National Library of Energy BETA

Sample records for isotopes production project

  1. EIS-0249: Medical Isotopes Production Project

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to establish a production capability for molybdenum-99 (Mo-99) and related medical isotopes.

  2. Isotopes Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes Products Isotopes Products Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Products stress and rest Stress and rest Rb-82 PET images in a patient with dipyridamole stress-inducible lateral wall and apical ischemia. (http://www.fac.org.ar/scvc/llave/image/machac/machaci.htm#f2,3,4) Strontium-82 is supplied to our customers for use in Sr-82/Rb-82 generator technologies. The generators in turn are supplied to

  3. Isotopes Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are saving lives, advancing cutting-edge research and keeping the U.S. safe. Products stress and rest Stress and rest Rb-82 PET images in a patient with dipyridamole...

  4. Isotopic Trends in Production of Superheavies

    SciTech Connect (OSTI)

    Antonenko, N.V.; Adamian, G.G.; Zubov, A.S.; Scheid, W.

    2005-11-21

    The isotopic trends are discussed for cold and hot fusion reactions leading to superheavies. The possibilities of production of new isotopes in incomplete fusion reactions are treated.

  5. Production Project Accounts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production Project Accounts Production Project Accounts Overview Most NERSC login accounts are associated with specific individuals and must not be shared. Sometimes it is advantageous to have a login account which is not tied to a person but instead to the group for the purposes of shared access to batch jobs or data. Project Accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions performed by the Project Account are traceable

  6. Final Report, NEAC Subcommittee for Isotope Research & Production Planning

    Energy Savers [EERE]

    | Department of Energy Final Report, NEAC Subcommittee for Isotope Research & Production Planning Final Report, NEAC Subcommittee for Isotope Research & Production Planning Isotopes, including both radioactive and stable isotopes, make important contributions to research, medicine, and industry in the United States and throughout the world. For nearly fifty years, the Department of Energy (DOE) has actively promoted the use of isotopes by funding (a) production of isotopes at a

  7. Isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science » Nuclear Physics » Isotopes Isotopes Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Get Expertise Eva Birnbaum (505) 665-7167 Email Wolfgang Runde (505) 667-3350 Email Isotope Production and Applications isotopes Isotopes produced at IPF are critical for medical diagnosis and disease treatment. These positron emission tomography images were made possible using isotopes produced at LANL.

  8. Online Catalog of Isotope Products from DOE's National Isotope Development Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. The Isotope subprogram supports the production, and the development of production techniques of radioactive and stable isotopes that are in short supply for research and applications. Isotopes are high-priority commodities of strategic importance for the Nation and are essential for energy, medical, and national security applications and for basic research; a goal of the program is to make critical isotopes more readily available to meet domestic U.S. needs. This subprogram is steward of the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL), the Brookhaven Linear Isotope Producer (BLIP) facility at BNL, and hot cell facilities for processing isotopes at ORNL, BNL and LANL. The subprogram also coordinates and supports isotope production at a suite of university, national laboratory, and commercial accelerator and reactor facilities throughout the Nation to promote a reliable supply of domestic isotopes. The National Isotope Development Center (NIDC) at ORNL coordinates isotope production across the many facilities and manages the business operations of the sale and distribution of isotopes.

  9. Hanford isotope project strategic business analysis yttrium-90 (Y-90)

    SciTech Connect (OSTI)

    1995-10-01

    The purpose of this analysis is to address the short-term direction for the Hanford yttrium-90 (Y-90) project. Hanford is the sole DOE producer of Y-90, and is the largest repository for its source in this country. The production of Y-90 is part of the DOE Isotope Production and Distribution (IP and D) mission. The Y-90 is ``milked`` from strontium-90 (Sr-90), a byproduct of the previous Hanford missions. The use of Sr-90 to produce Y-90 could help reduce the amount of waste material processed and the related costs incurred by the clean-up mission, while providing medical and economic benefits. The cost of producing Y-90 is being subsidized by DOE-IP and D due to its use for research, and resultant low production level. It is possible that the sales of Y-90 could produce full cost recovery within two to three years, at two curies per week. Preliminary projections place the demand at between 20,000 and 50,000 curies per year within the next ten years, assuming FDA approval of one or more of the current therapies now in clinical trials. This level of production would incentivize private firms to commercialize the operation, and allow the government to recover some of its sunk costs. There are a number of potential barriers to the success of the Y-90 project, outside the control of the Hanford Site. The key issues include: efficacy, Food and Drug Administration (FDA) approval and medical community acceptance. There are at least three other sources for Y-90 available to the US users, but they appear to have limited resources to produce the isotope. Several companies have communicated interest in entering into agreements with Hanford for the processing and distribution of Y-90, including some of the major pharmaceutical firms in this country.

  10. AVLIS Production Plant Project Management Plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    The AVLIS Production Plant is designated as a Major System Acquisition (in accordance with DOE Order 4240.IC) to deploy Atomic Vapor Laser Isotope Separation (AVLIS) technology at the Oak Ridge, Tennessee site, in support of the US Uranium Enrichment Program. The AVLIS Production Plant Project will deploy AVLIS technology by performing the design, construction, and startup of a production plant that will meet capacity production requirements of the Uranium Enrichment Program. The AVLIS Production Plant Project Management Plan has been developed to outline plans, baselines, and control systems to be employed in managing the AVLIS Production Plant Project and to define the roles and responsibilities of project participants. Participants will develop and maintain detailed procedures for implementing the management and control systems in agreement with this plan. This baseline document defines the system that measures work performed and costs incurred. This plan was developed by the AVLIS Production Plant Project staff of Martin Marietta Energy Systems, Inc. and Lawrence Livermore National Laboratory in accordance with applicable DOE directives, orders and notices. 38 figures, 19 tables.

  11. ARM - PI Product - Cloudnet Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloudnet Project Cloudnet is a research project supported by the European...

  12. Cancer-fighting treatment gets boost from Isotope Production...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medical Isotope Work Moves Cancer Treatment Agent Forward - Los Alamos scientist Meiring Nortier holds a thorium foil test target for the proof-of-concept production experiments. ...

  13. Isotope production facility produces cancer-fighting actinium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration Isotope production agreement benefits medical patients Thursday, March 19, 2015 - 12:24pm Medical patients, both locally and potentially nationwide, should be the beneficiaries of the first-ever public-private partnership agreement between National Security Technologies, LLC (NSTec), and Henderson, Nevada-based Global Medical Isotope Systems, LLC (GMIS). The agreement on research and development aims to enable production of an essential radioactive isotope used in

  14. Isotope production agreement benefits medical patients | National...

    National Nuclear Security Administration (NNSA)

    Francis Tsang of Global Medical Isotope Systems (GMIS), Dr. Chris Deeney of National Security Technologies (NSTec), and Zane Wilson, Chief Executive Officer of GMIS, observe the ...

  15. Isotope Production at the Hanford Site in Richland, Washington

    SciTech Connect (OSTI)

    Ammoniums

    1999-06-01

    This report was prepared in response to a request from the Nuclear Energy Research Advisory Committee (NERAC) subcommittee on ''Long-Term Isotope Research and Production Plans.'' The NERAC subcommittee has asked for a reply to a number of questions regarding (1) ''How well does the Department of Energy (DOE) infrastructure sme the need for commercial and medical isotopes?'' and (2) ''What should be the long-term role of the federal government in providing commercial and medical isotopes?' Our report addresses the questions raised by the NERAC subcommittee, and especially the 10 issues that were raised under the first of the above questions (see Appendix). These issues are related to the isotope products offered by the DOE Isotope Production Sites, the capabilities and condition of the facilities used to produce these products, the management of the isotope production programs at DOE laboratories, and the customer service record of the DOE Isotope Production sites. An important component of our report is a description of the Fast Flux Test Facility (FFTF) reactor at the Hbford Site and the future plans for its utilization as a source of radioisotopes needed by nuclear medicine physicians, by researchers, and by customers in the commercial sector. In response to the second question raised by the NERAC subcommittee, it is our firm belief that the supply of isotopes provided by DOE for medical, industrial, and research applications must be strengthened in the near future. Many of the radioisotopes currently used for medical diagnosis and therapy of cancer and other diseases are imported from Canada, Europe, and Asia. This situation places the control of isotope availability, quality, and pricing in the hands of non-U.S. suppliers. It is our opinion that the needs of the U.S. customers for isotopes and isotope products are not being adequately served, and that the DOE infrastructure and facilities devoted to the supply of these products must be improved This perception forms one of the fundamental bases for our proposal that the FFTF, which is currently in a standby condition, be reactivated to supply nuclear services and products such as radioisotopes needed by the U.S. medical, industrial, and research communities.

  16. Hanford Isotope Project strategic business analysis Cesium-137 (Cs-137)

    SciTech Connect (OSTI)

    1995-10-01

    The purpose of this business analysis is to address the beneficial reuse of Cesium 137 (Cs-137) in order to utilize a valuable national asset and possibly save millions of tax dollars. Food irradiation is the front runner application along with other uses. This business analysis supports the objectives of the Department of Energy National Isotope Strategy distributed in August 1994 which describes the DOE plans for the production and distribution of isotope products and services. As part of the Department`s mission as stated in that document. ``The Department of Energy will also continue to produce and distribute other radioisotopes and enriched stable isotopes for medical diagnostics and therapeutics, industrial, agricultural, and other useful applications on a businesslike basis. This is consistent with the goals and objectives of the National Performance Review. The Department will endeavor to look at opportunities for private sector to co-fund or invest in new ventures. Also, the Department will seek to divest from ventures that can more profitably or reliably be operated by the private sector.``

  17. Hydrogen Storage and Production Project

    SciTech Connect (OSTI)

    Bhattacharyya, Abhijit; Biris, A. S.; Mazumder, M. K.; Karabacak, T.; Kannarpady, Ganesh; Sharma, R.

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  18. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    SciTech Connect (OSTI)

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  19. Isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science Nuclear Physics Isotopes Isotopes Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. ...

  20. Department of Energy's Isotope Development and Production for...

    Energy Savers [EERE]

    STATES DEPARTMENT OF ENERGY ISOTOPE DEVELOPMENT AND ... Program Overview The primary goal of the Isotope ... sources of research isotopes at more affordable prices. ...

  1. Scoping assessment on medical isotope production at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Scott, S.W.

    1997-08-29

    The Scoping Assessment addresses the need for medical isotope production and the capability of the Fast Flux Test Facility to provide such isotopes. Included in the discussion are types of isotopes used in radiopharmaceuticals, which types of cancers are targets, and in what way isotopes provide treatment and/or pain relief for patients.

  2. Boosting Production of Radioisotopes for Diagnostics and Therapeutics: Upgrades to Brookhaven Lab's isotope production and research facility increase the yield of key medical isotopes

    Broader source: Energy.gov [DOE]

    The DOE Office of Science’s Nuclear Physics Isotope Development and Production for Research and Applications program (DOE Isotope Program) seeks to make critical isotopes more readily available for energy, medical, and national security applications and for basic research. Under this program, scientists, engineers, and technicians at DOE’s Brookhaven National Laboratory recently completed the installation of a beam raster (or scanning) system designed to increase the yield of critical isotopes produced at the Brookhaven Linac Isotope Producer (BLIP), the Lab’s radioisotope production and research facility, in operation since 1972.

  3. Isotope Development & Production for Research and Applications (IDPRA) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) Research » Isotope Development & Production for Research and Applications (IDPRA) Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information »

  4. Selective Gaseous Extraction: Research, Development and Training for Isotope Production, Final Technical Report

    SciTech Connect (OSTI)

    Bertch, Timothy C,

    2014-03-31

    General Atomics and the University of Missouri Research Reactor (MURR) completed research and development of selective gaseous extraction of fission products from irradiated fuel, which included training and education of MURR students. The process used porous fuel and after irradiation flowed product gases through the fuel to selectively removed desired fission products with the primary goal of demonstrating the removal of rhodium 105. High removal rates for the ruthenium/rhodium (Ru/Rh), tellurium/iodine (Te/I) and molybdenum/technetium (Mo/Tc) series were demonstrated. The success of this research provides for the reuse of the target for further production, significantly reducing the production of actinide wastes relative to processes that dissolve the target. This effort was conducted under DOE funding (DE-SC0007772). General Atomics objective of the project was to conduct R&D on alternative methods to produce a number of radioactive isotopes currently needed for medical and industry applications to include rhodium-105 and other useful isotopes. Selective gaseous extraction was shown to be effective at removing radioisotopes of the ruthenium/rhodium, tellurium/iodine and molybdenum/technetium decay chains while having trace to no quantities of other fission products or actinides. This adds a new, credible method to the area of certain commercial isotope production beyond current techniques, while providing significant potential reduction of process wastes. Waste reduction, along with reduced processing time/cost provides for superior economic feasibility which may allow domestic production under full cost recovery practices. This provides the potential for improved access to domestically produced isotopes for medical diagnostics and treatment at reduced cost, providing for the public good.

  5. Mississippi State Biodiesel Production Project

    SciTech Connect (OSTI)

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20

    Biodiesel is a renewable fuel conventionally generated from vegetable oils and animal fats that conforms to ASTM D6751. Depending on the free fatty acid content of the feedstock, biodiesel is produced via transesterification, esterification, or a combination of these processes. Currently the cost of the feedstock accounts for more than 80% of biodiesel production cost. The main goal of this project was to evaluate and develop non-conventional feedstocks and novel processes for producing biodiesel. One of the most novel and promising feedstocks evaluated involves the use of readily available microorganisms as a lipid source. Municipal wastewater treatment facilities (MWWTF) in the USA produce (dry basis) of microbial sludge annually. This sludge is composed of a variety of organisms, which consume organic matter in wastewater. The content of phospholipids in these cells have been estimated at 24% to 25% of dry mass. Since phospholipids can be transesterified they could serve as a ready source of biodiesel. Examination of the various transesterification methods shows that in situ conversion of lipids to FAMEs provides the highest overall yield of biodiesel. If one assumes a 7.0% overall yield of FAMEs from dry sewage sludge on a weight basis, the cost per gallon of extracted lipid would be $3.11. Since the lipid is converted to FAMEs, also known as biodiesel, in the in Situ extraction process, the product can be used as is for renewable fuel. As transesterification efficiency increases the cost per gallon drops quickly, hitting $2.01 at 15.0% overall yield. An overall yield of 10.0% is required to obtain biodiesel at $2.50 per gallon, allowing it to compete with soybean oil in the marketplace. Twelve plant species with potential for oil production were tested at Mississippi State, MS. Of the species tested, canola, rapeseed and birdseed rape appear to have potential in Mississippi as winter annual crops because of yield. Two perennial crops were investigated, Chinese tallow tree and tung tree. High seed yields from these species are possible because, there stature allows for a third dimension in yield (up). Harvest regimes have already been worked out with tung, and the large seed makes shedding of the seed with tree shakers possible. While tallow tree seed yields can be mind boggling (12,000 kg seed/ha at 40% oil), genotypes that shed seed easily are currently not known. Efficient methods were developed to isolate polyunsaturated fatty acid methyl esters from bio-diesel. The hypothesis to isolate this class of fatty acids, which are used as popular dietary supplements and prescription medicine (OMACOR), was that they bind transition metal ions much stronger than their harmful saturated analogs. AgBF4 has the highest extraction ability among all the metal ions tested. Glycerol is a key product from the production of biodiesel. It is produced during the transesterification process by cleaving the fatty acids from the glycerol backbone (the fatty acids are used as part of the biodiesel, which is a fatty acid methyl ester). Glycerol is a non-toxic compound with many uses; however, if a surplus exists in the future, more uses for the produced glycerol needs to be found. Another phase of the project was to find an add-on process to the biodiesel production process that will convert the glycerol by-product into more valuable substances for end uses other than food or cosmetics, focusing at present on 1,3-propanediol and lactic acid.All three MSU cultures produced products at concentrations below that of the benchmark microorganisms. There was one notable isolate the caught the eye of the investigators and that was culture J6 due to the ability of this microorganism to co-produce both products and one in particularly high concentrations. This culture with more understanding of its metabolic pathways could prove a useful biological agent for the conversion of glycerol. Heterogeneous catalysis was examined as an alternative to overcome the disadvantages of homogeneous transesterification, such as the presence of salts in the glycerine phase and the continuous lost of catalyst. A maximum soy biodiesel yield of 85% was obtained by BaO in 14 minutes, whereas, PbO, MnO2, CaO and MgO gave a maximum yields of 84%, 80%, 78% and 66% respectively at 215°C. The overall reaction order of PbO, MnO2, BaO, CaO and MgO was found to be 1, 1, 3, 1 and 1 respectively. The highest rate constant was observed for BaO, which was 0.0085 g2.mole-2.min-1. The performance of biodiesel in terms of type (e.g., NOx, and CO) and quantity of emissions was tested using soy biodiesel, blends of biodiesel and ethanol, and differently aged diesel engines. It was determined that saturated methyl esters, and relatively high oxygen content in the fuel, caused by addition of ethanol, increased the NOx emissions from new diesel engines compared to petroleum diesel.

  6. EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to use federal funds to support and accelerate Northstar Medical Radioisotopes' project to develop domestic, commercial production capability for the medical isotope Molybdenum-99 without the use of highly enriched uranium.

  7. Isotope Production and Distribution Program`s Fiscal Year 1997 financial statement audit

    SciTech Connect (OSTI)

    1998-03-27

    The Department of Energy Isotope Production and Distribution Program mission is to serve the national need for a reliable supply of isotope products and services for medicine, industry and research. The program produces and sells hundreds of stable and radioactive isotopes that are widely utilized by domestic and international customers. Isotopes are produced only where there is no U.S. private sector capability or other production capacity is insufficient to meet U.S. needs. The Department encourages private sector investment in new isotope production ventures and will sell or lease its existing facilities and inventories for commercial purposes. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund established by the Fiscal Year (FY) 1990 Energy and Water Appropriations Act and maintains financial viability by earning revenues from the sale of isotopes and services and through annual appropriations. The FY 1995 Energy and Water Appropriations Act modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Although the Isotope Program functions as a business, prices set for small-volume, high-cost isotopes that are needed for research purposes may not achieve full-cost recovery. As a result, isotopes produced by the Isotope Program for research and development are priced to provide a reasonable return to the U.S. Government without discouraging their use. Commercial isotopes are sold on a cost-recovery basis. Because of its pricing structure, when selecting isotopes for production, the Isotope Program must constantly balance current isotope demand, market conditions, and societal benefits with its determination to operate at the lowest possible cost to U.S. taxpayers. Thus, this report provides a financial analysis of this situation.

  8. EIS-0136: Special Isotope Separation Project Idaho National Engineering Laboratory, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to provide environmental input to the decision to construct the Special Isotope Separation Project, which would allow for the processing of existing fuel-grade plutonium into weapons-grade plutonium using the Atomic Laser Isotope Separation process.

  9. Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

  10. Evaluation of medical isotope production with the accelerator production of tritium (APT) facility

    SciTech Connect (OSTI)

    Benjamin, R.W.; Frey, G.D.; McLean, D.C., Jr; Spicer, K.M.; Davis, S.E.; Baron, S.; Frysinger, J.R.; Blanpied, G.; Adcock, D.

    1997-07-10

    The accelerator production of tritium (APT) facility, with its high beam current and high beam energy, would be an ideal supplier of radioisotopes for medical research, imaging, and therapy. By-product radioisotopes will be produced in the APT window and target cooling systems and in the tungsten target through spallation, neutron, and proton interactions. High intensity proton fluxes are potentially available at three different energies for the production of proton- rich radioisotopes. Isotope production targets can be inserted into the blanket for production of neutron-rich isotopes. Currently, the major production sources of radioisotopes are either aging or abroad, or both. The use of radionuclides in nuclear medicine is growing and changing, both in terms of the number of nuclear medicine procedures being performed and in the rapidly expanding range of procedures and radioisotopes used. A large and varied demand is forecast, and the APT would be an ideal facility to satisfy that demand.

  11. Method for production of an isotopically enriched compound

    DOE Patents [OSTI]

    Watrous, Matthew G.

    2012-12-11

    A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.

  12. Small-Scale Reactor for the Production of Medical Isotopes -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shortage of medical isotopes-specifically Molybdenum 99 (Mo-99) which is essential in cancer treatment, diagnostics, and medical imaging. The US is completely dependent on foreign...

  13. EERE Success Story-BETO Project Improves Production of Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks EERE Success Story-BETO Project Improves Production of Renewable Chemical from Cellulosic ...

  14. Table 13. Coal Production, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 999 1021 1041 1051 1056 1066 1073 1081 1087 1098 1107 1122 1121 1128 1143 1173 1201 1223 AEO 1995 1006 1010 1011 1016 1017 1021 1027 1033 1040 1051 1066 1076 1083 1090 1108 1122 1137 AEO 1996 1037 1044 1041 1045 1061 1070 1086 1100 1112 1121 1135 1156 1161 1167 1173 1184 1190 1203 1215 AEO 1997 1028 1052 1072 1088

  15. Isotope Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Production 35 years of experience in isotope production, processing, and applications. Llllll Committed to the safe and reliable production of radioisotopes, products, and services. Contact: Kevin John LANL Isotope Program Manager kjohn@lanl.gov 505-667-3602 Sponsored by the Department of Energy National Isotope Program http://www.nuclear.energy.gov/isotopes/nelsotopes2a.html Isotopes for Environmental Science Isotopes produced at Los Alamos National Laboratory are used as

  16. An EBIS system for rare isotope science project in Korea

    SciTech Connect (OSTI)

    Kim, Jongwon E-mail: jehan@ibs.re.kr E-mail: khyi@ibs.re.kr; Han, Jae-Eun E-mail: jehan@ibs.re.kr E-mail: khyi@ibs.re.kr; Son, Hyock-Jun E-mail: jehan@ibs.re.kr E-mail: khyi@ibs.re.kr; Yi, Kun-Hui E-mail: jehan@ibs.re.kr E-mail: khyi@ibs.re.kr; Zhao, Liangji E-mail: kim@far-tech.com; Kim, Jin-Soo E-mail: kim@far-tech.com

    2015-01-09

    An EBIS system has been designed to be used as a charge breeder for the post accelerator of an ISOL system. An electron gun, which is designed to produce a maximum current of 3 A at the beam energy of 20 kV, will be acquired from the Budker Institute, Novosibirsk. Electron beam optics calculations of the EBIS system as well as of the gun assembly have been performed using PBGUNS and TRAK. A superconducting solenoid with a maximum field of 6 T is to be used to compress the electron beam. A test stand, which includes the gun assembly and a high-power electron beam collector, is being designed and will be ready for the gun test in the end of this year. Charge breeding simulation using EBIS0D and CBSIM has been performed for a few key isotopes.

  17. Isotope production and distribution Programs Fiscal Year (FY) 1995 Financial Statement Audit (ER-FC-96-01)

    SciTech Connect (OSTI)

    1996-02-12

    The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium and deuterium, and related isotope services. Services provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund, as established by the Fiscal Year 1990 Energy and Water Appropriations Act (Public Law 101-101). The Fiscal Year 1995 Appropriations Act (Public Law 103-316) modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Prices set for small-volume, high-cost isotopes that are needed for research may not achieve full-cost recovery. Isotope Program costs are financed by revenues from the sale of isotopes and associated services and through payments from the isotope support decision unit, which was established in the DOE fiscal year 1995 Energy, Supply, Research, and Development appropriation. The isotope decision unit finances the production and processing of unprofitable isotopes that are vital to the national interest.

  18. Feasibility study of medical isotope production at Sandia National Laboratories

    SciTech Connect (OSTI)

    Massey, C.D.; Miller, D.L.; Carson, S.D.

    1995-12-01

    In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for {sup 99}Mo, the parent of {sup 99m}Tc, in the event of an interruption in the current Canadian supply. {sup 99m}Tc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for {sup 99}Mo and to identify and examine all issues with potential for environmental impact.

  19. Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production

    Broader source: Energy.gov [DOE]

    Project LIBERTY, the nation’s first commercial-scale cellulosic ethanol plant to use corn waste as a feedstock, announced the start of production today. Once operating at full, commercial-scale, the biorefinery in Emmetsburg, Iowa will produce 25 million gallons of cellulosic ethanol per year - enough to avoid approximately 210,000 tons of CO2 emissions annually.

  20. AVLIS production plant project schedule and milestones

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    An AVLIS Production Plant Deployment Schedule for the engineering, procurement, and construction for both the Initial Increment of Production and the fully Activated Plant, has been developed by the project team consisting of Lawrence Livermore National Laboratory, Martin Marietta Energy Systems, Inc. with architect-engineer support from Bechtel National, Inc., Stone and Webster Engineering Corporation, and Westinghouse Corporation. The initial deployment phase consists of six separators modules and the three laser power amplifier modules consistent with the FY84 reference design with a name plate capacity of 5 million separative work units/yr followed by a full plant activation to approximately 13 million separative work units/yr. The AVLIS Production Plant project team's strategy for deployment schedule analysis focused on three schedule options: engineering limited schedule; authorization limited schedule; and funding limited project schedule. The three deployment schedule options developed by AVLIS project team have been classified in ranges such as an optimistic, rapid/moderate, or moderate/pessimistic based on the probability of meeting the individual schedule option's major milestones or program objectives of enriching uranium by the AVLIS process in an effective cost and schedule manner. 47 figures, 7 tables.

  1. Isotope Production and Distribution Program. Financial statements, September 30, 1994 and 1993

    SciTech Connect (OSTI)

    Marwick, P.

    1994-11-30

    The attached report presents the results of the independent certified public accountants` audit of the Isotope Production and Distribution (IP&D) Program`s financial statements as of September 30, 1994. The auditors have expressed an unqualified opinion on IP&D`s 1994 statements. Their reports on IP&D`s internal control structure and on compliance with laws,and regulations are also provided. The charter of the Isotope Program covers the production and sale of radioactive and stable isotopes, byproducts, and related isotope services. Prior to October 1, 1989, the Program was subsidized by the Department of Energy through a combination of appropriated funds and isotope sales revenue. The Fiscal Year 1990 Appropriations Act, Public Law 101-101, authorized a separate Isotope Revolving Fund account for the Program, which was to support itself solely from the proceeds of isotope sales. The initial capitalization was about $16 million plus the value of the isotope assets in inventory or on loan for research and the unexpended appropriation available at the close of FY 1989. During late FY 1994, Public Law 103--316 restructured the Program to provide for supplemental appropriations to cover costs which are impractical to incorporate into the selling price of isotopes. Additional information about the Program is provided in the notes to the financial statements.

  2. Table 13. Coal Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",999,1021,1041,1051,1056,1066,1073,1081,1087,1098,1107,1122,1121,1128,1143,1173,1201,1223 "AEO 1995",,1006,1010,1011,1016,1017,1021,1027,1033,1040,1051,1066,1076,1083,1090,1108,1122,1137 "AEO

  3. Guidelines for modeling projecting fenestration products

    SciTech Connect (OSTI)

    Arasteh, D.K.; Finlayson, E.; Curcija, D.; Baker, J.; Huizenga, C.

    1998-10-01

    Heat transfer patterns in projecting fenestration products (greenhouse windows, skylights, etc.) are different from those in typical planar window products. The projecting surfaces often radiate to each other, thereby invalidating the commonly used assumption that fenestration product interior surfaces radiate to a uniform room air temperature. The convective portion of the surface heat transfer coefficient also is significantly different from the one used with planar geometries and is even more dependent on geometry and location. Projecting fenestration product profiles must, therefore, be modeled in their entirety. This paper presents the results of complete cross-sectional, variable film coefficient, two-dimensional heat transfer modeling of two greenhouse windows using the next generation of window-specific heat transfer modeling tools. The use of variable film coefficient models is shown to increase the accuracy with which simulation tools can compute U-factors. Simulated U-factors also are determined using conventional constant film coefficient algorithms. The results from both sets of simulations are compared with measured values.

  4. Oil & Natural Gas Projects Exploration and Production Technologies...

    Open Energy Info (EERE)

    & Natural Gas Projects Exploration and Production Technologies Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oil & Natural Gas Projects Exploration...

  5. Table 9. Natural Gas Production, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 17.71 17.68 17.84 18.12 18.25 18.43 18.58 18.93 19.28 19.51 19.80 19.92 20.13 20.18 20.38 20.35 20.16 20.19 AEO 1995 18.28 17.98 17.92 18.21 18.63 18.92 19.08 19.20 19.36 19.52 19.75 19.94 20.17 20.28 20.60 20.59 20.88 AEO 1996 18.90 19.15 19.52 19.59 19.59 19.65 19.73 19.97 20.36 20.82 21.25 21.37 21.68

  6. Greater Green River Basin Production Improvement Project

    SciTech Connect (OSTI)

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  7. Outage project productivity improvement of TVA fossil

    SciTech Connect (OSTI)

    Picard, H.E.; Seay, C.R. Jr.

    1996-10-01

    Competition in the utility industry forces management to look closely at the cost effectiveness of power plant outage projects. At TVA Fossil and Hydro Power, innovative work measurement is proving effective as a project management tool to do more with less. Labor-hours to complete outage work scopes are reduced by some 20 to 30%, not by working harder or sacrificing safety, or quality, but by working and managing smarter. Fossil power plant outages and shutdowns are costly. They are labor-intensive construction projects, often with expanding work scope, and executed on a fast track. Outage work is inherently complex and dynamic, and often unpredictable. Many activities and tasks must be integrated, coordinated and completed safely and efficiently by multiple crafts and work groups. As a result, numerous productivity factors can influence the cost and schedule of outage completion. This provides owners, contractors and labor with unique opportunities for competitive advantage--by making radical changes in how they manage labor-hours and time.

  8. The Multi-Isotope Process (MIP) Monitor Project: FY13 Final Report

    SciTech Connect (OSTI)

    Meier, David E.; Coble, Jamie B.; Jordan, David V.; Mcdonald, Luther W.; Forrester, Joel B.; Schwantes, Jon M.; Unlu, Kenan; Landsberger, Sheldon; Bender, Sarah; Dayman, Kenneth J.; Reilly, Dallas D.

    2013-09-01

    The Multi-Isotope Process (MIP) Monitor provides an efficient approach to monitoring the process conditions in reprocessing facilities in support of the goal of (minimization of) the risks of nuclear proliferation and terrorism. The MIP Monitor measures the distribution of the radioactive isotopes in product and waste streams of a nuclear reprocessing facility. These isotopes are monitored online by gamma spectrometry and compared, in near-real-time, to spectral patterns representing normal process conditions using multivariate analysis and pattern recognition algorithms. The combination of multivariate analysis and gamma spectroscopy allows us to detect small changes in the gamma spectrum, which may indicate changes in process conditions. By targeting multiple gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, relatively high-resolution gamma detectors that may be easily deployed throughout an existing facility. The automated multivariate analysis can provide a level of data obscurity, giving a built-in information barrier to protect sensitive or proprietary operational data. Proof-of-concept simulations and experiments have been performed in previous years to demonstrate the validity of this tool in a laboratory setting for systems representing aqueous reprocessing facilities. However, pyroprocessing is emerging as an alternative to aqueous reprocessing techniques.

  9. Manhattan Project: F Reactor Plutonium Production Complex

    Office of Scientific and Technical Information (OSTI)

    F REACTOR PLUTONIUM PRODUCTION COMPLEX Hanford Engineer Works, 1945 Resources > Photo Gallery Plutonium production area, Hanford, ca. 1945 The F Reactor plutonium production ...

  10. Table 9. Natural Gas Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2...

  11. Homogeneous fast-flux isotope-production reactor

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a liquid metal fast breeder reactor. Lithium target material is dissolved in the liquid metal coolant in order to facilitate the production and removal of tritium.

  12. Isotope production facility produces cancer-fighting actinium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meiring Nortier holds a thorium foil test target for the proof-of-concept production experiments. Los Alamos scientist Meiring Nortier holds a thorium foil test target for the ...

  13. The Multi-Isotope Process (MIP) Monitor Project: FY12 Progress and Accomplishments

    SciTech Connect (OSTI)

    Coble, Jamie B.; Orton, Christopher R.; Jordan, David V.; Schwantes, Jon M.; Bender, Sarah; Dayman, Kenneth J.; Unlu, Kenan; Landsberger, Sheldon

    2012-09-27

    The Multi-Isotope Process (MIP) Monitor, being developed at Pacific Northwest National Laboratory (PNNL), provides an efficient approach to monitoring the process conditions in reprocessing facilities in support of the goal of "...(minimization of) the risks of nuclear proliferation and terrorism." The MIP Monitor measures distributions of a suite of indicator (radioactive) isotopes present within product and waste streams of a nuclear reprocessing facility. These indicator isotopes are monitored on-line by gamma spectrometry and compared, in near-real-time, to spectral patterns representing "normal" process conditions using multivariate pattern recognition software. The monitor utilizes this multivariate analysis and gamma spectroscopy of reprocessing streams to detect small changes in the gamma spectrum, which may indicate changes in process conditions. Multivariate analysis methods common in chemometrics, such as principal component analysis (PCA) and partial least squares regression (PLS), act as pattern recognition techniques, which can detect small deviations from the expected, nominal condition. By targeting multiple gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, relatively high-resolution gamma detectors that may be easily deployed throughout an existing facility. The automated multivariate analysis can provide a level of data obscurity, giving a built-in information barrier to protect sensitive or proprietary operational data. Proof-of-concept simulations and experiments have been performed in previous years to demonstrate the validity of this tool in a laboratory setting. Development of the MIP Monitor approach continues to evaluate the efficacy of the monitor for automated, real-time or near-real-time application. This report details follow-on research and development efforts sponsored by the U.S. Department of Energy Fuel Cycle Research and Development related to the MIP Monitor for fiscal year 2012 (FY12).

  14. Figure 7. Projected Production for the High Development Rate...

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Projected Production for the High Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the...

  15. Figure 6. Projected Production for the Low Development Rate of...

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Projected Production for the Low Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the...

  16. Management Letter on the Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2009 Balance Sheet Audit, OAS-FS-12-09

    Energy Savers [EERE]

    09 Balance Sheet Audit OAS-FS-12-09 June 2012 January 30, 2012 Mr. Gregory Friedman, Inspector General Dr. Jehanne Gillo, Director, Facilities and Project Management Division, Office of Nuclear Physics U.S. Department of Energy Washington, DC 20585 Dear Mr. Friedman and Dr. Gillo: We have audited the balance sheet of the United States Department of Energy's (Department or DOE) Isotope Development and Production for Research and Applications Program (the Program) (a component of the Department)

  17. Strontium Isotope Study of Coal Untilization By-products Interacting with Environmental Waters

    SciTech Connect (OSTI)

    Spivak-Birndorf, Lev J; Stewart, Brian W; Capo, Rosemary C; Chapman, Elizabeth C; Schroeder, Karl T; Brubaker, Tonya M

    2011-09-01

    Sequential leaching experiments on coal utilization by-products (CUB) were coupled with chemical and strontium (Sr) isotopic analyses to better understand the influence of coal type and combustion processes on CUB properties and the release of elements during interaction with environmental waters during disposal. Class C fly ash tended to release the highest quantity of minor and trace elementsincluding alkaline earth elements, sodium, chromium, copper, manganese, lead, titanium, and zincduring sequential extraction, with bottom ash yielding the lowest. Strontium isotope ratios ({sup 87}Sr/{sup 86}Sr) in bulk-CUB samples (total dissolution of CUB) are generally higher in class F ash than in class C ash. Bulk-CUB ratios appear to be controlled by the geologic source of the mineral matter in the feed coal, and by Sr added during desulfurization treatments. Leachates of the CUB generally have Sr isotope ratios that are different than the bulk value, demonstrating that Sr was not isotopically homogenized during combustion. Variations in the Sr isotopic composition of CUB leachates were correlated with mobility of several major and trace elements; the data suggest that arsenic and lead are held in phases that contain the more radiogenic (high-{sup 87}Sr/{sup 86}Sr) component. A changing Sr isotope ratio of CUB-interacting waters in a disposal environment could forecast the release of certain strongly bound elements of environmental concern. This study lays the groundwork for the application of Sr isotopes as an environmental tracer for CUBwater interaction.

  18. BETO Project Improves Production of Renewable Chemical from Cellulosic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstocks | Department of Energy Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 13, 2015 - 1:43pm Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's Bioenergy Technologies Office (BETO).

  19. Production of radioactive isotopes through cosmic muon spallation in KamLAND

    SciTech Connect (OSTI)

    Abe, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Kibe, Y.; Kishimoto, Y.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.

    2010-02-15

    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in nu detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be Y{sub n}=(2.8+-0.3)x10{sup -4} mu{sup -1} g{sup -1} cm{sup 2}. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  20. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    SciTech Connect (OSTI)

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  1. DUF6 Project Doubles Production in 2013

    Broader source: Energy.gov [DOE]

    LEXINGTON, Ky. – The conversion plants at EM’s Paducah and Portsmouth sites surpassed a fiscal year 2013 goal by converting 13,679 metric tons of depleted uranium hexafluoride (DUF6), more than doubling production a year earlier.

  2. Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities

    SciTech Connect (OSTI)

    Doll, Charles G.; Sorensen, Christina M.; Bowyer, Ted W.; Friese, Judah I.; Hayes, James C.; Hoffman, Emma L.; Kephart, Rosara F.

    2014-04-01

    The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunities to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes.

  3. Production Worker Screening Projects | Department of Energy

    Energy Savers [EERE]

    Procurement Integrity Brochure What is Procurement Integrity? The Department of Energy, like most federal agencies, purchases many products and services from the private sector. To preserve the integrity of the Federal procurement process and assure fair treatment of bidders, offerors, and contractors, laws govern the procurement process and the manner in which federal and contractor personnel conduct business with each other. One of these statutes is Section 27 of the Office of Federal

  4. United States Department of Energy Office of Nuclear Energy, Isotope Production and Distribution Program financial statements, September 30, 1996 and 1995

    SciTech Connect (OSTI)

    1997-04-01

    The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium, and related isotope services. Service provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. This report presents the results of the independent certified public accountants` audit of the Isotope Production and Distribution Program`s (Isotope) financial statements as of September 30, 1996.

  5. Solar electric thermal hydronic (SETH) product development project

    SciTech Connect (OSTI)

    Stickney, B.L.; Sindelar, A.

    2000-10-01

    Positive Energy, Inc. received a second Technology Maturation and Commercialization Project Subcontract during the 1999 round of awards. This Subcontract is for the purpose of further aiding Positive Energy, Inc. in preparing its Solar Electric Thermal Hydronic (SETH) control and distribution package for market introduction. All items of this subcontracted project have been successfully completed. This Project Report contains a summary of the progress made during the SETH Development Project (the Project) over the duration of the 1999 Subcontract. It includes a description of the effort performed and the results obtained in the pursuit of intellectual property protection and development of product documentation for the end users. This report also summarizes additional efforts taken by and for the SETH project outside of the Subcontract. It presents a chronology of activities over the duration of the Subcontract, and includes a few selected sample copies of documents offered as evidence of their success.

  6. The Multi-Isotope Process Monitor Project: FY11 Progress and Accomplishments

    SciTech Connect (OSTI)

    Orton, Christopher R.; Fraga, Carlos G.; Hayes, John W.; Schwantes, Jon M.; Bender, Sarah E.; Unlu, Kenan; Dayman, Kenneth J.; Schreiber, S. S.; Landsberger, Sheldon

    2012-08-01

    Summary The Multi-Isotope Process (MIP) Monitor represents a potentially new and efficient approach to monitoring process conditions in reprocessing facilities with the high-level goal of aiding in the ...(minimization of) the risks of nuclear proliferation and terrorism (Office of Technology Assessment 1995). This approach relies on multivariate analysis and gamma spectroscopy of spent fuel product and waste streams to automatically and simultaneously monitor a variety of process conditions (e.g., acid concentrations, burnup, cooling time, etc.) in near real-time (NRT). While the conceptual basis for the MIP Monitor has been shown to be effective in an aqueous reprocessing system, the fundamental approach should also be viable in a pyro-processing recycle system. The MIP Monitor may be calibrated to provide online quantitative information about process variables for process control or domestic safeguards applications; or it can simply monitor, with a built-in information barrier, for off-normal conditions in process streams, making the approach well-suited for applications were it is necessary to respect proprietary information or for international safeguards applications. Proof-of-concept simulations and experiments were performed in previous years demonstrating the validity of this tool in a laboratory setting. This report details follow-on research and development efforts sponsored by the U.S. Department of Energy Fuel Cycle Research and Development (FCR&D) related to the MIP Monitor for fiscal year 2011 (FY11).

  7. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

    2014-09-01

    Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.81014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.21016 to 2.51016 Bq and estimates for the facility in Indonesia vary from 6.11013 to 3.61014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

  8. A CYCLOTRON CONCEPT TO SUPPORT ISOTOPE PRODUCTION FOR SCIENCE AND MEDICAL APPLICATIONS

    SciTech Connect (OSTI)

    Egle, Brian; Mirzadeh, Saed; Tatum, B Alan; Varma, Venugopal Koikal; Bradley, Eric Craig; Burgess, Thomas W; Aaron, W Scott; Binder, Jeffrey L; Beene, James R; Saltmarsh, Michael John

    2013-01-01

    In August of 2009, the Nuclear Science Advisory Committee (NSAC) recommended a variable-energy, high-current multi-particle accelerator for the production of medical radioisotopes. The Oak Ridge National Laboratory is developing a technical concept for a 70 MeV dual-extraction multi-particle cyclotron that will meet the needs identified in the NSAC report. The cyclotron, which will be located at the Holifield Radioactive Ion Beam Facility (HRIBF), will operate on a 24/7 basis and will provide approximately 6000 hours per year of quality beam time for both the production R&D and production of medical and industrial radioisotopes. The proposed cyclotron will be capable of accelerating dual beams of 30 to 70 MeV H at up to 750 A, and up to 50 A of 15-35 MeV D , 35 MeV H2, and 70 MeV -particles. In dual-extraction H mode, a total of 750 A of 70 MeV protons will be provided simultaneously to both HRIBF and Isotope Production Facility. The isotope facility will consist of two target stations: a 2 water-cooled station and a 4 water-cooled high-energy-beam research station. The multi-particle capability and high beam power will enable research into new regimes of accelerator-produced radioisotopes, such as 225Ac, 211At, 68Ge, and 7B. The capabilities of the accelerator will enable the measurement of excitation functions, thick target yield measurements, research in high-power-target design, and will support fundamental research in nuclear and radiochemistry.

  9. Continuous production of tritium in an isotope-production reactor with a separate circulation system

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium is allowed to flow through the reactor in separate loops in order to facilitate the production and removal of tritium.

  10. Colorado: Energy Modeling Products Support Energy Efficiency Projects

    Broader source: Energy.gov [DOE]

    Xcel Energy, a Minnesota-based utility that supplies electricity and natural gas to eight states, employed two EERE-developed products in developing a program management tool for its Energy Design Assistance (EDA) program. Through EDA, Xcel provides energy consulting services to construction projects to encourage efficient energy use.

  11. METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS

    DOE Patents [OSTI]

    Hoffman, J.D.; Ballou, J.K.

    1957-11-19

    A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.

  12. Production of NDA Working Reference Materials for the Capability Evaluation Project

    SciTech Connect (OSTI)

    Noll, P.D. Jr.; Marshall, R.S.

    1998-11-17

    The production of Non Destructive Assay (NDA) Working Reference Materials (WRMs) that are traceable to nationally recognized standards was undertaken to support implementation of the Idaho National Engineering and Environmental Laboratory (INEEL) Nondestructive Waste Assay Capability Evaluation Project (CEP). The WRMs produced for the CEP project consist of Increased Am/Pu mass ration (IAP) and depleted Uranium (DU) WRMs. The CEP IAP/DU WRM set provides radioactive material standards for use in combination with 55 gallon drum waste matrix surrogates for the assessment of waste NDA assay system performance. The Production of WRMs is a meticulous process that is not without certain trials and tribulations. Problems may arise at any of the various stages of WRM production which include, but are not limited to; material characterization (physical, chemical, and isotopic), material blend parameters, personnel radiation exposure, gas generation phenomenon, traceability to national standards, encapsulation, statistical evaluation of the data, and others. Presented here is an overall description of the process by which the CEP WRMs were produced and certified as well as discussions pertaining to some of the problems encountered and how they were solved.

  13. FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Stephen P. Bergin

    2003-04-23

    This project has two primary purposes: (1) Build a small-footprint (SFP) fuel production plant to prove the feasibility of this relatively transportable technology on an intermediate scale (i.e. between laboratory-bench and commercial capacity) and produce as much as 150,000 gallons of hydrogen-saturated Fischer-Tropsch (FT) diesel fuel; and (2) Use the virtually sulfur-free fuel produced to demonstrate (over a period of at least six months) that it can not only be used in existing diesel engines, but that it also can enable significantly increased effectiveness and life of the next-generation exhaust-after-treatment emission control systems that are currently under development and that will be required for future diesel engines. Furthermore, a well-to-wheels economic analysis will be performed to characterize the overall costs and benefits that would be associated with the actual commercial production, distribution and use of such FT diesel fuel made by the process under consideration, from the currently underutilized (or entirely un-used) energy resources targeted, primarily natural gas that is stranded, sub-quality, off-shore, etc. During the first year of the project, which is the subject of this report, there have been two significant areas of progress: (1) Most of the preparatory work required to build the SFP fuel-production plant has been completed, and (2) Relationships have been established, and necessary project coordination has been started, with the half dozen project-partner organizations that will have a role in the fuel demonstration and evaluation phase of the project. Additional project tasks directly related to the State of Alaska have also been added to the project. These include: A study of underutilized potential Alaska energy resources that could contribute to domestic diesel and distillate fuel production by providing input energy for future commercial-size SFP fuel production plants; Demonstration of the use of the product fuel in a heavy-duty diesel vehicle during the Alaska winter; a comparative study of the cold-starting characteristics of FT and conventional diesel fuel; and demonstration of the use of the fuel to generate electricity for rural Alaskan villages using both a diesel generator set, and a reformer-equipped fuel cell.

  14. EA-1137: Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

    Broader source: Energy.gov [DOE]

    Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

  15. Site evaluations for the uranium-atomic vapor laser isotope separation (U-AVLIS) production plant

    SciTech Connect (OSTI)

    Wolsko, T.; Absil, M.; Cirillo, R.; Folga, S.; Gillette, J.; Habegger, L.; Whitfield, R.

    1991-07-01

    This report describes a uranium-atomic vapor laser isotope separation (U-AVLIS) production plant siting study conducted during 1990 to identify alternative plant sites for examination in later environmental impact studies. A siting study methodology was developed in early 1990 and was implemented between June and December. This methodology had two parts. The first part -- a series of screening analyses that included exclusionary and other criteria -- was conducted to identify a reasonable number of candidates sites. This slate of candidate sites was then subjected to more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. To fully appreciate the siting study methodology, it is important to understand the U-AVLIS program and site requirements. 16 refs., 29 figs., 54 tabs.

  16. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2507.55,2372.5,2255.7,2160.8,2087.8,2022.1,1952.75,1890.7,1850.55,1825,1799.45,1781.2,1766.6,1759.3,1777.55,1788.5,1806.75,1861.5 "AEO

  17. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 2018 2055 AEO 1997 2362 2307

  18. Evaluation of selected ex-reactor accidents related to the tritium and medical isotope production mission at the FFTF

    SciTech Connect (OSTI)

    Himes, D.A.

    1997-11-17

    The Fast Flux Test Facility (FFTF) has been proposed as a production facility for tritium and medical isotopes. A range of postulated accidents related to ex-reactor irradiated fuel and target handling were identified and evaluated using new source terms for the higher fuel enrichment and for the tritium and medical isotope targets. In addition, two in-containment sodium spill accidents were re-evaluated to estimate effects of increased fuel enrichment and the presence of the Rapid Retrieval System. Radiological and toxicological consequences of the analyzed accidents were found to be well within applicable risk guidelines.

  19. Studies of Plutonium-238 Production at the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Lastres, Oscar; Chandler, David; Jarrell, Joshua J; Maldonado, G. Ivan

    2011-01-01

    The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) is a versatile 85 MW{sub th}, pressurized, light water-cooled and -moderated research reactor. The core consists of two fuel elements, an inner fuel element (IFE) and an outer fuel element (OFE), each constructed of involute fuel plates containing high-enriched-uranium (HEU) fuel ({approx}93 wt% {sup 235}U/U) in the form of U{sub 3}O{sub 8} in an Al matrix and encapsulated in Al-6061 clad. An over-moderated flux trap is located in the center of the core, a large beryllium reflector is located on the outside of the core, and two control elements (CE) are located between the fuel and the reflector. The flux trap and reflector house numerous experimental facilities which are used for isotope production, material irradiation, and cold/thermal neutron scattering. Over the past five decades, the US Department of Energy (DOE) and its agencies have been producing radioisotope power systems used by the National Aeronautics and Space Administration (NASA) for unmanned, long-term space exploration missions. Plutonium-238 is used to power Radioisotope Thermoelectric Generators (RTG) because it has a very long half-life (t{sub 1/2} {approx} 89 yr.) and it generates about 0.5 watts/gram when it decays via alpha emission. Due to the recent shortage and uncertainty of future production, the DOE has proposed a plan to the US Congress to produce {sup 238}Pu by irradiating {sup 237}Np as early as in fiscal year 2011. An annual production rate of 1.5 to 2.0 kg of {sup 238}Pu is expected to satisfy these needs and could be produced in existing national nuclear facilities like HFIR and the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Reactors at the Savannah River Site were used in the past for {sup 238}Pu production but were shut down after the last production in 1988. The nation's {sup 237}Np inventory is currently stored at INL. A plan for producing {sup 238}Pu at US research reactor facilities such as the High Flux Isotope Reactor at ORNL has been initiated by the US DOE and NASA for space exploration needs. Two Monte Carlo-based depletion codes, TRITON (ORNL) and VESTA (IRSN), were used to study the {sup 238}Pu production rates with varying target configurations in a typical HFIR fuel cycle. Preliminary studies have shown that approximately 11 grams and within 15 to 17 grams of {sup 238}Pu could be produced in the first irradiation cycle in one small and one large VXF facility, respectively, when irradiating fresh target arrays as those herein described. Important to note is that in this study we discovered that small differences in assumptions could affect the production rates of Pu-238 observed. The exact flux at a specific target location can have a significant impact upon production, so any differences in how the control elements are modeled as a function of exposure, will also cause differences in production rates. In fact, the surface plot of the large VXF target Pu-238 production shown in Figure 3 illustrates that the pins closest to the core can potentially have production rates as high as 3 times those of pins away from the core, thus implying that a cycle-to-cycle rotation of the targets may be well advised. A methodology for generating spatially-dependent, multi-group self-shielded cross sections and flux files with the KENO and CENTRM codes has been created so that standalone ORIGEN-S inputs can be quickly constructed to perform a variety of {sup 238}Pu production scenarios, i.e. combinations of the number of arrays loaded and the number of irradiation cycles. The studies herein shown with VESTA and TRITON/KENO will be used to benchmark the standalone ORIGEN.

  20. Source Term Estimates of Radioxenon Released from the BaTek Medical Isotope Production Facility Using External Measured Air Concentrations

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Cameron, Ian M.; Dumais, Johannes R.; Imardjoko, Yudi; Marsoem, Pujadi; McIntyre, Justin I.; Miley, Harry S.; Stoehlker, Ulrich; Widodo, Susilo; Woods, Vincent T.

    2015-10-01

    Abstract Batan Teknologi (BaTek) operates an isotope production facility in Serpong, Indonesia that supplies 99mTc for use in medical procedures. Atmospheric releases of Xe-133 in the production process at BaTek are known to influence the measurements taken at the closest stations of the International Monitoring System (IMS). The purpose of the IMS is to detect evidence of nuclear explosions, including atmospheric releases of radionuclides. The xenon isotopes released from BaTek are the same as those produced in a nuclear explosion, but the isotopic ratios are different. Knowledge of the magnitude of releases from the isotope production facility helps inform analysts trying to decide whether a specific measurement result came from a nuclear explosion. A stack monitor deployed at BaTek in 2013 measured releases to the atmosphere for several isotopes. The facility operates on a weekly cycle, and the stack data for June 15-21, 2013 show a release of 1.84E13 Bq of Xe-133. Concentrations of Xe-133 in the air are available at the same time from a xenon sampler located 14 km from BaTek. An optimization process using atmospheric transport modeling and the sampler air concentrations produced a release estimate of 1.88E13 Bq. The same optimization process yielded a release estimate of 1.70E13 Bq for a different week in 2012. The stack release value and the two optimized estimates are all within 10 percent of each other. Weekly release estimates of 1.8E13 Bq and a 40 percent facility operation rate yields a rough annual release estimate of 3.7E13 Bq of Xe-133. This value is consistent with previously published estimates of annual releases for this facility, which are based on measurements at three IMS stations. These multiple lines of evidence cross-validate the stack release estimates and the release estimates from atmospheric samplers.

  1. MECHANICAL ALLOYING AND THERMAL TREATMENT FOR PRODUCTION OF ZIRCONIUM IRON HYDROGEN ISOTOPE GETTERS

    SciTech Connect (OSTI)

    Fox, K.

    2008-02-20

    The objective of this task was to demonstrate that metal hydrides could be produced by mechanical alloying in the quantities needed to support production-scale hydrogen isotope separations. Three starting compositions (ratios of elemental Zr and Fe powders) were selected and attritor milled under argon for times of 8 to 60 hours. In general, milling times of at least 24 hours were required to form the desired Zr{sub 2}Fe and Zr{sub 3}Fe phases, although a considerable amount of unalloyed Zr and Fe remained. Milling in liquid nitrogen does not appear to provide any advantages over milling in hexane, particularly due to the formation of ZrN after longer milling times. Carbides of Zr formed during some of the milling experiments in hexane. Elemental Zr was present in the as-milled material but not detected after annealing for milling times of 48 and 60 hours. It may be that after intimate mixing of the powders in the attritor mill the annealing temperature was sufficient to allow for the formation of a Zr-Fe alloy. Further investigation of this conversion is necessary, and could provide an opportunity for reducing the amount of unreacted metal powder after milling.

  2. Determination of total and isotopic uranium by inductively coupled plasma-mass spectrometry at the Fernald Environmental Management Project

    SciTech Connect (OSTI)

    Miller, F.L.; Bolin, R.N.; Feller, M.T.; Danahy, R.J.

    1995-04-01

    At the Fernald Environmental Management Project (FEMP) in southwestern Ohio, ICP-mass spectrometry (ICP-MS), with sample introduction by peristaltic pumping, is used to determine total and isotopic uranium (U-234, U-235, U-236 and U-238) in soil samples. These analyses are conducted in support of the environmental cleanup of the FEMP site. Various aspects of the sample preparation and instrumental analysis will be discussed. Initial sample preparation consists of oven drying to determine moisture content, and grinding and rolling to homogenize the sample. This is followed by a nitric/hydrofluoric acid digestion to bring the uranium in the sample into solution. Bismuth is added to the sample prior to digestion to monitor for losses. The total uranium (U-238) content of this solution and the U{sup 235}/U{sup 238} ratio are measured on the first pass through the ICP-MS. To determine the concentration of the less abundant U{sup 234} and U{sup 236} isotopes, the digestate is further concentrated by using Eichrom TRU-Spec extraction columns before the second pass through the ICP-MS. Quality controls for both the sample preparation and instrumental protocols will also be discussed. Finally, an explanation of the calculations used to report the data in either weight percent or activity units will be given.

  3. Computer analyses for the design, operation and safety of new isotope production reactors: A technology status review

    SciTech Connect (OSTI)

    Wulff, W.

    1990-01-01

    A review is presented on the currently available technologies for nuclear reactor analyses by computer. The important distinction is made between traditional computer calculation and advanced computer simulation. Simulation needs are defined to support the design, operation, maintenance and safety of isotope production reactors. Existing methods of computer analyses are categorized in accordance with the type of computer involved in their execution: micro, mini, mainframe and supercomputers. Both general and special-purpose computers are discussed. Major computer codes are described, with regard for their use in analyzing isotope production reactors. It has been determined in this review that conventional systems codes (TRAC, RELAP5, RETRAN, etc.) cannot meet four essential conditions for viable reactor simulation: simulation fidelity, on-line interactive operation with convenient graphics, high simulation speed, and at low cost. These conditions can be met by special-purpose computers (such as the AD100 of ADI), which are specifically designed for high-speed simulation of complex systems. The greatest shortcoming of existing systems codes (TRAC, RELAP5) is their mismatch between very high computational efforts and low simulation fidelity. The drift flux formulation (HIPA) is the viable alternative to the complicated two-fluid model. No existing computer code has the capability of accommodating all important processes in the core geometry of isotope production reactors. Experiments are needed (heat transfer measurements) to provide necessary correlations. It is important for the nuclear community, both in government, industry and universities, to begin to take advantage of modern simulation technologies and equipment. 41 refs.

  4. Projected shell model study of neutron-rich deformed isotopes of Sr and Zr

    SciTech Connect (OSTI)

    Verma, Sonia; Dar, Parvaiz Ahmad; Devi, Rani [Department of Physics and Electronics, University of Jammu, Jammu-180006 (India)

    2008-02-15

    The projected shell model (PSM) study of {sup 98-102}Sr and {sup 100-104}Zr nuclei is carried out. The reliability of the ground-state wave function is checked by reproducing yrast spectra and electromagnetic properties. The mechanism for the onset of sudden and large deformation at N=60 is worked out. The present piece of research work has unified the two different, or conflicting, early explanations for the onset of deformation at N=60 by the spherical shell model and mean-field theory.

  5. Development of Innovative Radioactive Isotope Production Techniques at the Pennsylvania State University Radiation Science and Engineering Center

    SciTech Connect (OSTI)

    Johnsen, Amanda M.; Heidrich, Brenden; Durrant, Chad; Bascom, Andrew; Unlu, Kenan

    2013-08-15

    The Penn State Breazeale Nuclear Reactor (PSBR) at the Radiation Science and Engineering Center (RSEC) has produced radioisotopes for research and commercial purposes since 1956. With the rebirth of the radiochemistry education and research program at the RSEC, the Center stands poised to produce a variety of radioisotopes for research and industrial work that is in line with the mission of the DOE Office of Science, Office of Nuclear Physics, Isotope Development and Production Research and Application Program. The RSEC received funding from the Office of Science in 2010 to improve production techniques and develop new capabilities. Under this program, we improved our existing techniques to provide four radioisotopes (Mn-56, Br-82, Na-24, and Ar-41) to researchers and industry in a safe and efficient manner. The RSEC is also working to develop new innovative techniques to provide isotopes in short supply to researchers and others in the scientific community, specifically Cu-64 and Cu-67. Improving our existing radioisotopes production techniques and investigating new and innovative methods are two of the main initiatives of the radiochemistry research program at the RSEC.

  6. Radio-isotope production scale-up at the University of Wisconsin

    SciTech Connect (OSTI)

    Nickles, Robert Jerome

    2014-06-19

    Our intent has been to scale up our production capacity for a subset of the NSAC-I list of radioisotopes in jeopardy, so as to make a significant impact on the projected national needs for Cu-64, Zr-89, Y-86, Ga-66, Br-76, I-124 and other radioisotopes that offer promise as PET synthons. The work-flow and milestones in this project have been compressed into a single year (Aug 1, 2012- July 31, 2013). The grant budget was virtually dominated by the purchase of a pair of dual-mini-cells that have made the scale-up possible, now permitting the Curie-level processing of Cu-64 and Zr-89 with greatly reduced radiation exposure. Mile stones: 1. We doubled our production of Cu-64 and Zr-89 during the grant period, both for local use and out-bound distribution to ≈ 30 labs nationwide. This involved the dove-tailing of beam schedules of both our PETtrace and legacy RDS cyclotron. 2. Implemented improved chemical separation of Zr-89, Ga-66, Y-86 and Sc-44, with remote, semi-automated dissolution, trap-and-release separation under LabView control in the two dual-mini-cells provided by this DOE grant. A key advance was to fit the chemical stream with miniature radiation detectors to confirm the transfer operations. 3. Implemented improved shipping of radioisotopes (Cu-64, Zr-89, Tc-95m, and Ho-163) with approved DOT 7A boxes, with a much-improved FedEx shipping success compared to our previous steel drums. 4. Implemented broad range quantitative trace metal analysis, employing a new microwave plasma atomic emission spectrometer (Agilent 4200) capable of ppb sensitivity across the periodic table. This new instrument will prove essential in bringing our radiometals into FDA compliance needing CoA’s for translational research in clinical trials. 5. Expanded our capabilities in target fabrication, with the purchase of a programmable 1600 oC inert gas tube furnace for the smelting of binary alloy target materials. A similar effort makes use of our RF induction furnace, allowing small scale metallurgy with greater control. This alloy feedstock was then used to electroplate cyclotron targets with elevated melting temperatures capable of withstanding higher beam currents. 6. Finished the beam-line developments needed for the irradiation of low-melting target materials (Se and Ga) now being used for the production of Br-76, and radioactive germanium (68, 69, 71Ge). Our planned development of I-124 production has been deferred, given the wide access from commercial suppliers. The passing of these milestones has been the subject of the previous quarterly reports. These signature accomplishments were made possible by the DOE support, and have strengthened the infrastructure at the University of Wisconsin, provided the training ground for a very talented graduate research assistant (Mr. Valdovinos) and more than doubled our out-shipments of Cu-64 and Zr-89.

  7. WWW Table of Radioactive Isotopes (TORI or ToI) from the Isotopes Project: Lawrence Berkeley National Laboratory - Lund University Collaboration

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Firestone, R. B. [LBNL; Ekstrom, L. P. [LUNDS Universitet; Chu, S. Y.F. [LBNL

    The handbook titled "Table of Isotopes" has long been a standard source of information for nuclear structure and decay data. This web page provides online access to the "Table of Isotopes" data. It provides specialized interfaces to search, including: 1) Radiation search - search for by energy range and/or parent properties; 2) Nuclide search - search for nuclides by A, Z, N, and/or half-life range; 3) Atomic data - search for X-rays and Auger electrons; 4) Periodic table interface to the nuclides; 5) Summary drawings for A=1-277 (PDF). This page also provides access to various other resources, including the WWW Table of Nuclear Structure where the user can interactively search adopted nuclear level and gamma-ray properties or display tables, level scheme ladder diagrams and nuclear charts.

  8. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner ...

  9. Production of Working Reference Materials for the Capability Evaluation Project

    SciTech Connect (OSTI)

    Phillip D. Noll, Jr.; Robert S. Marshall

    1999-03-01

    Nondestructive waste assay (NDA) methods are employed to determine the mass and activity of waste-entrained radionuclides as part of the National TRU (Trans-Uranic) Waste Characterization Program. In support of this program the Idaho National Engineering and Environmental Laboratory Mixed Waste Focus Area developed a plan to acquire capability/performance data on systems proposed for NDA purposes. The Capability Evaluation Project (CEP) was designed to evaluate the NDA systems of commercial contractors by subjecting all participants to identical tests involving 55 gallon drum surrogates containing known quantities and distributions of radioactive materials in the form of sealed-source standards, referred to as working reference materials (WRMs). Although numerous Pu WRMs already exist, the CEP WRM set allows for the evaluation of the capability and performance of systems with respect to waste types/configurations which contain increased amounts of {sup 241}Am relative to weapons grade Pu, waste that is dominantly {sup 241}Am, as well as wastes containing various proportions of depleted uranium. The CEP WRMs consist of a special mixture of PuO{sub 2}/AmO{sub 2} (IAP) and diatomaceous earth (DE) or depleted uranium (DU) oxide and DE and were fabricated at Los Alamos National Laboratory. The IAP WRMS are contained inside a pair of welded inner and outer stainless steel containers. The DU WRMs are singly contained within a stainless steel container equivalent to the outer container of the IAP standards. This report gives a general overview and discussion relating to the production and certification of the CEP WRMs.

  10. FFTF Isotope Production and Irradiation Services Mission Waste Stream Estimates and Management

    SciTech Connect (OSTI)

    NIELSEN, D.L.

    1999-12-01

    The composite projected radioactive waste streams for the proposed mission and corresponding comparisons with projected Hanford Site inventories from other sources are depicted below. In all cases, the waste additions from the proposed mission are well within the error bands of the projected waste volumes from other Hanford sources. Therefore the proposed Fast Flux Test Facility (FFTF) mission will have insignificant impact on any aspect of Hanford cleanup.

  11. "Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Gross Domestic Product Growth Trends, Projected vs. Actual" "Projected Real GDP Growth Trend" " (cumulative average percent growth in projected real GDP from first year shown for each AEO)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  12. Final Project Report: "??Exploratory Research: Mercury Stable Isotopes as Indicators of the Biogeochemical Cycling of Mercury"?

    SciTech Connect (OSTI)

    Johnson, Thomas M

    2012-08-01

    This is the final project report for award DE-SC0005351, which supported the research project "??Exploratory Research: Mercury Stable Isotopes as Indicators of the Biogeochemical Cycling of Mercury."? This exploratory project investigated the use of mercury (Hg) stable isotope measurements as a new approach to study how Hg moves and changes its chemical form in environmental systems, with particular focus on the East Fork of Poplar Creek (EFPC) near the DOE Y-12 plant (a Hg contamination source). This study developed analytical methods and collected pilot data that have set the stage for more detailed studies and have begun to provide insights into Hg movement and chemical changes. The overall Hg stable isotope approach was effective. The Hg isotope analysis methods yielded high-precision measurements of the sediment, water, and fish samples analyzed; quality control measures demonstrated the precision. The pilot data show that the 202Hg/198Hg, 199Hg/198Hg, and 201Hg/198Hg isotope ratios vary in this system. 202Hg/198Hg ratios of the Hg released from the Y-12 plant are relatively high, and those of the regional Hg background in soils and river sediments are significantly lower. Unfortunately, 202Hg/198Hg differences that might have been useful to distinguish early Hg releases from later releases were not observed. However, 202Hg/198Hg ratios in sediments do provide insights into chemical transformations that may occur as Hg moves through the system. Furthermore, 199Hg/198Hg and 201Hg/198Hg ratio analyses of fish tissues indicate that the effects of sunlight-driven chemical reactions on the Hg that eventually ends up in EFPC fish are measureable, but small. These results provide a starting point for a more detailed study (already begun at Univ. of Michigan) that will continue Hg isotope ratio work aimed at improving understanding of how Hg moves, changes chemically, and does or does not take on more highly toxic forms in the Oak Ridge area. This work also benefits efforts to trace Hg contamination in the Clinch and Tennessee Rivers, into which EFPC flows, and to distinguish Hg from the Y-12 plant from that released from a nearby coal ash accident.

  13. BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks

    Broader source: Energy.gov [DOE]

    Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project...

  14. EERE Success Story-BETO Project Improves Production of Renewable Chemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Cellulosic Feedstocks | Department of Energy BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks EERE Success Story-BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 20, 2015 - 11:18am Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's

  15. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Energy Savers [EERE]

    The process could also be applied to biofuel production to make a cellulosic ethanol facility more commercially viable. Learn more from the Genomatica press release....

  16. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable chemical company Genomatica made significant progress toward increasing the ... sugars to 1,4-butanediol (BDO), a chemical used in products such as hard plastics ...

  17. Fuel pins with both target and fuel pellets in an isotope-production reactor

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

  18. Assemblies with both target and fuel pins in an isotope-production reactor

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins adjacent to fuel pins in order to increase the tritium production rate.

  19. Method for separating boron isotopes

    DOE Patents [OSTI]

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  20. Manhattan Project: Production Reactor (Pile) Design, Met Lab, 1942

    Office of Scientific and Technical Information (OSTI)

    Schematic of the X-10 Graphite Reactor, Oak Ridge PRODUCTION REACTOR (PILE) DESIGN (Met Lab, 1942) Events > The Plutonium Path to the Bomb, 1942-1944 Production Reactor (Pile) Design, 1942 DuPont and Hanford, 1942 CP-1 Goes Critical, December 2, 1942 Seaborg and Plutonium Chemistry, 1942-1944 Final Reactor Design and X-10, 1942-1943 Hanford Becomes Operational, 1943-1944 By 1942, scientists had established that some of the uranium exposed to radioactivity in a reactor (pile) would eventually

  1. Figure 6. Projected Production for the Low Development Rate of Technically

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Oil 6. Projected Production for the Low Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the Alaska North Slope fig6.jpg (41132

  2. Research Projects to Convert Captured CO2 Emissions to Useful Products

    Broader source: Energy.gov [DOE]

    Research to help find ways of converting into useful products CO2 captured from emissions of power plants and industrial facilities will be conducted by six projects announced today by the U.S. Department of Energy.

  3. Audit Report - Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit, OAS-FS-13-09

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit OAS-FS-13-09 January 2013 MEMORANDUM FOR THE DIRECTOR, OFFICE OF SCIENCE FROM: Daniel M. Weeber Assistant Inspector General for Office of Inspector General SUBJECT: INFORMATION Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit The attached report presents the results of the independent certified public accountants' audit of

  4. Domestic production of medical isotope Mo-99 moves a step closer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domestic Uranium Production Report - Annual With Data for 2015 | Release Date: May 5, 2016 | Next Release Date: May 2017 | full report Previous domestic uranium production reports Year: 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 Go Drilling Total uranium drilling was 1,518 holes covering 0.9 million feet, 13% fewer holes than in 2015. Expenditures for uranium drilling in the United States were $29 million in 2015, an increase of 2% compared with 2014. Figure 1. U.S. Uranium drilling

  5. Compressed Air System Retrofitting Project Improves Productivity at a Foundry (Cast Masters, Bowling Green, OH)

    SciTech Connect (OSTI)

    2002-06-01

    This case study highlights International Truck and Engine Corporation's optimization project on the compressed air system that serves its foundry, Indianapolis Casting Corporation. Due to the project's implementation, the system's efficiency was greatly improved, allowing the foundry to operate with less compressor capacity, which resulted in reduced energy consumption, significant maintenance savings, and more reliable production.

  6. Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as the Idaho National Laboratory)

    Broader source: Energy.gov [DOE]

    Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as the Idaho National Laboratory)

  7. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2009; Composite Data Products, Final Version September 11, 2009

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2009-09-01

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2009.

  8. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2010; Composite Data Products, Final Version March 29, 2010

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-05-01

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2010.

  9. Automated product recovery in a Hg-196 photochemical isotope separation process

    DOE Patents [OSTI]

    Grossman, M.W.; Speer, R.

    1992-07-21

    A method of removing deposited product from a photochemical reactor used in the enrichment of [sup 196]Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out. 2 figs.

  10. Automated product recovery in a HG-196 photochemical isotope separation process

    DOE Patents [OSTI]

    Grossman, Mark W.; Speer, Richard

    1992-01-01

    A method of removing deposited product from a photochemical reactor used in the enrichment of .sup.196 Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out.

  11. Manhattan Project: Processes

    Office of Scientific and Technical Information (OSTI)

    Processes Uranium Mining, Milling, and Refining Uranium Isotope Separation Plutonium Production Bomb Design, Development, and Production Bomb Testing and Weapon Effects Processes PLEASE NOTE: The Processes pages are not yet available. Links to the pages listed below and to the left will be activated as content is developed. Select topics relating to the industrial processes of the Manhattan Project have been grouped into the categories listed to the left. A quick overview of processes involved

  12. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determinemore » 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.« less

  13. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect (OSTI)

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.

  14. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect (OSTI)

    J.J. Horkley; K.P E.M. Gantz; J.E. Davis; R.R. Lewis; J.P. Crow; C.A. Poole; T.S. Grimes; J.J. Giglio

    2015-03-01

    t Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure spike solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for age determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution,

  15. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect (OSTI)

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure spike solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for age determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.

  16. PRINCIPAL ISOTOPE SELECTION REPORT

    SciTech Connect (OSTI)

    K. D. Wright

    1998-08-28

    Utilizing nuclear fuel to produce power in commercial reactors results in the production of hundreds of fission product and transuranic isotopes in the spent nuclear fuel (SNF). When the SNF is disposed of in a repository, the criticality analyses could consider all of the isotopes, some principal isotopes affecting criticality, or none of the isotopes, other than the initial loading. The selected set of principal isotopes will be the ones used in criticality analyses of the SNF to evaluate the reactivity of the fuel/waste package composition and configuration. This technical document discusses the process used to select the principal isotopes and the possible affect that these isotopes could have on criticality in the SNF. The objective of this technical document is to discuss the process used to select the principal isotopes for disposal criticality evaluations with commercial SNF. The principal isotopes will be used as supporting information in the ''Disposal Criticality Analysis Methodology Topical Report'' which will be presented to the United States Nuclear Regulatory Commission (NRC) when approved by the United States Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM).

  17. DOE/EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory (12/04)

    Office of Environmental Management (EM)

    488 FINAL Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee December 2004 U. S. Department of Energy Oak Ridge Operations 04-049(doc)/120204 04-049(doc)/120204 SCIENCE APPLICATIONS INTERNATIONAL CORPORATION contributed to the preparation of this document and should not be considered an eligible contractor for its review. Environmental Assessment for the U-233 Disposition,

  18. ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Steve Bergin

    2004-10-18

    The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

  19. U.S. Crude Oil Production to 2025: Updated Projection of Crude Types

    U.S. Energy Information Administration (EIA) Indexed Site

    Production to 2025: Updated Projection of Crude Types May 28, 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | U.S. Crude Oil Production to 2025 - Updated Projection of Crude Types i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  20. Light oil yield improvement project at Granite City Division Coke/By-Product Plant

    SciTech Connect (OSTI)

    Holloran, R.A.

    1995-12-01

    Light oil removal from coke oven gas is a process that has long been proven and utilized throughout many North American Coke/By-Products Plants. The procedures, processes, and equipment requirements to maximize light oil recovery at the Granite City By-Products Plant will be discussed. The Light Oil Yield Improvement Project initially began in July, 1993 and was well into the final phase by February, 1994. Problem solving techniques, along with utilizing proven theoretical recovery standards were applied in this project. Process equipment improvements and implementation of Operator/Maintenance Standard Practices resulted in an average yield increase of 0.4 Gals./NTDC by the end of 1993.

  1. Solid-State Lighting Commercial Product Development Resulting from DOE-Funded Projects

    Energy Savers [EERE]

    Solid-State Lighting Commercial Product Development Resulting from DOE-Funded Projects The U.S. Department of Energy (DOE) Solid-State Lighting (SSL) Program began funding SSL R&D in 2000, and to date has supported 230 cost-shared SSL projects in the areas of applied research, product development, and manufacturing R&D. This support has directly advanced the understanding and performance of SSL through the publication of articles in technical journals, the creation of intellectual

  2. Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL

    SciTech Connect (OSTI)

    Freels, James D; Jain, Prashant K; Hobbs, Randy W

    2012-01-01

    The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

  3. Figure 7. Projected Production for the High Development Rate of Technically

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Oil 7. Projected Production for the High Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the Alaska North Slope fig7.jpg (43335 bytes) Source

  4. EERE Success Story—Colorado: Energy Modeling Products Support Energy Efficiency Projects

    Broader source: Energy.gov [DOE]

    Xcel Energy, a Minnesota-based utility that supplies electricity and natural gas to eight states, employed two EERE-developed products in developing a program management tool for its Energy Design Assistance (EDA) program. Through EDA, Xcel provides energy consulting services to construction projects to encourage efficient energy use.

  5. The Umatilla Basin Natural Production Monitoring and Evaluation Project, 2008 Annual Progress Report.

    SciTech Connect (OSTI)

    Contor, Craig R.; Harris, Robin; King, Marty

    2009-06-10

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L.96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). The UBNPMEP is coordinated with two Oregon Department of Fish and Wildlife (ODFW) research projects that also monitor and evaluate the success of the Umatilla Fisheries Restoration Plan. This project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 1990-005-00, Umatilla Hatchery M & E) and smolt outmigration (project No. 1989-024-01, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan, the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (CTUIR and ODFW 2006). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPCC 2004). The Umatilla Basin M&E plan developed along with efforts to restore natural populations of spring and fall Chinook salmon, (Oncorhynchus tshawytsha), coho salmon (O. kisutch), and enhance summer steelhead (O. mykiss). The need for restoration began with agricultural development in the early 1900's that extirpated salmon and reduced steelhead runs (Bureau of Reclamation, BOR 1988). The most notable development was the construction and operation of Three Mile Falls Dam (TMD) and other irrigation projects which dewatered the Umatilla River during salmon migrations. CTUIR and ODFW developed the Umatilla Hatchery Master Plan to restore fisheries to the basin. The plan was completed in 1990 and included the following objectives which were updated in 1999: (1) Establish hatchery and natural runs of Chinook and coho salmon. (2) Enhance existing summer steelhead populations through a hatchery program. (3) Provide sustainable tribal and non-tribal harvest of salmon and steelhead. (4) Maintain the genetic characteristics of salmonids in the Umatilla River Basin. (5) Increase annual returns to Three Mile Falls Dam to 31,500 adult salmon and steelhead. In the past the M&E project conducted long-term monitoring activities as well as two and three-year projects that address special needs for adaptive management. Examples of these projects include adult passage evaluations, habitat assessment surveys (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998), and genetic monitoring (Currens & Schreck 1995, Narum et al. 2004). The project's goal is to provide quality information to managers and researchers working to restore anadromous salmonids to the Umatilla River Basin. The status of completion of each of BPA's standardized work element was reported in 'Pisces'(March 2008) and is summarized.

  6. Western Gas Sands Project: production histories of the Piceance and Uinta basins of Colorado and Utah

    SciTech Connect (OSTI)

    Anderson, S.; Kohout, J.

    1980-11-20

    Current United States geological tight sand designations in the Piceance and Uinta Basins' Western Gas Sands Project include the Mesaverde Group, Fort Union and Wasatch Formations. Others, such as the Dakota, Cedar Mountain, Morrison and Mancos may eventually be included. Future production from these formations will probably be closely associated with existing trends. Cumulative gas production through December 1979, of the Mesaverde Group, Fort Union and Wasatch Formations in the Piceance and Uinta Basins is less than 275 billion cubic feet. This contrasts dramatically with potential gas in place estimates of 360 trillion cubic feet. If the geology can be fully understood and engineering problems surmounted, significant potential reserves can be exploited.

  7. Overview of the U.S. Department of Energy's Isotope Programs

    SciTech Connect (OSTI)

    Carty, J.

    2004-10-05

    This presentation provides an overview of the U.S. Department of Energy's Isotopes Program. The charter of the Isotope Programs covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials, and related isotope services.

  8. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    SciTech Connect (OSTI)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  9. Transportation of medical isotopes

    SciTech Connect (OSTI)

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  10. Isotope separation

    DOE Patents [OSTI]

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  11. Improving computer simulations of heat transfer for projecting fenestration products: Using radiation view-factor models

    SciTech Connect (OSTI)

    Griffith, B.; Tuerler, D.; Arasteh, D.K.; Curcija, D.

    1998-10-01

    The window well formed by the concave surface on the warm side of skylights and garden windows can cause surface heat-flow rates to be different for these projecting types of fenestration products than for normal planar windows. Current methods of simulating fenestration thermal conductance (U-factor) use constant boundary condition values for overall surface heat transfer. Simulations that account for local variations in surface heat transfer rates (radiation and convection) may be more accurate for rating and labeling window products whose surfaces project outside a building envelope. This paper, which presents simulation and experimental results for one projecting geometry, is the first step in documenting the importance of these local effects. A generic specimen, called the foam garden window, was used in simulations and experiments to investigate heat transfer of projecting surfaces. Experiments focused on a vertical cross section (measurement plane) located at the middle of the window well on the warm side of the specimen. The specimen was placed between laboratory thermal chambers that were operated at American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) winter heating design conditions. Infrared thermography was used to map surface temperatures. Air temperature and velocity were mapped throughout the measurement plane using a mechanical traversing system. Finite-element computer simulations that directly modeled element-to-element radiation were better able to match experimental data than simulations that used fixed coefficients for total surface heat transfer. Air conditions observed in the window well suggest that localized convective effects were the reason for the difference between actual and modeled surface temperatures. U-value simulation results were 5% to 10% lower when radiation was modeled directly.

  12. Production of Medical Radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for Cancer Treatment and Arterial Restenosis Therapy after PTCA

    DOE R&D Accomplishments [OSTI]

    Knapp, F. F. Jr.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  13. UST corrective action technologies: Engineering design of free product recovery systems. Project report

    SciTech Connect (OSTI)

    Parker, J.C.; Waddill, D.W.; Johnson, J.A.

    1996-03-01

    The objective of this project was to develop a technical assistance document for assessment of subsurface hydrocarbon spills and for evaluating effects of well placement and pumping rates on separate phase plume control and on free product recovery. Procedures developed for estimation of hydrocarbon spill volume include interpolation and spatial integration of measurements from soil cores, and fluid level data from monitoring wells. The first method involves vertical integration of soil concentration measurements to yield oil volume or species mass per unit area followed by kriging and areal integration to estimate the total mass or volume within the measurement zone. The second method involves kriging of well fluid levels, calculation of free oil volume per area using a physically based model for vertically hydrostatic three phase fluid distributions that converts well product thickness to soil product thickness, followed by areal integration to estimate the volume of free product floating on the water table. A procedure is presented to evaluate effects of steady-state water pumping from multiple point sources on the oil flow gradients to evaluate if hydraulic control of plume spreading will be obtained for a selected system of pumping wells and/or trenches. The applicability of trenches and vacuum-enhanced product recovery to hydrocarbon spills is also discussed.

  14. Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production

    SciTech Connect (OSTI)

    W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith

    2005-12-01

    Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

  15. Breckinridge Project, initial effort. Report VII, Volume I. Introduction and background. [Storage losses of 28 products and by-products

    SciTech Connect (OSTI)

    none,

    1982-01-01

    The proposed plant site consists of 1594 acres along the Ohio River in Breckinridge County, Kentucky. An option to purchase the site has been secured on behalf of the Breckinridge Project by the Commonwealth of Kentucky Department of Energy. Figure 1 is an area map locating the site with respect to area cities and towns. The nearest communities to the site are the hamlet of Stephensport, Kentucky, about 3-1/2 miles northeast and Cloverport, Kentucky, which is 6 miles to the southwest. The nearest major cities are Owensboro, Kentucky, 45 road miles to the west and Louisville, Kentucky, 65 miles to the northeast. The Breckinridge facility will convert about 23,000 TPD of run-of-mine (ROM) coal into a nominal 50,000 BPD of hydrocarbon liquids including a significant quantity of transportation fuels. Major products refined for marketing include pipeline gas, propane, butane, 105 RONC gasoline reformate, middle distillate and heavy distillate. By-products include sulfur, anhydrous ammonia, and commercial-grade phenol. Care is being taken to minimize the impact of the facility operations on the environment. Water and wastewater treatment systems have been designed to achieve zero discharge. Waste solids will be disposed of in a carefully designed and well-monitored landfill operation. Also, special design features have been included to minimize air emissions.

  16. Isotope geochemistry

    SciTech Connect (OSTI)

    Cole, D.R.; Curtis, D.B.; DePaolo, D.J.; Gerlach, T.M.; Laul, J.C.; Shaw, H.; Smith, B.M.; Sturchio, N.C.

    1990-09-01

    This document represents the consensus of members of the ad hoc Committee on Isotope Geochemistry in the US Department of Energy; the committee is composed of researchers in isotope geochemistry from seven of the national laboratories. Information included in this document was presented at workshops at Lawrence Berkeley Laboratory (April 1989) and at Los Alamos National Laboratory (August 1989).

  17. Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) funds a wide variety of renewable energy and energy efficiency projects in an effort to assist tribes in realizing their energy visions.

  18. Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Gross Domestic Product Growth Trends, Projected vs. Actual Projected Real GDP Growth Trend (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 3.09 3.15 2.86 2.78 2.73 2.65 2.62 2.60 2.56 2.53 2.52 2.49 2.45 2.41 2.40 2.36 2.32 2.29 AEO 1995 3.66 2.77 2.53 2.71 2.67 2.61 2.55 2.48 2.46 2.45 2.45 2.43 2.39 2.35 2.31 2.27 2.24 AEO 1996 2.61

  19. Sustainable biomass products development and evaluation, Hamakua project. Final draft report

    SciTech Connect (OSTI)

    1998-05-01

    The PICHTR Sustainable Biomass Energy Program was developed to evaluate the potential to cultivate crops for energy production as an alternative use of lands made available by the closing of large sugar plantations. In particular, the closing of the Hamakua Sugar Company on the island of Hawaii brought a great deal of attention to the future of agriculture in this region and in the state. Many options were proposed. Several promising alternatives had been proposed for cane lands. These included dedicated feedstock supply systems (DFSS) for electrical energy production, cultivation of sugarcane to produce ethanol and related by-products, and the production of feed and crops to support animal agriculture. Implementation of some of the options might require preservation of large tracts of land and maintenance of the sugar mills and sugar infrastructure. An analysis of the technical, financial, and other issues necessary to reach conclusions regarding the optimal use of these lands was required. At the request of the Office of State Planning and Senator Akaka`s office, the Pacific International Center for High Technology Research (PICHTR) established and coordinated a working group composed of state, county, federal, and private sector representatives to identify sustainable energy options for the use of idle sugar lands on the island of Hawaii. The Sustainable Biomass Energy Program`s Hamakua Project was established to complete a comprehensive evaluation of the most viable alternatives and assess the options to grow crops as a source of raw materials for the production of transportation fuel and/or electricity on the island of Hawaii. The motivation for evaluating biomass to energy conversion embraced the considerations that Hawaii`s energy security would be improved by diversifying the fuels used for transportation and reducing dependency on imported fossil fuels. The use of waste products as feedstocks could divert wastes from landfills.

  20. The Walla Walla Basin Natural Production Monitoring and Evaluation Project : Progress Report, 1999-2002.

    SciTech Connect (OSTI)

    Contor, Craig R.; Sexton, Amy D.

    2003-06-02

    The Walla Walla Basin Natural Production Monitoring and Evaluation Project (WWNPME) was funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) under the Walla Walla Basin Natural Production Monitoring and Evaluation Project (WWNPME). Chapter One provides an overview of the entire report and how the objectives of each statement of work from 1999, 2000, 2001, and 2002 contract years are organized and reported. Chapter One also provides background information relevant to the aquatic resources of the Walla Walla River Basin. Objectives are outlined below for the statements of work for the 1999, 2000, 2001 and 2002 contract years. The same objectives were sometimes given different numbers in different years. Because this document is a synthesis of four years of reporting, we gave objectives letter designations and listed the objective number associated with the statement of work for each year. Some objectives were in all four work statements, while other objectives were in only one or two work statements. Each objective is discussed in a chapter. The chapter that reports activities and findings of each objective are listed with the objective below. Because data is often interrelated, aspects of some findings may be reported or discussed in more than one chapter. Specifics related to tasks, approaches, methods, results and discussion are addressed in the individual chapters.

  1. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    SciTech Connect (OSTI)

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  2. Current Projects | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Projects In Situ Production of Radionuclide Technetium-99m Researchers at Princeton Plasma Physics Laboratory have developed a new process for the production of Molybdenum 99 (Mo-99), a man made radionuclide which decays (T 1/2 = 66 hours) to Technetium-99m (Tc-99m). Tc-99 m is a radioactive tracer isotope, used in the nuclear medical field for diagnostic imaging, for 2/3 of all diagnostic medical isotope procedures In the United States. Tc-99m has a relatively short half life of 6

  3. Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project

    SciTech Connect (OSTI)

    Stephen P. Bergin

    2006-06-30

    The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer lab evaluation; cold-start test-cell evaluations; overall feasibility, economics, and efficiency of SFP fuel production; and an economic analysis. Two unexpected issues that arose during the project were further studied and resolved: variations in NOx emissions were accounted for and fuel-injection nozzle fouling issues were traced to the non-combustible (ash) content of the engine oil, not the F-T fuel. The F-T fuel domestically produced and evaluated in this effort appears to be a good replacement candidate for petroleum-based transportation fuels. However, in order for domestic F-T fuels to become a viable cost-comparable alternative to petroleum fuels, the F-T fuels will need to be produced from abundant U.S. domestic resources such as coal and biomass, rather than stranded natural gas.

  4. Annual Energy Outlook 2014 projects reduced need for U.S. oil imports due to tight oil production growth

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 Annual Energy Outlook 2014 projects reduced need for U.S. oil imports due to tight oil production growth U.S. production of tight crude oil is expected to make up a larger share of total U.S. oil output in the years ahead, and help lower imports share of total U.S. oil consumption. In its annual long-term projections, the U.S. Energy Information Administration (EIA) expects total U.S. crude oil production to reach a record 9.6 million barrels per day (bbl/d) in 2019, under its baseline

  5. ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Steve Bergin

    2003-10-17

    The Syntroleum plant is mechanically complete and currently undergoing start-up. The fuel production and demonstration plan is near completion. The study on the impact of small footprint plant (SFP) fuel on engine performance is about half-completed. Cold start testing has been completed. Preparations have been completed for testing the fuel in diesel electric generators in Alaska. Preparations are in progress for testing the fuel in bus fleets at Denali National Park and the Washington Metropolitan Transit Authority. The experiments and analyses conducted during this project show that Fischer-Tropsch (FT) gas-to-liquid diesel fuel can easily be used in a diesel engine with little to no modifications. Additionally, based on the results and discussion presented, further improvements in performance and emissions can be realized by configuring the engine to take advantage of FT diesel fuel's properties. The FT fuel also shows excellent cold start properties and enabled the engine tested to start at more the ten degrees than traditional fuels would allow. This plant produced through this project will produce large amounts of FT fuel. This will allow the fuel to be tested extensively, in current, prototype, and advanced diesel engines. The fuel may also contribute to the nation's energy security. The military has expressed interest in testing the fuel in aircraft and ground vehicles.

  6. Constraining the role of iron in environmental nitrogen transformations. Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    SciTech Connect (OSTI)

    Johnston, David; Wankel, Scott David; Buchwald, Carolyn; Hansel, Colleen

    2015-09-16

    Redox reactions involving nitrogen and iron have been shown to have important implications for mobilization of priority contaminants. Thus, an understanding of the linkages between their biogeochemical cycling is critical for predicting subsurface mobilization of radionuclides such as uranium. Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or chemodenitrification, and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmentally relevant conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (~8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  7. New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report

    SciTech Connect (OSTI)

    Ray, W. Harmon

    2002-06-05

    This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

  8. Projecting

    U.S. Energy Information Administration (EIA) Indexed Site

    Projecting the scale of the pipeline network for CO2-EOR and its implications for CCS infrastructure development Matthew Tanner Office of Petroleum, Gas, & Biofuels Analysis U.S. Energy Information Administration October 25, 2010 This paper is released to encourage discussion and critical comment. The analysis and conclusions ex- pressed here are those of the author and not necessarily those of the U.S. Energy Information Administration. Author: Matthew Tanner, matthew.tanner@eia.gov

  9. Clean-coal technology by-products used in a highway embankment stabilization demonstration project. Master's thesis

    SciTech Connect (OSTI)

    Nodjomian, S.M.

    1994-01-01

    Clean-coal technology by-products are used in a highway embankment demonstration project. This research chronicles the procedures used in the process and analyzes the stability of a repaired highway embankment. The reconstructed slope is analyzed using an Intelligent Discussion Support System that was developed from a slope stability program. Water quality studies are performed and an instrumentation plan is suggested. The calculated factors of safety and the observed embankment performance give indications that the field demonstration project was a success. Long-term monitoring will be the best barometer for determining embankment gross movement and the future of FGD by-products as a stabilizing material.

  10. Compelling Research Opportunities using Isotopes

    SciTech Connect (OSTI)

    2009-04-23

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.

  11. ISOTOPE SEPARATORS

    DOE Patents [OSTI]

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  12. Assessment of primary production and optical variability in shelf and slope waters near Cape Hatteras, North Carolina. Final project report

    SciTech Connect (OSTI)

    Redalje, Donald G.; Lohrenz, Stevern E.

    2001-02-12

    In this project we determined primary production and optical variability in the shelf and slope waters off of Cape Hatteras, N.C. These processes were addressed in conjunction with other Ocean Margins Program investigators, during the Spring Transition period and during Summer. We found that there were significant differences in measured parameters between Spring and Summer, enabling us to develop seasonally specific carbon production and ecosystem models as well as seasonal and regional algorithm improvements for use in remote sensing applications.

  13. Laser separation of medical isotopes

    SciTech Connect (OSTI)

    Eerkens, J.W.; Puglishi, D.A.; Miller, W.H.

    1996-12-31

    There is an increasing demand for different separated isotopes as feed material for reactor and cyclotron-produced radioisotopes used by a fast-growing radiopharmaceutical industry. One new technology that may meet future demands for medical isotopes is molecular laser isotope separation (MLIS). This method was investigated for the enrichment of uranium in the 1970`s and 1980s by Los Alamos National Laboratory, Isotope Technologies, and others around the world. While South Africa and Japan have continued the development of MLIS for uranium and are testing pilot units, around 1985 the United States dropped the LANL MLIS program in favor of AVLIS (atomic vapor LIS), which uses electron-beam-heated uranium metal vapor. AVLIS appears difficult and expensive to apply to most isotopes of medical interest, however, whereas MLIS technology, which is based on cooled hexafluorides or other gaseous molecules, can be adapted more readily. The attraction of MLIS for radiopharmaceutical firms is that it allows them to operate their own dedicated separators for small-quantity productions of critical medical isotopes, rather than having to depend on large enrichment complexes run by governments, which are only optimal for large-quantity productions. At the University of Missouri, the authors are investigating LIS of molybdenum isotopes using MoF{sub 6}, which behaves in a way similar to UF{sub 6}, studied in the past.

  14. Manus Water Isotope Investigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Manus Water Isotope Investigation Field Campaign Report JL Conroy D Noone KM Cobb March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  15. Method for isotope enrichment by photoinduced chemiionization

    DOE Patents [OSTI]

    Dubrin, James W.

    1985-01-01

    Isotope enrichment, particularly .sup.235 U enrichment, is achieved by irradiating an isotopically mixed vapor feed with radiant energy at a wavelength or wavelengths chosen to selectively excite the species containing a desired isotope to a predetermined energy level. The vapor feed if simultaneously reacted with an atomic or molecular reactant species capable of preferentially transforming the excited species into an ionic product by a chemiionization reaction. The ionic product, enriched in the desired isotope, is electrostatically or electromagnetically extracted from the reaction system.

  16. Procedure for matching synfuel users with potential suppliers. Appendix B. Proposed and ongoing synthetic fuel production projects

    SciTech Connect (OSTI)

    1981-08-07

    To assist the Department of Energy, Office of Fuels Conversion (OFC), in implementing the synthetic fuel exemption under the Powerplant and Industrial Fuel Use Act (FUA) of 1978, Resource Consulting Group, Inc. (RCG), has developed a procedure for matching prospective users and producers of synthetic fuel. The matching procedure, which involves a hierarchical screening process, is designed to assist OFC in: locating a supplier for a firm that wishes to obtain a synthetic fuel exemption; determining whether the fuel supplier proposed by a petitioner is technically and economically capable of meeting the petitioner's needs; and assisting the Synthetic Fuels Corporation or a synthetic fuel supplier in evaluating potential markets for synthetic fuel production. A data base is provided in this appendix on proposed and ongoing synthetic fuel production projects to be used in applying the screening procedure. The data base encompasses a total of 212 projects in the seven production technologies.

  17. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect (OSTI)

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  18. Compressed Air Project Improves Efficiency and Production at Harland Publishing Facility

    SciTech Connect (OSTI)

    2002-05-01

    Case study describing a project which configured a printing machine so that it consumes less compressed air and required lower pressure to operate effectively. Project replicated throughout the company, leading to energy cost savings of $200,000 per year, or 2.9 million kilowatt-hours.

  19. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

  20. Project Plan Remote Target Fabrication Refurbishment Project

    SciTech Connect (OSTI)

    Bell, Gary L; Taylor, Robin D

    2009-08-01

    In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of {sup 252}Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The {sup 252}Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of {sup 252}Cf; the average irradiation period is {approx}10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of {sup 252}Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and authorization for the work was received in July 2009 under the Remote Target Fabrication Refurbishment Task of the Enhanced Utilization of Isotope Facilities project (Project Identification Code 2005230) funded by the American Recovery and Reinvestment Act of 2009. The goal of this project is to recover the capability to produce 4-5 curium targets for the irradiation period starting with HFIR cycle 427, currently scheduled to begin 2/17/10. Assuming success, the equipment would then be used to fabricate 6-7 additional targets to hold for the next irradiation campaign specified by the program. Specific objectives are the return to functionality of the Cubicle 3 Pellet Fabrication Line; Cubicle 2 Target Assembly equipment; and Cubicle 1 Target Inspection and Final Assembly system.

  1. Solid-State Lighting Commercial Product Development Resulting from DOE-Funded Projects

    SciTech Connect (OSTI)

    2015-06-30

    Nnapshot of commercialized products directly developed or enabled by DOE Solid-State Lighting Program R&D funding.

  2. Robust Medical Isotope Production System

    SciTech Connect (OSTI)

    Klein, Steven Karl; Kimpland, Robert Herbert

    2015-06-15

    The success of this theoretical undertaking provided confidence that the behavior of new and evolving designs of fissile solution systems may be accurately estimated. Scaled up versions of SUPO, subcritical acceleratordriven systems, and other evolutionary designs have been examined.

  3. Six University Coal Research Projects Selected to Boost Advanced Energy Production

    Broader source: Energy.gov [DOE]

    The DOE selected six new projects under the University Coal Research Program that seek long-term solutions for the clean and efficient use of our nation’s abundant coal resources.

  4. AVLIS enrichment of medical isotopes

    SciTech Connect (OSTI)

    Haynam, C.A.; Scheibner, K.F.; Stern, R.C.; Worden, E.F.

    1996-12-31

    Under the Sponsorship of the United states Enrichment Corporation (USEC), we are currently investigating the large scale separation of several isotopes of medical interest using atomic vapor isotope separation (AVLIS). This work includes analysis and experiments in the enrichment of thallium 203 as a precursor to the production of thallium 201 used in cardiac imaging following heart attacks, on the stripping of strontium 84 from natural strontium as precursor to the production of strontium 89, and on the stripping of lead 210 from lead used in integrated circuits to reduce the number of alpha particle induced logic errors.

  5. Efficient palladium isotope chromatograph for hydrogen (EPIC)

    SciTech Connect (OSTI)

    Embury, M.C.; Ellefson, R.E.; Melke, H.B. )

    1992-03-01

    The Efficient Palladium Isotope Chromatograph (EPIC) is a rapid cycling, computer-operated displacement chromatograph for the separation of hydrogen isotopes. EPIC incorporates several features that optimize product throughput and purity. This paper describes this palladium displacement chromatograph, the operations with protium and deuterium, and the design modifications for operation with tritium.

  6. Isotope separation by selective photodissociation of glyoxal

    DOE Patents [OSTI]

    Marling, John B.

    1976-01-01

    Dissociation products, mainly formaldehyde and carbon monoxide, enriched in a desired isotope of carbon, oxygen, or hydrogen are obtained by the selective photodissociation of glyoxal wherein glyoxal is subjected to electromagnetic radiation of a predetermined wavelength such that photon absorption excites and induces dissociation of only those molecules of glyoxal containing the desired isotope.

  7. Project Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Information Slider award map The REE Program funds projects focused on developing economically feasible and environmentally benign technologies for recovering REEs from coal and/or coal by-products. Project Information The listed projects represent the current REE program portfolio. Agreement Number Project Title Performer Name FWP-RIC REE FY2016-2020 Rare Earth Elements (REE) from Coal and Coal By-Products National Energy Technology Laboratory FE0027167 High Yield and Economical

  8. Stable Isotope Enrichment Capabilities at ORNL

    SciTech Connect (OSTI)

    Egle, Brian; Aaron, W Scott; Hart, Kevin J

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

  9. Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – 14M50K is the new, genuinely unique vanity plate that only the 620 employees at EM’s Advanced Mixed Waste Treatment Project (AMWTP) at the Idaho site have earned the right to put on their vehicles.

  10. Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    SciTech Connect (OSTI)

    Kathawa, J.; Fry, C.; Thoennessen, M., E-mail: thoennessen@nscl.msu.edu

    2013-01-15

    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  11. Photo-ionization of aluminum in a hot cavity for the selective production of exotic species project

    SciTech Connect (OSTI)

    Scarpa, D. Corradetti, S.; Manzolaro, M.; Vasquez, J.; Calderolla, M.; Rossignoli, M.; Monetti, A.; Andrighetto, A.; Prete, G.; Makhathini, L.; Tomaselli, A.; Grassi, D.

    2014-02-15

    SPES (Selective Production of Exotic Species) is an Isotope Separation On-Line (ISOL) based accelerator facility that will be built in the Legnaro-Istituto Nazionale di Fisica Nucleare (INFN) Laboratory (Italy), intended to provide intense neutron-rich radioactive ion beams obtained by proton-induced fission of a uranium carbide (UCx) target. Besides this main target material, silicon carbide (SiC) will be the first to be used to deliver p-rich beams. This target will also validate the functionality of the SPES facility with aluminum beam as result of impinging SiC target with proton beam. In the past, off line studies on laser photoionization of aluminum have been performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro; a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. With the new Wien filter installed a better characterization of the ionization process in terms of efficiency was performed and results are discussed.

  12. Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR)

    SciTech Connect (OSTI)

    Roth, Justine P.

    2015-03-03

    Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR) Research during the project period focused primarily on mechanisms of water oxidation by structurally defined transition metal complexes. Competitive oxygen isotope fractionation of water, mediated by oxidized precursors or reduced catalysts together with ceric, Ce(IV), ammonium nitrate in aqueous media, afforded oxygen-18 kinetic isotope effects (O-18 KIEs). Measurement, calculation, and interpretation of O-18 KIEs, described in the accompanying report has important ramifications for the production of electricity and solar hydrogen (as fuel). The catalysis division of BES has acknowledged that understanding mechanisms of transition metal catalyzed water oxidation has major ramifications, potentially leading to transformation of the global economy and natural environment in years to come. Yet, because of program restructuring and decreased availability of funds, it was recommended that the Solar Photochemistry sub-division of BES would be a more appropriate parent program for support of continued research.

  13. Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project

    SciTech Connect (OSTI)

    Steve Bergin

    2005-10-14

    The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

  14. Method for separating isotopes

    DOE Patents [OSTI]

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  15. Stable isotope studies

    SciTech Connect (OSTI)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  16. Selected Isotopes for Optimized Fuel Assembly Tags

    SciTech Connect (OSTI)

    Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

    2008-10-01

    In support of our ongoing signatures project we present information on 3 isotopes selected for possible application in optimized tags that could be applied to fuel assemblies to provide an objective measure of burnup. 1. Important factors for an optimized tag are compatibility with the reactor environment (corrosion resistance), low radioactive activation, at least 2 stable isotopes, moderate neutron absorption cross-section, which gives significant changes in isotope ratios over typical fuel assembly irradiation levels, and ease of measurement in the SIMS machine 2. From the candidate isotopes presented in the 3rd FY 08 Quarterly Report, the most promising appear to be Titanium, Hafnium, and Platinum. The other candidate isotopes (Iron, Tungsten, exhibited inadequate corrosion resistance and/or had neutron capture cross-sections either too high or too low for the burnup range of interest.

  17. ARTI/MCRL Project Report products of motor burnout (Second quarter report)

    SciTech Connect (OSTI)

    Hawley-Fedder, R.

    1995-01-15

    The OSP (Operating Safety Procedure) required for performance of electrical arc testing of CFC replacement fluids was renewed. Electrical breakdown tests at one (1) atmosphere pressure have been performed for R-22, R-134a, and R-125/R-143a (50:50 blend; AZ-50), and breakdown products identified. No differences in HCFC breakdown products are seen in the presence or absence of lubricant oils. The design of the high pressure-high temperature test stand has been finalized, and construction initiated during this quarter. Three motor stators and rotors were received from Tecumseh Products Company for use in motor burnout tests. A test plan for the motor breakdown tests is in preparation.

  18. Isotope separation by photoselective dissociative electron capture

    DOE Patents [OSTI]

    Stevens, Charles G. [Pleasanton, CA

    1978-08-29

    A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

  19. Isotope separation by photoselective dissociative electron capture

    DOE Patents [OSTI]

    Stevens, C.G.

    1978-08-29

    Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

  20. A review of the Arun field gas production/cycling and LNG export project. [Sumatra, Indonesia

    SciTech Connect (OSTI)

    Alford, M.E.

    1983-03-01

    The Arun field was discovered by Mobil Oil Indonesia Inc. in late 1971 in its Bee block in the Aceh province on the north coast of Sumatra, Indonesia. Mobil's operations in this area are conducted under the terms of a production sharing agreement with Pertamina, the Indonesian state-owned oil and gas enterprise. The scope of operations covered by this paper is from production of gas and raw condensate in the field through stabilization and export of condensate and purification, liquefaction, and export of gas at the LNG plant at Blang Lancang, near Lho Seumawe (Sumatra) Indonesia. Mobil Oil Indonesia, Inc. is the field operator and P.T. Arun NGL Company operates the pipelines and LNG plant facilities. All the facilities which will be described are owned by Pertamina; P.T. Arun is owned by Pertamina, Mobil Oil Indonesia, and Japan Indonesia LNG company (JILCO). JILCO represents the five (5) original Japanese LNG purchasers. Brief descriptions are included of the geology, reservoir geometry, well producing characteristics, field producing and cycling facilities, and the treating, liquefaction and export facilities.

  1. Scientific and engineering services for the LANCE/ER accelerator production of tritium (APT) project

    SciTech Connect (OSTI)

    1994-12-05

    The APT project office is conducting a preconceptual design study for an accelerator driven concept to produce tritium. The facility will require new technology in many areas, since the scale of this accelerator is significantly larger then any in operation to date. The facility is composed of four subsystems: accelerator, target & blanket, balance of plant, and tritium purification system (TPS). New physics realms will be entered in order for the concept to be feasible; for example, extremely high energy levels of the entering protons that induce (multiplicative) spallation of the neutrons from the high Z target will occur. These are complex and require advance codes (MCNP) to predict the physics interactions and as well as deleterious material effects in the surrounding structures. Other issues include component cooling and complex thermal-hydraulics effects within the blanket and the beam {open_quotes}window.{close_quotes} In order to support a DOE mandated fast ROD schedule, Los Alamos APT staff will be provided with senior, engineering technical support staff with direct APT technology experience and whom are {open_quotes}on site{close_quotes}. This report contains resumes of the staff.

  2. Production Pathways and Separation Procedures for High-Diagnostic-Value Activation Species, Fission Products, and Actinides Required for Preparation of Realistic Synthetic Post-Detonation Nuclear Debris

    SciTech Connect (OSTI)

    Faye, S A; Shaughnessy, D A

    2015-08-19

    The objective of this project is to provide a comprehensive study on the production routes and chemical separation requirements for activation products, fission products, and actinides required for the creation of realistic post-detonation surrogate debris. Isotopes that have been prioritized by debris diagnosticians will be examined for their ability to be produced at existing irradiation sources, production rates, and availability of target materials, and chemical separation procedures required to rapidly remove the products from the bulk target matrix for subsequent addition into synthetic debris samples. The characteristics and implications of the irradiation facilities on the isotopes of interest will be addressed in addition to a summary of the isotopes that are already regularly produced.

  3. ARM - Measurement - Isotope ratio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Isotope ratio Ratio of stable isotope concentrations. Categories Atmospheric...

  4. U.S. Department of Energy Isotope Program

    SciTech Connect (OSTI)

    2015-06-23

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. PNNL’s Isotope Program operates in a multi-program category-2 nuclear facility, the Radiochemical Processing Laboratory (RPL), that contains 16 hot cells and 20 gloveboxes. As part of the DOE Isotope Program, the Pacific Northwest National Laboratory dispenses strontium-90, neptunium-237, radium-223, and thorium-227. PNNL’s Isotope Program uses a dedicated hot-cell for strontium-90 dispensing and a dedicated glovebox for radium-223 and thorium-227 dispensing. PNNL’s Isotope Program has access to state of the art analytical equipment in the RPL to support their research and production activities. DOE Isotope Program funded research at PNNL has advanced the application of automated radiochemistry for isotope such as zirconium-89 and astatine-211 in partnership with the University of Washington.

  5. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    SciTech Connect (OSTI)

    Weaver, Phyllis C

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.

  6. Progress and status of the IAEA coordinated research project: production of Mo-99 using LEU fission or neutron activation

    SciTech Connect (OSTI)

    Goldman, Ira N.; Adelfang, Pablo E-mail: P.Adelfang@iaea.org; Ramamoorthy, Natesan

    2008-07-15

    Since late 2004, the IAEA has developed and implemented a Coordinated Research Project (CRP) to assist countries interested in initiating indigenous, small-scale production of Mo-99 to meet local nuclear medicine requirements. The objective of the CRP is to provide interested countries with access to non-proprietary technologies and methods to produce Mo-99 using LEU foil or LEU mini-plate targets, or for the utilization of n,gamma neutron activation, e.g. through the use of gel generators. The project has made further progress since the RERTR 2006 meeting, with a Technical Workshop on Operational Aspects of Mo99 Production held 28-30 November 2006 in Vienna and the Second Research Coordination Meeting held in Bucharest, Romania 16-20 April 2007. The paper describes activities carried out as noted above, and as well as the provision of LEU foils to a number of participants, and the progress by a number of groups in preparing for LEU target assembly and disassembly, irradiation, chemical processing, and waste management. The participants' progress in particular on thermal hydraulics computations required for using LEU targets is notable, as also the progress in gel generator plant operations in India and Kazakhstan. Poland has joined as a new research agreement holder and an application by Egypt to be a contract holder is undergoing internal review in the IAEA and is expected to be approved. The IAEA has also participated in several open meetings of the U.S. National Academy of Sciences Study on Producing Medical Radioisotopes without HEU, which will also be discussed in the paper. (author)

  7. Impact evaluation of an energy savings plan project at ARCO Petroleum Products Company

    SciTech Connect (OSTI)

    Spanner, G.E.; Sullivan, G.P.; Dixon, D.R.

    1992-08-01

    This impact evaluation of an energy conservation measure (ECM) that was recently installed at ARCO Petroleum Products Company (ARCO) was conducted for the Bonneville Power Administration (Bonneville) as part of an evaluation of its Energy $avings Plan (E$P) Program. The Program makes acquisition payments to firms that install energy conservation measures in their industrial procsses. The objective of this impact evaluation was to assess how much electrical energy is being saved at ARCO as a result of the E$P and to determine how much the savings cost Bonneville and the region. The impact of the ECM was evaluated with a combination of engineering analysis, financial analysis, interviews, and submittal reviews (ARCO`s Proposal and Completion Report). The ECM itself consists of removing one stage of a six-stage compressor so that its inlet control valve can be opened wider, thereby saving the energy that was previously lost at the valve due to pressure drop. Energy savings resulting from this ECM are expected to be 2,112,800 kwh/yr. The ECM cost $367,650 to install, and ARCO received a payment of $158,460 from Bonneville and $82,902 from its serving utility, Puget Sound Power & Light Company, for the acquisition of energy savings. The ECM would not have been installed without the acquisition payment offered under the E$P Program. The levelized cost of these energy savings to Bonneville will be 6.3 mills/kWh over the ECM`s expected 15-year life, and the levelized cost to the region will be 15.8 mills/kWh.

  8. Impact evaluation of an energy savings plan project at ARCO Petroleum Products Company

    SciTech Connect (OSTI)

    Spanner, G.E.; Sullivan, G.P.; Dixon, D.R.

    1992-08-01

    This impact evaluation of an energy conservation measure (ECM) that was recently installed at ARCO Petroleum Products Company (ARCO) was conducted for the Bonneville Power Administration (Bonneville) as part of an evaluation of its Energy $avings Plan (E$P) Program. The Program makes acquisition payments to firms that install energy conservation measures in their industrial procsses. The objective of this impact evaluation was to assess how much electrical energy is being saved at ARCO as a result of the E$P and to determine how much the savings cost Bonneville and the region. The impact of the ECM was evaluated with a combination of engineering analysis, financial analysis, interviews, and submittal reviews (ARCO's Proposal and Completion Report). The ECM itself consists of removing one stage of a six-stage compressor so that its inlet control valve can be opened wider, thereby saving the energy that was previously lost at the valve due to pressure drop. Energy savings resulting from this ECM are expected to be 2,112,800 kwh/yr. The ECM cost $367,650 to install, and ARCO received a payment of $158,460 from Bonneville and $82,902 from its serving utility, Puget Sound Power Light Company, for the acquisition of energy savings. The ECM would not have been installed without the acquisition payment offered under the E$P Program. The levelized cost of these energy savings to Bonneville will be 6.3 mills/kWh over the ECM's expected 15-year life, and the levelized cost to the region will be 15.8 mills/kWh.

  9. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    SciTech Connect (OSTI)

    Xiao, Xin; Sessions, Henry T.; Heung, L. Kit

    2015-02-01

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production systems footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.

  10. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Xin; Sessions, Henry T.; Heung, L. Kit

    2015-02-01

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system’s footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.

  11. Macroalgae Analysis A National GIS-based Analysis of Macroalgae Production Potential Summary Report and Project Plan

    SciTech Connect (OSTI)

    Roesijadi, Guritno; Coleman, Andre M.; Judd, Chaeli; Van Cleve, Frances B.; Thom, Ronald M.; Buenau, Kate E.; Tagestad, Jerry D.; Wigmosta, Mark S.; Ward, Jeffrey A.

    2011-12-01

    The overall project objective is to conduct a strategic analysis to assess the state of macroalgae as a feedstock for biofuels production. The objective in FY11 is to develop a multi-year systematic national assessment to evaluate the U.S. potential for macroalgae production using a GIS-based assessment tool and biophysical growth model developed as part of these activities. The initial model development for both resource assessment and constraints was completed and applied to the demonstration areas. The model for macroalgal growth was extended to the EEZ off the East and West Coasts of the United States, and a plan to merge the findings for an initial composite assessment was developed. In parallel, an assessment of land-based, port, and offshore infrastructure needs based on published and grey literature was conducted. Major information gaps and challenges encountered during this analysis were identified. Also conducted was an analysis of the type of local, state, and federal requirements that pertain to permitting land-based facilities and nearshore/offshore culture operations

  12. Y-12 plant prepares to separate lithium isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant prepares to separate lithium isotopes The Y-12 National Security Complex is one of three major Manhattan Project sites in Oak Ridge. Y-12 is the nation's sole storage...

  13. Laser Isotope Enrichment for Medical and Industrial Applications

    SciTech Connect (OSTI)

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation repression. In this scheme a gas, of the selected isotopes for enrichment, is irradiated with a laser at a particular wavelength that would excite only one of the isotopes. The entire gas is subject to low temperatures sufficient to cause condensation on a cold surface. Those molecules in the gas that the laser excited are not as likely to condense as are the unexcited molecules. Hence the gas drawn out of the system will be enriched in the isotope that was excited by the laser. We have evaluated the relative energy required in this process if applied on a commercial scale. We estimate the energy required for laser isotope enrichment is about 20% of that required in centrifuge separations, and 2% of that required by use of "calutrons".

  14. Review of AVLIS technology for production-scale LIS systems and construction

    SciTech Connect (OSTI)

    Davis, J.I.; Moses, E.I.

    1983-12-01

    The use of lasers for uranium and/or plutonium isotope separation is expected to be the first application of lasers utilizing specific atomic processes for large-scale materials processing. Specific accomplishments toward the development of production-scale technology for LIS systems will be presented, along with the status of major construction projects. 24 figures.

  15. Pilot project of biogas production from pig manure and urine mixture at ambient temperature in Ventanilla (Lima, Peru)

    SciTech Connect (OSTI)

    Ferrer, I. Gamiz, M.

    2009-01-15

    Parque Porcino de Ventanilla has an extension of 840 ha with 2200 farmers dedicated to pig production. There is a lack of services in the area (i.e., water supply, electricity, or waste collection). Anaerobic treatment of pig manure would replace current dumping and incineration, reducing environmental pollution and hazards to public health, as well as providing an organic fertilizer and biogas. The objective of the present work was to study the viability of ambient temperature anaerobic digestion of pig manure diluted in urine, by means of on-site pilot scale reactors. The final goal was to establish design parameters for anaerobic digesters to be implemented; since it was part of a project to improve life conditions for the farmers through the incorporation of better management techniques. Experiments were carried out in a low-cost pilot plant, which consists of three anaerobic digesters (225 L total volume), without heating or agitation, placed in a greenhouse. The start-up of the digestion process was performed with a mixture of temperature adapted pig manure-sludge and fresh rumen, and showed a good performance regardless of the dilution of pig manure with water or urine, which is a key parameter due to the scarcity of water in the area under study.

  16. TRIFID (TRansuranic Isotopic Fraction Interrogation Device): A second generation plutonium isotopic analysis system

    SciTech Connect (OSTI)

    Fleissner, J G; Coressel, T W; Freier, D A; Macklin, L L

    1989-01-01

    The TRIFID (Transuranic Isotopic Fraction Interrogation Device) system is a second generation plutonium isotopic analysis system which incorporates many new and unique features in the area of isotopic data acquisition and isotopic analysis instrument consisting of a Canberra Series 95-MCA interfaced to a Compaq 386 computer. The entire TRIFID software package, including MCA communications and isotopic analysis routines, was developed using the C programming language. Extensive use has been made of user friendly screens and menus for ease of operation and training and to facilitate use by technical level operators. Automated TRIFID features provide for MCA/ADC setup and acquisition, spectral storage, isotopic analysis, and report generation. One unique feature of the TRIFID system design allows it to be pre-programed for an entire day's counting. The isotopic analysis module (EPICS) contains an expert system formalism which is used to detect and assay for spectral interferences, and to automatically adjust peak fitting constraints based on spectral intensity variations. A TRIFID system has been in operation in a production laboratory at the Rocky Flats Plant since September 1988. Marked decreases in training and hands-on operation time have been achieved in comparison to the older, preceding isotopic systems. 2 refs., 3 figs.

  17. HYDROGEN ISOTOPE TARGETS

    DOE Patents [OSTI]

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  18. Hybrid isotope separation scheme

    DOE Patents [OSTI]

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

  19. Hybrid isotope separation scheme

    DOE Patents [OSTI]

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  20. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

  1. Stable isotope enrichment

    ScienceCinema (OSTI)

    Egle, Brian

    2014-07-15

    Brian Egle is working to increase the nation's capacity to produce stable isotopes for use including medicine, industry and national security.

  2. Stable isotope enrichment

    SciTech Connect (OSTI)

    Egle, Brian

    2014-07-14

    Brian Egle is working to increase the nation's capacity to produce stable isotopes for use including medicine, industry and national security.

  3. Special isotope separation at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Hendrickson, P.D.

    1989-02-03

    The SIS facilities will include a Plutonium Processing Facility (PPF), a Laser Support Facility (LSF), and all associated equipment required for isotope separation. The SIS Plant will process fuel-grade plutonium into weapons-grade plutonium using Atomic Vapor Laser Isotope Separation (AVLIS) and supporting chemical processes. The AVLIS process uses precisely tuned visible laser light to selectively ionize or excite specific plutonium isotopes in a vapor stream. The ionized plutonium isotopes (Pu 240, Pu 238 and Pu 241) are then separated from the plutonium isotope of interest (Pu 239). Chemical processes are required to (1) prepare the AVLIS plutonium feed for processing, remove americium-241, and cast plutonium metal into forms that meet AVLIS processing requirements; (2) recover and, if required, purify the AVLIS plutonium product; and (3) recover and process the AVLIS separated by-products. This presentation describes the production facility and some of the plutonium processes.

  4. Process for recovery of daughter isotopes from a source material

    DOE Patents [OSTI]

    Tranter, Troy J.; Todd, Terry A.; Lewis, Leroy C.; Henscheid, Joseph P.

    2005-10-04

    The invention includes a method of separating isotopes from a mixture containing at least two isotopes in a solution. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the precipitate. The precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. The invention also includes a system for producing an actinium-225/bismuth-213 product.

  5. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    SciTech Connect (OSTI)

    Sinskey, Anthony J.; Worden, Robert Mark; Brigham, Christopher; Lu, Jingnan; Quimby, John Westlake; Gai, Claudia; Speth, Daan; Elliott, Sean; Fei, John Qiang; Bernardi, Amanda; Li, Sophia; Grunwald, Stephan; Grousseau, Estelle; Maiti, Soumen; Liu, Chole

    2013-12-16

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide into complex cellular molecules using the energy from hydrogen. In this research project, engineered strains of R. eutropha redirected the excess carbon from PHB storage into the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can be used directly as substitutes for fossil-based fuels and are seen as alternative biofuels to ethanol and biodiesel. Importantly, these alcohols have approximately 98 % of the energy content of gasoline, 17 % higher than the current gasoline additive ethanol, without impacting corn market production for feed or food. Unlike ethanol, these branched-chain alcohols have low vapor pressure, hygroscopicity, and water solubility, which make them readily compatible with the existing pipelines, gasoline pumps, and engines in our transportation infrastructure. While the use of alternative energies from solar, wind, geothermal, and hydroelectric has spread for stationary power applications, these energy sources cannot be effectively or efficiently employed in current or future transportation systems. With the ongoing concerns of fossil fuel availability and price stability over the long term, alternative biofuels like branched-chain higher alcohols hold promise as a suitable transportation fuel in the future. We showed in our research that various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, would produce isobutanol and 3-methyl-1-butanol when initiated during nitrogen or phosphorus limitation. Early on, we isolated one mutant R. eutropha strain which produced over 180 mg/L branched-chain alcohols in flask culture while being more tolerant of isobutanol toxicity. After the targeted elimination of genes encoding several potential carbon sinks (ilvE, bkdAB, and aceE), the production titer of the improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation supplied the cells with sufficient nutrients while minimizing the toxicity caused by isobutanol. Under this cultivation, the R. eutropha mutant grew and produced more than 14 g/L branched-chain alcohols over the duration of 50 days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis. While this bioengineering work was being done at the Sinskey laboratory at MIT, the researchers at the Worden laboratory at Michigan State were working on the design and construction of the required specialty bioreactor for incompatible gasses (BIG) that would allow the safe feeding of microbes on Carbon Dioxide, Hydrogen, and Oxygen without explosive results. The early design and assembly work in year 1 incorporated a novel microbubble generator to maximize the bioavailability of gasses within the system comprised of small scale hollow fiber reactors. The early success of the microbubble generator eliminated the need to investigate potentially toxic surfactants within the system. For operational control, the system design incorporated a Opto22-based control network. The researchers also selected the specific hollow fiber material suitable for the bioreactor application. A variety of commercially available hollow fiber membranes were compared with regard to their pore sizes, cell affinity, and potential interference to cell viability assays. The selected membrane with its spongy layer was then tested for diffusivity of O2 and CO2. The instrumented system was then fully assembled for experimentally measuring the heterotrophic growth rate of immobilized R. eutropha cells. The requisite procedures for inoculation, measurement, and cleaning were established enabling the system performance to be validated under controlled laboratory conditions. In year 2, the researchers completed the Opto22 based cross-platform control network, and the system’s communications across the Sartorius fermentation system and Bruker gas chromatograph was established via open platform communications (OPC) protocol. Using the revised system, measurements were taken of the R.eutropha cell growth rate and substrate mass transfer rate in the hollow fiber membrane. Several IBT recovery strategies were explored and resin adsorption was determined to be optimal solution for lab scale operations. The adsorption capacity of the resin column was then measured and IBT desorption using methanol has been demonstrated. With the growing body of experimental data in hand, mathematical models were constructed to demonstrate and map the cellular kinetics, mass transfer of heterotrophic and autotrophic substrates in the hollow fiber, and the adsorption process in the resin column. A structured kinetic model was constructed to describe the competition between cell mass generation and IBT production. The reactor was then scaled up from single fiber to a membrane area of 180 cm2 and then further to 1 ft2. In Year 3 of the research, the IBT mass transfer across the membrane was characterized within the system with experiments to empirically measure the IBT diffusion coefficient in the BIG spongy layer. Using the refined mathematical models, the researchers are now able to explain the experimental observations and predict bioreactor performance under a wide range of experimental conditions. The Big system is able to demonstrate continuous controlled operations with the integrated IBT recovery system. Both heterotrophic and autotrophic production have been shown during continuous operation with heterotrophic and autotrophic stages. Performance of BIG system has been measured during continuous run with alternating heterotrophic growth on fructose and autotrophic product formation on H2, CO2, and O2. Volumetric productivities of IBT at 325 mg/(L day) and of 3M1B at 50 mg/(L day) were achieved, which were comparable to that achieved under heterotrophic conditions. Using the mathematical model, researchers are able to predict system performance for scaled-up BIG system. The apparent diffusion coefficient of IBT in the spongy layer of XM-50 hollow fiber membranes has been measured at various lumen liquid flow rates. The experiment is simulated in COMSOL to validate the results. The constructed COMSOL model is able to simulate BIG system performance in both batch and continuous mode. Mathematical simulations of the system performance have been run to identify the most crucial operational conditions, identifying the rate-limiting factors in autotrophic production of IBT, and quantitating the rate of IBT catabolism. Investigations of the productivity of the production system have suggested and the modeling of the system has revealed a particular sensitivity to the catabolism of the produced IBT by the engineered R. eutropha. Experiments have been designed and executed to quantify the IBT catabolism of R. eutropha, which open up possibilities for further system improvements through future, targeted bioengineering of the strain. Finally, the researchers at Michigan State performed an economic analysis of the system, based on the collective results, and their findings are presented in full within the report.

  6. Price Quotes and Isotope Ordering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ordering Price Quotes and Isotope Ordering Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Isotope...

  7. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  8. RENOTER Project

    Broader source: Energy.gov [DOE]

    Overview of French project on thermoelectric waste heat recovery for cars and trucks with focus on cheap, available, efficient, and sustainable TE materials, as well as efficient material integration and production process.

  9. Photochemical isotope separation

    DOE Patents [OSTI]

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  10. Photochemical isotope separation

    DOE Patents [OSTI]

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  11. Laser isotope separation

    DOE Patents [OSTI]

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  12. Laser isotope separation

    DOE Patents [OSTI]

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  13. Environmental assessment: special isotope separation process selection

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    This Environmental Assessment (EA) evaluates the differences in potential environmental impacts between two plutonium Special Isotope Separation (SIS) technologies: Atomic Vapor Laser Isotope Separation (AVLIS) and Molecular Laser Isotope Separation (MLIS). Both SIS technologies use PuO/sub 2/ as feed; AVLIS converts feed to plutonium metal and MLIS converts feed to PuF/sub 6/. The AVLIS process uses laser energy to selectively photoionize and electrostatically separate plutonium isotopes from an atomic vapor stream. The MLIS process uses laser energy to selectively disassociate specific isotopes of plutonium in the form of PuF/sub 6/ molecules to create PuF/sub 5/ for collection and further processing. Both processes produce plutonium metal as their product. An evaluation of differences in potential environmental impacts attributed to the construction of an SIS facility, based on either technology, included a comparison of construction materials, land areas required, and the size of the design and construction workforce. The differences in potential environmental impacts from operating an SIS facility were also compared. No large differences in potential environmental impacts would be expected from the use of process chemicals. An AVLIS or an MLIS facility would produce operating effluents that would meet all applicable radiation, chemical, and hazardous waste standards and would be constructed to protect workers, the public and the environment. This EA has not revealed any significant differences in the potential environmental impacts that could occur as a result of deploying either the AVLIS or the MLIS Special Isotope Separation technology.

  14. A New Bench-Top Approach to Isotopic Purification of 244Pu

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liezers, Martin; Farmer, Orville T.; Thomas, Linda MP; Hager, George J.; Eiden, Gregory C.

    2016-03-01

    A new approach to isotopic purification has been developed and applied to the production of a small quantity of 244Pu with an isotopic purity >99.996 %, as compared against the standard 244Pu available that displays an isotopic purity of 97.87 %. The presence of Pu isotopes 239Pu, 240Pu, 241Pu and 242Pu have been greatly reduced, allowing for higher spiking levels of the isotopically purified 244Pu tracer. Details of the isotopic purification process will be described along with the effect this improved Pu tracer could have on analytical Pu mass spectrometry measurements.

  15. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    SciTech Connect (OSTI)

    Nimz, G. J., LLNL

    1998-06-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water. Many solutes in natural waters are derived from the interaction between the water and the rock and/or soil within the system - these are termed `lithogenic` solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both within and outside of the catchment - i.e., in addition to being derived from catchment rock and soil, they are solutes that are also transported into the catchment. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing `cosmogenic` nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing `thermonuclear` nuclides), or radioactive and fission decay of naturally-occurring elements, principally {sup 238}U (producing `in-situ` lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading `cosmogenic nuclides`, and for simplicity we will often follow that usage here, although always indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute concentrations in catchment waters, and how the isotopic compositions of the solutes can be used in integrative ways to identify these processes, thereby revealing the physical history of the water within a catchment system. The concept of a `system` is important in catchment hydrology. A catchment is the smallest landscape unit that can both participate in all of the aspects of the hydrologic cycle and also be treated as a mostly closed system for mass balance considerations. It is the near closure of the system that permits well- constrained chemical mass balance calculations to be made. These calculations generally focus of lithogenic solutes, and therefore in our discussions of lithogenic nuclides in the paper, the concept of chemical mass balance in a nearly dosed system will play an important role. Examination of the isotopic compositions of solutes provides a better understanding of the variety of processes controlling mass balance. It is with this approach that we examined the variety of processes occurring within the catchment system, such as weathering and soil production, generation of stormflow and streamflow (hydrograph separation), movement of soil pore water, groundwater flow, and the overall processes involved with basinal water balance. In this paper, the term `nuclide` will be used when referring to a nuclear species that contains a particular number of protons and neutrons. The term is not specific to any element. The term `isotope` will be used to distinguish nuclear species of a given element (atoms with the same number of protons). That is to say, there are many nuclides in nature - for example, {sup 36}Cl, {sup 87}Sr, {sup 238}U; the element has four naturally-occurring isotopes - {sup 87}Sr, and {sup 88}Sr. This paper will first discuss the general principles that underlie the study of lithogenic and cosmogenic nuclides in hydrology, and provide references to some of the more important studies applying these principles and nuclides. We then turn in the second section to a discussion of their specific applications in catchment- scale systems. The final section of this paper discusses new directions in the application of lithogenic and cosmogenic nuclides to catchment hydrology, with some thoughts concerning possible applications that still remain unexplored.

  16. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1986-08-15

    The atomic vapor laser isotope separation (AVLIS) process for the enrichment of uranium is evaluated. (AIP)

  17. Method for enriching a middle isotope using vibration-vibration pumping

    DOE Patents [OSTI]

    Rich, Joseph W.; Homicz, Gregory F.; Bergman, Richard C.

    1989-01-01

    Method for producing isotopically enriched material by vibration-vibration excitation of gaseous molecules wherein a middle mass isotope of an isotopic mixture including lighter and heavier mass isotopes preferentially populates a higher vibrational mode and chemically reacts to provide a product in which it is enriched. The method can be used for vibration-vibration enrichment of .sup.17 O in a CO reactant mixture.

  18. Plasma isotope separation methods

    SciTech Connect (OSTI)

    Grossman, M.W. ); Shepp, T.A. )

    1991-12-01

    Isotope separation has many important industrial, medical, and research applications. Large-scale processes have typically utilized complex cascade systems; for example, the gas centrifuge. Alternatively, high single-stage enrichment processes (as in the case of the calutron) are very energy intensive. Plasma-based methods being developed for the past 15 to 20 years have attempted to overcome these two drawbacks. In this review, six major types of isotope separation methods which involve plasma phenomena are discussed. These methods are: plasma centrifuge, AVLIS (atomic vapor laser isotope separation), ion wave, ICR (ion-cyclotron resonance), calutron, and gas discharge. The emphasis of this paper is to describe the plasma phenomena in these major categories. An attempt was made to include enough references so that more detailed study or evaluation of a particular method could readily be pursued. A brief discussion of isotope separation using mass balance concepts is also carried out.

  19. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect (OSTI)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

  20. Use of Stable Isotopes in Forensic Analysis of Microorganisms

    SciTech Connect (OSTI)

    Kreuzer-Martin, Helen W.; Hegg, Eric L.

    2012-01-18

    The use of isotopic signatures for forensic analysis of biological materials is well-established, and the same general principles that apply to interpretation of stable isotope content of C, N, O, and H apply to the analysis of microorganisms. Heterotrophic microorganisms derive their isotopic content from their growth substrates, which are largely plant and animal products, and the water in their culture medium. Thus the isotope signatures of microbes are tied to their growth environment. The C, N, O, and H isotope ratios of spores have been demonstrated to constitute highly discriminating signatures for sample matching. They can rule out specific samples of media and/or water as possible production media, and can predict isotope ratio ranges of the culture media and water used to produce a given sample. These applications have been developed and tested through analyses of approximately 250 samples of Bacillus subtilis spores and over 500 samples of culture media, providing a strong statistical basis for data interpretation. A Bayesian statistical framework for integrating stable isotope data with other types of signatures derived from microorganisms has been able to characterize the culture medium used to produce spores of various Bacillus species, leveraging isotopic differences in different medium types and demonstrating the power of data integration for forensic investigations.

  1. Projections of the impact of expansion of domestic heavy oil production on the U.S. refining industry from 1990 to 2010. Topical report

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Strycker, A.R.; Guariguata, G.; Salmen, F.G.

    1994-12-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil (10{degrees} to 20{degrees} API gravity) production. This report provides a compendium of the United States refining industry and analyzes the industry by Petroleum Administration for Defense District (PADD) and by ten smaller refining areas. The refining capacity, oil source and oil quality are analyzed, and projections are made for the U.S. refining industry for the years 1990 to 2010. The study used publicly available data as background. A linear program model of the U.S. refining industry was constructed and validated using 1990 U.S. refinery performance. Projections of domestic oil production (decline) and import of crude oil (increases) were balanced to meet anticipated demand to establish a base case for years 1990 through 2010. The impact of additional domestic heavy oil production, (300 MB/D to 900 MB/D, originating in select areas of the U.S.) on the U.S. refining complex was evaluated. This heavy oil could reduce the import rate and the balance of payments by displacing some imported, principally Mid-east, medium crude. The construction cost for refining units to accommodate this additional domestic heavy oil production in both the low and high volume scenarios is about 7 billion dollars for bottoms conversion capacity (delayed coking) with about 50% of the cost attributed to compliance with the Clean Air Act Amendment of 1990.

  2. Separation of sulfur isotopes

    DOE Patents [OSTI]

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  3. Isotope separation by photodissociation of Van der Waal's molecules

    DOE Patents [OSTI]

    Lee, Yuan T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

  4. Nuclear Energy Research Initiative Project No. 02 103 Innovative Low Cost Approaches to Automating QA/QC of Fuel Particle Production Using On Line Nondestructive Methods for Higher Reliability Final Project Report

    SciTech Connect (OSTI)

    Ahmed, Salahuddin; Batishko, Charles R.; Flake, Matthew; Good, Morris S.; Mathews, Royce; Morra, Marino; Panetta, Paul D.; Pardini, Allan F.; Sandness, Gerald A.; Tucker, Brian J.; Weier, Dennis R.; Hockey, Ronald L.; Gray, Joseph N.; Saurwein, John J.; Bond, Leonard J.; Lowden, Richard A.; Miller, James H.

    2006-02-28

    This Nuclear Energy Research Initiative (NERI) project was tasked with exploring, adapting, developing and demonstrating innovative nondestructive test methods to automate nuclear coated particle fuel inspection so as to provide the United States (US) with necessary improved and economical Quality Assurance and Control (QA/QC) that is needed for the fuels for several reactor concepts being proposed for both near term deployment [DOE NE & NERAC, 2001] and Generation IV nuclear systems. Replacing present day QA/QC methods, done manually and in many cases destructively, with higher speed automated nondestructive methods will make fuel production for advanced reactors economically feasible. For successful deployment of next generation reactors that employ particle fuels, or fuels in the form of pebbles based on particles, extremely large numbers of fuel particles will require inspection at throughput rates that do not significantly impact the proposed manufacturing processes. The focus of the project is nondestructive examination (NDE) technologies that can be automated for production speeds and make either: (I) On Process Measurements or (II) In Line Measurements. The inspection technologies selected will enable particle quality qualification as a particle or group of particles passes a sensor. A multiple attribute dependent signature will be measured and used for qualification or process control decisions. A primary task for achieving this objective is to establish standard signatures for both good/acceptable particles and the most problematic types of defects using several nondestructive methods.

  5. Project Reports for Winnebago Tribe- 2014 Project

    Broader source: Energy.gov [DOE]

    Following through with the Winnebago Tribe's commitment to reduce energy usage and consumption, the Winnebago Tribe Solar Project will focus on renewable energy production and energy cost savings...

  6. Isotope separation apparatus

    DOE Patents [OSTI]

    Arnush, Donald (Rancho Palos Verdes, CA); MacKenzie, Kenneth R. (Pacific Palisades, CA); Wuerker, Ralph F. (Palos Verdes Estates, CA)

    1980-01-01

    Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.

  7. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOE Patents [OSTI]

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  8. High Flux Isotope Reactor (HFIR) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities » High Flux Isotope Reactor (HFIR) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Spallation Neutron Source (SNS) High Flux Isotope Reactor (HFIR) Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home Neutron Scattering Facilities High Flux Isotope Reactor (HFIR) Print Text Size: A A A FeedbackShare Page Quick

  9. Integration of Nontraditional Isotopic Systems Into Reaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry on Reservoir Sustainability Integration of Nontraditional Isotopic Systems Into ... Chemistry on Reservoir Sustainability Integration of Nontraditional Isotopic Systems Into ...

  10. DEEP WATER ISOTOPIC CURRENT ANALYZER

    DOE Patents [OSTI]

    Johnston, W.H.

    1964-04-21

    A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

  11. Commercial production and distribution of fresh fruits and vegetables: A scoping study on the importance of produce pathways to dose. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Marsh, T.L.; Anderson, D.M.; Farris, W.T.; Ikenberry, T.A.; Napier, B.A.; Wilfert, G.L.

    1992-09-01

    This letter report summarizes a scoping study that examined the potential importance of fresh fruit and vegetable pathways to dose. A simple production index was constructed with data collected from the Washington State Department of Agriculture (WSDA), the United States Bureau of the Census, and the United States Department of Agriculture (USDA). Hanford Environmental Dose Reconstruction (HEDR) Project staff from Battelle, Pacific Northwest Laboratories, in cooperation with members of the Technical Steering Panel (TSP), selected lettuce and spinach as the produce pathways most likely to impact dose. County agricultural reports published in 1956 provided historical descriptions of the predominant distribution patterns of fresh lettuce and spinach from production regions to local population centers. Pathway rankings and screening dose estimates were calculated for specific populations living in selected locations within the HEDR study area.

  12. California Hydrogen Infrastructure Project | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Infrastructure Project Jump to: navigation, search Name: California Hydrogen Infrastructure Project Place: California Sector: Hydro, Hydrogen Product: String...

  13. Isotope and Nuclear Chemistry Division annual report, FY 1983

    SciTech Connect (OSTI)

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  14. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1985-11-08

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

  15. POET-DSM Project LIBERTY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    alternative energy production and minimize traditional energy usage * Project LIBERTY is one of ... fuel ethanol distillation and molecular sieves * Scale of the project under ...

  16. Isotopic Generation and Confirmation of the PWR Application Model 

    SciTech Connect (OSTI)

    L.B. Wimmer

    2003-11-10

    The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from pressurized water reactors (PWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000). The isotopic database consists of the set of 14 actinides and 15 fission products presented in Section 3.5.2.1.1 of YMP 2000 for use in CSNF burnup credit. This set of 29 isotopes is referred to as the principal isotopes. The oxygen isotope from the UO{sub 2} fuel is also included in the database. The isotopic database covers enrichments of {sup 235}U ranging from 1.5 to 5.5 weight percent (wt%) and burnups ranging from approximately zero to 75 GWd per metric ton of uranium (mtU). The choice of fuel assembly and operating history values used in generating the isotopic database are provided is Section 5. Tables of isotopic concentrations for the 29 principal isotopes (plus oxygen) as a function of enrichment and burnup are provided in Section 6.1. Results of the confirmation of the conservatism with respect to criticality in the isotopic concentration values are provided in Section 6.2.

  17. Huaiji Hydroelectric Power Project | Open Energy Information

    Open Energy Info (EERE)

    Power Project Jump to: navigation, search Name: Huaiji Hydroelectric Power Project Place: Guangzhou, Guangdong Province, China Zip: 510620 Product: The Huaiji project involves nine...

  18. Strontium-isotope stratigraphy of Enewetak Atoll

    SciTech Connect (OSTI)

    Ludwig, K.R.; Halley, R.B.; Simmons, K.R.; Peterman, Z.E.

    1988-02-01

    /sup 87/Sr//sup 86/Sr ratios determined for samples from a 350 m core of Neogene lagoonal, shallow-water limestones from Enewetak Atoll display a remarkably informative trend. Like the recently published data for Deep Sea Drilling Project (DSDP) carbonates, /sup 87/Sr//sup 86/Sr at Enewetak increases monotonically but not smoothly from the early Miocene to the Pleistocene. The data show intervals of little or no change in /sup 87/Sr//sup 86/Sr, punctuated by sharp transitions to lower values toward greater core depths. The sharp transitions correlate with observed solution disconformities caused by periods of subaerial erosion, whereas the intervals of little or no change in /sup 87/Sr//sup 86/Sr correspond to intervals of rapid accumulation of shallow-water carbonate sediments. When converted to numerical ages using the published DSDP 590B trend, the best-resolved time breaks are at 282 m (12.3 to 18.2 Ma missing) and 121.6 m (3.0 to 5.3 Ma missing) below the lagoon floor. At Enewetak, Sr isotopes offer a stratigraphic resolution for these shallow-marine Neogene carbonates comparable to that of nannofossil zonation in deep-sea carbonates (0.3-3 m.y.). In addition, the correlation of times of Sr-isotope breaks at Enewetak with times of rapid Sr-isotope change in the DSDP 590B samples confirms the importance of sea-level changes in the evolution of global-marine Sr isotopes and shows that the Sr-isotope response to sea-level falls is rapid.

  19. Flowsheets and source terms for radioactive waste projections

    SciTech Connect (OSTI)

    Forsberg, C.W.

    1985-03-01

    Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.

  20. Global change and the value of biodiversity for new product research. Final project report, September 1, 1995--August 31, 1996

    SciTech Connect (OSTI)

    Simpson, R.D.; Sedjo, R.A.

    1997-06-01

    A number of biologists believe that human activities are causing species extinctions at alarming rates. The only precedents, they claim, are to be found in the mass extinctions associated with a handful of apocalyptic volcanic eruptions and/or meteorite strikes distributed over geological time scales. Slowing the rates of greenhouse gas emissions, natural habitat destruction, and other factors that are believed to be inducing modem extinctions could be very expensive, however. It is natural to ask, then, what is the value of preserving biodiversity. One (although admittedly, among many) argument frequently made is that biodiversity is a source of new industrial, agricultural, and, particularly, pharmaceutical products. Natural organisms, it is argued, are great repositories of genetic information. Wild species, in their struggle to capture prey, escape predators, resist infection, and enhance reproductive success have evolved chemical mechanisms more elaborate and inventive than those synthetic chemists can now create. If these chemical mechanisms could be adapted and refined for human use, they could be of great value. There has, therefore, been considerable interest among natural scientists and conservation advocates in {open_quotes}biodiversity prospecting{close_quotes} the search for new commercial products among naturally occurring organisms-as both a mechanism and an argument for preserving biodiversity. In recent years economists and others have attempted to estimate the value of biodiversity for use in new product development. These studies vary considerably in their data, methods, and estimates. The Simpson, Sedjo and Reid and Polasky and Solow papers differ from previous work in that they focus on what is arguably the economically relevant issue: what is the value of biodiversity on the margin.

  1. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W.

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  2. Manus Water Isotope Investigation

    Office of Scientific and Technical Information (OSTI)

    ENERGY Office of Science DOE/SC-ARM-15-079 Manus Water Isotope Investigation Field Campaign Report JL Conroy D Noone KM Cobb March 2016 CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

  3. ISOTOPE SEPARATING APPARATUS CONTROL

    DOE Patents [OSTI]

    Barnes, S.W.

    1959-08-25

    An improved isotope separating apparatus of the electromagnetic type, commonly referred to as a calutron, is described. Improvements in detecting and maintaining optimum position and focus of the ion beam are given. The calutron collector is provided with an additional electrode insulated from and positioned between the collecting pockets. The ion beams are properly positioned and focused until the deionizing current which flows from ground to this additional electrode ts a minimum.

  4. Laser-assisted isotope separation of tritium

    DOE Patents [OSTI]

    Herman, Irving P. (Castro Valley, CA); Marling, Jack B. (Livermore, CA)

    1983-01-01

    Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.

  5. NREL: Biomass Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

  6. Mascoma: Frontier Biorefinery Project

    Broader source: Energy.gov [DOE]

    This project involves the construction and operation of a biorefinery that produces ethanol and other co-products from cellulosic materials through advanced consolidated bioprocessing.

  7. Laser isotope separation of erbium and other isotopes

    DOE Patents [OSTI]

    Haynam, Christopher A.; Worden, Earl F.

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  8. Laser isotope separation of erbium and other isotopes

    DOE Patents [OSTI]

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  9. Water-Gas-Shift Membrane Reactor for High-Pressure Hydrogen Production. A comprehensive project report (FY2010 - FY2012)

    SciTech Connect (OSTI)

    Klaehn, John; Peterson, Eric; Orme, Christopher; Bhandari, Dhaval; Miller, Scott; Ku, Anthony; Polishchuk, Kimberly; Narang, Kristi; Singh, Surinder; Wei, Wei; Shisler, Roger; Wickersham, Paul; McEvoy, Kevin; Alberts, William; Howson, Paul; Barton, Thomas; Sethi, Vijay

    2013-01-01

    Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H2 gas separations at operating temperatures (~200C). VTEC PI 80-051 was thoroughly analyzed for its H2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H2/CO2 separation (? = 7-9) and H2/CO separation (? = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H2 gas separations membrane for high-temperature syngas streams.

  10. Evaluation of Water Quality Conditions Near Proposed Fish Production Sites Associated with the Yakima Fisheries Project, 1991-1993 Final Report.

    SciTech Connect (OSTI)

    Dauble, Dennis D.

    1994-05-01

    In 1991, the Pacific Northwest Laboratory (PNL) began studying water quality at several sites in the Yakima River Basin for the Bonneville Power Administration. These sites were being proposed as locations for fish culture facilities as part of the Yakima Fisheries Project (YFP). Surface water quality parameters near the proposed fish culture facilities are currently suitable for fish production. Water quality conditions in the mainstream Yakima River and its tributaries are generally excellent in the upper part of the watershed (i.e., near Cle Elum), but they are only fair to poor for the river downstream of Union Gap (river mile 107). Water quality of the Naches River near Oak Flats is also suitable for fish production. Groundwater supplies near the proposed fish production facilities typically have elevated concentrations of metals and dissolved gases. These conditions can be mitigated using best engineering practices such as precipitation and degasification. Additionally, mixing with surface water may improve these conditions. Depending on the location and depth of the well, groundwater temperatures may be warmer than optimum for acclimating and holding juvenile and adult fish. Water quality parameters measured in the Yakima River and tributaries sometimes exceed the range of values described as acceptable for culture of salmonids and for the protection of other aquatic life. However, constituent concentrations are within ranges that exist in many northwest fish hatcheries. Additionally, site-specific tests conducted by PNL (i.e., live box exposures and egg incubation studies) indicate that fish can be successfully reared in surface and well water near the proposed facility sites. Thus, there appear to be no constraints to artificial production for the YFP.

  11. Surface Environmental Surveillance Project: Locations Manual Volume 1 – Air and Water Volume 2 – Farm Products, Soil & Vegetation, and Wildlife

    SciTech Connect (OSTI)

    Fritz, Brad G.; Patton, Gregory W.; Stegen, Amanda; Poston, Ted M.

    2009-01-01

    This report describes all environmental monitoring locations associated with the Surface Environmental Surveillance Project. Environmental surveillance of the Hanford site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 450.1, Environmental Protection Program, and DOE Order 5400.5, Radiation Protection of the Public and the Environment. The environmental surveillance sampling design is described in the Hanford Site Environmental Monitoring Plan, United States Department of Energy, Richland Operation Office (DOE/RL-91-50). This document contains the locations of sites used to collect samples for the Surface Environmental Surveillance Project (SESP). Each section includes directions, maps, and pictures of the locations. A general knowledge of roads and highways on and around the Hanford Site is necessary to successfully use this manual. Supplemental information (Maps, Gazetteer, etc.) may be necessary if user is unfamiliar with local routes. The SESP is a multimedia environmental surveillance effort to measure the concentrations of radionuclides and chemicals in environmental media to demonstrate compliance with applicable environmental quality standards and public exposure limits, and assessing environmental impacts. Project personnel annually collect selected samples of ambient air, surface water, agricultural products, fish, wildlife, and sediments. Soil and vegetation samples are collected approximately every 5 years. Analytical capabilities include the measurement of radionuclides at very low environmental concentrations and, in selected media, nonradiological chemicals including metals, anions, volatile organic compounds, and total organic carbon.

  12. Uranium accountancy in Atomic Vapor Laser Isotope Separation

    SciTech Connect (OSTI)

    Carver, R.D.

    1986-01-01

    The AVLIS program pioneers the large scale industrial application of lasers to produce low cost enriched uranium fuel for light water reactors. In the process developed at Lawrence Livermore National Laboratory, normal uranium is vaporized by an electron beam, and a precisely tuned laser beam selectively photo-ionizes the uranium-235 isotopes. These ions are moved in an electromagnetic field to be condensed on the product collector. All other uranium isotopes remain uncharged and pass through the collector section to condense as tails. Tracking the three types of uranium through the process presents special problems in accountancy. After demonstration runs, the uranium on the collector was analyzed for isotopic content by Battelle Pacific Northwest Laboratory. Their results were checked at LLNL by analysis of parallel samples. The differences in isotopic composition as reported by the two laboratories were not significant.

  13. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1988-02-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high-abundance, naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  14. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for nondestructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Material Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  15. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1984-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  16. STRUCTURAL DESIGN CRITERIA FOR TARGET/BLANKET SYSTEM COMPONENT MATERIALS FOR THE ACCELERATOR PRODUCTION OF TRITIUM PROJECT

    SciTech Connect (OSTI)

    W. JOHNSON; R. RYDER; P. RITTENHOUSE

    2001-01-01

    The design of target/blanket system components for the Accelerator Production of Tritium (APT) plant is dependent on the development of materials properties data specified by the designer. These data are needed to verify that component designs are adequate. The adequacy of the data will be related to safety, performance, and economic considerations, and to other requirements that may be deemed necessary by customers and regulatory bodies. The data required may already be in existence, as in the open technical literature, or may need to be generated, as is often the case for the design of new systems operating under relatively unique conditions. The designers' starting point for design data needs is generally some form of design criteria used in conjunction with a specified set of loading conditions and associated performance requirements. Most criteria are aimed at verifying the structural adequacy of the component, and often take the form of national or international standards such as the ASME Boiler and Pressure Vessel Code (ASME B and PV Code) or the French Nuclear Structural Requirements (RCC-MR). Whether or not there are specific design data needs associated with the use of these design criteria will largely depend on the uniqueness of the conditions of operation of the component. A component designed in accordance with the ASME B and PV Code, where no unusual environmental conditions exist, will utilize well-documented, statistically-evaluated developed in conjunction with the Code, and will not be likely to have any design data needs. On the other hand, a component to be designed to operate under unique APT conditions, is likely to have significant design data needs. Such a component is also likely to require special design criteria for verification of its structural adequacy, specifically accounting for changes in materials properties which may occur during exposure in the service environment. In such a situation it is common for the design criteria and design data needs to evolve as the design progresses, operating conditions are refined, and materials characteristics in the unique environment are established. This paper develops the relationship between the designers' data needs and the structural design criteria recently adopted for the Target Blanket System of the APT. The latter, the newly-developed APT Supplemental Structural Design Requirements (APT SSDR), was patterned after the design criteria developed for the International Thermonuclear Experimental (Fusion) Reactor (ITER). A summary description of the design rules based on the APT SSDR is presented, and the impact of these rules of changes in materials properties resulting from exposure in the APT proton/neutron irradiation environment are discussed.

  17. Isotopically labeled compositions and method

    DOE Patents [OSTI]

    Schmidt, Jurgen G.; Kimball, David B.; Alvarez, Marc A.; Williams, Robert F.; Martinez, Rudolfo A.

    2011-07-12

    Compounds having stable isotopes .sup.13C and/or .sup.2H were synthesized from precursor compositions having solid phase supports or affinity tags.

  18. Advanced isotope separation

    SciTech Connect (OSTI)

    Not Available

    1982-05-04

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems.

  19. ISOTOPE FRACTIONATION PROCESS

    DOE Patents [OSTI]

    Clewett, G.H.; Lee, DeW.A.

    1958-05-20

    A new method is described for isotopic enrichment of uranium. It has been found that when an aqueous acidic solution of ionic tetravalent uraniunn is contacted with chelate complexed tetravalent uranium, the U/sup 238/ preferentially concentrates in the complexed phase while U/sup 235/ concentrates in the ionic phase. The effect is enhanced when the chelate compound is water insoluble and is dissolved in a water-immiscible organic solvent. Cupferron is one of a number of sultable complexing agents, and chloroform is a suitable organic solvent.

  20. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  1. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  2. FRIB reviewed favorably by DOE Office of Project Assessment (Michigan State

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, Facility for Rare Isotope Beams) | Jefferson Lab www.frib.msu.edu/content/frib-reviewed-favorably-doe-office-project-asses...

  3. System for recovery of daughter isotopes from a source material

    DOE Patents [OSTI]

    Tranter, Troy J. [Idaho Falls, ID; Todd, Terry A. [Aberdeen, ID; Lewis, Leroy C. [Idaho Falls, ID; Henscheid, Joseph P. [Idaho Falls, ID

    2009-08-04

    A method of separating isotopes from a mixture containing at least two isotopes in a solution is disclosed. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material containing thorium-229 and thorium-232, and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the thorium iodate precipitate. The thorium iodate precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid, which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. A system for producing an actinium-225/bismuth-213 product is also disclosed.

  4. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Quarterly technical progress report, April 1, 1996--June 30, 1996, 11th Quarter of the project

    SciTech Connect (OSTI)

    Allison, E.; Morgan, C.D.

    1996-07-30

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project.

  5. Hydrothermal Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Projects Hydrothermal Projects Hydrothermal Projects Geothermal electricity production has grown steadily, tapping a reliable, nearly inexhaustible reserve of hydrothermal systems where fluid, heat, and permeability intersect naturally in the subsurface. The United States Geological Survey estimates that 30 GW of hydrothermal resources lie beneath the surface--ten times the current installed capacity. Hydrothermal Projects Projects Database Program Links What is Play Fairway

  6. The National Conversion Pilot Project

    SciTech Connect (OSTI)

    Roberts, A.V.

    1995-12-31

    The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process.

  7. High Specific Activity Sn-117m by Post Irradiation Isotope Separation

    SciTech Connect (OSTI)

    DAuria, John

    2015-04-16

    ElectroMagnetic Isotope Separation (EMIS) is used in the production of enriched stable isotopes. We demonstrated the feasibility of using EMIS to produce medium Specific Activity 117mSm using high purity 116Sn target material irradiated in a high flux reactor.

  8. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing.

  9. Method of separating boron isotopes

    DOE Patents [OSTI]

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  10. Method of separating boron isotopes

    DOE Patents [OSTI]

    Jensen, R.J.; Thorne, J.M.; Cluff, C.L.

    1981-01-23

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  11. Advanced uranium enrichment technologies. Hearing before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Sixth Congress, first session, September 22, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This hearing was to learn about projected requirements for enriched uranium. The gas centrifuge work at Oak Ridge, Tennessee, and Portsmouth, Ohio, needed assessing. Laser isotope separation technique needed to be reviewed. Three technologies currently being emphasized in the Department of Energy's Advanced Isotope Separation (AIS) program were discussed; these included the Molecular Laser Isotope Separation (MLIS), Livermore's process called Atomic Vapor Laser Isotope Separation (AVLIS), and Plasma Separation Process (PSP). The status of each process was given. The present DOE AIS program calls for a process selection at the end of FY 1981, development module operation starting in the mid-1980's, pilot plant operations through the late 1980's and early 1990's, and a first production plant in the mid-1990's. (DP)

  12. Heavy Isotopes Lead Materials Management Organization (LMMO)...

    Office of Scientific and Technical Information (OSTI)

    Heavy Isotopes Lead Materials Management Organization (LMMO) Update Citation Details In-Document Search Title: Heavy Isotopes Lead Materials Management Organization (LMMO) Update ...

  13. Isotope separation by laser means

    DOE Patents [OSTI]

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1982-06-15

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  14. Container for hydrogen isotopes

    DOE Patents [OSTI]

    Solomon, David E.

    1977-01-01

    A container for the storage, shipping and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same which has compactness, which is safe against fracture or accident, and which is reusable. The container consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example, of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and will be retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates.

  15. The use of carbon stable isotope ratios in drugs characterization

    SciTech Connect (OSTI)

    Magdas, D. A. Cristea, G. Bot, A. Mirel, V.

    2013-11-13

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ{sup 13}C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures.

  16. Isotopically Enriched Films and Nanostructures by Ultrafast Pulsed Laser Deposition

    SciTech Connect (OSTI)

    Peter Pronko

    2004-12-13

    This project involved a systematic study to apply newly discovered isotopic enrichment effects in laser ablation plumes to the fabrication of isotopically engineered thin films, superlattices, and nanostructures. The approach to this program involved using ultrafast lasers as a method for generating ablated plasmas that have preferentially structured isotopic content in the body of the ablation plasma plumes. In examining these results we have attempted to interpret the observations in terms of a plasma centrifuge process that is driven by the internal electro-magnetic fields of the plasma itself. The research plan involved studying the following phenomena in regard to the ablation plume and the isotopic mass distribution within it: (1) Test basic equations of steady state centrifugal motion in the ablation plasma. (2) Investigate angular distribution of ions in the ablation plasmas. (3) Examine interactions of plasma ions with self-generated magnetic fields. (3) Investigate ion to neutral ratios in the ablation plasmas. (5) Test concepts of plasma pumping. (6) Fabricate isotopically enriched nanostructures.

  17. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  18. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1983-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  19. Stable isotopic investigations of in-situ bioremediation of chlorinated organic solvents. 1998 annual progress report

    SciTech Connect (OSTI)

    Sturchio, N.C.

    1998-06-01

    'Contamination of soils and groundwaters with chlorinated aliphatic hydrocarbons (CAHs) is one of the most serious environmental problems in the DOE system and in the nation at large. These compounds are designated as priority pollutants by the US Environmental Protection Agency (EPA) and are known or suspected to be carcinogenic or mutagenic in humans. These compounds are readily transported by groundwater and are not reduced to acceptable concentrations for human consumption by most municipal water supply treatments; thus the compounds represent a significant hazard to a large portion of the human population. In situ bioremediation is an emerging technology that shows great promise for mitigation of CAH contamination at many sites. One of the most severe limitations of in-situ bioremediation is the difficulty of proving when it is working at a given site. The concentrations of CAHs and their degradation products in plumes may be difficult to relate to the efficiency of the remediation process because of dilution effects, but this problem is mitigated to a large extent by measuring isotope ratios. If there is a significant isotopic fractionation between CAHs and derivative chlorine-bearing products, then the fraction of CAH that is dechlorinated can be inferred from the {sup 37}Cl/{sup 35}Cl and {sup 13}C/{sup 12}C isotope ratios of the residual CAH. It is important to point out that there is currently no published information available on the magnitude of chlorine and carbon isotopic fractionation associated with biological degradation of CAHs. The authors plan to help eliminate this important gap in the knowledge with the work being performed here. This work is relevant to EMSP goals because it will provide a new and cost-effective means of evaluating and monitoring the effectiveness of in-situ bioremediation. It will employ newly developed techniques to characterize isotopic fractionation (of chlorine and carbon) associated with biotic and abiotic degradation of CAHs in laboratory microcosms. These techniques and the data acquired by using them in laboratory studies will form the fundamental basis for quantitative assessment of the mechanisms, rates, and efficiencies of various in-situ bioremediation schemes for CAHs. This report summarizes work as of 21 months into a 36-month project. First, the author has developed methods for precise measurement of stable carbon and chlorine isotope ratios of micromolar amounts of CAHs. He has also developed methods for quantitative extraction of CAHs from water and air. He has applied these methods in laboratory experiments, to investigate isotopic fractionation caused by microbial degradation and by abiotic processes such as evaporation and chemical reduction. He has also applied these methods to field investigations of contaminated groundwater aquifers at the Paducah Gaseous Diffusion Plant, Kentucky and at several manufacturing plants in the Chicago and Kansas City metropolitan areas. Results of much of this work have already been incorporated into four manuscripts that have been published, accepted for publication, or are in review.'

  20. Method for laser induced isotope enrichment

    DOE Patents [OSTI]

    Pronko, Peter P.; Vanrompay, Paul A.; Zhang, Zhiyu

    2004-09-07

    Methods for separating isotopes or chemical species of an element and causing enrichment of a desired isotope or chemical species of an element utilizing laser ablation plasmas to modify or fabricate a material containing such isotopes or chemical species are provided. This invention may be used for a wide variety of materials which contain elements having different isotopes or chemical species.

  1. Apparatus and process for separating hydrogen isotopes

    DOE Patents [OSTI]

    Heung, Leung K; Sessions, Henry T; Xiao, Xin

    2013-06-25

    The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.

  2. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOE Patents [OSTI]

    Harney, Robert C.; Bloom, Stewart D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  3. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1985-02-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for non-destructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, /sup 40/Ca and /sup 56/Fe. All request for the loan of samples should be submitted with a summary of the purpose of the loan to: Isotope Distribution Office, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831. Requests from non-DOE contractors and from foreign institutions require DOE approval.

  4. Integrated Approach to Use Natural Chemical and Isotopic Tracers to Estimate Fracture Spacing and Surface Area in EGS Systems

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This objective of this project is to develop an innovative approach to estimate fracture surface area and spacing through interpretation of signals of natural chemical and isotopic tracers.

  5. Novel hybrid isotope separation scheme and apparatus

    DOE Patents [OSTI]

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means. 3 figures.

  6. Novel hybrid isotope separation scheme and apparatus

    DOE Patents [OSTI]

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means.

  7. Integrated safeguards and security for the INEL Special Isotope Separation Plant

    SciTech Connect (OSTI)

    Warner, G.F.; Zack, N.R.

    1990-06-12

    This paper describes the approach that was taken in developing safeguards and security design criteria to be used for the Special Isotope Separation (SIS) Production Plant. The US Department of Energy has postponed the construction of the SIS Production Plant that was to be built at the Idaho National Engineering Laboratory (INEL) site located near Idaho Falls, Idaho. The SIS Plant planned to isotopically enrich plutonium utilizing the Atomic Vapor Laser Isotope Separation (AVLIS) process developed at the Lawrence Livermore National Laboratory. Westinghouse Idaho Nuclear Co., Inc. as a prime contractor to the DOE Idaho Operations Office, was to operate the Plant.

  8. Isotope separation apparatus and method

    DOE Patents [OSTI]

    Feldman, Barry J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  9. Sandia National Laboratories Medical Isotope Reactor concept.

    SciTech Connect (OSTI)

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-04-01

    This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

  10. Development of Halide and Oxy-Halides for Isotopic Separations

    SciTech Connect (OSTI)

    Leigh R. Martin; Aaron T. Johnson; Jana Pfeiffer; Martha R. Finck

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  11. Isotopic prediction of eruption volume at continental volcanoes

    SciTech Connect (OSTI)

    Perry, F.V.; Valentine, G.A.; Crowe, B.M.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this project was to determine whether isotopic techniques can be used to assess the eruption potential and eruption volume of continental stratovolcanoes. Large-volume eruptions from stratovolcanoes pose significant hazards to population and infrastructure in many parts of the world. We are testing whether this technique will allow a short- to medium-term (decades to millennia) probabilistic hazard assessment of large-volume eruptions. If successful, the technique will be useful to countries or regions that must consider medium to long-term volcanic (e.g., nuclear waste facilities). We have begun sample acquisition and isotopic measurements at two stratovolcanoes, Pico de Orizaba in eastern Mexico and Daisen in western Japan.

  12. Project No 974 | Open Energy Information

    Open Energy Info (EERE)

    Project No 974 Place: Oxford, United Kingdom Zip: OX2 7SG Product: Biological fuel cell technology employing enzymatic catalysts. Project is at present without company name....

  13. Astha Projects India Ltd | Open Energy Information

    Open Energy Info (EERE)

    Astha Projects India Ltd Jump to: navigation, search Name: Astha Projects (India) Ltd. Place: Hyderabad, Andhra Pradesh, India Zip: 500034 Sector: Hydro Product: Hyderabad-based...

  14. Ascent Hydro Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ascent Hydro Projects Ltd Jump to: navigation, search Name: Ascent Hydro Projects Ltd. Place: Pune, Maharashtra, India Zip: 411007 Sector: Hydro Product: Pune-based small hydro...

  15. Nobility Solar Projects | Open Energy Information

    Open Energy Info (EERE)

    Solar Projects Jump to: navigation, search Name: Nobility Solar Projects Place: Brno, Czech Republic Zip: 602 00 Sector: Solar Product: A solar equipment distributer and...

  16. Turboatom TPS Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    Turboatom TPS Projects Ltd Jump to: navigation, search Name: Turboatom TPS Projects Ltd Place: New Delhi, India Zip: 110048 Sector: Biomass Product: Engineering company; setting up...

  17. Manihamsa Power Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    Godavari, Andhra Pradesh, India Sector: Hydro Product: East Godavari District-based small hydro project developer. References: Manihamsa Power Projects Ltd.1 This article is a...

  18. SKJ Power Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    Andhra Pradesh, India Zip: 500 009 Sector: Hydro Product: Secunderabad-based small hydro project developer. References: SKJ Power Projects Ltd.1 This article is a stub....

  19. Integrated Development Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    Development Projects Ltd Jump to: navigation, search Name: Integrated Development Projects Ltd Place: Devon, United Kingdom Zip: EX18 7BL Sector: Biomass Product: The company's...

  20. Cambridge Project Development | Open Energy Information

    Open Energy Info (EERE)

    Project Development Jump to: navigation, search Name: Cambridge Project Development Place: Miami, Florida Product: Florida-based firm that builds wate management and waste to...

  1. Renewable Energy Action Project | Open Energy Information

    Open Energy Info (EERE)

    Action Project Jump to: navigation, search Name: Renewable Energy Action Project Place: San Francisco, California Zip: 94107 Product: REAP is a San Francisco-based non-profit...

  2. Pecan Street Project Inc | Open Energy Information

    Open Energy Info (EERE)

    Project Inc Jump to: navigation, search Name: Pecan Street Project Inc Place: Austin, Texas Zip: 78759 Product: Austin-based smart grid, energy system developer. The Pecan Street...

  3. Coyote Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Resource Area Geothermal Region Geothermal Project Profile Developer Terra-Gen Project Type Hydrothermal GEA Development Phase Phase IV - Resource Production and...

  4. Simple, rapid method for the preparation of isotopically labeled formaldehyde

    DOE Patents [OSTI]

    Hooker, Jacob Matthew; Schonberger, Matthias; Schieferstein, Hanno; Fowler, Joanna S.

    2011-10-04

    Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

  5. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    SciTech Connect (OSTI)

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  6. Master EM Project Definition Rating Index - Traditional (Conventional...

    Office of Environmental Management (EM)

    ... List of requirements identifying raw materials to be unloaded and stored; products to ... Project TeamProject Organization The project organization is in place and functional. ...

  7. Super Wind Project Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Project Pvt Ltd Jump to: navigation, search Name: Super Wind Project Pvt. Ltd. Place: Pune, Maharashtra, India Zip: 411001 Sector: Wind energy Product: Pune-based wind project...

  8. Midwest Renewable Energy Projects LLC | Open Energy Information

    Open Energy Info (EERE)

    Projects LLC Jump to: navigation, search Name: Midwest Renewable Energy Projects LLC Place: Florida Zip: FL 33408 Sector: Renewable Energy, Wind energy Product: MRE Projects LLC is...

  9. Secretary Moniz Announces New Biofuels Projects to Drive Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The projects will help boost the productivity of sustainable algae, while cutting capital and operating costs of commercial-scale production. The projects include: * Hawaii ...

  10. Advanced Mixed Waste Treatment Project Achieves Impressive Safety...

    Office of Environmental Management (EM)

    Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks June ...

  11. Atomic line emission analyzer for hydrogen isotopes (Patent)...

    Office of Scientific and Technical Information (OSTI)

    Atomic line emission analyzer for hydrogen isotopes Title: Atomic line emission analyzer for hydrogen isotopes Apparatus for isotopic analysis of hydrogen comprises a low pressure ...

  12. Laser-isotope-separation technology. [Review; economics

    SciTech Connect (OSTI)

    Jensen, R.J.; Blair, L.S.

    1981-01-01

    The Molecular Laser Isotope Separation (MLIS) process currently under development is discussed as an operative example of the use of lasers for material processing. The MLIS process, which uses infrared and ultraviolet lasers to process uranium hexafluoride (UF/sub 6/) resulting in enriched uranium fuel to be used in electrical-power-producing nuclear reactor, is reviewed. The economics of the MLIS enrichment process is compared with conventional enrichment technique, and the projected availability of MLIS enrichment capability is related to estimated demands for U.S. enrichment service. The lasers required in the Los Alamos MLIS program are discussed in detail, and their performance and operational characteristics are summarized. Finally, the timely development of low-cost, highly efficient ultraviolet and infrared lasers is shownd to be the critical element controlling the ultimate deployment of MLIS uranium enrichment. 8 figures, 7 tables.

  13. Principal physical problems in laser separation of weighable amounts of a rare ytterbium isotope

    SciTech Connect (OSTI)

    Yakovlenko, Sergei I

    1998-11-30

    A review is provided of the work on laser separation of Yb isotopes, carried out at the Institute of General Physics of the Russian Academy of Sciences and at the 'Lad' Scientific - Production Enterprise during the last 4 - 5 years. The processes of Yb isotope separation by the AVLIS (atomic vapour laser isotope separation) method were investigated both theoretically (by computer simulation) and experimentally. The main topics considered in the review are the ionisation selectivity, the formation of laser beams and of vapour flow in the cavity, and the extraction of ions from a plasma. A facility for producing highly enriched {sup 168}Yb on an industrial scale is described. The rate of production of the enriched ytterbium is now 5 - 10 mg h{sup -1} (over 1 g per month). Commercially viable production of the enriched {sup 168}Yb isotope by the AVLIS method was achieved for the first time anywhere in the world. (review)

  14. Winnebago Tribe- 2014 Project

    Broader source: Energy.gov [DOE]

    Following through with the Winnebago Tribe's commitment to reduce energy usage and consumption, the Winnebago Tribe Solar Project will focus on renewable energy production and energy cost savings consistent with protecting our natural environment.

  15. Application of the Isotope Ratio Method to a Boiling Water Reactor

    SciTech Connect (OSTI)

    Frank, Douglas P.; Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Meriwether, George H.; Mitchell, Mark R.; Reid, Bruce D.

    2010-08-11

    The isotope ratio method is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods. All reactor materials contain trace elemental impurities at parts per million levels, and the isotopes of these elements are transmuted by neutron irradiation in a predictable manner. While measuring the change in a particular isotopes concentration is possible, it is difficult to correlate to energy production because the initial concentration of that element may not be accurately known. However, if the ratio of two isotopes of the same element can be measured, the energy production can then be determined without knowing the absolute concentration of that impurity since the initial natural ratio is known. This is the fundamental principle underlying the isotope ratio method. Extremely sensitive mass-spectrometric methods are currently available that allow accurate measurements of the impurity isotope ratios in samples. Additionally, indicator elements with stable activation products have been identified so that their post-irradiation isotope ratios remain constant. This method has been successfully demonstrated on graphite-moderated reactors. Graphite reactors are particularly well-suited to such analyses since the graphite moderator is resident in the fueled region of the core for the entire period of operation. Applying this method to other reactor types is more difficult since the resident portions of the reactor available for sampling are either outside the fueled region of the core or structural components of individual fuel assemblies. The goal of this research is to show that the isotope ratio method can produce meaningful results for light water-moderated power reactors. In this work, we use the isotope ratio method to estimate the energy production in a boiling water reactor fuel bundle based on measurements taken from the corresponding fuel assembly channel. Our preliminary results are in good agreement with the actual operating history of the reactor during the cycle that the fuel bundle was resident in the core.

  16. Isotope separation apparatus and method

    DOE Patents [OSTI]

    Cotter, Theodore P.

    1982-12-28

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  17. Coal. [Great Plains Project

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The status of various research projects related to coal is considered: gasification (approximately 30 processes) and in-situ gasification. Methanol production, retrofitting internal combustion engines to stratified charge engines, methanation (Conoco), direct reduction of iron ores, water resources, etc. Approximately 200 specific projects related to coal are considered with respect to present status. (LTN)

  18. Bradys EGS Project

    Broader source: Energy.gov [DOE]

    Geothermal Technologies Program 2010 Peer Review Bradys Engineered Geothermal Systems Project for Engineered Geothermal Systems Demonstration Projects Track and Innovative Exploration Technologies. Objective to stimulate permeability in tight well 15-12 and improve connection to rest of the field, improve overall productivity or injectivity.

  19. Beowawe Bottoming Binary Project Geothermal Project | Open Energy...

    Open Energy Info (EERE)

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  20. Hydrogen isotope separation

    DOE Patents [OSTI]

    Bartlit, John R.; Denton, William H.; Sherman, Robert H.

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  1. Hydrogen isotope separation

    DOE Patents [OSTI]

    Bartlit, J.R.; Denton, W.H.; Sherman, R.H.

    Disclosed is a system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D/sub 2/, DT, T/sub 2/, and a tritium-free stream of HD for waste disposal.

  2. Bioenergy & Biofuels Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects BIOENERGY & BIOFUELS 1 PROJECT in 1 LOCATION 25,000,000 GALLONS ANNUAL PRODUCTION CAPACITY 14,900,000 GALLONS OF GASOLINE SAVED ANNUALLY 132,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 BIOENERGY & BIOFUELS PROJECT LOAN PROGRAM TECHNOLOGY

  3. Alternative applications of atomic vapor laser isotope separation technology

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This report was commissioned by the Secretary of Energy. It summarizes the main features of atomic vapor laser isotope separation (AVLIS) technology and subsystems; evaluates applications, beyond those of uranium enrichment, suggested by Lawrence Livermore National Laboratory (LLNL) and a wide range of US industries and individuals; recommends further work on several applications; recommends the provision of facilities for evaluating potential new applications; and recommends the full involvement of end users from the very beginning in the development of any application. Specifically excluded from this report is an evaluation of the main AVLIS missions, uranium enrichment and purification of plutonium for weapons. In evaluating many of the alternative applications, it became clear that industry should play a greater and earlier role in the definition and development of technologies with the Department of Energy (DOE) if the nation is to derive significant commercial benefit. Applications of AVLIS to the separation of alternate (nonuranium) isotopes were considered. The use of {sup 157}Gd as burnable poison in the nuclear fuel cycle, the use {sup 12}C for isotopically pure diamond, and the use of plutonium isotopes for several nonweapons applications are examples of commercially useful products that might be produced at a cost less than the product value. Separations of other isotopes such as the elemental constituents of semiconductors were suggested; it is recommended that proposed applications be tested by using existing supplies to establish their value before more efficient enrichment processes are developed. Some applications are clear, but their production costs are too high, the window of opportunity in the market has passed, or societal constraints (e.g., on reprocessing of reactor fuel) discourage implementation.

  4. Isotope specific arbitrary material sorter

    DOE Patents [OSTI]

    Barty, Christopher P.J.

    2015-12-08

    A laser-based mono-energetic gamma-ray source is used to provide a rapid and unique, isotope specific method for sorting materials. The objects to be sorted are passed on a conveyor in front of a MEGa-ray beam which has been tuned to the nuclear resonance fluorescence transition of the desired material. As the material containing the desired isotope traverses the beam, a reduction in the transmitted MEGa-ray beam occurs. Alternately, the laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  5. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high-abundance, naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56. All requests for the loan of samples should be submitted with a summary of the purpose of the loan to: Iotope Distribution Office, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831. Requests from non-DOE contractors and from foreign institutions require DOE approval.

  6. Project Frog | Open Energy Information

    Open Energy Info (EERE)

    search Name: Project Frog Place: San Francisco, California Zip: 94111 Sector: Buildings Product: San Francisco based company that designs, builds, and sells sustainable...

  7. Isotope geochronology of metamorphic processes

    SciTech Connect (OSTI)

    Ovchinnikov, L.N.; Voronovskiy, S.N.; Ovchinnikova, L.V.

    1986-05-01

    The long history of the earth and its crust is a history of uninterrupted and continuing transformation, making metamorphism the most common and most extensive geological process on this planet. Metamorphism has occurred in all epochs and is a factor in all endogenic processes: geodynamics, magmatism, and the action of intratelluric fluids. But it varies in scale, type, and mechanism, and is always combined with metasomatism - the chemical and mineral transformation of material. This paper discusses methodological principles of isotope dating, laws characterizing changes in indicator minerals, internal stability of isotopic systems, and interesting geological problems. 13 references.

  8. On-Site Inspection RadioIsotopic Spectroscopy (Osiris) System Development

    SciTech Connect (OSTI)

    Caffrey, Gus J.; Egger, Ann E.; Krebs, Kenneth M.; Milbrath, B. D.; Jordan, D. V.; Warren, G. A.; Wilmer, N. G.

    2015-09-01

    We have designed and tested hardware and software for the acquisition and analysis of high-resolution gamma-ray spectra during on-site inspections under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The On-Site Inspection RadioIsotopic Spectroscopy—Osiris—software filters the spectral data to display only radioisotopic information relevant to CTBT on-site inspections, e.g.,132I. A set of over 100 fission-product spectra was employed for Osiris testing. These spectra were measured, where possible, or generated by modeling. The synthetic test spectral compositions include non-nuclear-explosion scenarios, e.g., a severe nuclear reactor accident, and nuclear-explosion scenarios such as a vented underground nuclear test. Comparing its computer-based analyses to expert visual analyses of the test spectra, Osiris correctly identifies CTBT-relevant fission product isotopes at the 95% level or better.The Osiris gamma-ray spectrometer is a mechanically-cooled, battery-powered ORTEC Transpec-100, chosen to avoid the need for liquid nitrogen during on-site inspections. The spectrometer was used successfully during the recent 2014 CTBT Integrated Field Exercise in Jordan. The spectrometer is controlled and the spectral data analyzed by a Panasonic Toughbook notebook computer. To date, software development has been the main focus of the Osiris project. In FY2016-17, we plan to modify the Osiris hardware, integrate the Osiris software and hardware, and conduct rigorous field tests to ensure that the Osiris system will function correctly during CTBT on-site inspections. The planned development will raise Osiris to technology readiness level TRL-8; transfer the Osiris technology to a commercial manufacturer, and demonstrate Osiris to potential CTBT on-site inspectors.

  9. Isotope separation by photochromatography (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    The method is particularly applicable to the separation of hydrogen isotopes. Authors: ... particularly; applicable; separation; hydrogen; isotopes; excited molecules; hydrogen ...

  10. Electron Linac Offers Safe, Affordable Production Method for Medical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes (IN 10-001, IN 04-039, IN 05-107) - Energy Innovation Portal Electron Linac Offers Safe, Affordable Production Method for Medical Isotopes (IN 10-001, IN 04-039, IN 05-107) Argonne National Laboratory Contact ANL About This Technology <em>Schematic of a dual beam ERL for isotope production</em> Schematic of a dual beam ERL for isotope production Technology Marketing Summary Scientists at Argonne National Laboratory have devised a safe, affordable way to ensure a reliable

  11. Isotopes for cancer and cardiac care

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes for cancer Isotopes for cancer and cardiac care Eva Birnbaum is interviewed on KSFR radio on the Lab's Isotope Program February 4, 2016 hot cell facility A worker uses remote manipulator arms to handle a highly radioactive target inside the Lab's radiochemistry hot cell facility. Isotopes from Los Alamos are used for the diagnosis of cardiac disease, for the calibration of PET scanners which in turn diagnose cancer, neurological disease, inflammatory diseases, trauma, and other

  12. Science with Beams of Radioactive Isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pacifichem 2015 Pacifichem 2015 The International Chemical Congress of Pacific Basin Societies Science with Beams of Radioactive Isotopes (# 340) Honolulu, Hawaii, USA December 15-20, 2015 Science with Beams of Radioactive Isotopes (# 340) All of the elements that make up the periodic chart have been created from nuclear reactions. Many of the stable nuclei in the universe are daughters of unstable isotopes, and their true origin lies in the stellar reactions of these radioactive isotopes. Thus

  13. Energy Recovery Linacs for Commercial Radioisotope Production

    SciTech Connect (OSTI)

    Sy, Amy; Krafft, Geoffrey A.; Johnson, Rolland; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  14. Moab Project Continues Excellent Safety Record

    Broader source: Energy.gov [DOE]

    MOAB, Utah – The Moab Uranium Mill Tailings Remedial Action Project has had a safe, productive year.

  15. NREL: Biomass Research - Biochemical Conversion Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's projects in biochemical conversion involve three ... yeast and bacteria) Processing the fermentation product ... Bioprocess Integration Researchers are refining a ...

  16. Dry phase reactor for generating medical isotopes

    DOE Patents [OSTI]

    Mackie, Thomas Rockwell; Heltemes, Thad Alexander

    2016-05-03

    An apparatus for generating medical isotopes provides for the irradiation of dry-phase, granular uranium compounds which are then dissolved in a solvent for separation of the medical isotope from the irradiated compound. Once the medical isotope is removed, the dissolved compound may be reconstituted in dry granular form for repeated irradiation.

  17. Isotope Cancer Treatment Research at LANL

    ScienceCinema (OSTI)

    Weidner, John; Nortier, Meiring

    2014-06-02

    Los Alamos National Laboratory has produced medical isotopes for diagnostic and imaging purposes for more than 30 years. Now LANL researchers have branched out into isotope cancer treatment studies. New results show that an accelerator-based approach can produce clinical trial quantities of actinium-225, an isotope that has promise as a way to kill tumors without damaging surrounding healthy cells.

  18. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LaboratoryNational Security Education Center Menu NSEC Educational Programs Los Alamos Dynamics Summer School Science of Signatures Advanced Studies Institute Judicial Science School SHM Data Sets and Software Research Projects Current Projects Past Projects Publications NSEC » Engineering Institute » Research Projects » Joint Los Alamos National Laboratory/UCSD research projects Past Research Projects Previous collaborations between Los Alamos National Laboratory and the University of

  19. Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis

    SciTech Connect (OSTI)

    Lugmair, G.W. ); Galer, S.J.G. Max-Planck-Inst. fuer Chemie, Mainz )

    1992-04-01

    Results of a wide-ranging isotopic investigation of the unique Antarctican angrite LEW-86010 (LEW) are presented, together with a reassessment of the type angrite Angra dos Reis (ADOR). The principal objectives of this study are to obtain precise radiometric ages, initial Sr isotopic compositions, and to search for the erstwhile presence of the short-lived nuclei {sup 146}Sm and {sup 26}Al via their daughter products. The isotopic compositions of Sm, U, Ca, and Ti were also measured. This allows a detailed appraisal to be made of the relations between, and the genealogy of, these two angrites.

  20. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    SciTech Connect (OSTI)

    Heiken, J.H.

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

  1. Penning trap mass measurements on nobelium isotopes

    SciTech Connect (OSTI)

    Dworschak, M.; Block, M.; Ackermann, D.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Vorobyev, G. K.; Audi, G.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Eliseev, S.; Ketter, J.; Fleckenstein, T.; Haettner, E.; Plass, W. R.; Scheidenberger, C.; Ketelaer, J.; Kluge, H.-J.

    2010-06-15

    The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes {sup 252-254}No were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a {sup 48}Ca beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.

  2. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Research Projects Joint Los Alamos National LaboratoryUCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San...

  3. Project Gnome

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Gnome Double Beta Decay Dark Matter Biology Repository Science Renewable Energy The first underground physics experiment near Carlsbad was Project Gnome, December 10, 1961...

  4. Project Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Management Project Management MaRIE is the experimental facility needed to control the time-dependent properties of materials for national security science missions. It ...

  5. Project Accounts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Accounts Project Accounts A redirector page has been set up without anywhere to redirect to. Last edited: 2016-04-29 11:34:50

  6. PRODUCTION OF TRITIUM

    DOE Patents [OSTI]

    Jenks, G.H.; Shapiro, E.M.; Elliott, N.; Cannon, C.V.

    1963-02-26

    This invention relates to a process for the production of tritium by subjecting comminuted solid lithium fluoride containing the lithium isotope of atomic mass number 6 to neutron radiation in a self-sustaining neutronic reactor. The lithium fiuoride is heated to above 450 deg C. in an evacuated vacuum-tight container during radiation. Gaseous radiation products are withdrawn and passed through a palladium barrier to recover tritium. (AEC)

  7. Stable Isotope Characterization of TICs/TIMs: Analytical Progress Report

    SciTech Connect (OSTI)

    Volpe, A M; Singleton, M J

    2009-06-05

    We measured twelve alkali cyanide samples that were also sent to ORNL and PNNL collaborators. While results indicate distinct {delta}{sup 13}C and {delta}{sup 15}N values that would be useful to signature studies, the alkali cyanides, especially NaCN, show chemical breakdown during storage that will influence forensic analysis. Carbon and nitrogen stable isotopic compositions of raw materials used to synthesis TETS were measured. Results indicate wide ranges in {delta}{sup 13}C and {delta}{sup 15}N values. Using these raw materials, LLNL scientists synthesized three batches of TETS following published procedures. Stable isotopic measurements of TETS synthesis products indicates nitrogen ({var_epsilon} {sup 15}N = -1.7 to -0.8) and carbon ({var_epsilon} {sup 13}C = -1.0 to -0.1) fractionation during production.

  8. Reactor Fuel Isotopics and Code Validation for Nuclear Applications

    SciTech Connect (OSTI)

    Francis, Matthew W.; Weber, Charles F.; Pigni, Marco T.; Gauld, Ian C.

    2015-02-01

    Experimentally measured isotopic concentrations of well characterized spent nuclear fuel (SNF) samples have been collected and analyzed by previous researchers. These sets of experimental data have been used extensively to validate the accuracy of depletion code predictions for given sets of burnups, initial enrichments, and varying power histories for different reactor types. The purpose of this report is to present the diversity of data in a concise manner and summarize the current accuracy of depletion modeling. All calculations performed for this report were done using the Oak Ridge Isotope GENeration (ORIGEN) code, an internationally used irradiation and decay code solver within the SCALE comprehensive modeling and simulation code. The diversity of data given in this report includes key actinides, stable fission products, and radioactive fission products. In general, when using the current ENDF/B-VII.0 nuclear data libraries in SCALE, the major actinides are predicted to within 5% of the measured values. Large improvements were seen for several of the curium isotopes when using improved cross section data found in evaluated nuclear data file ENDF/B-VII.0 as compared to ENDF/B-V-based results. The impact of the flux spectrum on the plutonium isotope concentrations as a function of burnup was also shown. The general accuracy noted for the actinide samples for reactor types with burnups greater than 5,000 MWd/MTU was not observed for the low-burnup Hanford B samples. More work is needed in understanding these large discrepancies. The stable neodymium and samarium isotopes were predicted to within a few percent of the measured values. Large improvements were seen in prediction for a few of the samarium isotopes when using the ENDF/B-VII.0 libraries compared to results obtained with ENDF/B-V libraries. Very accurate predictions were obtained for 133Cs and 153Eu. However, the predicted values for the stable ruthenium and rhodium isotopes varied as much as 10% of the measured values, and 109Ag was consistently over-predicted by as much as 170%. In general, there is a larger uncertainty for modeling radioactive fission products when compared to either the actinides or the stable fission products in SNF. The relative C/E ratios ranged from a few percent for 137Cs up to 60% and 100% for 106Ru and 125Sb, respectively. Limited or no radioactive fission products data exist in the current data sets for reactor types other than PWRs and BWRs. More work is needed in obtaining a greater diversity of radioactive fission product data. While performing this survey, issues leading to inconsistencies in nuclear fission yield data were discovered that specifically impacted the fission product noble gases. Emphasis was given to this legacy data, and corrective actions were taken as described in this report. After the fission yield data were corrected, the stable xenon and krypton fission products were predicted to within 5% of their measurements. However, preliminary results not explicitly given in this report indicate that the relative C/E ratio for the radioactive isotope 85Kr varied as much as 10%. Due to the complex migration and the difficulty in measuring noble gases in the fuel, a more thorough investigation is needed to understand how accurately depletion codes can calculate these gas concentrations.

  9. Production of Endohedral Fullerenes by Ion Implantation

    SciTech Connect (OSTI)

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for derivatizing the radiofullerenes for water-solubility and a method for removing exohedral radionuclides are reported. The methods and chemistry developed during this CRADA are the crucial first steps for the development of fullerenes as a method superior to existing technologies for in vivo transport of radionuclides.

  10. Modeling and Simulations for the High Flux Isotope Reactor Cycle 400

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Modeling and Simulations for the High Flux Isotope Reactor Cycle 400 Citation Details In-Document Search Title: Modeling and Simulations for the High Flux Isotope Reactor Cycle 400 × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  11. Flask Samplers for Carbon Cycle Gases and Isotopes (FLASK) Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Flask Samplers for Carbon Cycle Gases and Isotopes (FLASK) Handbook S Biraud March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  12. RECONSTRUCTION OF DOSE TO THE RESIDENTS OF OZERSK FROM THE OPERATION OF THE MAYAK PRODUCTION ASSOCIATION: 1948-2002: Progress Report on Project 1.4

    SciTech Connect (OSTI)

    Mokrov, Y.; Rovny, Sergey I.; Anspaugh, L. R.; Napier, Bruce A.

    2009-10-23

    This Progress Report for Project 1.4 of the U.S.Russia Joint Coordinating Committee on Radiation Effects Research continues in the abbreviated format of providing details only on the work accomplished during this six-month reporting period.

  13. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2012 State of Technology and Projections to 2017

    SciTech Connect (OSTI)

    Jones, Susanne B.; Snowden-Swan, Lesley J.

    2013-08-27

    This report summarizes the economic impact of the work performed at PNNL during FY12 to improve fast pyrolysis oil upgrading via hydrotreating. A comparison is made between the projected economic outcome and the actual results based on experimental data. Sustainability metrics are also included.

  14. Development of the laser isotope separation method (AVLIS) for obtaining weight amounts of highly enriched {sup 150}Nd isotope

    SciTech Connect (OSTI)

    Babichev, A P; Grigoriev, Igor' S; Grigoriev, A I; Dorovskii, A P; D'yachkov, Aleksei B; Kovalevich, S K; Kochetov, V A; Kuznetsov, V A; Labozin, Valerii P; Matrakhov, A V; Mironov, Sergei M; Nikulin, Sergei A; Pesnya, A V; Timofeev, N I; Firsov, Valerii A; Tsvetkov, G O; Shatalova, G G

    2005-10-31

    Results obtained at the first stage of development of the experimental technique for obtaining weight amounts of the highly enriched {sup 150}Nd isotope by laser photoionisation are presented. The vaporiser and the laser are designed, and various methods of irradiation of neodymium vapour and extraction of photoions are tested. The product yield {approx}40 mg h{sup -1} for the {approx}60% enrichment and 25 mg h{sup -1} for the {approx}65% enrichment is achieved for a vaporiser of length 27 cm. The cost of constructing the facility for preparing 50 kg of the {sup 150}Nd isotope, intended for determining the neutrino mass, is estimated. This estimate shows that the cost of production can be lowered by a factor of 5-7 compared to the electromagnetic method. (invited paper)

  15. Process for preparing a chemical compound enriched in isotope content

    DOE Patents [OSTI]

    Michaels, Edward D.

    1982-01-01

    A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

  16. Project Controls

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

  17. Advanced Solar Products | Open Energy Information

    Open Energy Info (EERE)

    Products Jump to: navigation, search Name: Advanced Solar Products Place: Flemington, New Jersey Zip: 8822 Product: New Jersey-based PV systems installer and project developer....

  18. Measuring SNM Isotopic Distributions using FRAM

    SciTech Connect (OSTI)

    Geist, William H.

    2015-12-02

    The first group of slides provides background information on the isotopic composition of plutonium. It is shown that 240Pu is the critical isotope in neutron coincidence/multiplicity counting. Next, response function analysis to determine isotopic composition is discussed. The isotopic composition can be determined by measuring the net peak counts from each isotope and then taking the ratio of the counts for each isotope relative to the total counts for the element. Then FRAM (Fixed energy Response function Analysis with Multiple efficiencies) is explained. FRAM can control data acquisition, automatically analyze newly acquired data, analyze previously acquired data, provide information on the quality of the analysis, and facilitate analysis in unusual situations (non-standard energy calibrations, gamma rays from non-SNM isotopes, poor spectra (within limits)).

  19. Project Profile: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells

    Broader source: Energy.gov [DOE]

    The Solexel-OC team is developing a BIPV roofing shingle product that includes low-profile solar modules and a unique attachment system that will be fastened directly to the roof and incorporates...

  20. Laser ablation molecular isotopic spectrometry of carbon isotopes

    SciTech Connect (OSTI)

    Bol'shakov, Alexander A.; Jain, Jinesh; Russo, Richard E.; McIntyre, Dustin; Mao, Xianglei

    2015-08-28

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented:empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5–476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrumyielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies

  1. Generalized Modeling of Enrichment Cascades That Include Minor Isotopes

    SciTech Connect (OSTI)

    Weber, Charles F

    2012-01-01

    The monitoring of enrichment operations may require innovative analysis to allow for imperfect or missing data. The presence of minor isotopes may help or hurt - they can complicate a calculation or provide additional data to corroborate a calculation. However, they must be considered in a rigorous analysis, especially in cases involving reuse. This study considers matched-abundanceratio cascades that involve at least three isotopes and allows generalized input that does not require all feed assays or the enrichment factor to be specified. Calculations are based on the equations developed for the MSTAR code but are generalized to allow input of various combinations of assays, flows, and other cascade properties. Traditional cascade models have required specification of the enrichment factor, all feed assays, and the product and waste assays of the primary enriched component. The calculation would then produce the numbers of stages in the enriching and stripping sections and the remaining assays in waste and product streams. In cases where the enrichment factor or feed assays were not known, analysis was difficult or impossible. However, if other quantities are known (e.g., additional assays in waste or product streams), a reliable calculation is still possible with the new code, but such nonstandard input may introduce additional numerical difficulties into the calculation. Thus, the minimum input requirements for a stable solution are discussed, and a sample problem with a non-unique solution is described. Both heuristic and mathematically required guidelines are given to assist the application of cascade modeling to situations involving such non-standard input. As a result, this work provides both a calculational tool and specific guidance for evaluation of enrichment cascades in which traditional input data are either flawed or unknown. It is useful for cases involving minor isotopes, especially if the minor isotope assays are desired (or required) to be important contributors to the overall analysis.

  2. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  3. SuperNEMO Project Status

    SciTech Connect (OSTI)

    Chauveau, E. [Universite de Bordeaux, Centre d'Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, F-33175 Gradignan (France) and CNRS/IN2P3, Centre d'Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, F-33175 Gradignan (France)

    2009-11-09

    The SuperNEMO experiment aims to reach a sensitivity up to 10{sup 26} years on the half-life of neutrinoless double beta decay. The chosen way is to build a 'tracko-calo' detector with at least 100 kg of betabeta isotope. The current status of the main R and D tasks will be presented: enrichment and production of source foil, radiopurity control, tracker and calorimeter.

  4. METHOD FOR PRODUCING ISOTOPIC METHANES FROM LITHIUM CARBONATE AND LITHIUM HYDRIDE

    DOE Patents [OSTI]

    Frazer, J.W.

    1959-10-27

    A process is descrlbed for the production of methane and for the production of methane containing isotopes of hydrogen and/or carbon. Finely divided lithium hydrlde and litldum carbonate reactants are mixed in intimate contact and subsequently compacted under pressures of from 5000 to 60,000 psl. The compacted lithium hydride and lithium carbenate reactunts are dispised in a gas collecting apparatus. Subsequently, the compact is heated to a temperature in the range 350 to 400 deg C whereupon a solid-solid reaction takes place and gaseous methane is evolved. The evolved methane is contaminated with gaseous hydrogen and a very small amount of CO/sub 2/; however, the desired methane product is separated from sald impurities by well known chemical processes, e.g., condensation in a cold trap. The product methane contalns isotopes of carbon and hydrogen, the Isotopic composition being determined by the carbon isotopes originally present In the lithium carbonate and the hydrogen isotopes originally present in the lithium hydride.

  5. Progress in the Use of Isotopes: The Atomic Triad - Reactors, Radioisotopes and Radiation

    DOE R&D Accomplishments [OSTI]

    Libby, W. F.

    1958-08-04

    Recent years have seen a substantial growth in the use of isotopes in medicine, agriculture, and industry: up to the minute information on the production and use of isotopes in the U.S. is presented. The application of radioisotopes to industrial processes and manufacturing operations has expanded more rapidly than any one except its most ardent advocates expected. New uses and new users are numerous. The adoption by industry of low level counting techniques which make possible the use of carbon-14 and tritium in the control of industrial processes and in certain exploratory and research problems is perhaps most promising of current developments. The latest information on savings to industry will be presented. The medical application of isotopes has continued to develop at a rapid pace. The current trend appears to be in the direction of improvements in technique and the substitution of more effective isotopes for those presently in use. Potential and actual benefits accruing from the use of isotopes in agriculture are reviewed. The various methods of production of radioisotopes are discussed. Not only the present methods but also interesting new possibilities are covered. Although isotopes are but one of the many peaceful uses of the atom, it is the first to pay its way. (auth)

  6. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.

    SciTech Connect (OSTI)

    Chakraborty, Subrata; Davis, Ryan; Ahmed, Musahid; Jackson, Teresa L.; Thiemens, Mark H.

    2012-01-03

    Several absorption bands exist in the VUV region of Carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. An experimental investigation of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ~13 to 11 eV) from the Advanced Light Source Synchrotron and direct measurement of the associated oxygen isotopic composition of the products are presented here. A wavelength dependency of the oxygen isotopic composition in the photodissociation product was observed. Slope values (δ'{sup 18}O/ δ'{sup 17}O) ranging from 0.76 to 1.32 were observed in oxygen three-isotope space (δ'{sup 18}O vs. δ'{sup 17}O) which correlated with increasing synchrotron photon energy, and indicate a dependency of the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope separation was observed for photodissociation at the 105 and 107 nm synchrotron bands and are found to be associated with accidental predissociation of the vibrational states ({nu} = 0 and 1) of the upper electronic state E{sup 1}Π. For each synchrotron band, a large (few hundred per mil) extent of isotopic fractionation was observed and the range of fractionation is a combination of column density and exposure time. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.

  7. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    G Projections of petroleum and other liquids production in three cases * Reference * High Oil Price * Low Oil Price This page inTenTionally lefT blank 85 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G1. World petroleum and other liquids production by region and country, Reference case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates)

  8. Line Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Coulee Transmission Line Replacement Project Hooper Springs McNary-John Day Montana-to-Washington Transmission System Upgrade Project - M2W Olympia-Grand Coulee No. 1...

  9. Project Benefits

    Broader source: Energy.gov [DOE]

    Benefits of the Guidelines for Home Energy Professionals project including reducing energy upgrade costs for consumers, employers, and program administrators.

  10. Hydropower Projects

    Broader source: Energy.gov [DOE]

    This report covers the Wind and Water Power Technologies Office's hydropower project funding from fiscal years 2008 to 2014.

  11. METHOD AND APPARATUS FOR COLLECTING ISOTOPES

    DOE Patents [OSTI]

    Leyshon, W.E.

    1957-08-01

    A method and apparatus for collecting isotopes having a high vapor pressure, such as isotopes of mercury, in a calutron are described. Heretofore, the collected material would vaporize and escape from the ion receiver as fast as it was received. By making the receiver of pure silver, the mercury isotopes form a nonvolatile amalgam with the silver at the water cooled temperature of the receiver, and the mercury is thus retained.

  12. Feasibility Study of Hydrogen Production at Existing Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    project(s) that will utilize hydrogen production equipment and nuclear energy as necessary to produce data and analysis on the economics of hydrogen production with nuclear energy. ...

  13. ccpi-multi-product-coal | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Utilization By-Product Processing Plant - Project Brief PDF-78KB University of Kentucky Research Foundation, Ghent, Kentucky PROJECT FACT SHEET Advanced Multi-Product Coal ...

  14. Solid-State Lighting Commercial Product Development Resulting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Commercial Product Development Resulting from DOE-Funded Projects Solid-State Lighting Commercial Product Development Resulting from DOE-Funded Projects PDF icon ...

  15. Categorical Exclusion 4577: Lithium Isotope Separation & Enrichment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Isotope Separation & Enrichment Technologies (4577) Program or Field Office: Y-12 Site Office Location(s) (CityCountyState): Oak Ridge, Anderson County, Tennessee...

  16. Nitrogen concentration and isotope dataset for environmental...

    Office of Scientific and Technical Information (OSTI)

    (BER) Country of Publication: United States Availability: ORNL Language: English Subject: 54 Environmental Sciences ngee; ngee-arctic; nitrate concentrations; nitrate isotopes; ...

  17. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect (OSTI)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

  18. Uranium isotopes fingerprint biotic reduction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  19. Uranium isotopes fingerprint biotic reduction

    SciTech Connect (OSTI)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  20. Spatial periphery of lithium isotopes

    SciTech Connect (OSTI)

    Galanina, L. I. Zelenskaja, N. S.

    2013-12-15

    The spatial structure of lithium isotopes is studied with the aid of the charge-exchange and (t, p) reactions on lithium nuclei. It is shown that an excited isobaric-analog state of {sup 6}Li (0{sup +}, 3.56MeV) has a halo structure formed by a proton and a neutron, that, in the {sup 9}Li nucleus, there is virtually no neutron halo, and that {sup 11}Li is a Borromean nucleus formed by a {sup 9}Li core and a two-neutron halo manifesting itself in cigar-like and dineutron configurations.

  1. Uranium molecular laser isotope separation

    SciTech Connect (OSTI)

    Jensen, R.J.; Sullivan, A.

    1982-01-01

    The Molecular Laser Isotope Separation program is moving into the engineering phase, and it is possible to determine in some detail the plant cost terms involved in the process economics. A brief description of the MLIS process physics is given as a motivation to the engineering and economics discussion. Much of the plant cost arises from lasers and the overall optical system. In the paper, the authors discuss lasers as operating units and systems, along with temporal multiplexing and Raman shifting. Estimates of plant laser costs are given.

  2. Hydrogen-isotope permeation barrier

    DOE Patents [OSTI]

    Maroni, Victor A.; Van Deventer, Erven H.

    1977-01-01

    A composite including a plurality of metal layers has a Cu-Al-Fe bronze layer and at least one outer layer of a heat and corrosion resistant metal alloy. The bronze layer is ordinarily intermediate two outer layers of metal such as austenitic stainless steel, nickel alloys or alloys of the refractory metals. The composite provides a barrier to hydrogen isotopes, particularly tritium that can reduce permeation by at least about 30 fold and possibly more below permeation through equal thicknesses of the outer layer material.

  3. Project Development | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Development Nuclear Physics (NP) NP Home About Research Facilities User Facilities Project Development Isotope Program Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » Facilities Project Development Print

  4. Energy Efficiency Project Development

    SciTech Connect (OSTI)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

  5. Shree Jai Brahmanvel Bundled Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Maharashtra, India Zip: 441 614 Sector: Wind energy Product: Gondia-based SPV for wind project development. References: Shree Jai Brahmanvel Bundled Wind Project1 This article...

  6. Proyectos Eolicos Valencianos Project Finance | Open Energy Informatio...

    Open Energy Info (EERE)

    Proyectos Eolicos Valencianos Project Finance Jump to: navigation, search Name: Proyectos Eolicos Valencianos Project Finance Place: Spain Sector: Wind energy Product: Joint...

  7. Hebei CDM Project Office HEBCDM | Open Energy Information

    Open Energy Info (EERE)

    CDM Project Office HEBCDM Jump to: navigation, search Name: Hebei CDM Project Office (HEBCDM) Place: Shijiazhuang City, Hebei Province, China Zip: 50021 Product: HEBCDM is the...

  8. Virender Dogra Power Projects P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Virender Dogra Power Projects P Ltd Jump to: navigation, search Name: Virender Dogra Power Projects (P) Ltd. Place: Pathankot, Punjab, India Zip: 145001 Sector: Hydro Product:...

  9. PA Sangli Bundled Wind Project | Open Energy Information

    Open Energy Info (EERE)

    PA Sangli Bundled Wind Project Jump to: navigation, search Name: PA Sangli Bundled Wind Project Place: Maharashtra, India Zip: 416115 Sector: Wind energy Product:...

  10. Varam Power Projects Private Ltd | Open Energy Information

    Open Energy Info (EERE)

    Product: Varam Power Projects Private Limited develop power projects that utilise low density crop residues. Coordinates: 18.297911, 83.89846 Show Map Loading map......

  11. Luoyang Tianchang Bio Project Corporation | Open Energy Information

    Open Energy Info (EERE)

    Tianchang Bio Project Corporation Jump to: navigation, search Name: Luoyang Tianchang Bio Project Corporation Place: Henan Province, China Product: A company that develops biofuel...

  12. UK Climate Change Projects Office | Open Energy Information

    Open Energy Info (EERE)

    Climate Change Projects Office Jump to: navigation, search Name: UK Climate Change Projects Office Place: London, United Kingdom Zip: SW1W 9SS Product: Government advisory office...

  13. Hema Sri Power Projects Ltd HSPPL | Open Energy Information

    Open Energy Info (EERE)

    Hyderabad, Andhra Pradesh, India Sector: Biomass Product: Setting up biomass and waste-to-energy power projects. References: Hema Sri Power Projects Ltd. (HSPPL)1 This article...

  14. Grangemouth Advanced CO2 Capture Project GRACE | Open Energy...

    Open Energy Info (EERE)

    Grangemouth Advanced CO2 Capture Project GRACE Jump to: navigation, search Name: Grangemouth Advanced CO2 Capture Project (GRACE) Place: United Kingdom Sector: Carbon Product:...

  15. V B Hydro Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydro Projects Ltd Jump to: navigation, search Name: V. B. Hydro Projects Ltd. Place: Pathankot, Punjab, India Zip: 145001 Sector: Hydro Product: Pathankot-based small hydro...

  16. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    SciTech Connect (OSTI)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  17. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    SciTech Connect (OSTI)

    Zhang, Shuo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DePaolo, Donald J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mayer, Bernhard [Univ. of Calgary (Canada). Dept. of Geosciences

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modified to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.

  18. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; Mayer, Bernhard

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modifiedmore » to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less

  19. Manus Water Isotope Investigation Field Campaign Report (Program...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Program Document: Manus Water Isotope Investigation Field Campaign Report Citation Details In-Document Search Title: Manus Water Isotope ...

  20. Plutonium Isotopes in the Terrestrial Environment at the Savannah...

    Office of Scientific and Technical Information (OSTI)

    Plutonium Isotopes in the Terrestrial Environment at the Savannah River Site, USA. A Long-Term Study Citation Details In-Document Search Title: Plutonium Isotopes in the ...

  1. Permeation of Multiple Isotopes in the Transition Between Surface...

    Office of Environmental Management (EM)

    Permeation of Multiple Isotopes in the Transition Between Surface- and Diffusion-Limited Regimes Permeation of Multiple Isotopes in the Transition Between Surface- and...

  2. Isotopic Analysis At Fenton Hill Hdr Geothermal Area (Goff, Et...

    Open Energy Info (EERE)

    Isotopic Analysis At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Redirect page Jump to: navigation, search REDIRECT Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal...

  3. Advances in Hydrogen Isotope Separation Using Thermal Cycling...

    Office of Environmental Management (EM)

    Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) Advances in Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) Presentation...

  4. Project Construction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.

  5. Discontinued Projects

    Broader source: Energy.gov [DOE]

    Discontinued projects received a loan or a loan guarantee from DOE, but that are considered discontinued by LPO for one of several reasons.

  6. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure whose behavior is fundamentally nonlinear. Thus, the students assigned to this project will develop control techniques that will allow an electrodynamic shake table to...

  7. Project Complete

    Broader source: Energy.gov [DOE]

    DOE has published its Record of Decision announcing and explaining DOE’s chosen project alternative and describing any commitments for mitigating potential environmental impacts. The NEPA process...

  8. Custom Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Management Small Industrial Lighting Compressed Air ESUE Motors Federal Agriculture Custom Projects No two industrial customers are alike; each has its own unique...

  9. Project Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Tour Transportation Transportation to the tour will be provided from Hilton Santa Fe Buffalo Thunder to Los Alamos National Laboratory, Technical Area 55. After the...

  10. project management

    National Nuclear Security Administration (NNSA)

    %2A en Project Management and Systems Support http:nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  11. project management

    National Nuclear Security Administration (NNSA)

    3%2A en Project Management and Systems Support http:www.nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  12. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment ... engineering programs and the pit manufacturing program. STUDENT RESOURCES Precollege ...

  13. Device and method for separating oxygen isotopes

    DOE Patents [OSTI]

    Rockwood, Stephen D.; Sander, Robert K.

    1984-01-01

    A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.

  14. Atomic vapor laser isotope separation of lead-210 isotope

    DOE Patents [OSTI]

    Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.

    1999-08-31

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.

  15. Atomic vapor laser isotope separation of lead-210 isotope

    DOE Patents [OSTI]

    Scheibner, Karl F.; Haynam, Christopher A.; Johnson, Michael A.; Worden, Earl F.

    1999-01-01

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207.

  16. Isotope separation and advanced manufacturing technology. Volume 2, No. 2, Semiannual report, April--September 1993

    SciTech Connect (OSTI)

    Kan, Tehmanu; Carpenter, J.

    1993-12-31

    This is the second issue of a semiannual report for the Isotope Separation and Advanced Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives of the ISAM Program include: the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) process, and advanced manufacturing technologies which include industrial laser materials processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. Topics included in this issue are: production plant product system conceptual design, development and operation of a solid-state switch for thyratron replacement, high-performance optical components for high average power laser systems, use of diode laser absorption spectroscopy for control of uranium vaporization rates, a two-dimensional time dependent hydrodynamical ion extraction model, and design of a formaldehyde photodissociation process for carbon and oxygen isotope separation.

  17. Department of Energy's Isotope Development and Production for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and Accounting Matters (09-ISO-INV-05) A.1 Property, Plant, & Equipment Finding 2: Incorrect System Ion Beam Accumulated Depreciation (10-ISO-PPE-01) A.1 Acronyms Exhibit B ...

  18. Awarded projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    projects Awarded projects 2016 Allocation Awards This page lists the allocation awards for NERSC for the 2016 allocation year (Jan 12, 2016 through Jan 09, 2017). Read More » Previous Year Awards Last edited: 2016-04-29 11:35:1

  19. Fission properties and production mechanisms for the heaviest known elements

    SciTech Connect (OSTI)

    Hoffman, D.C.

    1981-01-01

    Mass yields of the spontaneous fission of Fm isotopes, Cf isotopes, and /sup 259/Md are discussed. Actinide yields were measured for bombardments of /sup 248/Cm with /sup 16/O, /sup 18/O, /sup 20/Ne, and /sup 22/Ne. A superheavy product might be produced by bombarding /sup 248/Cm with /sup 48/Ca ions. 12 figures. (DLC)

  20. Apparatus for storing hydrogen isotopes

    DOE Patents [OSTI]

    McMullen, John W.; Wheeler, Michael G.; Cullingford, Hatice S.; Sherman, Robert H.

    1985-01-01

    An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas(es) is (are) stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forming at a significantly lower temperature).

  1. Production of unknown transactinides in asymmetry-exit-channel quasifission reactions

    SciTech Connect (OSTI)

    Adamian, G.G.; Antonenko, N. V.; Zubov, A. S.

    2005-03-01

    Possibilities of production of new isotopes of superheavy nuclei with charge numbers 104-108 in asymmetry-exit-channel quasifission reactions are studied for the first time. The optimal conditions for the synthesis are suggested in this type of reaction. The products of suggested reactions can fill a gap of unknown isotopes between the isotopes of heaviest nuclei obtained in cold and hot complete fusion reactions.

  2. Nez Perce Tribe Biodiesel Production Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...Travel Food and Kindred Products Food and Kindred Products ... 2004 2004 - - Mineral Assessment Project: Mineral ...Owner Managed Other Creative Financing Arrangement ...

  3. Solar Projects Services | Open Energy Information

    Open Energy Info (EERE)

    Beany, Czech Republic Zip: 25241 Product: Czech developing company planning to build 14MW of PV by 2010 in the Czech republic. References: Solar Projects & Services1...

  4. Frontiers in Advanced Storage Technologies (FAST) project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the product for use in HPC environments. The FAST project involves establishing long-term development collaboration agreements to develop the following opportunities: File...

  5. Martin Bucher Project Development | Open Energy Information

    Open Energy Info (EERE)

    Development Place: Stuttgart, Germany Zip: 70195 Sector: Solar, Wind energy Product: German consultancy, Martin Bucher Project Development, specialises in advising companies...

  6. SE Project Srl | Open Energy Information

    Open Energy Info (EERE)

    search Name: SE Project Srl Place: San Pietro, Italy Zip: 35010 Sector: Solar Product: Italian manufacturer and supplier of solar modules and solar technology. References: SE...

  7. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (DBS) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  8. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    SciTech Connect (OSTI)

    Matsuyama, M.; Kondo, M.; Noda, N.; Tanaka, M.; Nishimura, K.

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel is limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)

  9. EGS Projects

    Broader source: Energy.gov [DOE]

    EGS projects span research, development, and demonstration. Unlike traditional hydrothermal systems, EGS capture heat from areas that traditional geothermal energy cannot—where fluid and/or...

  10. Project Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The purpose of this project is to develop improved heat transfer fluids, thermal storage ... The majority of the current R&D effort is focused on parabolic trough facilities. Sandia ...

  11. Project 1027697

    Office of Scientific and Technical Information (OSTI)

    05 ERSD Annual Report Project #1027697 Long-term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal and Radioactive.... Principal Investigator: Gerlach, Robin Organization: Montana State University Results To Date 1. MOST RECENT RESULTS TO DATE This project report addresses one part of a 3-way collaboration between researchers (Drs. Robin Gerlach and Al Cunningham) at Montana State University's (MSU's) Center for

  12. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Joint Los Alamos National Laboratory/UCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Jutta Kayser (505) 663-5649 Email Administrative Assistant Stacy Baker (505) 663-5233 Email "Since 2003, LANL has funded numerous collaborative

  13. NREL Algal Biofuels Projects and Partnerships (Brochure), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL is engaged in several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process Novel Microalgal Production ...

  14. Y-12 begins to separate lithium isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    begins to separate lithium isotopes During the years from 1946 through the early 1950s, Y-12 continued to expand as needed to meet the demand for a growing primary mission of...

  15. Atomic vapor laser isotope separation process

    DOE Patents [OSTI]

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  16. Photonuclear reactions on mercury isotopes in the region of the giant-dipole-resonance energy

    SciTech Connect (OSTI)

    Ishkhanov, B. S.; Orlin, V. N.; Troschiev, S. Yu.

    2011-05-15

    The induced-activity method is used to measure yields of photonuclear reactions induced in stable mercury isotopes by beams of bremsstrahlung photons whose spectra have the endpoint energies of 19.5 and 29.1 MeV. On the basis of a collective model, the partial cross sections and yields are calculated for photoproton and photoneutron reactions on these isotopes. The yields calculated theoretically are compared with their measured counterparts. The possibility for the production in photonuclear reactions of the bypassed nucleus {sup 196}Hg, which cannot be formed in astrophysical r and s processes, is analyzed.

  17. DUF6 Project Continues on Success Track

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – After more than doubling production in fiscal year 2013, the Depleted Uranium Hexafluoride (DUF6) Conversion Project is moving from start-up mode to full production mode.

  18. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Wipke, K.; Spirk, S.; Kurtz, J.; Ramsden, T.

    2010-09-01

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2010.

  19. Isotope separation by photochromatography (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Isotope separation by photochromatography Citation Details In-Document Search Title: Isotope separation by photochromatography An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface

  20. Agri Ethanol Products LLC AEPNC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Products LLC AEPNC Jump to: navigation, search Name: Agri-Ethanol Products LLC (AEPNC) Place: Raleigh, North Carolina Zip: 27615 Product: Ethanol producer and project...

  1. The Mississippi CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-09-30

    The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

  2. An efficient palladium isotope chromatograph (EPIC) for hydrogen

    SciTech Connect (OSTI)

    Rutherford, W.M.

    1989-06-20

    The efficient palladium isotope chromatography (EPIC) system is based on a palladium displacement chromatograph developed and tested for the preparative scale separation of the isotopes of hydrogen. Rapid cycling and high efficiency are obtained by use of high-performance packing operating at an elevated temperature (80/degree/C) and elevated pressure (1.5 atm). The process, which was tested with a 50/50 mixture of hydrogen and deuterium, depends on the exploitation of thermally driven pressure differences to recover and recycle the mixed transition zone between the bands of the pure components and also to recover and recycle the hydrogen gas used as the displacing agent. The purity of the product is significantly enhanced by partially backfilling the column with pure deuterium at the beginning of each displacement cycle. The computer-controlled system operates continuously, and it is capable of separating 2.2 std L/hr of feed at product assays of 99.86 at. % hydrogen and 99.992 at. % deuterium. 11 refs., 5 figs., 1 tab.

  3. Measurements of stable isotope ratios in milk samples from a farm placed in the mountains of Transylvania

    SciTech Connect (OSTI)

    Magdas, D. A. Cristea, G. Bot, A.; Puscas, R.; Radu, S.; Mirel, V.; Cordea, D. V.; Mihaiu, M.

    2013-11-13

    Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ{sup 18}O and δ{sup 2}H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also very important: in summer, milk water contains higher δ{sup 18}O and δ{sup 2}H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.

  4. Implications of Plutonium isotopic separation on closed fuel cycles and repository design

    SciTech Connect (OSTI)

    Forsberg, C.

    2013-07-01

    Advances in laser enrichment may enable relatively low-cost plutonium isotopic separation. This would have large impacts on LWR closed fuel cycles and waste management. If Pu-240 is removed before recycling plutonium as mixed oxide (MOX) fuel, it would dramatically reduce the buildup of higher plutonium isotopes, Americium, and Curium. Pu-240 is a fertile material and thus can be replaced by U-238. Eliminating the higher plutonium isotopes in MOX fuel increases the Doppler feedback, simplifies reactor control, and allows infinite recycle of MOX plutonium in LWRs. Eliminating fertile Pu-240 and Pu-242 reduces the plutonium content in MOX fuel and simplifies fabrication. Reducing production of Pu-241 reduces production of Am-241 - the primary heat generator in spent nuclear fuels after several decades. Reducing heat generating Am-241 would reduce repository cost and waste toxicity. Avoiding Am- 241 avoids its decay product Np-237, a nuclide that partly controls long-term oxidizing repository performance. Most of these benefits also apply to LWR plutonium recycled into fast reactors. There are benefits for plutonium isotopic separation in fast reactor fuel cycles (particularly removal of Pu-242) but the benefits are less. (author)

  5. Spatially tracking 13C labeled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio mass spectrometry

    SciTech Connect (OSTI)

    Moran, James J.; Doll, Charles G.; Bernstein, Hans C.; Renslow, Ryan S.; Cory, Alexandra B.; Hutchison, Janine R.; Lindemann, Stephen R.; Fredrickson, Jim K.

    2014-08-25

    This is a manuscript we would like to submit for publication in Environmental Microbiology Reports. This manuscript contains a description of a laser ablation isotope ratio mass spectrometry methodology developed at PNNL and applied to a microbial system at a PNNL project location Hot Lake, Washington. I will submit a word document containing the entire manuscript with this Erica input request form.

  6. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    SciTech Connect (OSTI)

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G.

    2013-10-15

    Highlights: ? The isotopic signature of ?{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ? Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ? In situ aeration of landfills can be monitored by isotope analysis in leachate. ? The isotopic analysis of leachates can be used for assessing the stability of MSW. ? ?{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of ?{sup 13}C, ?{sup 2}H and ?{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the ?{sup 13}C-value of the dissolved inorganic carbon (?{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of ?{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a ?{sup 13}C-DIC of ?20 to ?25. The production of methane under anaerobic conditions caused an increase in ?{sup 13}C-DIC up to values of +10 and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a ?{sup 13}C-DIC of about ?20. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidationreduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration.

  7. PROJECT INFORMATION

    Office of Scientific and Technical Information (OSTI)

    ... augmented digester gas production, therefore saving natural gas costs for the ... the design requirements included automatic ... CWEA, and CASA) Land Committee, 610 ...

  8. Isotope Enrichment Detection by Laser Ablation - Dual Tunable Diode Laser Absorption Spectrometry

    SciTech Connect (OSTI)

    Anheier, Norman C.; Bushaw, Bruce A.

    2009-07-01

    The rapid global expansion of nuclear energy is motivating the expedited development of new safeguards technology to mitigate potential proliferation threats arising from monitoring gaps within the uranium enrichment process. Current onsite enrichment level monitoring methods are limited by poor sensitivity and accuracy performance. Offsite analysis has better performance, but this approach requires onsite hand sampling followed by time-consuming and costly post analysis. These limitations make it extremely difficult to implement comprehensive safeguards accounting measures that can effectively counter enrichment facility misuse. In addition, uranium enrichment by modern centrifugation leads to a significant proliferation threat, since the centrifuge cascades can quickly produce a significant quantity of highly enriched uranium (HEU). The Pacific Northwest National Laboratory is developing an engineered safeguards approach having continuous aerosol particulate collection and uranium isotope analysis to provide timely detection of HEU production in a low enriched uranium facility. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy, to characterize the 235U/238U isotopic ratio by subtle differences in atomic absorption wavelengths arising from differences in each isotopes nuclear mass, volume, and spin (hyperfine structure for 235U). Environmental sampling media is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes a 10 to 20-m sample diameter. The ejected plasma forms a plume of atomic vapor. A plume for a sample containing uranium has atoms of the 235U and 238U isotopes present. Tunable diode lasers are directed through the plume to selectively excite each isotope and their presence is detected by monitoring absorbance signals on a shot-to-shot basis. Single-shot detection sensitivity approaching the femtogram range and abundance uncertainty less than 10% have been demonstrated with measurements on surrogate materials. In this paper we present measurement results on samples containing background materials (e.g., dust, minerals, soils) laced with micron-sized target particles having isotopic ratios ranging from 1 to 50%.

  9. Advanced engineering environment pilot project.

    SciTech Connect (OSTI)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  10. An ion guide laser ion source for isobar-suppressed rare isotope beams

    SciTech Connect (OSTI)

    Raeder, Sebastian Ames, Friedhelm; Bishop, Daryl; Bricault, Pierre; Kunz, Peter; Mjs, Anders; Heggen, Henning; Institute of Applied Physics, TU Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt ; Lassen, Jens Teigelhfer, Andrea; Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2

    2014-03-15

    Modern experiments at isotope separator on-line (ISOL) facilities like ISAC at TRIUMF often depend critically on the purity of the delivered rare isotope beams. Therefore, highly selective ion sources are essential. This article presents the development and successful on-line operation of an ion guide laser ion source (IG-LIS) for the production of ion beams free of isobaric contamination. Thermionic ions from the hot ISOL target are suppressed by an electrostatic potential barrier, while neutral radio nuclides effusing out are resonantly ionized by laser radiation within a quadrupole ion guide behind this barrier. The IG-LIS was developed through detailed thermal and ion optics simulation studies and off-line tests with stable isotopes. In a first on-line run with a SiC target a suppression of surface-ionized Na contaminants in the ion beam of up to six orders of magnitude was demonstrated.

  11. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect (OSTI)

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  12. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    2008-01-15

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  13. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  14. DOE Project Scorecards

    Broader source: Energy.gov [DOE]

    DOE Project Scorecards DOE project scorecards summarize capital asset project performance compared to the current approved baseline. 

  15. DOE Project Scorecards

    Broader source: Energy.gov [DOE]

    DOE Project Scorecards DOEproject scorecards summarize capital asset project performance compared to the current approved baseline.

  16. Hydrogen isotope separation from water

    DOE Patents [OSTI]

    Jensen, R.J.

    1975-09-01

    A process for separating tritium from tritium-containing water or deuterium enrichment from water is described. The process involves selective, laser-induced two-photon excitation and photodissociation of those water molecules containing deuterium or tritium followed by immediate reaction of the photodissociation products with a scavenger gas which does not substantially absorb the laser light. The reaction products are then separated from the undissociated water. (auth)

  17. ccpi-multi-product-coal | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Advanced Multi-Product Coal Utilization By-Product Processing Plant - Project Brief [PDF-78KB] University of Kentucky Research Foundation, Ghent, Kentucky PROJECT FACT SHEET Advanced Multi-Product Coal Utilization By-Product Processing Plant [PDF-447KB] (Oct 2008) PROGRAM PUBLICATIONS Final Report Advanced Multi-Product Coal Utilization By-Product Processing Plant, Final Report [PDF-750KB] (Apr 2007) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports

  18. Laser Isotope Separation Employing Condensation Repression

    SciTech Connect (OSTI)

    Eerkens, Jeff W.; Miller, William H.

    2004-09-15

    Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

  19. Hydrogen Energy California Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Energy California Project Hydrogen Energy California Project Rendition of HECA Polygen Power Plant with fertilizer production facility. Rendition of HECA Polygen Power Plant with fertilizer production facility. HYDROGEN ENERGY CALIFORNIA CCS PROJECT (HECA CCS) On November 6, 2009, DOE announced the signing of a Cooperative Agreement with Hydrogen Energy California, LLC (HECA) under the Clean Coal Power Initiative (CCPI) Round 3 program. With additional funding provided under the

  20. Diffusion in silicon isotope heterostructures

    SciTech Connect (OSTI)

    Silvestri, Hughes Howland

    2004-05-14

    The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and {sup 28}Si enriched layers, enables the observation of {sup 30}Si self-diffusion from the natural layers into the {sup 28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly positively charged P species. Additionally, the temperature dependence of the diffusion coefficient of Si in Ge was measured over the temperature range of 550 C to 900 C using a buried Si layer in an epitaxially grown Ge layer.

  1. Hydropower Projects

    SciTech Connect (OSTI)

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.

  2. NESAP Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NESAP Projects NESAP Roles and Liaisons NERSC-8 Procurement Programming models File Storage and I/O Edison PDSF Genepool Testbeds Retired Systems Storage & File Systems Data & Analytics Connecting to NERSC Queues and Scheduling Job Logs & Statistics Application Performance Training & Tutorials Software Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option

  3. Hallmark Project

    Energy Savers [EERE]

    Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy infrastructure have improved system functionality, but left systems more vulnerable to cyber attack. Intruders could severely disrupt control system operation by sending fabricated information or commands to control system devices. To ensure message integrity,

  4. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment Collaboration between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email UCSD Faculty and Graduate Students Professor

  5. Project Financing

    Office of Environmental Management (EM)

    Columbus HTS Power Cable Superconductivity Partnerships with Industry www.oe.energy.gov Phone: 202 \ 586-1411 Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585 Plugging America Into the Future of Power This project involves field-testing of a long-length high-temperature superconducting (HTS) cable under real environmental stresses and real electrical loads. The cable system forms an important electrical

  6. Interaction of palladium/hydrogen and palladium/deuterium to measure the excess energy per atom for each isotope

    SciTech Connect (OSTI)

    Dufour, J.; Foos, J.; Millot, J.P.; Dufour, X.

    1997-03-01

    A search for the products of fusion reactions that could be triggered by sparking in hydrogen isotopes produced a negative result with no signatures above background being found. Very significant excess energy production in both hydrogen/palladium and deuterium/palladium systems is reported. The conditions of occurrence for this excess energy production are discussed, and the formation of a tightly bound state of the hydrogen (deuterium) atom is put forward to explain the results. 7 refs., 9 figs., 2 tabs.

  7. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-03-30

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  8. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, James W.

    1993-01-01

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  9. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-05-08

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using, a metal hydride.

  10. Apparatus for separating and recovering hydrogen isotopes

    DOE Patents [OSTI]

    Heung, Leung K.

    1994-01-01

    An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

  11. Project Management Coordination Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Management Coordination Office Project Management Coordination Office The Project Management Coordination Office (PMCO) provides guidance, leadership, training, and tools in program and project management.to Office of Energy Efficiency and Renewable Energy (EERE) Headquarters and field employees. PMCO is an internal business operations office with a mission to provide EERE executive managers, line managers, and staff offices the unified corporate tools, products, and services that enable

  12. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect (OSTI)

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  13. Transfer-type products accompanying cold fusion reactions

    SciTech Connect (OSTI)

    Adamian, G.G.; Antonenko, N.V.

    2005-12-15

    Production of nuclei heavier than the target is treated for projectile-target combinations used in cold fusion reactions leading to superheavy nuclei. These products are related to transfer-type or to asymmetry-exit-channel quasifission reactions. The production of isotopes in the transfer-type reactions emitting of {alpha} particles with large energies is discussed.

  14. Isotope-enriched protein standards for computational amide I spectroscopy

    SciTech Connect (OSTI)

    Reppert, Mike; Roy, Anish R.; Tokmakoff, Andrei

    2015-03-28

    We present a systematic isotope labeling study of the protein G mutant NuG2b as a step toward the production of reliable, structurally stable, experimental standards for amide I infrared spectroscopic simulations. By introducing isotope enriched amino acids into a minimal growth medium during bacterial expression, we induce uniform labeling of the amide bonds following specific amino acids, avoiding the need for chemical peptide synthesis. We use experimental data to test several common amide I frequency maps and explore the influence of various factors on map performance. Comparison of the predicted absorption frequencies for the four maps tested with empirical assignments to our experimental spectra yields a root-mean-square error of 6-12 cm{sup −1}, with outliers of at least 12 cm{sup −1} in all models. This means that the predictions may be useful for predicting general trends such as changes in hydrogen bonding configuration; however, for finer structural constraints or absolute frequency assignments, the models are unreliable. The results indicate the need for careful testing of existing literature maps and shed light on possible next steps for the development of quantitative spectral maps.

  15. Stable-isotope probe of nano-scale mineral-fluid redox interactions

    SciTech Connect (OSTI)

    Kavner, Abby

    2014-11-26

    The project examined how stable isotopes fractionate at an aqueous/solid interface during electrochemical reduction reactions. Measurements in a wide variety of metal deposition systems including Fe, Zn, Li, Mo, and Cu, have led to observations of large isotope fractionations which strongly vary as a function of rate and temperature. For the Fe, Zn, and Li systems, our electrochemical deposition methods provide the largest single-pass fractionation factors that are observed for these systems. Based on these and other experiments and theory showing and predicting significant and rate-dependent fractionations of isotopes at reacting interfaces, we have developed a simple statistical mechanics framework that predicts the kinetic isotope effect accompanying phase transformations in condensed systems. In addition, we have begun to extend our studies of mineral-fluid redox interactions to high pressures and temperatures in the diamond anvil cell. We performed a series of experiments to determine solubilities of Cu and Ni at elevated pressure and temperature conditions relevant to ore-formation.

  16. PROJECT MANGEMENT PLAN EXAMPLES Project Organization Examples

    Office of Environmental Management (EM)

    Organization Examples Example 8 4.0 PROJECT ORGANIZATION Chapter 4.0 describes the principle project organizations, including their responsibilities and relationships. Other organizations, that have an interest in the project, also are described. 4.1 Principal Project Organizations and Responsibilities The management organization for the 324/327 Buildings Stabilization/Deactivation Project represents a partnership between four principal project organizations responsible for the project. The four

  17. Laser isotope separation by multiple photon absorption

    DOE Patents [OSTI]

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  18. Principles of isotope geology. Second edition

    SciTech Connect (OSTI)

    Faure, G.

    1986-01-01

    This is a text in isotope geology/geoscience that integrates material taught in various courses into a unified picture of the earth sciences. It presents an exposition of the principles used in the interpretation of isotopic data and shows how such interpretations apply to the solution of geological problems. References up to 1985 are included with chapters in this edition. New chapters on Sm-Nd, Lu-Hf Re-Os, and K-Ca decay schemes and cosmogenic radionuclides have been added. Data summaries and references have been expanded.

  19. Isotopic abundance in atom trap trace analysis

    DOE Patents [OSTI]

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  20. Laser isotope separation by multiple photon absorption

    DOE Patents [OSTI]

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1987-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  1. Laser isotope separation by multiple photon absorption

    DOE Patents [OSTI]

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1977-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  2. Integrated Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Integrated Projects Integrated Projects To maximize overall system efficiencies, reduce costs, and optimize component development, optimized integrated hydrogen and fuel cell systems must be developed and validated. Novel new approaches such as Power Parks, which "marry" the transportation and electricity generation markets in synergistic ways, and integrated renewable hydrogen production systems, which combine electrolysis powered by wind, solar, and other

  3. Costilla County Biodiesel Pilot Project

    SciTech Connect (OSTI)

    Doon, Ben; Quintana, Dan

    2011-08-25

    The Costilla County Biodiesel Pilot Project has demonstrated the compatibility of biodiesel technology and economics on a local scale. The project has been committed to making homegrown biodiesel a viable form of community economic development. The project has benefited by reducing risks by building the facility gradually and avoiding large initial outlays of money for facilities and technologies. A primary advantage of this type of community-scale biodiesel production is that it allows for a relatively independent, local solution to fuel production. Successfully using locally sourced feedstocks and putting the fuel into local use emphasizes the feasibility of different business models under the biodiesel tent and that there is more than just a one size fits all template for successful biodiesel production.

  4. Ion laser isotope enrichment by photo-predissociation of formaldehyde

    DOE Patents [OSTI]

    Marling, John B.

    1977-06-17

    Enrichment of carbon, hydrogen and/or oxygen isotopes by means of isotopically selective photo-predissociation of formaldehyde is achieved by irradiation with a fixed frequency ion laser, specifically, a neon, cadmium, or xenon ion laser.

  5. Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility...

    Office of Environmental Management (EM)

    Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 The ...

  6. The plasma centrifuge: A compact, low cost, stable isotope separator. Phase 2 final technical report, September 15, 1991--September 14, 1995

    SciTech Connect (OSTI)

    Guss, W.

    1996-09-05

    Enriched stable isotopes are required for production of radionuclides as well as for research and diagnostic uses. Science Research Laboratory (SRL) has developed a plasma centrifuge for moderate throughput of enriched stable isotopes, such as {sup 13}C, {sup 17}O, {sup 18}O, and {sup 203}Tl, for medical as well as other applications. Dwindling isotope stocks have restricted the use of enriched isotopes and their associated labeled organic molecules in medical imaging to very few research facilities because of high costs of isotope separation. With the introduction of the plasma centrifuge separator, the cost per separated gram of even rarely occurring isotopes ({le} 1% natural abundance) is potentially many times lower than with other separation technologies (cryogenic distillation and calutrons). The centrifuge is a simple, robust, pulsed electrical discharge device that has successfully demonstrated isotope separation of small (mg) quantities of {sup 26}Mg. Based on the results of the Phase 2 program, modest enhancements to the power supplies and cooling systems, a centrifuge separator will have high repetition rate (60 pps) and high duty cycle (60%) to produce in one month kilogram quantities of highly enriched stable isotopes. The centrifuge may be used in stand-alone operation or could be used as a high-throughput pre-separation stage with calutrons providing the final separation.

  7. MHK Projects/Manchac Point Project | Open Energy Information

    Open Energy Info (EERE)

    el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...

  8. MHK Projects/Claiborne Island Project | Open Energy Information

    Open Energy Info (EERE)

    el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...

  9. MHK Projects/Point Pleasant Project | Open Energy Information

    Open Energy Info (EERE)

    el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...

  10. MHK Projects/College Point Project | Open Energy Information

    Open Energy Info (EERE)

    bel":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St James, LA Project StateProvince Louisiana Project Country United States Project Resource...

  11. Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid

    DOE Patents [OSTI]

    Michaels, E.D.

    1981-02-25

    A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

  12. Isotopic Analysis- Rock At Coso Geothermal Area (1984) | Open...

    Open Energy Info (EERE)

    Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique...

  13. Mapping quadrupole collectivity in the Cd isotopes: The breakdown...

    Office of Scientific and Technical Information (OSTI)

    ... LIFETIME; MEV RANGE; NUCLEAR POTENTIAL; SILVER 112; SPHERICAL CONFIGURATION; SPIN; ... PROPERTIES; POTENTIALS; RADIOISOTOPES; SILVER ISOTOPES; SPECTROSCOPY Word Cloud More ...

  14. FUSRAP Project

    Office of Legacy Management (LM)

    Project 23b 14501 FUSRAP TECHNICAL BULLETIN N O . - R 3 v . L DATE: 1.2 9-99 SUBJECT : Pr.pec.d BY T r m L u d Approval Summary of the results for the Springdale characterization activities performed per WI-94-015, Rev. 0. TUO separate radiological characterization surveys and a limited cherical characterization survey were performed on the Springdale Site in Octcjer and December, 1993. The design of the radiological surveys were to supplement and define existing ORNL surveys. The limited

  15. Final Progress Report: Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes Feasibility Study

    SciTech Connect (OSTI)

    Rawool-Sullivan, Mohini; Bounds, John Alan; Brumby, Steven P.; Prasad, Lakshman; Sullivan, John P.

    2012-04-30

    This is the final report of the project titled, 'Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes,' PMIS project number LA10-HUMANID-PD03. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). It summarizes work performed over the FY10 time period. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). Human analysts begin analyzing a spectrum based on features in the spectrum - lines and shapes that are present in a given spectrum. The proposed work was to carry out a feasibility study that will pick out all gamma ray peaks and other features such as Compton edges, bremsstrahlung, presence/absence of shielding and presence of neutrons and escape peaks. Ultimately success of this feasibility study will allow us to collectively explain identified features and form a realistic scenario that produced a given spectrum in the future. We wanted to develop and demonstrate machine learning algorithms that will qualitatively enhance the automated identification capabilities of portable radiological sensors that are currently being used in the field.

  16. PORTNUS Project

    SciTech Connect (OSTI)

    Loyal, Rebecca E.

    2015-07-14

    The objective of the Portunus Project is to create large, automated offshore ports that will the pace and scale of international trade. Additionally, these ports would increase the number of U.S. domestic trade vessels needed, as the imported goods would need to be transported from these offshore platforms to land-based ports such as Boston, Los Angeles, and Newark. Currently, domestic trade in the United States can only be conducted by vessels that abide by the Merchant Marine Act of 1920 – also referred to as the Jones Act. The Jones Act stipulates that vessels involved in domestic trade must be U.S. owned, U.S. built, and manned by a crew made up of U.S. citizens. The Portunus Project would increase the number of Jones Act vessels needed, which raises an interesting economic concern. Are Jones Act ships more expensive to operate than foreign vessels? Would it be more economically efficient to modify the Jones Act and allow vessels manned by foreign crews to engage in U.S. domestic trade? While opposition to altering the Jones Act is strong, it is important to consider the possibility that ship-owners who employ foreign crews will lobby for the chance to enter a growing domestic trade market. Their success would mean potential job loss for thousands of Americans currently employed in maritime trade.

  17. Project Reports for Penobscot Tribe- 2005 Project

    Broader source: Energy.gov [DOE]

    The Penobscot Nation includes 2,261 members and land holdings of 118,885 acres in various parcels located throughout northern, eastern, and western Maine, including rights to waters of the Penobscot River and many of its tributaries. The tribe is located in a region that has both a cold, harsh climate and very high energy costs. The objectives of the project are to develop an energy vision that in turn will lead to a more detailed, prioritized, long-term strategic plan. Two principle objectives are: (1) for the plan to address the cost burden of their current energy situation and explore ways to make existing tribal public facilities and private residences more energy efficient, and (2) for the plan to identify renewable energy development and production opportunities, always mindful of environmental impacts.

  18. Final report on isotope tracer investigations in the Forebay of the Orange County groundwater basin.

    SciTech Connect (OSTI)

    Davisson, M; Woodside, G

    2003-12-13

    California is currently faced with some critical decisions about water resource infrastructure development in highly urbanized regions, whose outcome will dictate the future long-term viability of plentiful water. Among these is developing and safely implementing the reuse of advanced treated waste water. One of the most reliable strategies for this water resource is its indirect reuse via groundwater recharge and storage, with particular emphasis on supplementing annual water demand or during drought relief. The Orange County Water District (District) is currently implementing the first phase of a large-scale water reuse project that will advance-treat up to 60 million gallons per day of waste water and recharge it into existing percolation basins in the Forebay region of the Orange County groundwater basin. In order for the District to protect public health, the fate and potability of this recharged waste water needs to be understood. In particular, the direction and rates of flow into underlying aquifers need to be characterized so that changes in water quality can be quantified between the recharge basins and points of production. Furthermore, to ensure compliance to California Department of Health Services (DHS) draft regulations, the direction and rate of recharged waste water from these basins need to be understood to sufficient detail that small mixtures can be delineated in monitoring and production wells. Under proposed DHS guidelines, consumptive use of recycled water is permissive only if its residence time in an aquifer exceeds a specified six-month time-frame. DHS guidelines also limit the percentage of recycled water at production wells. However, attaining such detail using current hydrogeological and computer-assisted modeling tools is either cost-prohibitive or results in uncertainties too large to achieve regulatory confidence. To overcome this technical barrier, the District funded Lawrence Livermore National Laboratory (LLNL) from 1995-2001 to directly measure groundwater ages and perform two artificial tracer studies using isotope methods to quantify flowpath directions, groundwater residence times, and the rate and extent of recharge water and groundwater mixing. In addition, Jordan Clark at University of California, Santa Barbara also performed an artificial tracer experiment using sulfur-hexafluoride, whose results have been integrated into the LLNL findings.

  19. Chemical and isotopic kinetics of sulfate reduction by organic matter under hydrothermal conditions

    SciTech Connect (OSTI)

    Kaiser, C.J.

    1988-01-01

    This study investigated the feasibility of nonbacterial sulfate reduction by organic matter in geologic environments. Sulfate is reduced by dextrose under acidic conditions at temperatures of 230-270 C. Reaction products include sulfide and organic-sulfur compounds; sulfite, thiosulfate and elemental sulfur were not detected. The rate law for the initial one- or two-electron reduction of sulfate at 250C is first-order in bisulfate and about one-half-order in initial dextrose concentration, and shows a very strong dependence on pH. The kinetics of sulfate reduction by fructose at 250C are virtually the same. The lack of sulfate reduction by formaldehyde, methanol, ethanol and acetic acid at 250 C indicates that the reducing power of dextrose and fructose cannot be attributed to carbonyl, carboxyl or hydroxyl functional groups. The form of the rate law for sulfate reduction by dextrose and the presence of an induction period rather suggest that the initial reduction of sulfate occurs with free radicals derived from the thermal decomposition of the hexoses or their alteration products. The inferred sulfate-reduction reaction mechanism suggest that aqueous sulfate may be reduced to sulfide in geologic environments such as deep sedimentary basins. The observed acid-catalysis of the reaction in the laboratory may be supplanted by clay-mineral catalysis in geologic environments. Sulfur isotopes are fractionated during the reduction of sulfate by dextrose under hydrothermal conditions. Computer simulations of the isotopic evolution of the experiments suggest that sulfate-sulfide isotopic exchange largely controls the isotopic composition of sulfate and sulfide. The extent of isotopic fractionation due solely to sulfate reduction thus cannot be determined from the experiments

  20. Major manufacturing and mining investment projects

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This book lists manufacturing and mining investment projects with development costs of $5 million or more. Manufacturing projects are classified in accordance with the Australian Bureau of Statistics' Australian Standard Industrial Classification (ASIC) and mining projects by broad mineral categories. The book includes information on the nature of each project, its location and timing, the company of joint venture name, whether the investment is at a new site or at an existing site, the type of product, the value of the annual output, production, employment, past and future costs and the composition (structure and plant) of the investment.