National Library of Energy BETA

Sample records for isotopic heat sources

  1. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  2. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  3. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  4. North Village Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals.

  5. Heat Source Lire,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for AccidentalHealth, Safety,FOIAHeatSource

  6. Promising Technology: Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Ground source heat pumps (GSHP) use the constant temperature of the Earth as the heat exchange medium instead of the outside air temperature. During the winter, a GSHP uses the ground as a heat source to provide heating, and during the summer, a GSHP uses the ground as a heat sink to provide cooling. Although more expensive than air-source heat pumps, GSHP’s are much more efficient, especially in cold temperatures.

  7. Radioisotopes for heat-source applications

    SciTech Connect (OSTI)

    Hoisington, J.E.

    1982-10-06

    Potential DOD requirements for noninterruptable power sources could total 1 MW thermal by FY 1990. Of the three isotopes considered, (/sup 90/Sr, /sup 147/Pm, /sup 238/Pu) /sup 90/Sr is the only one available in sufficient amounts to meet this requirement. To meet the DOD FY 1990 requirements, it would be necessary to undertake /sup 90/Sr recovery operations from spent fuel reprocessing at SRP, Hanford, and the Barnwell Nuclear Fuels Plant (BNFP). /sup 90/Sr recovery from the existing alkaline high level waste (HLW) at Hanford and SRP is not attractive because the isotopic purity of the /sup 90/Sr is below that required for DOD applications. Without reprocessing LWR spent fuel, SRP and Hanford could not supply the demand of 1 MW thermal until FY 1996. Between FY 1983 and FY 1996, SRP and Hanford could supply approximately 0.70 MW of /sup 90/Sr and 0.15 MW of /sup 147/Pm. SRP could supply an additional 0.15 MW from the production and recovery of /sup 238/Pu. Strontium-90 is the most economical of the three heat source radionuclides considered. The /sup 90/Sr unit recovery cost from SRP fresh acid waste would be $180/watt. The BNFP /sup 90/Sr recovery cost would be $130/watt to $235/watt depending on the age and burnup of the LWR spent fuel. Hanford /sup 90/Sr recovery costs form Purex fresh acid waste are unavailable, but they are expected to be comparable to the SRP costs. /sup 147/Pm and /sup 238/Pu are considerably more expensive heat source materials. /sup 147/Pm recovery costs at SRP are estimated to be $450/watt. As with /sup 90/Sr, the Hanford /sup 147/Pm recovery costs are expected to be comparabl to the SRP costs. Production of high assay (93.5%) /sup 238/Pu at SRP from excess /sup 231/Np would cost about $1160/watt, while recovery of low assay (27%) /sup 238/Pu from the waste stream is estimated at $1850/watt.

  8. Carbothermic reduction with parallel heat sources

    DOE Patents [OSTI]

    Troup, Robert L. (Murrysville, PA); Stevenson, David T. (Washington Township, Washington County, PA)

    1984-12-04

    Disclosed are apparatus and method of carbothermic direct reduction for producing an aluminum alloy from a raw material mix including aluminum oxide, silicon oxide, and carbon wherein parallel heat sources are provided by a combustion heat source and by an electrical heat source at essentially the same position in the reactor, e.g., such as at the same horizontal level in the path of a gravity-fed moving bed in a vertical reactor. The present invention includes providing at least 79% of the heat energy required in the process by the electrical heat source.

  9. Thulium heat sources for space power applications

    SciTech Connect (OSTI)

    Alderman, C.J.

    1992-05-01

    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems.

  10. Performance Analysis of Air-Source Variable Speed Heat Pumps...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Analysis of Air-Source Variable Speed Heat Pumps and Various Electric Water Heating Options Performance Analysis of Air-Source Variable Speed Heat Pumps and Various...

  11. Air-Source Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-Source Heat Pumps Air-Source Heat Pumps April 23, 2015 - 3:35pm Addthis When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat...

  12. MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE

    E-Print Network [OSTI]

    MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMP SYSTEMS By CENK SOURCE HEAT PUMP SYSTEMS Thesis Approved: ___________________________________________ Thesis Adviser pump systems. For detailed analysis and accurate simulation of the transient heat transfer in vertical

  13. Air-Source Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source...

  14. MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP

    E-Print Network [OSTI]

    MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS Thesis Approved by: Dr.................................................................................................................... 16 MODELING OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS

  15. MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE

    E-Print Network [OSTI]

    exchanger model is crucial for analysis of hybrid ground source heat pump systems. Ground source heat pumps in a hybrid ground source heat pump application under different climate conditions. An actual office buildingMODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMP SYSTEMS By CENK

  16. Resolving the stellar sources of isotopically rare presolar silicate grains through Mg and Fe isotopic analyses

    SciTech Connect (OSTI)

    Nguyen, Ann N.; Messenger, Scott, E-mail: lan-anh.n.nguyen@nasa.gov [Robert M. Walker Laboratory for Space Science, Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, Houston, TX 77058 (United States)

    2014-04-01

    We conducted multi-element isotopic analyses of 11 presolar silicate grains from the Acfer 094 meteorite having unusual O isotopic compositions. Eight grains are {sup 18}O-rich, one is {sup 16}O-rich, and two are extremely {sup 17}O-rich. We constrained the grains' stellar sources by measuring their Si and Mg isotopic ratios, and also the {sup 54}Fe/{sup 56}Fe and {sup 57}Fe/{sup 56}Fe ratios for five grains. The Mg and Fe isotopic measurements were conducted after surrounding matrix grains were removed for more accurate ratios. Most of the {sup 18}O-rich silicates had anomalous Mg isotopic ratios, and their combined isotopic constraints are consistent with origins in low-mass Type II supernovae (SNe II) rather than high-metallicity stars. The isotopic ratios of the {sup 16}O-rich silicate are also consistent with an SN origin. Mixing small amounts of interior stellar material with the stellar envelope replicated all measured isotopic ratios except for {sup 29}Si/{sup 28}Si and {sup 54}Fe/{sup 56}Fe in some grains. The {sup 29}Si/{sup 28}Si ratios of all SN-derived grains are matched by doubling the {sup 29}Si yield in the Ne- and Si-burning zones. The {sup 54}Fe/{sup 56}Fe ratios of the grains imply elemental fractionation in the Si/S zone, or introduction of isotopically solar Fe by secondary processing. The two highly {sup 17}O-rich silicates exhibited significant {sup 25}Mg and/or {sup 26}Mg enrichments and their isotopic ratios are best explained by strong dilution of 1.15 M {sub ?} CO nova matter. We estimate that ?12% and 1% of presolar silicates have SN and nova origins, respectively, similar to presolar SiC and oxides. This implies that asymptotic giant branch stars are the dominant dust producers in the galaxy.

  17. Performance Analysis of Air-Source Variable Speed Heat Pumps...

    Broader source: Energy.gov (indexed) [DOE]

    Overview * Electric Water Heating Options - Conventional Electric Water Heaters - Heat Pump Water Heaters * Air-Source * Ground-Source - Solar Thermal Water Heater * Variable...

  18. Data Analysis from Ground Source Heat Pump Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis from Ground Source Heat Pump Demonstration Projects Data Analysis from Ground Source Heat Pump Demonstration Projects Comparison of building energy use before and after...

  19. Advanced Variable Speed Air-Source Integrated Heat Pump 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Emerging Technologies Project for...

  20. Earth's Heat Source - The Sun

    E-Print Network [OSTI]

    Manuel, Oliver K

    2009-01-01

    The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

  1. Earth's Heat Source - The Sun

    E-Print Network [OSTI]

    Oliver K. Manuel

    2009-05-05

    The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

  2. Resonance ionization laser ion sources for on-line isotope separators...

    Office of Scientific and Technical Information (OSTI)

    Resonance ionization laser ion sources for on-line isotope separators (invited) Citation Details In-Document Search Title: Resonance ionization laser ion sources for on-line...

  3. SIMULATION AND OPTIMAL CONTROL OF HYBRID GROUND SOURCE HEAT

    E-Print Network [OSTI]

    SIMULATION AND OPTIMAL CONTROL OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS By XIAOWEI XU Bachelor #12;ii SIMULATION AND OPTIMAL CONTROL OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS Dissertation Approved of Vertical Ground Loop Heat Exchangers - Analytical....... 21 2.1.1.2 Modeling of Vertical Ground Loop Heat

  4. DESIGN OF AN EXPERIMENTAL FACILITY FOR HYBRID GROUND SOURCE HEAT

    E-Print Network [OSTI]

    DESIGN OF AN EXPERIMENTAL FACILITY FOR HYBRID GROUND SOURCE HEAT PUMP SYSTEMS By SHAWN ALEX HERN.1 HYBRID GROUND SOURCE HEAT PUMP SYSTEM DESIGN........................................2-3 2.1.1 Design...............................................................................2-5 2.2 HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION................................2-9 3

  5. APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO

    E-Print Network [OSTI]

    APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO BUILDINGS AND BRIDGE DECKS. By MAHADEVAN Chapter Page 1. Introduction 1.1. Overview of hybrid ground source heat pump systems 1.2. Literature review 1.3. Thesis objective and scope 2. Optimal sizing of hybrid ground source heat pump system

  6. Overcoming Barriers to Ground Source Heat Pumps in California

    E-Print Network [OSTI]

    Overcoming Barriers to Ground Source Heat Pumps in California Geothermal Resources Development Account http://www.energy.ca.gov/geothermal/ grda.html May 2011 The Issue Ground source heat pumps can far made little impact in California. Estimates are that adoption of ground source heat pumps

  7. Ground-Source Heat Pumps in Cold Climates

    E-Print Network [OSTI]

    Wagner, Diane

    Ground-Source Heat Pumps in Cold Climates The Current State of the Alaska Industry, a Review-Source Heat Pumps in Cold Climates The Current State of the Alaska Industry, a Review of the Literature and contributions from individuals and organizations involved in ground-source heat pump installation around Alaska

  8. Property:HeatSource | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,PropertyPartner7Website JumpHeatSource Jump to: navigation,

  9. Application analysis of ground source heat pumps in building space conditioning

    E-Print Network [OSTI]

    Qian, Hua

    2014-01-01

    methods for ground-source heat pumps. in ASHRAE Summergas emission savings of ground source heat pump systems inheat exchangers for ground-source heat pumps: A literature

  10. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01

    Performance of ground source heat pump system in a near-zerosimulation tool for ground- source heat pump system designflow systems and ground source heat pump systems Abstract

  11. SIMULATION AND OPTIMAL CONTROL OF HYBRID GROUND SOURCE HEAT

    E-Print Network [OSTI]

    SIMULATION AND OPTIMAL CONTROL OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS By XIAOWEI XU Bachelor #12;ii SIMULATION AND OPTIMAL CONTROL OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS Dissertation Approved Loop Heat Exchanger Model....................................................... 11 2.1.1.1 Modeling

  12. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  13. Ground-source Heat Pumps Applied to Commercial Buildings

    SciTech Connect (OSTI)

    Parker, Steven A.; Hadley, Donald L.

    2009-07-14

    Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

  14. Isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Isotopes Isotopes Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Get Expertise...

  15. Air-Source Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of...

  16. Irregular spacing of heat sources for treating hydrocarbon containing formations

    SciTech Connect (OSTI)

    Miller, David Scott; Uwechue, Uzo Philip

    2012-06-12

    A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

  17. Covered Product Category: Residential Air-Source Heat Pumps

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for residential air-source heat pumps, which is an ENERGY STAR qualified product category.

  18. Monitoring SERC Technologies —Geothermal/Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory Project Leader Dave Peterson about Geothermal/Ground Source Heat Pumps and how to properly monitor its installation.

  19. Identification of sources of lead exposure in French children by lead isotope analysis: a cross-

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Identification of sources of lead exposure in French children by lead isotope analysis: a cross://www.ehjournal.net/content/10/1/75 (28 August 2011) #12;RESEARCH Open Access Identification of sources of lead exposure in French children by lead isotope analysis: a cross- sectional study Youssef Oulhote1,2,3* , Barbara Le Bot

  20. Advanced Variable Speed Air-Source Integrated Heat Pump | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced variable-speed Air Source Integrated Heat Pump prototype system and field test site near Knoxville, TN Credit: Oak Ridge National Lab Advanced variable-speed Air Source...

  1. Isotope fractionation in surface ionization ion source of alkaline-earth iodides

    SciTech Connect (OSTI)

    Suzuki, T.; Kanzaki, C.; Nomura, M.; Fujii, Y.

    2012-02-15

    The relationship between the isotope fractionation of alkaline-earth elements in the surface ionization ion source and the evaporation filament current, i.e., filament temperature, was studied. It was confirmed that the isotope fractionation depends on the evaporation filament temperature; the isotope fractionation in the case of higher temperature of filament becomes larger. The ionization and evaporation process in the surface ionization ion source was discussed, and it was concluded that the isotope fractionation is suppressed by setting at the lower temperature of evaporation filament because the dissociations are inhibited on the evaporation filament.

  2. Process for recovery of daughter isotopes from a source material

    DOE Patents [OSTI]

    Tranter, Troy J.; Todd, Terry A.; Lewis, Leroy C.; Henscheid, Joseph P.

    2005-10-04

    The invention includes a method of separating isotopes from a mixture containing at least two isotopes in a solution. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the precipitate. The precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. The invention also includes a system for producing an actinium-225/bismuth-213 product.

  3. Isotopic composition of passively collected nitrogen dioxide emissions: Vehicle, soil and livestock source signatures

    E-Print Network [OSTI]

    Elliott, Emily M.

    and d18 O values of natural and anthropogenic NOx emission sources. We report the first d15 N and d18 and vehicle emissions. We provide evidence for passive sampler use to collect NOx for isotope analysis. a r Accepted 7 April 2014 Available online 8 April 2014 Keywords: Nitrogen dioxide NOx Isotope Emission a b

  4. 30TH INTERNATIONAL COSMIC RAY CONFERENCE Isotopic composition of cosmic-ray sources

    E-Print Network [OSTI]

    Moskalenko, Igor V.

    solar composition. Introduction CR source abundances are normally derived using the leaky Autónoma de México, Mexico City, Mexico, 2008 Vol. 2 (OG part 1), pages 129­132 ID 738 129 #12;ISOTOPIC

  5. Optimal Design for a Hybrid Ground-Source Heat Pump 

    E-Print Network [OSTI]

    Yu, Z.; Yuan, X.; Wang, B.

    2006-01-01

    Although the advantages of ground-source heat pumps over their conventional alternatives make these systems a very attractive choice for air conditioning, not only for residential buildings but increasingly also for institutional and commercial...

  6. Combined permeable pavement and ground source heat pump systems 

    E-Print Network [OSTI]

    Grabowiecki, Piotr

    2010-01-01

    The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in these systems allows for the survival of ...

  7. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    DOE Patents [OSTI]

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  8. System for recovery of daughter isotopes from a source material

    DOE Patents [OSTI]

    Tranter, Troy J. (Idaho Falls, ID) [Idaho Falls, ID; Todd, Terry A. (Aberdeen, ID) [Aberdeen, ID; Lewis, Leroy C. (Idaho Falls, ID) [Idaho Falls, ID; Henscheid, Joseph P. (Idaho Falls, ID) [Idaho Falls, ID

    2009-08-04

    A method of separating isotopes from a mixture containing at least two isotopes in a solution is disclosed. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material containing thorium-229 and thorium-232, and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the thorium iodate precipitate. The thorium iodate precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid, which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. A system for producing an actinium-225/bismuth-213 product is also disclosed.

  9. Application analysis of ground source heat pumps in building space conditioning

    E-Print Network [OSTI]

    Qian, Hua

    2014-01-01

    for ground-source heat pumps. in ASHRAE Summer Meeting.savings of ground source heat pump systems in Europe: Afor ground-source heat pumps: A literature review,

  10. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar JumpInformation Crump's Hot Springs Area1978) |Heat

  11. Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump 

    E-Print Network [OSTI]

    Wang, Z.; Gu, J.; Lu, Z.

    2006-01-01

    In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 13~20 ? low temperature water is supplied to the water loop heat pump unit. The water loop heat pump can extract heat from the water and heat the indoor air...

  12. Successful application of lead isotopes in source apportionment, legal proceedings, remediation and monitoring

    SciTech Connect (OSTI)

    Gulson, Brian, E-mail: brian.gulson@mq.edu.au [Graduate School of the Environment, Faculty of Science, Macquarie University, Sydney, NSW 2109 (Australia) [Graduate School of the Environment, Faculty of Science, Macquarie University, Sydney, NSW 2109 (Australia); CSIRO Earth Science and Resource Engineering North Ryde, NSW 1670 (Australia); Korsch, Michael [CSIRO Earth Science and Resource Engineering North Ryde, NSW 1670 (Australia)] [CSIRO Earth Science and Resource Engineering North Ryde, NSW 1670 (Australia); Winchester, Wayne; Devenish, Matthew; Hobbs, Thad [Esperance Cleanup and Recovery Project, Western Australia (WA) Department of Transport, Esperance 6450 (Australia)] [Esperance Cleanup and Recovery Project, Western Australia (WA) Department of Transport, Esperance 6450 (Australia); Main, Cleve; Smith, Gerard [Animal Health Laboratory, Department of Agriculture and Food, Perth 6151, WA (Australia)] [Animal Health Laboratory, Department of Agriculture and Food, Perth 6151, WA (Australia); Rosman, Kevin; Howearth, Lynette; Burn-Nunes, Laurie [Curtin University, Department of Imaging and Applied Physics, Bentley 6102, WA (Australia)] [Curtin University, Department of Imaging and Applied Physics, Bentley 6102, WA (Australia); Seow, Jimmy; Oxford, Cameron [Department of Environment and Conservation, Booragoon 6154, WA (Australia)] [Department of Environment and Conservation, Booragoon 6154, WA (Australia); Yun, Gracie; Gillam, Lindsay [Department of Health, East Perth 6004, WA (Australia)] [Department of Health, East Perth 6004, WA (Australia); Crisp, Michelle [LED (Locals for Esperance Development), Esperance 6450, WA (Australia)] [LED (Locals for Esperance Development), Esperance 6450, WA (Australia)

    2012-01-15

    In late 2006, the seaside community in Esperance Western Australia was alerted to thousands of native bird species dying. The source of the lead (Pb) was determined by Pb isotopes to derive from the handling of Pb carbonate concentrate through the Port, which began in July 2005. Concern was expressed for the impact of this on the community. Our objectives were to employ Pb isotope ratios to evaluate the source of Pb in environmental samples for use in legal proceedings, and for use in remediation and monitoring. Isotope measurements were undertaken of bird livers, plants, drinking water, soil, harbour sediments, air, bulk ceiling dust, gutter sludge, surface swabs and blood. The unique lead isotopic signature of the contaminating Pb carbonate enabled diagnostic apportionment of lead in samples. Apart from some soil and water samples, the proportion of contaminating Pb was >95% in the environmental samples. Lead isotopes were critical in resolving legal proceedings, are being used in the remediation of premises, were used in monitoring of workers involved in the decontamination of the storage facility, and monitoring transport of the concentrate through another port facility. Air samples show the continued presence of contaminant Pb, more than one year after shipping of concentrate ceased, probably arising from dust resuspension. Brief details of the comprehensive testing and cleanup of the Esperance community are provided along with the role of the Community. Lead isotopic analyses can provide significant benefits to regulatory agencies, interested parties, and the community where the signature is able to be characterised with a high degree of certainty. - Highlights: Black-Right-Pointing-Triangle Lead carbonate concentrate. Black-Right-Pointing-Triangle Successful use of Pb isotopes in identifying sources of Pb arising from transport and shipping. Black-Right-Pointing-Triangle Use of Pb isotopes in legal proceedings and their use in cleanup of residences. Black-Right-Pointing-Triangle Use of Pb isotopes in cleanup of a residual 9000 tonnes of Pb carbonate and in ongoing monitoring.

  13. Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System 

    E-Print Network [OSTI]

    Qian, J.; Sun, D.; Li, X.; Li, G.

    2006-01-01

    This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project...

  14. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

  15. Assessment of dynamic energy conversion systems for radioisotope heat sources

    SciTech Connect (OSTI)

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

  16. The effects of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump 

    E-Print Network [OSTI]

    Parker, Brandon DeWayne

    1995-01-01

    The effects of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump were investigated. The base case tests used a bare aluminum outdoor heat exchanger in the experimental setup. The base case test results were...

  17. Feasibility Study of Using Ground Source Heat Pumps in Two Buildings

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Feasibility Study of Using Ground Source Heat Pumps in Two Buildings at Whidbey Island Naval Air and Mt. Olympus BOQ) presently heated by steam from the central steam plant. Ground source heat pump source heat pumps provide both heating and cooling, there would essentially be no cost increase

  18. Nitrogen Isotopes as Indicators of NOx Source Contributions to

    E-Print Network [OSTI]

    Elliott, Emily M.

    with NOx emissions from surrounding stationary sources and additionally that 15N is more strongly correlated with surrounding stationary source NOx emissions than pH, SO4 2-, or NO3 - concentrations. Although emission inventories indicate that vehicle emissions are the dominant NOx source in the eastern U

  19. Discussion of an Optimization Scheme for the Ground Source Heat Pump System of HVAC 

    E-Print Network [OSTI]

    Mu, W.; Wang, S.; Pan, S.; Shi, Y.

    2006-01-01

    With the implementation of the global sustainable development strategy, people pay more attention to renewable energy resources such as ground source heat pumps. The technology of ground source heat pump is widely applied to heat and cold...

  20. Prandtl Number Dependent Natural Convection with Internal Heat Sources

    SciTech Connect (OSTI)

    Kang Hee Lee; Seung Dong Lee; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-06-01

    Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. Recently, attention is being paid to the feasibility of external vessel flooding as a severe accident management strategy and to the phenomena affecting the success path for retaining the molten core material inside the vessel. The heat transfer inside the molten core material can be characterized by the strong buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of such flow depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, the natural convection heat transfer phenomena involving the internal heat generation are represented by the modified Rayleigh number (Ra’), which quantifies the internal heat source and hence the strength of the buoyancy force. In this study, tests were conducted in a rectangular section 250 mm high, 500 mm long and 160 mm wide. Twenty-four T-type thermocouples were installed in the test section to measure temperatures. Four T-type thermocouples were used to measure the boundary temperatures. The thermocouples were placed in designated locations after calibration. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Ra' between 1.5x106 and 7.42x1015 and the Prandtl number (Pr) between 0.7 and 6.5. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained uniform. The results demonstrated feasibility of the direct heating method to simulate uniform volumetric heat generation. Particular attentions were paid to the effect of Pr on natural convection heat transfer within the rectangular pool.

  1. Group classification of heat conductivity equations with a nonlinear source

    E-Print Network [OSTI]

    Zhdanov, Renat

    Group classification of heat conductivity equations with a nonlinear source R.Z. Zhdanov Institute. It is shown that there are three, seven, twenty eight and twelve inequivalent classes of partial differential to the class under study and admitting symmetry group of the dimension higher than four is locally equivalent

  2. Multi-Source Hydronic Heat Pump System Performance Test Bed 

    E-Print Network [OSTI]

    Meckler, M.

    1984-01-01

    of peak power and energy savings allowed by the innovative system. The main difference between the MSHHP and a conventional HVAC system is use of a chilled water "diversity" cooling loop interconnecting air to water coils (located at each water source heat...

  3. Thermoelectricity without absorbing energy from the heat sources

    E-Print Network [OSTI]

    Robert. S. Whitney; Rafael Sánchez; Federica Haupt; Janine Splettstoesser

    2015-09-28

    We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs - one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an "exotic" power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.

  4. Thermoelectricity without absorbing energy from the heat sources

    E-Print Network [OSTI]

    Robert. S. Whitney; Rafael Sánchez; Federica Haupt; Janine Splettstoesser

    2015-08-18

    We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs - one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an "exotic" power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.

  5. An ion guide laser ion source for isobar-suppressed rare isotope beams

    SciTech Connect (OSTI)

    Raeder, Sebastian Ames, Friedhelm; Bishop, Daryl; Bricault, Pierre; Kunz, Peter; Mjøs, Anders; Heggen, Henning; Institute of Applied Physics, TU Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt ; Lassen, Jens Teigelhöfer, Andrea; Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2

    2014-03-15

    Modern experiments at isotope separator on-line (ISOL) facilities like ISAC at TRIUMF often depend critically on the purity of the delivered rare isotope beams. Therefore, highly selective ion sources are essential. This article presents the development and successful on-line operation of an ion guide laser ion source (IG-LIS) for the production of ion beams free of isobaric contamination. Thermionic ions from the hot ISOL target are suppressed by an electrostatic potential barrier, while neutral radio nuclides effusing out are resonantly ionized by laser radiation within a quadrupole ion guide behind this barrier. The IG-LIS was developed through detailed thermal and ion optics simulation studies and off-line tests with stable isotopes. In a first on-line run with a SiC target a suppression of surface-ionized Na contaminants in the ion beam of up to six orders of magnitude was demonstrated.

  6. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    SciTech Connect (OSTI)

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  7. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    SciTech Connect (OSTI)

    Mittereder, Nick; Poerschke, Andrew

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season.

  8. Arctic methane sources: Isotopic evidence for atmospheric inputs R. E. Fisher,1

    E-Print Network [OSTI]

    Sheldon, Nathan D.

    Arctic methane sources: Isotopic evidence for atmospheric inputs R. E. Fisher,1 S. Sriskantharajah,1 D. Lowry,1 M. Lanoisellé,1 C. M. R. Fowler,1 R. H. James,2 O. Hermansen,3 C. Lund Myhre,3 A. Stohl,3 J. Greinert,4 P. B. R. NisbetJones,5 J. Mienert,6 and E. G. Nisbet1 Received 16 August 2011

  9. Paper O.1.4.2 -1 -A SIMPLE TOOL FOR SIMULATION OF GROUND SOURCE HEAT

    E-Print Network [OSTI]

    Paper O.1.4.2 - 1 - A SIMPLE TOOL FOR SIMULATION OF GROUND SOURCE HEAT PUMP SYSTEMS Jeffrey D developed a number of ground heat exchanger models for use in simulation of ground source heat pump systems. Nevertheless, there are many situations where an easy to use hourly simulation of a ground source heat pump

  10. Development of a Residential Ground-Source Integrated Heat Pump

    SciTech Connect (OSTI)

    Rice, C Keith [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Hern, Shawn [ClimateMaster, Inc.] [ClimateMaster, Inc.; McDowell, Tim [Thermal Energy System Specialists, LLC] [Thermal Energy System Specialists, LLC; Munk, Jeffrey D [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2013-01-01

    A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internal control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.

  11. IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR SOURCE HEAT PUMP WATER

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SOURCE HEAT PUMP WATER HEATER Farouk Fardoun, Associate Professor, Department of Industrial Engineering- 1 - 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR of an air source heat pump water heater (ASHPWH). The mathematical model consists of submodels of the basic

  12. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    SciTech Connect (OSTI)

    Rice, C Keith; Uselton, Robert B.; Shen, Bo; Baxter, Van D; Shrestha, Som S

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  13. Geothermal-Heat Extraction As a source of renewable energy, geothermal-heat extraction has become increasingly

    E-Print Network [OSTI]

    Kornhuber, Ralf

    Geothermal-Heat Extraction As a source of renewable energy, geothermal-heat extraction has become increasingly important in recent years. Proper design of a geothermal system, be it for deep or for shallow

  14. Preliminary Retro-Commissioning Study on Optimal Operation for the Heat Source System of a District Heating Cooling Plant 

    E-Print Network [OSTI]

    Shingu, H.; Yoshida, H.; Wang, F.; Ono, E.

    2008-01-01

    In order to improve the energy performance of a district heating and cooling (DHC) plant, the expected performance of the plant is studied using simulations based on mathematical models. A complete heat source system model, equipped with an embedded...

  15. Generation of acoustic-gravity waves in ionospheric HF heating experiments : simulating large-scale natural heat sources

    E-Print Network [OSTI]

    Pradipta, Rezy

    2012-01-01

    In this thesis, we investigate the potential role played by large-scale anomalous heat sources (e.g. prolonged heat wave events) in generating acoustic-gravity waves (AGWs) that might trigger widespread plasma turbulence ...

  16. A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2009-01-01

    Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

  17. Titanium tritide radioisotope heat source development : palladium-coated titanium hydriding kinetics and tritium loading tests.

    SciTech Connect (OSTI)

    Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom

    2012-01-01

    We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

  18. Buoyancy-driven heat transfer and flow between a wetted heat source and an isothermal cube

    SciTech Connect (OSTI)

    Close, D.J.; Peck, M.K.; White, R.F.; Mahoney, K.J. )

    1991-05-01

    This paper describes flow visualization and heat transfer experiments conducted with a heat source inside an isothermal cube filled with a saturated or near-saturated gas/vapor mixture. The mixture was formed by vaporizing liquid from the surface of the heat source, and allowing it to condense on the surfaces of the cube, which was initially filled with a noncondensing gas. Visualization studies showed that for air and ethanol below 35C, and for air and water, the flow patterns were similar with the hot plume rising from the source. For air and ethanol above 35C the flow pattern reversed with the hot plume flowing downward. For temperatures spanning 35C, which is the zero buoyancy temperature for the ethanol/water azeotrope and air, no distinct pattern was observed. Using water, liquid droplets fell like rain throughout the cube. Using ethanol, a fog of droplets moved with the fluid flow. Heat transfer experiments were made with water and air, and conductances between plate and cube of around 580 W{center dot}m{sup {minus}2}{center dot}K{sup {minus}1} measured. Agreement between the similarity theory developed for saturated gas/vapor mixtures, and correlations for single component fluids only, was very good. Together with qualitative support from the visualization experiments, the theory developed in a earlier paper deriving a similarity relationship between single fluids and gas/vapor mixtures has been validated.

  19. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01

    tool for geothermal water loop heat pump systems, 9thInternational IEA Heat Pump Conference, Zürich, Switzerland,of ground source heat pump system in a near-zero energy

  20. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01

    tool for geothermal water loop heat pump systems, 9thInternational IEA Heat Pump Conference, Zürich, Switzerland,Performance of ground source heat pump system in a near-zero

  1. SIMULATION AND VALIDATION OF HYBRID GROUND SOURCE AND WATER-LOOP HEAT PUMP

    E-Print Network [OSTI]

    SIMULATION AND VALIDATION OF HYBRID GROUND SOURCE AND WATER-LOOP HEAT PUMP SYSTEMS By JASON EARL AND VALIDATION OF HYBRID GROUND SOURCE AND WATER-LOOP HEAT PUMP SYSTEMS Thesis Approved: Dr. Jeffrey D. Spitler

  2. Advanced Ground Source Heat Pump Technology for Very-Low-Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ground Source Heat Pump Technology for Very-Low-Energy Buildings Advanced Ground Source Heat Pump Technology for Very-Low-Energy Buildings Three newunder-utilized ground loop...

  3. Earth-Coupled Water-Source Heat Pump Research, Design and Applications in Louisiana 

    E-Print Network [OSTI]

    Braud, H. J.; Klimkowski, H.; Baker, F. E.

    1985-01-01

    An earth-coupled water-source heat pump uses the earth as the thermal source and sink for economical, energy efficient, space heating and cooling. Water exiting the heat pump passes through an earth heat exchanger, which is a closed loop of plastic...

  4. Low Temperature Heat Source Utilization Current and Advanced Technology

    SciTech Connect (OSTI)

    Anderson, James H. Jr.; Dambly, Benjamin W.

    1992-06-01

    Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

  5. 192 ASHRAE Transactions: Research Ground-source heat pumps for cooling-dominated

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    operating and control strategies in a hybrid ground-source heat pump application using an hourly system performance, one of the available options is a hybrid ground-source heat pump application. Hybrid systems of Operating and Control Strategies for Hybrid Ground-Source Heat Pump Systems Using a Short Time Step

  6. HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+

    E-Print Network [OSTI]

    HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+ M.H. Khan, 74078, USA ABSTRACT This paper presents a simulation of a hybrid ground source heat pump system, performed using a new graphical user interface for HVACSIM+. Hybrid ground source heat pump systems

  7. Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System 

    E-Print Network [OSTI]

    Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

    2006-01-01

    The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source...

  8. Resonance ionization laser ion sources for on-line isotope separators (invited)

    SciTech Connect (OSTI)

    Marsh, B. A. [EN Department, CERN, 1211 Geneva (Switzerland)] [EN Department, CERN, 1211 Geneva (Switzerland)

    2014-02-15

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.

  9. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; et al

    2015-06-08

    The nitrate (NO??) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO?? derived from at NO?? signal with ?¹?N averaging –4.8 ± 1.0‰ (standard error of the mean) and ?¹?O averaging 70.2 ±1.7‰. In active layer pore waters, NO?? primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average ?¹?N and ?¹?O of NO?? from high-centered polygons were 0.5 ± 1.1‰ and –4.1 ± 0.6‰, respectively. When compared to the ?¹?N of reduced nitrogen (N) sources,more »and the ?¹?O of soil pore waters, it was evident that NO?? in high-centered polygons was primarily from microbial nitrification. Permafrost NO?? had ?¹?N ranging from approximately –6‰ to 10‰, similar to atmospheric and microbial NO??, and highly variable ?¹?O ranging from approximately –2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO??, while permafrost textural ice contained a greater proportion of microbially derived NO??. Large-scale permafrost thaw in this environment would release NO?? with a ?¹?O signature intermediate to that of atmospheric and microbial NO?. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO?? dual isotope technique in tundra environments, attribution of NO?? from thawing permafrost will not be straightforward. The NO?? isotopic signature, however, appears useful in identifying NO?? sources in extant permafrost ice.« less

  10. Geothermal-Heat Extraction As a source of renewable energy, geothermal-heat extraction has become increasingly

    E-Print Network [OSTI]

    Kornhuber, Ralf

    period before the injected cold water significantly affects the groundwater temperature at the extraction horizontal (steady) flow and (transient) heat-transport model for a warm-water extraction / cold-waterGeothermal-Heat Extraction As a source of renewable energy, geothermal-heat extraction has become

  11. The Use of Aluminum Process Reject Heat as the Source of Energy for a District Heating System 

    E-Print Network [OSTI]

    McCabe, J.; Olszewski, M.

    1980-01-01

    Rocket Research Company (RRC) is investigating the use of industrial process reject heat as a source of energy for large scale district heating. The District heating System is a network of closed-loop hot water pipes that recover energy from...

  12. Ground Source Integrated Heat Pump (GS-IHP) Development

    SciTech Connect (OSTI)

    Baxter, V. D.; Rice, K.; Murphy, R.; Munk, J.; Ally, Moonis; Shen, Bo; Craddick, William; Hearn, Shawn A.

    2013-05-24

    Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test experience, CM developed a 2nd generation (or beta) prototype in 2012. Field test verification units were fabricated and installed at the ZEBRAlliance site in Oak Ridge in May 2012 and at several sites near CM headquarters in Oklahoma. Field testing of the units continued through February 2013. Annual performance analyses of the beta unit (prototype 2) with vertical well ground heat exchangers (GHX) in 5 U.S. locations predict annual energy savings of 57% to 61%, averaging 59% relative to the minimum efficiency suite and 38% to 56%, averaging 46% relative to the SOA GSHPwDS. Based on the steady-state performance demonstrated by the test units it was projected that the 2nd generation units would achieve ~58% energy savings relative to the minimum efficiency suite at the Zebra Alliance site with horizontal GHX. A new product based on the beta unit design was announced by CM in 2012 – the Trilogy 40® Q-mode™ (http://cmdealernet.com/trilogy_40.html). The unit was formally introduced in a March 2012 press release (see Appendix A) and was available for order beginning in December 2012.

  13. MODELING OF STANDING COLUMN WELLS IN GROUND SOURCE HEAT PUMP SYSTEMS

    E-Print Network [OSTI]

    MODELING OF STANDING COLUMN WELLS IN GROUND SOURCE HEAT PUMP SYSTEMS By ZHENG DENG Bachelor December, 2004 #12;ii MODELING OF STANDING COLUMN WELLS IN GROUND SOURCE HEAT PUMP SYSTEMS Thesis Approved) ..................................................................... 6 1.3. Basic physical mechanism in SCWs (heat transfer and mass transfer in porous media

  14. PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION

    E-Print Network [OSTI]

    PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION M in a ground source heat pump system falls near or below 0o C, an antifreeze mixture must be used to prevent freezing in the heat pump. The antifreeze mixture type and concentration has a number of implications

  15. 192 ASHRAE Transactions: Research Ground-source heat pumps for cooling-dominated

    E-Print Network [OSTI]

    192 ASHRAE Transactions: Research ABSTRACT Ground-source heat pumps for cooling- tion of the heat pump performance is avoided by offsetting the annual load imbalance in the borefield operating and control strategies in a hybrid ground-source heat pump application using an hourly system

  16. Efficiency, Economic and Environmental Assessment of Ground-Source Heat Pumps in

    E-Print Network [OSTI]

    Blumsack, Seth

    1 Efficiency, Economic and Environmental Assessment of Ground-Source Heat Pumps in Central pump (GSP) for heating, cooling and hot water in a Central Pennsylvania residence (namely, the author, the efficiency gain for the ground-source heat pump compared to electricity is 43% for cooling and 81

  17. Coefficient of the Extraction of the Target Isotope and Optimum Parameters of a Collector of Heated Ions in the Context of the ICR Method of Isotope Separation

    SciTech Connect (OSTI)

    Karchevskii, A. I.; Potanin, E. P.

    2002-07-15

    The separation parameters of a collector of heated ions are estimated in the context of the ion cyclotron resonance method of isotope separation. The separation power dU, the coefficient {Gamma}{sub C} of the extraction of the target isotope, and the collector efficiency {eta} are calculated. These parameters are investigated as functions of the repulsive potential U of the collector plates, the half-height a of the front screen, and the distance b between the plates. It is shown that the dependence of the collector efficiency {eta} on the distance b between the plates has a pronounced maximum at b Almost-Equal-To 2r{sub L}{sup *}, where r{sub L}{sup *} is the mean ion gyroradius.

  18. Environmental assessment for radioisotope heat source fuel processing and fabrication

    SciTech Connect (OSTI)

    Not Available

    1991-07-01

    DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs.

  19. Experimental study of an air-source heat pump for simultaneous heating and cooling Part 2: Dynamic behaviour and two-phase thermosiphon

    E-Print Network [OSTI]

    Boyer, Edmond

    of the high pressure control system, the transitions between heating, cooling and simultaneous modes1 Experimental study of an air-source heat pump for simultaneous heating and cooling ­ Part 2 the concepts of an air-source Heat Pump for Simultaneous heating and cooling (HPS) designed for hotels

  20. Experimental study of an air-source heat pump for simultaneous heating and cooling Part 1: Basic concepts and performance verification

    E-Print Network [OSTI]

    Boyer, Edmond

    manufacturer. The operation of the high pressure control system, the transitions between heating, cooling1 Experimental study of an air-source heat pump for simultaneous heating and cooling ­ Part 1 40 51 ABSTRACT This article presents the concepts of an air-source Heat Pump for Simultaneous heating

  1. Ground source heat storage and thermo-physical response of soft clay

    E-Print Network [OSTI]

    Saxe, Shoshanna Dawn

    2009-01-01

    Ground source heat storage can condition buildings with reduced consumption of fossil fuels, an important issue in modem building design. However, seasonal heat storage can cause soil temperature fluctuations and possibly ...

  2. Kosciusko REMC- Residential Geothermal and Air-source Heat Pump Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kosciusko REMC offers rebates (as bill credits) to residential members for the purchase and installation of high efficiency air-source heat pumps, geothermal heat pumps, and electric water heaters....

  3. Ground and Water Source Heat Pump Performance and Design for Southern Climates 

    E-Print Network [OSTI]

    Kavanaugh, S.

    1988-01-01

    Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

  4. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect (OSTI)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  5. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2011-01-01

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  6. Numerical Simulation of a Latent Heat Storage System of a Solar-Aided Ground Source Heat Pump 

    E-Print Network [OSTI]

    Wang, F.; Zheng, M.; Li, Z.; Lei, B.

    2006-01-01

    In this study, the rectangular phase change storage tank (PCST) linked to a solar-aided ground source heat pump (SAGSHP) system is investigated experimentally and theoretically. The container of the phase change material ...

  7. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01

    type air-source VRF system and a GSHP system that uses single-stage scroll compressors and vertical ground loop heat exchanger (

  8. Sustainable Energy Resources for Consumers (SERC)- Geothermal/Ground-Source Heat Pumps

    Broader source: Energy.gov [DOE]

    This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Geothermal/Ground-Source Heat Pumps.

  9. Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    Broader source: Energy.gov [DOE]

    Project objective: Create a new modeling decision? tool that will enable ground source heat pump (GSHP) designers and customers to make better design and purchasing decisions.

  10. Advanced variable speed air-source integrated heat pump (AS-IHP...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced variable speed air-source integrated heat pump (AS-IHP) 2014 Building Technologies Office Peer Review Field test system IHP concept - all HVACWH integrated into one...

  11. Tennessee: Ground-Source Heat Pump Receives Innovation Award...

    Office of Environmental Management (EM)

    analysis, the Trilogy 40 Q-Mode heat pump can save about 60% of annual energy use and cost for space conditioning and water heating in residential applications versus minimum...

  12. Introduction Ground source heat pump (GSHP) systems are used

    E-Print Network [OSTI]

    to drilling of bore- holes for vertical ground heat exchangers (GHX), or excavation for horizontal GHX, USA, spitler@okstate.edu signhilD e.a. gehlin Technical Expert, Swedish Centre for Shallow Geothermal pumps, GSHP, foundation heat exchanger, FHX,vertical ground heat exchanger, VGHX REHVA Journal ­ January

  13. Identification of the source of methane at a hazardous waste treatment facility using isotopic analysis

    SciTech Connect (OSTI)

    Hackley, K.C.; Liu, C.L. (Illinois State Geological Survey, Peabody, IL (United States)); Trainor, D.P. (Dames and Moore, Madison, WI (United States))

    1992-01-01

    Isotopic analyses have been used to determine the source of methane in subsurface sediments at a hazardous waste treatment facility in the Lake Calumet area of Chicago, Illinois. The study area is surrounded by landfills and other waste management operations and has a long history of waste disposal. The facility property consists of land constructed of approximately 15 feet of fill placed over lake sediments. The fill is underlain by successively older lacustrine and glacial till deposits to a maximum depth of approximately 80 feet. During a subsurface investigation of the site performed for a RCRA Facility Investigation of former solid waste management units (SWMUs) in the fill, significant quantities of methane were encountered in the natural deposits. Gas samples were collected from the headspace of 11 piezometers screened at depths of approximately 30, 40, and 50 feet beneath the surface. Methane concentrations up to 75% by volume were observed in some of the piezometers. Stable isotope analyses were completed on methane and associated CO[sub 2] separated from the gas samples. Radiocarbon (C-14) analyses were also completed on several of the samples. The delta C-13 results for the intermediate and deep zones are indicative of methane produced by microbial reduction of CO[sub 2]. The methane occurring in the shallow zone appears to be a mixture of methane from the intermediate zone and methane produced by microbial fermentation of naturally (nonanthropogenic) buried organic matter within the shallow lacustrine sediments. According to the isotopic and chemical results, the methane does not appear to be related to gas generation from nearby landfills or from organic wastes previously placed in the former facility SWMUs.

  14. Analysis of Energy and Soft Dirt in an Urban Untreated Sewage Source Heat Pump System 

    E-Print Network [OSTI]

    Qian, J.; Sun, D.; Li, X.

    2006-01-01

    When using urban untreated sewage as a cool and heat source of heat pump, it is unavoidable to form soft dirt. Based on the method of exergy, an analysis is given of the impact the dirt growth of a tube-shell sewage heat exchanger will have...

  15. State of the Art of Air-source Heat Pump for Cold Regions 

    E-Print Network [OSTI]

    Tian, C.; Liang, N.

    2006-01-01

    In this paper, research on air source heat pump systems for cold regions in recent years is first summarized and compared. These systems can be divided into three kinds: a single-stage compression heat pump, liquid/vapor injection heat pump, and a...

  16. Short communication Optimization of hybrid ground coupled and air source heat pump systems

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Short communication Optimization of hybrid ­ ground coupled and air source ­ heat pump systems 2008 Accepted 14 January 2010 Available online 28 January 2010 Keywords: Ground coupled heat pump Air to water heat pump Thermal storage device Hybrid HVAC system Energy efficiency Numerical simulation a b

  17. Heat transfer through a water spray curtain under the effect of a strong radiative source

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Heat transfer through a water spray curtain under the effect of a strong radiative source P. Boulet - mail Pascal.Boulet@lemta.uhp-nancy.fr Keywords : heat transfer, radiative transfer, vaporization, convection, water spray Abstract Heat transfer inside a participating medium, made of droplets flowing in gas

  18. Study of the design Method of an Efficient Ground Source Heat Pump Thermal Source System in a Cold Area 

    E-Print Network [OSTI]

    Shu, H.; Duanmu, L.; Hua, R.; Zou, Y.; Du, G.

    2006-01-01

    The ground source heat pump (GSHP) system-an energy efficiency and environment friendly system-is becoming popular in many parts of China. However, an imbalance usually exists between the annual heat extracted from and rejected to the ground due...

  19. Designing, selecting and installing a residential ground-source heat pump system

    SciTech Connect (OSTI)

    Hughes, Patrick [ORNL; Liu, Xiaobing [ORNL; Munk, Jeffrey D [ORNL

    2010-01-01

    It's a compelling proposition: Use the near-constant-temperature heat underground to heat and cool your home and heat domestic water, slashing your energy bills. Yet despite studies demonstrating significant energy savings from ground-source heat pump (GSHP) systems, their adoption has been hindered by high upfront costs. Fewer than 1% of US homes use a GSHP system. However, compared to a minimum-code-compliant conventional space-conditioning system, when properly designed and installed, a GSHP retrofit at current market prices offers simple payback of 4.3 years on national average, considering existing federal tax credits. Most people understand how air-source heat pumps work: they move heat from indoor air to outdoor air when cooling and from outdoor air to indoor air when heating. The ground-source heat pump operates on the same principle, except that it moves heat to or from the ground source instead of outdoor air. The ground source is usually a vertical or horiontal ground heat exchanger. Because the ground usually has a more favorable temperature than ambient air for the heating and cooling operation of the vapor-compression refrigeration cycle, GSHP sysems can operate with much higher energy efficiencies than air-source heat pump systems when properly designed and installed. A GSHP system used in a residual building typically provides space conditioning and hot water and comprises three major components: a water-source heat pump unit designed to operate at a wider range of entering fluid temperatures (typically from 30 F to 110 F, or 1 C to 43 C) than a conventional water-source heat pump unit; a ground heat exchanger (GHX); and distribution systems to deliver hot water to the storage tank and heating or cooling to the conditioned rooms. In most residual GSHP systems, the circulation pumps and associated valves are integrated with the heat pump to circulate the heat-carrier fluid (water or aqueous antifreeze solution) through the heat pump and the GHX. A recent assessment indicates that if 20% of US homes replaced their existing space-conditioning and water-heating systems with properly designed, installed and operated state-of-the-art GSHP systems, it would yield significant benefits each year. These include 0.8 quad British thermal units (Btu) of primary energy savings, 54.3 million metric tons of CO{sub 2} emission reductions, $10.4 billion in energy cost savings and 43.2 gigawatts of reduction in summer peak electrical demand.

  20. A reactor for high-temperature pyrolysis and oxygen isotopic analysis of cellulose via induction heating

    E-Print Network [OSTI]

    Evans, Michael N.

    A reactor for high-temperature pyrolysis and oxygen isotopic analysis of cellulose via induction and theory to recommend pyrolysis at temperatures above 14508C to minimize memory and fractionation effects of producing pyrolysis conditions for the analysis of oxygen and deuterium isotopic compositions of organic

  1. Mixed convection heat transfer from thermal sources mounted on horizontal and vertical surfaces

    SciTech Connect (OSTI)

    Tewari, S.S.; Jaluria, Y. )

    1990-11-01

    An experimental study is carried out on the fundamental aspects of the conjugate, mixed convective heat transfer from two finite width heat sources, which are of negligible thickness, have a uniform heat flux input at the surface, and are located on a flat plate in a horizontal or the vertical orientation. The heat sources are wide in the transverse direction and, therefore, a two-dimensional flow circumstance is simulated. The mixed convection parameter is varied over a fairly wide range to include the buoyancy-dominated and the mixed convection regimes. The circumstances of pure natural convection are also investigated. The convective mechanisms have been studied in detail by measuring the surface temperatures and determining the heat transfer coefficients for the two heated strips, which represent isolated thermal sources. Experimental results indicate that a stronger upstream heat source causes an increase in the surface temperature of a relatively weaker heat source, located downstream, by reducing it convective heat transfer coefficient. The influence of the upstream source is found to be strongly dependent on the surface orientation, especially in the pure natural convection and the buoyancy dominated regimes. The two heat sources are found to be essentially independent on the surface orientation, especially in the pure natural convection and the buoyancy dominated regimes. The two heat sources are found to be essentially independent of each other, in terms of thermal effects, at a separation distance of more than about three strip widths for both the orientations. The results obtained are relevant to many engineering applications, such as the cooling of electronic systems, positioning of heating elements in furnaces, and safety considerations in enclosure fires.

  2. Research and Development Roadmap. Geothermal (Ground-Source) Heat Pumps

    SciTech Connect (OSTI)

    Goetzler, William; Guernsey, Matt; Kar, Rahul

    2012-10-01

    Roadmap identifying potential activities and technical innovations that may enable substantial improvements in residential and commercial Geothermal Heat Pumps (GHP) installed cost and/or efficiency.

  3. VOLUME 11, NUMBER 2 HVAC&R RESEARCH APRIL 2005 Ground-Source Heat Pump System Research--

    E-Print Network [OSTI]

    VOLUME 11, NUMBER 2 HVAC&R RESEARCH APRIL 2005 165 EDITORIAL Ground-Source Heat Pump System Research-- Past, Present, and Future J.D. Spitler, PhD, PE Fellow ASHRAE Ground-source heat pump (GSHP to Heinrich Zoelly is the first known reference to ground-source heat pump systems.2 In the US, some ground-source

  4. Primitive off-rift basalts from Iceland and Jan Mayen: Os-isotopic evidence for a mantle source containing

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    Primitive off-rift basalts from Iceland and Jan Mayen: Os-isotopic evidence for a mantle source Volcanological Center, Institute of Earth Sciences, University of Iceland, Reykjavik, Iceland d Natural History elements, are presented for basalts from the three volcanic flank zones in Iceland and from Jan Mayen

  5. Control of outdoor air source water heating using variable-speed heat pump

    SciTech Connect (OSTI)

    Dudley, K.F.; Paige, L.E.; Dunshee, K.B.; Voorhis, R.J.

    1991-10-01

    This patent describes a process of controlling an integrated heat pump system of the type. It comprises a variable speed compressor having a discharge port and a suction port; a water heater exchanger coupled to the discharge port of the compressor for heating water by transfer of heat from a compressed heat exchange fluid; an outdoor evaporator heat exchanger having an outdoor fan and a coil receiving the heat exchange fluid from the water heat exchanger and coupled also to the suction port of the compressor, for drawing heat from the outdoor air which heat is transferred to the water in the water heat exchanger; a controller having output channels to control an outdoor fan and the speed of the variable speed compressor and inputs respectively coupled to a water heater setpoint adjustment means, an outdoor air temperature sensor for sensing the outdoor temperature of the outdoor air; and a water temperature sensor for sensing the temperature of the water heated by the water heat exchanger; the process comprising the steps of sensing the outdoor temperature T{sub o}.

  6. Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application

    SciTech Connect (OSTI)

    Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2014-01-01

    In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

  7. ADVANCES IN MODELING OF GROUND-SOURCE HEAT

    E-Print Network [OSTI]

    knowledge and experience in several geothermal topics. I also wish to thank to Dr. Simon Rees who served-Coupled Heat Pump Systems........................................................5 1.1.2.1. Vertical Ground

  8. 137Cs(90Sr) and Pu isotopes in the Pacific Ocean sources & trends

    SciTech Connect (OSTI)

    Hamilton, T.F., Millies-Lacrox, J.C. [Service Mixte de Securite Radologique, Mondhery (France); Hong, G.H. [Korea Ocean Research and Development Institute, Ansan (Korea)

    1996-11-01

    The main source of artificial radioactivity in the world`s oceans can be attributed to worldwide fallout from atmospheric nuclear weapons testing. Measurements of selected artificial radionuclides in the Pacific Ocean were first conducted in the 1960`s where it was observed that fallout radioactivity had penetrated the deep ocean. Extensive studies carried out during the 1973-74 GEOSECS provided the first comprehensive data on the lateral and vertical distributions of {sup 9O}Sr, {sup 137}Cs and Pu isotopes in the Pacific on a basin wide scale. Estimates of radionuclide inventories in excess of amounts predicted to be delivered by global fallout alone were attributed to close-in fallout and tropospheric inputs from early U.S. tests conducted on Bikini and Enewetak Atolls in the Equatorial Pacific. In general, levels of fallout radionuclides (including {sup 9O}Sr, {sup 137}Cs and Pu isotopes) in the surface waters of the Pacific Ocean have decreased considerably over the past 4 decades and are now much more homogeneously distributed. Resuspension and the subsequent deposition of fallout radionuclides from previously deposited debris on land has become an important source term for the surface ocean. This can be clearly seen in measurements of fallout radionuclides in mineral aerosols over the Korean Peninsula (Yellow dust events). Radionuclides may also be transported from land to sea in river runoff-these transport mechanisms are more important in the Pacific Ocean where large quantities of river water and suspended sands/fluvial sediments reach the coastal zone. Another unique source of artificial radionuclides in the Pacific Ocean is derived from the slow resolubilization and transport of radionuclides deposited in contaminated lagoon and slope sediments near U.S. and French test sites. Although there is a small but significant flux of artificial radionuclides depositing on the sea floor, > 80% of the total 239, {sup 240}Pu inventory and > 95% of the total {sup 137}Cs inventory remains in the water column. Studies conducted through the 1980`s appear to be consistent with earlier findings and indicate that radionuclide inventories in mid-northern latitudes are at least a factor of two above those expected from global fallout alone. The long term persistence of close-in and/or stratospheric fallout from nuclear weapons testing in the Marshall Islands still appears to be the only plausible explanation for this anomaly.

  9. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    SciTech Connect (OSTI)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Pikin, A. I.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.

    2015-08-28

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  10. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Pikin, A. I.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.

    2015-08-28

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore »stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less

  11. ORNL/TM-2008/232 Geothermal (Ground-Source) Heat Pumps

    E-Print Network [OSTI]

    Pennycook, Steve

    ORNL/TM-2008/232 Geothermal (Ground-Source) Heat Pumps: Market Status, Barriers to Adoption January 1, 1996, may be purchased by members of the public from the following source. National Technical, and International Nuclear Information System (INIS) representatives from the following source. Office of Scientific

  12. Federal Technology Alert: Ground-Source Heat Pumps Applied to Federal Facilities--Second Edition

    SciTech Connect (OSTI)

    Hadley, Donald L.

    2001-03-01

    This Federal Technology Alert, which was sponsored by the U.S. Department of Energy's Office of Federal Energy Management Programs, provides the detailed information and procedures that a Federal energy manager needs to evaluate most ground-source heat pump applications. This report updates an earlier report on ground-source heat pumps that was published in September 1995. In the current report, general benefits of this technology to the Federal sector are described, as are ground-source heat pump operation, system types, design variations, energy savings, and other benefits. In addition, information on current manufacturers, technology users, and references for further reading are provided.

  13. IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN...

    Open Energy Info (EERE)

    a rich source of information about physical processes associated with Enhanced Geothermal Systems (EGS) experiments and other geothermal operations. With support from the...

  14. Verification of the content, isotopic composition and age of plutonium in Pu-Be neutron sources by gamma-spectrometry

    E-Print Network [OSTI]

    Cong Tam Nguyen

    2005-08-29

    A non-destructive, gamma-spectrometric method for verifying the plutonium content of Pu-Be neutron sources has been developed. It is also shown that the isotopic composition and the age of plutonium (Pu) can be determined in the intensive neutron field of these sources by the ``Multi-Group Analysis'' method. Gamma spectra were taken in the far-field of the sample, which was assumed to be cylindrical. The isotopic composition and the age of Pu were determined using a commercial implementation of the Multi-Group Analysis algorithm. The Pu content of the sources was evaluated from the count rates of the gamma-peaks of 239Pu, relying on the assumption that the gamma-rays are coming to the detector parallel to each other. The determination of the specific neutron yields and the problem of neutron damage to the detector are also discussed.

  15. PERFORMANCE EVALUATION OF AN AIR-TO-AIR HEAT PUMP COUPLED WITH TEMPERATE AIR-SOURCES INTEGRATED INTO A DWELLING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PERFORMANCE EVALUATION OF AN AIR-TO-AIR HEAT PUMP COUPLED WITH TEMPERATE AIR-SOURCES INTEGRATED.peuportier@mines-paristech.fr, Tel.: +33 1 40 51 91 51 ABSTRACT An inverter-driven air-to-air heat pump model has been developped capacity air-to-air heat pump coupled with temperate air sources (crawlspace, attic, sunspace, heat

  16. A pre-feasibility study to assess the potential of Open Loop Ground Source Heat to heat and cool the proposed Earth Science Systems Building

    E-Print Network [OSTI]

    A pre-feasibility study to assess the potential of Open Loop Ground Source Heat to heat and cool the proposed Earth Science Systems Building at the University of British Columbia Abha Parajulee Kim Smet............................................................1 1.2. History of Ground Source Heat Pump Systems................................................3 1

  17. Investigating Ground Source Geothermal Heating for Garfield House

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    of historical significance associated with Garfield, as it dates back to 1885, serving as a fraternity house heating oil consumption from January 2004 through December 2009, or 72 monthly values. Formulas were set and revised consumption rates were then assigned a conservative cost estimate based on retail price data from

  18. Plasmonic Photothermal Heating of Intraperitoneal Tumors through the Use of an Implanted Near-Infrared Source

    E-Print Network [OSTI]

    Bagley, Alexander F.

    Plasmonic nanomaterials including gold nanorods are effective agents for inducing heating in tumors. Because near-infrared (NIR) light has traditionally been delivered using extracorporeal sources, most applications of ...

  19. EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at...

  20. Evidence for a Crustal Heat Source for Low-Temperature Geothermal...

    Open Energy Info (EERE)

    geothermalsystems in the Central Alaskan Hot Springs Belt (CAHSB) areheated by a crustal heat source. The overall rate of circulation inCAHSB systems appears to be low, with...

  1. Detecting sources of heat loss in residential buildings from infrared imaging

    E-Print Network [OSTI]

    Shao, Emily Chen

    2011-01-01

    Infrared image analysis was conducted to determine the most common sources of heat loss during the winter in residential buildings. 135 houses in the greater Boston and Cambridge area were photographed, stitched, and tallied ...

  2. 7-106 A reversible heat pump is considered. The temperature of the source and the rate of heat transfer to the sink are to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-39 7-106 A reversible heat pump is considered. The temperature of the source and the rate of heat transfer to the sink are to be determined. Assumptions The heat pump operates steadily. Analysis Combining.5¸ ¹ · ¨ © § ¸ ¸ ¹ · ¨ ¨ © § 1.6 1 1)K300( COP 1 1 maxHP, HL TT Based upon the definition of the heat pump coefficient

  3. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

    2006-03-07

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  4. Convective heat transfer with buoyancy effects from thermal sources on a flat plate

    SciTech Connect (OSTI)

    Tewari, S.S.; Jaluria, Y. )

    1991-06-01

    An experimental study is carried out on the thermal interaction between two finite-size heat sources, located on a flat plate that is well insulated on the back. Both the horizontal and the vertical orientations of the surface are studied by measuring the flow velocities, the temperature field, and the local heat flux. The investigation is directed at the pure natural convection circumstance (no forced flow velocity) and the buoyancy-dominated mixed-convection circumstance (presence of a relatively small forced flow velocity). Large temperature gradients occur in the vicinity of the heat sources, resulting in a substantial diffusion of heat along the plate length. However, the effect of conduction is found to be highly localized. The orientation of the surface has a very strong effect on the interaction of the wakes from the heat sources for the circumstances considered. An upstream source is found to have a very strong influence on the temperature of a downstream source in the vertical surface orientation but has a much weaker influence in the horizontal orientation. In the latter circumstance the presence of a small forced flow velocity may actually increase the temperature of a downstream source by tilting the wake from the upstream source toward the downstream source. 25 refs.

  5. Technology Solutions Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia

    SciTech Connect (OSTI)

    2014-09-01

    This case study describes the construction of a new test home that demonstrates current best practices for the mixed-humid climate, including a high performance ground source heat pump for heating and cooling, a building envelope featuring advanced air sealing details and low-density spray foam insulation, and glazing that exceeds ENERGY STAR requirements.

  6. A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System 

    E-Print Network [OSTI]

    Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

    2006-01-01

    In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

  7. Peak Demand Reduction with Dual-Source Heat Pumps Using Municipal Water 

    E-Print Network [OSTI]

    Morehouse, J. H.; Khan, J. A.; Connor, L. N.; Pal, D.

    1992-01-01

    The objective of this project was to examine a dual-source (air and/or water-coupled) heat pump concept which would reduce or eliminate the need for supplemental electrical resistance heating (strip heaters). The project examined two system options...

  8. Application Prospect Analysis of the Surface Water Source Heat-Pump in China 

    E-Print Network [OSTI]

    Zhang, C.; Zhuang, Z.; Huang, L.; Li, X.; Li, G.; Sun, D.

    2006-01-01

    Surface water resources in China are rather abundant and it can be use as the heat or cool source for heat pump. The winter surface water temperatures of 17 typical cities are investigated in December, and they are all distributed in the interval...

  9. Alternate energy source usage for in situ heat treatment processes

    DOE Patents [OSTI]

    Stone, Jr., Francis Marion (Cut-N-Shoot, TX); Goodwin, Charles R. (League City, TX); Richard, Jr., James (Kingwood, TX)

    2011-03-22

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for providing power to one or more subsurface heaters is described herein. The system may include an intermittent power source; a transformer coupled to the intermittent power source, and a tap controller coupled to the transformer. The transformer may be configured to transform power from the intermittent power source to power with appropriate operating parameters for the heaters. The tap controller may be configured to monitor and control the transformer so that a constant voltage is provided to the heaters from the transformer regardless of the load of the heaters and the power output provided by the intermittent power source.

  10. Optimal Ground-Source Heat Pump System Design

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a least-cost design tool (OptGSHP) that will enable GSHP developers to analyze system cost and performance in a variety of building applications to support both design, operational and purchase decisions. Integrate groundwater flow and heat transport into OptGSHP. Demonstrate the usefulness of OptGSHP and the significance of a systems approach to the design of GSHP systems.

  11. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    SciTech Connect (OSTI)

    Hong, Tainzhen; Liu, Xaiobing

    2009-11-01

    With the current movement toward net zero energy buildings, many technologies are promoted with emphasis on their superior energy efficiency. The variable refrigerant flow (VRF) and ground source heat pump (GSHP) systems are probably the most competitive technologies among these. However, there are few studies reporting the energy efficiency of VRF systems compared with GSHP systems. In this article, a preliminary comparison of energy efficiency between the air-source VRF and GSHP systems is presented. The computer simulation results show that GSHP system is more energy efficient than the air-source VRF system for conditioning a small office building in two selected US climates. In general, GSHP system is more energy efficient than the air-source VRV system, especially when the building has significant heating loads. For buildings with less heating loads, the GSHP system could still perform better than the air-source VRF system in terms of energy efficiency, but the resulting energy savings may be marginal.

  12. National Certification Standard for Ground Source Heat Pump Personnel

    SciTech Connect (OSTI)

    Kelly, John

    2013-07-31

    The National Certification Standard for the Geothermal Heat Pump Industry adds to the understanding of the barriers to rapid growth of the geothermal heat pump (GHP) industry by bringing together for the first time an analysis of the roles and responsibilities of each of the individual job tasks involved in the design and installation of GHP systems. The standard addresses applicable qualifications for all primary personnel involved in the design, installation, commissioning, operation and maintenance of GHP systems, including their knowledge, skills and abilities. The resulting standard serves as a foundation for subsequent development of curriculum, training and certification programs, which are not included in the scope of this project, but are briefly addressed in the standard to describe ways in which the standard developed in this project may form a foundation to support further progress in accomplishing those other efforts. Follow-on efforts may use the standard developed in this project to improve the technical effectiveness and economic feasibility of curriculum development and training programs for GHP industry personnel, by providing a more complete and objective assessment of the individual job tasks necessary for successful implementation of GHP systems. When incorporated into future certification programs for GHP personnel, the standard will facilitate increased consumer confidence in GHP technology, reduce the potential for improperly installed GHP systems, and assure GHP system quality and performance, all of which benefit the public through improved energy efficiency and mitigated environmental impacts of the heating and cooling of homes and businesses.

  13. Mantle source provinces beneath the Northwestern USA delimited by helium isotopes in young basalts

    E-Print Network [OSTI]

    Graham, David W.

    phenocrysts in basalts from the eastern Snake River Plain (SRP), the Owyhee Plateau (OP) and the Oregon High: Received 17 April 2008 Accepted 11 December 2008 Available online 31 December 2008 Keywords: Snake River Plain High Lava Plains Yellowstone helium isotopes mantle plume We report new He, Nd and Sr isotope

  14. Simulation Study of Heat Transportation in an Aquifer about Well-water-source Heat Pump 

    E-Print Network [OSTI]

    Cong, X.; Liu, Y.; Yang, W.

    2006-01-01

    The study of groundwater reinjection, pumping and heat transportation in an aquifer plays an important theoretical role in ensuring the stability of deep-well water reinjection and pumping as well as smooth reinjection. Based on the related...

  15. Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation

    SciTech Connect (OSTI)

    Xing, Lu [Oklahoma State University; Cullin, James [Oklahoma State University; Spitler, Jeffery [Oklahoma State University; Im, Piljae [ORNL; Fisher, Daniel [Oklahoma State University

    2011-01-01

    A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

  16. Heating of the IGM by FRII radio sources

    E-Print Network [OSTI]

    Christian R. Kaiser; Paul Alexander

    1999-02-01

    We present results of a numerical integration of the hydrodynamical equations governing the self-similar, two-dimensional gas flow behind the bow shock of an FRII radio source embedded in an IGM with a power law density profile. The model predicts pressure gradients within the cocoons consistent with modest backflow. For very steep external density profiles sources may well not expand in a self-similar fashion and in this case the model is not self-consistent. The assumption of ram pressure confinement of the cocoons perpendicular to the jet axis is found to overestimate the ratio of the pressure in front of the radio hot spots and that in the cocoons. Based on the properties of the gas between bow shock and cocoon we calculate the X-ray surface brightness of the flow. This emission is found to be a good tracer of the density distribution within the flow and varies significantly with the properties of the unshocked IGM. The cooling-time of the shocked IGM is found to be comparable to, or greater than, the Hubble time. The influence of a radio source on the evolution of its gaseous surroundings therefore extends well beyond the limited life time of the source itself. We compare our results with the X-ray map of Cygnus A and find some evidence for cold, dense gas clumps in the surroundings of this object. The extended X-ray emission observed around 3C 356 may also be caused by the bow shock of this radio source. We also present an empirical model for the X-ray emission of the shocked IGM due to thermal bremsstrahlung.

  17. Thermionic converter with differentially heated cesium-oxygen source and method of operation

    DOE Patents [OSTI]

    Rasor, Ned S. (Cupertino, CA); Riley, David R. (West Newton, PA); Murray, Christopher S. (Bethel Park, PA); Geller, Clint B. (Pittsburgh, PA)

    2000-01-01

    A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

  18. COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM

    SciTech Connect (OSTI)

    Jiang Zhu; Yong X. Tao

    2011-11-01

    In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

  19. Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret; Ehleringer, James; West, Jason; Gill, Gary; Duckworth, Douglas

    2012-01-01

    Recent years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions basedmore »on the integrated model with a class accuracy of 60.9 ± 2.1 % versus 55.9 ± 2.1 % and 40.2 ± 1.8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model. « less

  20. Primary Isotope Yields and Characteristic Properties of the Fragmenting Source in Heavy-ion Reactions near the Fermi Energies

    E-Print Network [OSTI]

    X. Liu; W. Lin; R. Wada; M. Huang; Z. Chen; G. Q. Xiao; S. Zhang; X. Jin; J. Liu; F. Shi; P. Ren; H. Zheng; J. B. Natowitz; A. Bonasera

    2014-06-13

    For central collisions of $^{40}$Ca $+ ^{40}$Ca at 35 MeV/nucleon, the density and temperature of a fragmenting source have been evaluated in a self-consistent manner using the ratio of the symmetry energy coefficient relative to the temperature, $a_{sym}/T$, extracted from the yields of primary isotopes produced in antisymmetrized molecular dynamics (AMD) simulations. The $a_{sym}/T$ values are extracted from all isotope yields using an improved method based on the Modified Fisher Model (MFM). The values of $a_{sym}/T$ obtained, using different interactions with different density dependencies of the symmetry energy term, are correlated with the values of the symmetry energies at the density of fragment formation. Using this correlation, the fragment formation density is found to be $\\rho/\\rho_0 = 0.67 \\pm 0.02$. Using the input symmetry energy value for each interaction temperature values are extracted as a function of isotope mass $A$. The extracted temperature values are compared with those evaluated from the fluctuation thermometer with a radial flow correction.

  1. A quantitative approach to combine sources in stable isotope mixing models

    E-Print Network [OSTI]

    - tance of food sources to animal diets, pollution sources to air or water bodies, carbon sources to soil organic matter, and numerous others (Lajtha and Michener 1994). Initial mixing model meth- ods relied

  2. ENHS : the encapsulated nuclear heat source - a nuclear energy concept for emerging worldwide energy markets.

    SciTech Connect (OSTI)

    Wade, D.C.; Feldman, E.; Sienicki, J.; Sofu, T.; Brown, N.W.; Hossain, Q.; Barak, A.; Greenspan, E.; Saphier, D.; Carelli, M.D.; Conway, L.; Dzodzo, M.

    2002-02-26

    A market analysis is presented which delineates client needs and potential market size for small turnkey nuclear power plants with full fuel cycle services. The features of the Encapsulated Nuclear Heat Source (ENHS) which is targeted for this market are listed, and the status of evaluation of technological viability is summarized.

  3. Thermal Economic Analysis of an Underground Water Source Heat Pump System 

    E-Print Network [OSTI]

    Zhang, W.; Lin, B.

    2006-01-01

    The paper presents the thermal economic analysis of an underground water source heat pump system in a high school building based on usage per exergy cost as an evaluation standard, in which the black box model has been used and the cost...

  4. Payback Analysis for Ground Source Heat Pump Retrofits Using eQuest Modeling Software

    E-Print Network [OSTI]

    Wahlers, Drake

    2011-12-16

    There has been much research and analysis done on the performance and potential energy savings related to installing a ground source heat pump (GSHP) system. Much of this research has been dedicated to the new construction industry, and focused on a...

  5. Mixed convection transport from an isolated heat source module on a horizontal plate

    SciTech Connect (OSTI)

    Kang, B.H.; Jaluria, Y.; Tewari, S.S. )

    1990-08-01

    An experimental study of the mixed convective heat transfer from an isolated source of finite thickness, located on a horizontal surface in an externally induced forced flow, has been carried out. This problem is of particular interest in the cooling of electronic components and also in the thermal transport associated with various manufacturing systems, such as ovens and furnaces. The temperature distribution in the flow as well as the surface temperature variation are studied in detail. The dependence of the heat transfer rate on the mixed convection parameter and on the thickness of the heated element or source, particularly in the vicinity of the source, is investigated. The results obtained indicate that the heat transfer rate and fluid flow characteristics vary strongly with the mixed convection variables. The transition from a natural convection dominated flow to a forced convection dominated flow is studied experimentally and the basic characteristics of the two regimes determined. This transition has a strong influence on the temperature of the surface and on the heat transfer rate. As expected, the forced convection dominated flow is seen to be significantly more effective in the cooling of a heat dissipating component than a natural convection dominated flow. The location of the maximum temperature on the module surface, which corresponds to the minimum local heat transfer coefficient, is determined and discussed in terms of the underlying physical mechanisms. The results obtained are also compared with these for an element of negligible thickness and the effect of a significant module thickness on the transport is determined. Several other important aspects of fundamental and applied interest are studied in this investigation.

  6. Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the Midwestern and Northeastern United States

    SciTech Connect (OSTI)

    E.M. Elliott; C. Kendall; S.D. Wanke; D.A. Burns; E.W. Boyer; K. Harlin; D.J. Bain; T.J. Butler

    2007-11-15

    Global inputs of NOx are dominated by fossil fuel combustion from both stationary and vehicular sources and far exceed natural NOx sources. However, elucidating NOx sources to any given location remains a difficult challenge, despite the need for this information to develop sound regulatory and mitigation strategies. We present results from a regional-scale study of nitrogen isotopes (15N) in wet nitrate deposition across 33 sites in the midwestern and northeastern U.S. We demonstrate that spatial variations in 15N are strongly correlated with NOx emissions from surrounding stationary sources and additionally that 15N is more strongly correlated with surrounding stationary source NOx emissions than pH, SO{sub 4}{sup 2-}, or NO{sub 3}{sup -} concentrations. Although emission inventories indicate that vehicle emissions are the dominant NOx source in the eastern U.S., our results suggest that wet NO{sub 3}{sup -} deposition at sites in this study is strongly associated with NOx emissions from power plants. This suggests that large areas of the landscape potentially receive atmospheric NOy deposition inputs in excess of what one would infer from existing monitoring data alone. Moreover, we determined that spatial patterns in 15N values are a robust indicator of stationary NOx contributions to wet NO{sub 3}{sup -} deposition and hence a valuable complement to existing tools for assessing relationships between NO{sub 3}{sup -} deposition, regional emission inventories, and for evaluating progress toward NOx reduction goals. 44 refs., 3 figs.

  7. Development of a High Performance Air Source Heat Pump for the US Market

    SciTech Connect (OSTI)

    Abdelaziz, Omar [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL; Gao, Zhiming [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Iu, Ipseng [ORNL] [ORNL

    2011-01-01

    Heat pumps present a significant advantage over conventional residential heating technologies due to higher energy efficiencies and less dependence on imported oil. The US development of heat pumps dates back to the 1930 s with pilot units being commercially available in the 1950 s. Reliable and cost competitive units were available in the US market by the 1960 s. The 1973 oil embargo led to increased interest in heat pumps prompting significant research to improve performance, particularly for cold climate locations. Recent increasing concerns on building energy efficiency and environmental emissions have prompted a new wave of research in heat pump technology with special emphasis on reducing performance degradation at colder outdoor air temperatures. A summary of the advantages and limitations of several performance improvement options sought for the development of high performance air source heat pump systems for cold climate applications is the primary focus of this paper. Some recommendations for a high performance cold climate heat pump system design most suitable for the US market are presented.

  8. Development of a Variable-Speed Residential Air-Source Integrated Heat Pump

    SciTech Connect (OSTI)

    Rice, C Keith [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2014-01-01

    A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures and temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.

  9. An Experimental Study of Waveguide Coupled Microwave Heating with Conventional Multicusp Negative Ion Source

    E-Print Network [OSTI]

    Komppula, J; Koivisto, H; Laulainen, J; Tarvainen, O

    2015-01-01

    Negative ion production with conventional multicusp plasma chambers utilizing 2.45 GHz microwave heating is demonstrated. The experimental results were obtained with the multicusp plasma chambers and extraction systems of the RFdriven RADIS ion source and the filament driven arc discharge ion source LIISA. A waveguide microwave coupling system, which is almost similar to the one used with the SILHI ion source, was used. The results demonstrate that at least one third of negative ion beam obtained with inductive RF-coupling (RADIS) or arc discharge (LIISA) can be achieved with 1 kW of 2.45 GHz microwave power in CW mode without any modification of the plasma chamber. The co-extracted electron to H^- ratio and the optimum pressure range were observed to be similar for both heating methods. The behaviour of the plasma implies that the energy transfer from the microwaves to the plasma electrons is mainly an off-resonance process.

  10. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  11. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    SciTech Connect (OSTI)

    Jurns, John M.; Bäck, Harald; Gierow, Martin

    2014-01-29

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  12. The citation for this paper is: Spitler, J.D., X. Liu, S.J. Rees, C. Yavuzturk. 2005. Simulation and Optimization of Ground Source Heat

    E-Print Network [OSTI]

    heat pump, standing column well, and sev- eral types of supplemental heat rejecters used in hybrid GSHP and Optimization of Ground Source Heat Pump Systems. 8th International Energy Agency Heat Pump Conference. Las Vegas. May 30-June 2. 1 #12;SIMULATION AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS J.D. Spitler

  13. The citation for this paper is: Spitler, J.D., X. Liu, S.J. Rees, C. Yavuzturk. 2005. Simulation and Optimization of Ground Source Heat

    E-Print Network [OSTI]

    of the ground source heat pump (GSHP) system are presented - vertical ground loop heat exchanger, water source systems. Second, application of the simula- tion for design of vertical ground loop heat exchangers (GLHE will be discussed. Key words: ground source heat pump systems, geothermal, ground-coupled 1 INTRODUCTION Using

  14. Application analysis of ground source heat pumps in building space conditioning

    SciTech Connect (OSTI)

    Qian, Hua; Wang, Yungang

    2013-07-01

    The adoption of geothermal energy in space conditioning of buildings through utilizing ground source heat pump (GSHP, also known as geothermal heat pump) has increased rapidly during the past several decades. However, the impacts of the GSHP utilization on the efficiency of heat pumps and soil temperature distribution remained unclear and needs further investigation. This paper presents a novel model to calculate the soil temperature distribution and the coefficient of performance (COP) of GSHP. Different scenarios were simulated to quantify the impact of different factors on the GSHP performance, including heat balance, daily running mode, and spacing between boreholes. Our results show that GSHP is suitable for buildings with balanced cooling and heating loads. It can keep soil temperature at a relatively constant level for more than 10 years. Long boreholes, additional space between boreholes, intermittent running mode will improve the performance of GSHP, but large initial investment is required. The improper design will make the COP of GSHP even lower than traditional heat pumps. Professional design and maintenance technologies are greatly needed in order to promote this promising technology in the developing world.

  15. Dual nitrate isotopes in dry deposition: Utility for partitioning NOx source contributions to landscape nitrogen deposition

    E-Print Network [OSTI]

    Elliott, Emily M.

    NOx emission sources. d15 N values in dry and wet fractions are highest at the westernmost sites and lowest at the easternmost sites, and stationary source NOx emissions (e.g., power plants and incinerators values in winter than summer. Seasonal variations in stationary source NOx emissions appear

  16. Burnup estimation of fuel sourcing radioactive material based on monitored Cs and Pu isotopic activity ratios in Fukushima N. P. S. accident

    SciTech Connect (OSTI)

    Yamamoto, T.; Suzuki, M.; Ando, Y.

    2012-07-01

    After the severe core damage of Fukushima Dai-Ichi Nuclear Power Station, radioactive material leaked from the reactor buildings. As part of monitoring of radioactivity in the site, measurements of radioactivity in soils at three fixed points have been performed for {sup 134}Cs and {sup 137}Cs with gamma-ray spectrometry and for Pu, Pu, and {sup 240}Pu with {alpha}-ray spectrometry. Correlations of radioactivity ratios of {sup 134}Cs to {sup 137}Cs, and {sup 238}Pu to the sum of {sup 239}Pu and {sup 240}Pu with fuel burnup were studied by using theoretical burnup calculations and measurements on isotopic inventories, and compared with the Cs and Pu radioactivity rations in the soils. The comparison indicated that the burnup of the fuel sourcing the radioactivity was from 18 to 38 GWd/t, which corresponded to that of the fuel in the highest power and, therefore, the highest decay heat in operating high-burnup fueled BWR cores. (authors)

  17. A strongly heated neutron star in the transient z source MAXI J0556-332

    SciTech Connect (OSTI)

    Homan, Jeroen; Remillard, Ronald A.; Fridriksson, Joel K.; Wijnands, Rudy; Cackett, Edward M.; Degenaar, Nathalie; Linares, Manuel

    2014-11-10

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ?16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M {sub ?}. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ?500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT{sub eff}{sup ?} = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (?200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT{sub eff}{sup ?} = 190-336 eV) and a shorter e-folding time (?160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

  18. Evolution of the Loop-Top Source of Solar Flares--Heating and Cooling Processes

    E-Print Network [OSTI]

    Yan Wei Jiang; Siming Liu; Wei Liu; Vahe Petrosian

    2005-08-24

    We present a study of the spatial and spectral evolution of the loop-top (LT) sources in a sample of 6 flares near the solar limb observed by {\\it RHESSI}. A distinct coronal source, which we identify as the LT source, was seen in each of these flares from the early ``pre-heating'' phase through the late decay phase. Spectral analyses reveal an evident steep power-law component in the pre-heating and impulsive phases, suggesting that the particle acceleration starts upon the onset of the flares. In the late decay phase the LT source has a thermal spectrum and appears to be confined within a small region near the top of the flare loop, and does not spread throughout the loop, as is observed at lower energies. The total energy of this source decreases usually faster than expected from the radiative cooling but much slower than that due to the classical Spitzer conductive cooling along the flare loop. These results indicate the presence of a distinct LT region, where the thermal conductivity is suppressed significantly and/or there is a continuous energy input. We suggest that plasma wave turbulence could play important roles in both heating the plasma and suppressing the conduction during the decay phase of solar flares. With a simple quasi-steady loop model we show that the energy input in the gradual phase can be comparable to that in the impulsive phase and demonstrate how the observed cooling and confinement of the LT source can be used to constrain the wave-particle interaction.

  19. Air-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect (OSTI)

    Murphy, Richard W; Rice, C Keith; Baxter, Van D; Craddick, William G

    2007-07-01

    This report documents the development of an air-source integrated heat pump (AS-IHP) through the third quarter of FY2007. It describes the design, analyses and testing of the AS-IHP, and provides performance specifications for a field test prototype and proposed control strategy. The results obtained so far continue to support the AS-IHP being a promising candidate to meet the energy service needs for DOE's development of a Zero Energy Home (ZEH) by the year 2020.

  20. Biogeochemistry of Isotopically-distinct Sources of Lead in a Former WWII Aerial Gunnery Range 

    E-Print Network [OSTI]

    McBee, Jayme M

    2014-01-08

    ........................................................................................................... 34 vi CHAPTER I INTRODUCTION Legacy lead (Pb) contamination at former military installations persists as a source of potential hazards for ecological health. Sources of heavy metal contaminants typical to military installations include... contamination can arise from sources other than ammunition such as leaded paint1-3. The legacy of Pb contamination in sensitive ecosystems has become a significant world-wide environmental problem. Recent emphasis has been placed on both military...

  1. Finite Volume Based Computer Program for Ground Source Heat Pump System

    SciTech Connect (OSTI)

    Menart, James A.

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP systems.

  2. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    SciTech Connect (OSTI)

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ���¢��������Finite Volume Based Computer Program for Ground Source Heat Pump Systems.���¢������� The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP system

  3. Integration of Radioisotope Heat Source with Stirling Engine and Cooler for Venus Internal-Structure Mission

    SciTech Connect (OSTI)

    Schock, Alfred

    1993-10-01

    The primary mission goal is to perform long-term seismic measurements on Venus, to study its largely unknown internal structure. The principal problem is that most payload components cannot long survive Venus's harsh environment, 90 bars at 500 degrees C. To meet the mission life goal, such components must be protected by a refrigerated payload bay. JPL Investigators have proposed a mission concept employing a lander with a spherical payload bay cooled to 25 degrees C by a Stirling cooler powered by a radioisotope-heated Sitrling engine. To support JPL's mission study, NASA/Lewis and MTI have proposed a conceptual design for a hydraulically coupled Stirling engine and cooler, and Fairchild Space - with support of the Department of Energy - has proposed a design and integration scheme for a suitable radioisotope heat source. The key integration problem is to devise a simple, light-weight, and reliable scheme for forcing the radioisotope decay heat to flow through the Stirling engine during operation on Venus, but to reject that heat to the external environment when the Stirling engine and cooler are not operating (e.g., during the cruise phase, when the landers are surrounded by heat shields needed for protection during subsequent entry into the Venusian atmosphere.) A design and integration scheme for achieving these goals, together with results of detailed thermal analyses, are described in this paper. There are 7 copies in the file.

  4. Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined

    E-Print Network [OSTI]

    Elliott, Emily M.

    pollution to sensitive terrestrial, aquatic, and marine ecosystems and dependable quantification of NH3 sources, vehicles, fertilized cornfields) collected using passive sampling devices. RESULTS: The 15 N-NH4 are a substantial source of nitrogen pollution to sensitive terrestrial, aquatic, and marine ecosystems.[1­4] Excess

  5. Case study for ARRA-funded ground-source heat pump (GSHP) demonstration at Oakland University

    SciTech Connect (OSTI)

    Im, Piljae; Liu, Xiaobing

    2015-09-01

    High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects, a ground-source variable refrigerant flow (GS-VRF) system installed at the Human Health Building at Oakland University in Rochester, Michigan. This case study is based on the analysis of measured performance data, maintenance records, construction costs, and simulations of the energy consumption of conventional central heating, ventilation, and air-conditioning (HVAC) systems providing the same level of space conditioning as the demonstrated GS-VRF system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GS-VRF system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the GS-VRF system compared with conventional HVAC systems. This case study also identified opportunities for reducing uncertainties in the performance evaluation, improving the operational efficiency, and reducing the installed cost of similar GSHP systems in the future.

  6. Astrophysical Shrapnel: Discriminating Among Near-Earth Stellar Explosion Sources of Live Radioactive Isotopes

    E-Print Network [OSTI]

    Brian J. Fry; Brian D. Fields; John R. Ellis

    2015-03-09

    We consider the production and deposition on Earth of isotopes with half-lives in the range 10$^{5}$ to 10$^{8}$ years that might provide signatures of nearby stellar explosions, extending previous analyses of Core-Collapse Supernovae (CCSNe) to include Electron-Capture Supernovae (ECSNe), Super-Asymptotic Giant Branch (SAGBs) stars, Thermonuclear/Type Ia Supernovae (TNSNe), and Kilonovae/Neutron Star Mergers (KNe). We revisit previous estimates of the $^{60}$Fe and $^{26}$Al signatures, and extend these estimates to include $^{244}$Pu and $^{53}$Mn. We discuss interpretations of the $^{60}$Fe signals in terrestrial and lunar reservoirs in terms of a nearby stellar ejection ~2.2 Myr ago, showing that (i) the $^{60}$Fe yield rules out the TNSN and KN interpretations, (ii) the $^{60}$Fe signals highly constrain a SAGB interpretation but do not completely them rule out, (iii) are consistent with a CCSN origin, and (iv) are highly compatible with an ECSN interpretation. Future measurements could resolve the radioisotope deposition over time, and we use the Sedov blast wave solution to illustrate possible time-resolved profiles. Measuring such profiles would independently probe the blast properties including distance, and would provide additional constraints the nature of the explosion.

  7. Astrophysical Shrapnel: Discriminating Among Near-Earth Stellar Explosion Sources of Live Radioactive Isotopes

    E-Print Network [OSTI]

    Fry, Brian J; Ellis, John R

    2015-01-01

    We consider the production and deposition on Earth of isotopes with half-lives in the range 10$^{5}$ to 10$^{8}$ years that might provide signatures of nearby stellar explosions, extending previous analyses of Core-Collapse Supernovae (CCSNe) to include Electron-Capture Supernovae (ECSNe), Super-Asymptotic Giant Branch (SAGBs) stars, Thermonuclear/Type Ia Supernovae (TNSNe), and Kilonovae/Neutron Star Mergers (KNe). We revisit previous estimates of the $^{60}$Fe and $^{26}$Al signatures, and extend these estimates to include $^{244}$Pu and $^{53}$Mn. We discuss interpretations of the $^{60}$Fe signals in terrestrial and lunar reservoirs in terms of a nearby stellar ejection ~2.2 Myr ago, showing that (i) the $^{60}$Fe yield rules out the TNSN and KN interpretations, (ii) the $^{60}$Fe signals highly constrain a SAGB interpretation but do not completely them rule out, (iii) are consistent with a CCSN origin, and (iv) are highly compatible with an ECSN interpretation. Future measurements could resolve the radio...

  8. Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors 

    E-Print Network [OSTI]

    Wu, X.; Gao, J.; Wu, W.

    2006-01-01

    with double heat sources are numerically simulated. The model is verified by experimental data. The results of the study show that thermal stratification characteristics exist in indoor temperature fields. The paper also analyzes the influence of different...

  9. EIS-0302: Transfer of the Heat Source/Radioisotope Thermoelectric Generator Assembly and Test Operations From the Mound Site

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed transfer of the Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) operations at the Mound Site near Miamisburg, Ohio, to an alternative DOE site.

  10. Analysis of Selection of Single or Double U-bend Pipes in a Ground Source Heat Pump System 

    E-Print Network [OSTI]

    Shu, H.; Duanmu, L.; Hua, R.

    2006-01-01

    The ground source heat pump (GSHP) system is widely used because of its energy-saving and environmental-friendly characteristics. The buried pipes heat exchangers play an important role in the whole GSHP system design. However, in most cases, single...

  11. Air Source Heat Pumps for Cold Climate Applications: Recent U. S. R&D Results from IEA HPP Annex 41

    SciTech Connect (OSTI)

    Baxter, Van D; Groll, Dr. Eckhard A.; Shen, Bo

    2014-01-01

    Air source heat pumps are easily applied to buildings almost anywhere. They are widespread in milder climate regions but their use in cold regions is hampered due to low efficiency and heating capacity at cold outdoor temperatures. This article describes selected R&D activities aimed at improving their cold weather performance.

  12. Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect (OSTI)

    Murphy, Richard W; Rice, C Keith; Baxter, Van D; Craddick, William G

    2007-09-01

    The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 depending on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water heating. With the greater energy savings the cost of the more energy efficient components required for the IHP can be recovered more quickly than if they were applied to individual pieces of equipment to meet each individual energy service need. An IHP can be designed to use either outdoor air or geothermal resources (e.g., ground, ground water, surface water) as the environmental energy source/sink. Based on a scoping study of a wide variety of possible approaches to meeting the energy service needs for a ZEH, DOE selected the IHP concept as the most promising and has supported research directed toward the development of both air- and ground-source versions. This report describes the ground-source IHP (GS-IHP) design and includes the lessons learned and best practices revealed by the research and development (R&D) effort throughout. Salient features of the GS-IHP include a variable-speed rotary compressor incorporating a brushless direct current permanent magnet motor which provides all refrigerant compression, a variable-speed fan for the indoor section, a multiple-speed ground coil circuit pump, and a single-speed pump for water heating operation. Laboratory IHP testing has thus far used R-22 because of the availability of the needed components that use this refrigerant. It is expected that HFC R-410A will be used for any products arising from the IHP concept. Data for a variable-speed compressor that uses R-410A has been incorporated into the DOE/ORNL Mark VI Heat Pump Design Model (HPDM). HPDM was then linked to TRNSYS, a time-series-dependent simulation model capable of determining the energy use of building cooling and heating equipment as applied to a defined house on a sub-hourly basis. This provided a highly flexible design analysis capability for advanced heat pump equipment; however, the program also took a relatively long time to run. This approach was used with the initial prototype design reported in Murphy et al. (2007a) and in the business case analysis of Baxter (2007).

  13. NEUTRON ACTIVATION ANALYSIS APPLICATIONS AT THE SAVANNAH RIVER SITE USING AN ISOTOPIC NEUTRON SOURCE

    SciTech Connect (OSTI)

    Diprete, D; C Diprete, C; Raymond Sigg, R

    2006-08-14

    NAA using {sup 252}Cf is used to address important areas of applied interest at SRS. Sensitivity needs for many of the applications are not severe; analyses are accomplished using a 21 mg {sup 252}Cf NAA facility. Because NAA allows analysis of bulk samples, it offers strong advantages for samples in difficult-to-digest matrices when its sensitivity is sufficient. Following radiochemical separation with stable carrier addition, chemical yields for a number methods are determined by neutron activation of the stable carrier. In some of the cases where no suitable stable carriers exist, the source has been used to generate radioactive tracers to yield separations.

  14. Hybrid Ground-Source Heat Pump Installations: Experiences, Improvements, and Tools

    SciTech Connect (OSTI)

    Scott Hackel; Amanda Pertzborn

    2011-06-30

    One innovation to ground-source heat pump (GSHP, or GHP) systems is the hybrid GSHP (HyGSHP) system, which can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. This work uses three case studies (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. Three buildings were studied for a year; the measured data was used to validate models of each system. The models were used to analyze further improvements to the hybrid approach, and establish that this approach has positive impacts, both economically and environmentally. Lessons learned by those who design and operate the systems are also documented, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, the measured data sets and models that were created during this work are described; these materials have been made freely available for further study of hybrid systems.

  15. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    SciTech Connect (OSTI)

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.; Ally, Moonis Raza; Shen, Bo

    2015-09-30

    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input to the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test house been better insulated (more like the house used for the savings predictions noted above) and the IHP system nominal capacity been a bit lower that the energy savings estimate would have been closer to 45% or more (similar to the analytical prediction for the cold climate location of Chicago).

  16. A Tool for Life Cycle Climate Performance (LCCP) Based Design of Residential Air Source Heat Pumps

    SciTech Connect (OSTI)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01

    A tool for the design of air source heat pumps (ASHP) based on their life cycle climate performance (LCCP) analysis is presented. The LCCP model includes direct and indirect emissions of the ASHP. The annual energy consumption of the ASHP is determined based on AHRI Standard 210/240. The tool can be used as an evaluation tool when the user inputs the required performance data based on the ASHP type selected. In addition, this tool has system design capability where the user inputs the design parameters of the different components of the heat pump and the tool runs the system simulation software to calculate the performance data. Additional features available in the tool include the capability to perform parametric analysis and sensitivity study on the system. The tool has 14 refrigerants, and 47 cities built-in with the option for the user to add more refrigerants, based on NIST REFPROP, and cities, using TMY-3 database. The underlying LCCP calculation framework is open source and can be easily customized for various applications. The tool can be used with any system simulation software, load calculation tool, and weather and emissions data type.

  17. Experimental reconstruction of primary hot isotopes and characteristic properties of the fragmenting source in the heavy ion reactions near the Fermi energy

    E-Print Network [OSTI]

    W. Lin; X. Liu; M. R. D. Rodrigues; S. Kowalski; R. Wada; M. Huang; S. Zhang; Z. Chen; J. Wang; G. Q. Xiao; R. Han; Z. Jin; J. Liu; P. Ren; F. Shi; T. Keutgen; K. Hagel; M. Barbui; C. Bottosso; A. Bonasera; J. B. Natowitz; T. Materna; L. Qin; P. K. Sahu; H. Zheng

    2014-09-14

    The characteristic properties of the hot nuclear matter existing at the time of fragment formation in the multifragmentation events produced in the reaction $^{64}$Zn + $^{112}$Sn at 40 MeV/nucleon are studied. A kinematical focusing method is employed to determine the multiplicities of evaporated light particles, associated with isotopically identified detected fragments. From these data the primary isotopic yield distributions are reconstructed using a Monte Carlo method. The reconstructed yield distributions are in good agreement with the primary isotope distributions obtained from AMD transport model simulations. Utilizing the reconstructed yields, power distribution, Landau free energy, characteristic properties of the emitting source are examined. The primary mass distributions exhibit a power law distribution with the critical exponent, $A^{-2.3}$, for $A \\geq 15$ isotopes, but significantly deviates from that for the lighter isotopes. Landau free energy plots show no strong signature of the first order phase transition. Based on the Modified Fisher Model, the ratios of the Coulomb and symmetry energy coefficients relative to the temperature, $a_{c}/T$ and $a_{sym}/T$, are extracted as a function of A. The extracted $a_{sym}/T$ values are compared with results of the AMD simulations using Gogny interactions with different density dependencies of the symmetry energy term. The calculated $a_{sym}/T$ values show a close relation to the symmetry energy at the density at the time of the fragment formation. From this relation the density of the fragmenting source is determined to be $\\rho /\\rho_{0} = (0.63 \\pm 0.03 )$. Using this density, the symmetry energy coefficient and the temperature of fragmenting source are determined in a self-consistent manner as $a_{sym} = (24.7 \\pm 3.4) MeV$ and $T=(4.9 \\pm 0.2)$ MeV.

  18. PARAMETRIC STUDY OF GROUND SOURCE HEAT PUMP SYSTEM FOR HOT AND HUMID CLMATE

    SciTech Connect (OSTI)

    Jiang Zhu; Yong X. Tao

    2011-11-01

    The U-tube sizes and varied thermal conductivity with different grout materials are studied based on the benchmark residential building in Hot-humid Pensacola, Florida. In this study, the benchmark building is metered and the data is used to validate the simulation model. And a list of comparative simulation cases with varied parameter value are simulated to study the importance of pipe size and grout to the ground source heat pump energy consumption. The simulation software TRNSYS [1] is employed to fulfill this task. The results show the preliminary energy saving based on varied parameters. Future work needs to be conducted for the cost analysis, include the installation cost from contractor and materials cost.

  19. Certification testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container

    SciTech Connect (OSTI)

    Bronowski, D.R.; Madsen, M.M.

    1991-09-01

    The Heat Source/Radioisotopic Thermoelectric Generator shipping counter is a Type B packaging currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to normal and hypothetical accident environments defined in Title 10 of the Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this packaging design. This report documents the testing portion of the design verification. Six tests were conducted on a prototype package: a water spray test, a 4-foot normal conditions drop test, a 30-foot drop test, a 40-inch puncture test, a 30-minute thermal test, and an 8-hour immersion test.

  20. General-Purpose Heat Source Safety Verification Test program: Edge-on flyer plate tests

    SciTech Connect (OSTI)

    George, T.G.

    1987-03-01

    The radioisotope thermoelectric generator (RTG) that will supply power for the Galileo and Ulysses space missions contains 18 General-Purpose Heat Source (GPHS) modules. The GPHS modules provide power by transmitting the heat of STYPu -decay to an array of thermoelectric elements. Each module contains four STYPuO2-fueled clads and generates 250 W(t). Because the possibility of a launch vehicle explosion always exists, and because such an explosion could generate a field of high-energy fragments, the fueled clads within each GPHS module must survive fragment impact. The edge-on flyer plate tests were included in the Safety Verification Test series to provide information on the module/clad response to the impact of high-energy plate fragments. The test results indicate that the edge-on impact of a 3.2-mm-thick, aluminum-alloy (2219-T87) plate traveling at 915 m/s causes the complete release of fuel from capsules contained within a bare GPHS module, and that the threshold velocity sufficient to cause the breach of a bare, simulant-fueled clad impacted by a 3.5-mm-thick, aluminum-alloy (5052-T0) plate is approximately 140 m/s.

  1. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma

    SciTech Connect (OSTI)

    Vodopyanov, A. V.; Golubev, S. V.; Khizhnyak, V. I.; Mansfeld, D. A.; Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Vizir, A. V.; Yushkov, G. Yu.

    2008-02-15

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 {mu}s, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  2. Geothermal(Ground-Source)Heat Pumps: Market Status, Barriers to Adoption, and Actions to Overcome Barriers

    SciTech Connect (OSTI)

    Hughes, Patrick

    2008-12-01

    More effective stewardship of our resources contributes to the security, environmental sustainability, and economic well-being of the nation. Buildings present one of the best opportunities to economically reduce energy consumption and limit greenhouse gas emissions. Geothermal heat pumps (GHPs), sometimes called ground-source heat pumps, have been proven capable of producing large reductions in energy use and peak demand in buildings. However, GHPs have received little attention at the policy level as an important component of a national strategy. Have policymakers mistakenly overlooked GHPs, or are GHPs simply unable to make a major contribution to the national goals for various reasons? This brief study was undertaken at DOE's request to address this conundrum. The scope of the study includes determining the status of global GHP markets and the status of the GHP industry and technology in the United States, assembling previous estimates of GHP energy savings potential, identifying key barriers to application of GHPs, and identifying actions that could accelerate market adoption of GHPs. The findings are documented in this report along with conclusions and recommendations.

  3. Geothermal (Ground-Source) Heat Pumps: Market Status, Barriers to Adoption, and Actions to Overcome Barriers

    SciTech Connect (OSTI)

    Hughes, Patrick [ORNL

    2009-01-01

    More effective stewardship of our resources contributes to the security, environmental sustainability, and economic well-being of the nation. Buildings present one of the best opportunities to economically reduce energy consumption and limit greenhouse gas emissions. Geothermal heat pump systems (GHPs), sometimes called ground-source heat pump or Geo-Exchange systems, have been proven capable of producing large reductions in energy use and peak demand in buildings. However, GHPs have received little attention at the policy level as an important component of a national energy and climate strategy. Have policymakers mistakenly overlooked GHPs, or are GHPs simply unable to make a major contribution to the national goals for various reasons? This brief study was undertaken at DOE s request to address this conundrum. The scope of the study includes determining the status of global GHP markets and the status of the GHP industry and technology in the United States, assembling previous estimates of GHP energy savings potential and other benefits, identifying key barriers to application of GHPs, and identifying actions that could accelerate market adoption of GHPs. The findings are documented in a report along with conclusions and recommendations. This paper summarizes the key information from the report.

  4. On the Response of an OST to a Point-like Heat Source

    E-Print Network [OSTI]

    Quadt, A; Uhrmacher, M; Weingarten, J; Willenberg, B; Vennekate, H

    2011-01-01

    A new technique of superconducting cavity diagnostics has been introduced by D. Hartrill at Cornell University, Ithaca, USA. Oscillating Superleak Transducers (OST) detect the heat transferred from a cavity's quench point via "Second Sound" through the superfluid He bath, needed to cool the superconducting cavity. The observed response of an OST is a complex, but reproducible pattern of oscillations. A small helium evaporation cryostat was built which allows the investigation of the response of an OST in greater detail. The distance between a point-like electrical heater and the OST can be varied. The OST can be mounted either parallel or perpendicular to the plate, housing the heat source. If the artificial quench-point releases an amount of energy compatible to a real quench spot on a cavity's surface, the OST signal starts with a negative pulse, which is usually strong enough to allow automatic detection. Furthermore, the reflection of the Second Sound on the wall is observed. A reflection coefficient R = ...

  5. Integrated Heat Pump (IHP) System Development - Air-Source IHP Control Strategy and Specifications and Ground-Source IHP Conceptual Design

    SciTech Connect (OSTI)

    Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

    2007-05-01

    The integrated heat pump (IHP), as one appliance, can provide space cooling, heating, ventilation, and dehumidification while maintaining comfort and meeting domestic water heating needs in near-zero-energy home (NZEH) applications. In FY 2006 Oak Ridge National Laboratory (ORNL) completed development of a control strategy and system specification for an air-source IHP. The conceptual design of a ground-source IHP was also completed. Testing and analysis confirm the potential of both IHP concepts to meet NZEH energy services needs while consuming 50% less energy than a suite of equipment that meets current minimum efficiency requirements. This report is in fulfillment of an FY06 DOE Building Technologies (BT) Joule Milestone.

  6. Title: Exploring Earth Source Heat (ESH) as a demonstration project at Cornell Hosts: Bert Bland, Todd Cowen, Katherine McComas

    E-Print Network [OSTI]

    Walter, M.Todd

    , the Climate Action Plan has proposed Earth Source Heat (previously termed Enhanced Geothermal System), supplemented by bioenergy, as the way to heat the Ithaca campus. ESH is an engineered system to access

  7. SO[subscript 2] photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols

    E-Print Network [OSTI]

    Jiang, B.

    Signatures of sulfur isotope mass-independent fractionation (S-MIF) have been observed in stratospheric sulfate aerosols deposited in polar ice. The S-MIF signatures are thought to be associated with stratospheric ...

  8. Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Nick Rosenberry, Harris Companies

    2012-05-04

    A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

  9. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  10. Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops

    Broader source: Energy.gov [DOE]

    Project objectives: Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School and Middle School.; Provide jobs; and reduce requirements of funds for the capital budget of the School District; and thus give relief to taxpayers in this rural region during a period of economic recession.

  11. Using Bayesian statistics in the estimation of heat source in radiation Jingbo Wang and Nicholas Zabaras1

    E-Print Network [OSTI]

    Zabaras, Nicholas J.

    Using Bayesian statistics in the estimation of heat source in radiation Jingbo Wang and Nicholas distributed (i.i.d.) Gauss random variables. `Maximum A Posteriori' (MAP) and posterior mean estimates of the inverse radiation problem. 1 Introduction Study of thermal radiation has been stimulated by a wide range

  12. Impacts of Soil and Pipe Thermal Conductivity on Performance of Horizontal Pipe in a Ground-source Heat Pump 

    E-Print Network [OSTI]

    Song, Y.; Yao, Y.; Na, W.

    2006-01-01

    In this paper the composition and thermal property of soil are discussed. The main factors that impact the soil thermal conductivity and several commonly-used pipe materials are studied. A model of heat exchanger with horizontal pipes of ground-source...

  13. In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes

    SciTech Connect (OSTI)

    Puttagunta, S.; Shapiro, C.

    2012-04-01

    CARB partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and LAMELs through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and lighting, appliances, and miscellaneous loads (LAMELs).

  14. The Application of Frequency-Conversion Technology in Groundwater Source Heat Pump System Reconstruction 

    E-Print Network [OSTI]

    Dai, X.; Song, S.

    2006-01-01

    Deep well pump power is relatively ubiquitous in the groundwater heat pump air-conditioning system in some hotels in Hunan, and the heat pump usually meets the change of the load by throttling. Therefore, frequency conversion technology is proposed...

  15. PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION

    E-Print Network [OSTI]

    freezing in the heat pump. The antifreeze mixture type and concentration has a number of implications for the design and performance of the system. These include the required ground loop heat exchanger length, and the first cost of the system. For example, the required ground loop heat exchanger length and first cost

  16. General-Purpose Heat Source development: Safety Verification Test Program. Bullet/fragment test series

    SciTech Connect (OSTI)

    George, T.G.; Tate, R.E.; Axler, K.M.

    1985-05-01

    The radioisotope thermoelectric generator (RTG) that will provide power for space missions contains 18 General-Purpose Heat Source (GPHS) modules. Each module contains four /sup 238/PuO/sub 2/-fueled clads and generates 250 W/sub (t)/. Because a launch-pad or post-launch explosion is always possible, we need to determine the ability of GPHS fueled clads within a module to survive fragment impact. The bullet/fragment test series, part of the Safety Verification Test Plan, was designed to provide information on clad response to impact by a compact, high-energy, aluminum-alloy fragment and to establish a threshold value of fragment energy required to breach the iridium cladding. Test results show that a velocity of 555 m/s (1820 ft/s) with an 18-g bullet is at or near the threshold value of fragment velocity that will cause a clad breach. Results also show that an exothermic Ir/Al reaction occurs if aluminum and hot iridium are in contact, a contact that is possible and most damaging to the clad within a narrow velocity range. The observed reactions between the iridium and the aluminum were studied in the laboratory and are reported in the Appendix.

  17. Update on maintenance and service costs of commercial building ground-source heat pump systems

    SciTech Connect (OSTI)

    Cane, D.; Garnet, J.M.

    2000-07-01

    An earlier paper showed that commercial ground-source heat pump systems have significantly lower service and maintenance costs than alternative HVAC systems. This paper expands on those results by adding 13 more buildings to the original 25 sites and by comparing the results to the latest ASHRAE survey of HVAC maintenance costs. Data from the 38 sites are presented here including total (scheduled and unscheduled) maintenance costs in cents per square foot per year for base cost, in-house, and contractor-provided maintenance. Because some of the new sites had maintenance costs that were much higher than the industry norm, the resulting data are not normally distributed. Analysis (O'Hara Hines 1998) indicated that a log-normal distribution is a better fit; thus, the data are analyzed and presented here as log-normal. The log-mean annual total maintenance costs for the most recent year of the survey ranged from 6.07 cents per square foot to 8.37 cents per square foot for base cost and contractor-provided maintenance, respectively.

  18. Photoionization Heating of Nova Ejecta by the Post-Outburst Supersoft Source

    E-Print Network [OSTI]

    Cunningham, Timothy; Bildsten, Lars

    2015-01-01

    The expanding ejecta from a classical nova remains hot enough ($\\sim10^{4}\\, {\\rm K}$) to be detected in thermal radio emission for up to years after the cessation of mass loss triggered by a thermonuclear instability on the underlying white dwarf (WD). Nebular spectroscopy of nova remnants confirms the hot temperatures observed in radio observations. During this same period, the unstable thermonuclear burning transitions to a prolonged period of stable burning of the remnant hydrogen-rich envelope, causing the WD to become, temporarily, a super-soft X-ray source. We show that photoionization heating of the expanding ejecta by the hot WD maintains the observed nearly constant temperature of $(1-4)\\times10^4\\mathrm{~K}$ for up to a year before an eventual decline in temperature due to either the cessation of the supersoft phase or the onset of a predominantly adiabatic expansion. We simulate the expanding ejecta using a one-zone model as well as the Cloudy spectral synthesis code, both incorporating the time-d...

  19. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building 

    E-Print Network [OSTI]

    Zhu, N.

    2014-01-01

    source heat pump system integrated with phase change cooling storage tank in an office building Dr. Na Zhu Department of Building Environment and Energy Engineering Huazhong University of Science & Technology, Wuhan, China 2014-09-14 ESL-IC-14-09-18a...-conditioning system: ?Splitting air-conditioner for cooling and coal fired boiler for heating. • Problems: a)Energy efficiency is low b)This system is not environmental friendly 2014/11/11 New energy saving technology ESL-IC-14-09-18a Proceedings of the 14th...

  20. Effects of self-heating and phase change on the thermal profile of hydrogen isotopes in confined geometries

    SciTech Connect (OSTI)

    Baxamusa, S. Field, J.; Dylla-Spears, R.; Kozioziemski, B.; Suratwala, T.; Sater, J.

    2014-03-28

    Growth of high-quality single-crystal hydrogen in confined geometries relies on the in situ formation of seed crystals. Generation of deuterium-tritium seed crystals in a confined geometry is governed by three effects: self-heating due to tritium decay, external thermal environment, and latent heat of phase change at the boundary between hydrogen liquid and vapor. A detailed computation of the temperature profile for liquid hydrogen inside a hollow shell, as is found in inertial confinement fusion research, shows that seeds are likely to form at the equatorial plane of the shell. Radioactive decay of tritium to helium slowly alters the composition of the hydrogen vapor, resulting in a modified temperature profile that encourages seed formation at the top of the shell. We show that the computed temperature profile is consistent with a variety of experimental observations.

  1. Data, exergy, and energy analysis of a vertical-bore, ground-source heat pump to for domestic water heating under simulated occupancy conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2015-01-01

    Evidence is provided to support the view that greater than two-thirds of energy required to produce domestic hot water may be extracted from the ground which serves as renewable energy resource. The case refers to a 345 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days (3993 F-days) and CDD of 723 C-days (1301 F-days). The house is operated under simulated occupancy conditions in which the hot water use protocol is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which captures the water consumption lifestyles of the average family in the United States. The 5.275 (1.5-ton) water-to-water ground source heat pump (WW-GSHP) shared the same vertical bore with a 7.56 KW water-to-air ground source heat pump for space conditioning the same house. Energy and exergy analysis of data collected continuously over a twelve month period provide performance metrics and sources of inherent systemic inefficiencies. Data and analyses are vital to better understand how WW-GSHPs may be further improved to enable the ground to be used as a renewable energy resource.

  2. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01

    dual compressor available on the market Compared with the selected building, a more energy efficient building will have lower space cooling and heating

  3. Standard Test Method for Isotopic Analysis of Uranium Hexafluoride by Single-Standard Gas Source Multiple Collector Mass Spectrometer Method

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method is applicable to the isotopic analysis of uranium hexafluoride (UF6) with 235U concentrations less than or equal to 5 % and 234U, 236U concentrations of 0.0002 to 0.1 %. 1.2 This test method may be applicable to the analysis of the entire range of 235U isotopic compositions providing that adequate Certified Reference Materials (CRMs or traceable standards) are available. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety health practices and determine the applicability of regulatory limitations prior to use.

  4. Perchlorate Isotope Forensics

    SciTech Connect (OSTI)

    Bohlke, J. K. [U.S. Geological Survey, Reston, VA; Sturchio, N. C. [University of Illinois, Chicago; Gu, Baohua [ORNL; Horita, Juske [ORNL; Brown, Gilbert M [ORNL; Jackson, W. Andrew [Tennessee Technological University; Batista, Jacimaria [University of Nevada, Las Vegas

    2006-01-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses ({sup 37}Cl/{sup 35}Cl and {sup 18}O/{sup 17}O/{sup 16}O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method.

  5. Ground?Source Heat Pumps: Overview of Market Status, Barriers to Adoption, and Options for Overcoming Barriers

    SciTech Connect (OSTI)

    Navigant Consulting, Inc.

    2011-11-21

    February 2009 final report submitted to DOE by Navigant Consulting, Inc. This report summarizes the status of ground?source heat pump (GSHP) technology and market penetration globally, estimates the energy saving potential of GSHPs in the U.S., identifies key market barriers that are inhibiting wider market adoption of GSHPs, and recommends initiatives that can be implemented or facilitated by the DOE to accelerate market adoption.

  6. An In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes

    SciTech Connect (OSTI)

    Puttagunta, Srikanth; Shapiro, Carl

    2012-04-01

    Building America research team Consortium for Advanced Residential Buildings (CARB) partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and lighting, appliance, and miscellaneous loads (LAMELs) through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and LAMELs.

  7. Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System 

    E-Print Network [OSTI]

    Liu, G.; Guo, Z.; Hu, S.

    2006-01-01

    accordin g to heat quantity compared charge according to area. 2.3 Government Encouraging Use of New and Re producible Energy In order to save energy in architecture field, government and MINISRY OF CONSTRUCTIO N P.R. CHINA issue a series of laws... has longer life and its life is up to fifty years. 6) Divided calculation heat is easily carried out i n floor radiant heating system. It is helpful to so lve charge question. According to statistic, it can save energy about 20~30% that charge...

  8. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01

    GSHP system is more energy efficient than the air-source VRFGSHP system is more energy efficient than the air-source VRVintended to be as energy efficient as required by current

  9. Nanofluids and a method of making nanofluids for ground source heat pumps and other applications

    SciTech Connect (OSTI)

    Olson, John Melvin

    2013-11-12

    This invention covers nanofluids. Nanofluids are a combination of particles between 1 and 100 nanometers, a surfactant and the base fluid. The nanoparticles for this invention are either pyrogenic nanoparticles or carbon nanotubes. These nanofluids improve the heat transfer of the base fluids. The base fluid can be ethylene glycol, or propylene glycol, or an aliphatic-hydrocarbon based heat transfer fluid. This invention also includes a method of making nanofluids. No surfactant is used to suspend the pyrogenic nanoparticles in glycols.

  10. Alternate energy source usage methods for in situ heat treatment processes

    DOE Patents [OSTI]

    Stone, Jr., Francis Marion; Goodwin, Charles R; Richard, Jr., James E

    2014-10-14

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing power to one or more subsurface heaters is described herein. The method may include monitoring one or more operating parameters of the heaters, the intermittent power source, and a transformer coupled to the intermittent power source that transforms power from the intermittent power source to power with appropriate operating parameters for the heaters; and controlling the power output of the transformer so that a constant voltage is provided to the heaters regardless of the load of the heaters and the power output provided by the intermittent power source.

  11. Modernization of the High Flux Isotope Reactor (HFIR) to Provide a Cold Neutron Source and Experimentation Facility

    SciTech Connect (OSTI)

    Rothrock, Benjamin G [ORNL] [ORNL; Farrar, Mike B [ORNL] [ORNL

    2009-01-01

    This paper discusses the installation of a cold neutron source at HFIR with respect to the project as a modernization of the facility. The paper focuses on why the project was required, the scope of the cold source project with specific emphasis on the design, and project management information.

  12. The Well-Group Distribution of Groundwater Source Heat Pump System Optimized Research 

    E-Print Network [OSTI]

    Liu, Z.; Lu, L.; Yoshida, H.

    2006-01-01

    It is the key question that how does the well group arrange for application of GWSHP system. Based on the fact that the water movement is the important factor of heat transfer on aquifer, this paper presents two steps analysis method and analyze...

  13. Regional Impact of an Elevated Heat Source: The Zagros Plateau of Iran BENJAMIN F. ZAITCHIK, JASON P. EVANS, AND RONALD B. SMITH

    E-Print Network [OSTI]

    Evans, Jason

    Regional Impact of an Elevated Heat Source: The Zagros Plateau of Iran BENJAMIN F. ZAITCHIK, JASON in the north, the Taurus Moun- tains of Turkey, and the Zagros Plateau in Iran. Inter- secting atmospheric

  14. Air Conditioning Cold/Heat Source Analysis of the Inclusion of the Monetary Values of Environmental Damage Based on the LCA Theory 

    E-Print Network [OSTI]

    Li, Z.; Duanmu, L.; Shu, H.; Zhu, Y.

    2006-01-01

    This is an analysis of the effect on the technical solutions when monetary values of externalities are included in a model for selecting air conditioning cold/heat sources. The focus of the study is on heating and cooling using conventional...

  15. Technical Feasibility Study for Deployment of Ground-Source Heat Pump Systems: Portsmouth Naval Shipyard -- Kittery, Maine

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2014-11-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reduction goals.

  16. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    SciTech Connect (OSTI)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

  17. MEASURED SPACE CONDITIONING PERFORMANCE OFA VERTICAL-BORE GROUND SOURCE HEAT PUMP (GSHP) OVER TWELVE MONTHS UNDER SIMULATED OCCUPANCY LOADS

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

    2014-01-01

    This paper presents monthly performance metrics of a 7.56 kW (2.16 ton) GSHP serving the space conditioning loads of a 251m2 (2700ft2) residential home with a phase change material in its envelope, and a single vertical-bore 94.5m (310 ft) ground loop. The same ground loop also serviced a ground source heat pump water heater. Envelope characteristics are discussed briefly in the context of reducing thermal losses. Data on entering water temperatures, energy extracted from the ground, energy delivered/removed, compressor electricity use, COP, GSHP run times (low and high compressor stages), and the impact of fan and pump energy consumption on efficiency are presented for each month. Both practical as well as research and development issues are discussed. The findings suggest that GSHPs represent a practical technology option to reduce source energy reduction and greenhouse emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 target of generating over 25% of heat consumed in the EU from renewable energy.

  18. Method for producing H2 using a rotating drum reactor with a pulse jet heat source

    SciTech Connect (OSTI)

    Paulson, L.E.

    1991-04-16

    This patent describes a method for producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300{degrees} to 1400{degrees}F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices.

  19. Modeling the heat transfer in geometrically complex media with a volume source

    SciTech Connect (OSTI)

    Gurevich, M. I., E-mail: gur.m@mail.ru; Tel’kovskaya, O. V.; Chukbar, B. K.; Shkarovskiy, D. A. [National Research Center Kurchatov Institute (Russian Federation)

    2014-12-15

    Fuel elements produced from spent fuel are porous media with spatially varying characteristics. A hierarchical discrete structure for the numerical modeling of heat-transfer processes in media with an anisotropic geometry that is characterized by both the microscopic voids and macroscopic changes in the parameters is proposed. The basic unit of the structure at its lower level is a cell that represents the local properties of the medium. The cells have a standard interface that allows one to form three-dimensional networks of such cells. Different types of cells in the network represent macroscopic changes. The potential for parallel processing is analyzed.

  20. "Table B26. Water-Heating Energy Sources, Floorspace, 1999"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6. Total1.6.6. Water-Heating

  1. Sources and fluxes of carbon in a large boreal hydroelectric reservoir of eastern Canada: an isotopic approach

    E-Print Network [OSTI]

    Long, Bernard

    Sources and fluxes of carbon in a large boreal hydroelectric reservoir of eastern Canada Hydroelectric reservoirs emit greenhouse gases (GHGs). Although a few hypothesis have been put forward at the surface of a large boreal hydroelectric reservoir of eastern Canada (Robert-Bourassa) as well

  2. 30TH INTERNATIONAL COSMIC RAY CONFERENCE The P, S, Ar, and Ca isotopic composition of the galactic cosmic ray source

    E-Print Network [OSTI]

    Moskalenko, Igor V.

    at their source compared to the solar system [1, 2]. The proposed mechanism for this fractionation in the solar system. The acceleration site of GCRs is likely to be the hot, tenuous cores of superbubbles, Mexico City, Mexico, 2008 Vol. 2 (OG part 1), pages 125­12

  3. Source and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope (D13

    E-Print Network [OSTI]

    Guo, Laodong

    that turnover pathways and transport mechanisms vary with organic matter size fractions. The high abundance of COC and its contemporary 14 C ages points to a predominant source from modern terrestrial primary in the Yukon River watershed would enhance the mobilization and export of old terrestrial OC, but largely

  4. A TWO-PHASE HEAT SPREADER FOR COOLING HIGH HEAT FLUX SOURCES Mitsuo Hashimoto, Hiroto Kasai, Yuichi Ishida, Hiroyuki Ryoson, a

    E-Print Network [OSTI]

    -power lasers, high-intensity light-emitting diodes (LEDs), and semiconductor power devices. The heat spreader

  5. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  6. Performance Evaluation of a ground source heat pump system based on ANN and ANFIS models 

    E-Print Network [OSTI]

    Sun, W.; Hu, P.; Lei, F.; Zhu, N.; Zhang,J.

    2014-01-01

    .H DONG," MATLAB neural network and application," Beijing: National Defense Industry Press, 2005. [10] S. A. Kalogirou, "Applications of artificial neural networks in energy systems," Energy Conversion and Management, vol. 40, pp. 1073-1087, 1999. [11... stream_source_info ESL-IC-14-09-38.pdf.txt stream_content_type text/plain stream_size 28204 Content-Encoding UTF-8 stream_name ESL-IC-14-09-38.pdf.txt Content-Type text/plain; charset=UTF-8 Performance evaluation of a...

  7. Quantum fluctuations of Coulomb Potential as a Source of Flicker Noise. The Influence of Heat Bath

    E-Print Network [OSTI]

    Kirill A. Kazakov

    2007-05-15

    The power spectrum of finite-temperature quantum electromagnetic fluctuations produced by elementary charge carriers under the influence of external electric field is investigated. It is found that under the combined action of the photon heat bath and the external field, the low-frequency asymptotic of the power spectrum is modified both qualitatively and quantitatively. The new term in the power spectrum is inversely proportional to, but is odd in frequency. It comes from the connected part of the correlation function, and is related to the temperature and external field corrections to the photon and charge carrier propagators. In application to the case of a biased conducting sample, this term gives rise to a contribution to the voltage power spectrum which is proportional to the absolute system temperature, the charge carrier mobility, the bias voltage squared, and a factor describing dependence of the noise intensity on the sample geometry. It is verified that the derived expression is in agreement with the experimental data on 1/f-noise measurements in metal films.

  8. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  9. Building America Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed-humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowner's wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.

  10. Field and Laboratory Study of a Ground-Coupled Water Source Heat Pump with an Integral Enthalpy Exchange System for Classrooms 

    E-Print Network [OSTI]

    Domitrovic, R.; Hayzen, G. J.; Johnson, W. S.; Chen, F. C.

    2002-01-01

    water-source heat pump, coupled with a geothermal water loop and incorporating a forced fresh-air enthalpy exchange system was installed in a typical middle school classroom in Oak Ridge, Tennessee. This project is a joint effort among Oak Ridge School...

  11. Exergy Analysis of a Two-Stage Ground Source Heat Pump with a Vertical Bore for Residential Space Conditioning under Simulated Occupancy

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2015-01-01

    This twelve-month field study analyzes the performance of a 7.56W (2.16- ton) water-to-air-ground source heat pump (WA-GSHP) to satisfy domestic space conditioning loads in a 253 m2 house in a mixed-humid climate in the United States. The practical feasibility of using the ground as a source of renewable energy is clearly demonstrated. Better than 75% of the energy needed for space heating was extracted from the ground. The average monthly electricity consumption for space conditioning was only 40 kWh at summer and winter thermostat set points of 24.4oC and 21.7oC, respectively. The WA-GSHP shared the same 94.5 m vertical bore ground loop with a separate water-to-water ground-source heat pump (WW-GSHP) for meeting domestic hot water needs in the same house. Sources of systemic irreversibility, the main cause of lost work are identified using Exergy and energy analysis. Quantifying the sources of Exergy and energy losses is essential for further systemic improvements. The research findings suggest that the WA-GSHPs are a practical and viable technology to reduce primary energy consumption and greenhouse gas emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources.

  12. Nonequilibrium clumped isotope signals in microbial methane

    E-Print Network [OSTI]

    Wang, David T.

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its ...

  13. GEOL 715: STABLE ISOTOPE GEOCHEMISTRY (Spring, 2015)

    E-Print Network [OSTI]

    , nomenclature, standards -kinetic and equilibrium fractionation processes -mass and isotope budgets -Rayleigh in terrestrial plants and plankton -applications: carbon budgets, tracking anthropogenic CO2, carbon export rates sources, trophic levels, terrestrial vs marine sources 3. Recent advances: -mass independent fractionation

  14. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  15. Transportation of medical isotopes

    SciTech Connect (OSTI)

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  16. Policies supporting Heat Pump Technologies

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

  17. Determination of the Transient Response Characteristics of the Air-Source Heat Pump During the Reverse Cycle Defrost 

    E-Print Network [OSTI]

    O'Neal, D. L.; Anand, N. K.; Peterson, K. T.; Schleising, S.

    1988-01-01

    The objectives of this research were to: (1) characterize the reverse cycle defrost of the air-to-air heat pump and (2) examine the effect of different expansion devices on the performance of the heat pump during the defrost cycle....

  18. Laser separation of medical isotopes

    SciTech Connect (OSTI)

    Eerkens, J.W.; Puglishi, D.A.; Miller, W.H.

    1996-12-31

    There is an increasing demand for different separated isotopes as feed material for reactor and cyclotron-produced radioisotopes used by a fast-growing radiopharmaceutical industry. One new technology that may meet future demands for medical isotopes is molecular laser isotope separation (MLIS). This method was investigated for the enrichment of uranium in the 1970`s and 1980s by Los Alamos National Laboratory, Isotope Technologies, and others around the world. While South Africa and Japan have continued the development of MLIS for uranium and are testing pilot units, around 1985 the United States dropped the LANL MLIS program in favor of AVLIS (atomic vapor LIS), which uses electron-beam-heated uranium metal vapor. AVLIS appears difficult and expensive to apply to most isotopes of medical interest, however, whereas MLIS technology, which is based on cooled hexafluorides or other gaseous molecules, can be adapted more readily. The attraction of MLIS for radiopharmaceutical firms is that it allows them to operate their own dedicated separators for small-quantity productions of critical medical isotopes, rather than having to depend on large enrichment complexes run by governments, which are only optimal for large-quantity productions. At the University of Missouri, the authors are investigating LIS of molybdenum isotopes using MoF{sub 6}, which behaves in a way similar to UF{sub 6}, studied in the past.

  19. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    SciTech Connect (OSTI)

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.

  20. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warmingmore »in deep crevasses.« less

  1. 137 Cs Activities and 135 Cs/ 137 Cs Isotopic Ratios from Soils at Idaho National Laboratory: A Case Study for Contaminant Source Attribution in the Vicinity of Nuclear Facilities

    SciTech Connect (OSTI)

    Snow, Mathew S.; Snyder, Darin C.; Clark, Sue B.; Kelley, Morgan; Delmore, James E.

    2015-03-03

    Radiometric and mass spectrometric analyses of Cs contamination in the environment can reveal the location of Cs emission sources, release mechanisms, modes of transport, prediction of future contamination migration, and attribution of contamination to specific generator(s) and/or process(es). The Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) represents a complicated case study for demonstrating the current capabilities and limitations to environmental Cs analyses. 137Cs distribution patterns, 135Cs/137Cs isotope ratios, known Cs chemistry at this site, and historical records enable narrowing the list of possible emission sources and release events to a single source and event, with the SDA identified as the emission source and flood transport of material from within Pit 9 and Trench 48 as the primary release event. These data combined allow refining the possible number of waste generators from dozens to a single generator, with INL on-site research and reactor programs identified as the most likely waste generator. A discussion on the ultimate limitations to the information that 135Cs/137Cs ratios alone can provide is presented and includes (1) uncertainties in the exact date of the fission event and (2) possibility of mixing between different Cs source terms (including nuclear weapons fallout and a source of interest).

  2. The effects of airflow modulation and multi-stage defrost on the performance of an air source heat pump 

    E-Print Network [OSTI]

    Payne, William Vance

    1992-01-01

    Modeling System Performance Cycling Losses Frosting and Defrosting Losses . Heat Pump Defrost Controls. Effects of Frost on Airflow Summary of Literature Reviewed . 7 12 16 26 34 41 TEST FACILITY. Psychrometric Rooms Test Heat Pump . . Indoor... Test Section. . Outdoor Test Section. Data Acquisition and Reduction. Experimental Procedure. 44 46 49 51 52 53 IV BASE CASE TEST RESULTS . System Performance Parameters. Frosting Period . Defrost Initiation. Melt Period . . Drain Period...

  3. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  4. Absorption Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Absorption Heat Pumps Absorption Heat Pumps June 24, 2012 - 2:11pm Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat...

  5. A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    E-Print Network [OSTI]

    Longcope, D W; Carranza-Fulmer, T; Qiu, J; 10.1007/s11207-010-9635-z

    2011-01-01

    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localiz...

  6. Home Heating Systems | Department of Energy

    Office of Environmental Management (EM)

    separately, many homes use the following approaches: Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental heat source. Electric...

  7. Exergy Analysis and Operational Efficiency of a Horizontal Ground Source Heat Pump System Operated in a Low-Energy Test House under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL

    2012-01-01

    This paper presents data, analyses, measures of performance, and conclusions for a ground-source heat pump (GSHP) providing space conditioning to a 345m2 house whose envelope is made of structural insulated panels (SIP). The entire thermal load of this SIP house with RSI-3.7 (RUS-21) walls, triple pane windows with a U-factor of 1.64 W/m2 K (0.29 Btu/h ft2 oF) and solar heat gain coefficient (SHGC) of 0.25, a roof assembly with overall thermal resistance of about RSI-8.8 (RUS-50) and low leakage rates of 0.74 ACH at 50Pa was satisfied with a 2.16-Ton (7.56 kW) GSHP unit consuming negligible (9.83kWh) auxiliary heat during peak winter season. The highest and lowest heating COP achieved was 4.90 (October) and 3.44 (February), respectively. The highest and lowest cooling COP achieved was 6.09 (April) and 3.88 (August). These COPs are calculated on the basis of the total power input (including duct, ground loop, and control power losses ). The second Law (Exergy) analysis provides deep insight into how systemic inefficiencies are distributed among the various GSHP components. Opportunities for design and further performance improvements are identified. Through Exergy analysis we provide a true measure of how closely actual performance approaches the ideal, and it unequivocally identifies, better than energy analysis does, the sources and causes of lost work, the root cause of system inefficiencies.

  8. Performance of Horizontal Field Earth-Coupled Heat Pumps 

    E-Print Network [OSTI]

    Abbott, C. A.

    1986-01-01

    An alternative to traditional methods of residential heating and cooling is the heat pump. However, heat pumps which use the outside air as a heat source/sink become inefficient during the periods of highest demand. Another possible heat source...

  9. Design and testing of an electron cyclotron resonance heating ion source for use in high field compact superconducting cyclotrons

    E-Print Network [OSTI]

    Artz, Mark E

    2012-01-01

    The main goal of this project is to evaluate the feasibility of axial injection of a high brightness beam from an Electron Cyclotron Resonance ion source into a high magnetic field cyclotron. Axial injection from an ion ...

  10. Isotope specific arbitrary material sorter

    DOE Patents [OSTI]

    Barty, Christopher P.J.

    2015-12-08

    A laser-based mono-energetic gamma-ray source is used to provide a rapid and unique, isotope specific method for sorting materials. The objects to be sorted are passed on a conveyor in front of a MEGa-ray beam which has been tuned to the nuclear resonance fluorescence transition of the desired material. As the material containing the desired isotope traverses the beam, a reduction in the transmitted MEGa-ray beam occurs. Alternately, the laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  11. Method for producing H.sub.2 using a rotating drum reactor with a pulse jet heat source

    DOE Patents [OSTI]

    Paulson, Leland E. (Morgantown, WV)

    1990-01-01

    A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300.degree. to 1400.degree. F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices.

  12. Ion sources with arc-discharge plasma box driven by directly heated LaB{sub 6} electron emitter or cold cathode (invited)

    SciTech Connect (OSTI)

    Ivanov, Alexander A.; Davydenko, Vladimir I.; Deichuli, Petr P.; Shulzhenko, Grigori I.; Stupishin, Nikolay V.

    2008-02-15

    In the Budker Institute, Novosibirsk, an ion source with arc-discharge plasma box has been developed in the recent years for application in thermonuclear devices for plasma diagnostics. Several modifications of the ion source were provided with extracted current ranging from 1 to 7 A and pulse duration of up to 4 s. Initially, the arc-discharge plasma box with cold cathode was used, with which pulse duration is limited to 2 s by the cathode overheating and sputtering in local arc spots. Recently, a directly heated LaB{sub 6} electron emitter was employed instead, which has extended lifetime compared to the cold cathode. In the paper, characteristics of the beam produced with both arrangements of the plasma box are presented.

  13. Modeling Improvements for Air Source Heat Pumps using Different Expansion Devices at Varied Charge Levels Part II

    SciTech Connect (OSTI)

    Shen, Bo [ORNL

    2011-01-01

    This paper describes steady-state performance simulations performed on a 3-ton R-22 split heat pump in heating mode. In total, 150 steady-state points were simulated, which covers refrigerant charge levels from 70 % to 130% relative to the nominal value, the outdoor temperatures at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C), indoor air flow rates from 60% to 150% of the rated air flow rate, and two types of expansion devices (fixed orifice and thermostatic expansion valve). A charge tuning method, which is to calibrate the charge inventory model based on measurements at two operation conditions, was applied and shown to improve the system simulation accuracy significantly in an extensive range of charge levels. In addition, we discuss the effects of suction line accumulator in modeling a heat pump system using either a fixed orifice or thermal expansion valve. Last, we identify the issue of refrigerant mass flow mal-distribution at low charge levels and propose an improved modeling approach.

  14. Can N 2 O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N 2 O production and consumption in tropical soils?

    E-Print Network [OSTI]

    2011-01-01

    from tropical forest soils, Global Biogeochem. Cycles, 14,2 O source partitioning in soils: recent progress, remaininga temperate grassland soil after fertiliser application,

  15. Chemical and isotopic characteristics of the coso east flank hydrothermal fluids: implications for the location and nature of the heat source

    E-Print Network [OSTI]

    Christenson, B.W.; Kennedy, B.M.; Adams, M.C.; Bjornstad, S.C.; Buck, C.

    2007-01-01

    B.W. , Mrozcek, E.K. , Kennedy, B.M. , van Soest, M.C. ,Dobson P. , Sonnenthal E. , Kennedy M. , van Soest T. andGeology 127, 269-295. Kennedy, B.M. and Truesdell, A.H. (

  16. Chemical and isotopic characteristics of the coso east flank hydrothermal fluids: implications for the location and nature of the heat source

    E-Print Network [OSTI]

    Christenson, B.W.; Kennedy, B.M.; Adams, M.C.; Bjornstad, S.C.; Buck, C.

    2007-01-01

    phase conditions in the Coso EGS project. Proceedings 29 thField: Implications for EGS development. Proceedings 30 thcould assist with future EGS developments within the East

  17. Short course on St-02 applications of isotope dilutions and isotopic measurements

    SciTech Connect (OSTI)

    Miller, P.

    1998-01-05

    This short course includes information on these topics and subtopics: (I) Nuclear Properties: (A) Historic roots; (B) Nomenclature; (C) Nuclear Stability and abundance; (D) Uses of isotopic techniques; (II) Instrumentation: (A) Sources; (B) Mass resolving elements; (C) Detectors; (III) Making Isotopic Measurements by ICP-MS: (A) Deadtime Correction; (B) Mass Discrimination; (C) Signal /Noise considerations; (IV) Applications and examples: (A) Isotope dilution; (B) Double Spike; (C) Biological Application; (D) Environmental Application; (E) Geological.

  18. Method of production H/sub 2/ using a rotating drum reactor with a pulse jet heat source

    DOE Patents [OSTI]

    Paulson, L.E.

    1988-05-13

    A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300/degree/ to 1400/degree/F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices. 1 fig.

  19. Isotopes Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing theActivation byIs a SmallIsotope

  20. Limitations of Using Uniform Heat Flux Assumptions in Sizing Vertical Borehole Heat Exchanger Fields

    E-Print Network [OSTI]

    of ground heat exchangers (GHE) used with ground source heat pump (GSHP) systems. These models can account approach with a parametric study. Keywords - Ground Source Heat Pumps; Borehole Heat Exchangers; Finite Line Source Theory; g-functions 1. Introduction Ground source heat pump (GSHP) systems are a widely

  1. Apparatus for separating and recovering hydrogen isotopes

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC)

    1994-01-01

    An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

  2. Closed Brayton cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    SciTech Connect (OSTI)

    Juhasz, A.J. (NASA Lewis Research Center, 21000 Brookpark Rd., MS: 301-3, Cleveland, Ohio 44135 (United States)); El-Genk, M.S. (Institute for Space Nuclear Power Studies, University of New Mexico (United States)); Harper, W. (Allied Signal Aerospace, 1300 W. Warner, P.O. Box 2220, Tempe, Arizona 85285-2200 (United States))

    1993-01-15

    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

  3. Closed Brayton Cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    SciTech Connect (OSTI)

    Juhasz, A.J.; El-genk, M.S.; Harper, W.B. Jr.

    1992-10-01

    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

  4. MODELING, SIMULATION AND OPTIMIZATION OF GROUND SOURCE

    E-Print Network [OSTI]

    MODELING, SIMULATION AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS By MUHAMMAD HAIDER KHAN AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS Thesis Approved..................................................................................................................... 1 1.1 Overview of Ground Source Heat Pump Systems.............................................. 1 1

  5. Guide to Geothermal Heat Pumps

    SciTech Connect (OSTI)

    None

    2011-02-01

    Geothermal heat pumps, also known as ground source heat pumps, geoexchange, water-source, earth-coupled, and earth energy heat pumps, take advantage of this resource and represent one of the most efficient and durable options on the market to heat and cool your home.

  6. Heat Pump Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generates hot and cold water rather than air, allowing it to be used with radiant floor heating systems in heating mode. Geothermal (ground-source or water-source) heat...

  7. 4.A. HEAT FLOW 119 4.A. Heat flow

    E-Print Network [OSTI]

    Hunter, John K.

    denote the temperature, g : R the rate per unit volume at which heat sources create energy inside the body, and q : Rn the heat flux. That is, the rate per unit area at which heat energy diffuses across of energy implies that for any smooth open set the heat flux out of is equal to the rate at which heat

  8. Heating System Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources....

  9. Radiogenic Source Identification for the Helium Production-Diffusion ...

    E-Print Network [OSTI]

    2012-10-17

    Oct 18, 2012 ... Key words: Inverse source problem, production-diffusion equation, Tikhonov regularization. 1 Introduction. Helium isotopes are used ...

  10. FUEL CYCLE ISOTOPE EVOLUTION BY TRANSMUTATION DYNAMICS OVER MULTIPLE RECYCLES

    SciTech Connect (OSTI)

    Samuel Bays; Steven Piet; Amaury Dumontier

    2010-06-01

    Because all actinides have the ability to fission appreciably in a fast neutron spectrum, these types of reactor systems are usually not associated with the buildup of higher mass actinides: curium, berkelium and californium. These higher actinides have high specific decay heat power, gamma and neutron source strengths, and are usually considered as a complication to the fuel manufacturing and transportation of fresh recycled transuranic fuel. This buildup issue has been studied widely for thermal reactor fuels. However, recent studies have shown that the transmutation physics associated with "gateway isotopes" dictates Cm-Bk-Cf buildup, even in fast burner reactors. Assuming a symbiotic fuel relationship with light water reactors (LWR), Pu-242 and Am-243 are formed in the LWRs and then are externally fed to the fast reactor as part of its overall transuranic fuel supply. These isotopes are created much more readily in a thermal than in fast spectrum systems due to the differences in the fast fission (i.e., above the fission threshold for non-fissile actinides) contribution. In a strictly breeding fast reactor this dependency on LWR transuranics would not exist, and thus avoids the introduction of LWR derived gateway isotopes into the fast reactor system. However in a transuranic burning fast reactor, the external supply of these gateway isotopes behaves as an external driving force towards the creation and build-up of Cm-Bk-Cf in the fuel cycle. It was found that though the Cm-Bk-Cf concentration in the equilibrium fuel cycle is dictated by the fast neutron spectrum, the time required to reach that equilibrium concentration is dictated by recycle, transmutation and decay storage dynamics.

  11. Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences

    SciTech Connect (OSTI)

    Biri, S., E-mail: biri@atomki.hu [National Institute of Radiological Science (NIRS), 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Institute for Nuclear Research (ATOMKI), H-4026 Debrecen, Bem tér 18/c (Hungary); Kitagawa, A.; Muramatsu, M.; Drentje, A. G. [National Institute of Radiological Science (NIRS), 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan)] [National Institute of Radiological Science (NIRS), 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Rácz, R. [Institute for Nuclear Research (ATOMKI), H-4026 Debrecen, Bem tér 18/c (Hungary)] [Institute for Nuclear Research (ATOMKI), H-4026 Debrecen, Bem tér 18/c (Hungary); Yano, K.; Kato, Y. [Graduated School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)] [Graduated School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Sasaki, N.; Takasugi, W. [Accelerator Engineering Corporation (AEC), Inage, Chiba 263-0043 (Japan)] [Accelerator Engineering Corporation (AEC), Inage, Chiba 263-0043 (Japan)

    2014-02-15

    The two-frequency heating technique was studied to increase the beam intensities of highly charged ions provided by the high-voltage extraction configuration (HEC) ion source at the National Institute of Radiological Sciences (NIRS). The observed dependences on microwave power and frequency suggested that this technique improved plasma stability but it required precise frequency tuning and more microwave power than was available before 2013. Recently, a new, high-power (1200 W) wide band-width (17.1–18.5 GHz) travelling-wave-tube amplifier (TWTA) was installed. After some single tests with klystron and TWT amplifiers the simultaneous injection of the two microwaves has been successfully realized. The dependence of highly charged ions (HCI) currents on the superposed microwave power was studied by changing only the output power of one of the two amplifiers, alternatively. While operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was swept within its full limits (17.1–18.5 GHz), and the effect of this frequency on the HCI-production rate was examined under several operation conditions. As an overall result, new beam records of highly charged argon, krypton, and xenon beams were obtained at the NIRS-HEC ion source by this high-power two-frequency operation mode.

  12. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  13. On the Nuclear Mechanisms Underlying the Heat Production by the E-Cat

    E-Print Network [OSTI]

    Norman D. Cook; Andrea Rossi

    2015-04-10

    We discuss the isotopic abundances found in the E-Cat reactor with regard to the nuclear mechanisms responsible for excess heat. We argue that a major source of energy is a reaction between the first excited-state of Li-7 and a proton, followed by the breakdown of Be-8 into two alphas with high kinetic energy, but without gamma radiation. The unusual property of the Li-7 isotope that allows this reaction is similar to the property that underlies the Mossbauer effect: the presence of unusually low-lying excited states in stable, odd-Z and/or odd-N nuclei. We use the lattice version of the independent-particle model (IPM) of nuclear theory to show how the geometrical structure of isotopes indicate nuclear reactions that are not predicted in the conventional version of the IPM. Finally, we speculate on similar mechanisms that may be involved in other low-energy nuclear reactions (LENR).

  14. DESIGN OF A SUBCRITICAL AQUEOUS TARGET SYSTEM FOR MEDICAL ISOTOPE PRODUCTION 

    E-Print Network [OSTI]

    Vega, Richard Manuel

    2013-12-10

    The United States consumes almost half of all medical isotopes produced worldwide, and relies on foreign sources for nearly its entire supply. These isotopes are produced in nuclear reactors which are very costly to construct. A domestic supply may...

  15. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  16. Heat Treating Apparatus

    DOE Patents [OSTI]

    De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

    2002-09-10

    Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

  17. Fusion heating technology

    SciTech Connect (OSTI)

    Cole, A.J.

    1982-06-01

    John Lawson established the criterion that in order to produce more energy from fusion than is necessary to heat the plasma and replenish the radiation losses, a minimum value for both the product of plasma density and confinement time t, and the temperature must be achieved. There are two types of plasma heating: neutral beam and electromagnetic wave heating. A neutral beam system is shown. Main development work on negative ion beamlines has focused on the difficult problem of the production of high current sources. The development of a 30 keV-1 ampere multisecond source module is close to being accomplished. In electromagnetic heating, the launcher, which provides the means of coupling the power to the plasma, is most important. The status of heating development is reviewed. Electron cyclotron resonance heating (ECRH), lower hybrid heating (HHH), and ion cyclotron resonance heating (ICRH) are reviewed.

  18. Foundation Heat Exchanger Model and Design Tool Development and Validation

    E-Print Network [OSTI]

    . Feasibility of foundation heat exchangers in ground source heat pump systems in the United States. ASHRAE Heat Exchangers for Residential Ground Source Heat Pump Systems - Numerical Modeling and Experimental. Fisher, J. Shonder, P. Im. 2010. Residential Ground Source Heat Pump Systems Utilizing Foundation Heat

  19. Cedarville School District Retrofit of Heating and Cooling Systems...

    Energy Savers [EERE]

    Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops Cedarville School District Retrofit of Heating and...

  20. Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences

    E-Print Network [OSTI]

    Biri, S; Muramatsu, M; Drentje, A G; Rácz, R; Yano, K; Kato, Y; Sasaki, N; Takasugi, W

    2015-01-01

    The two-frequency heating technique was studied to increase the beam intensities of highly charged ions provided by the high-voltage extraction configuration (HEC) ion source at the National Institute of Radiological Sciences (NIRS). The observed dependences on microwave power and frequency suggested that this technique improved plasma stability but it required precise frequency tuning and more microwave power than was available before 2013. Recently, a new, high-power (1200 W) wide bandwidth (17.1-18.5 GHz) travelling-wave-tube amplifier (TWTA) was installed. After some single tests with klystron and TWT amplifiers the simultaneous injection of the two microwaves has been successfully realized. The dependence of highly charged ions (HCI) currents on the superposed microwave power was studied by changing only the output power of one of the two amplifiers, alternatively. While operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was swept within its full limits (17.1-18.5 GHz), and the effec...

  1. Chemical and isotopic properties and origin of coarse airborne particles collected by passive samplers in industrial, urban, and rural environments

    E-Print Network [OSTI]

    Short, Daniel

    Chemical and isotopic properties and origin of coarse airborne particles collected by passive vehicle and industrial emissions, coal combustion (e.g. cooking, heating, power plants) represents

  2. Quantifying uncertainty in stable isotope mixing models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-19

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (?15N and ?18O) but all methods testedmore »are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated mixing fractions.« less

  3. Isotopic Analysis At Nw Basin & Range Region (Kennedy & Van Soest...

    Open Energy Info (EERE)

    resource potential, particularly for geothermal energy development. In order for geothermal systems to develop and mine the heat source naturally, adequate fluid sources and...

  4. Isotopic Analysis At Northern Basin & Range Region (Kennedy ...

    Open Energy Info (EERE)

    resource potential, particularly for geothermal energy development. In order for geothermal systems to develop and mine the heat source naturally, adequate fluid sources and...

  5. Isotopic Analysis At Walker-Lane Transitional Zone Region (Kennedy...

    Open Energy Info (EERE)

    resource potential, particularly for geothermal energy development. In order for geothermal systems to develop and mine the heat source naturally, adequate fluid sources and...

  6. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  7. Packed bed reactor for photochemical sup 196 Hg isotope separation

    SciTech Connect (OSTI)

    Grossman, M.W.; Speer, R.

    1992-03-03

    This patent describes a photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury comprising a reactor cell and a monoisotopic light source It comprises: a plurality of transparent, straight reactor cell tubes disposed axially within the internal volume of the reactor cell to increase the surface area thereof for production deposition.

  8. Radiation Source Replacement Workshop

    SciTech Connect (OSTI)

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  9. Heat Pump Strategies and Payoffs 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1982-01-01

    (Evaporator) Heat Source Heat Pump Turbine Compressor Compressed Vapor Pump IZl:G1 Type IV - Rankine Cycle (Waste Heat Driven) Heat Sink (Condenser) Fig. 3 Basic Heat Pump Categories 324 ESL-IE-82-04-66 Proceedings from the Fourth Industrial... payback. 500 450 400 Leas Than G:" ~ 2! 350 2-Vear Payback .a e 300 !. E ~ 250 Simple Waste Heat Boller 200 100 1.-........_-'-_.1.---1"---.1._..&0.._1.---'-_'-__ o 10 20 30 40 50 60 70 80 Heat Removed (%) 82291 Fig. 4 Heat...

  10. Design Considerations for Industrial Heat Recovery Systems 

    E-Print Network [OSTI]

    Bywaters, R. P.

    1979-01-01

    recovery design considerations as well as a summary of typical "waste heat" sources and application sites. A procedure for conducting industrial waste heat surveys is presented. Thermodynamic and heat transfer factors are discussed. Problems associated...

  11. A Strontium Isotopic Study Of Newberry Volcano, Central Oregon...

    Open Energy Info (EERE)

    content with 87Sr86Sr suggests that some isotopic ratios reflect shallow crustal contamination, but the data also suggest that two mantle sources, a prominent one at 0.7036 and...

  12. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  13. Hybrid isotope separation scheme

    DOE Patents [OSTI]

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  14. Stable isotope enrichment

    ScienceCinema (OSTI)

    Egle, Brian

    2014-07-15

    Brian Egle is working to increase the nation's capacity to produce stable isotopes for use including medicine, industry and national security.

  15. Stable isotope enrichment

    SciTech Connect (OSTI)

    Egle, Brian

    2014-07-14

    Brian Egle is working to increase the nation's capacity to produce stable isotopes for use including medicine, industry and national security.

  16. Dynamic radioactive particle source

    DOE Patents [OSTI]

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  17. Price Quotes and Isotope Ordering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ordering Price Quotes and Isotope Ordering Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Isotope...

  18. Discovery of the Indium Isotopes

    E-Print Network [OSTI]

    S. Amos; M. Thoennessen

    2010-09-08

    Thirty-eight indium isotopes (A = 98-135) have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  19. Discovery of the Titanium Isotopes

    E-Print Network [OSTI]

    D. Meierfrankenfeld; M. Thoennessen

    2010-09-08

    Twentyfive titanium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  20. Discovery of the Mercury Isotopes

    E-Print Network [OSTI]

    D. Meierfrankenfeld; M. Thoennessen

    2010-09-08

    Forty mercury isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  1. Discovery of the Cobalt Isotopes

    E-Print Network [OSTI]

    T. Szymanski; M. Thoennessen

    2009-09-04

    Twenty-six cobalt isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  2. Discovery of the Tin Isotopes

    E-Print Network [OSTI]

    S. Amos; M. Thoennessen

    2010-09-08

    Thirty-eight tin isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  3. Discovery of the Cadmium Isotopes

    E-Print Network [OSTI]

    S. Amos; M. Thoennessen

    2009-10-22

    Thirty-seven cadmium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  4. Cost Estimate for Laser Isotope Separation for RIA

    SciTech Connect (OSTI)

    Scheibner, K

    2004-11-01

    Isotope enrichment of some elements is required in support of the Rare Isotope Accelerator (RIA) in order to obtain the beam intensities, source efficiencies and/or source lifetime required by RIA. The economics of using Atomic Vapor Laser Isotope Separation (AVLIS) technology as well as ElectroMagnetic (EM) separation technology has been evaluated. It is concluded that such an AVLIS would be about 10 times less expensive than a facility based on electromagnetic separation - $17 M versus $170 M. In addition, the AVLIS facility footprint would be about 10 times smaller, and operations would require about 4 years (including 2 years of startup) versus about 11 years for an EM facility.

  5. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  6. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  7. (Carbon isotope fractionation inplants)

    SciTech Connect (OSTI)

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  8. Isotopic abundance in atom trap trace analysis

    DOE Patents [OSTI]

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  9. Photochemical isotope separation

    DOE Patents [OSTI]

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  10. Laser isotope separation

    DOE Patents [OSTI]

    Robinson, C. Paul (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Cotter, Theodore P. (Munich, DE); Boyer, Keith (Los Alamos, NM); Greiner, Norman R. (Los Alamos, NM)

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  11. Stirling engine heating system

    SciTech Connect (OSTI)

    Johansson, L.N.; Houtman, W.H.; Percival, W.H.

    1988-06-28

    A hot gas engine is described wherein a working gas flows back and forth in a closed path between a relatively cooler compression cylinder side of the engine and a relatively hotter expansion cylinder side of the engine and the path contains means including a heat source and a heat sink acting upon the gas in cooperation with the compression and expansion cylinders to cause the gas to execute a thermodynamic cycle wherein useful mechanical output power is developed by the engine, the improvement in the heat source which comprises a plurality of individual tubes each forming a portion of the closed path for the working gas.

  12. Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate

    SciTech Connect (OSTI)

    Yong X. Tao; Yimin Zhu

    2012-04-26

    It has been widely recognized that the energy saving benefits of GSHP systems are best realized in the northern and central regions where heating needs are dominant or both heating and cooling loads are comparable. For hot and humid climate such as in the states of FL, LA, TX, southern AL, MS, GA, NC and SC, buildings have much larger cooling needs than heating needs. The Hybrid GSHP (HGSHP) systems therefore have been developed and installed in some locations of those states, which use additional heat sinks (such as cooling tower, domestic water heating systems) to reject excess heat. Despite the development of HGSHP the comprehensive analysis of their benefits and barriers for wide application has been limited and often yields non-conclusive results. In general, GSHP/HGSHP systems often have higher initial costs than conventional systems making short-term economics unattractive. Addressing these technical and financial barriers call for additional evaluation of innovative utility programs, incentives and delivery approaches. From scientific and technical point of view, the potential for wide applications of GSHP especially HGSHP in hot and humid climate is significant, especially towards building zero energy homes where the combined energy efficient GSHP and abundant solar energy production in hot climate can be an optimal solution. To address these challenges, this report presents gathering and analyzing data on the costs and benefits of GSHP/HGSHP systems utilized in southern states using a representative sample of building applications. The report outlines the detailed analysis to conclude that the application of GSHP in Florida (and hot and humid climate in general) shows a good potential.

  13. Heat pump with freeze-up prevention

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX)

    1981-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

  14. WARMWASSER ERNEUERBARE ENERGIEN KLIMA RAUMHEIZUNG Adsorption Heat-Pumps for domestic heating

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    1 #12;WARMWASSER ERNEUERBARE ENERGIEN KLIMA RAUMHEIZUNG Adsorption Heat-Pumps for domestic heating module Gas adsorption heat pump #12;5 Zeolite ­ a natural mineral [1] von www.vaillant.de [2] www is not suitable for being a source of an zeolite adsorption heat pump #12;14 > Low temperature level of the source

  15. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1986-08-15

    The atomic vapor laser isotope separation (AVLIS) process for the enrichment of uranium is evaluated. (AIP)

  16. Modeling of Standing Column Wells in Ground Source Heat Pump Systems Zheng Deng O'Neill, Ph.D., P.E.

    E-Print Network [OSTI]

    ). Standing column wells have been in use in limited numbers since the advent of geothermal heat pump systems exchanger in such systems consists of a vertical borehole that is filled with groundwater up to the level, shorter borehole depths and more stable water temperatures make the SCW system an attractive commercial

  17. Plasma isotope separation methods

    SciTech Connect (OSTI)

    Grossman, M.W. ); Shepp, T.A. )

    1991-12-01

    Isotope separation has many important industrial, medical, and research applications. Large-scale processes have typically utilized complex cascade systems; for example, the gas centrifuge. Alternatively, high single-stage enrichment processes (as in the case of the calutron) are very energy intensive. Plasma-based methods being developed for the past 15 to 20 years have attempted to overcome these two drawbacks. In this review, six major types of isotope separation methods which involve plasma phenomena are discussed. These methods are: plasma centrifuge, AVLIS (atomic vapor laser isotope separation), ion wave, ICR (ion-cyclotron resonance), calutron, and gas discharge. The emphasis of this paper is to describe the plasma phenomena in these major categories. An attempt was made to include enough references so that more detailed study or evaluation of a particular method could readily be pursued. A brief discussion of isotope separation using mass balance concepts is also carried out.

  18. Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump Systems and Solutions

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump use of buildings Gas Heat Pump Solution #12;Gas Heat Pump - deserves special attention due to its source in addition to the outside air ·A further essential component of Gas Heat Pump air conditioning

  19. INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING

    E-Print Network [OSTI]

    Vilmer, Christian

    2013-01-01

    system for different solar storage temperatures, outdoorhydronic solar and space that heating adjusts the storagethe heat source is solar heated water at the storage tank

  20. The Impact of Refrigerant Charge, Air Flow and Expansion Devices on the Measured Performance of an Air-Source Heat Pump Part I

    SciTech Connect (OSTI)

    Shen, Bo [ORNL

    2011-01-01

    This paper describes extensive tests performed on a 3-ton R-22 split heat pump in heating mode. The tests contain 150 steady-state performance tests, 18 cyclic tests and 18 defrost tests. During the testing work, the refrigerant charge level was varied from 70 % to 130% relative to the nominal value; the outdoor temperature was altered by three levels at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C); indoor air flow rates ranged from 60% to 150% of the rated air flow rate; and the expansion device was switched from a fixed-orifice to a thermal expansion value. Detailed performance data from the extensive steady state cyclic and defrost testing performed were presented and compared.

  1. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, Steven R. (Berkeley, CA)

    1999-01-01

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

  2. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, S.R.

    1999-07-27

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

  3. 7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant

    E-Print Network [OSTI]

    Bahrami, Majid

    7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

  4. Natural Refrigerant High-Performance Heat Pump for Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    (DE-FOA-0000823) Project Objective This project aims to develop a regenerative air source heat pump for commercial and industrial heating, ventilation, and air conditioning (HVAC)...

  5. Proceedings of the 10th international workshop on ECR ion sources

    SciTech Connect (OSTI)

    Meyer, F W; Kirkpatrick, M I [eds.

    1991-01-01

    This report contains papers on the following topics: Recent Developments and Future Projects on ECR Ion Sources; Operation of the New KVI ECR Ion Source at 10 GHz; Operational Experience and Status of the INS SF-ECR Ion Source; Results of the New ECR4'' 14.5 GHz ECRIS; Preliminary Performance of the AECR; Experimental Study of the Parallel and Perpendicular Particle Losses from an ECRIS Plasma; Plasma Instability in Electron Cyclotron Resonance Heated Ion Sources; The Hyperbolic Energy Analyzer; Status of ECR Source Development; The New 10 GHz CAPRICE Source; First Operation of the Texas A M ECR Ion Source; Recent Developments of the RIKEN ECR Ion Sources; The 14 GHz CAPRICE Source; Characteristics and Potential Applications of an ORNL Microwave ECR Multicusp Plasma Ion Source; ECRIPAC: The Production and Acceleration of Multiply Charged Ions Using an ECR Plasma; ECR Source for the HHIRF Tandem Accelerator; Feasibility Studies for an ECR-Generated Plasma Stripper; Production of Ion Beams by using the ECR Plasmas Cathode; A Single Stage ECR Source for Efficient Production of Radioactive Ion Beams; The Single Staged ECR Source at the TRIUMF Isotope Separator TISOL; The Continuous Wave, Optically Pumped H{sup {minus}} Source; The H{sup +} ECR Source for the LAMPF Optically Pumped Polarized Ion Source; Present Status of the Warsaw CUSP ECR Ion Source; An ECR Source for Negative Ion Production; GYRAC-D: A Device for a 200 keV ECR Plasma Production and Accumulation; Status Report of the 14.4 GHZ ECR in Legnaro; Status of JYFL-ECRIS; Report on the Uppsala ECRIS Facility and Its Planned Use for Atomic Physics; A 10 GHz ECR Ion Source for Ion-Electron and Ion-Atom Collision Studies; and Status of the ORNL ECR Source Facility for Multicharged Ion Collision Research.

  6. Undesirable options - The U. S. isotope crisis

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    When a Canadian reactor failed in late 1990, it shut off a principle supply of iridium-192, an isotope critical to gamma radiography. Following the failure of the Canadian reactor, iridium sources inside the US were largely undependable in terms of both cost and schedule. The scheduling problems are outlined in the following testimony; prices increased 35% on one occasion, and then saw another increase of 60%. On August 3, 1992 Congressman Mike Synar requested that ASNT member Donny Dicharry present testimony on behalf of ASNT, the Nondestructive Testing Management Association (NDTMA), and Source Production and Equipment Co., Inc. (SPEC) concerning the Department of Energy's isotope program and the iridium-192 shortage. Excerpts from the testimony are given.

  7. Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    purpose of this research activity was to determine the fluid and heat source, Identify flow paths, and evaluate the possibility of a more extensive deep geothermal reservoir...

  8. Evaluation of heat sources and effect of dry out in single-shell tanks 241-SX-108 and 241-SX-114

    SciTech Connect (OSTI)

    Ogden, D.M., Westinghouse Hanford

    1996-12-16

    This report examines two tanks on the list of Single-Shell Tanks with high heat loads. This report assesses the maximum temperatures that might exist in the two tanks 241-SX-108 and 241-SX-114. In addition to assessing current conditions in the tanks, the effect of the drying out of the center of the tank on the maximum temperature in the waste and concrete was evaluated. A reassessment of the head loads was also done using more recent temperature and psychrometric data obtained from these two tanks.

  9. Thermal studies in a geothermal area: Report I. Thermal studies at Roosevelt Hot Springs, Utah; Report II. Heat flow above an arbitrarily dipping plane of heat sources; and Report III. A datum correction for heat flow measurements made on an arbitrary surface

    SciTech Connect (OSTI)

    Wilson, W.R.; Chapman, D.S.

    1980-10-01

    Separate abstracts were prepared for the three reports included in this volume on the interpretation of heat flow data in a geothermal area. (MHR)

  10. Dawdon Mine Water Heat Pump Trial

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    14-Dec-12 Dawdon Mine Water Heat Pump Trial #12;14 December 2012 2 Potential for Mine Water sourced heating Dawdon heat pump trial A demonstration project Contents #12;Friday, 14 December 2012 3 The UK salinity High Iron (removed by lime treatment) Offices , 8 rooms #12;Dawdon heat pump Warm mine water

  11. Specifying Waste Heat Boilers 

    E-Print Network [OSTI]

    Ganapathy, V.

    1992-01-01

    HEAT BOILERS V.Ganapathy.ABCO Industries Abilene,Texas ABSTRACT Waste heat boilers or Heat Recovery Steam 'Generators(HRSGs) as they are often called are used to recover energy from waste gas streams in chemical plants, refineries... stream_source_info ESL-IE-92-04-42.pdf.txt stream_content_type text/plain stream_size 11937 Content-Encoding ISO-8859-1 stream_name ESL-IE-92-04-42.pdf.txt Content-Type text/plain; charset=ISO-8859-1 SPECIFYING WASTE...

  12. Stable isotopes are a powerful way to describe and quantify trophic relationships in aquatic systems. Evaluating the ratios of carbon and nitrogen isotopes of consumers

    E-Print Network [OSTI]

    Lawrence, Deborah

    production in the Virginia Coast Reserve. #12;iii Results indicate that hydrogen isotope ratios can improve is not yet predictable. The application of hydrogen isotopes to marine food web studies warrants further and higher trophic levels. However, this method is only feasible when sources have distinct combinations

  13. Emissivity Tuned Emitter for RTPV Power Sources

    SciTech Connect (OSTI)

    Carl M. Stoots; Robert C. O'Brien; Troy M. Howe

    2012-03-01

    Every mission launched by NASA to the outer planets has produced unexpected results. The Voyager I and II, Galileo, and Cassini missions produced images and collected scientific data that totally revolutionized our understanding of the solar system and the formation of the planetary systems. These missions were enabled by the use of nuclear power. Because of the distances from the Sun, electrical power was produced using the radioactive decay of a plutonium isotope. Radioisotopic Thermoelectric Generators (RTGs) used in the past and currently used Multi-Mission RTGs (MMRTGs) provide power for space missions. Unfortunately, RTGs rely on thermocouples to convert heat to electricity and are inherently inefficient ({approx} 3-7% thermal to electric efficiency). A Radioisotope Thermal Photovoltaic (RTPV) power source has the potential to reduce the specific mass of the onboard power supply by increasing the efficiency of thermal to electric conversion. In an RTPV, a radioisotope heats an emitter, which emits light to a photovoltaic (PV) cell, which converts the light into electricity. Developing an emitter tuned to the desired wavelength of the photovoltaic is a key part in increasing overall performance. Researchers at the NASA Glenn Research Center (GRC) have built a Thermal Photovoltaic (TPV) system, that utilizes a simulated General Purpose Heat Source (GPHS) from a MMRTG to heat a tantalum emitter. The GPHS is a block of graphite roughly 10 cm by 10 cm by 5 cm. A fully loaded GPHS produces 250 w of thermal power and weighs 1.6 kgs. The GRC system relies on the GPHS unit radiating at 1200 K to a tantalum emitter that, in turn, radiates light to a GaInAs photo-voltaic cell. The GRC claims system efficiency of conversion of 15%. The specific mass is around 167 kg/kWe. A RTPV power source that utilized a ceramic or ceramic-metal (cermet) matrix would allow for the combination of the heat source, canister, and emitter into one compact unit, and allow variation in size and shape to optimize temperature and emission spectra.

  14. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  15. Absorptive Recycle of Distillation Waste Heat 

    E-Print Network [OSTI]

    Erickson, D. C.; Lutz, E. J., Jr.

    1982-01-01

    condenser operates above ambient temperature, the rejected heat also contains unused availability. By incorporating an absorption heat pump (AHP) into the distillation process, these sources of unused availability can be tapped so as to recycle (and hence...

  16. Optimized Control Of Steam Heating Coils 

    E-Print Network [OSTI]

    Ali, Mir Muddassir

    2012-02-14

    Steam has been widely used as the source of heating in commercial buildings and industries throughout the twentieth century. Even though contemporary designers have moved to hot water as the primary choice for heating, a large number of facilities...

  17. Heat Pump System Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    pumps can provide up to four times the amount of energy they consume. Air-Source Heat Pump Transfers heat between the inside of a building and the outside air. Ductless...

  18. An Introduction to Waste Heat Recovery 

    E-Print Network [OSTI]

    Darby, D. F.

    1985-01-01

    The recovery of waste heat energy is one element of a complete energy conservation plan. In addition to contributing to the goal of saving energy, utilization of waste heat is also an important source of cost savings. This presentation details...

  19. Evaluation of Analytical and Numerical Techniques for Defining the Radius of Influence for an Open-Loop Ground Source Heat Pump System

    SciTech Connect (OSTI)

    Freedman, Vicky L.; Mackley, Rob D.; Waichler, Scott R.; Horner, Jacob A.

    2013-09-26

    In an open-loop groundwater heat pump (GHP) system, groundwater is extracted, run through a heat exchanger, and injected back into the ground, resulting in no mass balance changes to the flow system. Although the groundwater use is non-consumptive, the withdrawal and injection of groundwater may cause negative hydraulic and thermal impacts to the flow system. Because GHP is a relatively new technology and regulatory guidelines for determining environmental impacts for GHPs may not exist, consumptive use metrics may need to be used for permit applications. For consumptive use permits, a radius of influence is often used, which is defined as the radius beyond which hydraulic impacts to the system are considered negligible. In this paper, the hydraulic radius of influence concept was examined using analytical and numerical methods for a non-consumptive GHP system in southeastern Washington State. At this location, the primary hydraulic concerns were impacts to nearby contaminant plumes and a water supply well field. The results of this study showed that the analytical techniques with idealized radial flow were generally unsuited because they over predicted the influence of the well system. The numerical techniques yielded more reasonable results because they could account for aquifer heterogeneities and flow boundaries. In particular, the use of a capture zone analysis was identified as the best method for determining potential changes in current contaminant plume trajectories. The capture zone analysis is a more quantitative and reliable tool for determining the radius of influence with a greater accuracy and better insight for a non-consumptive GHP assessment.

  20. Coal home heating and environmental tobacco smoke in relation to lower respiratory illness in Czech children, from birth to 3 years of age

    E-Print Network [OSTI]

    2006-01-01

    coal home heating with all other heating sources. Directhomes were heated primarily by distant heating (heat from a remote sourcesources conducted in Teplice and Prachatice in the early 1990s showed that home heating

  1. Method for separating boron isotopes

    DOE Patents [OSTI]

    Rockwood, Stephen D. (Los Alamos, NM)

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  2. Lighting system with heat distribution face plate

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

    2013-09-10

    Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

  3. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    SciTech Connect (OSTI)

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  4. Isotop kl. B Supportlab.

    E-Print Network [OSTI]

    Isotop kl. B lab. Nærlager Supportlab. Supportlab. Supportlab. Lab. GMO1/BSL2 Supportlab. Supportlab. Supportlab. Supportlab. Lab. GMO1/BSL2 Vareindlevering post/frost Kontor Sofastue / Thekøkken. GMO1/BSL2 Supportlab. �velseslab, eksist. �velseslab, eksist. Forberedelseslab. Rum, køl/ centrifuge

  5. Exploring the isopycnal mixing and helium-heat paradoxes in a suite of Earth System Models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gnanadesikan, A.; Abernathey, R.; Pradal, M.-A.

    2014-11-20

    This paper uses a suite of Earth System models which simulate the distribution of He isotopes and radiocarbon to examine two paradoxes in Earth science. The helium-heat paradox refers to the fact that helium emissions to the deep ocean are far lower than would be expected given the rate of geothermal heating, since both are thought to be the result of radioactive decay in the earth's interior. The isopycnal mixing paradox comes from the fact that many theoretical parameterizations of the isopycnal mixing coefficient ARedi that link it to baroclinic instability project it to be small (of order a fewmore »hundred m2 s?1) in the ocean interior away from boundary currents. However, direct observations using tracers and floats (largely in the upper ocean) suggest that values of this coefficient are an order of magnitude higher. Because helium isotopes equilibrate rapidly with the atmosphere, but radiocarbon equilibrates slowly, it might be thought that resolving the isopycnal mixing paradox in favor of the higher observational estimates of ARedi might also solve the helium paradox. In this paper we show that this is not the case. In a suite of models with different spatially constant and spatially varying values of ARedi the distribution of radiocarbon and helium isotopes is sensitive to the value of ARedi. However, away from strong helium sources in the Southeast Pacific, the relationship between the two is not sensitive, indicating that large-scale advection is the limiting process for removing helium and radiocarbon from the deep ocean. The helium isotopes, in turn, suggest a higher value of ARedi in the deep ocean than is seen in theoretical parameterizations based on baroclinic growth rates. We argue that a key part of resolving the isopycnal mixing paradox is to abandon the idea that ARedi has a direct relationship to local baroclinic instability and to the so called "thickness" mixing coefficient AGM.« less

  6. RESOLUTION OF URANIUM ISOTOPES WITH KINETIC PHOSPHORESCENCE ANALYSIS

    SciTech Connect (OSTI)

    Miley, Sarah M.; Hylden, Anne T.; Friese, Judah I.

    2013-04-01

    This study was conducted to test the ability of the Chemchek™ Kinetic Phosphorescence Analyzer Model KPA-11 with an auto-sampler to resolve the difference in phosphorescent decay rates of several different uranium isotopes, and therefore identify the uranium isotope ratios present in a sample. Kinetic phosphorescence analysis (KPA) is a technique that provides rapid, accurate, and precise determination of uranium concentration in aqueous solutions. Utilizing a pulsed-laser source to excite an aqueous solution of uranium, this technique measures the phosphorescent emission intensity over time to determine the phosphorescence decay profile. The phosphorescence intensity at the onset of decay is proportional to the uranium concentration in the sample. Calibration with uranium standards results in the accurate determination of actual concentration of the sample. Different isotopes of uranium, however, have unique properties which should result in different phosphorescence decay rates seen via KPA. Results show that a KPA is capable of resolving uranium isotopes.

  7. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  8. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  9. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  10. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  11. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 636 580 46 1 Q 114.0...

  12. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  13. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    oxygen demand (COD) and availability of low-grade waste heat sources. The pulp and paper industry and other industries are also potential MHRC users. Project Description This...

  14. Micro heat barrier

    DOE Patents [OSTI]

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  15. A Simplified Procedure for Sizing Vertical Ground Coupled Heat Pump Heat Exchangers for Residences in Texas 

    E-Print Network [OSTI]

    O'Neal, D. L.; Gonzalez, J. A.; Aldred, W.

    1994-01-01

    the simplified method were compared to two available heat exchanger sizing methods: the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA). The simplified method predicted shorter lengths than those from...

  16. Laser isotope separation of erbium and other isotopes

    DOE Patents [OSTI]

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  17. Laser isotope separation of erbium and other isotopes

    DOE Patents [OSTI]

    Haynam, Christopher A. (3035 Ferdale Ct., Pleasanton, CA 94566); Worden, Earl F. (117 Vereda del Ciervo, Diablo, CA 94528)

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  18. Extended Heat Deposition in Hot Jupiters: Application to Ohmic Heating

    E-Print Network [OSTI]

    Ginzburg, Sivan

    2015-01-01

    Many giant exoplanets in close orbits have observed radii which exceed theoretical predictions. One suggested explanation for this discrepancy is heat deposited deep inside the atmospheres of these "hot Jupiters". Here, we study extended power sources which distribute heat from the photosphere to the deep interior of the planet. Our analytical treatment is a generalization of a previous analysis of localized "point sources". We model the deposition profile as a power law in the optical depth and find that planetary cooling and contraction halt when the internal luminosity (i.e. cooling rate) of the planet drops below the heat deposited in the planet's convective region. A slowdown in the evolutionary cooling prior to equilibrium is possible only for sources which do not extend to the planet's center. We estimate the Ohmic dissipation resulting from the interaction between the atmospheric winds and the planet's magnetic field, and apply our analytical model to Ohmically heated planets. Our model can account fo...

  19. On the Nuclear Mechanisms Underlying the Heat Production by the E-Cat

    E-Print Network [OSTI]

    Cook, Norman D

    2015-01-01

    We discuss the isotopic abundances found in the E-Cat reactor with regard to the nuclear mechanisms responsible for excess heat. We argue that a major source of energy is a reaction between the first excited-state of 7Li4 and a proton, followed by the breakdown of 8Be4 into two alphas with high kinetic energy, but without gamma radiation. The unusual property of the 7Li4 isotope that allows this reaction is similar to the property that underlies the Mossbauer effect: the presence of unusually low-lying excited states in stable, odd-Z and/or odd-N nuclei. We use the lattice version of the independent-particle model (IPM) of nuclear theory to show how the geometrical structure of isotopes indicate nuclear reactions that are not predicted in the conventional version of the IPM. Finally, we speculate on similar mechanisms that may be involved in other low-energy nuclear reactions (LENR).

  20. Phase Change Heat Transfer Device for Process Heat Applications

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2010-10-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to approx.1300 K) and industrial scale power transport (=50MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  1. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MacArthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  2. Laboratory Heat Recovery System 

    E-Print Network [OSTI]

    Burrows, D. B.; Mendez, F. J.

    1981-01-01

    that they will be considerable. The system has been in successful operation since October 1979. 724 ESL-IE-81-04-123 Proceedings from the Third Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 Conoco R&D West The award-winning laboratory heat-recovery... stream_source_info ESL-IE-81-04-123.pdf.txt stream_content_type text/plain stream_size 11112 Content-Encoding ISO-8859-1 stream_name ESL-IE-81-04-123.pdf.txt Content-Type text/plain; charset=ISO-8859-1 LABORATORY HEAT...

  3. Advancement of isotope separation for the production of reference standards

    SciTech Connect (OSTI)

    Jared Horkley; Christopher McGrath; Andrew Edwards; Gaven Knighton; Kevin Carney; Jacob Davies; James Sommers; Jeffrey Giglio

    2012-03-01

    Idaho National Laboratory (INL) operates a mass separator that is currently producing high purity isotopes for use as internal standards for high precision isotope dilution mass spectrometry (IDMS). In 2008, INL began the revival of the vintage 1970’s era instrument. Advancements thus far include the successful upgrading and development of system components such as the vacuum system, power supplies, ion-producing components, and beam detection equipment. Progress has been made in the separation and collection of isotopic species including those of Ar, Kr, Xe, Sr, and Ba. Particular focuses on ion source improvements and developments have proven successful with demonstrated output beam currents of over 10 micro-amps 138Ba and 350nA 134Ba from a natural abundance source charge (approximately 2.4 percent 134Ba). In order to increase production and collection of relatively high quantities (mg levels) of pure isotopes, several advancements have been made in ion source designs, source material introduction, and beam detection and collection. These advancements and future developments will be presented.

  4. METALLICITY-DEPENDENT GALACTIC ISOTOPIC DECOMPOSITION FOR NUCLEOSYNTHESIS

    SciTech Connect (OSTI)

    West, Christopher; Heger, Alexander, E-mail: west0482@umn.edu, E-mail: alexander.heger@monash.edu [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2013-09-01

    All stellar evolution models for nucleosynthesis require an initial isotopic abundance set to use as a starting point. Generally, our knowledge of isotopic abundances of stars is fairly incomplete except for the Sun. We present a first model for a complete average isotopic decomposition as a function of metallicity. Our model is based on the underlying nuclear astrophysics processes, and is fitted to observational data, rather than traditional forward galactic chemical evolution modeling which integrates stellar yields beginning from big bang nucleosynthesis. We first decompose the isotopic solar abundance pattern into contributions from astrophysical sources. Each contribution is then assumed to scale as a function of metallicity. The resulting total isotopic abundances are summed into elemental abundances and fitted to available halo and disk stellar data to constrain the model's free parameter values. This procedure allows us to use available elemental observational data to reconstruct and constrain both the much needed complete isotopic evolution that is not accessible to current observations, and the underlying astrophysical processes. As an example, our model finds a best fit for Type Ia contributing {approx_equal} 0.7 to the solar Fe abundance, and Type Ia onset occurring at [Fe/H] {approx_equal} -1.1, in agreement with typical values.

  5. Isotopically labeled compositions and method

    DOE Patents [OSTI]

    Schmidt, Jurgen G. (Los Alamos, NM); Kimball, David B. (Los Alamos, NM); Alvarez, Marc A. (Santa Fe, NM); Williams, Robert F. (Los Alamos, NM); Martinez, Rudolfo A. (Santa Fe, NM)

    2011-07-12

    Compounds having stable isotopes .sup.13C and/or .sup.2H were synthesized from precursor compositions having solid phase supports or affinity tags.

  6. Forensic Applications of Light-Element Stable Isotope Ratios of Ricinus communis Seeds and Ricin Preparations

    SciTech Connect (OSTI)

    Kreuzer, Helen W.; West, Jason B.; Ehleringer, James

    2013-01-01

    Seeds of the castor plant Ricinus communis, also known as castor beans, are of forensic interest because they are the source of the poison ricin. We have tested whether stable isotope ratios of castor seeds and ricin prepared by various methods can be used as a forensic signature. We collected over 300 castor seed samples from locations around the world and measured the C, N, O, and H stable isotope ratios of the whole seeds, oil, and three types of ricin preparations. Our results demonstrate that N isotope ratios can be used to correlate ricin prepared by any of these methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pair-wise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.

  7. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  8. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  9. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  10. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1991-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  11. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, R.J.; Cecchi, J.L.

    1991-08-20

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  12. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1990-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  13. Human Health Science Building Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Project objectives: Construct a ground sourced heat pump, heating, ventilation, and air conditioning system for the new Oakland University Human Health Sciences Building utilizing variable refrigerant flow (VRF) heat pumps. A pair of dedicated outdoor air supply units will utilize a thermally regenerated desiccant dehumidification section. A large solar thermal system along with a natural gas backup boiler will provide the thermal regeneration energy.

  14. Waste Heat Recapture from Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  15. GEOTHERMAL HEAT PUMPS Jack DiEnna

    E-Print Network [OSTI]

    GEOTHERMAL HEAT PUMPS THE "PLAYBOOK" Jack DiEnna Executive Director The Geothermal National What do we call it... Geothermal, Ground Source, GeoExchange. The feds call it geothermal heat pumps IS GEOTHERMAL HEAT PUMP TECHNOLOGY ??? Answer: It is a 60 year old technology! #12;FACT GHP's were first written

  16. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T.T.; Keller, J.O.

    1987-07-10

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  17. RADIOCHEMICAL STUDIES OF NEUTRON DEFICIENT ACTINIDE ISOTOPES

    E-Print Network [OSTI]

    Williams, Kimberly Eve

    2011-01-01

    Isotope Targets and Foils, AERE-R 5097, Paper 10 (1965). V.Isotope Targets and Foils, AERE-R 5097 Paper 12 (1965). K.M.Isotope Targets and Foils, AERE-R-5097 Paper 11 (1965). M.

  18. Advanced isotope separation

    SciTech Connect (OSTI)

    Not Available

    1982-05-04

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems.

  19. IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER

    E-Print Network [OSTI]

    ............................................................................................. 22 2.3. Implementing the Geothermal Systems in Energy............................................................................................... 23 2.3.2. Multi-year Simulation................................................................. 30

  20. Micro thrust and heat generator

    DOE Patents [OSTI]

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  1. Method and apparatus for fuel gas moisturization and heating

    DOE Patents [OSTI]

    Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  2. The marine biogeochemistry of zinc isotopes

    E-Print Network [OSTI]

    John, Seth G

    2007-01-01

    Zinc (Zn) stable isotopes can record information about important oceanographic processes. This thesis presents data on Zn isotopes in anthropogenic materials, hydrothermal fluids and minerals, cultured marine phytoplankton, ...

  3. Innovative lasers for uranium isotope separation. Progress report for the period September 1, 1989--May 31, 1990

    SciTech Connect (OSTI)

    Brake, M.L.; Gilgenbach, R.M.

    1990-06-01

    Copper vapor lasers have important applications to uranium atomic vapor laser isotope separation (AVLIS). The authors have spent the first year of the project investigating two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave and (2) electron beam excitation/pumping of large-volume copper vapor lasers. During the first year, the experiments have been designed and constructed and initial data has been taken. Highlights of some of the first year results as well as plans for the future include the following: Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, both pulsed (5 kW, 5kHz) and CW (0--500 Watts) have been investigated using heated copper chloride as the copper source. The visible emitted light has been observed and intense lines at 510.6 nm and 578.2 nm have been observed. Initial measurements of the electric field strengths have been taken with probes, the plasma volume has been measured with optical techniques, and the power has been measured with power meters. A self-consistent electromagnetic model of the cavity/plasma system which uses the above data as input shows that the copper plasma has skin depths around 100 cm, densities around 10{sup 12} {number_sign}/cc, collisional frequencies around 10{sup 11}/sec., conductivities around 0.15 (Ohm-meter){sup {minus}1}. A simple model of the heat transfer predicts temperatures of {approximately}900 K. All of these parameters indicate that microwave discharges may be well suited as a pump source for copper lasers. These preliminary studies will be continued during the second year with additional diagnostics added to the system to verify the model results. Chemical kinetics of the system will also be added to the model.

  4. Isotope Research 229 Th production

    E-Print Network [OSTI]

    Isotope Research ­ 229 Th production We recently completed an ARRA-funded project of this type on 229 Th production reactions [Str11]. This long-lived isotope is important as a precursor to 225 Ac of accelerator production of 229 Th via the 230 Th(p,2n)229 Pa reaction. The 229 Pa decays primarily by electron

  5. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  6. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  7. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  8. Ground Source Heat Pump System Data Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    measurements, continuous performance monitoring of associated GSHP systems, and analysis aided by calibrated models - Collection and analysis of available data based on...

  9. Residential Air-Source Heat Pump Program

    Broader source: Energy.gov [DOE]

    Note: Beginning January 1, 2016, rebates will be reduced to $625 per single-head system and $625 per 12,000 BTU/hr for multi-head systems, with a maximum rebate of $2,500.

  10. Residential Ground-Source Heat Pump Program

    Broader source: Energy.gov [DOE]

    Project sites must be located in a utility territory that contributes to the Renewable Energy Trust Fund (National Grid, Eversource, Unitil, and municipal light plants that have agreed to pay int...

  11. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar JumpInformation Crump's Hot Springs Area1978)

  12. Mass measurements of neutron rich isotopes in the Fe region and electron capture processes in neutron star crusts

    SciTech Connect (OSTI)

    Estrade, Alfredo [National Superconducting Cyclotron Laboratory (NSCL); Matos, M. [Louisiana State University; Schatz, Hendrik [Michigan State University, East Lansing; Amthor, A. M. [National Superconducting Cyclotron Laboratory (NSCL); Beard, Mary [University of Notre Dame, IN; Brown, Edward [Michigan State University, East Lansing; Bazin, D. [National Superconducting Cyclotron Laboratory (NSCL); Becerril, A. [National Superconducting Cyclotron Laboratory (NSCL); Elliot, T [National Superconducting Cyclotron Laboratory (NSCL); Gade, A. [National Superconducting Cyclotron Laboratory (NSCL); Galaviz, D. [National Superconducting Cyclotron Laboratory (NSCL); Gupta, Sanjib [Indian Institute of Technology, Kanpur; Hix, William Raphael [ORNL; Lau, Rita [National Superconducting Cyclotron Laboratory (NSCL); Moeller, Peter [Los Alamos National Laboratory (LANL); Pereira, J. [National Superconducting Cyclotron Laboratory (NSCL); Portillo, M. [National Superconducting Cyclotron Laboratory (NSCL); Rogers, A. M. [National Superconducting Cyclotron Laboratory (NSCL); Shapira, Dan [ORNL; Smith, E. [Ohio State University; Stolz, A. [Michigan State University, East Lansing; Wallace, M. [Los Alamos National Laboratory (LANL); Wiescher, Michael [University of Notre Dame, IN

    2010-01-01

    Experimental knowledge of nuclear masses of exotic nuclei is important for understanding nu- clear structure far from the valley of -stability, and as a direct input into astrophysical models. Electron capture processes in the crust of accreting neutron stars have been proposed as a heat source that can affect the thermal structure of the star. Nuclear masses of very neutron-rich nu- clides are necessary inputs to model the electron capture process. The time-of-flight (TOF) mass measurement technique allows measurements on very short-lived nuclei. It has been effectively applied using the fast fragment beams produced at the National Superconducting Cyclotron Lab (NSCL) to reach masses very far from stability. Measurements were performed for neutron-rich isotopes in the region of the N=32 and N=40 subshells, which coincides with the mass range of carbon superburst ashes. We discuss reaction network calculations performed to investigate the impact of our new measurements and to compare the effect of using different global mass models in the calculations. It is observed that the process is sensitive to the differences in the odd-even mass staggering predicted by the mass models, and our new result for 66Mn has a significant impact on the distribution of heat sources in the crust.

  13. Upgrading scientific capabilities at the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    West, C.D.; Farrar, M.B.

    1997-07-14

    Following termination of the Advanced Neutron Source (ANS) Project, a program of upgrades to the Department of Energy`s High Flux Isotope Reactor (HFIR) was devised by a team of researchers and reactor operators and has been proposed to the department. HFIR is a multipurpose research reactor, commissioned in 1965, with missions in four nationally important areas: isotope production, especially transuranic isotopes; neutron scattering; neutron activation analysis; and irradiation testing of materials. For neutron scattering, there are two major enhancements and several smaller ones. The first is the installation of a small, hydrogen cold neutron source in one of the four existing beam tubes: because of the high reactor power, and the use of new design concepts developed for ANS, the cold source will be as bright as, or brighter than, the Institute Laue Langevin liquid deuterium vertical cold source, although space limitations mean that there will be far fewer cold beams and instruments at HFIR. This project is underway, and the cold source is expected to come on line following an extended shutdown in 1999 to replace the reactor`s beryllium reflector. The second major change proposed would put five thermal neutron guides at an existing beam port and construct a new guide hall to accommodate instruments on these very intense beams.

  14. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems

    Broader source: Energy.gov [DOE]

    This project will improve the capability of engineers to design heat pump systems that utilize surface water or standing column wells (SCW) as their heat sources and sinks.

  15. Helium Isotopes In Geothermal And Volcanic Gases Of The Western...

    Open Energy Info (EERE)

    be qualitative criteria for the absence of a magmatic heat source. To first order, He(CO2 + H2S) ratios are inversely correlated with 3He4He and are consistent with a...

  16. Identifying Sources of Nitrogen to Hanalei Bay, Kauai, Utilizing the

    E-Print Network [OSTI]

    Paytan, Adina

    Identifying Sources of Nitrogen to Hanalei Bay, Kauai, Utilizing the Nitrogen Isotope Signature, Menlo Park, California 94025, and P.O. Box 681, Kilauea, Hawaii 96754 Sewage effluent, storm runoff of land derived nutrients into Hanalei Bay, Kauai. We determined the nitrogen isotopic signatures (15N

  17. ABSORPTION HEAT PUMP IN THE DISTRICT HEATING

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation of the DH plant Imanta · Selection of the heat pump/chiller · Operation of the heat pump/chiller · Summary

  18. Apparatus and process for separating hydrogen isotopes

    DOE Patents [OSTI]

    Heung, Leung K; Sessions, Henry T; Xiao, Xin

    2013-06-25

    The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.

  19. Compelling Research Opportunities using Isotopes

    SciTech Connect (OSTI)

    2009-04-23

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.

  20. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOE Patents [OSTI]

    Harney, Robert C. (5665 Charlotte Way, No. 80, Livermore, CA 94550); Bloom, Stewart D. (141 Via Serena, Alamo, CA 94507)

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  1. Opportunistic Sensing for Smart Heating Control in Private Households

    E-Print Network [OSTI]

    devices. Since heating represents the major source of energy consumption in do- mestic environments in the home, our solution may significantly lower the adoption barrier of smart heating solutions. 1.1 Background Traditional heating control systems use preset time intervals to avoid heating the home when its

  2. Novel hybrid isotope separation scheme and apparatus

    DOE Patents [OSTI]

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means. 3 figures.

  3. Physics with isotopically controlled semiconductors

    SciTech Connect (OSTI)

    Haller, E. E., E-mail: eehaller@lbl.gov [University of California at Berkeley, Department of Materials Science and Engineering (United States)

    2010-07-15

    This paper is based on a tutorial presentation at the International Conference on Defects in Semiconductors (ICDS-25) held in Saint Petersburg, Russia in July 2009. The tutorial focused on a review of recent research involving isotopically controlled semiconductors. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, is the most prominent effect for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples.

  4. Microwave ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  5. Heat Transport in Groundwater Systems--Laboratory Model 

    E-Print Network [OSTI]

    Reed, D. B.; Reddell, D. L.

    1980-01-01

    Solar energy is a possible alternate energy source for space heating. A method of economic long term solar energy storage is needed. Researchers have proposed storing solar energy by heating water using solar collectors and injecting the hot water...

  6. Red River Valley REA- Heat Pump Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

  7. Heat Transport in Groundwater Systems--Finite Element Model 

    E-Print Network [OSTI]

    Grubaugh, E. K.; Reddell, D. L.

    1980-01-01

    Solar energy is a promising alternate energy source for space heating. A method of economic long term solar energy storage is needed. Researchers have proposed storing solar energy by injecting hot water heated using solar collectors...

  8. Isotope powered Stirling generator for terrestrial applications

    SciTech Connect (OSTI)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

  9. Thermal Neutron Capture Cross Sections of the Palladium Isotopes

    E-Print Network [OSTI]

    2006-01-01

    CROSS SECTIONS OF THE PALLADIUM ISOTOPES R.B. Firestone ? ,? ? for all stable Palladium isotopes with the guidedscheme is complete. The Palladium isotope decay schemes are

  10. Isotope production facility produces cancer-fighting actinium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major...

  11. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T. Tazwell (Livermore, CA); Keller, Jay O. (Oakland, CA)

    1989-01-01

    A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.

  12. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  13. NOTES AND DISCUSSIONS Note on thermal heating efficiency

    E-Print Network [OSTI]

    Rodriguez, Carlos

    DERIVATION We have a source of heat Q2 which is available at Kelvin temperature T2 . By this we mean, as was stressed long ago by Gibbs,4 that the source is capable of delivering that heat to a heat reservoir which. This is the conversion problem faced in every home, where one has heat from a gas, oil, wood, or coal flame but wants

  14. Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

  15. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ living --- HEATERâ??ACTIVE --- ACTIVATINGâ??HEATER --- HEATERâ??RUNNING ; #12; APPENDIX A. HEATING SYSTEM SPECIFICATION

  16. Intensive neutrino source on the base of lithium converter

    E-Print Network [OSTI]

    V. I. Lyashuk; Yu. S Lutostansky

    2015-04-13

    An intensive antineutrino source with a hard spectrum (with energy up to 13 MeV, average energy 6.5 MeV) can be realized on the base of beta-decay of short living isotope 8Li (0.84 s). The 8Li isotope (generated in activation of 7Li isotope) is a prime perspective antineutrino source owing to the hard antineutrino spectrum and square dependence of cross section on the energy. Up today nuclear reactors are the most intensive neutrino sources. Antineutrino reactor spectra have large uncertainties in the summary antineutrino spectrum at energy E>6 MeV. Use of 8Li isotope allows to decrease sharply the uncertainties or to exclude it completely. An intensive neutron fluxes are requested for rapid generation of 8Li isotope. The installations on the base of nuclear reactors can be an alternative for nuclear reactors as traditional neutron sources. It is possible creation of neutrino sources another in principle: on the base of tandem of accelerators, neutron generating targets and lithium converter. An intensive neutron flux (i.e., powerful neutron source) is requested for realization of considered neutrino sources (neutrino factories). Different realizations of lithium antineutrino sources (lithium converter on the base of high purified 7Li isotope) are discussed: static regime (i.e., without transport of 8Li isotope to the neutrino detector); dynamic regime (transport of 8Li isotope to the remote detector in a closed cycle); an operation of lithium converter in tandem of accelerator with a neutron-producing target on the base of tungsten, lead or bismuth. Different chemical compounds of lithium (as the substance of the converter) are considered. Heavy water solution of LiOD is proposed as a serious alternative to high-pure 7Li in a metallic state.

  17. A Review of Ground Coupled Heat Pump Models Used in Whole-Building Computer Simulation Programs 

    E-Print Network [OSTI]

    Do, S. L.; Haberl, J. S.

    2010-01-01

    Increasingly, building owners are turning to ground source heat pump (GSHP) systems to improve energy efficiency. Ground-coupled heat pump (GCHP) systems with a vertical closed ground loop heat exchanger are one of the more widely used systems. Over...

  18. Parallel-plate heat pipe apparatus having a shaped wick structure

    DOE Patents [OSTI]

    Rightley, Michael J.; Adkins, Douglas R.; Mulhall, James J.; Robino, Charles V.; Reece, Mark; Smith, Paul M.; Tigges, Chris P.

    2004-12-07

    A parallel-plate heat pipe is disclosed that utilizes a plurality of evaporator regions at locations where heat sources (e.g. semiconductor chips) are to be provided. A plurality of curvilinear capillary grooves are formed on one or both major inner surfaces of the heat pipe to provide an independent flow of a liquid working fluid to the evaporator regions to optimize heat removal from different-size heat sources and to mitigate the possibility of heat-source shadowing. The parallel-plate heat pipe has applications for heat removal from high-density microelectronics and laptop computers.

  19. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    SciTech Connect (OSTI)

    Skupinski, R.C.; Tower, L.K.; Madi, F.J.; Brusk, K.D.

    1993-04-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  20. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§

    2012-02-24

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ?375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?Sr SW = +13.8 to +41.6, where ?Sr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  1. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    The Small Particle Heat Exchange Receiver (SPHER) for Solarof the small particle heat exchange receiver (or SPHER), asabsorption process, the heat exchange to the gas, the choice

  2. Use of oxide decompositions in advanced thermochemical hydrogen cycles for solar heat sources. Experimental results on the low-temperature reactions for the tricobalt tetraoxide-cobalt monoxide pair

    SciTech Connect (OSTI)

    Jones, W.M.; Bowman, M.G.

    1982-01-01

    The concept of utilizing oxide decompositions in advanced thermochemical hydrogen cycles for solar heat sources is introduced. It has particular interest in allowing direct transmission of energy to the process through an air window. A cycle for the Co/sub 3/O/sub 4/-CoO pair would be, schematically: (1) Co/sub 3/O/sub 4/ = 3CoO + 1/2 O/sub 2/; (2) I/sub 2/(s,1) + Mg(OH)/sub 2/ + 3CoO = MgI/sub 2/(aq) + Co/sub 3/O/sub 4/ + H/sub 2/O(1); (3) H/sub 2/O + MgI/sub 2/(aq) = MgO + 2HI; (4) 2 HI = H/sub 2/ + I/sub 2/; (5) MgO + H/sub 2/O = Mg(OH)/sub 2/. Reaction (2) should give a high concentration of MgI/sub 2/ that would be favorable for (3). The solutions would also contain iodine dissolved as polyiodide, partly offsetting this advantage. Preliminary results indicate that reaction (2) is slow at 150/sup 0/C. It is surmised that the mechanism of (2) consists of the iodine disproportionation reaction (6), followed by reaction (7). (6) I/sub 2/(s,1) + Mg(OH)/sub 2/ = 5/6 MgI/sub 2/(aq) + 1/6 Mg(IO/sub 3/)/sub 2/(aq) + H/sub 2/O(1); (7) 1/6 Mg(IO/sub 3/)/sub 2/(aq) + 3 CoO = 1/6 MgI/sub 2/(aq) + Co/sub 3/O/sub 4/. Other workers have found (6) to be relatively fast and with a good yield at 150/sup 0/C. We have found the independently studied reaction (7) to be sufficiently slow at 150/sup 0/C to account for the slowness of (2). The yield of (7) was found to be proportional to the square root of the time, which suggests that iodate must diffuse through an adherent, accumulating Co/sub 3/O/sub 4/ layer. Since (7) is much faster when Mg(IO/sub 3/)/sub 2/ is replaced by KIO/sub 3/, the Mg/sup 2 +/ ion may catalyze formation of an adherent Co/sub 3/O/sub 4/ spinel layer. The reactivity of CoO in the KIO/sub 3/ analog of (7) is greatly decreased by exposure to high temperature.

  3. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  4. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  5. Radiation source

    DOE Patents [OSTI]

    Thode, Lester E. (Los Alamos, NM)

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.

  6. Industrial Heat Recovery - 1982 

    E-Print Network [OSTI]

    Csathy, D.

    1982-01-01

    Industrial Research HTFS Re search Programme HTFS/1S/R19, "Dryout and Flow in Horizontal and Horizontal Hairpin Tubes". 6 l\\rnerican Boiler I1anufacturers Assoc iation, "Lexicon, Boiler & Auxiliary Eauinment", 7 G:t=iffith P., book of I:eat senow N... RECOVERY - 1982 by Denis Csathy, Deltak Corn,oration, !1inneapolis, 11N Two years ago I summarized 20 years of ex perience on Industrial Heat Recovery for the Energy-source Technology Conference and Exhibition held in New Orleans, Louisiana. l...

  7. Greenhouse Heating Checklist1 R. A. Bucklin, P. H. Jones, B. A. Barmby, D. B. McConnell, and R. W. Henley2

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    CIR791 Greenhouse Heating Checklist1 R. A. Bucklin, P. H. Jones, B. A. Barmby, D. B. Mc/IFAS Extension. Effective and economical greenhouse heating is the union of an appropriate heat source and an efficient heat distribu- tion system. The best greenhouse heat source in the world is useless if the heat

  8. Tips: Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air, water, or ground outside your home and concentrate it for use inside. Geothermal (or ground source) heat pumps have some major advantages. They can reduce energy use by...

  9. Novel Concept of the Magmatic Heat Extraction

    E-Print Network [OSTI]

    Labinov, Mark

    2015-01-01

    Enhanced Geothermal Systems are the primary sources of interest nowadays. The paper presents a novel concept for the extraction of the magmatic heat directly from the magma chamber by utilizing the thermodynamic Retrograde Condensation curve.

  10. Hollow electrode plasma excitation source

    DOE Patents [OSTI]

    Ballou, Nathan E. (West Richland, WA)

    1992-01-01

    A plasma source incorporates a furnace as a hollow anode, while a coaxial cathode is disposed therewithin. The source is located in a housing provided with an ionizable gas such that a glow discharge is produced between anode and cathode. Radiation or ionic emission from the glow discharge characterizes a sample placed within the furnace and heated to elevated temperatures.

  11. Hollow electrode plasma excitation source

    DOE Patents [OSTI]

    Ballou, N.E.

    1992-04-14

    A plasma source incorporates a furnace as a hollow anode, while a coaxial cathode is disposed therewithin. The source is located in a housing provided with an ionizable gas such that a glow discharge is produced between anode and cathode. Radiation or ionic emission from the glow discharge characterizes a sample placed within the furnace and heated to elevated temperatures. 5 figs.

  12. District Wide Geothermal Heating Conversion Blaine County School...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will impact the geothermal energy development market by showing that ground source heat pump systems using production and re-injection wells has the lowest total cost of...

  13. Guide to Using Combined Heat and Power for Enhancing Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 3. CHP Basics and Benefits CHP, also known as cogeneration, is the simultaneous production of electricity and heat from a single fuel source, such as natural gas,...

  14. Heat transfer and heat exchangers reference handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-15

    The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

  15. Diffusion in silicon isotope heterostructures

    SciTech Connect (OSTI)

    Silvestri, Hughes Howland

    2004-05-14

    The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and {sup 28}Si enriched layers, enables the observation of {sup 30}Si self-diffusion from the natural layers into the {sup 28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly positively charged P species. Additionally, the temperature dependence of the diffusion coefficient of Si in Ge was measured over the temperature range of 550 C to 900 C using a buried Si layer in an epitaxially grown Ge layer.

  16. A ROBUST ABSOLUTE DETECTION EFFICIENCY CALIBRATION METHOD UTILIZING BETA/GAMMA COINCIDENCE SIGNATURES AND ISOTOPICALLY PURIFIED NEUTRON ACTIVATED RADIOXENON ISOTOPES

    SciTech Connect (OSTI)

    McIntyre, Justin I.; Cooper, Matthew W.; Ely, James H.; Haas, Derek A.; Schrom, Brian T.

    2012-09-21

    Efforts to calibrate the absolute efficiency of gas cell radiations detectors have utilized a number of methodologies which allow adequate calibration but are time consuming and prone to a host of difficult-to-determine uncertainties. A method that extrapolates the total source strength from the measured beta and gamma gated beta coincidence signal was developed in the 1960’s and 1970’s. It has become clear that it is possible to achieve more consistent results across a range of isotopes and a range of activities using this method. Even more compelling is the ease with which this process can be used on routine samples to determine the total activity present in the detector. Additionally, recent advances in the generation of isotopically pure radioxenon samples of Xe-131m, Xe-133, and Xe-135 have allowed these measurement techniques to achieve much better results than would have been possible before when using mixed isotopic radioxenon source. This paper will discuss the beta/gamma absolute detection efficiency technique that utilizes several of the beta-gamma decay signatures to more precisely determine the beta and gamma efficiencies. It will than compare these results with other methods using pure sources of Xe-133, Xe-131m, and Xe-135 and a Xe-133/Xe-133m mix.

  17. Characterizing the Oxygen Isotopic Composition of Phosphate Sources

    E-Print Network [OSTI]

    Paytan, Adina

    phosphorite ore, particulate aerosols, detergents, leachates of vegetation, soil, animal feces, and wastewater treatment plant effluent. We found a considerable range of 18 Op values (from +8.4 to +24.9) for the various to the phosphorus (P) in phosphate (PO4) (4-7). The primary goal of this study is to characterize the oxygen

  18. Oxygen and hydrogen isotopes in thermal waters at Zunil, Guatemala

    SciTech Connect (OSTI)

    Fournier, R.O.; Hanshaw, B.B.; Urrutia Sole, J.F.

    1982-10-01

    Enthalpy-chloride relations suggest that a deep reservoir exists at Zunil with a temperature near 300/sup 0/C. Water from that reservoir moves to shallower and cooler local reservoirs, where it mixes with diluted water and then attains a new water-rock chemical equilibrium. This mixed water, in turn, generally is further diluted before being discharged from thermal springs. The stable-isotopic composition of the thermal water indicates that recharge for the deep water at Zunil comes mainly from local sources. The presence of measurable tritium, which suggests that the deep water has been underground about 20 to 30 years, also indicates a local source for the recharge.

  19. AVLIS enrichment of medical isotopes

    SciTech Connect (OSTI)

    Haynam, C.A.; Scheibner, K.F.; Stern, R.C.; Worden, E.F.

    1996-12-31

    Under the Sponsorship of the United states Enrichment Corporation (USEC), we are currently investigating the large scale separation of several isotopes of medical interest using atomic vapor isotope separation (AVLIS). This work includes analysis and experiments in the enrichment of thallium 203 as a precursor to the production of thallium 201 used in cardiac imaging following heart attacks, on the stripping of strontium 84 from natural strontium as precursor to the production of strontium 89, and on the stripping of lead 210 from lead used in integrated circuits to reduce the number of alpha particle induced logic errors.

  20. Online Catalog of Isotope Products from DOE's National Isotope Development Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. The Isotope subprogram supports the production, and the development of production techniques of radioactive and stable isotopes that are in short supply for research and applications. Isotopes are high-priority commodities of strategic importance for the Nation and are essential for energy, medical, and national security applications and for basic research; a goal of the program is to make critical isotopes more readily available to meet domestic U.S. needs. This subprogram is steward of the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL), the Brookhaven Linear Isotope Producer (BLIP) facility at BNL, and hot cell facilities for processing isotopes at ORNL, BNL and LANL. The subprogram also coordinates and supports isotope production at a suite of university, national laboratory, and commercial accelerator and reactor facilities throughout the Nation to promote a reliable supply of domestic isotopes. The National Isotope Development Center (NIDC) at ORNL coordinates isotope production across the many facilities and manages the business operations of the sale and distribution of isotopes.

  1. Integrated heat pump and heat storage system

    SciTech Connect (OSTI)

    Katz, A.

    1983-09-13

    An integrated heat pump and heat storage system is disclosed comprising a heat pump, a first conduit for supplying return air from an enclosure to the heat pump, a second conduit for supplying heated air from the heat pump to the enclosure, heat storage apparatus. A first damper is operative in a first orientation to permit return air from the enclosure to enter the first conduit and to prevent return air from passing through the heat storage apparatus and operative in a second orientation to cause return air to pass through the heat storage apparatus for being heated thereby before entering the first conduit. A second damper is operative in a first orientation to cause heated air from the second conduit to pass through the heat storage apparatus for giving up a portion of its heat for storage and operative in a second orientation to prevent heated air from the second conduit from passing through the heat storage apparatus and to permit the heated air from the second conduit to reach the enclosure. The heat storage apparatus may comprise phase change materials.

  2. Exploring the isopycnal mixing and helium–heat paradoxes in a suite of Earth system models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gnanadesikan, A.; Pradal, M.-A.; Abernathey, R.

    2015-07-27

    This paper uses a suite of Earth system models which simulate the distribution of He isotopes and radiocarbon to examine two paradoxes in Earth science, each of which results from an inconsistency between theoretically motivated global energy balances and direct observations. The helium–heat paradox refers to the fact that helium emissions to the deep ocean are far lower than would be expected given the rate of geothermal heating, since both are thought to be the result of radioactive decay in Earth's interior. The isopycnal mixing paradox comes from the fact that many theoretical parameterizations of the isopycnal mixing coefficient ARedimore »that link it to baroclinic instability project it to be small (of order a few hundred m2 s?1) in the ocean interior away from boundary currents. However, direct observations using tracers and floats (largely in the upper ocean) suggest that values of this coefficient are an order of magnitude higher. Helium isotopes equilibrate rapidly with the atmosphere and thus exhibit large gradients along isopycnals while radiocarbon equilibrates slowly and thus exhibits smaller gradients along isopycnals. Thus it might be thought that resolving the isopycnal mixing paradox in favor of the higher observational estimates of ARedi might also solve the helium paradox, by increasing the transport of mantle helium to the surface more than it would radiocarbon. In this paper we show that this is not the case. In a suite of models with different spatially constant and spatially varying values of ARedi the distribution of radiocarbon and helium isotopes is sensitive to the value of ARedi. However, away from strong helium sources in the southeastern Pacific, the relationship between the two is not sensitive, indicating that large-scale advection is the limiting process for removing helium and radiocarbon from the deep ocean. The helium isotopes, in turn, suggest a higher value of ARedi below the thermocline than is seen in theoretical parameterizations based on baroclinic growth rates. We argue that a key part of resolving the isopycnal mixing paradox is to abandon the idea that ARedi has a direct relationship to local baroclinic instability and to the so-called "thickness" mixing coefficient AGM.« less

  3. Isotope Development & Production | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Separation & Processing Strategic Isotope Production Super Heavy Element Discovery Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation...

  4. New experimental limits on the alpha decays of lead isotopes

    E-Print Network [OSTI]

    J. W. Beeman; F. Bellini; L. Cardani; N. Casali; S. Di Domizio; E. Fiorini; L. Gironi; S. S. Nagorny; S. Nisi; F. Orio; L. Pattavina; G. Pessina; G. Piperno; S. Pirro; E. Previtali; C. Rusconi; C. Tomei; M. Vignati

    2012-12-12

    For the first time a PbWO4 crystal was grown using ancient Roman lead and it was run as a cryogenic detector. Thanks to the simultaneous and independent read-out of heat and scintillation light, the detector was able to discriminate beta/gamma interactions with respect to alpha particles down to low energies. New more stringent limits on the alpha decays of the lead isotopes are presented. In particular a limit of T_{1/2} > 1.4*10^20 y at a 90% C.L. was evaluated for the alpha decay of 204Pb to 200Hg.

  5. Isotope Cancer Treatment Research at LANL

    ScienceCinema (OSTI)

    Weidner, John; Nortier, Meiring

    2014-06-02

    Los Alamos National Laboratory has produced medical isotopes for diagnostic and imaging purposes for more than 30 years. Now LANL researchers have branched out into isotope cancer treatment studies. New results show that an accelerator-based approach can produce clinical trial quantities of actinium-225, an isotope that has promise as a way to kill tumors without damaging surrounding healthy cells.

  6. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor

    SciTech Connect (OSTI)

    Ilas, Germina; Gauld, Ian C

    2011-01-01

    This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.

  7. SIMULATION OF COMPACT HEAT EXCHANGERS USING GLOBAL REGRESSION AND SOFT COMPUTING

    E-Print Network [OSTI]

    Sen, Mihir

    SIMULATION OF COMPACT HEAT EXCHANGERS USING GLOBAL REGRESSION AND SOFT COMPUTING A Dissertation investigates enhancement in accuracy of heat rate predictions in compact fin-tube heat exchangers. The sources determined and later applied to heat exchanger data. The direct heat-rate estimations are more accurate. #12

  8. GROUND-COUPLED HEAT-PUMP-SYSTEM EXPERIMENTAL RESULTS* Philip D. Metz

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;GROUND-COUPLED HEAT-PUMP-SYSTEM EXPERIMENTAL RESULTS* Philip D. Metz _Solar and Renewables house in Upton, Long Island, New York has been heated and cooled by a liquid source heat pump using- saving construction with a heating load of 7.8 X 106 J/OC-day (4.1 X 103 Btu/ OF-day). The heat pump used

  9. INSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY Plasma Sources Sci. Technol. 12 (2003) 170181 PII: S0963-0252(03)59585-8

    E-Print Network [OSTI]

    Economou, Demetre J.

    2003-01-01

    discharge are heated by collisional dissipation of wave energy. However, both experimental and theoreticalINSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY Plasma Sources Sci. Technol

  10. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klaus, J.; McDonnell, J. J.; Jackson, C. R.; Du, E.; Griffiths, N. A.

    2015-01-08

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3-year sampling period show that the slopes of the meteoricmore »water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. Thus, the streams showed strong evaporative enrichment compared to the local meteoric water line (?2H = 7.15 · ?18O +9.28‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.« less

  11. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klaus, Julian [Luxembourg Institute of Science and Technology (LIST), Dept. Environmental Research and Innovation, Belvaux (Luxembourg)

    2015-01-01

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA.

  12. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    SciTech Connect (OSTI)

    Klaus, Julian [Luxembourg Institute of Science and Technology (LIST), Dept. Environmental Research and Innovation, Belvaux (Luxembourg)

    2015-01-01

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA.

  13. Development of NDA instruments for the Los Alamos SIS (Special Isotope Separation) Facility

    SciTech Connect (OSTI)

    Li, T.K.; Rinard, P.M.; Schneider, C.M.; Atencio, J.D.; Hyman, D.H.; Kroncke, K.E.; Painter, J.; Siebelist, R.; Holbrooks, O.; Halbig, J.K.

    1989-01-01

    The Los Alamos Special Isotope Separation Facility produces special plutonium isotopes and converts plutonium scrap by using the molecular laser isotope separation (MLIS) process in a gaseous plutonium hexafluoride (PuF/sub 6/) phase. To provide important process-development and accountability information, we have developed and installed four nondestructive assay (NDA) instruments for that facility. These instruments are (1) an in-line plutonium isotopic analysis system to measure plutonium isotopes in gaseous, solid, and liquid phases, (2) an in-line sodium iodide (NaI) monitoring system consisting of six 2-in. by 2-in., two 2-in. by 24-in., and one 2-in. by 22-in. NaI detectors at specified components (a feed bottle, a feed-transfer cold trap, a compressor, a heat exchanger, a collector, a nozzle prefilter, and a tails cold trap) in the flow loop, (3) a portable high-resolution germanium gamma-ray system for plutonium isotopic analysis, and (4) a portable NaI gamma-ray holdup monitor. This paper discusses the measurement principles, hardware and software designs, and performance associated with these NDA instruments. 2 refs, 11 figs., 2 tabs.

  14. NEST-GENERATION TCAP HYDROGEN ISOTOPE SEPARATION PROCESS

    SciTech Connect (OSTI)

    Heung, L; Henry Sessions, H; Anita Poore, A; William Jacobs, W; Christopher Williams, C

    2007-08-07

    A thermal cycling absorption process (TCAP) for hydrogen isotope separation has been in operation at Savannah River Site since 1994. The process uses a hot/cold nitrogen system to cycle the temperature of the separation column. The hot/cold nitrogen system requires the use of large compressors, heat exchanges, valves and piping that is bulky and maintenance intensive. A new compact thermal cycling (CTC) design has recently been developed. This new design uses liquid nitrogen tubes and electric heaters to heat and cool the column directly so that the bulky hot/cold nitrogen system can be eliminated. This CTC design is simple and is easy to implement, and will be the next generation TCAP system at SRS. A twelve-meter column has been fabricated and installed in the laboratory to demonstrate its performance. The design of the system and its test results to date is discussed.

  15. Heat and Power Systems Design 

    E-Print Network [OSTI]

    Spriggs, H. D.; Shah, J. V.

    1987-01-01

    variable pattern of energy consumption as individual batches are started up or turned down. Important management considerations are product quality and operating flexiblity. The first step is to identify individual heating and cooling requirements... stream_source_info ESL-IE-87-09-05.pdf.txt stream_content_type text/plain stream_size 19552 Content-Encoding ISO-8859-1 stream_name ESL-IE-87-09-05.pdf.txt Content-Type text/plain; charset=ISO-8859-1 HEAT AND POWER...

  16. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    SciTech Connect (OSTI)

    Ade, Brian J; Gauld, Ian C

    2011-10-01

    In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium in MOX fuel is generally obtained from reprocessed irradiated nuclear fuel, whereas weapons-grade plutonium is obtained from decommissioned nuclear weapons material and thus has a different plutonium (and other actinides) concentration. Using MOX fuel instead of UOX fuel has potential impacts on the neutronic performance of the nuclear fuel and the design of the nuclear fuel must take these differences into account. Each of the plutonium sources (RG and WG) has different implications on the neutronic behavior of the fuel because each contains a different blend of plutonium nuclides. The amount of heat and the number of neutrons produced from fission of plutonium nuclides is different from fission of {sup 235}U. These differences in UOX and MOX do not end at discharge of the fuel from the reactor core - the short- and long-term storage of MOX fuel may have different requirements than UOX fuel because of the different discharged fuel decay heat characteristics. The research documented in this report compares MOX and UOX fuel during storage and disposal of the fuel by comparing decay heat rates for typical pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies with and without weapons-grade (WG) and reactor-grade (RG) MOX fuel.

  17. Computer Study of Isotope Production in High Power Accelerators

    E-Print Network [OSTI]

    K. A. Van Riper; S. G. Mashnik; W. B. Wilson

    1999-01-25

    Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

  18. Heat Recovery and Indirect Evaporative Cooling for Energy Conservation 

    E-Print Network [OSTI]

    Buckley, C. C.

    1984-01-01

    Two thirds of the waste heat sources in the U.S. are in the low temperature range of less than 200 deg F. A primary contributor of this heat is building exhaust. Heat pipe exchangers are ideally suited for recovering this waste. Plant comfort air...

  19. Heat-driven acoustic cooling engine having no moving parts

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM); Hofler, Thomas J. (Los Alamos, NM)

    1989-01-01

    A heat-driven acoustic cooling engine having no moving parts receives heat from a heat source. The acoustic cooling engine comprises an elongated resonant pressure vessel having first and second ends. A compressible fluid having a substantial thermal expansion coefficient and capable of supporting an acoustic standing wave is contained in the resonant pressure vessel. The heat source supplies heat to the first end of the vessel. A first heat exchanger in the vessel is spaced-apart from the first end and receives heat from the first end. A first thermodynamic element is adjacent to the first heat exchanger and converts some of the heat transmitted by the first heat exchanger into acoustic power. A second thermodynamic element has a first end located spaced-apart from the first thermodynamic element and a second end farther away from the first thermodynamic element than is its first end. The first end of the second thermodynamic element heats while its second end cools as a consequence of the acoustic power. A second heat exchanger is adjacent to and between the first and second thermodynamic elements. A heat sink outside of the vessel is thermally coupled to and receives heat from the second heat exchanger. The resonant pressure vessel can include a housing less than one-fourth wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir.

  20. Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy

    E-Print Network [OSTI]

    efficient use of renewable energy in district heating · individual heat pumps solar heating and wood pellets· individual heat pumps, solar heating and wood pellets 6Risø International Energy Conference 2009Heat Plan

  1. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers [EERE]

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  2. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump ...

  3. Isotopic Survey of Lake Davis and the Local Groundwater

    SciTech Connect (OSTI)

    Ridley, M N; Moran, J E; Singleton, M J

    2007-08-21

    In September 2007, California Fish and Game (CAFG) plans to eradicate the northern pike from Lake Davis. As a result of the eradication treatment, local residents have concerns that the treatment might impact the local groundwater quality. To address the concerns of the residents, Lawrence Livermore National Laboratory (LLNL) recommended measuring the naturally occurring stable oxygen isotopes in local groundwater wells, Lake Davis, and the Lake Davis tributaries. The purpose of these measurements is to determine if the source of the local groundwater is either rain/snowmelt, Lake Davis/Big Grizzly Creek water or a mixture of Lake Davis/Big Grizzly Creek and rain/snowmelt. As a result of natural evaporation, Lake Davis and the water flowing into Big Grizzly Creek are naturally enriched in {sup 18}oxygen ({sup 18}O), and if a source of a well's water is Lake Davis or Big Grizzly Creek, the well water will contain a much higher concentration of {sup 18}O. This survey will allow for the identification of groundwater wells whose water source is Lake Davis or Big Grizzly Creek. The results of this survey will be useful in the development of a water-quality monitoring program for the upcoming Lake Davis treatment. LLNL analyzed 167 groundwater wells (Table 1), 12 monthly samples from Lake Davis (Table 2), 3 samples from Lake Davis tributaries (Table 2), and 8 Big Grizzly Creek samples (Table 2). Of the 167 groundwater wells sampled and analyzed, only 2 wells contained a significant component of evaporated water, with an isotope composition similar to Lake Davis water. The other 163 groundwater wells have isotope compositions which indicate that their water source is rain/snowmelt.

  4. Introduction to Heat Exchangers

    E-Print Network [OSTI]

    Heller, Barbara

    . Since, the effectiveness can be written in terms of heat capacitance rate [W/K], C, and change in temperature [K], . The heat capacitance rate is defined in terms of mass flow rate [kg/s], , and specific heat: ! ! ! " # = ! ! "# ! ! ! - ! ! ! ! ! ! = ! !! ! ! ! ! = ! ! ! ! ! - ! ! ! ! ! "# ! ! ! - ! ! ! ! ! ! = ! ! ! ! ! - ! ! ! ! ! "# ! ! ! - ! ! ! ! ! Heat%Capacitance%Rate % ! = ! !! ! ! Heat%Capacitance%Rate%[W % ! = ! ! ! ! ! ! ! = ! ! !! ! ! ! max

  5. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel (Aiken, SC)

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  6. Dual manifold heat pipe evaporator

    DOE Patents [OSTI]

    Adkins, Douglas R. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM)

    1994-01-01

    An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

  7. Dual manifold heat pipe evaporator

    DOE Patents [OSTI]

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  8. Recent advances in coronal heating

    E-Print Network [OSTI]

    De Moortel, Ineke

    2015-01-01

    The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This 'coronal heating problem' requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue.

  9. Boise geothermal district heating system

    SciTech Connect (OSTI)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  10. Generator powered electrically heated diesel particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  11. Heat Pump for High School Heat Recovery 

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  12. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  13. City of Klamath Falls District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating...

  14. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low...

  15. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  16. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  17. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  18. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  19. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  20. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    heat exchangers. These types of heat exchangers have limitedheat exchanger to solar collection systems that utilize linear trough- typenon-solar heat exchangers. These may be of the type used to