate Change

    SciTech Connect (OSTI)

    Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, Jerry; Ruane, Alex; Boote, K. J.; Thorburn, Peter; Rotter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, AJ; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, Robert; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, Roberto C.; Kersebaum, K.C.; Mueller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.O.; Olesen, JE; Osborne, T.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stockle, Claudio O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.

    2013-09-01

    Anticipating the impacts of climate change on crop yields is critical for assessing future food security. Process-based crop simulation models are the most commonly used tools in such assessments1,2. Analysis of uncertainties in future greenhouse gas emissions and their impacts on future climate change has been increasingly described in the literature3,4 while assessments of the uncertainty in crop responses to climate change are very rare. Systematic and objective comparisons across impact studies is difficult, and thus has not been fully realized5. Here we present the largest coordinated and standardized crop model intercomparison for climate change impacts on wheat production to date. We found that several individual crop models are able to reproduce measured grain yields under current diverse environments, particularly if sufficient details are provided to execute them. However, simulated climate change impacts can vary across models due to differences in model structures and algorithms. The crop-model component of uncertainty in climate change impact assessments was considerably larger than the climate-model component from Global Climate Models (GCMs). Model responses to high temperatures and temperature-by-CO2 interactions are identified as major sources of simulated impact uncertainties. Significant reductions in impact uncertainties through model improvements in these areas and improved quantification of uncertainty through multi-model ensembles are urgently needed for a more reliable translation of climate change scenarios into agricultural impacts in order to develop adaptation strategies and aid policymaking.

  4. Present and Future Modes of Low Frequency Climate Variability

    SciTech Connect (OSTI)

    Cane, Mark A.

    2014-02-20

    This project addressed area (1) of the FOA, Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability. Our overarching objective is to detect, describe and understand the changes in low frequency variability between model simulations of the preindustrial climate and simulations of a doubled CO2 climate. The deliverables are a set of papers providing a dynamical characterization of interannual, decadal, and multidecadal variability in coupled models with attention to the changes in this low frequency variability between pre-industrial concentrations of greenhouse gases and a doubling of atmospheric concentrations of CO2. The principle mode of analysis, singular vector decomposition, is designed to advance our physical, mechanistic understanding. This study will include external natural variability due to solar and volcanic aerosol variations as well as variability internal to the climate system. An important byproduct is a set of analysis tools for estimating global singular vector structures from the archived output of model simulations.

  5. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study ... for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research ...

  6. Transient Climate Simulation of the last deglaciation in CCSM3

    SciTech Connect (OSTI)

    He, Feng [ORNL; Erickson III, David J [ORNL; Jacob, Robert L. [Argonne National Laboratory (ANL)

    2009-12-01

    We conducted the first synchronously coupled atmosphere-ocean general circulation model simulation of global climate evolution of the last deglaciation (21,000-10,000 years ago) using the NCAR CCSM3. With realistic climate forcings associated with greenhouse gasses, orbital forcing and continental ice sheet, as well as a reasonable melting water forcing, our model reproduces some major deglacial climate features, such as the H1 event, the BA warming and the YD event. A preliminary model-data comparison shows a global climate evolution largely consistent with the reconstruction. The magnitude of our model climate responses are largely consistent with the reconstruction, suggesting a good agreement between observed and modeled climate sensitivity. In contrast to previous simulations of intermediate climate models, our model AMOC has little hysteresis. As a result, the model simulates the abrupt onset of the BA warming and the abrupt termination of the YD cooling as transient responses of the Atlantic meridional overturning circulation (AMOC) to abrupt terminations of freshwater discharges. Further implications to transient model-data comparison will also be discussed.

  7. Nature Climate Change features Los Alamos forest research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature Climate Change Features Forest Research Nature Climate Change features Los Alamos forest research The print issue features as its cover story the tree-stress research of LANL scientist A. Park Williams and partners from the U.S. Geological Survey, University of Arizona and several other organizations. February 27, 2013 Burned trees in the Jemez Mountains of New Mexico after the 2011 Las Conchas fire. Image by Craig D. Allen, USGS. Burned trees in the Jemez Mountains of New Mexico after

  8. Modeling the response of plants and ecosystems to elevated CO{sub 2} and climate change

    SciTech Connect (OSTI)

    Reynolds, J.F.; Hilbert, D.W.; Chen, Jia-lin; Harley, P.C.; Kemp, P.R.; Leadley, P.W.

    1992-03-01

    While the exact effects of elevated CO{sub 2} on global climate are unknown, there is a growing consensus among climate modelers that global temperature and precipitation will increase, but that these changes will be non-uniform over the Earth`s surface. In addition to these potential climatic changes, CO{sub 2} also directly affects plants via photosynthesis, respiration, and stomatal closure. Global climate change, in concert with these direct effects of CO{sub 2} on plants, could have a significant impact on both natural and agricultural ecosystems. Society`s ability to prepare for, and respond to, such changes depends largely on the ability of climate and ecosystem researchers to provide predictions of regional level ecosystem responses with sufficient confidence and adequate lead time.

  9. Modeling the response of plants and ecosystems to elevated CO sub 2 and climate change

    SciTech Connect (OSTI)

    Reynolds, J.F.; Hilbert, D.W.; Chen, Jia-lin; Harley, P.C.; Kemp, P.R.; Leadley, P.W.

    1992-03-01

    While the exact effects of elevated CO{sub 2} on global climate are unknown, there is a growing consensus among climate modelers that global temperature and precipitation will increase, but that these changes will be non-uniform over the Earth's surface. In addition to these potential climatic changes, CO{sub 2} also directly affects plants via photosynthesis, respiration, and stomatal closure. Global climate change, in concert with these direct effects of CO{sub 2} on plants, could have a significant impact on both natural and agricultural ecosystems. Society's ability to prepare for, and respond to, such changes depends largely on the ability of climate and ecosystem researchers to provide predictions of regional level ecosystem responses with sufficient confidence and adequate lead time.

  10. Subtask 2.4 - Integration and Synthesis in Climate Change Predictive Modeling

    SciTech Connect (OSTI)

    Jaroslav Solc

    2009-06-01

    The Energy & Environmental Research Center (EERC) completed a brief evaluation of the existing status of predictive modeling to assess options for integration of our previous paleohydrologic reconstructions and their synthesis with current global climate scenarios. Results of our research indicate that short-term data series available from modern instrumental records are not sufficient to reconstruct past hydrologic events or predict future ones. On the contrary, reconstruction of paleoclimate phenomena provided credible information on past climate cycles and confirmed their integration in the context of regional climate history is possible. Similarly to ice cores and other paleo proxies, acquired data represent an objective, credible tool for model calibration and validation of currently observed trends. It remains a subject of future research whether further refinement of our results and synthesis with regional and global climate observations could contribute to improvement and credibility of climate predictions on a regional and global scale.

  11. Issue: September 2012

    Office of Scientific and Technical Information (OSTI)

    Issue: September 2012 W .A . P a r i s h P o s t -C o m b u s t i o n C 0 2 C a p t u r e a n d S e q u e s t r a t i o n P r o j e c t P h a s e 1 D e f in it io n T o p ic a l R e p o r t R e p o r t in g P e r io d S t a r t D a t e : May 7 ,20 1 0 R e p o r t in g P e r io d E n d D a t e : May 3 1,2 0 12 P r in c i p a l A u t h o r (s ): Anthony Armpriester________________ Director, Engineering & Construction Petra Nova LLC, an NRG Company Roger Smith________________________ Jeff

  12. Radioactive waste storage issues

    SciTech Connect (OSTI)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  13. Wildfires may contribute more to global warming than previously predicted

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot more to the observed climate warming than current estimates show. July 9, 2013 Haze of smoke emanating from the 2011 Las Conchas, NM fire. Haze of smoke emanating from the 2011 Las Conchas, NM fire. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The fact that we are experiencing more fires and

  14. Wildfires may contribute more to global warming than previously predicted

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot more to the observed climate warming than current estimates show. July 9, 2013 Haze of smoke emanating from the 2011 Las Conchas, NM fire. Haze of smoke emanating from the 2011 Las Conchas, NM fire. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The fact that we are experiencing more fires and

  15. Climate Change Projections of the North American Regional Climate Change Assessment Program (NARCCAP)

    SciTech Connect (OSTI)

    Mearns, L. O.; Sain, Steve; Leung, Lai-Yung R.; Bukovsky, M. S.; McGinnis, Seth; Biner, S.; Caya, Daniel; Arritt, R.; Gutowski, William; Takle, Eugene S.; Snyder, Mark A.; Jones, Richard; Nunes, A M B.; Tucker, S.; Herzmann, D.; McDaniel, Larry; Sloan, Lisa

    2013-10-01

    We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs.

  16. Climate Change Adaptation | Department of Energy

    Energy Savers [EERE]

    Climate Change Adaptation Climate Change Adaptation DOE is adapting to climate change by applying a risk-based resiliency approach to identify and minimize climate-related...

  17. NREL Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    NREL Climate Activities (Redirected from Climate Activities at NREL) Jump to: navigation, search Logo: Climate Activities at NREL Name Climate Activities at NREL AgencyCompany...

  18. European Climate Foundation (ECF) | Open Energy Information

    Open Energy Info (EERE)

    European Climate Foundation (ECF) (Redirected from European Climate Foundation) Jump to: navigation, search Logo: European Climate Foundation (ECF) Name: European Climate...

  19. DOE/SC-ARM-13-022 ARM Climate Research Facility The U.S. Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The major "pumps" for the global ocean currents are at high latitudes, and there is good reason to believe that those pumps will be affected by climate-related changes in the ...

  20. New Global Research Website | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the time to visit geglobalresearch.com. We hope you make it a regular destination to learn about how GE Global Research is working to improve the world by pushing the limits of...

  1. Special Lecture - Climate Prisms: Understanding Climate Change for All

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Special Lecture - Climate Prisms Special Lecture - Climate Prisms: Understanding Climate Change for All WHEN: Feb 17, 2015 5:30 PM - 7:00 PM WHERE: Bradbury Science Museum, 1350 Central Ave, Los Alamos, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Climate Lecture Event Description Climate Prisms is the museum's latest addition to their environment exhibit. The lecture intends to reinvent the way the public processes climate change data. Through a deep,

  2. ClimateChangeLIVE Webcast: Join the Climate Conversation

    Broader source: Energy.gov [DOE]

    Join ClimateChangeLIVE's webcast, bringing together students and climate experts for a discussion about climate change and what students and classes around the country are doing to be part of the climate solution. Students will be able to interact with climate scientists and experts online through Facebook and Twitter. A GreenWorks! grant will be offered to help schools with climate action projects.

  3. Task Force on Climate Preparedness and Resilience Announces Tribal Climate

    Energy Savers [EERE]

    Resilience Program | Department of Energy Task Force on Climate Preparedness and Resilience Announces Tribal Climate Resilience Program Task Force on Climate Preparedness and Resilience Announces Tribal Climate Resilience Program July 16, 2014 - 3:38pm Addthis Access Recordings from the Climate Change Impacts and Indian Country Webinar Series On July 16, at the fourth and final meeting of the White House State, Local, and Tribal Leaders Task Force on Climate Preparedness and Resilience, the

  4. Special Issue for the 9th International Conference on Carbonaceous Particles in the Atmosphere

    SciTech Connect (OSTI)

    Strawa, A.W.; Kirchstetter, T.W.; Puxbaum, H.

    2009-12-11

    Carbonaceous particles are a minor constituent of the atmosphere but have a profound effect on air quality, human health, visibility and climate. The importance of carbonaceous particles has been increasingly recognized and become a mainstream topic at numerous conferences. Such was not the case in 1978, when the 1st International Conference on Carbonaceous Particles in the Atmosphere (ICCPA), or ''Carbon Conference'' as it is widely known, was introduced as a new forum to bring together scientists who were just beginning to reveal the importance and complexity of carbonaceous particles in the environment. Table 1 lists the conference dates, venues in the series as well as the proceedings, and special issues resulting form the meetings. Penner and Novakov (Penner and Novakov, 1996) provide an excellent historical perspective to the early ICCPA Conferences. Thirty years later, the ninth in this conference series was held at its inception site, Berkeley, California, attended by 160 scientists from 31 countries, and featuring both new and old themes in 49 oral and 83 poster presentations. Topics covered such areas as historical trends in black carbon aerosol, ambient concentrations, analytic techniques, secondary aerosol formation, biogenic, biomass, and HULIS1 characterization, optical properties, and regional and global climate effects. The conference website, http://iccpa.lbl.gov/, holds the agenda, as well as many presentations, for the 9th ICCPA. The 10th ICCPA is tentatively scheduled for 2011 in Vienna, Austria. The papers in this issue are representative of several of the themes discussed in the conference. Ban-Weiss et al., (Ban-Weiss et al., accepted) measured the abundance of ultrafine particles in a traffic tunnel and found that heavy duty diesel trucks emit at least an order of magnitude more ultrafine particles than light duty gas-powered vehicles per unit of fuel burned. Understanding of this issue is important as ultrafine particles have been shown to adversely affect human health (Lighty et al., 2000; Pope and Dockery, 2006). Gan et al. (Gan et al., accepted) examined the indoor air quality aboard submarines and found that the diesel particulate matter concentrations exceeded the EPA 24 hour standard. Claeys et al. (Claeys et al., accepted) studied the importance and sources of secondary organic aerosol (SOA) in remote marine environment during a period of high biological activity. Methanesulphonate was the major SOA compound detected and there was no evidence for SOA from isoprene. The optical properties of gasoline and diesel vehicle particulate emissions and their relative contribution to radiative forcing was studied by Strawa et al. (Strawa et al., accepted).

  5. Indigenous Climate Justice Symposium

    Broader source: Energy.gov [DOE]

    The Indigenous Climate Justice Symposium brings together Native speakers who are working to keep fossil fuels in the ground, by stopping coals terminals, oil trains and fracking, and protecting treaty resources from the threat of climate change. All events are free and open to Evergreen students and the public.

  6. GE Global Research Contact | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Looking for more details? Please contact one of these individuals or visit the Newsroom for the latest information. Home > About GE Global Research > Contact Us GE Global Research 1 Research Circle, Niskayuna, NY 12309, USA Todd Alhart +1.518.387.7914 todd.alhart@ge.com Communications and Public Relations GE Brazil Technology Center Rio de Janeiro, Brazil Natalia Albuquerque +55 21 3548-6193 natalia.albuquerque@ge.com Communications and Public Relations GE China Technology

  7. Climate Change Technology Scenarios: Energy, Emissions, and Economic Implications

    SciTech Connect (OSTI)

    Placet, Marylynn; Humphreys, Kenneth K.; Mahasenan, N Maha

    2004-08-15

    This report describes three advanced technology scenarios and various illustrative cases developed by staff of Pacific Northwest National Laboratory (PNNL) for the U.S. Climate Change Technology Program. These scenarios and illustrative cases explore the energy, emissions and economic implications of using advanced energy technologies and other climate change related technologies to reduce future emissions of greenhouse gases (GHGs). The cases were modeled using the Mini Climate Assessment Model (MiniCAM) developed by PNNL. The report describes the scenarios, the specifications for the cases, and the results. The report also provides background information on current emissions of GHGs and issues associated with stabilizing GHG concentrations.

  8. NERSC Climate PIs Telecon!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Applications at NERSC Climate Projects --- 2 --- 75 Climate Projects at NERSC (AY2015) * Awards a re p ublished a t: - h%ps://www.nersc.gov/users/accounts/awarded---projects/2015--- alloca<on---awards/ * Or y ou c an s earch i n N IM * 29 p rojects u se C ESM o r C ESM c omponents. 2 47 u sers * 16 p rojects u se W RF. 3 6 u sers. --- 3 --- Climate Projects at NERSC (AY2015)-1 Repo Project T itle PI OrganizaMon Codes mp9 Climate C hange S imula<ons w ith C ESM: M oderate a nd H igh

  9. Temperature-associated increases in the global soil respiration record

    SciTech Connect (OSTI)

    Bond-Lamberty, Benjamin; Thomson, Allison M.

    2010-03-25

    Soil respiration (RS), the flux of CO2 from the soil surface to the atmosphere, comprises the second-largest terrestrial carbon flux, but its dynamics are incompletely understood, and the global flux remains poorly constrained. Ecosystem warming experiments, modelling analyses, and biokinetics all suggest that RS should change with climate. This has been difficult to confirm observationally because of the high spatial variability of RS, inaccessibility of the soil medium, and inability of remote sensing instruments to measure large-scale RS fluxes. Given these constraints, is it possible to discern climate-driven changes in regional or global RS fluxes in the extant four-decade record of RS chamber measurements? Here we use a database of worldwide RS observations, matched with high-resolution historical climate data, to show a previously unknown temporal trend in the RS record after accounting for mean annual climate, leaf area, nitrogen deposition, and changes in CO2 measurement technique. Air temperature anomaly (deviation from the 1961-1990 mean) is significantly and positively correlated with changes in RS fluxes; both temperature and precipitation anomalies exert effects in specific biomes. We estimate that the current (2008) annual global RS flux is 9812 Pg and has increased 0.1 Pg yr-1 over the last 20 years, implying a global RS temperature response (Q10) of 1.5. An increasing global RS flux does not necessarily constitute a positive feedback loop to the atmosphere; nonetheless, the available data are consistent with an acceleration of the terrestrial carbon cycle in response to global climate change.

  10. Climate Change: The Role of Particles and Gases (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Menon, Surabi

    2011-04-28

    Summer Lecture Series 2008: A member of the Atmospheric Sciences Department in the Environmental Energy Technologies Division (EETD), Surabi Menon's work focuses on the human contribution to increasing impacts of climate change. Her talk will focus on what humans can do about the effects of global warming by examining anthropogenic influences on climate and future anticipated impacts, using a climate model and her own observations.

  11. OPEN HOUSE - Climate Prisms: Arctic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An interactive exploration of Arctic climate science through prisms of the visual arts, literary arts, info-vis, scientific presentations and more. Climate Prisms: Arctic is...

  12. Climate Advisers | Open Energy Information

    Open Energy Info (EERE)

    and climate-related forest conservation. Climate Advisers is known for its vision, policy expertise, political acumen, and access to senior policymakers in the United States...

  13. Climate Change | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Climate Change Climate Change March 17, 2016 How to Store Carbon Find out how National Labs scientists are developing new tools to ensure carbon storage is ...

  14. Sandia Energy - Arctic Climate Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    user facility in 2003, ARM Climate Research Facility sites provide the national and international research community with climate data from three permanent...

  15. Climate Energy | Open Energy Information

    Open Energy Info (EERE)

    Climate Energy Jump to: navigation, search Name: Climate Energy Place: Witham, England, United Kingdom Zip: CM8 3UN Sector: Efficiency Product: Essex, UK, based provider of advice...

  16. Climate Change/Paleoclimate & Geochronology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate ChangePaleoclimate & Geochronology "The instrumental record is generally considered not to be long enough to give a complete picture of climate variability... It is...

  17. ARM Climate Research Facility Annual Report 2004

    SciTech Connect (OSTI)

    Voyles, J.

    2004-12-31

    Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency program within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.

  18. Environmental issues related to biomass: An overview

    SciTech Connect (OSTI)

    Hughes, M.; Ranney, J.W.

    1993-12-31

    Now that public attention has grown increasingly focused on environmentalism and climate change, the commercial use of biomass could greatly accelerate. Renewable feedstocks like biomass can provide better environmentally balanced sources of energy and other nonfood products than fossil fuels. The future of biomass is uncertain, however, because public attention focuses on both its potential and its challenges. This paper is divided into five sections. Section 2 briefly addresses economic environmental issues. The extent to which externalities are accounted for in the market price of fuels plays a significant role in determining both the ultimate size of biofuel markets and the extent of the environmental benefits of feedstock cultivation and conversion processes. Sections 3 and 4 catalog the main hazards and benefits that are likely to arise in the large-scale commercialization of biomass fuel and note where the major uncertainties lay. Environmental issues arise with the cultivation of each feedstock and with each step in the process of its conversion to fuel. Feedstocks are discussed in Section 3 in terms of three main groups: wastes, energy crops, and traditional agricultural crops. In Section 4, conversion processes are also divided into three groups, on the basis of the end energy carrier: gas, liquid, and solid and electricity. Section 5 provides a conclusion and summary.

  19. Climate Change: The Physical Basis and Latest Results

    ScienceCinema (OSTI)

    None

    2011-10-06

    The 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concludes: "Warming in the climate system is unequivocal." Without the contribution of Physics to climate science over many decades, such a statement would not have been possible. Experimental physics enables us to read climate archives such as polar ice cores and so provides the context for the current changes. For example, today the concentration of CO2 in the atmosphere, the second most important greenhouse gas, is 28% higher than any time during the last 800,000 years. Classical fluid mechanics and numerical mathematics are the basis of climate models from which estimates of future climate change are obtained. But major instabilities and surprises in the Earth System are still unknown. These are also to be considered when the climatic consequences of proposals for geo-engineering are estimated. Only Physics will permit us to further improve our understanding in order to provide the foundation for policy decisions facing the global climate change challenge.

  20. Toward Robust Climate Baselining: Objective Assessment of Climate Change Using Widely Distributed Miniaturized Sensors for Accurate World-Wide Geophysical Measurements

    DOE R&D Accomplishments [OSTI]

    Teller, E.; Leith, C.; Canavan, G.; Marion, J.; Wood, L.

    2001-11-13

    A gap-free, world-wide, ocean-, atmosphere-, and land surface-spanning geophysical data-set of three decades time-duration containing the full set of geophysical parameters characterizing global weather is the scientific perquisite for defining the climate; the generally-accepted definition in the meteorological community is that climate is the 30-year running-average of weather. Until such a tridecadal climate baseline exists, climate change discussions inevitably will have a semi-speculative, vs. a purely scientific, character, as the baseline against which changes are referenced will at least somewhat uncertain.

  1. Climate change effects on agriculture: Economic responses to biophysical shocks

    SciTech Connect (OSTI)

    Nelson, Gerald; Valin, Hugo; Sands, Ronald; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, G. Page; von Lampe, Martin; Lotze-Campen, Hermann; Mason d'Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Mueller, C.; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, E.; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2013-12-16

    Agricultural production is sensitive to weather and will thus be directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the IPCCs Representative Concentration Pathway that result in end-of-century radiative forcing of 8.5 watts per square meter. The mean biophysical impact on crop yield with no incremental CO2 fertilization is a 17 percent reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11 percent, increase area of major crops by 12 percent, and reduce consumption by 2 percent. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences includes model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  2. Before House Subcommittee on Africa, Global Health, Global Human Rights,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and International Organizations, Committee on Foreign Affairs | Department of Energy Subcommittee on Africa, Global Health, Global Human Rights, and International Organizations, Committee on Foreign Affairs Before House Subcommittee on Africa, Global Health, Global Human Rights, and International Organizations, Committee on Foreign Affairs Testimony of Jonathan Elkind, Acting Assistant Secretary, Office of International Affairs Before House Subcommittee on Africa, Global Health, Global Human

  3. Smart-Grid Security Issues

    SciTech Connect (OSTI)

    Khurana, Himanshu; Hadley, Mark D.; Lu, Ning; Frincke, Deborah A.

    2010-01-29

    TITLE: Smart-Grid Security Issues (Editorial Material, English) IEEE SECURITY & PRIVACY 8 (1). JAN-FEB 2010. p.81-85 IEEE COMPUTER SOC, LOS ALAMITOS

  4. Advocate- Issue 48- October 2012

    Broader source: Energy.gov [DOE]

    Here are some of the topics from this issue: K-25 Historic Preservation Agreement, the Board Says Farewell to Maggie Owen, and Groundwater Study Proposed.

  5. Advocate- Issue 52- October 2013

    Broader source: Energy.gov [DOE]

    Here are just some of the stories featured in this issue: Agency Suggestions for FY 2014, Historic Preservation of K-25, and Member Profile - Jimmy Bell

  6. Advocate- Issue 51- July 2013

    Broader source: Energy.gov [DOE]

    Here are the stories in this issue: EM SSAB Chairs’ Webinar, Tru Waste Processing Center tour, and a member profile on Fay Martin.

  7. Advocate- Issue 41- January 2011

    Broader source: Energy.gov [DOE]

    Here are some of the topics in this issue: Long-term Stewardship Still an Open Question, Committee Studies Bear Creek Burial Grounds, and Member Profile: Kevin Westervelt.

  8. Climate Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. CDIAC lists the following collections under the broad heading of climate information: Global Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data, United States Temperature, Precipitation, and Snow Data, USSR and People's Republic of China Climate Data, Cloud and Sunshine Data, and Other Climatic Data.

  9. ARM - Global Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Warming Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Global Warming Click on one of the links below to learn more about global warming! But first, take a look at this presentation given by former Atmospheric Radiation Measurement (ARM) Program Chief Scientist Tom Ackerman to a group of

  10. Global extreme events and their regional economic impact: 1996 update

    SciTech Connect (OSTI)

    Shen, S.

    1996-12-31

    The meaning of global warming and its relevance to everyday life is explained. Simple thermodynamics is used to predict an oscillatory nature of the change in climate due to global warming. The regional economic impacts of global extreme events are what mankind needs to focus on in government and private sector policy and planning. The economic impact of global warming has been tracked by the Extreme Event Index (EEI) established by the Global Warming International Center (GWIC). This review will update the overall trend and the components of the EEI from 1960 to 1996. The regional components of the global EEI have provided an excellent gauge for measuring the statistical vulnerability of any geographical locality in climate related economic disasters. The author further explains why we no longer fully understand the nature and magnitudes of common phenomena such as storms and wind speeds because of these extreme events, precipitation and temperature oscillations, atmospheric thermal unrest, as well as the further stratification of clouds, and changes in the absorptive properties of clouds. Hurricane strength winds are increasingly common even in continental areas. The author links the increase in duration of the El Nino to global warming, and further predicts a high public health risk as a result of the earth`s transition to another equilibrium state in its young history.

  11. Refining climate models

    ScienceCinema (OSTI)

    Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

    2014-06-26

    Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

  12. Climate Prisms: The Acrtic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An interactive exploration of Arctic climate science through prisms of the visual arts, literary arts, info-vis, sci-vis, interviews with scientists with an inside look at...

  13. Climate Change Adaptation Planning

    Broader source: Energy.gov [DOE]

    This course provides an introduction to planning for climate change impacts, with examples of tribes that have been going through the adaptation planning process. The course is intended for tribal...

  14. Refining climate models

    SciTech Connect (OSTI)

    Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

    2012-10-31

    Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

  15. Curing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Curing We're pioneering medical developments, from robotic healthcare assistants to diagnostic tools and specialized, globally deployed gear. Home > Impact > Curing Crowdsourcing...

  16. DRAFT NEPA Guidance on Consideration of the Effects of Climate Change and

    Office of Environmental Management (EM)

    Greenhouse Gas Emissions | Department of Energy DRAFT NEPA Guidance on Consideration of the Effects of Climate Change and Greenhouse Gas Emissions DRAFT NEPA Guidance on Consideration of the Effects of Climate Change and Greenhouse Gas Emissions The Council on Environmental Quality (CEQ) issued this draft guidance memorandum for public consideration and comment on the ways in which Federal agencies can improve their consideration of the effects of greenhouse gas (GHG) emissions and climate

  17. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the

  18. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the

  19. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate change cripples forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the

  20. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World's premier ground-based observations facility advancing climate change research Feature Tracking Clouds Down Under Tracking Clouds Down Under While penguins and seals are the main inhabitants of Macquarie Island, a remote grassy outcrop which lies about half-way between New Zealand and Antarctica, they will soon be joined by a suite of instruments from the U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility. These instruments will measure