National Library of Energy BETA

Sample records for isotopic analysis isotopic

  1. Isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science Nuclear Physics Isotopes Isotopes Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. ...

  2. Isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science » Nuclear Physics » Isotopes Isotopes Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Get Expertise Eva Birnbaum (505) 665-7167 Email Wolfgang Runde (505) 667-3350 Email Isotope Production and Applications isotopes Isotopes produced at IPF are critical for medical diagnosis and disease treatment. These positron emission tomography images were made possible using isotopes produced at LANL.

  3. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  4. Isotopic Analysis At Fenton Hill Hdr Geothermal Area (Goff, Et...

    Open Energy Info (EERE)

    Isotopic Analysis At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Redirect page Jump to: navigation, search REDIRECT Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal...

  5. Isotopic Analysis- Rock At Coso Geothermal Area (1984) | Open...

    Open Energy Info (EERE)

    Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique...

  6. TRIFID (TRansuranic Isotopic Fraction Interrogation Device): A second generation plutonium isotopic analysis system

    SciTech Connect (OSTI)

    Fleissner, J G; Coressel, T W; Freier, D A; Macklin, L L

    1989-01-01

    The TRIFID (Transuranic Isotopic Fraction Interrogation Device) system is a second generation plutonium isotopic analysis system which incorporates many new and unique features in the area of isotopic data acquisition and isotopic analysis instrument consisting of a Canberra Series 95-MCA interfaced to a Compaq 386 computer. The entire TRIFID software package, including MCA communications and isotopic analysis routines, was developed using the C programming language. Extensive use has been made of user friendly screens and menus for ease of operation and training and to facilitate use by technical level operators. Automated TRIFID features provide for MCA/ADC setup and acquisition, spectral storage, isotopic analysis, and report generation. One unique feature of the TRIFID system design allows it to be pre-programed for an entire day's counting. The isotopic analysis module (EPICS) contains an expert system formalism which is used to detect and assay for spectral interferences, and to automatically adjust peak fitting constraints based on spectral intensity variations. A TRIFID system has been in operation in a production laboratory at the Rocky Flats Plant since September 1988. Marked decreases in training and hands-on operation time have been achieved in comparison to the older, preceding isotopic systems. 2 refs., 3 figs.

  7. Isotope Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Production 35 years of experience in isotope production, processing, and applications. Llllll Committed to the safe and reliable production of radioisotopes, products, and services. Contact: Kevin John LANL Isotope Program Manager kjohn@lanl.gov 505-667-3602 Sponsored by the Department of Energy National Isotope Program http://www.nuclear.energy.gov/isotopes/nelsotopes2a.html Isotopes for Environmental Science Isotopes produced at Los Alamos National Laboratory are used as

  8. Isotopic Analysis- Fluid At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Unknown Exploration Basis Faulder 1991 Conceptual Geological Model compilation and literature review of the Roosevelt Hot Springs Geothermal Area. Notes Stable isotope analysis...

  9. Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Exploration Activity Details...

  10. Isotopic Analysis At Lassen Volcanic National Park Area (Janik...

    Open Energy Info (EERE)

    Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness...

  11. Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside...

    Open Energy Info (EERE)

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2002 -...

  12. Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990...

    Open Energy Info (EERE)

    Rose Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990)...

  13. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Exploration Activity: Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Phillips, 2004) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area...

  14. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Phillips, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area...

  15. Isotopic Analysis-Fluid At Raft River Geothermal Area (1982)...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River...

  16. Isotopic Analysis-Fluid At Raft River Geothermal Area (1977)...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  17. Isotopic Analysis At Nw Basin & Range Region (Laney, 2005) |...

    Open Energy Info (EERE)

    Location Northwest Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes...

  18. Isotopic Analysis At Central Nevada Seismic Zone Region (Laney...

    Open Energy Info (EERE)

    Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes...

  19. Isotopic Analysis- Fluid At Coso Geothermal Area (1990) | Open...

    Open Energy Info (EERE)

    Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown...

  20. Isotopic Analysis At Clear Lake Area (Thompson, Et Al., 1992...

    Open Energy Info (EERE)

    Exploration Activity Details Location Clear Lake Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Deuterium and...

  1. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...

    Open Energy Info (EERE)

    Details Location Indian Valley Hot Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown...

  2. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown References...

  3. Isotopic Analysis At Northern Basin & Range Region (Laney, 2005...

    Open Energy Info (EERE)

    Location Northern Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes...

  4. Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990...

    Open Energy Info (EERE)

    Activity Details Location Sierra Valley Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown...

  5. Isotopic Analysis At Buffalo Valley Hot Springs Area (Laney,...

    Open Energy Info (EERE)

    Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes...

  6. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Long Valley Caldera Geothermal Area (Taylor & Gerlach, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long...

  7. Isotopic Analysis- Gas At Chena Geothermal Area (Kolker, Et Al...

    Open Energy Info (EERE)

    Date 2007 - 2007 Usefulness useful DOE-funding Unknown Exploration Basis Lawrence Berkeley National Laboratory sampling and analysis of He isotopes from Chena Hot Springs....

  8. Isotopic Analysis At Walker-Lane Transitional Zone Region (Laney...

    Open Energy Info (EERE)

    Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date...

  9. Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 2000...

    Open Energy Info (EERE)

    Home Exploration Activity: Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 2000) Exploration Activity Details Location Mt St Helens Area Exploration Technique...

  10. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Goff, Et Al., 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Goff, Et Al.,...

  11. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    WoldeGabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

  12. Isotopic Analysis At Yellowstone Region (Goff & Janik, 2002)...

    Open Energy Info (EERE)

    Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Yellowstone Region (Goff & Janik, 2002) Exploration...

  13. Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 1995...

    Open Energy Info (EERE)

    Home Exploration Activity: Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details Location Mt St Helens Area Exploration Technique...

  14. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1982) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

  15. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1985) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

  16. Isotopic Analysis At Jemez Springs Area (Goff & Janik, 2002)...

    Open Energy Info (EERE)

    Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Jemez Springs Area (Goff & Janik, 2002) Exploration...

  17. Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr...

    Open Energy Info (EERE)

    San Juan Volcanic Field Area (Larson & Jr, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At San Juan Volcanic Field...

  18. Isotopic Analysis At Yellowstone Region (Sturchio, Et Al., 1990...

    Open Energy Info (EERE)

    Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes...

  19. Isotopic Analysis- Fluid At Coso Geothermal Area (1982) | Open...

    Open Energy Info (EERE)

    Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis...

  20. Isotopic Analysis At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Long Valley Caldera Geothermal Area (Smith &...

  1. Isotopic Analysis At Northern Basin & Range Region (Cole, 1983...

    Open Energy Info (EERE)

    Cole, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Northern Basin & Range Region (Cole, 1983) Exploration Activity...

  2. Plutonium Isotopic Gamma-Ray Analysis

    Energy Science and Technology Software Center (OSTI)

    1992-01-08

    The MGA8 (Multiple Group Analysis) program determines the relative abundances of plutonium and other actinide isotopes in different materials. The program analyzes spectra taken of such samples using a 4096-channel germanium (Ge) gamma-ray spectrometer. The code can be run in a one or two detector mode. The first spectrum, which is required and must be taken at a gain of 0.075 Kev/channel with a high resolution planar detector, contains the 0-300 Kev energy region. Themore » second spectrum, which is optional, must be taken at a gain of 0.25 Kev/channel; it becomes important when analyzing high burnup samples (concentration of Pu241 greater than one percent). Isotopic analysis precisions of one percent or better can be obtained, and no calibrations are required. The system also measures the abundances of U235, U238, Np237, and Am241. A special calibration option is available to perform a one-time peak-shape characterization when first using a new detector system.« less

  3. Plutonium Isotopic Gamma-Ray Analysis

    Energy Science and Technology Software Center (OSTI)

    1992-01-08

    The MGA8 (Multiple Group Analysis) program determines the relative abundances of plutonium and other actinide isotopes in different materials. The program analyzes spectra taken of such samples using a 4096-channel germanium (Ge) gamma-ray spectrometer. The code can be run in a one or two detector mode. The first spectrum, which is required and must be taken at a gain of 0.075 Kev/channel with a high resolution planar detector, contains the 0-300 Kev energy region. Themore »second spectrum, which is optional, must be taken at a gain of 0.25 Kev/channel; it becomes important when analyzing high burnup samples (concentration of Pu241 greater than one percent). Isotopic analysis precisions of one percent or better can be obtained, and no calibrations are required. The system also measures the abundances of U235, U238, Np237, and Am241. A special calibration option is available to perform a one-time peak-shape characterization when first using a new detector system.« less

  4. System and method for high precision isotope ratio destructive analysis

    DOE Patents [OSTI]

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  5. Isotopic abundance in atom trap trace analysis

    DOE Patents [OSTI]

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  6. Use of Stable Isotopes in Forensic Analysis of Microorganisms

    SciTech Connect (OSTI)

    Kreuzer-Martin, Helen W.; Hegg, Eric L.

    2012-01-18

    The use of isotopic signatures for forensic analysis of biological materials is well-established, and the same general principles that apply to interpretation of stable isotope content of C, N, O, and H apply to the analysis of microorganisms. Heterotrophic microorganisms derive their isotopic content from their growth substrates, which are largely plant and animal products, and the water in their culture medium. Thus the isotope signatures of microbes are tied to their growth environment. The C, N, O, and H isotope ratios of spores have been demonstrated to constitute highly discriminating signatures for sample matching. They can rule out specific samples of media and/or water as possible production media, and can predict isotope ratio ranges of the culture media and water used to produce a given sample. These applications have been developed and tested through analyses of approximately 250 samples of Bacillus subtilis spores and over 500 samples of culture media, providing a strong statistical basis for data interpretation. A Bayesian statistical framework for integrating stable isotope data with other types of signatures derived from microorganisms has been able to characterize the culture medium used to produce spores of various Bacillus species, leveraging isotopic differences in different medium types and demonstrating the power of data integration for forensic investigations.

  7. Isotope separation

    DOE Patents [OSTI]

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  8. Method for isotopic analysis of chlorinated organic compounds

    DOE Patents [OSTI]

    Holt, B.D.; Sturchio, N.C.

    1999-08-24

    The present invention provides a method for preparing a VOC sample for carbon and chlorine isotope ratio analysis by mass spectrometer. A VOC sample is placed in a combustion tube and reacted with CuO to form CO{sub 2} and CuCl. The CO{sub 2} is then extracted and analyzed for the carbon isotope ratio. The CuCl is separated from the excess CuO and reacted with CH{sub 3}I to form CH{sub 3}Cl, extracted and analyzed for chlorine isotope ratio. 9 figs.

  9. Isotope geochemistry

    SciTech Connect (OSTI)

    Cole, D.R.; Curtis, D.B.; DePaolo, D.J.; Gerlach, T.M.; Laul, J.C.; Shaw, H.; Smith, B.M.; Sturchio, N.C.

    1990-09-01

    This document represents the consensus of members of the ad hoc Committee on Isotope Geochemistry in the US Department of Energy; the committee is composed of researchers in isotope geochemistry from seven of the national laboratories. Information included in this document was presented at workshops at Lawrence Berkeley Laboratory (April 1989) and at Los Alamos National Laboratory (August 1989).

  10. RESOLUTION OF URANIUM ISOTOPES WITH KINETIC PHOSPHORESCENCE ANALYSIS

    SciTech Connect (OSTI)

    Miley, Sarah M.; Hylden, Anne T.; Friese, Judah I.

    2013-04-01

    This study was conducted to test the ability of the Chemchek Kinetic Phosphorescence Analyzer Model KPA-11 with an auto-sampler to resolve the difference in phosphorescent decay rates of several different uranium isotopes, and therefore identify the uranium isotope ratios present in a sample. Kinetic phosphorescence analysis (KPA) is a technique that provides rapid, accurate, and precise determination of uranium concentration in aqueous solutions. Utilizing a pulsed-laser source to excite an aqueous solution of uranium, this technique measures the phosphorescent emission intensity over time to determine the phosphorescence decay profile. The phosphorescence intensity at the onset of decay is proportional to the uranium concentration in the sample. Calibration with uranium standards results in the accurate determination of actual concentration of the sample. Different isotopes of uranium, however, have unique properties which should result in different phosphorescence decay rates seen via KPA. Results show that a KPA is capable of resolving uranium isotopes.

  11. Isotopes Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes Products Isotopes Products Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Products stress and rest Stress and rest Rb-82 PET images in a patient with dipyridamole stress-inducible lateral wall and apical ischemia. (http://www.fac.org.ar/scvc/llave/image/machac/machaci.htm#f2,3,4) Strontium-82 is supplied to our customers for use in Sr-82/Rb-82 generator technologies. The generators in turn are supplied to

  12. ISOTOPE SEPARATORS

    DOE Patents [OSTI]

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  13. PRINCIPAL ISOTOPE SELECTION REPORT

    SciTech Connect (OSTI)

    K. D. Wright

    1998-08-28

    Utilizing nuclear fuel to produce power in commercial reactors results in the production of hundreds of fission product and transuranic isotopes in the spent nuclear fuel (SNF). When the SNF is disposed of in a repository, the criticality analyses could consider all of the isotopes, some principal isotopes affecting criticality, or none of the isotopes, other than the initial loading. The selected set of principal isotopes will be the ones used in criticality analyses of the SNF to evaluate the reactivity of the fuel/waste package composition and configuration. This technical document discusses the process used to select the principal isotopes and the possible affect that these isotopes could have on criticality in the SNF. The objective of this technical document is to discuss the process used to select the principal isotopes for disposal criticality evaluations with commercial SNF. The principal isotopes will be used as supporting information in the ''Disposal Criticality Analysis Methodology Topical Report'' which will be presented to the United States Nuclear Regulatory Commission (NRC) when approved by the United States Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM).

  14. Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are...

  15. Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region...

    Open Energy Info (EERE)

    Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are...

  16. Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao...

    Open Energy Info (EERE)

    analyzed for their hydrogen and oxygen isotope contents as a part of previous studies (Goff & Grigsby, 1982; Vuataz & Goff, 1986). The present study focuses on the interpretation...

  17. Isotopic Analysis At Jemez Springs Area (Rao, Et Al., 1996) ...

    Open Energy Info (EERE)

    analyzed for their hydrogen and oxygen isotope contents as a part of previous studies (Goff & Grigsby, 1982; Vuataz & Goff, 1986). The present study focuses on the interpretation...

  18. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    analyzed for their hydrogen and oxygen isotope contents as a part of previous studies (Goff & Grigsby, 1982; Vuataz & Goff, 1986). The present study focuses on the interpretation...

  19. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area ...

    Open Energy Info (EERE)

    analyzed for their hydrogen and oxygen isotope contents as a part of previous studies (Goff & Grigsby, 1982; Vuataz & Goff, 1986). The present study focuses on the interpretation...

  20. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Through 30 September Activity T. Winnett, Cathy J. Janik (1986) Isotopic Composition of Carbon in Fluids from the Long Valley Geothermal System, California, In- Proceedings of...

  1. Isotopic Analysis At Newberry Caldera Area (Goles & Lambert,...

    Open Energy Info (EERE)

    Rock Activity Date Usefulness not indicated DOE-funding Unknown References Gordon G. Goles, Richard St J. Lambert (1990) A Strontium Isotopic Study Of Newberry Volcano,...

  2. Isotopic Analysis (Lewicki & Oldenburg) | Open Energy Information

    Open Energy Info (EERE)

    Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References Jennifer L. Lewicki, Curtis M. Oldenburg (Unknown) Near-Surface Co2 Monitoring And Analysis To...

  3. Hanford Isotope Project strategic business analysis Cesium-137 (Cs-137)

    SciTech Connect (OSTI)

    1995-10-01

    The purpose of this business analysis is to address the beneficial reuse of Cesium 137 (Cs-137) in order to utilize a valuable national asset and possibly save millions of tax dollars. Food irradiation is the front runner application along with other uses. This business analysis supports the objectives of the Department of Energy National Isotope Strategy distributed in August 1994 which describes the DOE plans for the production and distribution of isotope products and services. As part of the Department`s mission as stated in that document. ``The Department of Energy will also continue to produce and distribute other radioisotopes and enriched stable isotopes for medical diagnostics and therapeutics, industrial, agricultural, and other useful applications on a businesslike basis. This is consistent with the goals and objectives of the National Performance Review. The Department will endeavor to look at opportunities for private sector to co-fund or invest in new ventures. Also, the Department will seek to divest from ventures that can more profitably or reliably be operated by the private sector.``

  4. Direct analysis of air filter samples for alpha emitting isotopes

    SciTech Connect (OSTI)

    Mohagheghi, A.H.; Ghanbari, F.; Ebara, S.B.; Enghauser, M.E. [Sandia National Labs., Albuquerque, NM (United States); Bakhtiar, S.N. [Westinghouse WIPP, Carlsbad, NM (United States)

    1997-04-01

    The traditional method for determination of alpha emitting isotopes on air filters has been to process the samples by radiochemical methods. However, this method is too slow for cases of incidents involving radioactive materials where the determination of personnel received dose is urgent. A method is developed to directly analyze the air filters taken from personal and area air monitors. The site knowledge is used in combination with alpha spectral information to identify isotopes. A mathematical function is developed to estimate the activity for each isotope. The strengths and weaknesses of the method are discussed.

  5. Isotopic Analysis At Seven Mile Hole Area (Larson, Et Al., 2009...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Seven Mile Hole Area (Larson, Et...

  6. Atomic line emission analyzer for hydrogen isotopes (Patent)...

    Office of Scientific and Technical Information (OSTI)

    Atomic line emission analyzer for hydrogen isotopes Title: Atomic line emission analyzer for hydrogen isotopes Apparatus for isotopic analysis of hydrogen comprises a low pressure ...

  7. Isotopic Analysis At Separation Creek Area (Van Soest, Et Al...

    Open Energy Info (EERE)

    Usefulness useful DOE-funding Unknown References M. C. van Soest, B. M. Kennedy, W. C. Evans, R. H. Mariner (2002) Mantle Helium And Carbon Isotopes In Separation Creek...

  8. Isotopic Analysis- Fluid At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    suggest that helium isotopes are the best and possibly the only indication of deep permeability where high temperature fluids are masked beneath a cold reservoir. Notes 3He4He...

  9. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    of 36Cl- as a tracer isotope in geothermal systems. References F.M. Phillips, Fraser E. Goff, Francois D. Vuataz, H.W. Bentley, H.E. Gove (1984) 36Cl as a tracer in geothermal...

  10. GUM Analysis for TIMS and SIMS Isotopic Ratios in Graphite

    SciTech Connect (OSTI)

    Heasler, Patrick G.; Gerlach, David C.; Cliff, John B.; Petersen, Steven L.

    2007-04-01

    This report describes GUM calculations for TIMS and SIMS isotopic ratio measurements of reactor graphite samples. These isotopic ratios are used to estimate reactor burn-up, and currently consist of various ratios of U, Pu, and Boron impurities in the graphite samples. The GUM calculation is a propagation of error methodology that assigns uncertainties (in the form of standard error and confidence bound) to the final estimates.

  11. Method for separating isotopes

    DOE Patents [OSTI]

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  12. Stable isotope studies

    SciTech Connect (OSTI)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  13. Hanford isotope project strategic business analysis yttrium-90 (Y-90)

    SciTech Connect (OSTI)

    1995-10-01

    The purpose of this analysis is to address the short-term direction for the Hanford yttrium-90 (Y-90) project. Hanford is the sole DOE producer of Y-90, and is the largest repository for its source in this country. The production of Y-90 is part of the DOE Isotope Production and Distribution (IP and D) mission. The Y-90 is ``milked`` from strontium-90 (Sr-90), a byproduct of the previous Hanford missions. The use of Sr-90 to produce Y-90 could help reduce the amount of waste material processed and the related costs incurred by the clean-up mission, while providing medical and economic benefits. The cost of producing Y-90 is being subsidized by DOE-IP and D due to its use for research, and resultant low production level. It is possible that the sales of Y-90 could produce full cost recovery within two to three years, at two curies per week. Preliminary projections place the demand at between 20,000 and 50,000 curies per year within the next ten years, assuming FDA approval of one or more of the current therapies now in clinical trials. This level of production would incentivize private firms to commercialize the operation, and allow the government to recover some of its sunk costs. There are a number of potential barriers to the success of the Y-90 project, outside the control of the Hanford Site. The key issues include: efficacy, Food and Drug Administration (FDA) approval and medical community acceptance. There are at least three other sources for Y-90 available to the US users, but they appear to have limited resources to produce the isotope. Several companies have communicated interest in entering into agreements with Hanford for the processing and distribution of Y-90, including some of the major pharmaceutical firms in this country.

  14. Transportation of medical isotopes

    SciTech Connect (OSTI)

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  15. ARM - Measurement - Isotope ratio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Isotope ratio Ratio of stable isotope concentrations. Categories Atmospheric...

  16. Femtosecond Laser Ablation Multicollector ICPMS Analysis of Uranium Isotopes in NIST Glass

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Springer, Kellen WE; Ward, Jesse D.; Jarman, Kenneth D.; Robinson, John W.; Endres, Mackenzie C.; Hart, Garret L.; Gonzalez, Jhanis J.; Oropeza, Dayana; Russo, Richard; Willingham, David G.; Naes, Benjamin E.; Fahey, Albert J.; Eiden, Gregory C.

    2015-02-06

    We have utilized femtosecond laser ablation coupled to multi-collector inductively couple plasma mass spectrometry to measure the uranium isotopic content of NIST 61x (x=0,2,4,6) glasses. The uranium content of these glasses is a linear two-component mixing between isotopically natural uranium and the isotopically depleted spike used in preparing the glasses. Laser ablation results match extremely well, generally within a few ppm, with solution analysis following sample dissolution and chemical separation. In addition to isotopic data, sample utilization efficiency measurements indicate that over 1% of ablated uranium atoms reach a mass spectrometer detector, making this technique extremely efficient. Laser sampling also allows for spatial analysis and our data indicate that rare uranium concentration inhomogeneities exist in NIST 616 glass.

  17. HYDROGEN ISOTOPE TARGETS

    DOE Patents [OSTI]

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  18. Hybrid isotope separation scheme

    DOE Patents [OSTI]

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

  19. Hybrid isotope separation scheme

    DOE Patents [OSTI]

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  20. Stable isotope enrichment

    ScienceCinema (OSTI)

    Egle, Brian

    2014-07-15

    Brian Egle is working to increase the nation's capacity to produce stable isotopes for use including medicine, industry and national security.

  1. Stable isotope enrichment

    SciTech Connect (OSTI)

    Egle, Brian

    2014-07-14

    Brian Egle is working to increase the nation's capacity to produce stable isotopes for use including medicine, industry and national security.

  2. Price Quotes and Isotope Ordering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ordering Price Quotes and Isotope Ordering Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Isotope...

  3. Photochemical isotope separation

    DOE Patents [OSTI]

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  4. Photochemical isotope separation

    DOE Patents [OSTI]

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  5. Laser isotope separation

    DOE Patents [OSTI]

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  6. Laser isotope separation

    DOE Patents [OSTI]

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  7. Measuring SNM Isotopic Distributions using FRAM

    SciTech Connect (OSTI)

    Geist, William H.

    2015-12-02

    The first group of slides provides background information on the isotopic composition of plutonium. It is shown that 240Pu is the critical isotope in neutron coincidence/multiplicity counting. Next, response function analysis to determine isotopic composition is discussed. The isotopic composition can be determined by measuring the net peak counts from each isotope and then taking the ratio of the counts for each isotope relative to the total counts for the element. Then FRAM (Fixed energy Response function Analysis with Multiple efficiencies) is explained. FRAM can control data acquisition, automatically analyze newly acquired data, analyze previously acquired data, provide information on the quality of the analysis, and facilitate analysis in unusual situations (non-standard energy calibrations, gamma rays from non-SNM isotopes, poor spectra (within limits)).

  8. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1986-08-15

    The atomic vapor laser isotope separation (AVLIS) process for the enrichment of uranium is evaluated. (AIP)

  9. Development of high through-put Sr isotope analysis for monitoring reservoir integrity for CO{sub 2} storage.

    SciTech Connect (OSTI)

    Wall, Andy; Jain, Jinesh; Stewart, Brian; Capo, Rosemary; Hakala, Alexandra J.; Hammack, Richard; Guthrie, George

    2012-01-01

    Recent innovations in multi-collector ICP-mass spectrometry (MC-ICP-MS) have allowed for rapid and precise measurements of isotope ratios in geological samples. Naturally occurring Sr isotopes has the potential for use in Monitoring, Verification, and Accounting (MVA) associated with geologic CO2 storage. Sr isotopes can be useful for: Sensitive tracking of brine migration; Determining seal rock leakage; Studying fluid/rock reactions. We have optimized separation chemistry procedures that will allow operators to prepare samples for Sr isotope analysis off site using rapid, low cost methods.

  10. Analysis of gas centrifuge cascade for separation of multicomponent isotopes and optimal feed position

    SciTech Connect (OSTI)

    Chuntong Ying; Hongjiang Wu; Mingsheng Zhou; Yuguang Nie; Guangjun Liu

    1997-10-01

    Analysis of the concentration distribution in a gas centrifuge cascade for separation of multicomponent isotope mixtures is different from that in a cascade for separation of two-component mixtures. This paper presents the governing equations for a multicomponent isotope separation cascade. Numerically predicted separation factors for the gas centrifuge cascade agree well with the experimental data. A theoretical optimal feed position is derived for a short square cascade for a two-component mixture in a close-separation case. The optimal feed position for a gas centrifuge cascade for separation of multicomponent mixture is discussed.

  11. Plasma isotope separation methods

    SciTech Connect (OSTI)

    Grossman, M.W. ); Shepp, T.A. )

    1991-12-01

    Isotope separation has many important industrial, medical, and research applications. Large-scale processes have typically utilized complex cascade systems; for example, the gas centrifuge. Alternatively, high single-stage enrichment processes (as in the case of the calutron) are very energy intensive. Plasma-based methods being developed for the past 15 to 20 years have attempted to overcome these two drawbacks. In this review, six major types of isotope separation methods which involve plasma phenomena are discussed. These methods are: plasma centrifuge, AVLIS (atomic vapor laser isotope separation), ion wave, ICR (ion-cyclotron resonance), calutron, and gas discharge. The emphasis of this paper is to describe the plasma phenomena in these major categories. An attempt was made to include enough references so that more detailed study or evaluation of a particular method could readily be pursued. A brief discussion of isotope separation using mass balance concepts is also carried out.

  12. Using phylogenetic probes for quantification of stable isotope labeling and microbial community analysis

    DOE Patents [OSTI]

    Brodie, Eoin L; DeSantis, Todd Z; Karaoz, Ulas; Andersen, Gary L

    2014-12-09

    Herein is described methods for a high-sensitivity means to measure the incorporation of stable isotope labeled substrates into RNA following stable isotope probing experiments (SIP). RNA is hybridized to a set of probes such as phylogenetic microarrays and isotope incorporation is quantified such as by secondary ion mass spectrometer imaging (NanoSIMS).

  13. Separation of sulfur isotopes

    DOE Patents [OSTI]

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  14. Isotope separation apparatus

    DOE Patents [OSTI]

    Arnush, Donald (Rancho Palos Verdes, CA); MacKenzie, Kenneth R. (Pacific Palisades, CA); Wuerker, Ralph F. (Palos Verdes Estates, CA)

    1980-01-01

    Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.

  15. AVLIS enrichment of medical isotopes

    SciTech Connect (OSTI)

    Haynam, C.A.; Scheibner, K.F.; Stern, R.C.; Worden, E.F.

    1996-12-31

    Under the Sponsorship of the United states Enrichment Corporation (USEC), we are currently investigating the large scale separation of several isotopes of medical interest using atomic vapor isotope separation (AVLIS). This work includes analysis and experiments in the enrichment of thallium 203 as a precursor to the production of thallium 201 used in cardiac imaging following heart attacks, on the stripping of strontium 84 from natural strontium as precursor to the production of strontium 89, and on the stripping of lead 210 from lead used in integrated circuits to reduce the number of alpha particle induced logic errors.

  16. Integration of Nontraditional Isotopic Systems Into Reaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry on Reservoir Sustainability Integration of Nontraditional Isotopic Systems Into ... Chemistry on Reservoir Sustainability Integration of Nontraditional Isotopic Systems Into ...

  17. DEEP WATER ISOTOPIC CURRENT ANALYZER

    DOE Patents [OSTI]

    Johnston, W.H.

    1964-04-21

    A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

  18. Method for separating boron isotopes

    DOE Patents [OSTI]

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  19. Elemental and isotopic analysis of inorganic salts by laser desorption ionization mass spectrometry

    SciTech Connect (OSTI)

    Jayasekharan, T.; Sahoo, N. K.

    2013-02-05

    Laser desorption ionization mass spectrometry is applied for the analysis of elements as well as their isotopic composition in different inorganic salts. At very low laser energies the inorganic ions are desorbed and ionized from the thin layer of the sample surface. The naturally occurring isotopes of alkali and silver ions are resolved using time of flight mass spectrometer. Further increase in laser energy shows the appearance of Al, Cr, and Fe ions in the mass spectra. This indicates the penetration laser beam beyond the sample surface leading to the ablation of sample target at higher energies. The simultaneous appearance of atomic ions from the sample target at relatively higher laser energies hampers the unambiguous identification of amino acid residues from the biomolecular ions in MALDI-MS.

  20. Manus Water Isotope Investigation

    Office of Scientific and Technical Information (OSTI)

    ENERGY Office of Science DOE/SC-ARM-15-079 Manus Water Isotope Investigation Field Campaign Report JL Conroy D Noone KM Cobb March 2016 CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

  1. ISOTOPE SEPARATING APPARATUS CONTROL

    DOE Patents [OSTI]

    Barnes, S.W.

    1959-08-25

    An improved isotope separating apparatus of the electromagnetic type, commonly referred to as a calutron, is described. Improvements in detecting and maintaining optimum position and focus of the ion beam are given. The calutron collector is provided with an additional electrode insulated from and positioned between the collecting pockets. The ion beams are properly positioned and focused until the deionizing current which flows from ground to this additional electrode ts a minimum.

  2. Manus Water Isotope Investigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Manus Water Isotope Investigation Field Campaign Report JL Conroy D Noone KM Cobb March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  3. Laser isotope separation of erbium and other isotopes

    DOE Patents [OSTI]

    Haynam, Christopher A.; Worden, Earl F.

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  4. Laser isotope separation of erbium and other isotopes

    DOE Patents [OSTI]

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  5. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1988-02-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high-abundance, naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  6. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for nondestructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Material Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  7. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1984-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  8. Capillary absorption spectrometer and process for isotopic analysis of small samples

    DOE Patents [OSTI]

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2016-03-29

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The method also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  9. Isotopically labeled compositions and method

    DOE Patents [OSTI]

    Schmidt, Jurgen G.; Kimball, David B.; Alvarez, Marc A.; Williams, Robert F.; Martinez, Rudolfo A.

    2011-07-12

    Compounds having stable isotopes .sup.13C and/or .sup.2H were synthesized from precursor compositions having solid phase supports or affinity tags.

  10. Advanced isotope separation

    SciTech Connect (OSTI)

    Not Available

    1982-05-04

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems.

  11. ISOTOPE FRACTIONATION PROCESS

    DOE Patents [OSTI]

    Clewett, G.H.; Lee, DeW.A.

    1958-05-20

    A new method is described for isotopic enrichment of uranium. It has been found that when an aqueous acidic solution of ionic tetravalent uraniunn is contacted with chelate complexed tetravalent uranium, the U/sup 238/ preferentially concentrates in the complexed phase while U/sup 235/ concentrates in the ionic phase. The effect is enhanced when the chelate compound is water insoluble and is dissolved in a water-immiscible organic solvent. Cupferron is one of a number of sultable complexing agents, and chloroform is a suitable organic solvent.

  12. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  13. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  14. GUM Analysis for SIMS Isotopic Ratios in BEP0 Graphite Qualification Samples, Round 2

    SciTech Connect (OSTI)

    Gerlach, David C.; Heasler, Patrick G.; Reid, Bruce D.

    2009-01-01

    This report describes GUM calculations for TIMS and SIMS isotopic ratio measurements of reactor graphite samples. These isotopic ratios are used to estimate reactor burn-up, and currently consist of various ratios of U, Pu, and Boron impurities in the graphite samples. The GUM calculation is a propagation of error methodology that assigns uncertainties (in the form of standard error and confidence bound) to the final estimates.

  15. Isotopic Analysis of Uranium in NIST SRM Glass by Femtosecond Laser Ablation

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Hart, Garret L.; Hanlen, Richard C.; Eiden, Gregory C.

    2013-05-19

    We employed femtosecond Laser Ablation Multicollector Inductively Coupled Mass Spectrometry for the 11 determination of uranium isotope ratios in a series of standard reference material glasses (NIST 610, 612, 614, and 12 616). This uranium concentration in this series of SRM glasses is a combination of isotopically natural uranium in 13 the materials used to make the glass matrix and isotopically depleted uranium added to increase the uranium 14 elemental concentration across the series. Results for NIST 610 are in excellent agreement with literature values. 15 However, other than atom percent 235U, little information is available for the remaining glasses. We present atom 16 percent and isotope ratios for 234U, 235U, 236U, and 238U for all four glasses. Our results show deviations from the 17 certificate values for the atom percent 235U, indicating the need for further examination of the uranium isotopes in 18 NIST 610-616. Our results are fully consistent with a two isotopic component mixing between the depleted 19 uranium spike and natural uranium in the bulk glass.

  16. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing.

  17. Method of separating boron isotopes

    DOE Patents [OSTI]

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  18. Method of separating boron isotopes

    DOE Patents [OSTI]

    Jensen, R.J.; Thorne, J.M.; Cluff, C.L.

    1981-01-23

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  19. Heavy Isotopes Lead Materials Management Organization (LMMO)...

    Office of Scientific and Technical Information (OSTI)

    Heavy Isotopes Lead Materials Management Organization (LMMO) Update Citation Details In-Document Search Title: Heavy Isotopes Lead Materials Management Organization (LMMO) Update ...

  20. Isotopic Trends in Production of Superheavies

    SciTech Connect (OSTI)

    Antonenko, N.V.; Adamian, G.G.; Zubov, A.S.; Scheid, W.

    2005-11-21

    The isotopic trends are discussed for cold and hot fusion reactions leading to superheavies. The possibilities of production of new isotopes in incomplete fusion reactions are treated.

  1. Isotope separation by laser means

    DOE Patents [OSTI]

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1982-06-15

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  2. {sup 39}Ar Detection at the 10{sup -16} Isotopic Abundance Level with Atom Trap Trace Analysis

    SciTech Connect (OSTI)

    Jiang, W.; Williams, W.; Bailey, K.; O'Connor, T. P.; Mueller, P.; Davis, A. M.; Hu, S.-M.; Sun, Y. R.; Lu, Z.-T.; Purtschert, R.; Sturchio, N. C.

    2011-03-11

    Atom trap trace analysis, a laser-based atom counting method, has been applied to analyze atmospheric {sup 39}Ar (half-life=269 yr), a cosmogenic isotope with an isotopic abundance of 8x10{sup -16}. In addition to the superior selectivity demonstrated in this work, the counting rate and efficiency of atom trap trace analysis have been improved by 2 orders of magnitude over prior results. The significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the development of dark matter detectors.

  3. ANALYSIS OF RICIN TOXIN PREPARATIONS FOR CARBOHYDRATE AND FATTY ACID ABUNDANCE AND ISOTOPE RATIO INFORMATION

    SciTech Connect (OSTI)

    Wunschel, David S.; Kreuzer-Martin, Helen W.; Antolick, Kathryn C.; Colburn, Heather A.; Moran, James J.; Melville, Angela M.

    2009-12-01

    This report describes method development and preliminary evaluation for analyzing castor samples for signatures of purifying ricin. Ricin purification from the source castor seeds is essentially a problem of protein purification using common biochemical methods. Indications of protein purification will likely manifest themselves as removal of the non-protein fractions of the seed. Two major, non-protein, types of biochemical constituents in the seed are the castor oil and various carbohydrates. The oil comprises roughly half the seed weight while the carbohydrate component comprises roughly half of the remaining mash left after oil and hull removal. Different castor oil and carbohydrate components can serve as indicators of specific toxin processing steps. Ricinoleic acid is a relatively unique fatty acid in nature and is the most abundant component of castor oil. The loss of ricinoleic acid indicates a step to remove oil from the seeds. The relative amounts of carbohydrates and carbohydrate-like compounds, including arabinose, xylose, myo-inositol fucose, rhamnose, glucosamine and mannose detected in the sample can also indicate specific processing steps. For instance, the differential loss of arabinose relative to mannose and N-acetyl glucosamine indicates enrichment for the protein fraction of the seed using protein precipitation. The methods developed in this project center on fatty acid and carbohydrate extraction from castor samples followed by derivatization to permit analysis by gas chromatography-mass spectrometry (GC-MS). Method descriptions herein include: the source and preparation of castor materials used for method evaluation, the equipment and description of procedure required for chemical derivatization, and the instrument parameters used in the analysis. Two types of derivatization methods describe analysis of carbohydrates and one procedure for analysis of fatty acids. Two types of GC-MS analysis is included in the method development, one employing a quadrupole MS system for compound identification and an isotope ratio MS for measuring the stable isotope ratios of deuterium and hydrogen (D/H) in fatty acids. Finally, the method for analyzing the compound abundance data is included. This study indicates that removal of ricinoleic acid is a conserved consequence of each processing step we tested. Furthermore, the stable isotope D/H ratio of ricinoleic acid distinguished between two of the three castor seed sources. Concentrations of arabinose, xylose, mannose, glucosamine and myo-inositol differentiated between crude or acetone extracted samples and samples produced by protein precipitation. Taken together these data illustrate the ability to distinguish between processes used to purify a ricin sample as well as potentially the source seeds.

  4. Container for hydrogen isotopes

    DOE Patents [OSTI]

    Solomon, David E.

    1977-01-01

    A container for the storage, shipping and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same which has compactness, which is safe against fracture or accident, and which is reusable. The container consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example, of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and will be retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates.

  5. Laser separation of medical isotopes

    SciTech Connect (OSTI)

    Eerkens, J.W.; Puglishi, D.A.; Miller, W.H.

    1996-12-31

    There is an increasing demand for different separated isotopes as feed material for reactor and cyclotron-produced radioisotopes used by a fast-growing radiopharmaceutical industry. One new technology that may meet future demands for medical isotopes is molecular laser isotope separation (MLIS). This method was investigated for the enrichment of uranium in the 1970`s and 1980s by Los Alamos National Laboratory, Isotope Technologies, and others around the world. While South Africa and Japan have continued the development of MLIS for uranium and are testing pilot units, around 1985 the United States dropped the LANL MLIS program in favor of AVLIS (atomic vapor LIS), which uses electron-beam-heated uranium metal vapor. AVLIS appears difficult and expensive to apply to most isotopes of medical interest, however, whereas MLIS technology, which is based on cooled hexafluorides or other gaseous molecules, can be adapted more readily. The attraction of MLIS for radiopharmaceutical firms is that it allows them to operate their own dedicated separators for small-quantity productions of critical medical isotopes, rather than having to depend on large enrichment complexes run by governments, which are only optimal for large-quantity productions. At the University of Missouri, the authors are investigating LIS of molybdenum isotopes using MoF{sub 6}, which behaves in a way similar to UF{sub 6}, studied in the past.

  6. Compelling Research Opportunities using Isotopes

    SciTech Connect (OSTI)

    2009-04-23

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.

  7. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  8. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1983-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  9. FRAM isotopic analysis of uranium in thick-walled containers using high energy gamma rays and planar HPGe detectors.

    SciTech Connect (OSTI)

    Sampson, Thomas E.; Hypes, P. A.; Vo, Duc T.

    2002-01-01

    We describe the use of the Los Alamos FRAM isotopic analysis software to make the first reported measurements on thick-walled UF{sub 6} cylinders using small planar HPGe detectors of the type in common use at the IAEA. Heretofore, planar detector isotopic analysis measurements on uranium have used the 100-keV region and can be defeated by 10 mm of steel absorber. The analysis of planar detector measurements through 13-16 mm of steel shows that FRAM can successfully carry out these measurements and analysis in the 120-1024 keV energy range, a range previously thought to be the sole province of more efficient coaxial detectors. This paper describes the measurement conditions and results and also compares the results to other FRAM measurements with coaxial HPGe detectors. The technique of gamma-ray isotopic analysis of arbitrary samples is desirable for measuring the isotopic composition of uranium in UF{sub 6} cylinders because it does not require calibration with standards or knowledge of the cylinder wall thickness. The International Atomic Energy Agency (IAEA) uses the MGAU (Multi Group Analysis Uranium) uranium isotopic analysis software with planar high purity germanium (HPGe) detectors to measure the isotopic composition of uranium. Measurements on UF{sub 6} cylinders with 13-16-mm thick steel walls are usually unsuccessful because of the strong absorption of the 89-100 keV gamma rays and x-rays that MGAU requires for the measurement. This paper describes the use of the Los Alamos FRAM isotopic analysis software to make these measurements on UF{sub 6} cylinders. Uranium measurements with FRAM typically cover the energy range from 120-1001 keV and can easily be made through the walls of UF{sub 6} cylinders. While these measurements are usually performed with efficient coaxial HPGe detectors, this paper reports the first successful measurements using small planar HPGe detectors of the type in common use at the IAEA.

  10. Method for laser induced isotope enrichment

    DOE Patents [OSTI]

    Pronko, Peter P.; Vanrompay, Paul A.; Zhang, Zhiyu

    2004-09-07

    Methods for separating isotopes or chemical species of an element and causing enrichment of a desired isotope or chemical species of an element utilizing laser ablation plasmas to modify or fabricate a material containing such isotopes or chemical species are provided. This invention may be used for a wide variety of materials which contain elements having different isotopes or chemical species.

  11. Apparatus and process for separating hydrogen isotopes

    DOE Patents [OSTI]

    Heung, Leung K; Sessions, Henry T; Xiao, Xin

    2013-06-25

    The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.

  12. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOE Patents [OSTI]

    Harney, Robert C.; Bloom, Stewart D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  13. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1985-02-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for non-destructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, /sup 40/Ca and /sup 56/Fe. All request for the loan of samples should be submitted with a summary of the purpose of the loan to: Isotope Distribution Office, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831. Requests from non-DOE contractors and from foreign institutions require DOE approval.

  14. Novel hybrid isotope separation scheme and apparatus

    DOE Patents [OSTI]

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means. 3 figures.

  15. Novel hybrid isotope separation scheme and apparatus

    DOE Patents [OSTI]

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means.

  16. Isotope separation apparatus and method

    DOE Patents [OSTI]

    Feldman, Barry J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  17. Isotope Enrichment Detection by Laser Ablation - Laser Absorption Spectrometry: Automated Environmental Sampling and Laser-Based Analysis for HEU Detection

    SciTech Connect (OSTI)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-01-01

    The global expansion of nuclear power, and consequently the uranium enrichment industry, requires the development of new safeguards technology to mitigate proliferation risks. Current enrichment monitoring instruments exist that provide only yes/no detection of highly enriched uranium (HEU) production. More accurate accountancy measurements are typically restricted to gamma-ray and weight measurements taken in cylinder storage yards. Analysis of environmental and cylinder content samples have much higher effectiveness, but this approach requires onsite sampling, shipping, and time-consuming laboratory analysis and reporting. Given that large modern gaseous centrifuge enrichment plants (GCEPs) can quickly produce a significant quantity (SQ ) of HEU, these limitations in verification suggest the need for more timely detection of potential facility misuse. The Pacific Northwest National Laboratory (PNNL) is developing an unattended safeguards instrument concept, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely analysis of enrichment levels within low enriched uranium facilities. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy to characterize the uranium isotopic ratio through subtle differences in atomic absorption wavelengths. Environmental sampling (ES) media from an integrated aerosol collector is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes material from a 10 to 20-m diameter spot of the surface of the sampling media. The plume of ejected material begins as high-temperature plasma that yields ions and atoms, as well as molecules and molecular ions. We concentrate on the plume of atomic vapor that remains after the plasma has expanded and then cooled by the surrounding cover gas. Tunable diode lasers are directed through this plume and each isotope is detected by monitoring absorbance signals on a shot-to-shot basis. The media is translated by a micron resolution scanning system, allowing the isotope analysis to cover the entire sample surface. We also report, to the best of our knowledge, the first demonstration of laser-based isotopic measurements on individual micron-sized particles that are minor target components in a much larger heterogeneous mix of background particles. This composition is consistent with swipe and environmental aerosol samples typically collected for safeguards ES purposes. Single-shot detection sensitivity approaching the femtogram range and relative isotope abundance uncertainty better than 10% has been demonstrated using gadolinium isotopes as surrogate materials.

  18. Department of Energy's Isotope Development and Production for...

    Energy Savers [EERE]

    STATES DEPARTMENT OF ENERGY ISOTOPE DEVELOPMENT AND ... Program Overview The primary goal of the Isotope ... sources of research isotopes at more affordable prices. ...

  19. A system analysis computer model for the High Flux Isotope Reactor (HFIRSYS Version 1)

    SciTech Connect (OSTI)

    Sozer, M.C.

    1992-04-01

    A system transient analysis computer model (HFIRSYS) has been developed for analysis of small break loss of coolant accidents (LOCA) and operational transients. The computer model is based on the Advanced Continuous Simulation Language (ACSL) that produces the FORTRAN code automatically and that provides integration routines such as the Gear`s stiff algorithm as well as enabling users with numerous practical tools for generating Eigen values, and providing debug outputs and graphics capabilities, etc. The HFIRSYS computer code is structured in the form of the Modular Modeling System (MMS) code. Component modules from MMS and in-house developed modules were both used to configure HFIRSYS. A description of the High Flux Isotope Reactor, theoretical bases for the modeled components of the system, and the verification and validation efforts are reported. The computer model performs satisfactorily including cases in which effects of structural elasticity on the system pressure is significant; however, its capabilities are limited to single phase flow. Because of the modular structure, the new component models from the Modular Modeling System can easily be added to HFIRSYS for analyzing their effects on system`s behavior. The computer model is a versatile tool for studying various system transients. The intent of this report is not to be a users manual, but to provide theoretical bases and basic information about the computer model and the reactor.

  20. Isotope separation apparatus and method

    DOE Patents [OSTI]

    Cotter, Theodore P.

    1982-12-28

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  1. Isotopic hydrogen analysis via conventional and surface-enhanced fiber optic Raman spectroscopy

    SciTech Connect (OSTI)

    LASCOLA, ROBERT

    2004-09-23

    This report describes laboratory development and process plant applications of Raman spectroscopy for detection of hydrogen isotopes in the Tritium Facilities at the Savannah River Site (SRS), a U.S. Department of Energy complex. Raman spectroscopy provides a lower-cost, in situ alternative to mass spectrometry techniques currently employed at SRS. Using conventional Raman and fiber optics, we have measured, in the production facility glove boxes, process mixtures of protium and deuterium at various compositions and total pressures ranging from 1000-4000 torr, with detection limits ranging from 1-2 percent for as low as 3-second integration times. We are currently investigating fabrication techniques for SERS surfaces in order to measure trace (0.01-0.1 percent) amounts of one isotope in the presence of the other. These efforts have concentrated on surfaces containing palladium, which promotes hydrogen dissociation and forms metal hydride bonds, essentially providing a chemical enhancement mechanism.

  2. Isotope specific arbitrary material sorter

    DOE Patents [OSTI]

    Barty, Christopher P.J.

    2015-12-08

    A laser-based mono-energetic gamma-ray source is used to provide a rapid and unique, isotope specific method for sorting materials. The objects to be sorted are passed on a conveyor in front of a MEGa-ray beam which has been tuned to the nuclear resonance fluorescence transition of the desired material. As the material containing the desired isotope traverses the beam, a reduction in the transmitted MEGa-ray beam occurs. Alternately, the laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  3. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high-abundance, naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56. All requests for the loan of samples should be submitted with a summary of the purpose of the loan to: Iotope Distribution Office, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831. Requests from non-DOE contractors and from foreign institutions require DOE approval.

  4. The Multi-Isotope Process Monitor: Multivariate Analysis of Gamma Spectra

    SciTech Connect (OSTI)

    Orton, Christopher R.; Rutherford, Crystal E.; Fraga, Carlos G.; Schwantes, Jon M.

    2011-10-30

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of nuclear material are not diverted from these facilities. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). The time delay between sampling and subsequent DA provides a potential opportunity to divert the material out of the appropriate chemical stream. Leveraging new on-line nondestructive assay (NDA) techniques in conjunction with the traditional and highly precise DA methods may provide a more timely, cost-effective and resource efficient means for MC&A verification at such facilities. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including the Multi-Isotope Process (MIP) Monitor. The MIP Monitor uses gamma spectroscopy and pattern recognition software to identify off-normal conditions in process streams. Recent efforts have been made to explore the basic limits of using multivariate analysis techniques on gamma-ray spectra. This paper will provide an overview of the methods and report our on-going efforts to develop and demonstrate the technology.

  5. Isotope geochronology of metamorphic processes

    SciTech Connect (OSTI)

    Ovchinnikov, L.N.; Voronovskiy, S.N.; Ovchinnikova, L.V.

    1986-05-01

    The long history of the earth and its crust is a history of uninterrupted and continuing transformation, making metamorphism the most common and most extensive geological process on this planet. Metamorphism has occurred in all epochs and is a factor in all endogenic processes: geodynamics, magmatism, and the action of intratelluric fluids. But it varies in scale, type, and mechanism, and is always combined with metasomatism - the chemical and mineral transformation of material. This paper discusses methodological principles of isotope dating, laws characterizing changes in indicator minerals, internal stability of isotopic systems, and interesting geological problems. 13 references.

  6. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-03-30

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  7. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, James W.

    1993-01-01

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  8. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-05-08

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using, a metal hydride.

  9. Isotope separation by photochromatography (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    The method is particularly applicable to the separation of hydrogen isotopes. Authors: ... particularly; applicable; separation; hydrogen; isotopes; excited molecules; hydrogen ...

  10. Online Catalog of Isotope Products from DOE's National Isotope Development Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. The Isotope subprogram supports the production, and the development of production techniques of radioactive and stable isotopes that are in short supply for research and applications. Isotopes are high-priority commodities of strategic importance for the Nation and are essential for energy, medical, and national security applications and for basic research; a goal of the program is to make critical isotopes more readily available to meet domestic U.S. needs. This subprogram is steward of the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL), the Brookhaven Linear Isotope Producer (BLIP) facility at BNL, and hot cell facilities for processing isotopes at ORNL, BNL and LANL. The subprogram also coordinates and supports isotope production at a suite of university, national laboratory, and commercial accelerator and reactor facilities throughout the Nation to promote a reliable supply of domestic isotopes. The National Isotope Development Center (NIDC) at ORNL coordinates isotope production across the many facilities and manages the business operations of the sale and distribution of isotopes.

  11. Isotopes for cancer and cardiac care

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes for cancer Isotopes for cancer and cardiac care Eva Birnbaum is interviewed on KSFR radio on the Lab's Isotope Program February 4, 2016 hot cell facility A worker uses remote manipulator arms to handle a highly radioactive target inside the Lab's radiochemistry hot cell facility. Isotopes from Los Alamos are used for the diagnosis of cardiac disease, for the calibration of PET scanners which in turn diagnose cancer, neurological disease, inflammatory diseases, trauma, and other

  12. Science with Beams of Radioactive Isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pacifichem 2015 Pacifichem 2015 The International Chemical Congress of Pacific Basin Societies Science with Beams of Radioactive Isotopes (# 340) Honolulu, Hawaii, USA December 15-20, 2015 Science with Beams of Radioactive Isotopes (# 340) All of the elements that make up the periodic chart have been created from nuclear reactions. Many of the stable nuclei in the universe are daughters of unstable isotopes, and their true origin lies in the stellar reactions of these radioactive isotopes. Thus

  13. Dry phase reactor for generating medical isotopes

    DOE Patents [OSTI]

    Mackie, Thomas Rockwell; Heltemes, Thad Alexander

    2016-05-03

    An apparatus for generating medical isotopes provides for the irradiation of dry-phase, granular uranium compounds which are then dissolved in a solvent for separation of the medical isotope from the irradiated compound. Once the medical isotope is removed, the dissolved compound may be reconstituted in dry granular form for repeated irradiation.

  14. Isotope Cancer Treatment Research at LANL

    ScienceCinema (OSTI)

    Weidner, John; Nortier, Meiring

    2014-06-02

    Los Alamos National Laboratory has produced medical isotopes for diagnostic and imaging purposes for more than 30 years. Now LANL researchers have branched out into isotope cancer treatment studies. New results show that an accelerator-based approach can produce clinical trial quantities of actinium-225, an isotope that has promise as a way to kill tumors without damaging surrounding healthy cells.

  15. Evaluation of Groundwater Movement in the Frenchman Flat CAU Using Geochemical and Isotopic Analysis

    SciTech Connect (OSTI)

    R. Hershey; J. Thomas; T. Rose; J. Paces; I. Farnham; C. Benedict, Jr.

    2005-03-01

    The principal pathway for radionuclide migration from underground tests in Frenchman Flat, on the Nevada Test Site, to the accessible environment is groundwater flow. Two potential pathways for radionuclide transport via groundwater have been identified from hydrologic data: (1) radionuclide transport downward from the alluvial and volcanic aquifers into the underlying carbonate aquifer; and (2) radionuclide transport laterally to the carbonate aquifer surrounding Frenchman Flat. This report presents an evaluation of geochemical and environmental isotopic data to test these potential pathways and to identify other groundwater flowpaths in, and out of, Frenchman Flat.

  16. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    SciTech Connect (OSTI)

    Nimz, G. J., LLNL

    1998-06-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water. Many solutes in natural waters are derived from the interaction between the water and the rock and/or soil within the system - these are termed `lithogenic` solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both within and outside of the catchment - i.e., in addition to being derived from catchment rock and soil, they are solutes that are also transported into the catchment. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing `cosmogenic` nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing `thermonuclear` nuclides), or radioactive and fission decay of naturally-occurring elements, principally {sup 238}U (producing `in-situ` lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading `cosmogenic nuclides`, and for simplicity we will often follow that usage here, although always indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute concentrations in catchment waters, and how the isotopic compositions of the solutes can be used in integrative ways to identify these processes, thereby revealing the physical history of the water within a catchment system. The concept of a `system` is important in catchment hydrology. A catchment is the smallest landscape unit that can both participate in all of the aspects of the hydrologic cycle and also be treated as a mostly closed system for mass balance considerations. It is the near closure of the system that permits well- constrained chemical mass balance calculations to be made. These calculations generally focus of lithogenic solutes, and therefore in our discussions of lithogenic nuclides in the paper, the concept of chemical mass balance in a nearly dosed system will play an important role. Examination of the isotopic compositions of solutes provides a better understanding of the variety of processes controlling mass balance. It is with this approach that we examined the variety of processes occurring within the catchment system, such as weathering and soil production, generation of stormflow and streamflow (hydrograph separation), movement of soil pore water, groundwater flow, and the overall processes involved with basinal water balance. In this paper, the term `nuclide` will be used when referring to a nuclear species that contains a particular number of protons and neutrons. The term is not specific to any element. The term `isotope` will be used to distinguish nuclear species of a given element (atoms with the same number of protons). That is to say, there are many nuclides in nature - for example, {sup 36}Cl, {sup 87}Sr, {sup 238}U; the element has four naturally-occurring isotopes - {sup 87}Sr, and {sup 88}Sr. This paper will first discuss the general principles that underlie the study of lithogenic and cosmogenic nuclides in hydrology, and provide references to some of the more important studies applying these principles and nuclides. We then turn in the second section to a discussion of their specific applications in catchment- scale systems. The final section of this paper discusses new directions in the application of lithogenic and cosmogenic nuclides to catchment hydrology, with some thoughts concerning possible applications that still remain unexplored.

  17. Laser ablation molecular isotopic spectrometry of carbon isotopes

    SciTech Connect (OSTI)

    Bol'shakov, Alexander A.; Jain, Jinesh; Russo, Richard E.; McIntyre, Dustin; Mao, Xianglei

    2015-08-28

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented:empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5–476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrumyielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies

  18. Stable Isotope Enrichment Capabilities at ORNL

    SciTech Connect (OSTI)

    Egle, Brian; Aaron, W Scott; Hart, Kevin J

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

  19. Isotope shifts in francium isotopes Fr 206 - 213 and Fr 221

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collister, R.; Gwinner, G.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Zhang, J.; Orozco, L. A.; Aubin, S.; Gomez, E.; FrPNC Collaboration

    2014-11-07

    We present the isotope shifts of the 7s1/2 to 7p1/2 transition for francium isotopes ²⁰⁶⁻²¹³Fr with reference to ²²¹Fr collected from two experimental periods. The shifts are measured on a sample of atoms prepared within a magneto-optical trap by a fast sweep of radio-frequency sidebands applied to a carrier laser. King plot analysis, which includes literature values for 7s1/2 to 7p3/2 isotope shifts, provides a field shift constant ratio of 1.0520(10) and a difference between the specific mass shift constants of 170(100) GHz amu between the D₁ and D₂ transitions, of sufficient precision to differentiate between ab initio calculations.

  20. METHOD AND APPARATUS FOR COLLECTING ISOTOPES

    DOE Patents [OSTI]

    Leyshon, W.E.

    1957-08-01

    A method and apparatus for collecting isotopes having a high vapor pressure, such as isotopes of mercury, in a calutron are described. Heretofore, the collected material would vaporize and escape from the ion receiver as fast as it was received. By making the receiver of pure silver, the mercury isotopes form a nonvolatile amalgam with the silver at the water cooled temperature of the receiver, and the mercury is thus retained.

  1. A Capillary Absorption Spectrometer for Stable Carbon Isotope Ratio (13C/12C) Analysis in Very Small Samples

    SciTech Connect (OSTI)

    Kelly, James F.; Sams, Robert L.; Blake, Thomas A.; Newburn, Matthew K.; Moran, James J.; Alexander, M. L.; Kreuzer, Helen W.

    2012-02-06

    A capillary absorption spectrometer (CAS) suitable for IR laser isotope analysis of small CO{sub 2} samples is presented. The system employs a continuous-wave (cw) quantum cascade laser to study nearly adjacent rovibrational transitions of different isotopologues of CO{sub 2} near 2307 cm{sup -1} (4.34 {mu}m). This initial CAS system can achieve relative isotopic precision of about 10 ppm {sup 13}C, or {approx}1{per_thousand} (per mil in delta notation relative to Vienna Pee Dee Belemnite) with 20-100 picomoles of entrained sample within the hollow waveguide for CO{sub 2} concentrations {approx}400 to 750 ppm. Isotopic analyses of such gas fills in a 1-mm ID hollow waveguide of 0.8 m overall physical path length can be carried out down to {approx}2 Torr. Overall {sup 13}C/{sup 12}C ratios can be calibrated to {approx}2{per_thousand} accuracy with diluted CO{sub 2} standards. A novel, low-cost method to reduce cw-fringing noise resulting from multipath distortions in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level (peak-to-rms) after 1,000 scans are co-added in {approx}10 sec. The CAS is meant to work directly with converted CO{sub 2} samples from a Laser Ablation-Catalytic-Combustion (LA CC) micro-sampler to provide {sup 13}C/{sup 12}C ratios of small biological isolates with spatial resolutions {approx}50 {mu}m.

  2. EIS-0249: Medical Isotopes Production Project

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to establish a production capability for molybdenum-99 (Mo-99) and related medical isotopes.

  3. Categorical Exclusion 4577: Lithium Isotope Separation & Enrichment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Isotope Separation & Enrichment Technologies (4577) Program or Field Office: Y-12 Site Office Location(s) (CityCountyState): Oak Ridge, Anderson County, Tennessee...

  4. Isotope production agreement benefits medical patients | National...

    National Nuclear Security Administration (NNSA)

    Francis Tsang of Global Medical Isotope Systems (GMIS), Dr. Chris Deeney of National Security Technologies (NSTec), and Zane Wilson, Chief Executive Officer of GMIS, observe the ...

  5. Nitrogen concentration and isotope dataset for environmental...

    Office of Scientific and Technical Information (OSTI)

    (BER) Country of Publication: United States Availability: ORNL Language: English Subject: 54 Environmental Sciences ngee; ngee-arctic; nitrate concentrations; nitrate isotopes; ...

  6. Method for isotope enrichment by photoinduced chemiionization

    DOE Patents [OSTI]

    Dubrin, James W.

    1985-01-01

    Isotope enrichment, particularly .sup.235 U enrichment, is achieved by irradiating an isotopically mixed vapor feed with radiant energy at a wavelength or wavelengths chosen to selectively excite the species containing a desired isotope to a predetermined energy level. The vapor feed if simultaneously reacted with an atomic or molecular reactant species capable of preferentially transforming the excited species into an ionic product by a chemiionization reaction. The ionic product, enriched in the desired isotope, is electrostatically or electromagnetically extracted from the reaction system.

  7. Uranium isotopes fingerprint biotic reduction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  8. Uranium isotopes fingerprint biotic reduction

    SciTech Connect (OSTI)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  9. Spatial periphery of lithium isotopes

    SciTech Connect (OSTI)

    Galanina, L. I. Zelenskaja, N. S.

    2013-12-15

    The spatial structure of lithium isotopes is studied with the aid of the charge-exchange and (t, p) reactions on lithium nuclei. It is shown that an excited isobaric-analog state of {sup 6}Li (0{sup +}, 3.56MeV) has a halo structure formed by a proton and a neutron, that, in the {sup 9}Li nucleus, there is virtually no neutron halo, and that {sup 11}Li is a Borromean nucleus formed by a {sup 9}Li core and a two-neutron halo manifesting itself in cigar-like and dineutron configurations.

  10. Uranium molecular laser isotope separation

    SciTech Connect (OSTI)

    Jensen, R.J.; Sullivan, A.

    1982-01-01

    The Molecular Laser Isotope Separation program is moving into the engineering phase, and it is possible to determine in some detail the plant cost terms involved in the process economics. A brief description of the MLIS process physics is given as a motivation to the engineering and economics discussion. Much of the plant cost arises from lasers and the overall optical system. In the paper, the authors discuss lasers as operating units and systems, along with temporal multiplexing and Raman shifting. Estimates of plant laser costs are given.

  11. Hydrogen-isotope permeation barrier

    DOE Patents [OSTI]

    Maroni, Victor A.; Van Deventer, Erven H.

    1977-01-01

    A composite including a plurality of metal layers has a Cu-Al-Fe bronze layer and at least one outer layer of a heat and corrosion resistant metal alloy. The bronze layer is ordinarily intermediate two outer layers of metal such as austenitic stainless steel, nickel alloys or alloys of the refractory metals. The composite provides a barrier to hydrogen isotopes, particularly tritium that can reduce permeation by at least about 30 fold and possibly more below permeation through equal thicknesses of the outer layer material.

  12. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor

    SciTech Connect (OSTI)

    Ilas, Germina; Gauld, Ian C

    2011-01-01

    This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.

  13. Final Report, NEAC Subcommittee for Isotope Research & Production Planning

    Energy Savers [EERE]

    | Department of Energy Final Report, NEAC Subcommittee for Isotope Research & Production Planning Final Report, NEAC Subcommittee for Isotope Research & Production Planning Isotopes, including both radioactive and stable isotopes, make important contributions to research, medicine, and industry in the United States and throughout the world. For nearly fifty years, the Department of Energy (DOE) has actively promoted the use of isotopes by funding (a) production of isotopes at a

  14. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    SciTech Connect (OSTI)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  15. Efficient palladium isotope chromatograph for hydrogen (EPIC)

    SciTech Connect (OSTI)

    Embury, M.C.; Ellefson, R.E.; Melke, H.B. )

    1992-03-01

    The Efficient Palladium Isotope Chromatograph (EPIC) is a rapid cycling, computer-operated displacement chromatograph for the separation of hydrogen isotopes. EPIC incorporates several features that optimize product throughput and purity. This paper describes this palladium displacement chromatograph, the operations with protium and deuterium, and the design modifications for operation with tritium.

  16. Isotope separation by selective photodissociation of glyoxal

    DOE Patents [OSTI]

    Marling, John B.

    1976-01-01

    Dissociation products, mainly formaldehyde and carbon monoxide, enriched in a desired isotope of carbon, oxygen, or hydrogen are obtained by the selective photodissociation of glyoxal wherein glyoxal is subjected to electromagnetic radiation of a predetermined wavelength such that photon absorption excites and induces dissociation of only those molecules of glyoxal containing the desired isotope.

  17. First AID (Atom counting for Isotopic Determination).

    SciTech Connect (OSTI)

    Roach, J. L. (Jeffrey L.); Israel, K. M. (Kimberly M.); Steiner, R. E. (Robert E.); Duffy, C. J. (Clarence J.); Roench, F. R. (Fred R.)

    2002-01-01

    Los Alamos National Laboratory (LANL) has established an in vitro bioassay monitoring program in compliance with the requirements in the Code of Federal Regulations, 10 CFR 835, Occupational Radiation Protection. One aspect of this program involves monitoring plutonium levels in at-risk workers. High-risk workers are monitored using the ultra-sensitive Therrnal Ionization Mass Spectrometry (TIMS) technique to ensure compliance with DOE standards. TIMS is used to measure atom ratios of 239Pua nd 240Puw ith respect to a tracer isotope ('Pu). These ratios are then used to calculate the amount of 239Pu and 240Pup resent. This low-level atom counting technique allows the calculation of the concentration levels of 239Pu and 240Pu in urine for at risk workers. From these concentration levels, dose assessments can be made and worker exposure levels can be monitored. Detection limits for TIMS analysis are on the order of millions of atoms, which translates to activity levels of 150 aCi 239Pua nd 500 aCi for 240Pu. pCi for Our poster presentation will discuss the ultra-sensitive, low-level analytical technique used to measure plutonium isotopes and the data verification methods used for validating isotopic measurements.

  18. Manus Water Isotope Investigation Field Campaign Report (Program...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Program Document: Manus Water Isotope Investigation Field Campaign Report Citation Details In-Document Search Title: Manus Water Isotope ...

  19. Plutonium Isotopes in the Terrestrial Environment at the Savannah...

    Office of Scientific and Technical Information (OSTI)

    Plutonium Isotopes in the Terrestrial Environment at the Savannah River Site, USA. A Long-Term Study Citation Details In-Document Search Title: Plutonium Isotopes in the ...

  20. Permeation of Multiple Isotopes in the Transition Between Surface...

    Office of Environmental Management (EM)

    Permeation of Multiple Isotopes in the Transition Between Surface- and Diffusion-Limited Regimes Permeation of Multiple Isotopes in the Transition Between Surface- and...

  1. Advances in Hydrogen Isotope Separation Using Thermal Cycling...

    Office of Environmental Management (EM)

    Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) Advances in Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) Presentation...

  2. Selected Isotopes for Optimized Fuel Assembly Tags

    SciTech Connect (OSTI)

    Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

    2008-10-01

    In support of our ongoing signatures project we present information on 3 isotopes selected for possible application in optimized tags that could be applied to fuel assemblies to provide an objective measure of burnup. 1. Important factors for an optimized tag are compatibility with the reactor environment (corrosion resistance), low radioactive activation, at least 2 stable isotopes, moderate neutron absorption cross-section, which gives significant changes in isotope ratios over typical fuel assembly irradiation levels, and ease of measurement in the SIMS machine 2. From the candidate isotopes presented in the 3rd FY 08 Quarterly Report, the most promising appear to be Titanium, Hafnium, and Platinum. The other candidate isotopes (Iron, Tungsten, exhibited inadequate corrosion resistance and/or had neutron capture cross-sections either too high or too low for the burnup range of interest.

  3. Device and method for separating oxygen isotopes

    DOE Patents [OSTI]

    Rockwood, Stephen D.; Sander, Robert K.

    1984-01-01

    A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.

  4. Atomic vapor laser isotope separation of lead-210 isotope

    DOE Patents [OSTI]

    Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.

    1999-08-31

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.

  5. Atomic vapor laser isotope separation of lead-210 isotope

    DOE Patents [OSTI]

    Scheibner, Karl F.; Haynam, Christopher A.; Johnson, Michael A.; Worden, Earl F.

    1999-01-01

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207.

  6. Isotope Production and Distribution Program`s Fiscal Year 1997 financial statement audit

    SciTech Connect (OSTI)

    1998-03-27

    The Department of Energy Isotope Production and Distribution Program mission is to serve the national need for a reliable supply of isotope products and services for medicine, industry and research. The program produces and sells hundreds of stable and radioactive isotopes that are widely utilized by domestic and international customers. Isotopes are produced only where there is no U.S. private sector capability or other production capacity is insufficient to meet U.S. needs. The Department encourages private sector investment in new isotope production ventures and will sell or lease its existing facilities and inventories for commercial purposes. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund established by the Fiscal Year (FY) 1990 Energy and Water Appropriations Act and maintains financial viability by earning revenues from the sale of isotopes and services and through annual appropriations. The FY 1995 Energy and Water Appropriations Act modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Although the Isotope Program functions as a business, prices set for small-volume, high-cost isotopes that are needed for research purposes may not achieve full-cost recovery. As a result, isotopes produced by the Isotope Program for research and development are priced to provide a reasonable return to the U.S. Government without discouraging their use. Commercial isotopes are sold on a cost-recovery basis. Because of its pricing structure, when selecting isotopes for production, the Isotope Program must constantly balance current isotope demand, market conditions, and societal benefits with its determination to operate at the lowest possible cost to U.S. taxpayers. Thus, this report provides a financial analysis of this situation.

  7. Apparatus for storing hydrogen isotopes

    DOE Patents [OSTI]

    McMullen, John W.; Wheeler, Michael G.; Cullingford, Hatice S.; Sherman, Robert H.

    1985-01-01

    An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas(es) is (are) stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forming at a significantly lower temperature).

  8. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1985-11-08

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

  9. Heavy neodymium isotopes in the interacting boson (IBA-2) model

    SciTech Connect (OSTI)

    Giannatiempo, A.

    2011-08-15

    The N>82 even neodymium isotopes were studied in the framework of the IBA-2 model. The analysis was performed by using a very schematic Hamiltonian, particularly suited to investigate the U(5) {yields} SU(3) transition. The evolution of the excitation energy patterns and of the spectroscopic properties along the isotopic chain can be correctly reproduced when the role played by states of mixed symmetry character is also taken into account.

  10. Isotope separation by photoselective dissociative electron capture

    DOE Patents [OSTI]

    Stevens, Charles G. [Pleasanton, CA

    1978-08-29

    A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

  11. Isotope separation by photoselective dissociative electron capture

    DOE Patents [OSTI]

    Stevens, C.G.

    1978-08-29

    Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

  12. GADRAS isotope ID users manual for analysis of gamma-ray measurements and API for Linux and Android .

    SciTech Connect (OSTI)

    Mitchell, Dean J; Harding, Lee T.

    2014-05-01

    Isotope identification algorithms that are contained in the Gamma Detector Response and Analysis Software (GADRAS) can be used for real-time stationary measurement and search applications on platforms operating under Linux or Android operating sys-tems. Since the background radiation can vary considerably due to variations in natu-rally-occurring radioactive materials (NORM), spectral algorithms can be substantial-ly more sensitive to threat materials than search algorithms based strictly on count rate. Specific isotopes or interest can be designated for the search algorithm, which permits suppression of alarms for non-threatening sources, such as such as medical radionuclides. The same isotope identification algorithms that are used for search ap-plications can also be used to process static measurements. The isotope identification algorithms follow the same protocols as those used by the Windows version of GADRAS, so files that are created under the Windows interface can be copied direct-ly to processors on fielded sensors. The analysis algorithms contain provisions for gain adjustment and energy lineariza-tion, which enables direct processing of spectra as they are recorded by multichannel analyzers. Gain compensation is performed by utilizing photopeaks in background spectra. Incorporation of this energy calibration tasks into the analysis algorithm also eliminates one of the more difficult challenges associated with development of radia-tion detection equipment.

  13. Uranium accountancy in Atomic Vapor Laser Isotope Separation

    SciTech Connect (OSTI)

    Carver, R.D.

    1986-01-01

    The AVLIS program pioneers the large scale industrial application of lasers to produce low cost enriched uranium fuel for light water reactors. In the process developed at Lawrence Livermore National Laboratory, normal uranium is vaporized by an electron beam, and a precisely tuned laser beam selectively photo-ionizes the uranium-235 isotopes. These ions are moved in an electromagnetic field to be condensed on the product collector. All other uranium isotopes remain uncharged and pass through the collector section to condense as tails. Tracking the three types of uranium through the process presents special problems in accountancy. After demonstration runs, the uranium on the collector was analyzed for isotopic content by Battelle Pacific Northwest Laboratory. Their results were checked at LLNL by analysis of parallel samples. The differences in isotopic composition as reported by the two laboratories were not significant.

  14. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    SciTech Connect (OSTI)

    Matsuyama, M.; Kondo, M.; Noda, N.; Tanaka, M.; Nishimura, K.

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel is limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)

  15. Isotopic Generation and Confirmation of the PWR Application Model 

    SciTech Connect (OSTI)

    L.B. Wimmer

    2003-11-10

    The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from pressurized water reactors (PWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000). The isotopic database consists of the set of 14 actinides and 15 fission products presented in Section 3.5.2.1.1 of YMP 2000 for use in CSNF burnup credit. This set of 29 isotopes is referred to as the principal isotopes. The oxygen isotope from the UO{sub 2} fuel is also included in the database. The isotopic database covers enrichments of {sup 235}U ranging from 1.5 to 5.5 weight percent (wt%) and burnups ranging from approximately zero to 75 GWd per metric ton of uranium (mtU). The choice of fuel assembly and operating history values used in generating the isotopic database are provided is Section 5. Tables of isotopic concentrations for the 29 principal isotopes (plus oxygen) as a function of enrichment and burnup are provided in Section 6.1. Results of the confirmation of the conservatism with respect to criticality in the isotopic concentration values are provided in Section 6.2.

  16. Y-12 begins to separate lithium isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    begins to separate lithium isotopes During the years from 1946 through the early 1950s, Y-12 continued to expand as needed to meet the demand for a growing primary mission of...

  17. Atomic vapor laser isotope separation process

    DOE Patents [OSTI]

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  18. Isotope separation by photochromatography (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Isotope separation by photochromatography Citation Details In-Document Search Title: Isotope separation by photochromatography An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface

  19. Environmental assessment: special isotope separation process selection

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    This Environmental Assessment (EA) evaluates the differences in potential environmental impacts between two plutonium Special Isotope Separation (SIS) technologies: Atomic Vapor Laser Isotope Separation (AVLIS) and Molecular Laser Isotope Separation (MLIS). Both SIS technologies use PuO/sub 2/ as feed; AVLIS converts feed to plutonium metal and MLIS converts feed to PuF/sub 6/. The AVLIS process uses laser energy to selectively photoionize and electrostatically separate plutonium isotopes from an atomic vapor stream. The MLIS process uses laser energy to selectively disassociate specific isotopes of plutonium in the form of PuF/sub 6/ molecules to create PuF/sub 5/ for collection and further processing. Both processes produce plutonium metal as their product. An evaluation of differences in potential environmental impacts attributed to the construction of an SIS facility, based on either technology, included a comparison of construction materials, land areas required, and the size of the design and construction workforce. The differences in potential environmental impacts from operating an SIS facility were also compared. No large differences in potential environmental impacts would be expected from the use of process chemicals. An AVLIS or an MLIS facility would produce operating effluents that would meet all applicable radiation, chemical, and hazardous waste standards and would be constructed to protect workers, the public and the environment. This EA has not revealed any significant differences in the potential environmental impacts that could occur as a result of deploying either the AVLIS or the MLIS Special Isotope Separation technology.

  20. International Workshop on Gamma Spectrometry Analysis Codes for U and Pu Isotopics: Workshop Results and Next Steps

    SciTech Connect (OSTI)

    McGinnis, Brent R; Solodov, Alexander A; Shipwash, Jacqueline L; Zhernosek, Alena V; McKinney, Teressa L; Pickett, Chris A; Peerani, Paolo

    2009-01-01

    In November 2008, the Institute of Nuclear Materials Management (INMM) and the European Safeguards Research and Development Association (ESARDA) co-hosted the International Workshop on Gamma Spectrometry Analysis Codes for U and Pu Isotopics at the Oak Ridge National Laboratory (ORNL). This workshop was conducted in response to needs expressed by the international safeguards community to understand better the capabilities and limitations of the codes; to ensure these codes are sustained; and to ensure updates or revisions are performed in a controlled manner. The workshop was attended by approximately 100 participants. The participants included code developers, code suppliers, safeguards specialists, domestic and international inspectors, process operators, regulators, and programme sponsors from various government agencies. The workshop provided a unique opportunity for code developers, commercial distributors and end users to interact in a hands-on laboratory environment to develop solutions for programmatic and technical issues associated with the various codes. The workshop also provided an international forum for discussing development of an internationally accepted standard test method. This paper discusses the organization of the workshop, its goals and objectives and feedback received from the participants. The paper also describes the significance of the working group's contribution to improving codes that are commonly used during inspections to verify that nuclear facilities are compliant with treaty obligations that ensure nuclear fuel cycle facilities are used for peaceful purposes.

  1. Laser Isotope Separation Employing Condensation Repression

    SciTech Connect (OSTI)

    Eerkens, Jeff W.; Miller, William H.

    2004-09-15

    Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

  2. Diffusion in silicon isotope heterostructures

    SciTech Connect (OSTI)

    Silvestri, Hughes Howland

    2004-05-14

    The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and {sup 28}Si enriched layers, enables the observation of {sup 30}Si self-diffusion from the natural layers into the {sup 28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly positively charged P species. Additionally, the temperature dependence of the diffusion coefficient of Si in Ge was measured over the temperature range of 550 C to 900 C using a buried Si layer in an epitaxially grown Ge layer.

  3. Apparatus for separating and recovering hydrogen isotopes

    DOE Patents [OSTI]

    Heung, Leung K.

    1994-01-01

    An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

  4. Absolute photoneutron cross sections of Sm isotopes

    SciTech Connect (OSTI)

    Gheorghe, I.; Glodariu, T.; Utsunomiya, H.; Filipescu, D.; Nyhus, H.-T.; Renstrom, T.; Tesileanu, O.; Shima, T.; Takahisa, K.; Miyamoto, S.

    2015-02-24

    Photoneutron cross sections for seven samarium isotopes, {sup 144}Sm, {sup 147}Sm, {sup 148}Sm, {sup 149}Sm, {sup 150}Sm, {sup 152}Sm and {sup 154}Sm, have been investigated near neutron emission threshold using quasimonochromatic laser-Compton scattering γ-rays produced at the synchrotron radiation facility NewSUBARU. The results are important for nuclear astrophysics calculations and also for probing γ-ray strength functions in the vicinity of neutron threshold. Here we describe the neutron detection system and we discuss the related data analysis and the necessary method improvements for adapting the current experimental method to the working parameters of the future Gamma Beam System of Extreme Light Infrastructure - Nuclear Physics facility.

  5. Overview of the U.S. Department of Energy's Isotope Programs

    SciTech Connect (OSTI)

    Carty, J.

    2004-10-05

    This presentation provides an overview of the U.S. Department of Energy's Isotopes Program. The charter of the Isotope Programs covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials, and related isotope services.

  6. Laser isotope separation by multiple photon absorption

    DOE Patents [OSTI]

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  7. Principles of isotope geology. Second edition

    SciTech Connect (OSTI)

    Faure, G.

    1986-01-01

    This is a text in isotope geology/geoscience that integrates material taught in various courses into a unified picture of the earth sciences. It presents an exposition of the principles used in the interpretation of isotopic data and shows how such interpretations apply to the solution of geological problems. References up to 1985 are included with chapters in this edition. New chapters on Sm-Nd, Lu-Hf Re-Os, and K-Ca decay schemes and cosmogenic radionuclides have been added. Data summaries and references have been expanded.

  8. Laser isotope separation by multiple photon absorption

    DOE Patents [OSTI]

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1987-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  9. Laser isotope separation by multiple photon absorption

    DOE Patents [OSTI]

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1977-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  10. Method for production of an isotopically enriched compound

    DOE Patents [OSTI]

    Watrous, Matthew G.

    2012-12-11

    A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.

  11. Ion laser isotope enrichment by photo-predissociation of formaldehyde

    DOE Patents [OSTI]

    Marling, John B.

    1977-06-17

    Enrichment of carbon, hydrogen and/or oxygen isotopes by means of isotopically selective photo-predissociation of formaldehyde is achieved by irradiation with a fixed frequency ion laser, specifically, a neon, cadmium, or xenon ion laser.

  12. Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility...

    Office of Environmental Management (EM)

    Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 The ...

  13. GUM Analysis for TIMS Isotopic Ratios in BEP0 Graphite Qualification Samples, Round 2

    SciTech Connect (OSTI)

    Gerlach, David C.; Heasler, Patrick G.; Reid, Bruce D.

    2009-01-01

    In May 2007, one set of three samples from NBL were addressed to Steve Petersen for TIMS analysis, and included BEP0 samples numbered 27008, 30986, and 50846. All cores were trimmed by tooling, and lightly cleaned by CO2 pellet blasting. Small discs were cut from the second set of samples for SIMS analysis, with the remainder of each used for TIMS preparation.

  14. Mapping quadrupole collectivity in the Cd isotopes: The breakdown...

    Office of Scientific and Technical Information (OSTI)

    ... LIFETIME; MEV RANGE; NUCLEAR POTENTIAL; SILVER 112; SPHERICAL CONFIGURATION; SPIN; ... PROPERTIES; POTENTIALS; RADIOISOTOPES; SILVER ISOTOPES; SPECTROSCOPY Word Cloud More ...

  15. U235: A Gamma Ray Analysis Code for Uranium Isotopic Determination

    Office of Scientific and Technical Information (OSTI)

    ... The Th and Pa x-ray peaks are tied to the 235U decay and might give a useful data ... but the low count rate makes getting decent statistics for analysis very time consuming. ...

  16. Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    SciTech Connect (OSTI)

    Kathawa, J.; Fry, C.; Thoennessen, M., E-mail: thoennessen@nscl.msu.edu

    2013-01-15

    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  17. Laser Isotope Enrichment for Medical and Industrial Applications

    SciTech Connect (OSTI)

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation repression. In this scheme a gas, of the selected isotopes for enrichment, is irradiated with a laser at a particular wavelength that would excite only one of the isotopes. The entire gas is subject to low temperatures sufficient to cause condensation on a cold surface. Those molecules in the gas that the laser excited are not as likely to condense as are the unexcited molecules. Hence the gas drawn out of the system will be enriched in the isotope that was excited by the laser. We have evaluated the relative energy required in this process if applied on a commercial scale. We estimate the energy required for laser isotope enrichment is about 20% of that required in centrifuge separations, and 2% of that required by use of "calutrons".

  18. Strontium-isotope stratigraphy of Enewetak Atoll

    SciTech Connect (OSTI)

    Ludwig, K.R.; Halley, R.B.; Simmons, K.R.; Peterman, Z.E.

    1988-02-01

    /sup 87/Sr//sup 86/Sr ratios determined for samples from a 350 m core of Neogene lagoonal, shallow-water limestones from Enewetak Atoll display a remarkably informative trend. Like the recently published data for Deep Sea Drilling Project (DSDP) carbonates, /sup 87/Sr//sup 86/Sr at Enewetak increases monotonically but not smoothly from the early Miocene to the Pleistocene. The data show intervals of little or no change in /sup 87/Sr//sup 86/Sr, punctuated by sharp transitions to lower values toward greater core depths. The sharp transitions correlate with observed solution disconformities caused by periods of subaerial erosion, whereas the intervals of little or no change in /sup 87/Sr//sup 86/Sr correspond to intervals of rapid accumulation of shallow-water carbonate sediments. When converted to numerical ages using the published DSDP 590B trend, the best-resolved time breaks are at 282 m (12.3 to 18.2 Ma missing) and 121.6 m (3.0 to 5.3 Ma missing) below the lagoon floor. At Enewetak, Sr isotopes offer a stratigraphic resolution for these shallow-marine Neogene carbonates comparable to that of nannofossil zonation in deep-sea carbonates (0.3-3 m.y.). In addition, the correlation of times of Sr-isotope breaks at Enewetak with times of rapid Sr-isotope change in the DSDP 590B samples confirms the importance of sea-level changes in the evolution of global-marine Sr isotopes and shows that the Sr-isotope response to sea-level falls is rapid.

  19. Method of enhancing selective isotope desorption from metals

    DOE Patents [OSTI]

    Knize, Randall J. (Plainsboro, NJ); Cecchi, Joseph L. (Lawrenceville, NJ)

    1984-01-01

    A method of enhancing the thermal desorption of a first isotope of a diatomic gas from a metal comprises the steps of (a) establishing a partial pressure of a second isotope of the diatomic gas in vicinity of the metal; heating the metal to a temperature such that the first isotope is desorbed from the metal; and reducing the partial pressure of the desorbed first isotope while maintaining the partial pressure of the second isotope substantially constant. The method is especially useful for enhancing the desorption of tritium from the Zr-Al getter in a plasma confinement device.

  20. Enriching stable isotopes: Alternative use for Urenco technology

    SciTech Connect (OSTI)

    Rakhorst, H.; de Jong, P.G.T.; Dawson, P.D.

    1996-12-31

    The International Urenco Group utilizes a technologically advanced centrifuge process to enrich uranium in the fissionable isotope {sup 235}U. The group operates plants in the United Kingdom, the Netherlands, and Germany and currently holds a 10% share of the multibillion dollar world enrichment market. In the early 1990s, Urenco embarked on a strategy of building on the company`s uniquely advanced centrifuge process and laser isotope separation (LIS) experience to enrich nonradioactive isotopes colloquially known as stable isotopes. This paper summarizes the present status of Urenco`s stable isotopes business.

  1. Method of preparing mercury with an arbitrary isotopic distribution

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1986-01-01

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg.sub.2 Cl.sub.2, corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H.sub.2 O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H.sub.2 O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered.

  2. Method of preparing mercury with an arbitrary isotopic distribution

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1986-12-16

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.

  3. Hydrogen isotopic exchange over palladium metal

    SciTech Connect (OSTI)

    Carstens, D.H.W.; Encinias, P.D.

    1990-01-01

    We have recently developed the laser-Raman technique as a means of unambiguously measuring the partial pressures of all possible hydrogen isotopes in the gas phase. Using this technique we have investigated the hydrogen-deuterium exchange in a number of metals. This report presents detailed data for isotopic exchange in the palladium hydride system over the temperature range 26{degree}C to -100{degree}C at a pressure of 7 atm. First order kinetic rate constants and activation energies are summarized for the forward (hydride to deuteride) and reverse (deuteride to hydride) exchange processes. In addition, we have found that small amounts (100 ppm) of impurities in the exchange gases considerably slow the exchange kinetics with the effect increasing down the series CH{sub 4}, CO{sub 2}, H{sub 2}O, and CO. 9 refs., 4 figs., 1 tab.

  4. Regioselective synthesis using the deuterium isotope effect

    SciTech Connect (OSTI)

    Miyano, M.

    1981-04-24

    Dehydration of 1a by various procedures invariably produced more exo olefin 2a than endo olefin 3a. This could be reversed by introduction of deuterium in the Me-21 group of the starting material. Thus, dehydration of 1b could afford more endo olefin 3b than exo olefin 2b due to the deuterium isotope effect. A regioselective synthesis of 18-oxoprogesterone (15a) from 3..beta..-hydroxypregn-5-en-20-one (5a) was carried out taking advantage of the deuterium isotope effect as depicted in Scheme I. The key steps were dehydration of 7b to predominantly endo olefin 9b and removal of the deuteriums from 18-oxoprogesterone-17..cap alpha..,21,21,21-d/sub 4/ (15b) to give 15a.

  5. Quantifying uncertainty in stable isotope mixing models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-19

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods testedmore » are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated mixing fractions.« less

  6. Optically pumped isotopic ammonia laser system

    DOE Patents [OSTI]

    Buchwald, Melvin I.; Jones, Claude R.; Nelson, Leonard Y.

    1982-01-01

    An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

  7. Quantifying uncertainty in stable isotope mixing models

    SciTech Connect (OSTI)

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-19

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (?15N and ?18O) but all methods tested are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated mixing fractions.

  8. Separation of uranium isotopes by chemical exchange

    DOE Patents [OSTI]

    Ogle, P.R. Jr.

    1974-02-26

    A chemical exchange method is provided for separating /sup 235/U from / sup 238/U comprising contacting a first phase containing UF/sub 6/ with a second phase containing a compound selected from the group consisting of NOUF/sub 6/, NOUF/sub 7/, and NO/sub 2/UF/sub 7/ until the U Fsub 6/ in the first phase becomes enriched in the /sup 235/U isotope. (Official Gazette)

  9. Concerning the Facility for Rare Isotope Beams

    ScienceCinema (OSTI)

    Symons, James

    2013-05-29

    James Symons, Nuclear Science Division Director at Lawrence Berkeley Lab, and Daniela Leitner, head of operations at Berkeley Lab's 88-Inch Cyclotron, discuss major contributions to the new Facility for Rare Isotope Beams (FRIB) at Michigan State University, including ion source, which will based on the VENUS source built for the 88-Inch Cyclotron, and the GRETA gamma-ray detector now under construction there.

  10. FILTR: Flash Isotope Library and Training Resource

    SciTech Connect (OSTI)

    Campbell, D; Trombino, D

    2007-07-26

    The subject of radiation detection is replete with complex concepts and challenging nomenclature. Furthermore, a daunting variety of radioactive isotopes may be encountered during the routine operation of a radiation detector. Individuals tasked with searching for illicit sources of radiation must remain vigilant while navigating through more frequently encountered mundane and legitimate radioactive sources. The Flash Isotope Library and Training Resource (FILTR) is being developed as an easily accessible and intuitive reference tool to manage the high volume of complex information required for this task. FILTR is an extended version of the Primary Utility for Nuclear Terminology (PUNT) software developed by the Counter Measures Test Beds group at Lawrence Livermore National Laboratory for the United States Secret Service. Authored in the Flash multimedia development environment, FILTR contains detailed information on potentially encountered isotopes as well as training on radiation and operational procedures. Reference material is organized to present critical information quickly while facilitating more in-depth investigation through an intuitive interface and engaging content. FILTR is being developed for a diverse audience of law enforcement organizations and government agencies and a wide range of skill sets from expert analysts to officers whose primary role is not radiation detection. Additionally, the wide compatibility of Flash content will allow FILTR to be readily accessible through the growing number of multi-media enabled electronic devices, including PDAs and cellular phones.

  11. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, R.J.; Cecchi, J.L.

    1991-08-20

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  12. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1990-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  13. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1991-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  14. U.S. Department of Energy Isotope Program

    SciTech Connect (OSTI)

    2015-06-23

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. PNNL’s Isotope Program operates in a multi-program category-2 nuclear facility, the Radiochemical Processing Laboratory (RPL), that contains 16 hot cells and 20 gloveboxes. As part of the DOE Isotope Program, the Pacific Northwest National Laboratory dispenses strontium-90, neptunium-237, radium-223, and thorium-227. PNNL’s Isotope Program uses a dedicated hot-cell for strontium-90 dispensing and a dedicated glovebox for radium-223 and thorium-227 dispensing. PNNL’s Isotope Program has access to state of the art analytical equipment in the RPL to support their research and production activities. DOE Isotope Program funded research at PNNL has advanced the application of automated radiochemistry for isotope such as zirconium-89 and astatine-211 in partnership with the University of Washington.

  15. Diffusional exchange of isotopes in a metal hydride sphere.

    SciTech Connect (OSTI)

    Wolfer, Wilhelm G.; Hamilton, John C.; James, Scott Carlton

    2011-04-01

    This report describes the Spherical Particle Exchange Model (SPEM), which simulates exchange of one hydrogen isotope by another hydrogen isotope in a spherical metal hydride particle. This is one of the fundamental physical processes during isotope exchange in a bed of spherical metal particles and is thus one of the key components in any comprehensive physics-based model of exchange. There are two important physical processes in the model. One is the entropy of mixing between the two isotopes; the entropy of mixing is increased by having both isotopes randomly placed at interstitial sites on the lattice and thus impedes the exchange process. The other physical process is the elastic interaction between isotope atoms on the lattice. The elastic interaction is the cause for {beta}-phase formation and is independent of the isotope species. In this report the coupled diffusion equations for two isotopes in the {beta}-phase hydride are solved. A key concept is that the diffusion of one isotope depends not only on its concentration gradient, but also on the concentration gradient of the other isotope. Diffusion rate constants and the chemical potentials for deuterium and hydrogen in the {beta}-phase hydride are reviewed because these quantities are essential for an accurate model of the diffusion process. Finally, a summary of some of the predictions from the SPEM model are provided.

  16. Isotope Geothermometry | Open Energy Information

    Open Energy Info (EERE)

    Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Geothermometry Information Provided by Technique...

  17. Isotope production facility produces cancer-fighting actinium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration Isotope production agreement benefits medical patients Thursday, March 19, 2015 - 12:24pm Medical patients, both locally and potentially nationwide, should be the beneficiaries of the first-ever public-private partnership agreement between National Security Technologies, LLC (NSTec), and Henderson, Nevada-based Global Medical Isotope Systems, LLC (GMIS). The agreement on research and development aims to enable production of an essential radioactive isotope used in

  18. Mapping quadrupole collectivity in the Cd isotopes: The breakdown of

    Office of Scientific and Technical Information (OSTI)

    harmonic vibrational motion (Journal Article) | SciTech Connect Mapping quadrupole collectivity in the Cd isotopes: The breakdown of harmonic vibrational motion Citation Details In-Document Search Title: Mapping quadrupole collectivity in the Cd isotopes: The breakdown of harmonic vibrational motion The stable Cd isotopes have long been used as paradigms for spherical vibrational motion. Extensive investigations with in-beam {gamma} spectroscopy have resulted in very-well-established level

  19. Fact Sheet: Facility For Rare Isotope Beams (FRIB) Applicant Selection |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Facility For Rare Isotope Beams (FRIB) Applicant Selection Fact Sheet: Facility For Rare Isotope Beams (FRIB) Applicant Selection December 11, 2008 - 8:51am Addthis Based on the analyses and recommendations over the last decade, the U.S. Department of Energy (DOE) Office of Science determined that the establishment of a Facility for Rare Isotope Beams (FRIB) is a high priority for the future of U.S. nuclear science research. This determination and supporting rationale

  20. Nitrogen concentration and isotope dataset for environmental samples from

    Office of Scientific and Technical Information (OSTI)

    2012 and 2013, Barrow, Alaska (Dataset) | Data Explorer Data Explorer Search Results Nitrogen concentration and isotope dataset for environmental samples from 2012 and 2013, Barrow, Alaska Title: Nitrogen concentration and isotope dataset for environmental samples from 2012 and 2013, Barrow, Alaska Dataset includes nitrate concentrations for polygonal active layer samples, snowmelt; ammonium concentrations for active layer samples; nitrate isotopes for active layer samples, snowmelt,

  1. Expert Panel: Forecast Future Demand for Medical Isotopes | Department of

    Energy Savers [EERE]

    Energy Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes The Expert Panel has concluded that the Department of Energy and National Institutes of Health must develop the capability to produce a diverse supply of radioisotopes for medical use in quantities sufficient to support research and clinical activities. Such a capability would prevent shortages of isotopes, reduce American dependence on foreign radionuclide sources and

  2. Physicist wins early-career award for isotope work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May » Physicist wins early-career award for isotope work Physicist wins early-career award for isotope work Jonathan Ward Engle, is among 49 winners, of the US Department of Energy's Early Career Research Program awards for 2016. May 12, 2016 Jonathan Ward Engle Jonathan Ward Engle Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "Jonathan's work brings distinctive mission and science together, connecting the strong history of Los Alamos research in isotopes with

  3. COLLOQUIUM: Facility for Rare Isotope Beams - Scientific Opportunities and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Challenges | Princeton Plasma Physics Lab February 4, 2015, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Facility for Rare Isotope Beams - Scientific Opportunities and Technical Challenges Dr. Georg Bollen Michigan State University - The Facility for Rare Isotope Beams Wednesday Colloquium, February 4, 2015, "Facility for Rare Isotope Beams - Scientific Opportunities and Technial Chanllenges", Dr. Georg Bollen Colloquium Committee: The Princeton Plasma Physics

  4. Studies of isotopic exchange between gaseous hydrogen and palladium hydride powder

    SciTech Connect (OSTI)

    Foltz, G.W.; Melius, C.F.

    1987-12-01

    A gas flow apparatus has been constructed and used to study the isotopic exchange reaction occurring between the solid and gas phases in hydrogen (deuterium) gas flows directed through packed-powder beds of ..beta..-phase palladium deuteride (hydride). Spontaneous Raman light scattering is employed to obtain a real-time analysis of the isotopic composition of the gas (H/sub 2/, D/sub 2/, HD) exiting from the bed. A parametric rate-equation model is described which depicts the time-dependent behavior of the isotopic exchange process. The exchange mechanism is assumed to be rate-limited by processes occurring on the surface of the powder. The fundamental kinetic parameter of the model is the isotopic exchange probability, p, which is the probability that an isotopic exchange event occurs during a collision of a gas-phase atom with the surface. Isotope effects between the gas and solid phases are explicitly included in terms of the isotope separation factor, ..cap alpha... Results of the model are compared with the experimental measurements and, using a literature value of ..cap alpha.. = 2.4, good agreement is obtained for p approx. = 10/sup -7/. In view of the importance of the isotope effects in the hydrogen/palladium system and the range of a values reported for the ..beta..-phase in the literature, the sensitivity of the model results to a variation in the value of ..cap alpha.. is examined.

  5. Generalized Modeling of Enrichment Cascades That Include Minor Isotopes

    SciTech Connect (OSTI)

    Weber, Charles F

    2012-01-01

    The monitoring of enrichment operations may require innovative analysis to allow for imperfect or missing data. The presence of minor isotopes may help or hurt - they can complicate a calculation or provide additional data to corroborate a calculation. However, they must be considered in a rigorous analysis, especially in cases involving reuse. This study considers matched-abundanceratio cascades that involve at least three isotopes and allows generalized input that does not require all feed assays or the enrichment factor to be specified. Calculations are based on the equations developed for the MSTAR code but are generalized to allow input of various combinations of assays, flows, and other cascade properties. Traditional cascade models have required specification of the enrichment factor, all feed assays, and the product and waste assays of the primary enriched component. The calculation would then produce the numbers of stages in the enriching and stripping sections and the remaining assays in waste and product streams. In cases where the enrichment factor or feed assays were not known, analysis was difficult or impossible. However, if other quantities are known (e.g., additional assays in waste or product streams), a reliable calculation is still possible with the new code, but such nonstandard input may introduce additional numerical difficulties into the calculation. Thus, the minimum input requirements for a stable solution are discussed, and a sample problem with a non-unique solution is described. Both heuristic and mathematically required guidelines are given to assist the application of cascade modeling to situations involving such non-standard input. As a result, this work provides both a calculational tool and specific guidance for evaluation of enrichment cascades in which traditional input data are either flawed or unknown. It is useful for cases involving minor isotopes, especially if the minor isotope assays are desired (or required) to be important contributors to the overall analysis.

  6. Price Quotes and Isotope Ordering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price Elasticities for Energy Use in Buildings of the United States October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Price Elasticities for Energy Use in Buildings of the United States i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are

  7. Geothermal Reservoir Temperatures Estimated from the Oxygen Isotope...

    Open Energy Info (EERE)

    western United States. Limited analyses of spring and borehole fluids and existing experimental rate studies suggest that dissolved sulfate and water are probably in isotopic...

  8. Method of isotope separation by chemi-ionization

    DOE Patents [OSTI]

    Wexler, Sol; Young, Charles E.

    1977-05-17

    A method for separating specific isotopes present in an isotopic mixture by aerodynamically accelerating a gaseous compound to form a jet of molecules, and passing the jet through a stream of electron donor atoms whereby an electron transfer takes place, thus forming negative ions of the molecules. The molecular ions are then passed through a radiofrequency quadrupole mass filter to separate the specific isotopes. This method may be used for any compounds having a sufficiently high electron affinity to permit negative ion formation, and is especially useful for the separation of plutonium and uranium isotopes.

  9. Helium isotopes in geothermal systems- Iceland, The Geysers,...

    Open Energy Info (EERE)

    isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Helium...

  10. Establishment of the Heavy Isotopes Lead Materials Management...

    Office of Scientific and Technical Information (OSTI)

    Lead Materials Management Organization (LMMO) Citation Details In-Document Search Title: Establishment of the Heavy Isotopes Lead Materials Management Organization (LMMO) ...

  11. Temperature effects on the behavior of liquid hydrogen isotopes...

    Office of Scientific and Technical Information (OSTI)

    liquid hydrogen isotopes inside a spherical-shell directly driven inertial confinement fusion target Kim, K.; Mok, L.S. 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; LASER TARGETS;...

  12. Cancer-fighting treatment gets boost from Isotope Production...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medical Isotope Work Moves Cancer Treatment Agent Forward - Los Alamos scientist Meiring Nortier holds a thorium foil test target for the proof-of-concept production experiments. ...

  13. Strontium Isotopes Test Long-Term Zonal Isolation of Injected...

    Office of Scientific and Technical Information (OSTI)

    Water after Hydraulic Fracturing Citation Details In-Document Search Title: Strontium Isotopes Test Long-Term Zonal Isolation of Injected and Marcellus Formation Water after ...

  14. Small-Scale Reactor for the Production of Medical Isotopes -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shortage of medical isotopes-specifically Molybdenum 99 (Mo-99) which is essential in cancer treatment, diagnostics, and medical imaging. The US is completely dependent on foreign...

  15. Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From...

    Open Energy Info (EERE)

    Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Oxygen...

  16. Unusual superconducting isotope effect in the presence of a quantum...

    Office of Scientific and Technical Information (OSTI)

    Title: Unusual superconducting isotope effect in the presence of a quantum criticality Authors: Kedem, Yaron ; Zhu, Jian-Xin ; Balatsky, Alexander V. Publication Date: 2016-05-23 ...

  17. John De Laeter Centre For Isotope Research | Open Energy Information

    Open Energy Info (EERE)

    2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for John De Laeter Centre For Isotope Research Citation Curtin University. John...

  18. Hydrogeological And Isotopic Survey Of Geothermal Fields In The...

    Open Energy Info (EERE)

    Hydrogeological And Isotopic Survey Of Geothermal Fields In The Buyuk Menderes Graben, Turkey Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  19. Hydrogen Isotope Separation From Noble Gasses in Plasma Exhausts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Isotope Separation From Noble Gasses in Plasma Exhausts and Other Gas Streams --- Inventors Thomas A. Kozub, William R. Blanchard and Charles A. Gentile The objective of...

  20. Apparatus for isotopic alteration of mercury vapor

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.; Marcucci, Rudolph V.

    1988-01-01

    An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

  1. Laser-assisted isotope separation of tritium

    DOE Patents [OSTI]

    Herman, Irving P. (Castro Valley, CA); Marling, Jack B. (Livermore, CA)

    1983-01-01

    Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.

  2. Measurement of Plutonium Isotopic Composition - MGA

    SciTech Connect (OSTI)

    Vo, Duc Ta

    2015-08-21

    In this module, we will use the Canberra InSpector-2000 Multichannel Analyzer with a high-purity germanium detector (HPGe) and the MGA isotopic anlysis software to assay a variety of plutonium samples. The module provides an understanding of the MGA method, its attributes and limitations. You will assess the system performance by measuring a range of materials similar to those you may assay in your work. During the final verification exercise, the results from MGA will be combined with the 240Pueff results from neutron coincidence or multiplicity counters so that measurements of the plutonium mass can be compared with the operator-declared (certified) values.

  3. CONTROL SYSTEM FOR ISOTOPE SEPARATING APPARATUS

    DOE Patents [OSTI]

    Barnes, S.W.

    1960-01-26

    A method is described for controlling the position of the ion beams in a calutron used for isotope separation. The U/sup 238/ beams is centered over the U/sup 235/ receiving pocket, the operator monitoring the beam until a maximum reading is achieved on the meter connected to that pocket. Then both beams are simultaneously shifted by a preselected amount to move the U/sup 235/ beam over the U/sup 235/ pocket. A slotted door is placed over the entrance to that pocket during the U/sup 238/ beam centering to reduce the contamination to the pocket, while allowing enough beam to pass for monitoring purposes.

  4. Stable Isotope Characterization of TICs/TIMs: Analytical Progress Report

    SciTech Connect (OSTI)

    Volpe, A M; Singleton, M J

    2009-06-05

    We measured twelve alkali cyanide samples that were also sent to ORNL and PNNL collaborators. While results indicate distinct {delta}{sup 13}C and {delta}{sup 15}N values that would be useful to signature studies, the alkali cyanides, especially NaCN, show chemical breakdown during storage that will influence forensic analysis. Carbon and nitrogen stable isotopic compositions of raw materials used to synthesis TETS were measured. Results indicate wide ranges in {delta}{sup 13}C and {delta}{sup 15}N values. Using these raw materials, LLNL scientists synthesized three batches of TETS following published procedures. Stable isotopic measurements of TETS synthesis products indicates nitrogen ({var_epsilon} {sup 15}N = -1.7 to -0.8) and carbon ({var_epsilon} {sup 13}C = -1.0 to -0.1) fractionation during production.

  5. Supported palladium materials for isotope separation

    SciTech Connect (OSTI)

    Rutherford, W.M.; Ellis, R.E.; Abell, G.C.

    1988-01-21

    Several palladium packing materials were investigated for their suitability for use in the separation of hydrogen isotopes by displacement chromatography. The materials included palladium on Chromosorb and several formulations of palladium on commercially available alpha-alumina-based catalyst supports. All materials showed some degradation upon being subjected to repeated hydriding-dehydriding cycles; however, the degradation did not lead to unacceptably low permeability to gas flow. Dynamic performance of the packings was evaluated by displacement of deuterium with protium at several temperatures and flow rates. Isotopic exchange was generally rapid. However, high surface area packings (greater than 4 m/sup 2//g) yielded transition zones that were initially sharp, but had long ''tails'' at deuterium concentrations below 5%. Best results were obtained with a packing containing 48.2% palladium on Norton catalyst support No. SA5*21 (surface area = 0.33 m/sup 2//g). Improved performance was observed as the displacement temperature was increased to 80/sup 0/C from 22/sup 0/C. The slight decrease in equilibrium separation was more than offset by improved kinetics at the higher temperature. 19 figs., 6 tabs.

  6. Global Security, Medical Isotopes, and Nuclear Science

    SciTech Connect (OSTI)

    Ahle, L E

    2007-09-17

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  7. Global Security, Medical Isotopes, and Nuclear Science

    SciTech Connect (OSTI)

    Ahle, Larry

    2007-10-26

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R and D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  8. Sandia National Laboratories Medical Isotope Reactor concept.

    SciTech Connect (OSTI)

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-04-01

    This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

  9. Isoscalar and neutron modes in the E 1 spectra of Ni isotopes...

    Office of Scientific and Technical Information (OSTI)

    Ni isotopes and the relevance of shell effects and the continuum Citation Details ... Ni isotopes and the relevance of shell effects and the continuum Authors: ...

  10. Isotopic fractionation associated with [NiFe]- and [FeFe]-hydrogenases...

    Office of Scientific and Technical Information (OSTI)

    Isotopic fractionation associated with NiFe- and FeFe-hydrogenases Citation Details In-Document Search Title: Isotopic fractionation associated with NiFe- and ...

  11. Isotope separation by photodissociation of Van der Waal's molecules

    DOE Patents [OSTI]

    Lee, Yuan T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

  12. Special isotope separation at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Hendrickson, P.D.

    1989-02-03

    The SIS facilities will include a Plutonium Processing Facility (PPF), a Laser Support Facility (LSF), and all associated equipment required for isotope separation. The SIS Plant will process fuel-grade plutonium into weapons-grade plutonium using Atomic Vapor Laser Isotope Separation (AVLIS) and supporting chemical processes. The AVLIS process uses precisely tuned visible laser light to selectively ionize or excite specific plutonium isotopes in a vapor stream. The ionized plutonium isotopes (Pu 240, Pu 238 and Pu 241) are then separated from the plutonium isotope of interest (Pu 239). Chemical processes are required to (1) prepare the AVLIS plutonium feed for processing, remove americium-241, and cast plutonium metal into forms that meet AVLIS processing requirements; (2) recover and, if required, purify the AVLIS plutonium product; and (3) recover and process the AVLIS separated by-products. This presentation describes the production facility and some of the plutonium processes.

  13. Process for recovery of daughter isotopes from a source material

    DOE Patents [OSTI]

    Tranter, Troy J.; Todd, Terry A.; Lewis, Leroy C.; Henscheid, Joseph P.

    2005-10-04

    The invention includes a method of separating isotopes from a mixture containing at least two isotopes in a solution. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the precipitate. The precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. The invention also includes a system for producing an actinium-225/bismuth-213 product.

  14. Isotope analysis of diamond-surface passivation effect of high-temperature H{sub 2}O-grown atomic layer deposition-Al{sub 2}O{sub 3} films

    SciTech Connect (OSTI)

    Hiraiwa, Atsushi E-mail: qs4a-hriw@asahi-net.or.jp; Saito, Tatsuya; Matsumura, Daisuke; Kawarada, Hiroshi

    2015-06-07

    The Al{sub 2}O{sub 3} film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H{sub 2}O as oxidant at a high temperature (450?C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400?C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D{sub 2}O instead of H{sub 2}O in the ALD and found that the Al{sub 2}O{sub 3} film formed at a conventional temperature (100?C) incorporates 50 times more CH{sub 3} groups than the high-temperature film. This CH{sub 3} is supposed to dissociate from the film when heated afterwards at a higher temperature (550?C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H{sub 2}O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H{sub 2}O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D{sub 2}O-oxidant ALD but found that the mass density and dielectric constant of D{sub 2}O-grown Al{sub 2}O{sub 3} films are smaller than those of H{sub 2}O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al{sub 2}O{sub 3} films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the knowledge of the aforementioned new isotope effect will be a basis for further enhancing ALD technologies in general.

  15. Chromium Isotope Fractionation During Reduction of Cr(VI) Under Saturated Flow Conditions

    SciTech Connect (OSTI)

    Jamieson-Hanes, Julia H.; Gibson, Blair D.; Lindsay, Matthew B.J.; Kim, Yeongkyoo; Ptacek, Carol J.; Blowes, David W.

    2012-10-25

    Chromium isotopes are potentially useful indicators of Cr(VI) reduction reactions in groundwater flow systems; however, the influence of transport on Cr isotope fractionation has not been fully examined. Laboratory batch and column experiments were conducted to evaluate isotopic fractionation of Cr during Cr(VI) reduction under both static and controlled flow conditions. Organic carbon was used to reduce Cr(VI) in simulated groundwater containing 20 mg L{sup -1} Cr(VI) in both batch and column experiments. Isotope measurements were performed on dissolved Cr on samples from the batch experiments, and on effluent and profile samples from the column experiment. Analysis of the residual solid-phase materials by scanning electron microscopy (SEM) and by X-ray absorption near edge structure (XANES) spectroscopy confirmed association of Cr(III) with organic carbon in the column solids. Decreases in dissolved Cr(VI) concentrations were coupled with increases in {delta}{sup 53}Cr, indicating that Cr isotope enrichment occurred during reduction of Cr(VI). The {delta}{sup 53}Cr data from the column experiment was fit by linear regression yielding a fractionation factor ({alpha}) of 0.9979, whereas the batch experiments exhibited Rayleigh-type isotope fractionation ({alpha} = 0.9965). The linear characteristic of the column {delta}{sup 53}Cr data may reflect the contribution of transport on Cr isotope fractionation.

  16. Photolytic separation of isotopes in cryogenic solution

    DOE Patents [OSTI]

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1985-01-01

    Separation of carbon isotopes by photolysis of CS.sub.2 in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distribution of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of .sup.13 CS.sub.2 is greater than that of .sup.12 CS.sub.2 (because the absorption of 206 nm radiation is greater for .sup.13 CS.sub.2), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  17. Photolytic separation of isotopes in cryogenic solution

    DOE Patents [OSTI]

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Battie, W.H.

    Separation of carbon isotopes by photolysis of CS/sub 2/ in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distributionn of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of /sup 13/CS/sub 2/ is greater than that of /sup 12/CS/sub 2/ (because the absorption of 206 nm radiation is greater for /sup 13/CS/sub 2/), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  18. Laser-isotope-separation technology. [Review; economics

    SciTech Connect (OSTI)

    Jensen, R.J.; Blair, L.S.

    1981-01-01

    The Molecular Laser Isotope Separation (MLIS) process currently under development is discussed as an operative example of the use of lasers for material processing. The MLIS process, which uses infrared and ultraviolet lasers to process uranium hexafluoride (UF/sub 6/) resulting in enriched uranium fuel to be used in electrical-power-producing nuclear reactor, is reviewed. The economics of the MLIS enrichment process is compared with conventional enrichment technique, and the projected availability of MLIS enrichment capability is related to estimated demands for U.S. enrichment service. The lasers required in the Los Alamos MLIS program are discussed in detail, and their performance and operational characteristics are summarized. Finally, the timely development of low-cost, highly efficient ultraviolet and infrared lasers is shownd to be the critical element controlling the ultimate deployment of MLIS uranium enrichment. 8 figures, 7 tables.

  19. Helium isotopes and tectonics in southern Italy

    SciTech Connect (OSTI)

    Sano, Yuji; Wakita, Hiroshi ); Nuccio, M.P. ); Italiano, F.

    1989-06-01

    Geodynamic evolution of southern Italy can be understood within the framework of the Mediterranean-Alpine System. Subduction of a plate along the Sicily-Calabrian forearc under the Tyrrhenian Sea has been suggested by many geophysicists, although it is not yet confirmed and remains somewhat controversial. Helium isotope ratios provide useful information on the geotectonic structure of the region. The authors report here the {sup 3}H/{sup 4}He ratios of terrestrial gas samples from southern Italy. The observed {sup 3}He/{sup 4}He ratios are relatively high in the Eolian volcanic arc region and low in the other areas. Dichotomous explanations are presented. Firstly, volcanic arc-forearc hypothesis suggests the subduction along the Sicily-Calabrian forearc. Secondly, horizontal transport hypothesis is described based on the relationship between the ratios and radial distance from the recent spreading basin in Southern Tyrrhenian Sea.

  20. Penning trap mass measurements on nobelium isotopes

    SciTech Connect (OSTI)

    Dworschak, M.; Block, M.; Ackermann, D.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Vorobyev, G. K.; Audi, G.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Eliseev, S.; Ketter, J.; Fleckenstein, T.; Haettner, E.; Plass, W. R.; Scheidenberger, C.; Ketelaer, J.; Kluge, H.-J.

    2010-06-15

    The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes {sup 252-254}No were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a {sup 48}Ca beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.

  1. Compact hydrogen/helium isotope mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  2. Hydrogen Isotope Exchange Properties of Porous Solids Containing Hydrogen

    SciTech Connect (OSTI)

    HEUNG, LEUNGK.

    2004-08-18

    Porous solids such as activated alumina, silica and molecular sieves generally contain significant amounts of hydrogen atoms in the form of H2O or OH even at high temperature and low humidity environment. A significant amount of this hydrogen is available for reversible isotopic exchange. This exchange reaction is slow under normal conditions and does not render itself to practical applications. But if the exchange kinetics is improved this reaction has the potential to be used for tritium removal from gas streams or for hydrogen isotopic separation.The use of catalysts to improve the exchange kinetics between hydrogen isotope in the gas phase and that in the solid phase was investigated. Granules of alumina, silica and molecular sieve were coated with platinum or palladium as the catalyst. The granules were packed in a 2-cm diameter column for isotope exchange tests. Gas streams containing different concentrations of deuterium in nitrogen or argon were fed through the protium saturated column. Isotope concentration in column effluent was monitored to generate isotope break-through curves. The curves were analyzed to produce information on the kinetics and capacity of the material. The results showed that all materials tested provided some extent of isotope exchange but some were superior both in kinetics and capacity. This paper will present the test results.

  3. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect (OSTI)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

  4. Shape coexistence and phase transitions in the platinum isotopes

    SciTech Connect (OSTI)

    Morales, Irving O.; Frank, Alejandro; Vargas, Carlos E.; Isacker, P. Van

    2008-08-15

    The matrix coherent-state approach of the interacting boson model with configuration mixing is used to study the geometry of the platinum isotopes. With a parameter set determined in previous studies, it is found that the absolute minimum of the potential for the Pt isotopes evolves from spherical to oblate and finally to prolate shapes when the neutron number decreases from N=126 (semi-magic) to N=104 (mid-shell). Shape coexistence is found in the isotopes {sup 182,184,186,188}Pt. A phase diagram is constructed that shows the coexistence region as a function of the number of bosons and the strength of the mixing parameter.

  5. Isotopic mass-dependence of noble gas diffusion coefficients inwater

    SciTech Connect (OSTI)

    Bourg, I.C.; Sposito, G.

    2007-06-25

    Noble gas isotopes are used extensively as tracers inhydrologic and paleoclimatic studies. These applications requireknowledge of the isotopic mass (m) dependence of noble gas diffusioncoefficients in water (D), which has not been measured but is estimatedusing experimental D-values for the major isotopes along with an untestedrelationship from kinetic theory, D prop m-0.5. We applied moleculardynamics methods to determine the mass dependence of D for four noblegases at 298 K, finding that D prop m-beta with beta<0.2, whichrefutes the kinetic theory model underlying all currentapplications.

  6. Cost Estimate for Laser Isotope Separation for RIA

    SciTech Connect (OSTI)

    Scheibner, K

    2004-11-01

    Isotope enrichment of some elements is required in support of the Rare Isotope Accelerator (RIA) in order to obtain the beam intensities, source efficiencies and/or source lifetime required by RIA. The economics of using Atomic Vapor Laser Isotope Separation (AVLIS) technology as well as ElectroMagnetic (EM) separation technology has been evaluated. It is concluded that such an AVLIS would be about 10 times less expensive than a facility based on electromagnetic separation - $17 M versus $170 M. In addition, the AVLIS facility footprint would be about 10 times smaller, and operations would require about 4 years (including 2 years of startup) versus about 11 years for an EM facility.

  7. Isotope and Nuclear Chemistry Division annual report, FY 1983

    SciTech Connect (OSTI)

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  8. VELOCITY SELECTOR METHOD FOR THE SEPARATION OF ISOTOPES

    DOE Patents [OSTI]

    Britten, R.J.

    1957-12-31

    A velocity selector apparatus is described for separating and collecting an enriched fraction of the isotope of a particular element. The invention has the advantage over conventional mass spectrometers in that a magnetic field is not used, doing away with the attendant problems of magnetic field variation. The apparatus separates the isotopes by selectively accelerating the ionized constituents present in a beam of the polyisotopic substance that are of uniform kinetic energy, the acceleration being applied intermittently and at spaced points along the beam and in a direction normal to the direction of the propagation of the uniform energy beam whereby a transverse displacement of the isotopic constituents of different mass is obtained.

  9. Plutonium isotopic assay from alpha spectroscopy: A progress report

    SciTech Connect (OSTI)

    Baran, D.T.

    1995-12-31

    The Non-Destructive Assay (NDA) group at New Brunswick Laboratory (NBL) continues to develop and refine a computer program ALPHAFIT, a sophisticated peak-fitting routine for use in determining the isotopic abundances of Pu and U samples. The program uses up to seven parameters per peak fit and up to 12 peaks per region of interest to de-convolute typical complicated Pu a spectra. Preliminary results show decent fits for major peaks in the spectrum and calculated isotopic abundances of the major isotopes to {+-} 4%.

  10. Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility

    Office of Environmental Management (EM)

    Building 9204-3 | Department of Energy Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 The purpose of this document is to report the results of a survey conducted at the Isotope Enrichment Facility (IEF, Calutron, Building 9204-3) on the Y-12 Plant property at the Oak Ridge Site. The survey was conducted during the week of November 29, 1999. The primary purpose of the

  11. Scoping assessment on medical isotope production at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Scott, S.W.

    1997-08-29

    The Scoping Assessment addresses the need for medical isotope production and the capability of the Fast Flux Test Facility to provide such isotopes. Included in the discussion are types of isotopes used in radiopharmaceuticals, which types of cancers are targets, and in what way isotopes provide treatment and/or pain relief for patients.

  12. Stable isotope studies. Final report, March 1, 1972--February 29, 1992

    SciTech Connect (OSTI)

    Ishida, T.

    1992-10-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  13. Development of NDA instruments for the Los Alamos SIS (Special Isotope Separation) Facility

    SciTech Connect (OSTI)

    Li, T.K.; Rinard, P.M.; Schneider, C.M.; Atencio, J.D.; Hyman, D.H.; Kroncke, K.E.; Painter, J.; Siebelist, R.; Holbrooks, O.; Halbig, J.K.

    1989-01-01

    The Los Alamos Special Isotope Separation Facility produces special plutonium isotopes and converts plutonium scrap by using the molecular laser isotope separation (MLIS) process in a gaseous plutonium hexafluoride (PuF/sub 6/) phase. To provide important process-development and accountability information, we have developed and installed four nondestructive assay (NDA) instruments for that facility. These instruments are (1) an in-line plutonium isotopic analysis system to measure plutonium isotopes in gaseous, solid, and liquid phases, (2) an in-line sodium iodide (NaI) monitoring system consisting of six 2-in. by 2-in., two 2-in. by 24-in., and one 2-in. by 22-in. NaI detectors at specified components (a feed bottle, a feed-transfer cold trap, a compressor, a heat exchanger, a collector, a nozzle prefilter, and a tails cold trap) in the flow loop, (3) a portable high-resolution germanium gamma-ray system for plutonium isotopic analysis, and (4) a portable NaI gamma-ray holdup monitor. This paper discusses the measurement principles, hardware and software designs, and performance associated with these NDA instruments. 2 refs, 11 figs., 2 tabs.

  14. FY09 PROGRESS: MULTI-ISOTOPE PROCESS (MIP) MONITOR

    SciTech Connect (OSTI)

    Schwantes, Jon M.; Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard; Laspe, Amy R.; Ward, Rebecca M.

    2009-10-18

    Model and experimental estimates of the Multi-Isotope Process Monitor performance for determining burnup after dissolution and acid concentration during solvent extraction steps during reprocessing of spent nuclear fuel are presented.

  15. An isotopic study of the Coso, California, geothermal area |...

    Open Energy Info (EERE)

    and vicinity and were analyzed for major chemical constituents and deltaD and delta18O. Non-thermal ground waters from the Coso Range were found to be isotopically heavier...

  16. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  17. A Method to Distill Hydrogen Isotopes from Lithium | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Distill Hydrogen Isotopes from Lithium This white paper outlines a method for the removal of tritium and deuterium from liquid lithium. The method is based on rapid or flash ...

  18. Research and Medical Isotope Reactor Supply | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Medical ... Research and Medical Isotope Reactor Supply Our goal is to fuel research and test reactors with low-enriched uranium. Y-12 tops the short list of the...

  19. An Oxygen Isotope Study Of Silicates In The Larderello Geothermal...

    Open Energy Info (EERE)

    Silicates In The Larderello Geothermal Field, Italy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An Oxygen Isotope Study Of Silicates In The...

  20. Chemical and light-stable isotope characteristics of waters from...

    Open Energy Info (EERE)

    light-stable isotope characteristics of waters from the raft river geothermal area and environs, Cassia County, Idaho, Box Elder county, Utah Jump to: navigation, search OpenEI...

  1. Y-12 plant prepares to separate lithium isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant prepares to separate lithium isotopes The Y-12 National Security Complex is one of three major Manhattan Project sites in Oak Ridge. Y-12 is the nation's sole storage...

  2. COLLATERAL EFFECTS ON SOLAR NEBULA OXYGEN ISOTOPES DUE TO INJECTION...

    Office of Scientific and Technical Information (OSTI)

    COLLATERAL EFFECTS ON SOLAR NEBULA OXYGEN ISOTOPES DUE TO INJECTION OF sup 26Al BY A NEARBY SUPERNOVA Citation Details In-Document Search Title: COLLATERAL EFFECTS ON SOLAR ...

  3. Isotope Transport and Exchange within the Coso Geothermal System...

    Open Energy Info (EERE)

    and the nearby Coso Hot Springs using finite element models of single-phase, variable-density fluid flow, conductive- convective heat transfer, fluid-rock isotope exchange, and...

  4. Helium Isotopes In Geothermal And Volcanic Gases Of The Western...

    Open Energy Info (EERE)

    isotope ratios in gases of thirty hot springs and geothermal wells and of five natural gas wells in the western United States show no relationship to regional conductive heat...

  5. Enforcement Letter, International Isotopes Idaho Inc- August 20, 1999

    Broader source: Energy.gov [DOE]

    Issued to International Isotopes Idaho, Inc. related to the Relocation of an Irradiated Pellet at the Test Reactor Area Hot Cell Facility at the Idaho National Engineering and Environmental Laboratory

  6. Isotope Production at the Hanford Site in Richland, Washington

    SciTech Connect (OSTI)

    Ammoniums

    1999-06-01

    This report was prepared in response to a request from the Nuclear Energy Research Advisory Committee (NERAC) subcommittee on ''Long-Term Isotope Research and Production Plans.'' The NERAC subcommittee has asked for a reply to a number of questions regarding (1) ''How well does the Department of Energy (DOE) infrastructure sme the need for commercial and medical isotopes?'' and (2) ''What should be the long-term role of the federal government in providing commercial and medical isotopes?' Our report addresses the questions raised by the NERAC subcommittee, and especially the 10 issues that were raised under the first of the above questions (see Appendix). These issues are related to the isotope products offered by the DOE Isotope Production Sites, the capabilities and condition of the facilities used to produce these products, the management of the isotope production programs at DOE laboratories, and the customer service record of the DOE Isotope Production sites. An important component of our report is a description of the Fast Flux Test Facility (FFTF) reactor at the Hbford Site and the future plans for its utilization as a source of radioisotopes needed by nuclear medicine physicians, by researchers, and by customers in the commercial sector. In response to the second question raised by the NERAC subcommittee, it is our firm belief that the supply of isotopes provided by DOE for medical, industrial, and research applications must be strengthened in the near future. Many of the radioisotopes currently used for medical diagnosis and therapy of cancer and other diseases are imported from Canada, Europe, and Asia. This situation places the control of isotope availability, quality, and pricing in the hands of non-U.S. suppliers. It is our opinion that the needs of the U.S. customers for isotopes and isotope products are not being adequately served, and that the DOE infrastructure and facilities devoted to the supply of these products must be improved This perception forms one of the fundamental bases for our proposal that the FFTF, which is currently in a standby condition, be reactivated to supply nuclear services and products such as radioisotopes needed by the U.S. medical, industrial, and research communities.

  7. Isotopic evidence for a martian regolith component in martian meteorites.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Isotopic evidence for a martian regolith component in martian meteorites. Citation Details In-Document Search Title: Isotopic evidence for a martian regolith component in martian meteorites. No abstract prepared. Authors: Rao, M.N. ; Nyquist, L.E. ; Bogard, D.D. ; Garrison, D.H. ; Sutton, S. [1] ; UC) [2] + Show Author Affiliations (NASA JSC) ( Publication Date: 2009-03-23 OSTI Identifier: 1009059 Resource Type: Conference Resource Relation: Conference: Lunar

  8. Ab Initio Calculations of Even Oxygen Isotopes with Chiral

    Office of Scientific and Technical Information (OSTI)

    Two-Plus-Three-Nucleon Interactions (Journal Article) | SciTech Connect Initio Calculations of Even Oxygen Isotopes with Chiral Two-Plus-Three-Nucleon Interactions Citation Details In-Document Search Title: Ab Initio Calculations of Even Oxygen Isotopes with Chiral Two-Plus-Three-Nucleon Interactions Authors: Hergert, H. ; Binder, S. ; Calci, A. ; Langhammer, J. ; Roth, R. Publication Date: 2013-06-10 OSTI Identifier: 1102833 Type: Publisher's Accepted Manuscript Journal Name: Physical

  9. Separation of the isotopes of boron by chemical exchange reactions

    DOE Patents [OSTI]

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  10. Research and Medical Isotope Reactor Supply | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex Research and Medical ... Research and Medical Isotope Reactor Supply Our goal is to fuel research and test reactors with low-enriched uranium. Y-12 tops the short list of the world's most secure, reliable uranium feedstock suppliers for dozens of research and test reactors on six continents. These reactors can be used to test materials, irradiate new reactor fuel designs and produce medical isotopes for diagnostic and therapeutic purposes, as examples. The LEU is used to fabricate

  11. Establishment of the Heavy Isotopes Lead Materials Management Organization

    Office of Scientific and Technical Information (OSTI)

    (LMMO) (Conference) | SciTech Connect Establishment of the Heavy Isotopes Lead Materials Management Organization (LMMO) Citation Details In-Document Search Title: Establishment of the Heavy Isotopes Lead Materials Management Organization (LMMO) Authors: Patton, Bradley D [1] ; Robinson, Sharon M [1] ; Sherman, Steven R [1] + Show Author Affiliations ORNL [ORNL Publication Date: 2013-01-01 OSTI Identifier: 1110926 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Conference Resource

  12. Heavy Isotopes Lead Materials Management Organization (LMMO) Update

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Heavy Isotopes Lead Materials Management Organization (LMMO) Update Citation Details In-Document Search Title: Heavy Isotopes Lead Materials Management Organization (LMMO) Update Authors: Patton, Bradley D [1] ; Robinson, Sharon M [1] ; Sherman, Steven R [1] ; Bone, Sherri [2] + Show Author Affiliations ORNL U.S. Department of Energy, NA Publication Date: 2014-01-01 OSTI Identifier: 1156744

  13. HEU Minimization and the Reliable Supply of Medical Isotopes Nuclear

    National Nuclear Security Administration (NNSA)

    Security Summit: Fact Sheet | National Nuclear Security Administration HEU Minimization and the Reliable Supply of Medical Isotopes Nuclear Security Summit: Fact Sheet March 26, 2012 Molybdenum-99 (Mo-99) is used to produce technetium-99m (Tc-99m), a medical isotope that is used in about 100,000 diagnostic medical procedures globally every day. Today, Mo-99 is produced at aging facilities in Europe, Canada and South Africa primarily using highly-enriched uranium (HEU) - a weapons-usable

  14. Unusual superconducting isotope effect in the presence of a quantum

    Office of Scientific and Technical Information (OSTI)

    criticality (Journal Article) | SciTech Connect Unusual superconducting isotope effect in the presence of a quantum criticality Citation Details In-Document Search This content will become publicly available on May 23, 2017 Title: Unusual superconducting isotope effect in the presence of a quantum criticality Authors: Kedem, Yaron ; Zhu, Jian-Xin ; Balatsky, Alexander V. Publication Date: 2016-05-23 OSTI Identifier: 1254211 Type: Publisher's Accepted Manuscript Journal Name: Physical Review

  15. Separation of the isotopes of boron by chemical exchange reactions

    DOE Patents [OSTI]

    McCandless, Frank P.; Herbst, Ronald S.

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  16. Isotopic discontinuities in ground water beneath Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Stuckless, J.S.; Whelan, J.F.; Steinkampf, W.C.

    1991-05-01

    Analytical data for stable isotopes in ground water from beneath Yucca Mountain, when examined in map view, show areal patterns of heterogeneity that can be interpreted in terms of mixing of at least three end members. One end member must be isotopically heavy in terms of hydrogen and oxygen and have a young apparent {sup 14}C age such as water found at the north end of Yucca Mountain beneath Fortymile Wash. A second end member must contain isotopically heavy carbon and have an old apparent {sup 14}C age such as water from the Paleozoic aquifer. The third end member cannot be tightly defined. It must be isotopically lighter than the first with respect of hydrogen and oxygen and be intermediate to the first and second end members with respect to both apparent {sup 14}C age and {delta}{sup 13}C. The variable isotopic compositions of hydrogen and oxygen indicate that two of the end members are waters, but the variable carbon isotopic composition could represent either a third water end member or reaction of water with a carbon-bearing solids such as calcite. 15 refs., 4 figs., 1 tab.

  17. The Atomic Vapor Laser Isotope Separation Program

    SciTech Connect (OSTI)

    Not Available

    1992-11-09

    This report provides the finding and recommendations on the audit of the Atomic Vapor Laser Isotope Separation (AVLIS) program. The status of the program was assessed to determine whether the Department was achieving objectives stated in its January 1990 Plan for the Demonstration, Transition and Deployment of AVLIS Technology. Through Fiscal Year 1991, the Department had spent about $1.1 billion to develop AVLIS technology. The January 1990 plan provided for AVLIS to be far enough along by September to enable the Department to make a determination of the technical and economic feasibility of deployment. However, the milestones needed to support that determination were not met. An estimated $550 million would be needed to complete AVLIS engineering development and related testing prior to deployment. The earliest possible deployment date has slipped to beyond the year 2000. It is recommended that the Department reassess the requirement for AVLIS in light of program delays and changes that have taken place in the enrichment market since January 1990. Following the reassessment, a decision should be made to either fully support and promote the actions needed to complete AVLIS development or discontinue support for the program entirely. Management`s position is that the Department will successfully complete the AVLIS technology demonstration and that the program should continue until it can be transferred to a Government corporation. Although the auditors recognize that AVLIS may be transferred, there are enough technical and financial uncertainties that a thorough assessment is warranted.

  18. Laser separation of uranium chosen for scaleup. [Atomic vapor laser isotope separation, molecular laser isotope separation, and plasma separation process

    SciTech Connect (OSTI)

    Rawls, R.L.

    1982-05-17

    Atomic vapor laser isotope separation (AVLIS) has been selected by the Department of Energy to go into large-scale engineering development and demonstration over two other advanced technologies, molecular laser isotope separation and plasma separation. DOE will continue to support development of another uranium enrichment technology, gas centrifugation. By or around 1990, the most promising gas centrifuge technique will be compared to the further developed AVLIS process, and a selection will be made between the two to replace the current technology, gaseous diffusion. The AVLIS process, plasma separation, and molecular laser isotope separation use the elective absorption of radiation of a particular energy level by the /sup 235/U isotope. The plasma separation process selectively energizes /sup 235/U by ion cyclotron resonance. The AVLIS and molecular laser isotope separation processes both use a carefully tuned laser to excite /sup 235/U isotope selectively. In the AVLIS process, uranium metal feed material is melted and vaporized to form an atomic uranium vapor stream. When this vapor stream passes through the beam of copper vapor lasers, the /sup 235/U atoms absorb the light and become ionized. These ionized atoms are collected by electromagnetic fields while the neutral /sup 238/U atoms pass through the magnetic field and are collected as tailings. The AVLIS process has the potential for significantly reducing the cost of enriching uranium. The status of dvelopment, cost, advantages and drawbacks of the five processes, (gaseous diffusion, gas centrifugation, AVLIS, molecular laser separation, plasma separation) are discussed. (ATT)

  19. Laser separation of uranium chosen for scaleup. [Atomic vapor laser isotope separation, molecular laser isotope separation plasma separation process

    SciTech Connect (OSTI)

    Rawls, R.L.

    1982-05-17

    Atomic vapor laser isotope separation (AVLIS) has been selected by the Department of Energy to go into large-scale engineering development and demonstration over two other advanced technologies, molecular laser isotope separation and plasma separation. DOE will continue to support development of another uranium enrichment technology, gas centrifugation. By or around 1990, the most promising gas centrifuge technique will be compared to the further developed AVLIS process, and a selection will be made between the two to replace the current technology, gaseous diffusion. The AVLIS process, plasma separation, and molecular laser isotope separation use the selective absorption of radiation of a particular energy level by the /sup 235/U isotope. The plasma separation process selectively energizes /sup 235/U by ion cyclotron resonance. The AVLIS and molecular laser isotope separation processes both use a carefully tuned laser to excite /sup 235/U isotope selectively. In the AVLIS process, uranium metal feed material is melted and vaporized to from an atomic uranium vapor stream. When this vapor stream passes through the beam of copper vapor lasers, the /sup 235/U atoms absorb the light and become ionized. These ionized atoms are collected by electromagnetic fields while the neutral /sup 238/U atoms pass through the magnetic field and are collected as tailings. The AVLIS process has the potential for significantly reducing the cost of enriching uranium. The status of development, cost, advantages and drawbacks of the five processes (gaseous diffusion, gas centrifugation, AVLIS, molecular laser separation, plasma separation) are discussed. (ATT)

  20. Isotope Enrichment Detection by Laser Ablation - Dual Tunable Diode Laser Absorption Spectrometry

    SciTech Connect (OSTI)

    Anheier, Norman C.; Bushaw, Bruce A.

    2009-07-01

    The rapid global expansion of nuclear energy is motivating the expedited development of new safeguards technology to mitigate potential proliferation threats arising from monitoring gaps within the uranium enrichment process. Current onsite enrichment level monitoring methods are limited by poor sensitivity and accuracy performance. Offsite analysis has better performance, but this approach requires onsite hand sampling followed by time-consuming and costly post analysis. These limitations make it extremely difficult to implement comprehensive safeguards accounting measures that can effectively counter enrichment facility misuse. In addition, uranium enrichment by modern centrifugation leads to a significant proliferation threat, since the centrifuge cascades can quickly produce a significant quantity of highly enriched uranium (HEU). The Pacific Northwest National Laboratory is developing an engineered safeguards approach having continuous aerosol particulate collection and uranium isotope analysis to provide timely detection of HEU production in a low enriched uranium facility. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy, to characterize the 235U/238U isotopic ratio by subtle differences in atomic absorption wavelengths arising from differences in each isotopes nuclear mass, volume, and spin (hyperfine structure for 235U). Environmental sampling media is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes a 10 to 20-m sample diameter. The ejected plasma forms a plume of atomic vapor. A plume for a sample containing uranium has atoms of the 235U and 238U isotopes present. Tunable diode lasers are directed through the plume to selectively excite each isotope and their presence is detected by monitoring absorbance signals on a shot-to-shot basis. Single-shot detection sensitivity approaching the femtogram range and abundance uncertainty less than 10% have been demonstrated with measurements on surrogate materials. In this paper we present measurement results on samples containing background materials (e.g., dust, minerals, soils) laced with micron-sized target particles having isotopic ratios ranging from 1 to 50%.

  1. IUPAC Periodic Table of Isotopes for the Educational Community

    SciTech Connect (OSTI)

    Holden N. E.; Holden,N.E.; Coplen,T.B.

    2012-07-15

    John Dalton first proposed the concept of atomic weights of the elements in the first decade of the nineteenth century. These atomic weights of the chemical elements were thought of as constants of nature, similar to the speed of light. Dmitri Mendeleev arranged the atomic weights of the elements in ascending order of value and used the systematic variation of their chemical properties to produce his Periodic Table of the Elements in 1869. Measurement of atomic weight values became an important chemical activity for a century and a half. Theodore Richards received a Noble Prize for his work in this area. In 1913, Fredrick Soddy found a species of radium, which had an atomic weight value of 228, compared to the familiar radium gas value of 226. Soddy coined the term 'isotope' (Greek for 'in the same place') to account for this second atomic weight value in the radium position of the Periodic Table. Both of these isotopes of radium are radioactive. Radioactive isotopes are energetically unstable and will decay (disintegrate) over time. The time it takes for one half of a sample of a given radioactive isotope to decay is the half-life of that isotope. In addition to having different atomic weight values, radium-226 and radium-228 also have different half-life values. Around the same time as Soddy's work, J.J. Thomson (discoverer of the electron) identified two stable (non-radioactive) isotopes of the same element, neon. Over the next 40 years, the majority of the known chemical elements were found to have two or more stable (or long-lived radioactive isotopes that contribute significantly to the determination of the atomic weights of the elements).

  2. Boosting Production of Radioisotopes for Diagnostics and Therapeutics: Upgrades to Brookhaven Lab's isotope production and research facility increase the yield of key medical isotopes

    Broader source: Energy.gov [DOE]

    The DOE Office of Science’s Nuclear Physics Isotope Development and Production for Research and Applications program (DOE Isotope Program) seeks to make critical isotopes more readily available for energy, medical, and national security applications and for basic research. Under this program, scientists, engineers, and technicians at DOE’s Brookhaven National Laboratory recently completed the installation of a beam raster (or scanning) system designed to increase the yield of critical isotopes produced at the Brookhaven Linac Isotope Producer (BLIP), the Lab’s radioisotope production and research facility, in operation since 1972.

  3. Kinetic Isotopic Fractionation During Diffusion of Ionic Speciesin Water

    SciTech Connect (OSTI)

    Richter, Frank M.; Mendybaev, Ruslan A.; Christensen, John; Hutcheon, Ian D.; Williams, Ross W.; Sturchio, Neil C.; Beloso Jr.,Abelardo D.

    2005-06-09

    Experiments specifically designed to measure the ratio of the diffusivities of ions dissolved in water were used to determine D{sub Li}/D{sub K}, D{sub 7{sub Li}}/D{sub 6{sub Li}}, D{sub 25{sub Mg}}/D{sub 24{sub Mg}}, D{sub 26{sub Mg}}/D{sub 25{sub Mg}}, and D{sub 37{sub Cl}}/D{sub 35{sub Cl}}. The measured ratio of the diffusion coefficients for Li and K in water (D{sub Li}/D{sub K} = 0.6) is in good agreement with published data, providing evidence that the experimental design being used resolves the relative mobility of ions with adequate precision to also be used for determining the fractionation of isotopes by diffusion in water. In the case of Li we found measurable isotopic fractionation associated with the diffusion of dissolved LiCl (D{sub 7{sub Li}}/D{sub 6{sub Li}} = 0.99772 {+-} 0.00026). This difference in the diffusion coefficient of {sup 7}Li compared to {sup 6}Li is significantly less than reported in an earlier study, a difference we attribute to the fact that in the earlier study Li diffused through a membrane separating the water reservoirs. Our experiments involving Mg diffusing in water found no measurable isotopic fractionation (D{sub 25{sub Mg}}/D{sub 24{sub Mg}} = 1.00003 {+-} 0.00006). Cl isotopes were fractionated during diffusion in water (D{sub 37{sub Cl}}/D{sub 35{sub Cl}} = 0.99857 {+-} 0.00080) whether or not the co-diffuser (Li or Mg) was isotopically fractionated. The isotopic fractionation associated with the diffusion of ions in water is much smaller than values we found previously for the isotopic fractionation of Li and Ca isotopes by diffusion in molten silicate liquids. A major distinction between water and silicate liquids is that water, being a polar liquid, surrounds dissolved ions with hydration shells, which very likely play an important but still poorly understood role in reducing isotopic fractionation associated with diffusion.

  4. A New Bench-Top Approach to Isotopic Purification of 244Pu

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liezers, Martin; Farmer, Orville T.; Thomas, Linda MP; Hager, George J.; Eiden, Gregory C.

    2016-03-01

    A new approach to isotopic purification has been developed and applied to the production of a small quantity of 244Pu with an isotopic purity >99.996 %, as compared against the standard 244Pu available that displays an isotopic purity of 97.87 %. The presence of Pu isotopes 239Pu, 240Pu, 241Pu and 242Pu have been greatly reduced, allowing for higher spiking levels of the isotopically purified 244Pu tracer. Details of the isotopic purification process will be described along with the effect this improved Pu tracer could have on analytical Pu mass spectrometry measurements.

  5. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    SciTech Connect (OSTI)

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  6. Isotopically Enriched Films and Nanostructures by Ultrafast Pulsed Laser Deposition

    SciTech Connect (OSTI)

    Peter Pronko

    2004-12-13

    This project involved a systematic study to apply newly discovered isotopic enrichment effects in laser ablation plumes to the fabrication of isotopically engineered thin films, superlattices, and nanostructures. The approach to this program involved using ultrafast lasers as a method for generating ablated plasmas that have preferentially structured isotopic content in the body of the ablation plasma plumes. In examining these results we have attempted to interpret the observations in terms of a plasma centrifuge process that is driven by the internal electro-magnetic fields of the plasma itself. The research plan involved studying the following phenomena in regard to the ablation plume and the isotopic mass distribution within it: (1) Test basic equations of steady state centrifugal motion in the ablation plasma. (2) Investigate angular distribution of ions in the ablation plasmas. (3) Examine interactions of plasma ions with self-generated magnetic fields. (3) Investigate ion to neutral ratios in the ablation plasmas. (5) Test concepts of plasma pumping. (6) Fabricate isotopically enriched nanostructures.

  7. System for recovery of daughter isotopes from a source material

    DOE Patents [OSTI]

    Tranter, Troy J. [Idaho Falls, ID; Todd, Terry A. [Aberdeen, ID; Lewis, Leroy C. [Idaho Falls, ID; Henscheid, Joseph P. [Idaho Falls, ID

    2009-08-04

    A method of separating isotopes from a mixture containing at least two isotopes in a solution is disclosed. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material containing thorium-229 and thorium-232, and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the thorium iodate precipitate. The thorium iodate precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid, which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. A system for producing an actinium-225/bismuth-213 product is also disclosed.

  8. Natural mercury isotope variation in coal deposits and organic soils

    SciTech Connect (OSTI)

    Abir, Biswas; Joel D. Blum; Bridget A. Bergquist; Gerald J. Keeler; Zhouqing Xie

    2008-11-15

    There is a need to distinguish among sources of Hg to the atmosphere in order to more fully understand global Hg pollution. In this study we investigate whether coal deposits within the United States, China, and Russia-Kazakhstan, which are three of the five greatest coal-producing regions, have diagnostic Hg isotopic fingerprints that can be used to discriminate among Hg sources. We also investigate the Hg isotopic composition of modern organic soil horizons developed in areas distant from point sources of Hg in North America. Mercury stored in coal deposits displays a wide range of both mass dependent fractionation and mass independent fractionation. {delta}{sup 202}Hg varies in coals by 3{per_thousand} and {Delta}{sup 201}Hg varies by 0.9{per_thousand}. Combining these two Hg isotope signals results in what may be a unique isotopic 'fingerprint' for many coal deposits. Mass independent fractionation of mercury has been demonstrated to occur during photochemical reactions of mercury. This suggests that Hg found in most coal deposits was subjected to photochemical reduction near the Earth's surface prior to deposition. The similarity in MDF and MIF of modern organic soils and coals from North America suggests that Hg deposition from coal may have imprinted an isotopic signature on soils. This research offers a new tool for characterizing mercury inputs from natural and anthropogenic sources to the atmosphere and provides new insights into the geochemistry of mercury in coal and soils. 35 refs., 2 figs., 1 tab.

  9. The use of carbon stable isotope ratios in drugs characterization

    SciTech Connect (OSTI)

    Magdas, D. A. Cristea, G. Bot, A. Mirel, V.

    2013-11-13

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ{sup 13}C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures.

  10. A new feature in the internal heavy isotope distribution in ozone

    SciTech Connect (OSTI)

    Bhattacharya, S. K. Liang, Mao-Chang; Savarino, Joel; Michalski, G.

    2014-10-07

    Ozone produced by discharge or photolysis of oxygen has unusually heavy isotopic composition ({sup 18}O/{sup 16}O and {sup 17}O/{sup 16}O ratio) which does not follow normal mass fractionation rule: δ{sup 17}O ∼ 0.52{sup *}δ{sup 18}O, expressed as an anomaly Δ{sup 17}O = δ{sup 17}O − 0.52{sup *}δ{sup 18}O. Ozone molecule being an open isosceles triangle can have the heavy isotope located either in its apex or symmetric (s) position or the base or asymmetric (as) position. Correspondingly, one can define positional isotopic enrichment, written as δ{sup 18}O (s) or δ{sup 18}O (as) (and similarly for δ{sup 17}O) as well as position dependent isotope anomaly Δ{sup 17}O (s) and Δ{sup 17}O (as). Marcus and co-workers have proposed a semi-empirical model based in principle on the RRKM model of uni-molecular dissociation but with slight modification (departure from statistical randomness assumption for symmetrical molecules) which explains many features of ozone isotopic enrichment. This model predicts that the bulk isotope anomaly is contained wholly in the asymmetric position and the Δ{sup 17}O (s) is zero. Consequently, Δ{sup 17}O (as) = 1.5 {sup *} Δ{sup 17}O (bulk) (named here simply as the “1.5 rule”) which has been experimentally confirmed over a range of isotopic enrichment. We now show that a critical re-analysis of the earlier experimental data demonstrates a small but significant departure from this 1.5 rule at the highest and lowest levels of enrichments. This departure provides the first experimental proof that the dynamics of ozone formation differs from a statistical model constrained only by restriction of symmetry. We speculate over some possible causes for the departure.

  11. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    SciTech Connect (OSTI)

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G.

    2013-10-15

    Highlights: ? The isotopic signature of ?{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ? Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ? In situ aeration of landfills can be monitored by isotope analysis in leachate. ? The isotopic analysis of leachates can be used for assessing the stability of MSW. ? ?{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of ?{sup 13}C, ?{sup 2}H and ?{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the ?{sup 13}C-value of the dissolved inorganic carbon (?{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of ?{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a ?{sup 13}C-DIC of ?20 to ?25. The production of methane under anaerobic conditions caused an increase in ?{sup 13}C-DIC up to values of +10 and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a ?{sup 13}C-DIC of about ?20. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidationreduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration.

  12. Hydrogen isotopes as a proxy for the [sup 18]O content of water in

    Office of Scientific and Technical Information (OSTI)

    carbonates (Conference) | SciTech Connect Conference: Hydrogen isotopes as a proxy for the [sup 18]O content of water in carbonates Citation Details In-Document Search Title: Hydrogen isotopes as a proxy for the [sup 18]O content of water in carbonates Water resides within carbonates as trapped fluid inclusions, adsorbed water, and as water bound within the crystal structure. Analysis by the CO[sub 2] equilibration method or micro-analysis of water by conversion of water directly to CO[sub

  13. METHOD TO TEST ISOTOPIC SEPARATION EFFICIENCY OF PALLADIUM PACKED COLUMNS

    SciTech Connect (OSTI)

    Heung, L; Gregory Staack, G; James Klein, J; William Jacobs, W

    2007-06-27

    The isotopic effect of palladium has been applied in different ways to separate hydrogen isotopes for many years. At Savannah River Site palladium deposited on kieselguhr (Pd/k) is used in a thermal cycling absorption process (TCAP) to purify tritium for over ten years. The need to design columns for different throughputs and the desire to advance the performance of TCAP created the need to evaluate different column designs and packing materials for their separation efficiency. In this work, columns with variations in length, diameter and metal foam use, were tested using an isotope displacement method. A simple computer model was also developed to calculate the number of theoretical separation stages using the test results. The effects of column diameter, metal foam and gas flow rate were identified.

  14. Tests of isotopic separation efficiency of palladium packed columns

    SciTech Connect (OSTI)

    Heung, L. K.; Staack, G. C.; Klein, J. E.; Jacobs, W. D.

    2008-07-15

    The isotopic effect of palladium has been applied in different ways to separate hydrogen isotopes for many years. At Savannah River Site palladium deposited on kieselguhr (Pd/k) is used in a thermal cycling absorption process (TCAP) to purify tritium for over ten years. The need to design columns for different throughputs and the desire to advance the performance of TCAP created the need to evaluate different column designs and packing materials for their separation efficiency. In this work, columns with variations in length, diameter and metal foam presence were tested using an isotope displacement method. A simple computer model was also developed to calculate the number of theoretical separation stages based on the test results. The effects of column diameter, metal foam presence and gas flow rate were identified. (authors)

  15. Simple, rapid method for the preparation of isotopically labeled formaldehyde

    DOE Patents [OSTI]

    Hooker, Jacob Matthew; Schonberger, Matthias; Schieferstein, Hanno; Fowler, Joanna S.

    2011-10-04

    Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

  16. Rare Isotopes in Cosmic Explosions and Accelerators on Earth

    ScienceCinema (OSTI)

    Schatz, Hendrick [Michigan State University, East Lansing, Michigan, United States

    2010-01-08

    Rare isotopes are nature?s stepping stones to produce the heavy elements, and they are produced in large quantities in stellar explosions. Despite their fleeting existence, they shape the composition of the universe and the observable features of stellar explosions. The challenge for nuclear science is to produce and study the very same rare isotopes so as to understand the origin of the elements and a range of astronomical observations. I will review the progress that has been made to date in astronomy and nuclear physics, and the prospects of finally addressing many of the outstanding issues with the future Facility for Rare Isotope Beams (FRIB), which DOE will build at Michigan State University.

  17. Performance and safety parameters for the high flux isotope reactor

    SciTech Connect (OSTI)

    Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm III, T. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm Consulting, LLC, 945 Laurel Hill Road, Knoxville, TN 37923 (United States)

    2012-07-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDF/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data. (authors)

  18. Performance and Safety Parameters for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina [ORNL; Primm, Trent [Primm Consulting, LLC

    2012-01-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDV/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared when available with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data.

  19. RAPID FUSION METHOD FOR DETERMINATION OF PLUTONIUM ISOTOPES IN LARGE RICE SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.

    2013-03-01

    A new rapid fusion method for the determination of plutonium in large rice samples has been developed at the Savannah River National Laboratory (Aiken, SC, USA) that can be used to determine very low levels of plutonium isotopes in rice. The recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid, reliable radiochemical analyses for radionuclides in environmental and food samples. Public concern regarding foods, particularly foods such as rice in Japan, highlights the need for analytical techniques that will allow very large sample aliquots of rice to be used for analysis so that very low levels of plutonium isotopes may be detected. The new method to determine plutonium isotopes in large rice samples utilizes a furnace ashing step, a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a column separation process with TEVA Resin� cartridges. The method can be applied to rice sample aliquots as large as 5 kg. Plutonium isotopes can be determined using alpha spectrometry or inductively-coupled plasma mass spectrometry (ICP-MS). The method showed high chemical recoveries and effective removal of interferences. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory plutonium particles are effectively digested. The MDA for a 5 kg rice sample using alpha spectrometry is 7E-5 mBq g{sup -1}. The method can easily be adapted for use by ICP-MS to allow detection of plutonium isotopic ratios.

  20. Equations of state and phase diagrams of hydrogen isotopes

    SciTech Connect (OSTI)

    Urlin, V. D.

    2013-11-15

    A new form of the semiempirical equation of state proposed for the liquid phase of hydrogen isotopes is based on the assumption that its structure is formed by cells some of which contain hydrogen molecules and others contain hydrogen atoms. The values of parameters in the equations of state of the solid (molecular and atomic) phases as well as of the liquid phase of hydrogen isotopes (protium and deuterium) are determined. Phase diagrams, shock adiabats, isentropes, isotherms, and the electrical conductivity of compressed hydrogen are calculated. Comparison of the results of calculations with available experimental data in a wide pressure range demonstrates satisfactory coincidence.

  1. Atomic vapor laser isotope separation using resonance ionization

    SciTech Connect (OSTI)

    Comaskey, B.; Crane, J.; Erbert, G.; Haynam, C.; Johnson, M.; Morris, J.; Paisner, J.; Solarz, R.; Worden, E.

    1986-09-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power-reactor fuel has been under development for over 10 years. In June 1985, the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for enriched uranium. Resonance photoionization is the heart of the AVLIS process. We discuss those fundamental atomic parameters that are necessary for describing isotope-selective resonant multistep photoionization along with the measurement techniques that we use. We illustrate the methodology adopted with examples of other elements that are under study in our program.

  2. Isotope Effects and Helium Retention Behavior in Vanadium Tritide

    SciTech Connect (OSTI)

    Bowman, Jr., R. C.; Attalla, A.; Craft, B. D.

    1985-04-01

    The relaxation times of the H, T, and 3He nuclei have been measured in vanadium hydride and tritide samples. Substantial isotope effects in both the phase transition temperatures and diffusion parameters have been found. When compared to hydrides, the tritide samples have lower transition temperatures and faster mobilities. The differences in the occupancies of the interstitial sites are largely responsible for these isotope effects. Most of the helium atoms generated by tritium decay remain trapped in microscopic bubbles formed with the VTx lattice. Evidence is presented for the gradual growth of the helium bubbles over periods of hundreds of days.

  3. Lesson 3 - Atoms and Isotopes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 - Atoms and Isotopes Lesson 3 - Atoms and Isotopes You've probably heard people refer to nuclear energy as "atomic energy." Why? Nuclear energy is the energy that is stored in the bonds of atoms, inside the nucleus. Nuclear power plants are designed to capture this energy as heat and convert it to electricity. This lesson looks closely at what atoms are and how atoms store energy. This lesson covers the following topics: Matter Molecules Elements Chemical reaction Periodic table The

  4. Interactions of Hydrogen Isotopes and Oxides with Metal Tubes

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2008-08-01

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results.

  5. Third minima in thorium and uranium isotopes in a self-consistent...

    Office of Scientific and Technical Information (OSTI)

    Third minima in thorium and uranium isotopes in a self-consistent theory Title: Third minima in thorium and uranium isotopes in a self-consistent theory Authors: McDonnell, J. D. ; ...

  6. Isotope enrichment by frequency-tripled temperature tuned neodymium laser photolysis of formaldehyde

    DOE Patents [OSTI]

    Marling, John B.

    1977-01-01

    Enrichment of carbon, hydrogen and/or oxygen isotopes by means of isotopically selective photo-predissociation of formaldehyde is achieved by irradiation provided by a frequency-tripled, temperature tuned neodymium laser.

  7. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    DOE Patents [OSTI]

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  8. Stable isotopic study of precipitation and spring discharge on the Nevada Test Site

    SciTech Connect (OSTI)

    Ingraham, N.L.; Jacobson, R.L.; Hess, J.W.; Lyles, B.F. . Water Resources Center Nevada Univ., Reno, NV . Water Resources Center)

    1990-07-01

    Precipitation was collected in southern Nevada (on the Nevada Test Site) on a semi-regular monthly basis at 41 locations for six years for stable isotopic analysis. The precipitation record shows two time-based regimes. For the first three years of collection, the precipitation was highly variable with several large events and several dry periods. During the last three years of collection, the precipitation was much more even with no large events. However, there is no correlation between the variability in the amount of precipitation and the stable isotopic composition of precipitation. In addition, the oxygen isotope composition and discharge of two springs, Whiterock Spring and Cane Spring, issuing from perched water tables, were monitored for five years in a similar time frame as for the precipitation. 17 refs., 42 figs., 3 tabs.

  9. Method for enriching a middle isotope using vibration-vibration pumping

    DOE Patents [OSTI]

    Rich, Joseph W.; Homicz, Gregory F.; Bergman, Richard C.

    1989-01-01

    Method for producing isotopically enriched material by vibration-vibration excitation of gaseous molecules wherein a middle mass isotope of an isotopic mixture including lighter and heavier mass isotopes preferentially populates a higher vibrational mode and chemically reacts to provide a product in which it is enriched. The method can be used for vibration-vibration enrichment of .sup.17 O in a CO reactant mixture.

  10. Small Stirling dynamic isotope power system for robotic space missions

    SciTech Connect (OSTI)

    Bents, D.J.

    1992-08-01

    The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the US Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established.

  11. Beta-decay measurements of neutron-deficient cesium isotopes

    SciTech Connect (OSTI)

    Parry, R.F.

    1983-03-01

    Beta decay endpoint energy measurements of the neutron deficient cesium isotopes were done using an energy spectrum shape fitting technique. This was a departure from the typical method of endpoint energy analysis, the Fermi-Kurie plot. A discussion of the shape fitting procedure and its improved features are discussed. These beta endpoint measurements have led to total decay energies (Q/sub EC/) of the neutron deficient /sup 119/ /sup 123/Cs isotopes. The total decay energies of /sup 122m/Cs (Q/sub EC/ = 6.95 +- 0.25 MeV) and /sup 119/Cs (Q/sub EC/ = 6.26 +- 0.29 MeV) were new measurements. The total decay energies of /sup 123/Cs (Q/sub EC/ = 4.05 +- 0.18 MeV), /sup 122g/Cs (Q/sub EC/ = 7.05 +- 0.18 MeV), /sup 121/Cs (Q/sub EC/ = 5.21 +- 0.22 MeV), and /sup 120/Cs (Q/sub EC/ = 7.38 +- 0.23 MeV) were measurements with significantly improved uncertainties as compared to the literature. Further, a combination of the energy levels derived from previous literature gamma-gamma coincident measurements and the experimental beta-coincident gamma decay energies has supported an improved level scheme for /sup 121/Xe and the proposal of three new energy levels in /sup 119/Xe. Comparison of the experimental cesium mass excesses (determined with our Q/sub EC/ values and known xenon mass excesses) with both the literature and theoretical predicted values showed general agreement except for /sup 120/Cs. Possible explanations for this deviation are discussed.

  12. Measurements of stable isotope ratios in milk samples from a farm placed in the mountains of Transylvania

    SciTech Connect (OSTI)

    Magdas, D. A. Cristea, G. Bot, A.; Puscas, R.; Radu, S.; Mirel, V.; Cordea, D. V.; Mihaiu, M.

    2013-11-13

    Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ{sup 18}O and δ{sup 2}H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also very important: in summer, milk water contains higher δ{sup 18}O and δ{sup 2}H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.

  13. Shape coexistence in the neutron-deficient Pt isotopes in the configuration-mixed IBM

    SciTech Connect (OSTI)

    Vargas, Carlos E.; Campuzano, Cuauhtemoc; Morales, Irving O.; Frank, Alejandro; Van Isacker, Piet

    2008-05-12

    The matrix-coherent state approach in the IBM with configuration mixing is used to describe the geometry of neutron-deficient Pt isotopes. Employing a parameter set for all isotopes determined previously, it is found that the lowest minimum goes from spherical to oblate and finally acquires a prolate shape when approaching the mid-shell Pt isotopes.

  14. Nitrogen concentration and isotope dataset for environmental samples from 2012 and 2013, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jeff Heikoop; Heather Throckmorton

    2015-05-15

    Dataset includes nitrate concentrations for polygonal active layer samples, snowmelt; ammonium concentrations for active layer samples; nitrate isotopes for active layer samples, snowmelt, permafrost; ammonium isotopes for active layer samples; and nitrogen isotopes for soils and dissolved organic nitrogen extracted from soil pore waters.

  15. RECTIFIED ABSORPTION METHOD FOR THE SEPARATION OF HYDROGEN ISOTOPES

    DOE Patents [OSTI]

    Hunt, C.D.; Hanson, D.N.

    1961-10-17

    A method is described for separating and recovering heavy hydrogen isotopes from gaseous mixtures by multiple stage cyclic absorption and rectification from an approximate solvent. In particular, it is useful for recovering such isoteoes from ammonia feedstock streams containing nitrogen solvent. Modifications of the process ranging from isobaric to isothermal are provided. Certain impurities are tolerated, giving advantages over conventional fractional distillation processes. (AEC)

  16. CRAD, Maintenance- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  17. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  18. Method of enhancing selective isotope desorption from metals

    DOE Patents [OSTI]

    Knize, R.J.; Cecchi, J.L.

    1983-07-26

    This invention relates generally to the field of gas desorption from metals; and, more particularly, to a method of enhancing the selective desorption of a particular isotope of a gas from metals. Enhanced selective desorption is especially useful in the operation of fusion devices.

  19. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    SciTech Connect (OSTI)

    Draayer, Jerry P.

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  20. CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  1. CRAD, Training- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  2. Cascades for hydrogen isotope separation using metal hydrides

    SciTech Connect (OSTI)

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  3. Rare Isotope Beams for the 21st Century

    ScienceCinema (OSTI)

    James Symons

    2010-01-08

    In a scientific keynote address on Friday, June 12 at Michigan State University (MSU) in East Lansing, James Symons, Director of Berkeley Labs Nuclear Science Division (NSD), discussed the exciting research prospects of the new Facility for Rare Isotope Beams (FRIB) to be built at MSUs National Superconducting Cyclotron Laboratory.

  4. Revision of HFIR (High Flux Isotope Reactor) operating procedures

    SciTech Connect (OSTI)

    McGinty, D.M.

    1987-01-23

    This report documents modifications to the facility and changes in some operating procedures for the High Flux Isotope Reactor (HFIR). The topics covered include: Reactor Operation, Reactor Start-up, Reactor Safety Systems, Reactor Control Systems, Reporting Requirements, and Administrative Procedures. (FI)

  5. Apparatus and method for monitoring of gas having stable isotopes

    SciTech Connect (OSTI)

    Clegg, Samuel M; Fessenden-Rahn, Julianna E

    2013-03-05

    Gas having stable isotopes is monitored continuously by using a system that sends a modulated laser beam to the gas and collects and transmits the light not absorbed by the gas to a detector. Gas from geological storage, or from the atmosphere can be monitored continuously without collecting samples and transporting them to a lab.

  6. Polyatomic interferences on high precision uranium isotope ratio measurements by MC-ICP-MS: Applications to environmental sampling for nuclear safeguards

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pollington, Anthony D.; Kinman, William S.; Hanson, Susan K.; Steiner, Robert E.

    2015-09-04

    Modern mass spectrometry and separation techniques have made measurement of major uranium isotope ratios a routine task; however accurate and precise measurement of the minor uranium isotopes remains a challenge as sample size decreases. One particular challenge is the presence of isobaric interferences and their impact on the accuracy of minor isotope 234U and 236U measurements. Furthermore, we present techniques used for routine U isotopic analysis of environmental nuclear safeguards samples and evaluate polyatomic interferences that negatively impact accuracy as well as methods to mitigate their impacts.

  7. Polyatomic interferences on high precision uranium isotope ratio measurements by MC-ICP-MS: Applications to environmental sampling for nuclear safeguards

    SciTech Connect (OSTI)

    Pollington, Anthony D.; Kinman, William S.; Hanson, Susan K.; Steiner, Robert E.

    2015-09-04

    Modern mass spectrometry and separation techniques have made measurement of major uranium isotope ratios a routine task; however accurate and precise measurement of the minor uranium isotopes remains a challenge as sample size decreases. One particular challenge is the presence of isobaric interferences and their impact on the accuracy of minor isotope 234U and 236U measurements. Furthermore, we present techniques used for routine U isotopic analysis of environmental nuclear safeguards samples and evaluate polyatomic interferences that negatively impact accuracy as well as methods to mitigate their impacts.

  8. Alternative applications of atomic vapor laser isotope separation technology

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This report was commissioned by the Secretary of Energy. It summarizes the main features of atomic vapor laser isotope separation (AVLIS) technology and subsystems; evaluates applications, beyond those of uranium enrichment, suggested by Lawrence Livermore National Laboratory (LLNL) and a wide range of US industries and individuals; recommends further work on several applications; recommends the provision of facilities for evaluating potential new applications; and recommends the full involvement of end users from the very beginning in the development of any application. Specifically excluded from this report is an evaluation of the main AVLIS missions, uranium enrichment and purification of plutonium for weapons. In evaluating many of the alternative applications, it became clear that industry should play a greater and earlier role in the definition and development of technologies with the Department of Energy (DOE) if the nation is to derive significant commercial benefit. Applications of AVLIS to the separation of alternate (nonuranium) isotopes were considered. The use of {sup 157}Gd as burnable poison in the nuclear fuel cycle, the use {sup 12}C for isotopically pure diamond, and the use of plutonium isotopes for several nonweapons applications are examples of commercially useful products that might be produced at a cost less than the product value. Separations of other isotopes such as the elemental constituents of semiconductors were suggested; it is recommended that proposed applications be tested by using existing supplies to establish their value before more efficient enrichment processes are developed. Some applications are clear, but their production costs are too high, the window of opportunity in the market has passed, or societal constraints (e.g., on reprocessing of reactor fuel) discourage implementation.

  9. The Multi-Isotope Process (MIP) Monitor Project: FY13 Final Report

    SciTech Connect (OSTI)

    Meier, David E.; Coble, Jamie B.; Jordan, David V.; Mcdonald, Luther W.; Forrester, Joel B.; Schwantes, Jon M.; Unlu, Kenan; Landsberger, Sheldon; Bender, Sarah; Dayman, Kenneth J.; Reilly, Dallas D.

    2013-09-01

    The Multi-Isotope Process (MIP) Monitor provides an efficient approach to monitoring the process conditions in reprocessing facilities in support of the goal of (minimization of) the risks of nuclear proliferation and terrorism. The MIP Monitor measures the distribution of the radioactive isotopes in product and waste streams of a nuclear reprocessing facility. These isotopes are monitored online by gamma spectrometry and compared, in near-real-time, to spectral patterns representing normal process conditions using multivariate analysis and pattern recognition algorithms. The combination of multivariate analysis and gamma spectroscopy allows us to detect small changes in the gamma spectrum, which may indicate changes in process conditions. By targeting multiple gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, relatively high-resolution gamma detectors that may be easily deployed throughout an existing facility. The automated multivariate analysis can provide a level of data obscurity, giving a built-in information barrier to protect sensitive or proprietary operational data. Proof-of-concept simulations and experiments have been performed in previous years to demonstrate the validity of this tool in a laboratory setting for systems representing aqueous reprocessing facilities. However, pyroprocessing is emerging as an alternative to aqueous reprocessing techniques.

  10. SAS2H Generated Isotopic Concentrations For B&W 15X15 PWR Assembly (SCPB:N/A)

    SciTech Connect (OSTI)

    J.W. Davis

    1996-08-29

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide pressurized water reactor (PWR) isotopic composition data as a function of time for use in criticality analyses. The objectives of this evaluation are to generate burnup and decay dependant isotopic inventories and to provide these inventories in a form which can easily be utilized in subsequent criticality calculations.

  11. The Atomic Vapor Laser Isotope Separation Program. [Atomic Vapor Laser Isotope Separation (AVLIS) Program

    SciTech Connect (OSTI)

    Not Available

    1992-11-09

    This report provides the finding and recommendations on the audit of the Atomic Vapor Laser Isotope Separation (AVLIS) program. The status of the program was assessed to determine whether the Department was achieving objectives stated in its January 1990 Plan for the Demonstration, Transition and Deployment of AVLIS Technology. Through Fiscal Year 1991, the Department had spent about $1.1 billion to develop AVLIS technology. The January 1990 plan provided for AVLIS to be far enough along by September to enable the Department to make a determination of the technical and economic feasibility of deployment. However, the milestones needed to support that determination were not met. An estimated $550 million would be needed to complete AVLIS engineering development and related testing prior to deployment. The earliest possible deployment date has slipped to beyond the year 2000. It is recommended that the Department reassess the requirement for AVLIS in light of program delays and changes that have taken place in the enrichment market since January 1990. Following the reassessment, a decision should be made to either fully support and promote the actions needed to complete AVLIS development or discontinue support for the program entirely. Management's position is that the Department will successfully complete the AVLIS technology demonstration and that the program should continue until it can be transferred to a Government corporation. Although the auditors recognize that AVLIS may be transferred, there are enough technical and financial uncertainties that a thorough assessment is warranted.

  12. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOE Patents [OSTI]

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  13. Salt effects on isotope partitioning and their geochemical implications: An overview

    SciTech Connect (OSTI)

    Horita, J.; Cole, D.R.; Fortier, S.M.

    1996-01-01

    Essential to the use of stable isotopes as natural tracers and geothermometers is the knowledge of equilibrium isotope partitioning between different phases and species, which is usually a function of temperature only. The one exception known to date is oxygen and hydrogen isotope fractionation between liquid water and other phases (steam, gases, minerals), which changes upon the addition of salts to water, i.e., the isotope salt salt effect. Our knowledge of this effect, the difference between activity and composition (a-X) of isotopic water molecules in salt solutions, is very limited and controversial, especially at elevated temperatures. For the last several years, we have been conducting a detailed, systematic experimental study at Oak Ridge National Laboratory to determine the isotope salt effects from room temperature to elevated temperatures (currently to 500{degree}C). From this effort, a simple, coherent picture of the isotope salt effect is emerging, that differs markedly from the complex results reported in the literature. In this communication, we present an overview on the isotope salt effect, obtained chiefly from our study. Observed isotope salt effects in salt solutions are significant even at elevated temperatures. The importance and implications of the isotope salt effect for isotopic studies of brine-dominated systems are also discussed in general terms.

  14. Determination of the origin of elevated uranium at a Former Air Force Landfill using non-parametric statistics analysis and uranium isotope ratio analysis

    SciTech Connect (OSTI)

    Weismann, J.; Young, C.; Masciulli, S.; Caputo, D.

    2007-07-01

    Lowry Air Force Base (Lowry) was closed in September 1994 as part of the Base Realignment and Closure (BRAC) program and the base was transferred to the Lowry Redevelopment Authority in 1995. As part of the due diligence activities conducted by the Air Force, a series of remedial investigations were conducted across the base. A closed waste landfill, designated Operable Unit 2 (OU 2), was initially assessed in a 1990 Remedial Investigation (RI; [1]). A Supplemental Remedial Investigation was conducted in 1995 [2] and additional studies were conducted in a 1998 Focused Feasibility Study. [3] The three studies indicated that gross alpha, gross beta, and uranium concentrations were consistently above regulatory standards and that there were detections of low concentrations other radionuclides. Results from previous investigations at OU 2 have shown elevated gross alpha, gross beta, and uranium concentrations in groundwater, surface water, and sediments. The US Air Force has sought to understand the provenance of these radionuclides in order to determine if they could be due to leachates from buried radioactive materials within the landfill or whether they are naturally-occurring. The Air Force and regulators agreed to use a one-year monitoring and sampling program to seek to explain the origins of the radionuclides. Over the course of the one-year program, dissolved uranium levels greater than the 30 {mu}g/L Maximum Contaminant Level (MCL) were consistently found in both up-gradient and down-gradient wells at OU 2. Elevated Gross Alpha and Gross Beta measurements that were observed during prior investigations and confirmed during the LTM were found to correlate with high dissolved uranium content in groundwater. If Gross Alpha values are corrected to exclude uranium and radon contributions in accordance with US EPA guidance, then the 15 pCi/L gross alpha level is not exceeded. The large dataset also allowed development of gross alpha to total uranium correlation factors so that gross alpha action levels can be applied to future long-term landfill monitoring to track radiological conditions at lower cost. Ratios of isotopic uranium results were calculated to test whether the elevated uranium displayed signatures indicative of military use. Results of all ratio testing strongly supports the conclusion that the uranium found in groundwater, surface water, and sediment at OU 2 is naturally-occurring and has not undergone anthropogenic enrichment or processing. U-234:U-238 ratios also show that a disequilibrium state, i.e., ratio greater than 1, exists throughout OU 2 which is indicative of long-term aqueous transport in aged aquifers. These results all support the conclusion that the elevated uranium observed at OU 2 is due to the high concentrations in the regional watershed. Based on the results of this monitoring program, we concluded that the elevated uranium concentrations measured in OU 2 groundwater, surface water, and sediment are due to the naturally-occurring uranium content of the regional watershed and are not the result of waste burials in the former landfill. Several lines of evidence indicate that natural uranium has been naturally concentrated beneath OU 2 in the geologic past and the higher of uranium concentrations in down-gradient wells is the result of geochemical processes and not the result of a uranium ore disposal. These results therefore provide the data necessary to support radiological closure of OU 2. (authors)

  15. Method and apparatus for noble gas atom detection with isotopic selectivity

    DOE Patents [OSTI]

    Hurst, G. Samuel; Payne, Marvin G.; Chen, Chung-Hsuan; Parks, James E.

    1984-01-01

    Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.

  16. High Flux Isotope Reactor system RELAP5 input model

    SciTech Connect (OSTI)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  17. Propagation of Isotopic Bias and Uncertainty to Criticality Safety Analyses of PWR Waste Packages

    SciTech Connect (OSTI)

    Radulescu, Georgeta

    2010-06-01

    Burnup credit methodology is economically advantageous because significantly higher loading capacity may be achieved for spent nuclear fuel (SNF) casks based on this methodology as compared to the loading capacity based on a fresh fuel assumption. However, the criticality safety analysis for establishing the loading curve based on burnup credit becomes increasingly complex as more parameters accounting for spent fuel isotopic compositions are introduced to the safety analysis. The safety analysis requires validation of both depletion and criticality calculation methods. Validation of a neutronic-depletion code consists of quantifying the bias and the uncertainty associated with the bias in predicted SNF compositions caused by cross-section data uncertainty and by approximations in the calculational method. The validation is based on comparison between radiochemical assay (RCA) data and calculated isotopic concentrations for fuel samples representative of SNF inventory. The criticality analysis methodology for commercial SNF disposal allows burnup credit for 14 actinides and 15 fission product isotopes in SNF compositions. The neutronic-depletion method for disposal criticality analysis employing burnup credit is the two-dimensional (2-D) depletion sequence TRITON (Transport Rigor Implemented with Time-dependent Operation for Neutronic depletion)/NEWT (New ESC-based Weighting Transport code) and the 44GROUPNDF5 crosssection library in the Standardized Computer Analysis for Licensing Evaluation (SCALE 5.1) code system. The SCALE 44GROUPNDF5 cross section library is based on the Evaluated Nuclear Data File/B Version V (ENDF/B-V) library. The criticality calculation code for disposal criticality analysis employing burnup credit is General Monte Carlo N-Particle (MCNP) Transport Code. The purpose of this calculation report is to determine the bias on the calculated effective neutron multiplication factor, k{sub eff}, due to the bias and bias uncertainty associated with predicted spent fuel compositions (i.e., determine the penalty in reactivity due to isotopic composition bias and uncertainty) for use in disposal criticality analysis employing burnup credit. The method used in this calculation to propagate the isotopic bias and bias-uncertainty values to k{sub eff} is the Monte Carlo uncertainty sampling method. The development of this report is consistent with 'Test Plan for: Isotopic Validation for Postclosure Criticality of Commercial Spent Nuclear Fuel'. This calculation report has been developed in support of burnup credit activities for the proposed repository at Yucca Mountain, Nevada, and provides a methodology that can be applied to other criticality safety applications employing burnup credit.

  18. Automated data extraction from in situ protein stable isotope probing studies

    SciTech Connect (OSTI)

    Slysz, Gordon W.; Steinke, Laurey A.; Ward, David M.; Klatt, Christian G.; Clauss, Therese RW; Purvine, Samuel O.; Payne, Samuel H.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2014-01-27

    Protein stable isotope probing (protein-SIP) has strong potential for revealing key metabolizing taxa in complex microbial communities. While most protein-SIP work to date has been performed under controlled laboratory conditions to allow extensive isotope labeling of the target organism, a key application will be in situ studies of microbial communities under conditions that result in small degrees of partial labeling. One hurdle restricting large scale in situ protein-SIP studies is the lack of algorithms and software for automated data processing of the massive data sets resulting from such studies. In response, we developed Stable Isotope Probing Protein Extraction Resources software (SIPPER) and applied it for large scale extraction and visualization of data from short term (3 h) protein-SIP experiments performed in situ on Yellowstone phototrophic bacterial mats. Several metrics incorporated into the software allow it to support exhaustive analysis of the complex composite isotopic envelope observed as a result of low amounts of partial label incorporation. SIPPER also enables the detection of labeled molecular species without the need for any prior identification.

  19. Development of Halide and Oxy-Halides for Isotopic Separations

    SciTech Connect (OSTI)

    Leigh R. Martin; Aaron T. Johnson; Jana Pfeiffer; Martha R. Finck

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  20. Hydrogen isotope MicroChemLab FY15.

    SciTech Connect (OSTI)

    Robinson, David; Luo, Weifang; Stewart, Kenneth D.

    2015-09-01

    We have developed a new method to measure the composition of gaseous mixtures of any two hydrogen isotopes, as well as an inert gas component. When tritium is one of those hydrogen isotopes, there is usually some helium present, because the tritium decays to form helium at a rate of about 1% every 2 months. The usual way of measuring composition of these mixtures involves mass spectrometry, which involves bulky, energy-intensive, expensive instruments, including vacuum pumps that can quite undesirably disperse tritium. Our approach uses calorimetry of a small quantity of hydrogen-absorbing material to determine gas composition without consuming or dispersing the analytes. Our work was a proof of principle using a rather large and slow benchtop calorimeter. Incorporation of microfabricated calorimeters, such as those that have been developed in Sandias MicroChemLab program or that are now commercially available, would allow for faster measurements and a smaller instrument footprint.

  1. Neutrino scattering off the stable even-even Mo isotopes

    SciTech Connect (OSTI)

    Balasi, K. G.; Kosmas, T. S.; Divari, P. C. [Theoretical Physics Section, University of Ioannina, GR 45110 Ioannina (Greece)

    2009-11-09

    Inelastic neutrino-nucleus reaction cross sections are studied focusing on the neutral current processes. Particularly, we investigate the angular and initial neutrino-energy dependence of the differential and integrated cross sections for low and intermediate energies of the incoming neutrino. The nuclear wave functions for the initial and final nuclear states are constructed in the context of the quasi-particle random phase approximation (QRPA) tested on the reproducibility of the low-lying energy spectrum. The results presented here refer to the isotopes Mo{sup 92}, Mo{sup 94}, Mo{sup 96}, Mo{sup 98} and Mo{sup 100}. These isotopes could play a significant role in supernova neutrino detection in addition to their use in double-beta and neutrinoless double-beta decay experiments (e.g. MOON, NEMO III)

  2. Reactor Fuel Isotopics and Code Validation for Nuclear Applications

    SciTech Connect (OSTI)

    Francis, Matthew W.; Weber, Charles F.; Pigni, Marco T.; Gauld, Ian C.

    2015-02-01

    Experimentally measured isotopic concentrations of well characterized spent nuclear fuel (SNF) samples have been collected and analyzed by previous researchers. These sets of experimental data have been used extensively to validate the accuracy of depletion code predictions for given sets of burnups, initial enrichments, and varying power histories for different reactor types. The purpose of this report is to present the diversity of data in a concise manner and summarize the current accuracy of depletion modeling. All calculations performed for this report were done using the Oak Ridge Isotope GENeration (ORIGEN) code, an internationally used irradiation and decay code solver within the SCALE comprehensive modeling and simulation code. The diversity of data given in this report includes key actinides, stable fission products, and radioactive fission products. In general, when using the current ENDF/B-VII.0 nuclear data libraries in SCALE, the major actinides are predicted to within 5% of the measured values. Large improvements were seen for several of the curium isotopes when using improved cross section data found in evaluated nuclear data file ENDF/B-VII.0 as compared to ENDF/B-V-based results. The impact of the flux spectrum on the plutonium isotope concentrations as a function of burnup was also shown. The general accuracy noted for the actinide samples for reactor types with burnups greater than 5,000 MWd/MTU was not observed for the low-burnup Hanford B samples. More work is needed in understanding these large discrepancies. The stable neodymium and samarium isotopes were predicted to within a few percent of the measured values. Large improvements were seen in prediction for a few of the samarium isotopes when using the ENDF/B-VII.0 libraries compared to results obtained with ENDF/B-V libraries. Very accurate predictions were obtained for 133Cs and 153Eu. However, the predicted values for the stable ruthenium and rhodium isotopes varied as much as 10% of the measured values, and 109Ag was consistently over-predicted by as much as 170%. In general, there is a larger uncertainty for modeling radioactive fission products when compared to either the actinides or the stable fission products in SNF. The relative C/E ratios ranged from a few percent for 137Cs up to 60% and 100% for 106Ru and 125Sb, respectively. Limited or no radioactive fission products data exist in the current data sets for reactor types other than PWRs and BWRs. More work is needed in obtaining a greater diversity of radioactive fission product data. While performing this survey, issues leading to inconsistencies in nuclear fission yield data were discovered that specifically impacted the fission product noble gases. Emphasis was given to this legacy data, and corrective actions were taken as described in this report. After the fission yield data were corrected, the stable xenon and krypton fission products were predicted to within 5% of their measurements. However, preliminary results not explicitly given in this report indicate that the relative C/E ratio for the radioactive isotope 85Kr varied as much as 10%. Due to the complex migration and the difficulty in measuring noble gases in the fuel, a more thorough investigation is needed to understand how accurately depletion codes can calculate these gas concentrations.

  3. Dual pressure-dual temperature isotope exchange process

    DOE Patents [OSTI]

    Babcock, D.F.

    1974-02-12

    A liquid and a gas stream, each containing a desired isotope, flow countercurrently through two liquid-gas contacting towers maintained at different temperatures and pressures. The liquid is enriched in the isotope in one tower while the gas is enriched within the other and a portion of at least one of the enriched streams is withdrawn from the system for use or further enrichment. The tower operated at the lower temperature is also maintained at the lower pressure to prevent formation of solid solvates. Gas flow between the towers passes through an expander-compressor apparatas to recover work from the expansion of gas to the lower pressure and thereby compress the gas returning to the tower of higher pressure. (Official Gazette)

  4. Isotopic prediction of eruption volume at continental volcanoes

    SciTech Connect (OSTI)

    Perry, F.V.; Valentine, G.A.; Crowe, B.M.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this project was to determine whether isotopic techniques can be used to assess the eruption potential and eruption volume of continental stratovolcanoes. Large-volume eruptions from stratovolcanoes pose significant hazards to population and infrastructure in many parts of the world. We are testing whether this technique will allow a short- to medium-term (decades to millennia) probabilistic hazard assessment of large-volume eruptions. If successful, the technique will be useful to countries or regions that must consider medium to long-term volcanic (e.g., nuclear waste facilities). We have begun sample acquisition and isotopic measurements at two stratovolcanoes, Pico de Orizaba in eastern Mexico and Daisen in western Japan.

  5. Descriptions of carbon isotopes within the energy density functional theory

    SciTech Connect (OSTI)

    Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana; Tammam, M.

    2014-10-24

    Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.

  6. Isotope Development & Production for Research and Applications (IDPRA) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) Research » Isotope Development & Production for Research and Applications (IDPRA) Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information »

  7. An overview of copper-laser development for isotope separation

    SciTech Connect (OSTI)

    Warner, B.E.

    1987-03-13

    We have developed a copper-laser pumped dye-laser system that addresses all of the requirements for atomic vapor laser isotope separation. The requirement for high average power for the laser system has led to the development of copper-laser chains with injection-locked oscillators and multihundred-watt amplifiers. By continuously operating the Laser Demonstration Facility, we gain valuable data for further upgrade and optimization.

  8. DOE Isotope Program Announces Availability of Radionuclide Generators for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medical Research | U.S. DOE Office of Science (SC) DOE Isotope Program Announces Availability of Radionuclide Generators for Medical Research Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email

  9. NOVEL CONCEPTS FOR ISOTOPIC SEPARATION OF 3HE/4HE

    SciTech Connect (OSTI)

    Roy, L.; Nigg, H.; Watson, H.

    2012-09-04

    The research outlined below established theoretical proof-of-concept using ab initio calculations that {sup 3}He can be separated from {sup 4}He by taking advantage of weak van der Waals interactions with other higher molecular weight rare gases such as xenon. To the best of our knowledge, this is the only suggested method that exploits the physical differences of the isotopes using a chemical interaction.

  10. MAGNESIUM ISOTOPE RATIOS IN {omega} CENTAURI RED GIANTS

    SciTech Connect (OSTI)

    Da Costa, G. S.; Norris, John E.; Yong, David

    2013-05-20

    We have used the high-resolution observations obtained at the Anglo-Australian Telescope with Ultra-High Resolution Facility (R {approx} 100,000) and at Gemini-S with b-HROS (R {approx} 150,000) to determine magnesium isotope ratios for seven {omega} Cen red giants that cover a range in iron abundance from [Fe/H] = -1.78 to -0.78 dex, and for two red giants in M4 (NGC 6121). The {omega} Cen stars sample both the ''primordial'' (i.e., O-rich, Na- and Al-poor) and the ''extreme'' (O-depleted, Na- and Al-rich) populations in the cluster. The primordial population stars in both {omega} Cen and M4 show ({sup 25}Mg, {sup 26}Mg)/{sup 24}Mg isotopic ratios that are consistent with those found for the primordial population in other globular clusters with similar [Fe/H] values. The isotopic ratios for the {omega} Cen extreme stars are also consistent with those for extreme population stars in other clusters. The results for the extreme population stars studied indicate that the {sup 26}Mg/{sup 24}Mg ratio is highest at intermediate metallicities ([Fe/H] < -1.4 dex), and for the highest [Al/Fe] values. Further, the relative abundance of {sup 26}Mg in the extreme population stars is notably higher than that of {sup 25}Mg, in contrast to model predictions. The {sup 25}Mg/{sup 24}Mg isotopic ratio in fact does not show any obvious dependence on either [Fe/H] or [Al/Fe] nor, intriguingly, any obvious difference between the primordial and extreme population stars.

  11. FUEL CYCLE ISOTOPE EVOLUTION BY TRANSMUTATION DYNAMICS OVER MULTIPLE RECYCLES

    SciTech Connect (OSTI)

    Samuel Bays; Steven Piet; Amaury Dumontier

    2010-06-01

    Because all actinides have the ability to fission appreciably in a fast neutron spectrum, these types of reactor systems are usually not associated with the buildup of higher mass actinides: curium, berkelium and californium. These higher actinides have high specific decay heat power, gamma and neutron source strengths, and are usually considered as a complication to the fuel manufacturing and transportation of fresh recycled transuranic fuel. This buildup issue has been studied widely for thermal reactor fuels. However, recent studies have shown that the transmutation physics associated with "gateway isotopes" dictates Cm-Bk-Cf buildup, even in fast burner reactors. Assuming a symbiotic fuel relationship with light water reactors (LWR), Pu-242 and Am-243 are formed in the LWRs and then are externally fed to the fast reactor as part of its overall transuranic fuel supply. These isotopes are created much more readily in a thermal than in fast spectrum systems due to the differences in the fast fission (i.e., above the fission threshold for non-fissile actinides) contribution. In a strictly breeding fast reactor this dependency on LWR transuranics would not exist, and thus avoids the introduction of LWR derived gateway isotopes into the fast reactor system. However in a transuranic burning fast reactor, the external supply of these gateway isotopes behaves as an external driving force towards the creation and build-up of Cm-Bk-Cf in the fuel cycle. It was found that though the Cm-Bk-Cf concentration in the equilibrium fuel cycle is dictated by the fast neutron spectrum, the time required to reach that equilibrium concentration is dictated by recycle, transmutation and decay storage dynamics.

  12. Integration of Nontraditional Isotopic Systems Into Reaction-Transport

    Broader source: Energy.gov (indexed) [DOE]

    Models of EGS For Exploration, Evaluation of Water-Rock Interaction, and Impacts of Water Chemistry on Reservoir Sustainability | Department of Energy Nontraditional Isotopic Systems Into Reaction-Transport Models of EGS For Exploration, Evaluation of Water-Rock Interaction, and Impacts of Water Chemistry on Reservoir Sustainability presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon sonnenthal_foa_peer2013.pdf More Documents & Publications track 4:

  13. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    DOE Patents [OSTI]

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  14. Flask Samplers for Carbon Cycle Gases and Isotopes (FLASK) Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Flask Samplers for Carbon Cycle Gases and Isotopes (FLASK) Handbook S Biraud March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  15. Ionic Liquids as New Solvents for Improved Separation of Medical Isotopes -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Ionic Liquids as New Solvents for Improved Separation of Medical Isotopes Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00234_ID2580 (2).pdf (942 KB) Technology Marketing SummaryA series of ionic liquids (ILs) have recently been applied as new solvents for potentially effective separation of different

  16. Process for preparing a chemical compound enriched in isotope content

    DOE Patents [OSTI]

    Michaels, Edward D.

    1982-01-01

    A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

  17. Round robin analyses of hydrogen isotope thin films standards.

    SciTech Connect (OSTI)

    Browning, James Frederick; Doyle, Barney Lee; Wampler, William R.; Wetteland, C. J.; LaDuca, Carol A.; Banks, James Clifford; Wang, Y. Q.; Tesmer, Joseph R.

    2003-06-01

    Hydrogen isotope thin film standards have been manufactured at Sandia National Laboratories for use by the materials characterization community. Several considerations were taken into account during the manufacture of the ErHD standards, with accuracy and stability being the most important. The standards were fabricated by e-beam deposition of Er onto a Mo substrate and the film stoichiometrically loaded with hydrogen and deuterium. To determine the loading accuracy of the standards two random samples were measured by thermal desorption mass spectrometry and atomic absorption spectrometry techniques with a stated combined accuracy of {approx}1.6% (1{sigma}). All the standards were then measured by high energy RBS/ERD and RBS/NRA with the accuracy of the techniques {approx}5% (1{sigma}). The standards were then distributed to the IBA materials characterization community for analysis. This paper will discuss the suitability of the standards for use by the IBA community and compare measurement results to highlight the accuracy of the techniques used.

  18. Isotope production and distribution Programs Fiscal Year (FY) 1995 Financial Statement Audit (ER-FC-96-01)

    SciTech Connect (OSTI)

    1996-02-12

    The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium and deuterium, and related isotope services. Services provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund, as established by the Fiscal Year 1990 Energy and Water Appropriations Act (Public Law 101-101). The Fiscal Year 1995 Appropriations Act (Public Law 103-316) modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Prices set for small-volume, high-cost isotopes that are needed for research may not achieve full-cost recovery. Isotope Program costs are financed by revenues from the sale of isotopes and associated services and through payments from the isotope support decision unit, which was established in the DOE fiscal year 1995 Energy, Supply, Research, and Development appropriation. The isotope decision unit finances the production and processing of unprofitable isotopes that are vital to the national interest.

  19. SULFUR ISOTOPIC COMPOSITIONS OF SUBMICROMETER SiC GRAINS FROM THE MURCHISON METEORITE

    SciTech Connect (OSTI)

    Xu, Yuchen; Zinner, Ernst; Gallino, Roberto; Heger, Alexander; Pignatari, Marco; Lin, Yangting

    2015-02-01

    We report C, Si, N, S, Mg-Al, and Ca-Ti isotopic compositions of presolar silicon carbide (SiC) grains from the SiC-rich KJE size fraction (0.5-0.8 μm) of the Murchison meteorite. One thousand one hundred thirteen SiC grains were identified based on their C and Si isotopic ratios. Mainstream, AB, C, X, Y, and Z subtypes of SiC, and X-type silicon nitride (Si{sub 3}N{sub 4}) account for 81.4%, 5.7%, 0.1%, 1.5%, 5.8%, 4.9%, and 0.4%, respectively. Twenty-five grains with unusual Si isotopic ratios, including one C grain, 16 X grains, 1 Y grain, 5 Z grains, and 2 X-type Si{sub 3}N{sub 4} grains were selected for N, S, Mg-Al, and Ca-Ti isotopic analysis. The C grain is highly enriched in {sup 29}Si and {sup 30}Si (δ{sup 29}Si = 1345‰ ± 19‰, δ{sup 30}Si = 1272‰ ± 19‰). It has a huge {sup 32}S excess, larger than any seen before, and larger than that predicted for the Si/S supernova (SN) zone, providing evidence against the elemental fractionation model by Hoppe et al. Two SN models investigated here present a more satisfying explanation in terms of a radiogenic origin of {sup 32}S from the decay of short-lived {sup 32}Si (τ{sub 1/2} = 153 yr). Silicon-32 as well as {sup 29}Si and {sup 30}Si can be produced in SNe by short neutron bursts; evidence for initial {sup 44}Ti (τ{sub 1/2} = 60 yr) in the C grain is additional evidence for an SN origin. The X grains have marginal {sup 32}S excesses, much smaller than expected from their large {sup 28}Si excesses. Similarly, the Y and Z grains do not show the S-isotopic anomalies expected from their large Si isotopic anomalies. Low intrinsic S contents and contamination with isotopically normal S are the most likely explanations.

  20. Development of the laser isotope separation method (AVLIS) for obtaining weight amounts of highly enriched {sup 150}Nd isotope

    SciTech Connect (OSTI)

    Babichev, A P; Grigoriev, Igor' S; Grigoriev, A I; Dorovskii, A P; D'yachkov, Aleksei B; Kovalevich, S K; Kochetov, V A; Kuznetsov, V A; Labozin, Valerii P; Matrakhov, A V; Mironov, Sergei M; Nikulin, Sergei A; Pesnya, A V; Timofeev, N I; Firsov, Valerii A; Tsvetkov, G O; Shatalova, G G

    2005-10-31

    Results obtained at the first stage of development of the experimental technique for obtaining weight amounts of the highly enriched {sup 150}Nd isotope by laser photoionisation are presented. The vaporiser and the laser are designed, and various methods of irradiation of neodymium vapour and extraction of photoions are tested. The product yield {approx}40 mg h{sup -1} for the {approx}60% enrichment and 25 mg h{sup -1} for the {approx}65% enrichment is achieved for a vaporiser of length 27 cm. The cost of constructing the facility for preparing 50 kg of the {sup 150}Nd isotope, intended for determining the neutrino mass, is estimated. This estimate shows that the cost of production can be lowered by a factor of 5-7 compared to the electromagnetic method. (invited paper)

  1. Energy level effects during multiphoton dissociation and the laser separation of closely spaced isotopes

    SciTech Connect (OSTI)

    Andreou, D.

    1996-09-01

    A novel approach for enhancing the selectivity of the desired isotope in the molecular laser isotope separation (MLIS) process is presented. The scheme consists of simultaneously applying two laser beams with frequencies corresponding to those between the ground and the first energy excitation level and the ground and the second energy excitation level, respectively. Practical relations on the properties of the spherical-top molecules are derived and a semiclassical analysis of the electromagnetic interaction within the limits of the experimental conditions applied in actual MLIS experiments shows that the selectivity, defined as the ratio of the absorption cross sections of the two isotopes, increases by a factor of 10{endash}20 times in the case of the uranium isotopes. In addition, it is demonstrated that during the multiphoton absorption process energy-level splittings due to induced magnetic dipoles and induced electric quadrupoles are by no means negligible. They become significant during multiphoton processes where two or more photons are lost during the interaction process. At high pumping powers they become dominant and inhibit selectivity. They cancel out during interaction processes where there is no change in the total number of photons, such as scattering. These effects can be avoided by applying the laser beams to the molecular gas in arrangements which in principle are equivalent to a Mach{endash}Zehnder interferometer with the molecules substituted for the reuniting beam splitter. Moreover, the induced electric quadrupoles (E2) are fully exploited. The application of the results and the concepts described herein can render the MLIS process the most economic and practical method for the commercial separation of the uranium isotopes. {copyright} {ital 1996 American Institute of Physics.}

  2. Efficient and selective isotopic labeling of hemes to facilitate the study

    Office of Scientific and Technical Information (OSTI)

    of multiheme proteins (Journal Article) | SciTech Connect Efficient and selective isotopic labeling of hemes to facilitate the study of multiheme proteins Citation Details In-Document Search Title: Efficient and selective isotopic labeling of hemes to facilitate the study of multiheme proteins Specific isotopic labeling of hemes provides a unique opportunity to characterize the structure and function of heme-proteins. Unfortunately, present day methods do not allow efficient labeling in high

  3. Shape coexistence in the neutron-deficient Pt isotopes in a configuration mixing IBM

    SciTech Connect (OSTI)

    Morales, Irving O.; Vargas, Carlos E.; Frank, Alejandro

    2004-09-13

    The recently proposed matrix-coherent state approach for configuration mixing IBM is used to describe the evolving geometry of the neutron deficient Pt isotopes. It is found that the Potential Energy Surface (PES) of the Platinum isotopes evolves, when the number of neutrons decreases, from spherical to oblate and then to prolate shapes, in agreement with experimental measurements. Oblate-Prolate shape coexistence is observed in 194,192Pt isotopes.

  4. Application of Environmental Isotopes to the Evaluation of the Origin of

    Energy Savers [EERE]

    Contamination in a Desert Arroyo: Many Devils Wash, Shiprock, New Mexico | Department of Energy Application of Environmental Isotopes to the Evaluation of the Origin of Contamination in a Desert Arroyo: Many Devils Wash, Shiprock, New Mexico Application of Environmental Isotopes to the Evaluation of the Origin of Contamination in a Desert Arroyo: Many Devils Wash, Shiprock, New Mexico Application of Environmental Isotopes to the Evaluation of the Origin of Contamination in a Desert Arroyo:

  5. Optimization of Depletion Modeling and Simulation for the High Flux Isotope

    Office of Scientific and Technical Information (OSTI)

    Reactor (Conference) | SciTech Connect Optimization of Depletion Modeling and Simulation for the High Flux Isotope Reactor Citation Details In-Document Search Title: Optimization of Depletion Modeling and Simulation for the High Flux Isotope Reactor Monte Carlo based depletion tools used for the high-fidelity modeling and simulation of the High Flux Isotope Reactor (HFIR) come at a great computational cost; finding sufficient approximations is necessary to make the use of these tools

  6. High Flux Isotope Reactor (HFIR) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities » High Flux Isotope Reactor (HFIR) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Spallation Neutron Source (SNS) High Flux Isotope Reactor (HFIR) Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home Neutron Scattering Facilities High Flux Isotope Reactor (HFIR) Print Text Size: A A A FeedbackShare Page Quick

  7. The Multi-Isotope Process (MIP) Monitor Project: FY12 Progress and Accomplishments

    SciTech Connect (OSTI)

    Coble, Jamie B.; Orton, Christopher R.; Jordan, David V.; Schwantes, Jon M.; Bender, Sarah; Dayman, Kenneth J.; Unlu, Kenan; Landsberger, Sheldon

    2012-09-27

    The Multi-Isotope Process (MIP) Monitor, being developed at Pacific Northwest National Laboratory (PNNL), provides an efficient approach to monitoring the process conditions in reprocessing facilities in support of the goal of "...(minimization of) the risks of nuclear proliferation and terrorism." The MIP Monitor measures distributions of a suite of indicator (radioactive) isotopes present within product and waste streams of a nuclear reprocessing facility. These indicator isotopes are monitored on-line by gamma spectrometry and compared, in near-real-time, to spectral patterns representing "normal" process conditions using multivariate pattern recognition software. The monitor utilizes this multivariate analysis and gamma spectroscopy of reprocessing streams to detect small changes in the gamma spectrum, which may indicate changes in process conditions. Multivariate analysis methods common in chemometrics, such as principal component analysis (PCA) and partial least squares regression (PLS), act as pattern recognition techniques, which can detect small deviations from the expected, nominal condition. By targeting multiple gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, relatively high-resolution gamma detectors that may be easily deployed throughout an existing facility. The automated multivariate analysis can provide a level of data obscurity, giving a built-in information barrier to protect sensitive or proprietary operational data. Proof-of-concept simulations and experiments have been performed in previous years to demonstrate the validity of this tool in a laboratory setting. Development of the MIP Monitor approach continues to evaluate the efficacy of the monitor for automated, real-time or near-real-time application. This report details follow-on research and development efforts sponsored by the U.S. Department of Energy Fuel Cycle Research and Development related to the MIP Monitor for fiscal year 2012 (FY12).

  8. Stable isotopes of authigenic minerals in variably-saturated fractured tuff

    SciTech Connect (OSTI)

    Weber, D.S.; Evans, D.D.

    1988-11-01

    Identifying stable isotope variation and mineralogical changes in fractured rock may help establish the history of climatic and geomorphological processes that might affect the isolation properties of a waste repository site. This study examines the use of the stable isotope ratios of oxygen ({sup 18}O/{sup 16}O) and carbon ({sup 13}C/{sup 12}C) in authigenic minerals as hydrogeochemical tools tracing low-temperature rock-water interaction in variably-saturated fractured stuff. Isotopic compositions of fracture-filling and rock matrix minerals in the Apache Leap tuff, near Superior, Arizona were concordant with geothermal temperatures and in equilibrium with water isotopically similar to present-day meteoric water and groundwater. Oxygen and carbon isotope ratios of fracture-filling, in unsaturated fractured tuff, displayed an isotopic gradient believed to result from near-surface isotopic enrichment due to evaporation rather than the effects of rock-water interaction. Oxygen isotope ratios of rock matrix opal samples exhibited an isotopic gradient believed to result from, leaching and reprecipitation of silica at depth. Methods and results can be used to further define primary flowpaths and the movement of water in variably-saturated fractured rock. 71 refs., 23 figs., 3 tabs.

  9. Preliminary Notice of Violation, MAC Isotopes, LLC- EA- 1998-05

    Broader source: Energy.gov [DOE]

    Issued to MAC Isotopes, LLC, related to a Radioactive Material Release at the Idaho National Engineering and Environmental Laboratory, (1998-05)

  10. A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrotherm...

    Open Energy Info (EERE)

    through the isotopically lighter volcanic rocks of the caldera fill. Authors Fraser Goff, Harold A. Wollenberg, D. C. Brookins and Ronald W. Kistler Published Journal Journal...

  11. Isotope Production and Distribution Program. Financial statements, September 30, 1994 and 1993

    SciTech Connect (OSTI)

    Marwick, P.

    1994-11-30

    The attached report presents the results of the independent certified public accountants` audit of the Isotope Production and Distribution (IP&D) Program`s financial statements as of September 30, 1994. The auditors have expressed an unqualified opinion on IP&D`s 1994 statements. Their reports on IP&D`s internal control structure and on compliance with laws,and regulations are also provided. The charter of the Isotope Program covers the production and sale of radioactive and stable isotopes, byproducts, and related isotope services. Prior to October 1, 1989, the Program was subsidized by the Department of Energy through a combination of appropriated funds and isotope sales revenue. The Fiscal Year 1990 Appropriations Act, Public Law 101-101, authorized a separate Isotope Revolving Fund account for the Program, which was to support itself solely from the proceeds of isotope sales. The initial capitalization was about $16 million plus the value of the isotope assets in inventory or on loan for research and the unexpended appropriation available at the close of FY 1989. During late FY 1994, Public Law 103--316 restructured the Program to provide for supplemental appropriations to cover costs which are impractical to incorporate into the selling price of isotopes. Additional information about the Program is provided in the notes to the financial statements.

  12. Isotope Related Reports | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    of the Biological and Environmental Research Advisory Committee, April 2004. Expert Panel: Forecast Future Demand for Medical Isotopes, .pdf file (109KB)March 1999. Medical ...

  13. Separation of carbon and nitrogen isotopes by selective photodissociation azo or diazo compounds

    DOE Patents [OSTI]

    Chen, Hao-Lin [Walnut Creek, CA

    1977-12-20

    Separation of isotopes, particularly of carbon or nitrogen, is achieved by the selective photodissociation of an azo compound or a diazoalkane, particularly azomethane or diazomethane.

  14. Isotope fractionation in surface ionization ion source of alkaline-earth iodides

    SciTech Connect (OSTI)

    Suzuki, T.; Kanzaki, C.; Nomura, M.; Fujii, Y.

    2012-02-15

    The relationship between the isotope fractionation of alkaline-earth elements in the surface ionization ion source and the evaporation filament current, i.e., filament temperature, was studied. It was confirmed that the isotope fractionation depends on the evaporation filament temperature; the isotope fractionation in the case of higher temperature of filament becomes larger. The ionization and evaporation process in the surface ionization ion source was discussed, and it was concluded that the isotope fractionation is suppressed by setting at the lower temperature of evaporation filament because the dissociations are inhibited on the evaporation filament.

  15. Utilizing Isotopic Uranium Ratios in Groundwater Evaluations at FUSRAP Sites

    SciTech Connect (OSTI)

    Frederick, W.T.; Keil, K.G.; Rhodes, M.C.; Peterson, J.M.; MacDonell, M.M.

    2007-07-01

    The U.S. Army Corps of Engineers Buffalo District is evaluating environmental radioactive contamination at several Formerly Utilized Sites Remedial Action Program (FUSRAP) sites throughout New York, Pennsylvania, Ohio, and Indiana. The investigations follow the process defined in the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Groundwater data from the Niagara Falls Storage Site (NFSS) in Lewiston, New York were evaluated for isotopic uranium ratios, specifically uranium-234 versus uranium-238 (U- 234 and U-238, respectively), and the results were presented at Waste Management 2006. Since uranium naturally occurs in all groundwater, it can be difficult to distinguish where low-concentration impacts from past releases differ from the high end of a site-specific natural background range. In natural groundwater, the ratio of U-234 to U-238 exceeds 1 (unity) due to the alpha particle recoil effect, in which U-234 is preferentially mobilized to groundwater from adjacent rock or soil. This process is very slow and may take hundreds to thousands of years before a measurable increase is seen in the natural isotopic ratio. If site releases are the source of uranium being measured in groundwater, the U-234 to U-238 ratio is commonly closer to 1, which normally reflects FUSRAP-related, uranium-contaminated wastes and soils. This lower ratio occurs because not enough residence time has elapsed since the 1940's and 1950's for the alpha particle recoil effect to have significantly altered the contamination-derived ratio. An evaluation of NFSS-specific and regional groundwater data indicate that an isotopic ratio of 1.2 has been identified as a signature value to help distinguish natural groundwater, which may have a broad background range, from zones impacted by past releases. (authors)

  16. Tunable dye laser amplifier chain for laser isotope separation

    SciTech Connect (OSTI)

    Grigoriev, Igor' S; D'yachkov, Aleksei B; Labozin, Valerii P; Mironov, Sergei M; Nikulin, Sergei A; Firsov, Valerii A

    2004-05-31

    A tunable dye laser amplifier chain developed for experiments on atomic vapour laser isotope separation (AVLIS) is described. The system, pumped by copper vapour lasers, consists of a master oscillator and an amplifier stage including a preamplifier and three main amplifiers working in the saturation mode. The master oscillator of the stage is a dye laser with a grazing incidence diffraction grating. Longitudinal pumping of the amplifiers is used. The efficiency of the main amplifiers is 50 % - 55 %. The average power of laser radiation at the output of the last amplifier is 100 W. (lasers. amplifiers)

  17. Consistency test of neutrinoless double beta decay with one isotope

    SciTech Connect (OSTI)

    Duerr, Michael; Lindner, Manfred [Max-Planck-Institut fuer Kernphysik, Postfach 10 39 80, 69029 Heidelberg (Germany); Zuber, Kai [Technical University Dresden, Institut fuer Kern- und Teilchenphysik, 01069 Dresden (Germany)

    2011-11-01

    We discuss a consistency test which makes it possible to discriminate unknown nuclear background lines from neutrinoless double beta decay with only one isotope. By considering both the transition to the ground state and to the first excited 0{sup +} state, a sufficiently large detector can reveal if neutrinoless double beta decay or some other nuclear physics process is at work. Such a detector could therefore simultaneously provide a consistency test for a certain range of Majorana masses and be sensitive to lower values of the effective Majorana mass .

  18. SPECTROSCOPY OF TRANSFERMIUM ISOTOPES AT DUBNA: RESULTS AND PLANS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPECTROSCOPY OF TRANSFERMIUM ISOTOPES AT DUBNA: RESULTS AND PLANS eremin@jinr.ru Yu. Ts. Oganessian , A.V. Yeremin, O.N. Malyshev, A.G. Popeko, A. Lopes-Martens, K. Hauschild and O. Dorvaux Super Heavy Nuclei International Symposium Texas A & M University, College Station TX, USA March 31 - April 02, 2015 * Introduction. Types of the spectroscopy experiments * Experimental set up at FLNR JINR. Past, present and future. * Experiments at FLNR JINR. Results and plans. Main goal of our activity:

  19. Final Progress Report: Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes Feasibility Study

    SciTech Connect (OSTI)

    Rawool-Sullivan, Mohini; Bounds, John Alan; Brumby, Steven P.; Prasad, Lakshman; Sullivan, John P.

    2012-04-30

    This is the final report of the project titled, 'Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes,' PMIS project number LA10-HUMANID-PD03. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). It summarizes work performed over the FY10 time period. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). Human analysts begin analyzing a spectrum based on features in the spectrum - lines and shapes that are present in a given spectrum. The proposed work was to carry out a feasibility study that will pick out all gamma ray peaks and other features such as Compton edges, bremsstrahlung, presence/absence of shielding and presence of neutrons and escape peaks. Ultimately success of this feasibility study will allow us to collectively explain identified features and form a realistic scenario that produced a given spectrum in the future. We wanted to develop and demonstrate machine learning algorithms that will qualitatively enhance the automated identification capabilities of portable radiological sensors that are currently being used in the field.

  20. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    SciTech Connect (OSTI)

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  1. Couplings between dipole and quadrupole vibrations in tin isotopes

    SciTech Connect (OSTI)

    Simenel, C.; Chomaz, Ph.

    2009-12-15

    We study the couplings between collective vibrations such as the isovector giant dipole and isoscalar giant quadrupole resonances in tin isotopes in the framework of the time-dependent Hartree-Fock theory with a Skyrme energy density functional. These couplings are a source of anharmonicity in the multiphonon spectrum. In particular, the residual interaction is known to couple the isovector giant dipole resonance with the isoscalar giant quadrupole resonance built on top of it, inducing a nonlinear evolution of the quadrupole moment after a dipole boost. This coupling also affects the dipole motion in a nucleus with a static or dynamical deformation induced by a quadrupole constraint or boost, respectively. Three methods associated with these different manifestations of the coupling are proposed to extract the corresponding matrix elements of the residual interaction. Numerical applications of the different methods to {sup 132}Sn are in good agreement with each other. Finally, several tin isotopes are considered to investigate the role of isospin and mass number on this coupling. A simple 1/A dependence of the residual matrix elements is found with no noticeable contribution from the isospin. This result is interpreted within the Goldhaber-Teller model.

  2. Chemical and isotopic data for groundwater in southern Nevada

    SciTech Connect (OSTI)

    Rose, T. P., LLNL

    1997-07-01

    This document presents a compilation of chemical and isotopic data for groundwater samples analyzed by Lawrence Livermore National Laboratory (LLNL) in support of the Hydrology and Radionuclide Migration Program (HRMP) and the Underground Test Area Program (UGTA) for the U.S. Department of Energy, Nevada Operations Office. Included are data for 107 samples collected from wells and springs located on and around the Nevada Test Site (NTS), within an area approximately bounded by latitudes 36{sup o} to 38{sup o}15'N and longitudes 115{sup o} to 117{sup o}15'W. The samples were collected during the time period 1992 to early 1997. The data represents one of the largest internally consistent geochemical data sets to be gathered for groundwater in southern Nevada. This database is available in electronic or hardcopy formats to interested parties upon request. In addition to the LLNL data we have included a table of selected isotopic data summarized from a larger database compiled by GeoTrans, Inc. (1994). This data is included for comparative purposes as a means of placing the LLNL data in the context of other data for the same geographic region.

  3. An efficient palladium isotope chromatograph (EPIC) for hydrogen

    SciTech Connect (OSTI)

    Rutherford, W.M.

    1989-06-20

    The efficient palladium isotope chromatography (EPIC) system is based on a palladium displacement chromatograph developed and tested for the preparative scale separation of the isotopes of hydrogen. Rapid cycling and high efficiency are obtained by use of high-performance packing operating at an elevated temperature (80/degree/C) and elevated pressure (1.5 atm). The process, which was tested with a 50/50 mixture of hydrogen and deuterium, depends on the exploitation of thermally driven pressure differences to recover and recycle the mixed transition zone between the bands of the pure components and also to recover and recycle the hydrogen gas used as the displacing agent. The purity of the product is significantly enhanced by partially backfilling the column with pure deuterium at the beginning of each displacement cycle. The computer-controlled system operates continuously, and it is capable of separating 2.2 std L/hr of feed at product assays of 99.86 at. % hydrogen and 99.992 at. % deuterium. 11 refs., 5 figs., 1 tab.

  4. Reaction cross sections of carbon isotopes incident on a proton

    SciTech Connect (OSTI)

    Abu-Ibrahim, B.; Horiuchi, W.; Kohama, A.; Suzuki, Y.

    2008-03-15

    We systematically study total reaction cross sections of carbon isotopes with N=6-16 on a proton target for wide range of incident energies. An emphasis is put on the difference from the case of a carbon target. The calculations include the reaction cross sections of {sup 19,20,22}C at 40A MeV, the data of which have recently been measured at RIKEN. The Glauber theory is used to calculate the reaction cross sections. To describe the intrinsic structure of the carbon isotopes, we use a Slater determinant generated from a phenomenological mean-field potential, and construct the density distributions. To go beyond the simple mean-field model, we adopt two types of dynamical models: One is a core+n model for odd-neutron nuclei, and the other is a core+n+n model for {sup 16}C and {sup 22}C. We propose empirical formulas which are useful in predicting unknown cross sections.

  5. Natural thorium isotopes in marine sediment core off Labuan port

    SciTech Connect (OSTI)

    Hafidz, B. Y.; Asnor, A. S.; Terence, R. C.; Mohamed, C. A. R.

    2014-02-12

    Sediment core was collected from Labuan port and analyzed to determine the radioactivity of thorium (Th) isotopes. The objectives of this study are to determine the possible sources of Th isotopes at Labuan port and estimates the sedimentation rate based on {sup 228}Th/{sup 232}Th model. The results suggest the {sup 230}Th and {sup 232}Th might be originated from terrestrial sedimentary rock while {sup 228}Th originated by authigenic origin. High ratio value of {sup 230}Th/{sup 232}Th detected at the top surface sediment indicates the increasing of {sup 230}Th at the recent years which might be contributed from the anthropogenic sources. The sedimentation rate of core sediment from Labuan Port was successfully estimated by using {sup 228}Th/{sup 232}Th model. The result show high sedimentation rate with 4.67 cm/year indicates rapid deposition occurred at this study area due to the high physical activity at the Labuan port. By assume the constant sedimentation rate at this area; we estimated the age of 142 cm core sediment obtained from Labuan port is 32 years started from 1981 to 2012. This chronology will be used in forthcoming research to investigate the historical profile of anthropogenic activities affecting the Labuan port.

  6. Utilization of Kinetic Isotope Effects for the Concentration of Tritium

    SciTech Connect (OSTI)

    Brown, Gilbert M.; Meyer, Thomas J.; Moyer, Bruce A.

    2000-06-01

    Work is in progress to develop methods for concentrating tritium in water based on large primary isotope effects in catalytic redox processes. Basic research is being conducted to develop the chemistry of a complete cyclic process. The process will remove tritium from H2O by concentrating it with respect to protio-water. This research involves developing chemical cycles that produce high concentration factors for HTO based on the discrimination of CH and C-T bonds in oxidation reactions. Several steps are required in a cyclic process for the concentration of tritium in water. In the first step, the tritium is incorporated in an organic compound. H-T discrimination occurs as the tritium containing compound is oxidized in a step involving a Ru(IV) oxo complex. Strong primary kinetic isotope effects lead to the oxidation of C-H bonds in preference to C-T bonds, and this reaction leads to concentration of tritium in the organic compound. The reduced form of the ruthenium compound can be reoxidized so that the oxidation step can be made catalytic.

  7. Stable isotope, site-specific mass tagging for protein identification

    DOE Patents [OSTI]

    Chen, Xian

    2006-10-24

    Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. A unique identification is, however, heavily dependent upon the mass accuracy and sequence coverage of the fragment ions generated by peptide ionization. The present invention describes a method for increasing the specificity, accuracy and efficiency of the assignments of particular proteolytic peptides and consequent protein identification, by the incorporation of selected amino acid residue(s) enriched with stable isotope(s) into the protein sequence without the need for ultrahigh instrumental accuracy. Selected amino acid(s) are labeled with .sup.13C/.sup.15N/.sup.2H and incorporated into proteins in a sequence-specific manner during cell culturing. Each of these labeled amino acids carries a defined mass change encoded in its monoisotopic distribution pattern. Through their characteristic patterns, the peptides with mass tag(s) can then be readily distinguished from other peptides in mass spectra. The present method of identifying unique proteins can also be extended to protein complexes and will significantly increase data search specificity, efficiency and accuracy for protein identifications.

  8. Isotope-enriched protein standards for computational amide I spectroscopy

    SciTech Connect (OSTI)

    Reppert, Mike; Roy, Anish R.; Tokmakoff, Andrei

    2015-03-28

    We present a systematic isotope labeling study of the protein G mutant NuG2b as a step toward the production of reliable, structurally stable, experimental standards for amide I infrared spectroscopic simulations. By introducing isotope enriched amino acids into a minimal growth medium during bacterial expression, we induce uniform labeling of the amide bonds following specific amino acids, avoiding the need for chemical peptide synthesis. We use experimental data to test several common amide I frequency maps and explore the influence of various factors on map performance. Comparison of the predicted absorption frequencies for the four maps tested with empirical assignments to our experimental spectra yields a root-mean-square error of 6-12 cm{sup −1}, with outliers of at least 12 cm{sup −1} in all models. This means that the predictions may be useful for predicting general trends such as changes in hydrogen bonding configuration; however, for finer structural constraints or absolute frequency assignments, the models are unreliable. The results indicate the need for careful testing of existing literature maps and shed light on possible next steps for the development of quantitative spectral maps.

  9. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOE Patents [OSTI]

    Rutherford, W.M.

    1985-12-04

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.

  10. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOE Patents [OSTI]

    Rutherford, William M.

    1988-05-24

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtainable in the prior art.

  11. High Specific Activity Sn-117m by Post Irradiation Isotope Separation

    SciTech Connect (OSTI)

    DAuria, John

    2015-04-16

    ElectroMagnetic Isotope Separation (EMIS) is used in the production of enriched stable isotopes. We demonstrated the feasibility of using EMIS to produce medium Specific Activity 117mSm using high purity 116Sn target material irradiated in a high flux reactor.

  12. EIS-0136: Special Isotope Separation Project Idaho National Engineering Laboratory, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to provide environmental input to the decision to construct the Special Isotope Separation Project, which would allow for the processing of existing fuel-grade plutonium into weapons-grade plutonium using the Atomic Laser Isotope Separation process.

  13. Test results of a new detector system for gamma ray isotopic measurements

    SciTech Connect (OSTI)

    Malcom, J.E.; Bonner, C.A.; Hurd, J.R.; Fleissner,

    1993-08-01

    A new type of gamma-ray detector system for isotopic measurements has been developed. This new system, a ``Duo detector`` array, consists of two intrinsic germanium detectors, a planar followed by a coaxial mounted on the same axis within a single cryostat assembly. This configuration allows the isotopic analysis system to take advantage of spectral data results that are collected simultaneously from different gamma-ray energy regimes. Princeton Gamma Tech (PGT) produced several prototypes of this Duo detector array which were then tested by Rocky Flats personnel until the design was optimized. An application for this detector design is in automated, roboticized NDA systems such as those being developed at the Los Alamos TA-55 Plutonium Facility. The Duo detector design reduces the space necessary for the isotopic instrument by a factor of two (only one liquid nitrogen dewar is needed), and also reduces the complexity of the mechanical systems and controlling software. Data will be presented on measurements of nuclear material with a Duo detector for a wide variety of matrices. Results indicate that the maximum count rate can be increased up to 100,000 counts per second yet maintaining excellent resolution and energy rate product.

  14. OECD NEA Benchmark Database of Spent Nuclear Fuel Isotopic Compositions for World Reactor Designs

    SciTech Connect (OSTI)

    Gauld, Ian C; Sly, Nicholas C; Michel-Sendis, Franco

    2014-01-01

    Experimental data on the isotopic concentrations in irradiated nuclear fuel represent one of the primary methods for validating computational methods and nuclear data used for reactor and spent fuel depletion simulations that support nuclear fuel cycle safety and safeguards programs. Measurement data have previously not been available to users in a centralized or searchable format, and the majority of accessible information has been, for the most part, limited to light-water-reactor designs. This paper describes a recent initiative to compile spent fuel benchmark data for additional reactor designs used throughout the world that can be used to validate computer model simulations that support nuclear energy and nuclear safeguards missions. Experimental benchmark data have been expanded to include VVER-440, VVER-1000, RBMK, graphite moderated MAGNOX, gas cooled AGR, and several heavy-water moderated CANDU reactor designs. Additional experimental data for pressurized light water and boiling water reactor fuels has also been compiled for modern assembly designs and more extensive isotopic measurements. These data are being compiled and uploaded to a recently revised structured and searchable database, SFCOMPO, to provide the nuclear analysis community with a centrally-accessible resource of spent fuel compositions that can be used to benchmark computer codes, models, and nuclear data. The current version of SFCOMPO contains data for eight reactor designs, 20 fuel assembly designs, more than 550 spent fuel samples, and measured isotopic data for about 80 nuclides.

  15. Forensic Applications of Light-Element Stable Isotope Ratios of Ricinus communis Seeds and Ricin Preparations

    SciTech Connect (OSTI)

    Kreuzer, Helen W.; West, Jason B.; Ehleringer, James

    2013-01-01

    Seeds of the castor plant Ricinus communis, also known as castor beans, are of forensic interest because they are the source of the poison ricin. We have tested whether stable isotope ratios of castor seeds and ricin prepared by various methods can be used as a forensic signature. We collected over 300 castor seed samples from locations around the world and measured the C, N, O, and H stable isotope ratios of the whole seeds, oil, and three types of ricin preparations. Our results demonstrate that N isotope ratios can be used to correlate ricin prepared by any of these methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pair-wise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.

  16. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    SciTech Connect (OSTI)

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  17. Methods for separating medical isotopes using ionic liquids

    DOE Patents [OSTI]

    Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

    2014-10-21

    A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

  18. CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS

    SciTech Connect (OSTI)

    Xiao, S.; Heung, L.

    2010-10-07

    Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

  19. NEST-GENERATION TCAP HYDROGEN ISOTOPE SEPARATION PROCESS

    SciTech Connect (OSTI)

    Heung, L; Henry Sessions, H; Anita Poore, A; William Jacobs, W; Christopher Williams, C

    2007-08-07

    A thermal cycling absorption process (TCAP) for hydrogen isotope separation has been in operation at Savannah River Site since 1994. The process uses a hot/cold nitrogen system to cycle the temperature of the separation column. The hot/cold nitrogen system requires the use of large compressors, heat exchanges, valves and piping that is bulky and maintenance intensive. A new compact thermal cycling (CTC) design has recently been developed. This new design uses liquid nitrogen tubes and electric heaters to heat and cool the column directly so that the bulky hot/cold nitrogen system can be eliminated. This CTC design is simple and is easy to implement, and will be the next generation TCAP system at SRS. A twelve-meter column has been fabricated and installed in the laboratory to demonstrate its performance. The design of the system and its test results to date is discussed.

  20. Ion extraction and charge exchange in laser isotope separation

    SciTech Connect (OSTI)

    Hostein, D.; Doneddu, F.

    1996-02-01

    In the atomic vapor laser isotope separation (AVLIS) process, a vapor is ionized by pulsed laser beams, and the ions are extracted by negatively biased collectors. The authors compute the unsteady dynamics of the photoplasma using a two-dimensional (2-D) particle-in-cell (PIC) code. Collisions between ions and neutral species are simulated by a Monte Carlo technique. The plasma dynamics is visualized by snapshots of particle positions showing the directions of their velocities. The three kinds of particles (electrons, photo-ions, and ions created by charge exchange) are marked by different colors. The graphic outputs illustrate the motion of the electrons toward the anodes, the vertical drift of the plasma, its erosion by the transient ion sheath, and nonselective ionization by charge exchange.

  1. Isotopic generator for bismuth-212 and lead-212 from radium

    DOE Patents [OSTI]

    Atcher, Robert W.; Friedman, Arnold M.; Hines, John

    1987-01-01

    A method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.

  2. Cryogenic distribution for the Facility for Rare Isotope Beams

    SciTech Connect (OSTI)

    S. Jones, Dana Arenius, Adam Fila, P. Geutschow, Helmut Laumer, Matt Johnson, Cory S. Waltz, J. G. Weisend II

    2012-06-01

    The Facility for Rare Isotope Beams (FRIB) is a new National User Facility for nuclear science funded by the Department of Energy Office of Science and operated by Michigan State University. The FRIB accelerator linac consists of superconducting radio-frequency (SCRF) cavities operating at 2 K and SC magnets operating at 4.5 K all cooled by a large scale cryogenic refrigeration system. A major subsystem of the cryogenic system will be the distribution system whose primary components will include a distribution box, the transfer lines and the interconnect valve boxes at each cryogenic device. An overview of the conceptual design of the distribution system including engineering details, capabilities and schedule is described.

  3. Utilizing Isotopic Uranium Ratios in Groundwater Evaluations at NFSS

    SciTech Connect (OSTI)

    Rhodes, M.C.; Keil, K.G.; Frederick, W.T.; Papura, T.R.; Leithner, J.S.; Peterson, J.M.; MacDonell, M.M.

    2006-07-01

    The U.S. Army Corps of Engineers (USACE) Buffalo District is currently evaluating environmental contamination at the Niagara Falls Storage Site (NFSS) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP). The NFSS is located in the Town of Lewiston in western New York and has been used to store uranium-contaminated materials since 1944. Most of the radioactive materials are currently contained in an on-site structure, but past contamination remains in soil and groundwater. As a naturally occurring radionuclide, uranium is present in all groundwater. Because contamination levels at the site are quite low, it can be difficult to distinguish zones that have been impacted by the past releases from those at the high end of the natural background range. The differences in the isotopic ratio of uranium-234 (U-234) to uranium-238 (U-238) between natural groundwater systems and affected areas are being used in an innovative way to better define the nature and extent of groundwater contamination at NFSS. In natural groundwater, the ratio of U-234 to U-238 exceeds 1 due to the alpha particle recoil effect, in which U-234 is preferentially mobilized to groundwater from adjacent rock or soil. This process is very slow, and it can be hundreds to thousands of years before a measurable impact is seen in the isotopic ratio. Thus, as a result of the recoil effect, the ratio of U-234 to U-238 will be higher in natural groundwater than in contaminated groundwater. This means that if site releases were the source of the uranium being measured in groundwater at NFSS, the ratio of U-234 to U-238 would be expected to be very close to 1 (the same ratio that exists in wastes and soil at the site), because not enough time has elapsed for the alpha particle recoil effect to have significantly altered that ratio. From an evaluation of site and regional groundwater data, an isotopic ratio of 1.2 has been identified as a site-specific signature to help distinguish natural groundwater (e.g., at the high end of the background range) from zones impacted by past releases. This information is crucial for focusing the ongoing CERCLA evaluation and decision making process. This signature value is not applied as a bright line, e.g., to define samples with ratios of U-234 to U-238 above 1.2 as representing background and those with ratios below 1.2 as being affected by site releases. Rather, this ratio serves as a weight of evidence for use in conjunction with other site information, including historical activities, to form science-based decisions regarding contaminated groundwater. This novel approach for developing a groundwater signature from the isotopic uranium ratio has proven to be a very useful tool for NFSS, and it is now being considered for broader application. (authors)

  4. Intruder states in odd-mass Ag isotopes

    SciTech Connect (OSTI)

    Rogowski, J.; Alstad, J.; Brant, S.; Daniels, W.R.; De Frenne, D.; Heyde, K.; Jacobs, E.; Kaffrell, N.; Paar, V.; Skarnemark, G.; Trautmann, N. (Institut fuer Kernchemie, Universitaet Mainz, D-6500 Mainz (Federal Republic of Germany) Department of Chemistry, University of Oslo, N-0315 Oslo (Norway) Prirodoslovno-matematicki fakultet, University of Zagreb, 41000 Zagreb (Yugoslavia) Los Alamos National Laboratory, Los Alamos, NM (USA) Laboratorium voor Kernfysica, Proeftuinstraat 86, B-9000 Gent (Belgium) Department of Nuclear Chemistry, Chalmers University of Technology, S-41296 Goeteborg (Sweden))

    1990-12-01

    The information on the coexistence of deformed intruder states and normal spherical hole-core coupled states in odd-mass Ag nuclei has been extended to the neutron-rich isotopes {sup 113}Ag{sub 66} and {sup 115}Ag{sub 68}. Data have been obtained from an investigation of the {gamma} rays following the {beta}{sup {minus}} decay of the {sup 113,115}Pd precursors. A minimum for the excitation energy of the intruder states occurs in {sup 113}Ag{sub 66}, exactly at neutron midshell. The properties of the intruder states in {sup 109,111,113,115}Ag are discussed and a description in the framework of the interacting-boson-fermion model is presented.

  5. An EBIS system for rare isotope science project in Korea

    SciTech Connect (OSTI)

    Kim, Jongwon E-mail: jehan@ibs.re.kr E-mail: khyi@ibs.re.kr; Han, Jae-Eun E-mail: jehan@ibs.re.kr E-mail: khyi@ibs.re.kr; Son, Hyock-Jun E-mail: jehan@ibs.re.kr E-mail: khyi@ibs.re.kr; Yi, Kun-Hui E-mail: jehan@ibs.re.kr E-mail: khyi@ibs.re.kr; Zhao, Liangji E-mail: kim@far-tech.com; Kim, Jin-Soo E-mail: kim@far-tech.com

    2015-01-09

    An EBIS system has been designed to be used as a charge breeder for the post accelerator of an ISOL system. An electron gun, which is designed to produce a maximum current of 3 A at the beam energy of 20 kV, will be acquired from the Budker Institute, Novosibirsk. Electron beam optics calculations of the EBIS system as well as of the gun assembly have been performed using PBGUNS and TRAK. A superconducting solenoid with a maximum field of 6 T is to be used to compress the electron beam. A test stand, which includes the gun assembly and a high-power electron beam collector, is being designed and will be ready for the gun test in the end of this year. Charge breeding simulation using EBIS0D and CBSIM has been performed for a few key isotopes.

  6. Innovative lasers for uranium isotope separation. [Progress report

    SciTech Connect (OSTI)

    Brake, M.L.; Gilgenbach, R.M.

    1991-06-01

    Copper vapor lasers have important applications to uranium atomic vapor laser isotope separation (AVLIS). The authors have spent the first two years of their project investigating two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave, and (2) electron beam excitation/pumping of large-volume copper vapor lasers. During the first year, the experiments have been designed and constructed and initial data has been taken. During the second year these experiments have been diagnosed. Highlights of some of the second year results as well as plans for the future include the following: Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, have been investigated. A CW (0--500 W) signal heats and vaporizes the copper chloride to provide the atomic copper vapor. A pulsed (5 kW, 0.5--5kHz) signal is added to the incoming CW signal via a hybrid mixer to excite the copper states to the laser levels. An enhancement of the visible radiation has been observed during the pulsed pardon of the signal. Electrical probe measurements have been implemented on the system to verify the results of the electromagnetic model formulated last year. Laser gain measurements have been initiated with the use of a commercial copper vapor laser. Measurements of the spatial profile of the emission are also currently being made. The authors plan to increase the amount of pulsed microwave power to the system by implementing a high power magnetron. A laser cavity will be designed and added to this system.

  7. Utilization of Kinetic Isotope Effects for the Concentration of Tritium

    SciTech Connect (OSTI)

    Brown, Gilbert M.; Meyer, Thomas j.; Moyer, Bruce A.

    1999-06-01

    The objective of this research program is to develop methods for concentrating tritium in water based on large primary isotope effects in catalytic redox processes. Basic research is being conducted to develop the chemistry of a complete cyclic process. Because tritium (generally present as HTO) is in a rapidly established equilibrium with protio-water, it moves with groundwater and separation from water cannot be achieved by the usual pump-and-treat methods using sorbants. The general methodology developed in this work will be applicable to a number of DOE waste streams, and as a consequence of the process tritium will be incorporated into an organic compound that will not readily exchange the tritium with groundwater. The process to be developed will remove tritium from H2O by concentrating it with respect to protio-water. This research involves developing chemical cycles that produce high concentration factors for HTO and T2O based on the discrimination of C-H and C-T bonds in oxidation reactions. Several steps are required in a cyclic process for the concentration of tritium in water. In the first step the tritium is incorporated in an organic compound. H-T discrimination occurs as the tritium containing compound is oxidized in a step involving a Ru(IV) oxo complex. Strong primary kinetic isotope effects lead to the oxidation of C-H bonds in preference to C-T bonds, and this reaction leads to concentration of tritium in the organic compound. The reduced form of the ruthenium compound can be reoxidized so that the oxidation step can be made catalytic.

  8. Modeling of temporal behavior of isotopic exchange between gaseous hydrogen and palladium hydride power

    SciTech Connect (OSTI)

    Melius, C F; Foltz, G W

    1987-01-01

    A parametric rate-equation model is described which depicts the time dependent behavior of the isotopic exchange process occurring between the solid and gas phases in gaseous hydrogen (deuterium) flows through packed-powder palladium deuteride (hydride) beds. The exchange mechanism is assumed to be rate-limited by processes taking place on the surface of the powder. The fundamental kinetic parameter of the model is the isotopic exchange probability, p, which is the probability that an isotopic exchange event occurs during a collision of a gas phase atom with the surface. Isotope effects between the gas and solid phases are explicitly included in terms of the isotope separation factor, ..cap alpha... Results of the model are compared with recent experimental measurements of isotope exchange in the ..beta..-phase hydrogen/palladium system and, using a literature value of ..cap alpha.. = 2.4, a good description of the experimental data is obtained for p approx. 10/sup -7/. In view of the importance of the isotope effects in the hydrogen/palladium system and the range of ..cap alpha.. values reported for the ..beta..-phase in the literature, the sensitivity of the model results to a variation in the value of ..cap alpha.. is examined.

  9. Application of the Isotope Ratio Method to a Boiling Water Reactor

    SciTech Connect (OSTI)

    Frank, Douglas P.; Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Meriwether, George H.; Mitchell, Mark R.; Reid, Bruce D.

    2010-08-11

    The isotope ratio method is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods. All reactor materials contain trace elemental impurities at parts per million levels, and the isotopes of these elements are transmuted by neutron irradiation in a predictable manner. While measuring the change in a particular isotopes concentration is possible, it is difficult to correlate to energy production because the initial concentration of that element may not be accurately known. However, if the ratio of two isotopes of the same element can be measured, the energy production can then be determined without knowing the absolute concentration of that impurity since the initial natural ratio is known. This is the fundamental principle underlying the isotope ratio method. Extremely sensitive mass-spectrometric methods are currently available that allow accurate measurements of the impurity isotope ratios in samples. Additionally, indicator elements with stable activation products have been identified so that their post-irradiation isotope ratios remain constant. This method has been successfully demonstrated on graphite-moderated reactors. Graphite reactors are particularly well-suited to such analyses since the graphite moderator is resident in the fueled region of the core for the entire period of operation. Applying this method to other reactor types is more difficult since the resident portions of the reactor available for sampling are either outside the fueled region of the core or structural components of individual fuel assemblies. The goal of this research is to show that the isotope ratio method can produce meaningful results for light water-moderated power reactors. In this work, we use the isotope ratio method to estimate the energy production in a boiling water reactor fuel bundle based on measurements taken from the corresponding fuel assembly channel. Our preliminary results are in good agreement with the actual operating history of the reactor during the cycle that the fuel bundle was resident in the core.

  10. Modeling and Simulations for the High Flux Isotope Reactor Cycle 400

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Modeling and Simulations for the High Flux Isotope Reactor Cycle 400 Citation Details In-Document Search Title: Modeling and Simulations for the High Flux Isotope Reactor Cycle 400 A concerted effort over the past few years has been focused on enhancing the core model for the High Flux Isotope Reactor (HFIR), as part of a comprehensive study for HFIR conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel. At this time, the core

  11. Motivation for New Measurements on 241, 242, 243Am Isotopes (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Motivation for New Measurements on 241, 242, 243Am Isotopes Citation Details In-Document Search Title: Motivation for New Measurements on 241, 242, 243Am Isotopes The initial objective of this work was an updated review on the Am isotopes data since the next official release (3.1) of the JEFF3 evaluated data file is foreseen around June 2005. Alternatively, this work searches for the possible reasons of the observed discrepancies between differential and integral

  12. Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis

    SciTech Connect (OSTI)

    Lugmair, G.W. ); Galer, S.J.G. Max-Planck-Inst. fuer Chemie, Mainz )

    1992-04-01

    Results of a wide-ranging isotopic investigation of the unique Antarctican angrite LEW-86010 (LEW) are presented, together with a reassessment of the type angrite Angra dos Reis (ADOR). The principal objectives of this study are to obtain precise radiometric ages, initial Sr isotopic compositions, and to search for the erstwhile presence of the short-lived nuclei {sup 146}Sm and {sup 26}Al via their daughter products. The isotopic compositions of Sm, U, Ca, and Ti were also measured. This allows a detailed appraisal to be made of the relations between, and the genealogy of, these two angrites.

  13. Integrated safeguards and security for the INEL Special Isotope Separation Plant

    SciTech Connect (OSTI)

    Warner, G.F.; Zack, N.R.

    1990-06-12

    This paper describes the approach that was taken in developing safeguards and security design criteria to be used for the Special Isotope Separation (SIS) Production Plant. The US Department of Energy has postponed the construction of the SIS Production Plant that was to be built at the Idaho National Engineering Laboratory (INEL) site located near Idaho Falls, Idaho. The SIS Plant planned to isotopically enrich plutonium utilizing the Atomic Vapor Laser Isotope Separation (AVLIS) process developed at the Lawrence Livermore National Laboratory. Westinghouse Idaho Nuclear Co., Inc. as a prime contractor to the DOE Idaho Operations Office, was to operate the Plant.

  14. Simple interpretation of shape evolution in Pt isotopes without intruder states

    SciTech Connect (OSTI)

    McCutchan, E.A.; Casten, R.F.; Zamfir, N.V.

    2005-06-01

    The most commonly accepted interpretation of the light Pt isotopes invokes the coexistence and mixing with proton intruder states from above the Z = 82 shell gap. Using an alternative description, interacting boson model (IBA) calculations are performed for the Pt isotopes with a simple, single configuration, two-parameter Hamiltonian. Excellent agreement is obtained for energies and electromagnetic transition strengths over the entire isotopic chain, spanning a wide variety of structures, and suggesting that these nuclei can be described more simply without the introduction of an intruder configuration. The Pt nuclei close to midshell are found to lie close to a region of phase/shape coexistence.

  15. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    SciTech Connect (OSTI)

    Heiken, J.H.

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

  16. SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina

    2010-03-01

    The purpose of this calculation report is to document the comparison to measurement of the isotopic concentrations for pressurized water reactor (PWR) spent nuclear fuel determined with the Standardized Computer Analysis for Licensing Evaluation (SCALE) 5.1 (Ref. ) epletion calculation method. Specifically, the depletion computer code and the cross-section library being evaluated are the twodimensional (2-D) transport and depletion module, TRITON/NEWT,2, 3 and the 44GROUPNDF5 (Ref. 4) cross-section library, respectively, in the SCALE .1 code system.

  17. Ion beam measurement of deuterium in palladium and calculation of hydrogen isotope separation factors

    SciTech Connect (OSTI)

    Gullinger, T.R.; Kelly, M.J.; Knapp, J.A.; Walsh, D.S.; Doyle, B.L. )

    1991-08-01

    In this paper, the authors demonstrate a new technique for measuring hydrogen isotope separation factors in hydrogen-absorbing metals. Using external ion beam nuclear reaction analysis of metal electrodes in an operating electrochemical cell, the authors monitor in situ the deuterium content of the electrode. changing the deuterium/hydrogen ratio in the electrolyte changes the observed deuterium content of the metal electrode, and, assuming identical ultimate total metal loading for deuterium, hydrogen, and any mixture of deuterium and hydrogen, a simple calculation yields the separation factor.

  18. Metabolomics relative quantitation with mass spectrometry using chemical derivatization and isotope labeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    O'Maille, Grace; Go, Eden P.; Hoang, Linh; Want, Elizabeth J.; Smith, Colin; O'Maille, Paul; NordstrÖm, Anders; Morita, Hirotoshi; Qin, Chuan; Uritboonthai, Wilasinee; et al

    2008-01-01

    Comprehensive detection and quantitation of metabolites from a biological source constitute the major challenges of current metabolomics research. Two chemical derivatization methodologies, butylation and amination, were applied to human serum for ionization enhancement of a broad spectrum of metabolite classes, including steroids and amino acids. LC-ESI-MS analysis of the derivatized serum samples provided a significant signal elevation across the total ion chromatogram to over a 100-fold increase in ionization efficiency. It was also demonstrated that derivatization combined with isotopically labeled reagents facilitated the relative quantitation of derivatized metabolites from individual as well as pooled samples.

  19. Pb Isotopes as an Indicator of the Asian Contribution to Particulate Air Pollution in Urban California

    SciTech Connect (OSTI)

    Ewing, Stephanie A.; Christensen, John N.; Brown, Shaun T.; Vancuren, Richard A.; Cliff, Steven S.; DePaolo, Donald J.

    2010-10-25

    During the last two decades, expanding industrial activity in east Asia has led to increased production of airborne pollutants that can be transported to North America. Previous efforts to detect this trans-Pacific pollution have relied upon remote sensing and remote sample locations. We tested whether Pb isotope ratios in airborne particles can be used to directly evaluate the Asian contribution to airborne particles of anthropogenic origin in western North America, using a time series of samples from a pair of sites upwind and downwind of the San Francisco Bay Area. Our results for airborne Pb at these sites indicate a median value of 29 Asian origin, based on mixing relations between distinct regional sample groups. This trans-Pacific Pb is present in small quantities but serves as a tracer for airborne particles within the growing Asian industrial plume. We then applied this analysis to archived samples from urban sites in central California. Taken together, our results suggest that the analysis of Pb isotopes can reveal the distribution of airborne particles affected by Asian industrial pollution at urban sites in northern California. Under suitable circumstances, this analysis can improve understanding of the global transport of pollution, independent of transport models.

  20. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; et al

    2015-05-13

    The nitrate (NO3–) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO3– derived from atmospheric deposition versus that derived from microbial nitrification.

  1. Quantum fluctuations and isotope effects in ab initio descriptions of water

    SciTech Connect (OSTI)

    Wang, Lu; Markland, Thomas E.; Ceriotti, Michele

    2014-09-14

    Isotope substitution is extensively used to investigate the microscopic behavior of hydrogen bonded systems such as liquid water. The changes in structure and stability of these systems upon isotope substitution arise entirely from the quantum mechanical nature of the nuclei. Here, we provide a fully ab initio determination of the isotope exchange free energy and fractionation ratio of hydrogen and deuterium in water treating exactly nuclear quantum effects and explicitly modeling the quantum nature of the electrons. This allows us to assess how quantum effects in water manifest as isotope effects, and unravel how the interplay between electronic exchange and correlation and nuclear quantum fluctuations determine the structure of the hydrogen bond in water.

  2. Principal physical problems in laser separation of weighable amounts of a rare ytterbium isotope

    SciTech Connect (OSTI)

    Yakovlenko, Sergei I

    1998-11-30

    A review is provided of the work on laser separation of Yb isotopes, carried out at the Institute of General Physics of the Russian Academy of Sciences and at the 'Lad' Scientific - Production Enterprise during the last 4 - 5 years. The processes of Yb isotope separation by the AVLIS (atomic vapour laser isotope separation) method were investigated both theoretically (by computer simulation) and experimentally. The main topics considered in the review are the ionisation selectivity, the formation of laser beams and of vapour flow in the cavity, and the extraction of ions from a plasma. A facility for producing highly enriched {sup 168}Yb on an industrial scale is described. The rate of production of the enriched ytterbium is now 5 - 10 mg h{sup -1} (over 1 g per month). Commercially viable production of the enriched {sup 168}Yb isotope by the AVLIS method was achieved for the first time anywhere in the world. (review)

  3. Facility for Rare Isotope Beams: The Journey Has Begun on DOE's latest Scientific User Facility

    Broader source: Energy.gov [DOE]

    After many years of planning, ground was officially broken on the Facility for Rare Isotope Beams (FRIB) in a ceremony held at the construction site on Michigan State University’s campus.

  4. Preliminary Notice of Violation, International Isotopes Idaho, Inc.- EA-2000-04

    Broader source: Energy.gov [DOE]

    Issued to International Isotopes Idaho, Inc., related to Work Planning and Control Deficiencies associated with Replacement of Exhaust Ventilation Filters at the Test Reactor Area Hot Cell Facility at the Idaho National Engineering and Environmental Laboratory, May 19, 2000

  5. EA-1211: Relocation and Storage of Isotopic Heat Sources, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal for relocation and storage of the isotopic heat sources at the U.S. Department of Energy Hanford Site in Richland, Washington.

  6. Facility for Rare Isotope Beams: The Journey Has Begun on DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... At the heart of the Facility for Rare Isotope Beams will be a state of the art ... more familiar with and by studying their creation, scientists are able to explore and more ...

  7. Understanding H isotope adsorption and absorption of Al-alloys using modeling and experiments (LDRD: #165724)

    SciTech Connect (OSTI)

    Ward, Donald K.; Zhou, Xiaowang; Karnesky, Richard A.; Kolasinski, Robert; Foster, Michael E.; Thurmer, Konrad; Chao, Paul; Epperly, Ethan Nicholas; Zimmerman, Jonathan A.; Wong, Bryan M.; Sills, Ryan B.

    2015-09-01

    Current austenitic stainless steel storage reservoirs for hydrogen isotopes (e.g. deuterium and tritium) have performance and operational life-limiting interactions (e.g. embrittlement) with H-isotopes. Aluminum alloys (e.g.AA2219), alternatively, have very low H-isotope solubilities, suggesting high resistance towards aging vulnerabilities. This report summarizes the work performed during the life of the Lab Directed Research and Development in the Nuclear Weapons investment area (165724), and provides invaluable modeling and experimental insights into the interactions of H isotopes with surfaces and bulk AlCu-alloys. The modeling work establishes and builds a multi-scale framework which includes: a density functional theory informed bond-order potential for classical molecular dynamics (MD), and subsequent use of MD simulations to inform defect level dislocation dynamics models. Furthermore, low energy ion scattering and thermal desorption spectroscopy experiments are performed to validate these models and add greater physical understanding to them.

  8. Nuclear Proliferation Using Laser Isotope Separation -- Verification Options

    SciTech Connect (OSTI)

    Erickson, S A

    2001-10-15

    Two levels of nonproliferation verification exist. Signatories of the basic agreements under the Nuclear Non-proliferation Treaty (NPT) agree to open their nuclear sites to inspection by the IAEA. A more detailed and intrusive level was developed following the determination that Iraq had begun a nuclear weapons development program that was not detected by the original level of verification methods. This level, referred to as 93+2 and detailed in model protocol INFCIRC/540, allows the IAEA to do environmental monitoring of non-declared facilities that are suspected of containing proliferation activity, and possibly further inspections, as well as allowing more detailed inspections of declared sites. 56 countries have signed a Strengthened Safeguards Systems Additional Protocol as of 16 July 2001. These additional inspections can be done on the instigation of the IAEA itself, or after requests by other parties to the NPT, based on information that they have collected. Since information able to cause suspicion of proliferation could arrive at any country, it is important that countries have procedures in place that will assist them in making decisions related to these inspections. Furthermore, IAEA inspection resources are limited, and therefore care needs to be taken to make best use of these resources. Most of the nonproliferation verification inspections may be concentrated on establishing that diversion of nuclear materials is not occurring, but some fraction will be related to determining if undeclared sites have nuclear materials production taking place within them. Of these, most suspicions will likely be related to the major existing technologies for uranium enrichment and reprocessing for plutonium extraction, as it would seem most likely that nations attempting proliferation would use tested means of producing nuclear materials. However, as technology continues to advance and new methods of enrichment and reprocessing are developed, inspection-related procedures will need to be adapted to keep up with them. In order to make 93+2 inspections more useful, a systematic way of finding clues to nuclear proliferation would be useful. Also, to cope with the possible use of newer technology for proliferation, the list of clues might need to be expanded. This paper discusses the development and recognition of such clues. It concentrates on laser isotope separation (LIS) as a new proliferation technology, and uses Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) as an example of LIS that is well known.

  9. ISOTOPIC RATIOS IN TITAN's METHANE: MEASUREMENTS AND MODELING

    SciTech Connect (OSTI)

    Nixon, C. A.; Achterberg, R. K.; Temelso, B.; Vinatier, S.; Bezard, B.; Coustenis, A.; Teanby, N. A.; Mandt, K. E.; Sherrill, C. D.; Irwin, P. G. J.; Jennings, D. E.; Romani, P. N.; Flasar, F. M.

    2012-04-20

    The existence of methane in Titan's atmosphere ({approx}6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of {approx}20 Myr. In this paper, we examine the clues available from isotopic ratios ({sup 12}C/{sup 13}C and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH{sub 4} collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: {sup 13}CH{sub 4}, {sup 12}CH{sub 3}D, and {sup 13}CH{sub 3}D. From these we compute estimates of {sup 12}C/{sup 13}C = 86.5 {+-} 8.2 and D/H = (1.59 {+-} 0.33) Multiplication-Sign 10{sup -4}, in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH{sub 4} + C{sub 2}H {yields} CH{sub 3} + C{sub 2}H{sub 2}. Using these new measurements and predictions we proceed to model the time evolution of {sup 12}C/{sup 13}C and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH{sub 4}), we find that the present-day {sup 12}C/{sup 13}C implies that the CH{sub 4} entered the atmosphere 60-1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently-most likely less than 10 Myr ago-if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing. We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric methane.

  10. Isoscalar and neutron modes in the E 1 spectra of Ni isotopes and the

    Office of Scientific and Technical Information (OSTI)

    relevance of shell effects and the continuum (Journal Article) | SciTech Connect Isoscalar and neutron modes in the E 1 spectra of Ni isotopes and the relevance of shell effects and the continuum Citation Details In-Document Search This content will become publicly available on September 13, 2016 Title: Isoscalar and neutron modes in the E 1 spectra of Ni isotopes and the relevance of shell effects and the continuum Authors: Papakonstantinou, P. ; Hergert, H. ; Roth, R. Publication Date:

  11. Modeling and Simulations for the High Flux Isotope Reactor Cycle 400

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Modeling and Simulations for the High Flux Isotope Reactor Cycle 400 Citation Details In-Document Search Title: Modeling and Simulations for the High Flux Isotope Reactor Cycle 400 × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  12. Temperature effects on the behavior of liquid hydrogen isotopes inside a

    Office of Scientific and Technical Information (OSTI)

    spherical-shell directly driven inertial confinement fusion target (Technical Report) | SciTech Connect Temperature effects on the behavior of liquid hydrogen isotopes inside a spherical-shell directly driven inertial confinement fusion target Citation Details In-Document Search Title: Temperature effects on the behavior of liquid hydrogen isotopes inside a spherical-shell directly driven inertial confinement fusion target × You are accessing a document from the Department of Energy's (DOE)

  13. Third minima in thorium and uranium isotopes in a self-consistent theory

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | DOE PAGES Third minima in thorium and uranium isotopes in a self-consistent theory Title: Third minima in thorium and uranium isotopes in a self-consistent theory Authors: McDonnell, J. D. ; Nazarewicz, W. ; Sheikh, J. A. Publication Date: 2013-05-22 OSTI Identifier: 1102733 Type: Publisher's Accepted Manuscript Journal Name: Physical Review C Additional Journal Information: Journal Volume: 87; Journal Issue: 5; Journal ID: ISSN 0556-2813 Publisher: American Physical

  14. A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope

    Office of Scientific and Technical Information (OSTI)

    Reactor (Journal Article) | SciTech Connect A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope Reactor Citation Details In-Document Search Title: A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope Reactor Neutron scattering at the Oak Ridge National Laboratory dates back to 1945 when Ernest Wollan installed a modified x-ray diffractometer on a beam port of the original graphite reactor. Subsequently, Wollan and Clifford Shull pioneered neutron

  15. Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

  16. Laser isotope separation: Uranium. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-12-01

    The bibliography contains citations concerning the technology and assessment of laser separation of uranium isotopes, compounds, oxides, and alloys. Topics include uranium enrichment plants, isotope enriched materials, gaseous diffusion, centrifuge enrichment, reliability and safety, and atomic vapor separation. Citations also discuss commercial enrichment, market trends, licensing, international competition, and waste management. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Progress in the Use of Isotopes: The Atomic Triad - Reactors, Radioisotopes and Radiation

    DOE R&D Accomplishments [OSTI]

    Libby, W. F.

    1958-08-04

    Recent years have seen a substantial growth in the use of isotopes in medicine, agriculture, and industry: up to the minute information on the production and use of isotopes in the U.S. is presented. The application of radioisotopes to industrial processes and manufacturing operations has expanded more rapidly than any one except its most ardent advocates expected. New uses and new users are numerous. The adoption by industry of low level counting techniques which make possible the use of carbon-14 and tritium in the control of industrial processes and in certain exploratory and research problems is perhaps most promising of current developments. The latest information on savings to industry will be presented. The medical application of isotopes has continued to develop at a rapid pace. The current trend appears to be in the direction of improvements in technique and the substitution of more effective isotopes for those presently in use. Potential and actual benefits accruing from the use of isotopes in agriculture are reviewed. The various methods of production of radioisotopes are discussed. Not only the present methods but also interesting new possibilities are covered. Although isotopes are but one of the many peaceful uses of the atom, it is the first to pay its way. (auth)

  18. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.

    SciTech Connect (OSTI)

    Chakraborty, Subrata; Davis, Ryan; Ahmed, Musahid; Jackson, Teresa L.; Thiemens, Mark H.

    2012-01-03

    Several absorption bands exist in the VUV region of Carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. An experimental investigation of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ~13 to 11 eV) from the Advanced Light Source Synchrotron and direct measurement of the associated oxygen isotopic composition of the products are presented here. A wavelength dependency of the oxygen isotopic composition in the photodissociation product was observed. Slope values (δ'{sup 18}O/ δ'{sup 17}O) ranging from 0.76 to 1.32 were observed in oxygen three-isotope space (δ'{sup 18}O vs. δ'{sup 17}O) which correlated with increasing synchrotron photon energy, and indicate a dependency of the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope separation was observed for photodissociation at the 105 and 107 nm synchrotron bands and are found to be associated with accidental predissociation of the vibrational states ({nu} = 0 and 1) of the upper electronic state E{sup 1}Π. For each synchrotron band, a large (few hundred per mil) extent of isotopic fractionation was observed and the range of fractionation is a combination of column density and exposure time. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.

  19. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

    2012-03-20

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε{sub Sr}{sup SW} = +13.8 to +41.6, where ε{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  20. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§ Karl T. Schroeder,§ and Harry M. Edenborn

    2012-02-24

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ∼375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (εSr SW = +13.8 to +41.6, where εSr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  1. Laser separation of nitrogen isotopes by the IR+UV dissociation of ammonia molecules

    SciTech Connect (OSTI)

    Apatin, V M; Klimin, S A; Laptev, V B; Lokhman, V N; Ogurok, D D; Pigul'skii, S V; Ryabov, E A

    2008-08-31

    The separation of nitrogen isotopes is studied upon successive single-photon IR excitation and UV dissociation of ammonia molecules. The excitation selectivity was provided by tuning a CO{sub 2} laser to resonance with {sup 14}NH{sub 3} molecules [the 9R(30) laser line] or with {sup 15}NH{sub 3} molecules [the 9R(10) laser line]. Isotopic mixtures containing 4.8% and 0.37% (natural content) of the {sup 15}NH isotope were investigated. The dependences of the selectivity and the dissociation yield for each isotopic component on the buffer gas pressure (N{sub 2}, O{sub 2}, Ar) and the ammonia pressure were obtained. In the limit of low NH{sub 3} pressures (0.5-2 Torr), the dissociation selectivity {alpha}(15/14) for {sup 15}N was 17. The selectivity mechanism of the IR+UV dissociation is discussed and the outlook is considered for the development of the nitrogen isotope separation process based on this approach. (laser isotope separation)

  2. Feasibility study of medical isotope production at Sandia National Laboratories

    SciTech Connect (OSTI)

    Massey, C.D.; Miller, D.L.; Carson, S.D.

    1995-12-01

    In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for {sup 99}Mo, the parent of {sup 99m}Tc, in the event of an interruption in the current Canadian supply. {sup 99m}Tc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for {sup 99}Mo and to identify and examine all issues with potential for environmental impact.

  3. Hydrogen isotope trapping in Al-Cu binary alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chao, Paul; Karnesky, Richard A.

    2016-01-01

    In this study, the trapping mechanisms for hydrogen isotopes in Al–X Cu (0.0 at. % < X < 3.5 at. %) alloys were investigated using thermal desorption spectroscopy (TDS), electrical conductivity, and differential scanning calorimetry. Constant heating rate TDS was used to determine microstructural trap energies and occupancies. In addition to the trapping states in pure Al reported in the literature (interstitial lattice sites, dislocations, and vacancies), a trap site due to Al–Cu intermetallic precipitates is observed. The binding energy of this precipitate trap is (18 ± 3) kJ•mol–1 (0.19 ± 0.03 eV). Typical occupancy of this trap is high;more » for Al–2.6 at. % Cu (a Cu composition comparable to that in AA2219) charged at 200 °C with 130 MPa D2 for 68 days, there is ca. there is 3.15×10–7 mol D bound to the precipitate trap per mol of Al, accounting for a third of the D in the charged sample.« less

  4. Multi-purpose hydrogen isotopes separation plant design

    SciTech Connect (OSTI)

    Boniface, H.A.; Gnanapragasam, N.V.; Ryland, D.K.; Suppiah, S.; Castillo, I.

    2015-03-15

    There is a potential interest at AECL's Chalk River Laboratories to remove tritium from moderately tritiated light water and to reclaim tritiated, downgraded heavy water. With only a few limitations, a single CECE (Combined Electrolysis and Catalytic Exchange) process configuration can be designed to remove tritium from heavy water or light water and upgrade heavy water. Such a design would have some restrictions on the nature of the feed-stock and tritium product, but could produce essentially tritium-free light or heavy water that is chemically pure. The extracted tritium is produced as a small quantity of tritiated heavy water. The overall plant capacity is fixed by the total amount of electrolysis and volume of catalyst. In this proposal, with 60 kA of electrolysis a throughput of 15 kg*h{sup -1} light water for detritiation, about 4 kg*h{sup -1} of heavy water for detritiation and about 27 kg*h{sup -1} of 98% heavy water for upgrading can be processed. Such a plant requires about 1,000 liters of AECL isotope exchange catalyst. The general design features and details of this multi-purpose CECE process are described in this paper, based on some practical choices of design criteria. In addition, we outline the small differences that must be accommodated and some compromises that must be made to make the plant capable of such flexible operation. (authors)

  5. Design of the beryllium window for Brookhaven Linac Isotope Producer

    SciTech Connect (OSTI)

    Nayak, S.; Mapes, M.; Raparia, D.

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.

  6. Fabrication of control rods for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  7. Hydrogen isotope trapping in Al-Cu binary alloys

    SciTech Connect (OSTI)

    Chao, Paul; Karnesky, Richard A.

    2016-01-01

    In this study, the trapping mechanisms for hydrogen isotopes in Al–X Cu (0.0 at. % < X < 3.5 at. %) alloys were investigated using thermal desorption spectroscopy (TDS), electrical conductivity, and differential scanning calorimetry. Constant heating rate TDS was used to determine microstructural trap energies and occupancies. In addition to the trapping states in pure Al reported in the literature (interstitial lattice sites, dislocations, and vacancies), a trap site due to Al–Cu intermetallic precipitates is observed. The binding energy of this precipitate trap is (18 ± 3) kJ•mol–1 (0.19 ± 0.03 eV). Typical occupancy of this trap is high; for Al–2.6 at. % Cu (a Cu composition comparable to that in AA2219) charged at 200 °C with 130 MPa D2 for 68 days, there is ca. there is 3.15×10–7 mol D bound to the precipitate trap per mol of Al, accounting for a third of the D in the charged sample.

  8. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    SciTech Connect (OSTI)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; Wullschleger, Stan D.

    2015-06-08

    The nitrate (NO₃⁻) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO₃⁻ derived from at NO₃⁻ signal with δ¹⁵N averaging –4.8 ± 1.0‰ (standard error of the mean) and δ¹⁸O averaging 70.2 ±1.7‰. In active layer pore waters, NO₃⁻ primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average δ¹⁵N and δ¹⁸O of NO₃⁻ from high-centered polygons were 0.5 ± 1.1‰ and –4.1 ± 0.6‰, respectively. When compared to the δ¹⁵N of reduced nitrogen (N) sources, and the δ¹⁸O of soil pore waters, it was evident that NO₃⁻ in high-centered polygons was primarily from microbial nitrification. Permafrost NO₃⁻ had δ¹⁵N ranging from approximately –6‰ to 10‰, similar to atmospheric and microbial NO₃⁻, and highly variable δ¹⁸O ranging from approximately –2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO₃⁻, while permafrost textural ice contained a greater proportion of microbially derived NO₃⁻. Large-scale permafrost thaw in this environment would release NO₃⁻ with a δ¹⁸O signature intermediate to that of atmospheric and microbial NO₃. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO₃⁻ dual isotope technique in tundra environments, attribution of NO₃⁻ from thawing permafrost will not be straightforward. The NO₃⁻ isotopic signature, however, appears useful in identifying NO₃⁻ sources in extant permafrost ice.

  9. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; et al

    2015-06-08

    The nitrate (NO₃⁻) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO₃⁻ derived from at NO₃⁻ signal with δ¹⁵N averaging –4.8 ± 1.0‰ (standard error of the mean) and δ¹⁸O averaging 70.2 ±1.7‰. In active layer pore waters, NO₃⁻ primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average δ¹⁵N and δ¹⁸O of NO₃⁻ from high-centered polygons were 0.5 ± 1.1‰ and –4.1 ± 0.6‰, respectively. When compared to the δ¹⁵N of reduced nitrogen (N) sources,more » and the δ¹⁸O of soil pore waters, it was evident that NO₃⁻ in high-centered polygons was primarily from microbial nitrification. Permafrost NO₃⁻ had δ¹⁵N ranging from approximately –6‰ to 10‰, similar to atmospheric and microbial NO₃⁻, and highly variable δ¹⁸O ranging from approximately –2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO₃⁻, while permafrost textural ice contained a greater proportion of microbially derived NO₃⁻. Large-scale permafrost thaw in this environment would release NO₃⁻ with a δ¹⁸O signature intermediate to that of atmospheric and microbial NO₃. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO₃⁻ dual isotope technique in tundra environments, attribution of NO₃⁻ from thawing permafrost will not be straightforward. The NO₃⁻ isotopic signature, however, appears useful in identifying NO₃⁻ sources in extant permafrost ice.« less

  10. Technical Report on the Behavior of Trace Elements, Stable Isotopes, and Radiogenic Isotopes During the Processing of Uranium Ore to Uranium Ore Concentrate

    SciTech Connect (OSTI)

    Marks, N. E.; Borg, L. E.; Eppich, G. R.; Gaffney, A. M.; Genneti, V. G.; Hutcheon, I. D.; Kristo, M. J.; Lindvall, R. E.; Ramon, C.; Robel, M.; Roberts, S. K.; Schorzman, K. C.; Sharp, M. A.; Singleton, M. J.; Williams, R. W.

    2015-07-09

    The goals of this SP-1 effort were to understand how isotopic and elemental signatures behave during mining, milling, and concentration and to identify analytes that might preserve geologic signatures of the protolith ores. The impurities that are preserved through the concentration process could provide useful forensic signatures and perhaps prove diagnostic of sample origin.

  11. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Jain, Prashant K; Freels, James D

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  12. RELAP5 model of the high flux isotope reactor with low enriched fuel thermal flux profiles

    SciTech Connect (OSTI)

    Banfield, J.; Mervin, B.; Hart, S.; Ritchie, J.; Walker, S.; Ruggles, A.; Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee Knoxville, Knoxville, TN 37996-2300 (United States)

    2012-07-01

    The High Flux Isotope Reactor (HFIR) currently uses highly enriched uranium (HEU) fabricated into involute-shaped fuel plates. It is desired that HFIR be able to use low enriched uranium (LEU) fuel while preserving the current performance capability for its diverse missions in material irradiation studies, isotope production, and the use of neutron beam lines for basic research. Preliminary neutronics and depletion simulations of HFIR with LEU fuel have arrived to feasible fuel loadings that maintain the neutronics performance of the reactor. This article illustrates preliminary models developed for the analysis of the thermal-hydraulic characteristics of the LEU core to ensure safe operation of the reactor. The beginning of life (BOL) LEU thermal flux profile has been modeled in RELAP5 to facilitate steady state simulation of the core cooling, and of anticipated and unanticipated transients. Steady state results are presented to validate the new thermal power profile inputs. A power ramp, slow depressurization at the outlet, and flow coast down transients are also evaluated. (authors)

  13. Isotope exchange kinetics in metal hydrides I : TPLUG model.

    SciTech Connect (OSTI)

    Larson, Rich; James, Scott Carlton; Nilson, Robert H.

    2011-05-01

    A one-dimensional isobaric reactor model is used to simulate hydrogen isotope exchange processes taking place during flow through a powdered palladium bed. This simple model is designed to serve primarily as a platform for the initial development of detailed chemical mechanisms that can then be refined with the aid of more complex reactor descriptions. The one-dimensional model is based on the Sandia in-house code TPLUG, which solves a transient set of governing equations including an overall mass balance for the gas phase, material balances for all of the gas-phase and surface species, and an ideal gas equation of state. An energy equation can also be solved if thermodynamic properties for all of the species involved are known. The code is coupled with the Chemkin package to facilitate the incorporation of arbitrary multistep reaction mechanisms into the simulations. This capability is used here to test and optimize a basic mechanism describing the surface chemistry at or near the interface between the gas phase and a palladium particle. The mechanism includes reversible dissociative adsorptions of the three gas-phase species on the particle surface as well as atomic migrations between the surface and the bulk. The migration steps are more general than those used previously in that they do not require simultaneous movement of two atoms in opposite directions; this makes possible the creation and destruction of bulk vacancies and thus allows the model to account for variations in the bulk stoichiometry with isotopic composition. The optimization code APPSPACK is used to adjust the mass-action rate constants so as to achieve the best possible fit to a given set of experimental data, subject to a set of rigorous thermodynamic constraints. When data for nearly isothermal and isobaric deuterium-to-hydrogen (D {yields} H) and hydrogen-to-deuterium (H {yields} D) exchanges are fitted simultaneously, results for the former are excellent, while those for the latter show pronounced deviations at long times. These discrepancies can be overcome by postulating the presence of a surface poison such as carbon monoxide, but this explanation is highly speculative. When the method is applied to D {yields} H exchanges intentionally poisoned by known amounts of CO, the fitting results are noticeably degraded from those for the nominally CO-free system but are still tolerable. When TPLUG is used to simulate a blowdown-type experiment, which is characterized by large and rapid changes in both pressure and temperature, discrepancies are even more apparent. Thus, it can be concluded that the best use of TPLUG is not in simulating realistic exchange scenarios, but in extracting preliminary estimates for the kinetic parameters from experiments in which variations in temperature and pressure are intentionally minimized.

  14. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klaus, J.; McDonnell, J. J.; Jackson, C. R.; Du, E.; Griffiths, N. A.

    2015-01-08

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3-year sampling period show that the slopes of the meteoricmore » water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. Thus, the streams showed strong evaporative enrichment compared to the local meteoric water line (δ2H = 7.15 · δ18O +9.28‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.« less

  15. Strontium Isotope Study of Coal Untilization By-products Interacting with Environmental Waters

    SciTech Connect (OSTI)

    Spivak-Birndorf, Lev J; Stewart, Brian W; Capo, Rosemary C; Chapman, Elizabeth C; Schroeder, Karl T; Brubaker, Tonya M

    2011-09-01

    Sequential leaching experiments on coal utilization by-products (CUB) were coupled with chemical and strontium (Sr) isotopic analyses to better understand the influence of coal type and combustion processes on CUB properties and the release of elements during interaction with environmental waters during disposal. Class C fly ash tended to release the highest quantity of minor and trace elementsincluding alkaline earth elements, sodium, chromium, copper, manganese, lead, titanium, and zincduring sequential extraction, with bottom ash yielding the lowest. Strontium isotope ratios ({sup 87}Sr/{sup 86}Sr) in bulk-CUB samples (total dissolution of CUB) are generally higher in class F ash than in class C ash. Bulk-CUB ratios appear to be controlled by the geologic source of the mineral matter in the feed coal, and by Sr added during desulfurization treatments. Leachates of the CUB generally have Sr isotope ratios that are different than the bulk value, demonstrating that Sr was not isotopically homogenized during combustion. Variations in the Sr isotopic composition of CUB leachates were correlated with mobility of several major and trace elements; the data suggest that arsenic and lead are held in phases that contain the more radiogenic (high-{sup 87}Sr/{sup 86}Sr) component. A changing Sr isotope ratio of CUB-interacting waters in a disposal environment could forecast the release of certain strongly bound elements of environmental concern. This study lays the groundwork for the application of Sr isotopes as an environmental tracer for CUBwater interaction.

  16. ZIRCONIUMHAFNIUM ISOTOPE EVIDENCE FROM METEORITES FOR THE DECOUPLED SYNTHESIS OF LIGHT AND HEAVY NEUTRON-RICH NUCLEI

    SciTech Connect (OSTI)

    Akram, W.; Schnbchler, M.; Sprung, P.; Vogel, N.

    2013-11-10

    Recent work based on analyses of meteorite and terrestrial whole-rock samples showed that the r- and s- process isotopes of Hf were homogeneously distributed throughout the inner solar system. We report new Hf isotope data for Calcium-Aluminum-rich inclusions (CAIs) of the CV3 carbonaceous chondrite Allende, and novel high-precision Zr isotope data for these CAIs and three carbonaceous chondrites (CM, CO, CK). Our Zr data reveal enrichments in the neutron-rich isotope {sup 96}Zr (?1? in {sup 96}Zr/{sup 90}Zr) for bulk chondrites and CAIs (?2?). Potential isotope effects due to incomplete sample dissolution, galactic and cosmic ray spallation, and the nuclear field shift are assessed and excluded, leading to the conclusion that the {sup 96}Zr isotope variations are of nucleosynthetic origin. The {sup 96}Zr enrichments are coupled with {sup 50}Ti excesses suggesting that both nuclides were produced in the same astrophysical environment. The same CAIs also exhibit deficits in r-process Hf isotopes, which provides strong evidence for a decoupling between the nucleosynthetic processes that produce the light (A ? 130) and heavy (A > 130) neutron-rich isotopes. We propose that the light neutron-capture isotopes largely formed in Type II supernovae (SNeII) with higher mass progenitors than the supernovae that produced the heavy r-process isotopes. In the context of our model, the light isotopes (e.g. {sup 96}Zr) are predominantly synthesized via charged-particle reactions in a high entropy wind environment, in which Hf isotopes are not produced. Collectively, our data indicates that CAIs sampled an excess of materials produced in a normal mass (12-25 M{sub ?}) SNII.

  17. Uranium isotopes in ground water as a prospecting technique

    SciTech Connect (OSTI)

    Cowart, J.B.; Osmond, J.K.

    1980-02-01

    The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of /sup 234/U//sup 238/U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented.

  18. Isotope separation by selective charge conversion and field deflection

    DOE Patents [OSTI]

    Hickman, Robert G.

    1978-01-01

    A deuterium-tritium separation system wherein a source beam comprised of positively ionized deuterium (D.sup.+) and tritium (T.sup.+) is converted at different charge-exchange cell sections of the system to negatively ionized deuterium (D.sup.-) and tritium (T.sup.-). First, energy is added to the beam to accelerate the D.sup.+ ions to the velocity that is optimum for conversion of the D.sup.+ ions to D.sup.- ions in a charge-exchange cell. The T.sup.+ ions are accelerated at the same time, but not to the optimum velocity since they are heavier than the D.sup.+ ions. The T.sup.+ ions are, therefore, not converted to T.sup.- ions when the D.sup.+ ions are converted to D.sup.- ions. This enables effective separation of the beam by deflection of the isotopes with an electrostatic field, the D.sup.- ions being deflected in one direction and the T.sup.+ ions being deflected in the opposite direction. Next, more energy is added to the deflected beam of T.sup.+ ions to bring the T.sup.+ ions to the optimum velocity for their conversion to T.sup.- ions. In a particular use of the invention, the beams of D.sup.- and T.sup.- ions are separately further accelerated and then converted to energetic neutral particles for injection as fuel into a thermonuclear reactor. The reactor exhaust of D.sup.+ and T.sup.+ and the D.sup.+ and T.sup.+ that was not converted in the respective sections is combined with the source beam and recycled through the system to increase the efficiency of the system.

  19. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  20. Evolution of isotopic composition of reprocessed uranium during the multiple recycling in light water reactors with natural uranium feed

    SciTech Connect (OSTI)

    Smirnov, A. Yu. Sulaberidze, G. A.; Alekseev, P. N.; Dudnikov, A. A.; Nevinitsa, V. A. Proselkov, V. N.; Chibinyaev, A. V.

    2012-12-15

    A complex approach based on the consistent modeling of neutron-physics processes and processes of cascade separation of isotopes is applied for analyzing physical problems of the multiple usage of reprocessed uranium in the fuel cycle of light water reactors. A number of scenarios of multiple recycling of reprocessed uranium in light water reactors are considered. In the process, an excess absorption of neutrons by the {sup 236}U isotope is compensated by re-enrichment in the {sup 235}U isotope. Specific consumptions of natural uranium for re-enrichment of the reprocessed uranium depending on the content of the {sup 232}U isotope are obtained.