Powered by Deep Web Technologies
Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ISOTOPE FRACTIONATION Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. The  

E-Print Network (OSTI)

for the utilization of stable isotopes in geology, geochemistry, biogeochemistry, paleoceanography and elsewhere____________________________ ISOTOPE FRACTIONATION ____________________________ Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. The term `isotope

Zeebe, Richard E.

2

Advanced Mass Spectrometers for Hydrogen Isotope Analyses  

DOE Green Energy (OSTI)

This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

Chastagner, P.

2001-08-01T23:59:59.000Z

3

Compact hydrogen/helium isotope mass spectrometer  

DOE Patents (OSTI)

The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM); Scime, Earl E. (Morgantown, WV)

1996-01-01T23:59:59.000Z

4

Stable Isotope, Site-Specific Mass Tagging For Protein Identification  

NLE Websites -- All DOE Office Websites (Extended Search)

Stable Isotope, Site-Specific Mass Tagging For Protein Stable Isotope, Site-Specific Mass Tagging For Protein Identification Stable Isotope, Site-Specific Mass Tagging For Protein Identification Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. Available for thumbnail of Feynman Center (505) 665-9090 Email Stable Isotope, Site-Specific Mass Tagging For Protein Identification Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. A unique identification is, however, heavily

5

PYRO: New capability for isotopic mass tracking in pyroprocess simulation  

SciTech Connect

A new computational code package called PYRO has been developed to support the IFR fuel recycle demonstration project in the HFEF/S facility at ANL-W. The basic pyrochemical code PYRO1-1 models the atomic mass flows and phase compositions of 48 essential chemical elements involved in the pyroprocess. It has been extended to PYRO1-2 by linking with the ORIGEN code to track more than 1000 isotopic species, their radioactive decays, and related phenomena. This paper first describes the pyroprocess to be modeled and the pyrochemical capability that has been implemented in PYRO1-1, and then gives a full account on the algorithm of extending it to PYRO1-2 for isotopic mass tracking. Results from several scoping and simulation runs will be discussed to illustrate the significance of modeling in-process radioactive decays. 16 refs., 8 figs., 2 tabs.

Liaw, J.R.; Ackerman, J.P.

1990-01-01T23:59:59.000Z

6

Photon burst mass spectrometry--ultrasensitive detection of rare isotopes  

SciTech Connect

Progress is reported on the development of a new technique for measurement of trace levels of radioisotopes which is based on fluorescence detection of output from a mass spectrometer. Significant achievements include the observation of fluorescence and burst signals from Kr isotopes, including enriched samples of {sup 85}Kr with a 4-collector system. An abundance sensitivity is demonstrated with {sup 83}Kr and {sup 85}Kr.

Hansen, C.S.; Pan, X.J.; Fairbank, W.M. Jr. [Colorado State Univ., Fort Collins, CO (United States). Physics Dept.; Oona, H.; Chamberlin, E.P.; Nogar, N.S.; Fearey, B.L. [Los Alamos National Lab., NM (United States)

1995-02-01T23:59:59.000Z

7

New Precision Mass Measurements of Neutron-Rich Calcium and Potassium Isotopes and Three-Nucleon Forces  

Science Conference Proceedings (OSTI)

We present precision Penning trap mass measurements of neutron-rich calcium and potassium isotopes in the vicinity of neutron number N=32. Using the TITAN system, the mass of 51K was measured for the first time, and the precision of the 51,52Ca mass values were improved significantly. The new mass values show a dramatic increase of the binding energy compared to those reported in the atomic mass evaluation. In particular, 52Ca is more bound by 1.74 MeV, and the behavior with neutron number deviates substantially from the tabulated values. An increased binding was predicted recently based on calculations that include three-nucleon (3N) forces. We present a comparison to improved calculations, which agree remarkably with the evolution of masses with neutron number, making neutron-rich calcium isotopes an exciting region to probe 3N forces.

Gallant, A. T. [TRIUMF, University of British Columbia; Bale, J. C. [TRIUMF, University of British Columbia/Simon Fraser University-Canada; Brunner, T. [TRIUMF, University of British Columbia; Chowdhury, U. [TRIUMF, University of British Columbia/ University of Manitoba-Canada; Ettenauer, S. [TRIUMF, University of British Columbia; Lennarz, A. [TRIUMF, University of British Columbia/Westfälische Wilhelms-Universität-Germany; Robertson, D. [TRIUMF, University of British Columbia; Simon, V. V. [TRIUMF-Canada/Ruprecht-Karls-Universität Heidelberg/Max-Planck-Inst.-Heidelberg, Germany; Chaudhuri, A. [TRIUMF, University of British Columbia; Holt, J. D. [UTK/ORNL; Kwiatkowski, A. A. [TRIUMF, University of British Columbia; Mané, E. [TRIUMF, University of British Columbia; Menéndez, J. [Inst. für Kernphysik, Tech. Univ. Darmstadt-Germany/ExtreMe Matter Inst., GSI-Darmstadt; Schultz, B. E. [TRIUMF, University of British Columbia; Simon, M. C. [TRIUMF, University of British Columbia; Andreoiu, C. [Simon Fraser University, Canada; Delheij, P. [TRIUMF, University of British Columbia; Pearson, M. [TRIUMF, University of British Columbia; Savajols, H. [GANIL, Caen cedex, France; Schwenk, A. [Inst. für Kernphysik, Tech. Univ. Darmstadt-Germany/ExtreMe Matter Inst., GSI-Darmstadt; Dilling, J. [TRIUMF, University of British Columbia

2012-01-01T23:59:59.000Z

8

New capability for isotopic mass tracking in pyroprocess simulation  

Science Conference Proceedings (OSTI)

In support of the Integral Fast Reactor fuel recycle demonstration project at Argonne's Hot Fuel Examination Facility-South (HFEF/S) facility, a new computational code package called PYRO has been developed. The basic PYRO code (version 1-1) models the atomic mass flows and phase compositions in the electrorefiner (pyrochemical reprocessing vessel). It has been extended in version 1-2 to include tracking of {approximately}800 isotopic masses, their radioactive decay, and related phenomena. In a demonstration simulation, the processing of 24 batches of spent Experimental Breeder Reactor II(EBR-II) U-10% Zr driver fuel (burnup {approximately}8%) containing 20 kg of uranium per batch was modeled.

Liaw, J.R.; Ackerman, J.P.

1989-01-01T23:59:59.000Z

9

Hydrogen-Isotope Mass-Spectrometer Evaluation Program. Bimonthly progress report, July/September 1982  

SciTech Connect

The joint SRL-SRP Hydrogen Isotope Mass Spectrometer Evaluation Program was undertaken to: (1) evaluate a prototype hydrogen isotope mass spectrometer that was developed for the Mass Spectrometer Technical Group by VG-Isotopes, Ltd., and (2) obtain sufficient data to permit SRP personnel to specify the mass spectrometes that will be purchased under Schedule 44 Budget Project 81-SR-010 to replace obsolete mass spectrometers in Buildings 232-H and 224-H.

Chastagner, P.; Daves, H.L.; Hess, W.B.

1982-01-01T23:59:59.000Z

10

Raman spectroscopic and mass spectrometric investigations of the hydrogen isotopes and isotopically labelled methane  

Science Conference Proceedings (OSTI)

Suitable analytical methods must be tested and developed for monitoring the individual process steps within the fuel cycle of a fusion reactor and for tritium accountability. The utility of laser-Raman spectroscopy accompanied by mass spectrometry with an Omegatron was investigated using the analysis of all hydrogen isotopes and isotopically labeled methanes as an example. The Omegatron is useful for analyzing all hydrogen isotopes mixed with the stable helium isotopes. The application of this mass spectrometer were demonstrated by analyzing mixtures of deuterated methanes. In addition, it was employed to study the radiochemical Witzbach exchange reaction between tritium and methanes. A laser-Raman spectrometer was designed for analysis of tritium-containing gases and was built from individual components. A tritium-compatible, metal-sealed Raman cuvette having windows with good optical properties and additional means for measuring the stray light was first used successfully in this work. The Raman spectra of the hydrogen isotopes were acquired in the pure rotation mode and in the rotation-vibration mode and were used for on. The deuterated methanes were measured by Raman spectroscopy, the wavenumbers determined were assigned to the corresponding vibrations, and the wavenumbers for the rotational fine-structure were summarized in tables. The fundamental Vibrations of the deuterated methanes produced Witzbach reactions were detected and assigned. The fundamental vibrations of the molecules were obtained with Raman spectroscopy for the first time in this work. The @-Raman spectrometer assembled is well suited for the analysis of tritium- containing gases and is practical in combination with mass spectrometry using an Omegatron, for studying gases used in fusion.

Jewett, J.R., Fluor Daniel Hanford

1997-02-24T23:59:59.000Z

11

Seven Channel Multi-collector Isotope Ratio Mass Spectrometer  

Science Conference Proceedings (OSTI)

A new magnetic sector mass spectrometer that utilizes seven full-sized discrete dynode electron multipliers operating simultaneously has been designed, constructed and is in preliminary testing. The instrument utilizes a newly developed ion dispersion lens that enables the mass dispersed individual isotope beams to be separated sufficiently (35 mm) to allow a full-sized discrete dynode pulse counting multiplier to be used for each beam. The ion dispersion lens is a two element electrostatic 90 degree sector device that causes the beam-to-beam dispersion to increase faster than the intra-beam dispersion. Each multiplier is contained in an isolated case with a deflector/condenser lens at the entrance. A 9-sample filament cartridge is mounted on a micro-manipulator two-axis stage that enables adjustment of the filament position with 10 micron resolution within the ion lens. Results of initial testing with actinides will be presented.

Anthony D. Appelhans

2008-07-01T23:59:59.000Z

12

Occupation-number-based energy functional for nuclear masses  

Science Conference Proceedings (OSTI)

We develop an energy functional with shell-model occupations as the relevant degrees of freedom and compute nuclear masses across the nuclear chart. The functional is based on Hohenberg-Kohn theory with phenomenologically motivated terms. A global fit of the 17-parameter functional to 2049 nuclear masses yields a root-mean-square deviation of =1.31 MeV. Nuclear radii are computed within a model that employs the resulting occupation numbers.

Bertolli, Michael G. [University of Tennessee, Knoxville (UTK); Papenbrock, Thomas F [ORNL; Wild, S. M. [Argonne National Laboratory (ANL)

2012-01-01T23:59:59.000Z

13

Occupation number-based energy functional for nuclear masses  

E-Print Network (OSTI)

We develop an energy functional with shell-model occupations as the relevant degrees of freedom and compute nuclear masses across the nuclear chart. The functional is based on Hohenberg-Kohn theory with phenomenologically motivated terms. A global fit of the 17-parameter functional to nuclear masses yields a root-mean-square deviation of \\chi = 1.31 MeV. Nuclear radii are computed within a model that employs the resulting occupation numbers.

Bertolli, M; Wild, S

2011-01-01T23:59:59.000Z

14

Occupation number-based energy functional for nuclear masses  

E-Print Network (OSTI)

We develop an energy functional with shell-model occupations as the relevant degrees of freedom and compute nuclear masses across the nuclear chart. The functional is based on Hohenberg-Kohn theory with phenomenologically motivated terms. A global fit of the 17-parameter functional to nuclear masses yields a root-mean-square deviation of \\chi = 1.31 MeV. Nuclear radii are computed within a model that employs the resulting occupation numbers.

M. Bertolli; T. Papenbrock; S. Wild

2011-10-19T23:59:59.000Z

15

January 28, 2011 Kinetic Isotope Effects Predicted Correctly for a Mass Ratio of 36  

E-Print Network (OSTI)

January 28, 2011 Kinetic Isotope Effects Predicted Correctly for a Mass, and it has chemical properties very similar to a hydrogen atom, but very large), and the dynamics was thermally averaged to yield temperature-dependent chemical reaction rate

Truhlar, Donald G

16

Isotopic yield measurement in the heavy mass region for {sup 239}Pu thermal neutron induced fission  

SciTech Connect

Despite the huge number of fission yield data available in the different evaluated nuclear data libraries, such as JEFF-3.1.1, ENDF/B-VII.0, and JENDL-4.0, more accurate data are still needed both for nuclear energy applications and for our understanding of the fission process itself. It is within the framework of this that measurements on the recoil mass spectrometer Lohengrin (at the Institut Laue-Langevin, Grenoble, France) was undertaken, to determine isotopic yields for the heavy fission products from the {sup 239}Pu(n{sub th},f) reaction. In order to do this, a new experimental method based on {gamma}-ray spectrometry was developed and validated by comparing our results with those performed in the light mass region with completely different setups. Hence, about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared to that previously available in the nuclear data libraries. In addition, for some fission products, a strongly deformed ionic charge distribution compared to a normal Gaussian shape was found, which was interpreted as being caused by the presence of a nanosecond isomeric state. Finally, a nuclear charge polarization has been observed in agreement, with the one described on other close fissioning systems.

Bail, A.; Serot, O.; Mathieu, L.; Litaize, O.; Materna, T.; Koester, U.; Faust, H.; Letourneau, A.; Panebianco, S. [CEA, DEN-Cadarache, F-13108 Saint-Paul-lez-Durance (France); Institut Laue Langevin, 6 rue Jules Horowitz, B.P. 156, F-38042, Grenoble (France); CEA, DSM-Saclay, IRFU/SPhN, F-91191 Gif-sur-Yvette (France)

2011-09-15T23:59:59.000Z

17

Correlations of experimental isotope shifts with spectroscopic and mass observables  

Science Conference Proceedings (OSTI)

Experimental differential observables relating to mean square charge radii, spectroscopic, and mass observables of even-even nuclei are presented for different regions in the nuclear chart. They exhibit remarkable correlations, not heretofore recognized, that provide a new perspective on structural evolution, especially in exotic nuclei. This can also be a guide for future measurements of charge radii, spectroscopic observables, and masses, as well as for future theoretical approaches.

Cakirli, R. B. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Department of Physics, University of Istanbul, Istanbul (Turkey); Casten, R. F. [Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520 (United States); Blaum, K. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany)

2010-12-15T23:59:59.000Z

18

Secondary Ionization Mass Spectrometric Analysis of Impurity Element Isotope Ratios in Nuclear Reactor Materials  

Science Conference Proceedings (OSTI)

Secondary ion mass spectrometry (SIMS) analysis has been used to measure isotope ratios of selected impurity elements in irradiated reactor materials. Samples of reactor materials such as graphite or aluminum alloys are obtained from fuel channels or supporting materials. During reactor operations and fuel burn up, some isotopic abundances change due to nuclear reactions and provide sensitive indicators of neutron fluence. The rate of change is related to cross section for a particular isotope. Different isotopes can be used as indicators of burn up during different stages in the reactor operating history. Isotope ratios of B are useful indicators for low burnup stages early in reactor operations, Ti isotope ratios are useful at later burn up stages, and Cl isotope ratios are useful in both early and later stages. Knowledge of the sample position within the reactor also yields information on the fluence shape or profile. In a sequence of samples from one reactor, 10B/11B ratios decreased from near natural values of 0.25 to blasting, plasma etching, and vacuum furnace treatment.

Gerlach, David C.; Cliff, John B.; Hurley, David E.; Reid, Bruce D.; Little, Winston W.; Meriwether, George H.; Wickham, Anthony J.; Simmons, Tere A.

2006-07-30T23:59:59.000Z

19

ISOTOPES  

E-Print Network (OSTI)

Theory of Isotope Separation as Applied to the Large~scale Production of 235 u National Nuclear Energy

Lederer, C. Michael

2013-01-01T23:59:59.000Z

20

It's Elemental - Isotopes of the Element Rhodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 89 1.5 microseconds Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available...

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

It's Elemental - Isotopes of the Element Promethium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 126 No Data Available Electron Capture (suspected) No Data Available 127 No Data Available Proton Emission...

22

It's Elemental - Isotopes of the Element Niobium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 81 < 200 nanoseconds Electron Capture No Data Available 82 50 milliseconds Electron Capture 100.00% Electron...

23

It's Elemental - Isotopes of the Element Indium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 97 No Data Available Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available...

24

It's Elemental - Isotopes of the Element Cerium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 119 No Data Available Electron Capture (suspected) No Data Available 120 No Data Available Electron Capture...

25

Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy  

Science Conference Proceedings (OSTI)

Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

2009-03-29T23:59:59.000Z

26

Neutron rich Carbon and Oxygen isotopes with an odd number of neutrons  

E-Print Network (OSTI)

We describe odd isotopes as formed of a core plus one neutron. We have calculated the modification of single neutron energies brought by couplings of the neutron with collective $2^+$ phonons in the cores. The results reproduce very well the inversion of $2s$ and $1d_{5/2}$ shells in carbon isotopes up to $^{19}$C while in oxygen isotopes the correction is also large but do not show any inversion in agreement with experiments. The calculated energies are close to the experimental ones in both series of isotopes except in $^{21}$C for the $2s$ state for which our coupling is too weak.

Benoit Laurent; Nicole Vinh Mau

2013-04-02T23:59:59.000Z

27

Intramolecular Isotope Effects for the Study of Reactions with MassTransfer Limitations  

E-Print Network (OSTI)

The research presented provides a method to use the comparison of intermolecular isotope effects vs. the intramolecular isotope effects for the study of reactions in which study of the rate limiting step is ambiguous due to interfering mass transfer effects. The oxidation of unfunctionalized hydrocarbons at mild conditions developed by Sir Derek Barton, the Gif reaction is the model used. The history is provided to demonstrate the relevance of using this model as one which could show the usefulness of this method. Evidence has been provided and used to theorize that the rate limiting step of the reaction may be diffusion of the reactants, not a chemical change. Starting materials were made which would allow for the measurement for both the intermolecular and intramolecular KIE and those values were compared. The results show that there is little difference between the intermolecular and intramolecular KIE, therefore the reaction is not diffusion controlled.

Wagner, Joshua G.

2009-05-01T23:59:59.000Z

28

Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.  

SciTech Connect

Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg equivalents. AMS provides an sensitive, accurate and precise method of measuring drug compounds in biological matrices.

Keck, B D; Ognibene, T; Vogel, J S

2010-02-05T23:59:59.000Z

29

New FORTRAN computer programs to acquire and process isotopic mass spectrometric data: Operator`s manual  

Science Conference Proceedings (OSTI)

This TM is one of a pair that describes ORNL-developed software for acquisition and processing of isotope ratio mass spectral data. This TM is directed at the laboratory analyst. No technical knowledge of the programs and programming is required. It describes how to create and edit files, how to acquire and process data, and how to set up files to obtain the desired results. The aim of this TM is to serve as a utilitarian instruction manual, a {open_quotes}how to{close_quotes} approach rather than a {open_quotes}why?{close_quotes}

Smith, D.H.; McKown, H.S.

1993-09-01T23:59:59.000Z

30

Tandem mass spectrometry for characterization of high-carbon-number geoporphyrins  

Science Conference Proceedings (OSTI)

Geoporphyrins are separated into TCL fractions after being isolated from Boscan oil (West Venezuela) by column chromatography. Analysis of each fraction by electron ionization mass spectrometry identified the porphyrin classes present and their carbon number ranges, but the spectra were extremely complex. Tandem mass spectrometry (MS/MS) allowed selection of molecular ions of individual carbon number porphyrins of the DPEP and etio types for fragmentation by collisionally activated dissociation. Comparison of their daughter and neutral loss spectra with those of porphyrin standards provided the first structural information on individual high-carbon-number geoporphyrins (>C/sub 33/). This information is helpful in the study of their geologic evolution and suggests the potential for using MS/MS data on high-carbon-number geoporphyrins as a parameter in oil exploration. Metalated and demetalated porphyrins of the same carbon number produced similar spectra, suggesting that samples may require less treatment for analysis by MS/MS than by conventional MS.

Johnson, J.V.; Britton, E.D.; Yost, R.A.; Quirke, J.M.E.; Cuesta, L.L.

1986-06-01T23:59:59.000Z

31

Definition: Isotopic Analysis | Open Energy Information  

Open Energy Info (EERE)

Analysis Analysis Jump to: navigation, search Dictionary.png Isotopic Analysis Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.[1] View on Wikipedia Wikipedia Definition Isotope analysis is the identification of isotopic signature, the distribution of certain stable isotopes and chemical elements within chemical compounds. This can be applied to a food web to make it possible to draw direct inferences regarding diet, trophic level, and subsistence. Isotope ratios are measured using mass spectrometry, which separates the different isotopes of an element on the basis of their mass-to-charge

32

Short-lived isotopes and 23Na production in low mass AGB Stars  

E-Print Network (OSTI)

We discuss the synthesis of some short-lived isotopes and of 23Na in thermally pulsing AGB stars with initial mass of 2 Msun and two different metallicities (Z=1.5e-2, corresponding to the metal amount in the Sun, and Z=1e-4), representative of disk and halo stars, respectively. The different nucleosynthesis channels are illustrated in some details. As previously found, the 13C formed after each third dredge up episode is usually completely consumed by alpha captures before the onset of the subsequent thermal pulse, releasing neutrons. This is the most efficient neutron source in low mass AGB stars and the resulting s-process nucleosynthesis is at the origin of the solar main component. However, in the solar metallicity model, we find that the temperature of the first formed 13C pocket remains too low during the interpulse and the 13C is not completely burnt, being partially engulfed in the convective zone generated by the following thermal pulse. Due to the rapid convective mixing in this zone, the 13C is exposed to a larger temperature and a nucleosynthesis characterized by a relatively high neutron density develops. The main effect is the strong enhancement of isotopes located beyond some critical branching in the neutron-capture path, like 60Fe, otherwise only marginally produced during a standard s-process nucleosynthesis.

S. Cristallo; R. Gallino; O. Straniero; L. Piersanti; I. Dominguez

2006-06-15T23:59:59.000Z

33

Assessment of Non-traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities: Annual Report Year 2  

Science Conference Proceedings (OSTI)

The objective of this work is to identify isotopic ratios suitable for analysis via mass spectrometry that distinguish between commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium, and products from nuclear weapons explosions. Methods will also be determined to distinguish the above from medical and industrial radionuclide sources. Mass spectrometry systems will be identified that are suitable for field measurement of such isotopes in an expedient manner. Significant progress has been made with this project within the past year: (1) Isotope production from commercial nuclear fuel cycles and nuclear weapons fuel cycles have been modeled with the ORIGEN and MCNPX codes. (2) MCNPX has been utilized to calculate isotopic inventories produced in a short burst fast bare sphere reactor (to approximate the signature of a nuclear weapon). (3) Isotopic ratios have been identified that are good for distinguishing between commercial and military fuel cycles as well as between nuclear weapons and commercial nuclear fuel cycles. (4) Mass spectrometry systems have been assessed for analysis of the fission products of interest. (5) A short-list of forensic ratios have been identified that are well suited for use in portable mass spectrometry systems.

Biegalski, S; Buchholz, B

2009-08-26T23:59:59.000Z

34

ISOTOPIC MASS FRACTIONATION OF SOLAR WIND: EVIDENCE FROM FAST AND SLOW SOLAR WIND COLLECTED BY THE GENESIS MISSION  

Science Conference Proceedings (OSTI)

NASA's Genesis space mission returned samples of solar wind collected over {approx}2.3 years. We present elemental and isotopic compositions of He, Ne, and Ar analyzed in diamond-like carbon targets from the slow and fast solar wind collectors to investigate isotopic fractionation processes during solar wind formation. The solar wind provides information on the isotopic composition for most volatile elements for the solar atmosphere, the bulk Sun and hence, on the solar nebula from which it formed 4.6 Ga ago. Our data reveal a heavy isotope depletion in the slow solar wind compared to the fast wind composition by 63.1 {+-} 2.1 per mille for He, 4.2 {+-} 0.5 per mille amu{sup -1} for Ne and 2.6 {+-} 0.5 per mille amu{sup -1} for Ar. The three Ne isotopes suggest that isotopic fractionation processes between fast and slow solar wind are mass dependent. The He/H ratios of the collected slow and fast solar wind samples are 0.0344 and 0.0406, respectively. The inefficient Coulomb drag model reproduces the measured isotopic fractionation between fast and slow wind. Therefore, we apply this model to infer the photospheric isotopic composition of He, Ne, and Ar from our solar wind data. We also compare the isotopic composition of oxygen and nitrogen measured in the solar wind with values of early solar system condensates, probably representing solar nebula composition. We interpret the differences between these samples as being due to isotopic fractionation during solar wind formation. For both elements, the magnitude and sign of the observed differences are in good agreement with the values predicted by the inefficient Coulomb drag model.

Heber, Veronika S.; Baur, Heinrich; Wieler, Rainer [Institute for Geochemistry and Petrology, ETH Zurich, Clausiusstrasse 25, CH-8092 Zurich (Switzerland); Bochsler, Peter [Physikalisches Institut, Universitaet Bern, Sidlerstasse 5, CH-3012 Bern (Switzerland); McKeegan, Kevin D. [Department of Earth and Space Sciences, University of California Los Angeles, 595 Charles Young Drive East, Box 951567, Los Angeles, CA 90095-1567 (United States); Neugebauer, Marcia [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092 (United States); Reisenfeld, Daniel B. [Department of Physics and Astronomy, University of Montana, Missoula, MT 59812 (United States); Wiens, Roger C., E-mail: heber@ess.ucla.edu [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2012-11-10T23:59:59.000Z

35

Systematics of magnetic dipole strength in the stable even-mass Mo isotopes  

SciTech Connect

The nuclides {sup 92}Mo, {sup 98}Mo, and {sup 100}Mo have been studied in photon-scattering experiments by using bremsstrahlung produced at an electron energy of 6 MeV at the ELBE accelerator of the Forschungszentrum Rossendorf and at electron energies from 3.2 to 3.8 MeV at the Dynamitron accelerator at the University of Stuttgart. Six dipole transitions in {sup 98}Mo and 19 in {sup 100}Mo were observed for the first time in the energy range from 2 to 4 MeV. The experimental results are compared with predictions of the shell model and with predictions of the quasiparticle random-phase approximation (QRPA) in a deformed basis. The latter show significant contributions of isovector-orbital and isovector-spin vibrations. The change of the magnetic dipole strength in the isotopic chain of the even-mass isotopes from {sup 92}Mo to {sup 100}Mo is discussed. The calculations within the QRPA are extrapolated to the particle-separation energies to estimate the possible influence of M1 strength on the stability of the nuclides against photodissociation in cosmic scenarios.

Rusev, G. [Institut fuer Kern- und Hadronenphysik, Forschungszentrum Rossendorf, D-01314 Dresden (Germany); Institute for Nuclear Research and Nuclear Energy, BAS, BG-1784 Sofia (Bulgaria); Schwengner, R.; Doenau, F.; Erhard, M.; Grosse, E.; Junghans, A.R.; Kaeubler, L.; Kosev, K.; Mallion, S.; Schilling, K.D.; Wagner, A. [Institut fuer Kern- und Hadronenphysik, Forschungszentrum Rossendorf, D-01314 Dresden (Germany); Frauendorf, S. [Institut fuer Kern- und Hadronenphysik, Forschungszentrum Rossendorf, D-01314 Dresden (Germany); Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Kostov, L.K. [Institute for Nuclear Research and Nuclear Energy, BAS, BG-1784 Sofia (Bulgaria); Garrel, H. von; Kneissl, U.; Kohstall, C.; Kreutz, M.; Pitz, H.H.; Scheck, M.; Stedile, F. [Institut fuer Strahlenphysik, Universitaet Stuttgart, D-70569 Stuttgart (Germany)] (and others)

2006-04-15T23:59:59.000Z

36

Development of a particle number and particle mass vehicle emissions inventory for an urban fleet  

Science Conference Proceedings (OSTI)

Motor vehicles are major emitters of gaseous and particulate matter pollution in urban areas, and exposure to particulate matter pollution can have serious health effects, ranging from respiratory and cardiovascular disease to mortality. Motor vehicle ... Keywords: Emission factors, Motor vehicle inventory, PM 1, PM 10, PM 2.5, Particle emissions, Particle mass, Particle number, South-East Queensland, Traffic modelling, Transport modelling, Ultrafine particles

Diane U. Keogh; Luis Ferreira; Lidia Morawska

2009-11-01T23:59:59.000Z

37

Short-lived isotopes and 23Na production in low mass AGB Stars  

E-Print Network (OSTI)

We discuss the synthesis of some short-lived isotopes and of 23Na in thermally pulsing AGB stars with initial mass of 2 Msun and two different metallicities (Z=1.5e-2, corresponding to the metal amount in the Sun, and Z=1e-4), representative of disk and halo stars, respectively. The different nucleosynthesis channels are illustrated in some details. As previously found, the 13C formed after each third dredge up episode is usually completely consumed by alpha captures before the onset of the subsequent thermal pulse, releasing neutrons. This is the most efficient neutron source in low mass AGB stars and the resulting s-process nucleosynthesis is at the origin of the solar main component. However, in the solar metallicity model, we find that the temperature of the first formed 13C pocket remains too low during the interpulse and the 13C is not completely burnt, being partially engulfed in the convective zone generated by the following thermal pulse. Due to the rapid convective mixing in this zone, the 13C is ex...

Cristallo, S; Straniero, O; Piersanti, L; Dominguez, I

2006-01-01T23:59:59.000Z

38

Measurement of dissolved neon by isotope dilution using a quadrupole mass spectrometer  

E-Print Network (OSTI)

and finally air. A special technique for sealing in whichsealing end. ple times by reverse isotope dilution with air.

Hamme, Roberta C; Emerson, Steven R

2004-01-01T23:59:59.000Z

39

Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability  

Science Conference Proceedings (OSTI)

Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of {sup 235}U/{sup 238}U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

Isselhardt, B H

2011-09-06T23:59:59.000Z

40

Number  

Office of Legacy Management (LM)

' ' , /v-i 2 -i 3 -A, This dow'at consists ~f--~-_,_~~~p.~,::, Number -------of.-&--copies, 1 Series.,-a-,-. ! 1 THE UNIVERSITY OF ROCHESTER 1; r-.' L INTRAMURALCORRESPONDENCE i"ks' 3 2.. September 25, 1947 Memo.tor Dr. A. H, Dovdy . From: Dr. H. E, Stokinger Be: Trip Report - Mayvood Chemical Works A trip vas made Nednesday, August 24th vith Messrs. Robert W ilson and George Sprague to the Mayvood Chemical F!orks, Mayvood, New Jersey one of 2 plants in the U.S.A. engaged in the production of thorium compounds. The purpose of the trip vas to: l 1. Learn the type of chemical processes employed in the thorium industry (thorium nitrate). 2. Survey conditions of eeosure of personnel associated vith these chemical processes. 3. Obtain samples of atmospheric contaminants in the plant, as

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Altered solar wind- magnetosphere interaction at low Mach numbers: coronal mass ejections  

E-Print Network (OSTI)

We illustrate some fundamental alterations of the solar wind – magnetosphere interaction that occur during low Mach number solar wind. We first show that low Mach number solar wind conditions are often characteristic of coronal mass ejections (CME), and magnetic clouds in particular. We then illustrate the pivotal role of the magnetosheath. This comes from the fact that low Mach number solar wind leads to the formation of a low thermal ? magnetosheath downstream of the bow shock. This property influences magnetic forces and currents, in particular, and in turn alters magnetosheath – magnetosphere coupling. The implications of this unusual regime of interaction have generally been overlooked. Potentially affected phenomena include: (1) asymmetric magnetosheath flows (with substantial enhancements); (2) asymmetric magnetopause and magnetotail shapes; (3) changes in the development of the Kelvin-Helmholtz instability and giant spiral auroral features; (4) variations in the controlling factors of dayside magnetic reconnection; (5) cross polar cap potential saturation and Alfvén wings; and (6) global sawtooth oscillations. Here we examine these phenomena, primarily by use of global magneto-hydrodynamic simulations, and discuss the mechanisms that rule such an altered interaction. We emphasize the fact that all these effects tend to occur simultaneously so as to render the solar wind – magnetosphere interaction drastically different from the more typical high Mach number case. In addition to the more extensively studied inner magnetosphere and magnetotail processes, these effects may have important implications during CME-driven storms at Earth, as well as at other astronomical bodies such as Mercury. 1.

Benoit Lavraud; Joseph E. Borovsky

2009-01-01T23:59:59.000Z

42

Precision mass measurements of very short-lived, neutron-rich Na isotopes using a radiofrequency spectrometer  

E-Print Network (OSTI)

Mass measurements of high precision have been performed on sodium isotopes out to $^{30}$Na using a new technique of radiofrequency excitation of ion trajectories in a homogeneous magnetic field. This method, especially suited to very short-lived nuclides, has allowed us to significantly reduce the uncertainty in mass of the most exotic Na isotopes: a relative error of 5\\audi was achieved for $^{28}$Na having a half-life of only 30.5 ms and 9\\audi for the weakly produced $^{30}$Na. Verifying and minimizing binding energy uncertainties in this region of the nuclear chart is important for clarification of a long standing problem concerning the strength of the $N~=~20$ magic shell closure. These results are the fruit of the commissioning of the new experimental program Mistral.

Lunney, M D; Doubre, H; Henry, S; Monsanglant, C; De Saint-Simon, M; Thibault, C; Toader, C F; Borcea, C; Bollen, G

2001-01-01T23:59:59.000Z

43

It's Elemental - Isotopes of the Element Dysprosium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 138 No Data Available Electron Capture (suspected) No Data Available 139 0.6 seconds Electron Capture No Data...

44

It's Elemental - Isotopes of the Element Antimony  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 103 1.5 microseconds Electron Capture (suspected) No Data Available 104 0.44 seconds Electron Capture 100.00%...

45

DETERMINATION OF 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY  

Science Conference Proceedings (OSTI)

A new method for the determination of {sup 237}Np and Pu isotopes in large soil samples has been developed that provides enhanced uranium removal to facilitate assay by inductively coupled plasma mass spectrometry (ICP-MS). This method allows rapid preconcentration and separation of plutonium and neptunium in large soil samples for the measurement of {sup 237}Np and Pu isotopes by ICP-MS. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via {sup 238}U peak tailing. The method provides enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then transferring Pu to DGA resin for additional purification. The decontamination factor for removal of uranium from plutonium for this method is greater than 1 x 10{sup 6}. Alpha spectrometry can also be applied so that the shorter-lived {sup 238}Pu isotope can be measured successfully. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu and {sup 238}Pu were measured by alpha spectrometry.

Maxwell, S.

2010-07-26T23:59:59.000Z

46

Glossary Term - Isotope  

NLE Websites -- All DOE Office Websites (Extended Search)

Helios Previous Term (Helios) Glossary Main Index Next Term (Joule) Joule Isotope The Three Isotopes of Hydrogen - Protium, Deuterium and Tritium Atoms that have the same number of...

47

RAPID DETERMINATION OF 237 NP AND PU ISOTOPES IN WATER BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY  

Science Conference Proceedings (OSTI)

A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of {sup 237}Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry; a hybrid approach. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4 to 6 hours, and can also be used for emergency response. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu, {sup 238}Pu, and {sup 239}Pu were measured by alpha spectrometry.

Maxwell, S.; Jones, V.; Culligan, B.; Nichols, S.; Noyes, G.

2010-06-23T23:59:59.000Z

48

Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability  

E-Print Network (OSTI)

4.5 Uranium Isotope Ratio Measurements . . . . . .4.32 Uranium sputtered from three U-rich materials of varying uranium isotopic

Isselhardt, Brett Hallen

2011-01-01T23:59:59.000Z

49

Mass number dependence of the Skyrme-force-induced nuclear symmetry energy  

E-Print Network (OSTI)

The global mass dependence of the nuclear symmetry energy and its two basic ingredients due to the mean-level spacing and effective strength of the isovector mean-potential is studied within the Skyrme-Hartree-Fock model. In particular, our study determines the ratio of the surface-to-volume contributions to the nuclear symmetry energy to be ~1.6 and reveals that contributions due to mean-level spacing and effective strength of the isovector mean-potential are almost equal after removing momentum-dependent effects by rescaling them with isoscalar and isovector effective masses, respectively.

M. Rafalski; W. Satula; R. Wyss

2005-11-04T23:59:59.000Z

50

Shape trends and triaxiality in neutron-rich odd-mass Y and Nb isotopes  

E-Print Network (OSTI)

Shape trends and triaxiality in neutron-rich odd-mass Y andseries, following a similar trend in the neighboring even-Fig. 6 follow similar trends over a wide frequency region,

2004-01-01T23:59:59.000Z

51

Characterization of Diesel Fuel by Chemical Separation Combined with Capillary Gas Chromatography (GC) Isotope Ratio Mass Spectrometry (IRMS)  

Science Conference Proceedings (OSTI)

The purpose of this study was to perform a preliminary investigation of compound-specific isotope analysis (CSIA) of diesel fuels to evaluate whether the technique could distinguish between the diesel samples from different sources/locations. The ability to differentiate or correlate diesel samples could be valuable for detecting fuel tax evasion schemes. Two fractionation techniques were used to isolate the n-alkanes from the fuel. Both ?13C and ?D values for the n-alkanes were then determined by CSIA in each sample. Plots of ?D versus ?13C with sample n-alkane points connected in order of increasing carbon number gave well separated clusters with characteristic shapes for each sample. Principal components analysis (PCA) with ?13C, ?D, or combined ?13C and ?D data on the yielded scores plots that could clearly differentiate the samples, thereby demonstrating the potential of this approach for fingerprinting fuel samples using the ?13C and ?D values.

Harvey, Scott D.; Jarman, Kristin H.; Moran, James J.; Sorensen, Christina M.; Wright, Bob W.

2011-09-15T23:59:59.000Z

52

Discovery of {sup 229}Rn and the Structure of the Heaviest Rn and Ra Isotopes from Penning-Trap Mass Measurements  

SciTech Connect

The masses of the neutron-rich radon isotopes {sup 223-229}Rn have been determined for the first time, using the ISOLTRAP setup at CERN ISOLDE. In addition, this experiment marks the first discovery of a new nuclide, {sup 229}Rn, by Penning-trap mass measurement. The new, high-accuracy data allow a fine examination of the mass surface, via the valence-nucleon interaction {delta}V{sub pn}. The results reveal intriguing behavior, possibly reflecting either a N=134 subshell closure or an octupolar deformation in this region.

Neidherr, D.; Boehm, Ch. [Institut fuer Physik, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Audi, G.; Lunney, D.; Minaya-Ramirez, E.; Naimi, S. [CSNSM-IN2P3-CNRS, Universite de Paris Sud, Orsay (France); Beck, D.; Herfurth, F. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH Darmstadt, 64291 Darmstadt (Germany); Blaum, K.; George, S.; Kellerbauer, A. [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Breitenfeldt, M.; Rosenbusch, M.; Schweikhard, L. [Institut fuer Physik, Ernst-Moritz-Arndt-Universitaet, 17487 Greifswald (Germany); Cakirli, R. B. [Institut fuer Kernphysik der Universitaet zu Koeln, 50937 Koeln (Germany); Department of Physics, Istanbul University, Istanbul (Turkey); Casten, R. F. [Institut fuer Kernphysik der Universitaet zu Koeln, 50937 Koeln (Germany); Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520-8124 (United States); Herlert, A.; Kowalska, M. [Physics Department, CERN, 1211 Geneva 23 (Switzerland); Noah, E.; Penescu, L. [Accelerators and Beams Department, CERN, 1211 Geneva 23 (Switzerland)] (and others)

2009-03-20T23:59:59.000Z

53

It's Elemental - Isotopes of the Element Magnesium  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium Sodium Previous Element (Sodium) The Periodic Table of Elements Next Element (Aluminum) Aluminum Isotopes of the Element Magnesium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 24 78.99% STABLE 25 10.00% STABLE 26 11.01% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 19 4.0 picoseconds Double Proton Emission 100.00% 20 90.8 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission ~ 27.00% 21 122 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 32.60% Electron Capture with delayed Alpha Decay < 0.50%

54

It's Elemental - Isotopes of the Element Chlorine  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur Sulfur Previous Element (Sulfur) The Periodic Table of Elements Next Element (Argon) Argon Isotopes of the Element Chlorine [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 35 75.76% STABLE 37 24.24% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 28 No Data Available Proton Emission (suspected) No Data Available 29 < 20 nanoseconds Proton Emission No Data Available 30 < 30 nanoseconds Proton Emission No Data Available 31 150 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.70% 32 298 milliseconds Electron Capture 100.00%

55

It's Elemental - Isotopes of the Element Potassium  

NLE Websites -- All DOE Office Websites (Extended Search)

Argon Argon Previous Element (Argon) The Periodic Table of Elements Next Element (Calcium) Calcium Isotopes of the Element Potassium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 39 93.2581% STABLE 40 0.0117% 1.248×10+9 years 41 6.7302% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 32 No Data Available Proton Emission (suspected) No Data Available 33 < 25 nanoseconds Proton Emission No Data Available 34 < 25 nanoseconds Proton Emission No Data Available 35 178 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.37% 36 342 milliseconds Electron Capture 100.00%

56

It's Elemental - Isotopes of the Element Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Previous Element (Nitrogen) The Periodic Table of Elements Next Element (Fluorine) Fluorine Isotopes of the Element Oxygen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 16 99.757% STABLE 17 0.038% STABLE 18 0.205% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 12 1.139×10-21 seconds Proton Emission No Data Available 13 8.58 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 14 70.620 seconds Electron Capture 100.00% 15 122.24 seconds Electron Capture 100.00% 16 STABLE - - 17 STABLE - - 18 STABLE - - 19 26.88 seconds Beta-minus Decay 100.00%

57

It's Elemental - Isotopes of the Element Gallium  

NLE Websites -- All DOE Office Websites (Extended Search)

Zinc Zinc Previous Element (Zinc) The Periodic Table of Elements Next Element (Germanium) Germanium Isotopes of the Element Gallium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 69 60.108% STABLE 71 39.892% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 56 No Data Available Proton Emission (suspected) No Data Available 57 No Data Available Proton Emission (suspected) No Data Available 58 No Data Available Proton Emission (suspected) No Data Available 59 No Data Available Proton Emission (suspected) No Data Available 60 70 milliseconds Electron Capture 98.40%

58

It's Elemental - Isotopes of the Element Sodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Neon Neon Previous Element (Neon) The Periodic Table of Elements Next Element (Magnesium) Magnesium Isotopes of the Element Sodium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 23 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 18 1.3×10-21 seconds Proton Emission 100.00% 19 < 40 nanoseconds Proton Emission No Data Available 20 447.9 milliseconds Electron Capture with delayed Alpha Decay 20.05% Electron Capture 100.00% 21 22.49 seconds Electron Capture 100.00% 22 2.6027 years Electron Capture 100.00% 23 STABLE - - 24 14.997 hours Beta-minus Decay 100.00%

59

It's Elemental - Isotopes of the Element Neon  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorine Fluorine Previous Element (Fluorine) The Periodic Table of Elements Next Element (Sodium) Sodium Isotopes of the Element Neon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 20 90.48% STABLE 21 0.27% STABLE 22 9.25% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 16 9×10-21 seconds Double Proton Emission 100.00% 17 109.2 milliseconds Electron Capture with delayed Alpha Decay No Data Available Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 18 1.6670 seconds Electron Capture 100.00% 19 17.22 seconds Electron Capture 100.00% 20 STABLE - -

60

It's Elemental - Isotopes of the Element Copper  

NLE Websites -- All DOE Office Websites (Extended Search)

Nickel Nickel Previous Element (Nickel) The Periodic Table of Elements Next Element (Zinc) Zinc Isotopes of the Element Copper [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 63 69.15% STABLE 65 30.85% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 52 No Data Available Proton Emission No Data Available 53 < 300 nanoseconds Electron Capture No Data Available Proton Emission No Data Available 54 < 75 nanoseconds Proton Emission No Data Available 55 27 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 15.0% 56 93 milliseconds Electron Capture 100.00%

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

It's Elemental - Isotopes of the Element Boron  

NLE Websites -- All DOE Office Websites (Extended Search)

Beryllium Beryllium Previous Element (Beryllium) The Periodic Table of Elements Next Element (Carbon) Carbon Isotopes of the Element Boron [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 10 19.9% STABLE 11 80.1% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 6 No Data Available Double Proton Emission (suspected) No Data Available 7 3.255×10-22 seconds Proton Emission No Data Available Alpha Decay No Data Available 8 770 milliseconds Electron Capture 100.00% Electron Capture with delayed Alpha Decay 100.00% 9 8.439×10-19 seconds Proton Emission 100.00% Double Alpha Decay 100.00%

62

It's Elemental - Isotopes of the Element Tungsten  

NLE Websites -- All DOE Office Websites (Extended Search)

Tantalum Tantalum Previous Element (Tantalum) The Periodic Table of Elements Next Element (Rhenium) Rhenium Isotopes of the Element Tungsten [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 180 0.12% >= 6.6×10+17 years 182 26.50% STABLE 183 14.31% > 1.3×10+19 years 184 30.64% STABLE 186 28.43% > 2.3×10+19 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 157 275 milliseconds Electron Capture No Data Available 158 1.25 milliseconds Alpha Decay 100.00% 158m 0.143 milliseconds Isomeric Transition No Data Available Alpha Decay No Data Available 159 7.3 milliseconds Alpha Decay ~ 99.90%

63

It's Elemental - Isotopes of the Element Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Boron Boron Previous Element (Boron) The Periodic Table of Elements Next Element (Nitrogen) Nitrogen Isotopes of the Element Carbon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 12 98.93% STABLE 13 1.07% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 8 1.981×10-21 seconds Proton Emission 100.00% Alpha Decay No Data Available 9 126.5 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 61.60% Electron Capture with delayed Alpha Decay 38.40% 10 19.308 seconds Electron Capture 100.00% 11 20.334 minutes Electron Capture 100.00% 12 STABLE - -

64

It's Elemental - Isotopes of the Element Rhenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Tungsten Tungsten Previous Element (Tungsten) The Periodic Table of Elements Next Element (Osmium) Osmium Isotopes of the Element Rhenium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 185 37.40% STABLE 187 62.60% 4.33×10+10 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 159 No Data Available No Data Available No Data Available 160 0.82 milliseconds Proton Emission 91.00% Alpha Decay 9.00% 161 0.44 milliseconds Proton Emission 100.00% Alpha Decay <= 1.40% 161m 14.7 milliseconds Alpha Decay 93.00% Proton Emission 7.00% 162 107 milliseconds Alpha Decay 94.00% Electron Capture 6.00%

65

It's Elemental - Isotopes of the Element Phosphorus  

NLE Websites -- All DOE Office Websites (Extended Search)

Silicon Silicon Previous Element (Silicon) The Periodic Table of Elements Next Element (Sulfur) Sulfur Isotopes of the Element Phosphorus [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 31 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 24 No Data Available Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available 25 < 30 nanoseconds Proton Emission 100.00% 26 43.7 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission No Data Available 27 260 milliseconds Electron Capture 100.00% Electron Capture with

66

Isotope ratio analysis of actinides, fission products, and geolocators by high-efficiency multi-collector thermal ionization mass spectrometry  

SciTech Connect

A ThermoFisher 'Triton' multi-collector thermal ionization mass spectrometer (MC-TIMS) was evaluated for trace and ultra-trace level isotoperatioanalysis of actinides (uranium, plutonium, and americium), fission products and geolocators (strontium, cesium, and neodymium). Total efficiencies (atoms loaded to ions detected) of up to 0.5-2% for U, Pu, and Am, and 1-30% for Sr, Cs, and Nd can be reported employing resin bead load techniques onto flat ribbon Re filaments or resin beads loaded into a millimeter-sized cavity drilled into a Re rod. This results in detection limits of <0.1 fg (10{sup 4} atoms to 10{sup 5} atoms) for {sup 239-242+244}Pu, {sup 233+236}U, {sup 241-243}Am, {sup 89,90}Sr, and {sup 134,135,137}Cs, and {le} 1 pg for natural Nd isotopes (limited by the chemical processing blank) using a secondary electron multiplier (SEM) or multiple-ion counters (MICs). Relative standard deviations (RSD) as small as 0.1% and abundance sensitivities of 1 x 10{sup 6} or better using a SEM are reported here. Precisions of RSD {approx} 0.01-0.001% using a multi-collector Faraday cup array can be achieved at sub-nanogram concentrations for strontium and neodymium and are suitable to gain crucial geolocation information. The analytical protocols reported herein are of particular value for nuclear forensic and nuclear safeguard applications.

Bürger, Stefan [New Brunswick Laboratory, Argonne, IL; Riciputi, Lee R [Los Alamos National Laboratory (LANL); Bostick, Debra A [ORNL; Turgeon, Steven [University of Alberta, Edmondton, Canada; McBay, Eddie H [ORNL; Lavelle, Mark [ORNL

2009-01-01T23:59:59.000Z

67

Measurement of Trace Uranium Isotopes  

Science Conference Proceedings (OSTI)

The extent to which thermal ionization mass spectrometry (TIMS) can measure trace quantities of 233U and 236U in the presence of a huge excess of natural uranium is evaluated. This is an important nuclear non-proliferation measurement. Four ion production methods were evaluated with three mass spectrometer combinations. The most favorable combinations are not limited by abundance sensitivity; rather, the limitations are the ability to generate a uranium ion beam of sufficient intensity to obtain the required number of counts on the minor isotopes in relationship to detector background. The most favorable situations can measure isotope ratios in the range of E10 if sufficient sample intensity is available. These are the triple sector mass spectrometer with porous ion emitters (PIE) and the single sector mass spectrometer with energy filtering.

Matthew G. Watrous; James E. Delmore

2011-05-01T23:59:59.000Z

68

It's Elemental - Isotopes of the Element Radon  

NLE Websites -- All DOE Office Websites (Extended Search)

Astatine Astatine Previous Element (Astatine) The Periodic Table of Elements Next Element (Francium) Francium Isotopes of the Element Radon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Radon has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 193 1.15 milliseconds Alpha Decay 100.00% 194 0.78 milliseconds Alpha Decay 100.00% 195 6 milliseconds Alpha Decay 100.00% 195m 5 milliseconds Alpha Decay 100.00% 196 4.4 milliseconds Alpha Decay 99.90% Electron Capture ~ 0.10% 197 53 milliseconds Alpha Decay 100.00% 197m 25 milliseconds Alpha Decay 100.00% 198 65 milliseconds Alpha Decay No Data Available

69

It's Elemental - Isotopes of the Element Francium  

NLE Websites -- All DOE Office Websites (Extended Search)

Radon Radon Previous Element (Radon) The Periodic Table of Elements Next Element (Radium) Radium Isotopes of the Element Francium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Francium has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 199 12 milliseconds Alpha Decay > 0.00% Electron Capture No Data Available 200 49 milliseconds Alpha Decay 100.00% 201 62 milliseconds Alpha Decay 100.00% 201m 19 milliseconds Alpha Decay 100.00% 202 0.30 seconds Alpha Decay 100.00% 202m 0.29 seconds Alpha Decay 100.00% 203 0.55 seconds Alpha Decay <= 100.00% 204 1.8 seconds Alpha Decay 92.00%

70

Accurate determination of Curium and Californium isotopic ratios by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in 248Cm samples for transmutation studies  

Science Conference Proceedings (OSTI)

The French Atomic Energy Commission has carried out several experiments including the mini-INCA (INcineration of Actinides) project for the study of minor-actinide transmutation processes in high intensity thermal neutron fluxes, in view of proposing solutions to reduce the radiotoxicity of long-lived nuclear wastes. In this context, a Cm sample enriched in {sup 248}Cm ({approx}97 %) was irradiated in thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). This work describes a quadrupole ICP-MS (ICP-QMS) analytical procedure for precise and accurate isotopic composition determination of Cm before sample irradiation and of Cm and Cf after sample irradiation. The factors that affect the accuracy and reproducibility of isotopic ratio measurements by ICP-QMS, such as peak centre correction, detector dead time, mass bias, abundance sensitivity and hydrides formation, instrumental background, and memory blank were carefully evaluated and corrected. Uncertainties of the isotopic ratios, taking into account internal precision of isotope ratio measurements, peak tailing, and hydrides formations ranged from 0.3% to 1.3%. This uncertainties range is quite acceptable for the nuclear data to be used in transmutation studies.

Gourgiotis, A.; Isnard, H.; Aubert, M.; Dupont, E.; AlMahamid, I.; Cassette, P.; Panebianco, S.; Letourneau, A.; Chartier, F.; Tian, G.; Rao, L.; Lukens, W.

2011-02-01T23:59:59.000Z

71

The Uncertainties in the 22Ne + alpha-capture Reaction Rates and the Production of the Heavy Magnesium Isotopes in Asymptotic Giant Branch Stars of Intermediate Mass  

E-Print Network (OSTI)

We present new rates for the 22Ne(alpha, n)25Mg and 22Ne(alpha,gamma)26Mg reactions, with uncertainties that have been considerably reduced compared to previous estimates, and we study how these new rates affect the production of the heavy magnesium isotopes in models of intermediate mass Asymptotic Giant Branch (AGB) stars of different initial compositions. All the models have deep third dredge-up, hot bottom burning and mass loss. Calculations have been performed using the two most commonly used estimates of the 22Ne + alpha rates as well as the new recommended rates, and with combinations of their upper and lower limits. The main result of the present study is that with the new rates, uncertainties on the production of isotopes from Mg to P coming from the 22Ne + alpha-capture rates have been considerably reduced. We have therefore removed one of the important sources of uncertainty to effect models of AGB stars. We have studied the effects of varying the mass-loss rate on nucleosynthesis and discuss other uncertainties related to the physics employed in the computation of stellar structure, such as the modeling of convection, the inclusion of a partial mixing zone and the definition of convective borders. These uncertainties are found to be much larger than those coming from 22Ne + alpha-capture rates, when using our new estimates. Much effort is needed to improve the situation for AGB models.

A. Karakas; M. Lugaro; M. Wiescher; J. Goerres; C. Ugalde

2006-01-27T23:59:59.000Z

72

Determination of a mass isotope effect on T{sub c} in an electron-donor-based organic superconductor, k-(ET){sub 2}Cu(NCS){sub 2}, where ET represents bis(ethylenedithio)tetrathiafulvalene.  

Science Conference Proceedings (OSTI)

We describe the first determination of a genuine mass isotope effect on {Tc} arising from the isotopic substitution of atoms in the ET [bis(ethylenedithio)tetrathiafulvalene] molecule of an electron-donor-based organic superconductor, {kappa}-(ET){sub 2}Cu(NCS){sub 2} ({Tc} = 9.6 K, inductive onset). The isotopic substitution in the ET molecule involves concurrent replacement of the four carbon atoms in the terminal 1,2-ethanediyl groups with {sup 13}C and all eight sulfur atoms with {sup 34}S. This substitution, {sup 13}C(4){sup 34}S(8), increases the mass of the ET molecule by 20 amu, which is a 5% increase in the normal mass. With the use of AC susceptibility measurements on a large sampling of single crystals, including both undeuterated and fully deuterated salts, we obtain {Delta}{Tc} = -0.12 {+-} 0.05 K for this isotope effect. Assuming a BCS-like mass effect with ET as the relevant mass entity (M), this effect gives {alpha} = 0.26 {+-} 0.11 for {Tc}{alpha}M{sup -{alpha}}. Additionally, our experiments with fully deuterated {kappa}-(ET){sub 2}Cu(NCS){sub 2} ({sup 2}H replacing eight hydrogen atoms in ET) confirm the occurrence of a large inverse isotope effect for the deuteration, and yield the first definitive value for this effect, {Delta}{Tc} = +0.28 {+-} 0.06 K. The isotope effect for {sup 13}C(4){sup 34}S(8) substitution, however, is unaffected by deuteration. Contrary to an earlier report by others, we find a zero isotope effect within {+-}0.06 K for {sup 13}C(4) substitution alone.

Kini, A. M.; Carlson, K. D.; Wang, H. H.; Schlueter, J. A.; Dudek, J. D.; Sirchio, S. A.; Geiser, U.; Lykke, K. R.; Williams, J. M.

1996-06-01T23:59:59.000Z

73

Isotopically controlled semiconductors  

SciTech Connect

Semiconductor bulk crystals and multilayer structures with controlled isotopic composition have attracted much scientific and technical interest in the past few years. Isotopic composition affects a large number of physical properties, including phonon energies and lifetimes, bandgaps, the thermal conductivity and expansion coefficient and spin-related effects. Isotope superlattices are ideal media for self-diffusion studies. In combination with neutron transmutation doping, isotope control offers a novel approach to metal-insulator transition studies. Spintronics, quantum computing and nanoparticle science are emerging fields using isotope control.

Haller, Eugene E.

2001-12-21T23:59:59.000Z

74

Measuring supersymmetric particle masses at the LHC in scenarios with baryon number R-parity violating couplings.  

E-Print Network (OSTI)

of the correct jets from the ?˜01 decay. Nearly all right-squarks decay via q˜R ? ?˜01q ? qqqq and one might therefore expect Njet = 8 for q˜Rq˜R production. Gluon radiation by quarks, however, raises this to an average of 9.2 jets, in spite of the fact... uncertainty as m(?˜01). The statistical error in rescaling the 3-jet invariant mass to the fitted m(?˜01) peak in- troduces another 3 GeV systematic error into the l˜R and q˜R masses. The overall systematic error in m(l˜R) is therefore 3? 3 = 4.2 Ge...

Allanach, B C; Barr, Alan; Drage, L; Morgan, D; Parker, Michael A; Webber, Bryan R; Richardson, P

75

Extraction Chromatographic Methods in the Sample Preparation Sequence for Thermal Ionization Mass Spectrometric Analysis of Plutonium Isotopes  

Science Conference Proceedings (OSTI)

A sample preparation sequence for actinide isotopic analysis by TIMS is described that includes column-based extraction chromatography as the first separation step, followed by anion exchange column separations. The sequence is designed to include a wet ashing step after the extraction chromatography to prevent any leached extractant or oxalic acid eluent reagents from interfering with subsequent separations, source preparation, or TIMS ionization. TEVA-resin and DGA-resin materials, containing extractants that consist only of C, N, O, and H atoms, were investigated for isolation of plutonium. Radiotracer level studies confirmed expected high yields from column-based separation procedures. Femtogram-level studies were carried out with TIMS detection, using multiple isotopic spikes through the separation sequence. Pu recoveries were 87% and 86% for TEVA- and DGA-resins separations respectively. The Pu recoveries from 400 {mu}L anion-exchange column separations were 89% and 93% for trial sequences incorporating TEVA and DGA-resin. Thus, a prior extraction chromatography step in the sequence did not interfere with the subsequent anion exchange separation when a simple wet ash step was carried out in between these column separations. The average measurement efficiency, for Pu, encompassing the chemical separation recoveries and the TIMS ionization efficiency, was 2.73 {+-} 0.77% (2-sigma) for the DGA-resin trials and 2.67 {+-} 0.54% for the TEVA-resin trials, compared to 3.41% and 2.37% (average 2.89%) for two spikes in the experimental set. These compare with an average measurement efficiency of 2.78 {+-} 1.70%, n = 33 from process benchmark analyses using Pu spikes processed through a sequence of oxalate precipitation, wet ash, iron hydroxide precipitation, and anion exchange column separations. We conclude that extraction chromatography can be a viable separation procedure as part of a multistep sequence for TIMS sample preparation.

Grate, Jay W.; O'Hara, Matthew J.; Farawila, Anne F.; Douglas, Matthew; Haney, Morgan M.; Peterson, Steve L.; Maiti, Tapas C.; Aardahl, Christopher L.

2011-10-17T23:59:59.000Z

76

It's Elemental - Isotopes of the Element Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen Isotopes of the Element Nitrogen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 14 99.636% STABLE 15 0.364% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 10 No Data Available Proton Emission 100.00% 11 5.49×10-22 seconds Proton Emission 100.00% 12 11.000 milliseconds Electron Capture 100.00% 13 9.965 minutes Electron Capture 100.00% 14 STABLE - - 15 STABLE - - 16 7.13 seconds Beta-minus Decay 100.00% Beta-minus Decay with delayed Alpha Decay 1.2×10-3 % 17 4.173 seconds Beta-minus Decay 100.00%

77

Higher-Order Mass Defect Analysis for Mass Spectra of Complex Organic Mixtures  

Science Conference Proceedings (OSTI)

Higher-order mass defect analysis is introduced as a unique formula assignment and visualization method for the analysis of complex mass spectra. This approach is an extension of the concepts of Kendrick mass transformation widely used for identification of homologous compounds differing only by a number of base units (e.g., CH2, H2, O, CH2O, etc.) in complex mixtures. We present an iterative renormalization routine for defining higher order homologous series and multidimensional clustering of mass spectral features. This approach greatly simplifies visualization of complex mass spectra and increases the number of chemical formulae that can be confidently assigned for given mass accuracy. The potential for using higher-order mass defects for data reduction and visualization is shown. Higher-order mass defect analysis is described and demonstrated through third-order analysis of a de-isotoped high-resolution mass spectrum of crude oil containing nearly 13,000 peaks.

Roach, Patrick J.; Laskin, Julia; Laskin, Alexander

2011-06-15T23:59:59.000Z

78

ISOTOPE SEPARATION AND ISOTOPE EXCHANGE. A Bibliography with Abstracts  

SciTech Connect

The unclassified literature covering 2498 reports from 1907 through 1957 has been searched for isotopic exchange and isotepic separation reactions involving U and the lighter elements of the periodic chart through atomic number 30. From 1953 to 1957, all elements were included Numerous references to isotope properties, isotopic ratios, and kinetic isotope effects were included. This is a complete revision of TID-3036 (Revised) issued June 4, 1954. An author index is included. (auth)

Begun, G.M.

1959-10-28T23:59:59.000Z

79

Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Fluid Isotopic Analysis- Fluid Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Fluid Details Activities (61) Areas (32) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Origin of hydrothermal fluids; Mixing of hydrothermal fluids Thermal: Isotopic ratios can be used to characterize and locate subsurface thermal anomalies. Dictionary.png Isotopic Analysis- Fluid: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in

80

Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Rock Details Activities (13) Areas (11) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Isotopic Analysis- Rock: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The global geochemical cycles of iron and calcium: using novel isotope systems to understand weathering, global mass budgets, natural reaction rates, and paleoclimate  

E-Print Network (OSTI)

in the sedimentary column, and diagenetic alteration of Ca isotope signals over geologic time scales. The overallThe global geochemical cycles of iron and calcium: using novel isotope systems to understand of Doctor of Philosophy in Geology in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY

Fantle, Matthew

82

Isotopic distribution of fission fragments in collisions between 238U beam and 9Be and 12C targets at 24 MeV/u  

E-Print Network (OSTI)

Inverse kinematics coupled to a high-resolution spectrometer is used to investigate the isotopic yields of fission fragments produced in reactions between a 238U beam at 24 MeV/u and 9Be and 12C targets. Mass, atomic number and isotopic distributions are reported for the two reactions. These informations give access to the neutron excess and the isotopic distribution widths, which together with the atomic-number and mass distributions are used to investigate the fusion-fission dynamics.

O. Delaune; F. Farget; O. B. Tarasov; A. M. Amthor; B. Bastin; D. Bazin; B. Blank; L. Cacéres; A. Chbihi; B. Fernandez-Dominguez; S. Grevy; O. Kamalou; S. Lukyanov; W. Mittig; D. J. Morrissey; J. Pereira; L. Perrot; M. -G. Saint-Laurent; H. Savajols; B. M. Sherrill; C. Stodel; J. C. Thomas; A. C. Villari

2013-02-08T23:59:59.000Z

83

The New Element Californium (Atomic Number 98)  

DOE R&D Accomplishments (OSTI)

Definite identification has been made of an isotope of the element with atomic number 98 through the irradiation of Cm{sup 242} with about 35-Mev helium ions in the Berkeley Crocker Laboratory 60-inch cyclotron. The isotope which has been identified has an observed half-life of about 45 minutes and is thought to have the mass number 244. The observed mode of decay of 98{sup 244} is through the emission of alpha-particles, with energy of about 7.1 Mev, which agrees with predictions. Other considerations involving the systematics of radioactivity in this region indicate that it should also be unstable toward decay by electron capture. The chemical separation and identification of the new element was accomplished through the use of ion exchange adsorption methods employing the resin Dowex-50. The element 98 isotope appears in the eka-dysprosium position on elution curves containing berkelium and curium as reference points--that is, it precedes berkelium and curium off the column in like manner that dysprosium precedes terbium and gadolinium. The experiments so far have revealed only the tripositive oxidation state of eka-dysprosium character and suggest either that higher oxidation states are not stable in aqueous solutions or that the rates of oxidation are slow. The successful identification of so small an amount of an isotope of element 98 was possible only through having made accurate predictions of the chemical and radioactive properties.

Seaborg, G. T.; Thompson, S. G.; Street, K. Jr.; Ghiroso, A.

1950-06-19T23:59:59.000Z

84

Detection of triclocarban and two co-contaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry  

SciTech Connect

The antimicrobial compound triclocarban (TCC; 3,4,4'-trichlorocarbanilide; CAS-bar 101-20-2) is a high-production-volume chemical, recently suggested to cause widespread contamination of US water resources. To test this hypothesis, we developed an isotope dilution liquid chromatography electrospray ionization tandem mass spectrometry method for ultratrace analysis of TCC (0.9ng/L detection limit) and analyzed low-volume water samples (200mL) along with primary sludge samples from across the United States. All river water samples (100%) collected downstream of wastewater treatment plants had detectable levels of TCC, as compared to 56% of those taken upstream. Concentrations of TCC (mean+/-standard deviation) downstream of sewage treatment plants (84+/-110ng/L) were significantly higher (P<0.05; Wilcoxon rank sum test) than those of samples taken upstream (12+/-15ng/L). Compared to surface water, mean TCC concentrations found in dried, primary sludge obtained from municipal sewage treatment plants in five states were six orders of magnitude greater (19,300+/-7100{mu}g/kg). Several river samples contained a co-contaminant, identified based on its chromatographic retention time, molecular base ion, and MS/MS fragmentation behavior as 4,4'-dichlorocarbanilide (DCC; CAS-bar 1219-99-4). In addition to TCC and DCC, municipal sludge contained a second co-contaminant, 3,3',4,4'-tetrachlorocarbanilide (TetraCC; CAS-bar 4300-43-0). Both newly detected compounds were present as impurities (0.2%{sub w/w} each) in technical grade TCC (99%). Application of the new method for chlorocarbanilide analysis yielded TCC occurrence data for 13 US states, confirmed the role of sewage treatment plants as environmental inputs of TCC, and identified DCC and TetraCC as previously unrecognized pollutants released into the environment alongside TCC.

Sapkota, Amir [Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Johns Hopkins University Center for Water and Health, Baltimore, MD 21205-2103 (United States); Heidler, Jochen [Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Johns Hopkins University Center for Water and Health, Baltimore, MD 21205-2103 (United States); Halden, Rolf U. [Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Johns Hopkins University Center for Water and Health, Baltimore, MD 21205-2103 (United States)]. E-mail: rhalden@jhsph.edu

2007-01-15T23:59:59.000Z

85

Expression of Stable Isotopically Labeled Proteins for Use as ...  

Science Conference Proceedings (OSTI)

Expression of Stable Isotopically Labeled Proteins for Use as Internal Standards for Mass Spectrometric Quantitation of Clinical Protein Biomarkers. ...

2013-03-13T23:59:59.000Z

86

Oxygen Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of...

87

Isotope effect study of {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2}: Labeling in the anion  

SciTech Connect

Since the initial discovery of organic superconductivity in 1979, a large number of organic superconductors have now been synthesized. However, the mechanism of electron-pairing in these novel superconductors has remained largely unresolved. Isotope effect studies constitute an important experimental tool for the investigation of whether or not the electron-pairing mechanism in organic superconductors is phonon-mediated, as in conventional superconductors. Recent isotope effect studies in the authors` laboratory, involving seven different isotopically labeled BEDT-TTF (or ET) derivatives, have demonstrated the following: (1) intramolecular phonon modes involving C{double_bond}C and C{single_bond}S stretching vibrations in the ET donor molecule are not the dominant mediators of electron-pairing, and (2) in {kappa}-(ET){sub 2}Cu(NCS){sub 2}, there exist two competing isotope effects--a normal mass effect, i.e., lowering of {Tc} upon isotopic labeling, when the ET molecular mass is increased by concurrent {sup 13}C and {sup 34}S labeling, in addition to an inverse isotope effect upon deuterium labeling in ET. It is of great interest to investigate if there is an isotope effect when the charge-compensating anions, which are also located within the non-conducting layer in the superconducting cation-radical salts, are isotopically labeled. The existence of an isotope effect when the anions are labeled would be indicative of electron-pairing with the mediation of vibrational frequencies associated with the anions. In this paper, the authors present the results of the first isotope effect study in which isotopic labeling in the anion portion of {kappa}-(ET){sub 2}Cu(NCS){sub 2} is carried out. The authors find no isotope effect when the carbon and nitrogen atoms of the thiocyanate groups in the anion are replaced with {sup 13}C and {sup 15}N isotopes.

Kini, A.M.; Wang, H.H.; Schlueter, J.A. [and others

1995-12-31T23:59:59.000Z

88

Definition: Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Isotopic Analysis- Fluid Jump to: navigation, search Dictionary.png Isotopic Analysis- Fluid Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable. Fluid isotopes are used to characterize a fluids origin, age, and/or interaction with rocks or other fluids based on unique isotopic ratios or concentrations.[1] View on Wikipedia Wikipedia Definition Isotope geochemistry is an aspect of geology based upon study of the relative and absolute concentrations of the elements and their isotopes in

89

Isotopically controlled semiconductors  

SciTech Connect

The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

Haller, Eugene E.

2006-06-19T23:59:59.000Z

90

Final Report "Structure of Rare Isotopes"  

SciTech Connect

The Junior Investigator grant 'Structure of Rare Isotopes' (DE-FG02-07ER41529) supported research in low-energy nuclear theory from September 1, 2007 to August 31, 2010. It was the main goal of the proposed research to develop and optimize an occupation-number-based energy functional for the computation of nuclear masses, and this aim has been reached. Furthermore, progress was made in linking two and three-body forces from low-momentum interactions to pairing properties in nuclear density functionals, and in the description of deformed nuclei within an effective theory.

Papenbrock, Thomas

2012-05-09T23:59:59.000Z

91

Carbon Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Carbon Isotopes Atmospheric Trace Gases » Carbon Isotopes Carbon Isotopes Gateway Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of Various Isotopic Species from Ice Cores Carbon-13 13C in CO Measurements from Niwot Ridge, Colorado and Montana de Oro, California (Tyler) 13C in CO2 NOAA/CMDL Flask Network (White and Vaughn) CSIRO GASLAB Flask Network (Allison, Francey, and Krummel) CSIRO in situ measurements at Cape Grim, Tasmania (Francey and Allison) Scripps Institution of Oceanography (Keeling et al.) 13C in CH4 NOAA/CMDL Flask Network (Miller and White) Northern & Southern Hemisphere Sites (Quay and Stutsman) Northern & Southern Hemisphere Sites (Stevens)

92

Determination of Actinide Isotope Ratios Using Glow Discharge Optogalvanic Spectroscopy  

SciTech Connect

Diode-laser excited optogalvanic spectroscopy (OGS) of a glow discharge has been utilized to measure U-235/U-235 + U-238 isotope ratios. This ``optical mass spectrometric`` measurement has been demonstrated for a number of samples including uranium oxide, fluoride, and metal. Various diode-laser accessible atomic transitions in the 775 to 835 nm region have been evaluated; these transitions were chosen by considering OGS sensitivity and isotope shift. Using the 831.84 nm uranium line, for example, it was possible to measure the U-235/U-235 + U-238 isotope ratio (0.0026) of depleted uranium samples. A prototypical field instrument to make these measurements has been assembled and demonstrated. A U-236 spectral line was identified in a sample of enriched uranium, and an abundance sensitivity was measured.

Young, J.P.; Shaw, R.W.; Barshick, C.M.; Ramsey, J.M.

1997-08-01T23:59:59.000Z

93

"Environmental Isotope Geochemistry": Past, Present Mark Baskaran  

E-Print Network (OSTI)

Chapter 1 "Environmental Isotope Geochemistry": Past, Present and Future Mark Baskaran 1.1 Introduction and Early History A large number of radioactive and stable isotopes of the first 95 elements unraveling many secrets of our Earth and its environmental health. These isotopes, because of their suitable

Baskaran, Mark

94

Selective Isotope Determination of Uranium using HR-RIMS  

Science Conference Proceedings (OSTI)

The detection of lowest abundances of the ultra trace isotope {sup 236}U in environmental samples requires an efficient detection method which allows a high elemental and isotopic selectivity to suppress neighbouring isotopes of the same element and other background. High Resolution Laser Resonance Ionization Mass Spectrometry (HR-RIMS) uses the individual electron structure of each isotope to provide an outstanding element and isotope selective ionization.

Raeder, S.; Fies, S.; Wendt, K. D. A. [Institut fuer Physik, Johannes Gutenberg Universitaet Mainz, 55128 Mainz (Germany); Tomita, H. [Nagoya University (Japan)

2009-03-17T23:59:59.000Z

95

Quantum instanton evaluation of the kinetic isotope effects  

DOE Green Energy (OSTI)

A general quantum-mechanical method for computing kinetic isotope effects is presented. The method is based on the quantum instanton approximation for the rate constant and on the path integral Metropolis Monte-Carlo evaluation of the Boltzmann operator matrix elements. It computes the kinetic isotope effect directly, using a thermodynamic integration with respect to the mass of the isotope, thus avoiding the more computationally expensive process of computing the individual rate constants. The method is more accurate than variational transition-state theories or the semiclassical instanton method since it does not assume a single reaction path and does not use a semiclassical approximation of the Boltzmann operator. While the general Monte-Carlo implementation makes the method accessible to systems with a large number of atoms, we present numerical results for the Eckart barrier and for the collinear and full three-dimensional isotope variants of the hydrogen exchange reaction H+H{sub 2} {yields} H{sub 2}+H. In all seven test cases, for temperatures between 250 K and 600 K, the error of the quantum instanton approximation for the kinetic isotope effects is less than {approx}10%.

Vanicek, Jiri; Miller, William H.; Castillo, Jesus F.; Aoiz, F.Javier

2005-04-19T23:59:59.000Z

96

Neutrinoless double beta decay and neutrino masses  

SciTech Connect

Neutrinoless double beta decay (0{nu}{beta}{beta}) is a promising test for lepton number violating physics beyond the standard model (SM) of particle physics. There is a deep connection between this decay and the phenomenon of neutrino masses. In particular, we will discuss the relation between 0{nu}{beta}{beta} and Majorana neutrino masses provided by the so-called Schechter-Valle theorem in a quantitative way. Furthermore, we will present an experimental cross check to discriminate 0{nu}{beta}{beta} from unknown nuclear background using only one isotope, i.e., within one experiment.

Duerr, Michael [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

2012-07-27T23:59:59.000Z

97

Ultrasensitive detection of radioactive cesium isotopes using a magneto-optical trap.  

SciTech Connect

We report the first magneto-optical trapping of mdioactive {sup 135}Cs and {sup 137}Cs and a promising means for detecting these isotopes to ullrasensilive lcvels by a system coupling the magneto-optical trap (MOT) to a mass separator. The mass separator efficiently delivers a 20 kV ion beam of either isotope into a quartzcube MOT cell having in one corner a small-diameter Zr foil, on which the ion beam is focused and into which the ions are implantetl. Inductive heating of thc foil releases {approx}45% of the implanted atoms into a MOT that uses large diameter beams and a dry-film coating to capture 3% of the released vapor. MOT fluorescence signals were found to increasc linearly with the number of foil-implanted atoms over a range of 10{sup 4} to 10{sup 7} in trapped-atom number. The measured slope of MOT signal versus number implanted was equal in the case each isotope to within 4%, signifying our ability to measure {sup 137}Cs/{sup 135}Cs ratios to within 4%. The isotopic selectivities of the mass separator and MOT combine to suppress interfering signal from {sup 133}Cs by a factor of greater than 5 x 10{sup 12} in the case of detecting {sup 135}Cs or {sup 137}Cs. Our present sample detection sensitivity is one million atoms.

Di Rosa, M. D. (Michael D.); Crane, S. G. (Scott G.); Kitten, J. J. (Jason J.); Taylor, W. A. (Wayne A.); Vieira, D. J. (David J.); Zhao, X. (Xinxin)

2002-01-01T23:59:59.000Z

98

Definition: Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search Dictionary.png Isotopic Analysis- Rock Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.[1] View on Wikipedia Wikipedia Definition References ↑ http://wwwrcamnl.wr.usgs.gov/isoig/isopubs/itchch2.html Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Isotopic_Analysis-_Rock&oldid=687702" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties

99

Method and apparatus for noble gas atom detection with isotopic selectivity  

DOE Patents (OSTI)

Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.

Hurst, G. Samuel (Oak Ridge, TN); Payne, Marvin G. (Harriman, TN); Chen, Chung-Hsuan (Knoxville, TN); Parks, James E. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

100

from Isotope Production Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium - 2 - 2:32 Isotope cancer...

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues  

SciTech Connect

Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquids (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose chemical compositions and magnesium and silicon isotopic compositions have been previously measured.

Knight, K; Kita, N; Mendybaev, R; Richter, F; Davis, A; Valley, J

2009-06-18T23:59:59.000Z

102

ISOTOPE SEPARATORS  

DOE Patents (OSTI)

An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

Bacon, C.G.

1958-08-26T23:59:59.000Z

103

Compositional Analysis of the High Molecular Weight Ethylene Oxide Propylene Oxide Copolymer by MALDI Mass Spectrometry  

E-Print Network (OSTI)

The composition of narrow distribution poly ethylene oxide-propylene oxide copolymer (Mw ~ 8700 Da) was studied using matrix assisted laser desorption ionization (MALDI) mass spectrometry. The ethylene oxide-propylene oxide copolymer produced oligomers separated by 14 Da. The average resolving power over the entire spectrum was 28,000. Approximately 448 isotopically resolved peaks representing about 56 oligomers are identified. Although agreement between experimental and calculated isotopic distributions was strong, the compositional assignment was difficult. This is due to the large number of possible isobaric components. The purpose of this research is to resolve and study the composition of high mass copolymer such as ethylene oxide-propylene oxide.

Houshia, Orwa Jaber

2012-01-01T23:59:59.000Z

104

Improved process for preparing strontium-82 isotope  

DOE Patents (OSTI)

This invention is comprised of a process for making {sup 82}Sr by bombarding a molybdenum target enriched in light-mass molybdenum isotopes with high energy protons resulting in high yield, high purity {sup 82}Sr.

Michaels, G.E.; Beaver, J.E.; Moody, D.C.

1991-12-31T23:59:59.000Z

105

Available Technologies: Nanostructure Initiator Mass Spectrometry ...  

Using time dependent isotopic labeling and mass spectrometry imaging, researchers at Berkeley Lab and the University of California, Berkeley have developed a ...

106

Early Days of Accelerator Mass Spectrometry  

DOE R&D Accomplishments (OSTI)

Alvarez reviews his role in the development of the tandem Van de Graaff accelerator and the technique of accelerator mass spectrometry as a technique for isotope dating. (GHT)

Alvarez, L. W.

1981-05-00T23:59:59.000Z

107

New Enhancements Upgrade NIST Mass Spectra Library  

Science Conference Proceedings (OSTI)

... peaks representing a unique distribution of masses due to isotopes with varying ... with Version 2.0d of the NIST MS Search Program for Windows ...

2013-06-05T23:59:59.000Z

108

Isotope effect in BEDT-TTF based organic superconductors  

SciTech Connect

The results of the comprehensive isotope effect studies, in which seven different isotopically labeled (involving {sup 13}C, {sup 34}S and {sup 2}H labeling) BEDT-TTF derivatives and isotopically labeled anion [Cu({sup 15}N{sup 13}CS){sub 2}]{sup {minus}} were utilized, are summarized. For the first time, convincing evidence for a genuine BCS-like mass isotope effect in an organic superconductor is revealed in these studies.

Kini, A.M.; Carlson, K.D.; Dudek, J.D.; Geiser, U.; Wang, H.H.; Williams, J.M.

1996-10-01T23:59:59.000Z

109

Level densities of nickel isotopes: microscopic theory versus experiment  

E-Print Network (OSTI)

We apply a spin-projection method to calculate microscopically the level densities of a family of nickel isotopes $^{59-64}$Ni using the shell model Monte Carlo approach in the complete $pfg_{9/2}$ shell. Accurate ground-state energies of the odd-mass nickel isotopes, required for the determination of excitation energies, are determined using the Green's function method recently introduced to circumvent the odd particle-number sign problem. Our results are in excellent agreement with recent measurements based on proton evaporation spectra and with level counting data at low excitation energies. We also compare our results with neutron resonance data, assuming equilibration of parity and a spin-cutoff model for the spin distribution at the neutron binding energy, and find good agreement with the exception of $^{63}$Ni.

M. Bonett-Matiz; Abhishek Mukherjee; Y. Alhassid

2013-05-01T23:59:59.000Z

110

The Quest for the Heaviest Uranium Isotope  

E-Print Network (OSTI)

We study Uranium isotopes and surrounding elements at very large neutron number excess. Relativistic mean field and Skyrme-type approaches with different parametrizations are used in the study. Most models show clear indications for isotopes that are stable with respect to neutron emission far beyond N=184 up to the range of around N=258.

S. Schramm; D. Gridnev; D. V. Tarasov; V. N. Tarasov; W. Greiner

2011-07-06T23:59:59.000Z

111

Strategic Isotope Production | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Isotope Strategic Isotope Production SHARE Strategic Isotope Production Typical capsules used in the transport of 252Cf source material inside heavily shielded shipping casks. ORNL's unique facilities at the High Flux Isotope Reactor (HFIR), Radiochemical Engineering Development Center (REDC), Irradiated Fuels Examination Laboratory (IFEL), and Irradiated Materials Examination Testing facility (IMET) are routinely used in the production, purification, packaging, and shipping of a number of isotopes of national importance, including: 75Se, 63Ni, 238Pu, 252Cf, and others. The intense neutron flux of the HFIR (2.0 x 1015 neutrons/cm²·s) permits the rapid formation of such isotopes. These highly irradiated materials are then processed and packaged for shipping using the facilities at the REDC, IFEL, and IMET.

112

Isotope separation apparatus and method  

DOE Patents (OSTI)

The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

Feldman, Barry J. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

113

Final Report, NEAC Subcommittee for Isotope Research & Production Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report, NEAC Subcommittee for Isotope Research & Production Final Report, NEAC Subcommittee for Isotope Research & Production Planning Final Report, NEAC Subcommittee for Isotope Research & Production Planning Isotopes, including both radioactive and stable isotopes, make important contributions to research, medicine, and industry in the United States and throughout the world. For nearly fifty years, the Department of Energy (DOE) has actively promoted the use of isotopes by funding (a) production of isotopes at a number of national laboratories with unique nuclear reactors or particle accelerators, (b) nuclear medicine research at the laboratories and in academia, (c) research into industrial applications of isotopes, and (d) research into isotope production and processing methods. The radio- pharmaceutical and radiopharmacy industries have their origin in

114

Lead and strontium isotopic evidence for crustal interaction...  

Open Energy Info (EERE)

Mineralogy and Petrology, 111984 Document Number: Unavailable DOI: 10.1007BF01150293 Source: View Original Conference Proceedings Isotopic Analysis- Rock At Coso Geothermal...

115

ISOTOPE FRACTIONATION PROCESS  

DOE Patents (OSTI)

A new method is described for isotopic enrichment of uranium. It has been found that when an aqueous acidic solution of ionic tetravalent uraniunn is contacted with chelate complexed tetravalent uranium, the U/sup 238/ preferentially concentrates in the complexed phase while U/sup 235/ concentrates in the ionic phase. The effect is enhanced when the chelate compound is water insoluble and is dissolved in a water-immiscible organic solvent. Cupferron is one of a number of sultable complexing agents, and chloroform is a suitable organic solvent.

Clewett, G.H.; Lee, DeW.A.

1958-05-20T23:59:59.000Z

116

AVLIS enrichment of medical isotopes  

SciTech Connect

Under the Sponsorship of the United states Enrichment Corporation (USEC), we are currently investigating the large scale separation of several isotopes of medical interest using atomic vapor isotope separation (AVLIS). This work includes analysis and experiments in the enrichment of thallium 203 as a precursor to the production of thallium 201 used in cardiac imaging following heart attacks, on the stripping of strontium 84 from natural strontium as precursor to the production of strontium 89, and on the stripping of lead 210 from lead used in integrated circuits to reduce the number of alpha particle induced logic errors.

Haynam, C.A.; Scheibner, K.F.; Stern, R.C.; Worden, E.F. [Lawrence Livermore National Laboratory, CA (United States)

1996-12-31T23:59:59.000Z

117

Method for separating isotopes  

DOE Patents (OSTI)

Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

Jepson, B.E.

1975-10-21T23:59:59.000Z

118

Stable isotope studies  

SciTech Connect

The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

Ishida, T.

1992-01-01T23:59:59.000Z

119

Analysis of hydrogen isotope mixtures  

DOE Patents (OSTI)

Disclosed are an apparatus and a method for determining concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, E.

1992-12-31T23:59:59.000Z

120

Analysis of hydrogen isotope mixtures  

DOE Patents (OSTI)

An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, Eliel (Aiken, SC)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Isotopes: Isotope Production, Medical IsotopesOffice of Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Managers Put a short description of the graphic or its primary message here Isotope Production and Applications The Los Alamos National Laboratory has produced radioactive...

122

Isotope separation by photochromatography  

DOE Patents (OSTI)

An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

Suslick, Kenneth S. (Stanford, CA)

1977-01-01T23:59:59.000Z

123

Isotope separation apparatus and method  

DOE Patents (OSTI)

The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

Cotter, Theodore P. (Los Alamos, NM)

1982-12-28T23:59:59.000Z

124

Geological isotope anomalies as signatures of nearby supernovae  

E-Print Network (OSTI)

Nearby supernova explosions may cause geological isotope anomalies via the direct deposition of debris or by cosmic-ray spallation in the earth's atmosphere. We estimate the mass of material deposited terrestrially by these two mechanisms, showing the dependence on the supernova distance. A number of radioactive isotopes are identified as possible diagnostic tools, such as Be-10, Al-26, Cl-36, Mn-53, Fe-60, and Ni-59, as well as the longer-lived I-129, Sm-146, and Pu-244. We discuss whether the 35 and 60 kyr-old Be-10 anomalies observed in the Vostok antarctic ice cores could be due to supernova explosions. Combining our estimates for matter deposition with results of recent nucleosynthesis yields, we calculate the expected signal from nearby supernovae using ice cores back to \\sim 300 kyr ago, and we discuss using deep ocean sediments back to several hundred Myr. In particular, we examine the prospects for identifying isotope anomalies due to the Geminga supernova explosion, and signatures of the possibility...

Ellis, Jonathan Richard; Schramm, David N; Ellis, John; Fields, Brian D; Schramm, David N

1996-01-01T23:59:59.000Z

125

The contrasting fission potential-energy structure of actinides and mercury isotopes  

E-Print Network (OSTI)

Fission-fragment mass distributions are asymmetric in fission of typical actinide nuclei for nucleon number $A$ in the range $228 \\lnsim A \\lnsim 258$ and proton number $Z$ in the range $90\\lnsim Z \\lnsim 100$. For somewhat lighter systems it has been observed that fission mass distributions are usually symmetric. However, a recent experiment showed that fission of $^{180}$Hg following electron capture on $^{180}$Tl is asymmetric. We calculate potential-energy surfaces for a typical actinide nucleus and for 12 even isotopes in the range $^{178}$Hg--$^{200}$Hg, to investigate the similarities and differences of actinide compared to mercury potential surfaces and to what extent fission-fragment properties, in particular shell structure, relate to the structure of the static potential-energy surfaces. Potential-energy surfaces are calculated in the macroscopic-microscopic approach as functions of fiveshape coordinates for more than five million shapes. The structure of the surfaces are investigated by use of an immersion technique. We determine properties of minima, saddle points, valleys, and ridges between valleys in the 5D shape-coordinate space. Along the mercury isotope chain the barrier heights and the ridge heights and persistence with elongation vary significantly and show no obvious connection to possible fragment shell structure, in contrast to the actinide region, where there is a deep asymmetric valley extending from the saddle point to scission. The mechanism of asymmetric fission must be very different in the lighter proton-rich mercury isotopes compared to the actinide region and is apparently unrelated to fragment shell structure. Isotopes lighter than $^{192}$Hg have the saddle point blocked from a deep symmetric valley by a significant ridge. The ridge vanishes for the heavier Hg isotopes, for which we would expect a qualitatively different asymmetry of the fragments.

Takatoshi Ichikawa; Akira Iwamoto; Peter Möller; Arnold J. Sierk

2012-03-09T23:59:59.000Z

126

Exotic fission properties of highly neutron-rich Uranium isotopes  

E-Print Network (OSTI)

The series of Uranium isotopes with $N=154 \\sim 172$ around the magic number N=162/164 are identified to be thermally fissile. The thermal neutron fission of a typical representative $^{249}$U of this region amenable to synthesis in the radioactive ion beam facilities is considered here. Semiempirical study of fission barrier height and width shows this nucleus to be infinitely stable against spontaneous fission due to increase in barrier width arising out of excess neutrons. Calculation of probability of fragment mass yields and microscopic study in relativistic mean field theory, show this nucleus to undergo a new mode of thermal fission decay termed {\\it multifragmentation fission} where a number of prompt scission neutrons are simultaneously released along with the two heavy fission fragments.

L. Satpathy; S. K. Patra; R. K. Choudhury

2007-03-05T23:59:59.000Z

127

Case Number:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Name of Petitioner: Name of Petitioner: Date of Filing: Case Number: Department of Energy Washington, DC 20585 JUL 2 2 2009 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Appeal Dean P. Dennis March 2, 2009 TBA-0072 Dean D. Dennis filed a complaint of retaliation under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. Mr. Dennis alleged that he engaged in protected activity and that his employer, National Security Technologies, LLC (NSTec ), subsequently terminated him. An Office of Hearings and Appeals (OHA) Hearing Officer denied relief in Dean P. Dennis, Case No. TBH-0072, 1 and Mr. Dennis filed the instant appeal. As discussed below, the appeal is denied. I. Background The DOE established its Contractor Employee Protection Program to "safeguard public

128

JOB NUMBER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. . . . . . . . . .: LEAVE BLANK (NARA use only) JOB NUMBER N/-&*W- 9d - 3 DATE RECEIVED " -1s - 9 J - NOTIFICATION TOAGENCY , In accordance with the provisions of 44 U.S.C. 3303a the disposition request. including amendments, is ap roved except , . l for items that may be marke,, ,"dis osition not approved" or "withdrawn in c o i m n 10. 4. NAME OF PERSON WITH WHOM TO CONFER 5 TELEPHONE Jannie Kindred (202) 5&-333 5 - 2 -96 6 AGENCYCERTIFICATION -. ~ - I hereby certify that I am authorized to act for this agency in matters pertaining to the disposition of its records and that the records roposed for disposal are not now needed for the business of this agency or wiRnot be needed after t G t r & s s d ; and that written concurrence from

129

KPA Number  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supports CMM-SW Level 3 Supports CMM-SW Level 3 Mapping of the DOE Information Systems Engineering Methodology to the Software Engineering Institute (SEI) Software Capability Maturity Model (CMM-SW) level 3. Date: September 2002 Page 1 KPA Number KPA Activity SEM Section SEM Work Product SQSE Web site http://cio.doe.gov/sqse ORGANIZATION PROCESS FOCUS OPF-1 The software process is assessed periodically, and action plans are developed to address the assessment findings. Chapter 1 * Organizational Process Management * Process Improvement Action Plan * Methodologies ! DOE Methodologies ! SEM OPF-2 The organization develops and maintains a plan for its software process development and improvement activities. Chapter 1 * Organizational Process Management * Process Improvement

130

Isotope Enrichment Calculator  

Science Conference Proceedings (OSTI)

... incremental isotopic percentages which are compared with an input experimentally derived profile. The theoretical profile of 15 N percentage which ...

2012-10-09T23:59:59.000Z

131

ISOTOPE CONVERSION DEVICE  

DOE Patents (OSTI)

This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

1957-12-01T23:59:59.000Z

132

Method for correcting for isotope burn-in effects in fission neutron dosimeters  

DOE Patents (OSTI)

A method is described for correcting for effect of isotope burn-in in fission neutron dosimeters. Two quantities are measured in order to quantify the "burn-in" contribution, namely P.sub.Z',A', the amount of (Z', A') isotope that is burned-in, and F.sub.Z', A', the fissions per unit volume produced in the (Z', A') isotope. To measure P.sub.Z', A', two solid state track recorder fission deposits are prepared from the very same material that comprises the fission neutron dosimeter, and the mass and mass density are measured. One of these deposits is exposed along with the fission neutron dosimeter, whereas the second deposit is subsequently used for observation of background. P.sub.Z', A' is then determined by conducting a second irradiation, wherein both the irradiated and unirradiated fission deposits are used in solid state track recorder dosimeters for observation of the absolute number of fissions per unit volume. The difference between the latter determines P.sub.Z', A' since the thermal neutron cross section is known. F.sub.Z', A' is obtained by using a fission neutron dosimeter for this specific isotope, which is exposed along with the original threshold fission neutron dosimeter to experience the same neutron flux-time history at the same location. In order to determine the fissions per unit volume produced in the isotope (Z', A') as it ingrows during the irradiation, B.sub.Z', A', from these observations, the neutron field must generally be either time independent or a separable function of time t and neutron energy E.

Gold, Raymond (Richland, WA); McElroy, William N. (Richland, WA)

1988-01-01T23:59:59.000Z

133

ARM - Measurement - Isotope ratio  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsIsotope ratio govMeasurementsIsotope ratio ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Isotope ratio Ratio of stable isotope concentrations. Categories Atmospheric Carbon, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes Field Campaign Instruments FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes Datastreams FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes

134

Laser Isotope Enrichment for Medical and Industrial Applications  

SciTech Connect

Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation repression. In this scheme a gas, of the selected isotopes for enrichment, is irradiated with a laser at a particular wavelength that would excite only one of the isotopes. The entire gas is subject to low temperatures sufficient to cause condensation on a cold surface. Those molecules in the gas that the laser excited are not as likely to condense as are the unexcited molecules. Hence the gas drawn out of the system will be enriched in the isotope that was excited by the laser. We have evaluated the relative energy required in this process if applied on a commercial scale. We estimate the energy required for laser isotope enrichment is about 20% of that required in centrifuge separations, and 2% of that required by use of "calutrons".

Leonard Bond

2006-07-01T23:59:59.000Z

135

VELOCITY SELECTOR METHOD FOR THE SEPARATION OF ISOTOPES  

DOE Patents (OSTI)

A velocity selector apparatus is described for separating and collecting an enriched fraction of the isotope of a particular element. The invention has the advantage over conventional mass spectrometers in that a magnetic field is not used, doing away with the attendant problems of magnetic field variation. The apparatus separates the isotopes by selectively accelerating the ionized constituents present in a beam of the polyisotopic substance that are of uniform kinetic energy, the acceleration being applied intermittently and at spaced points along the beam and in a direction normal to the direction of the propagation of the uniform energy beam whereby a transverse displacement of the isotopic constituents of different mass is obtained.

Britten, R.J.

1957-12-31T23:59:59.000Z

136

Stable isotope investigations of chlorinated aliphatic hydrocarbons.  

Science Conference Proceedings (OSTI)

Stable isotope ratio measurements for carbon (C) and chlorine (Cl) can be used to elucidate the processes affecting transformation and transportation of chlorinated aliphatic hydrocarbons (CAHs) in the environment. Methods recently developed in our laboratory for isotopic analysis of CAHs have been applied to laboratory measurements of the kinetic isotope effects associated with aerobic degradation of dichloromethane (DCM) and with both anaerobic and aerobic cometabolic degradation of trichlomethene (TCE) in batch and column microbial cultures. These experimental determinations of fractionation factors are crucial for understanding the behavior of CAHs in complex natural systems, where the extent of biotransformation can be masked by dispersion and volatilization. We have also performed laboratory investigations of kinetic isotope effects accompanying evaporation of CAHs, as well as field investigations of natural attenuation and in situ remediation of CAHs in a number of contaminated shallow aquifers at sites operated by the federal government and the private sector.

Abrajano, T.; Heraty, L. J.; Holt, B. D.; Huang, L.; Sturchio, N. C.

1999-06-01T23:59:59.000Z

137

Isotope effects in the harmonic response from hydrogenlike muonic atoms in strong laser fields  

SciTech Connect

High-order harmonic generation from hydrogenlike muonic atoms exposed to ultraintense high-frequency laser fields is studied. Systems of low nuclear-charge number Z are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes, we demonstrate characteristic signatures of the finite nuclear mass and size in the harmonic spectra. In particular, for Z>1, an effective muon charge appears in the Schroedinger equation for the relative particle motion, which influences the position of the harmonic cutoff. Cutoff energies in the million-electron-volt domain can be achieved, offering prospects for the generation of ultrashort coherent {gamma}-ray pulses.

Shahbaz, Atif; Mueller, Carsten [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Buervenich, Thomas J. [Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Ruth-Moufang-Strasse 1, D-60438 Frankfurt am Main (Germany)

2010-07-15T23:59:59.000Z

138

Accelerator mass spectrometry as a bioanalytical tool for nutritional research  

SciTech Connect

Accelerator Mass Spectrometry is a mass spectrometric method of detecting long-lived radioisotopes without regard to their decay products or half-life. The technique is normally applied to geochronology, but recently has been developed for bioanalytical tracing. AMS detects isotope concentrations to parts per quadrillion, quantifying labeled biochemicals to attomole levels in milligram- sized samples. Its advantages over non-isotopeic and stable isotope labeling methods are reviewed and examples of analytical integrity, sensitivity, specificity, and applicability are provided.

Vogel, J.S.; Turteltaub, K.W.

1997-09-01T23:59:59.000Z

139

HYDROGEN ISOTOPE TARGETS  

DOE Patents (OSTI)

The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

Ashley, R.W.

1958-08-12T23:59:59.000Z

140

Hybrid isotope separation scheme  

DOE Patents (OSTI)

A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

Maya, Jakob (Brookline, MA)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The New Element Curium (Atomic Number 96)  

DOE R&D Accomplishments (OSTI)

Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

Seaborg, G. T.; James, R. A.; Ghiorso, A.

1948-00-00T23:59:59.000Z

142

Glossary Term - Atomic Number  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Previous Term (Alpha Particle) Glossary Main Index Next Term (Avogadro's Number) Avogadro's Number Atomic Number Silver's atomic number is 47 The atomic number is equal to...

143

Discovery of the Mercury Isotopes  

E-Print Network (OSTI)

Forty mercury isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

D. Meierfrankenfeld; M. Thoennessen

2009-12-01T23:59:59.000Z

144

The New Element Berkelium (Atomic Number 97)  

DOE R&D Accomplishments (OSTI)

An isotope of the element with atomic number 97 has been discovered as a product of the helium-ion bombardment of americium. The name berkelium, symbol Bk, is proposed for element 97. The chemical separation of element 97 from the target material and other reaction products was made by combinations of precipitation and ion exchange adsorption methods making use of its anticipated (III) and (IV) oxidation states and its position as a member of the actinide transition series. The distinctive chemical properties made use of in its separation and the equally distinctive decay properties of the particular isotope constitute the principal evidence for the new element.

Seaborg, G. T.; Thompson, S. G.; Ghiorso, A.

1950-04-26T23:59:59.000Z

145

Isotopic Analysis | Open Energy Information  

Open Energy Info (EERE)

Structural: Hydrological: Source of fluids, circulation, andor mixing. Thermal: Heat source and general reservoir temperatures Dictionary.png Isotopic Analysis: Isotopes...

146

Fuel Cycle and Isotopes Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Divisions Fuel Cycle and Isotopes Division Jeffrey Binder, Division Director Jeffrey Binder, Division Director The Fuel Cycle and Isotopes Division (FCID) of the Nuclear Science...

147

Isotope Enrichment | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern electromagnetic isotope separator developed and being scaled-up to replace the Manhattan Project-era Calutrons used for stable isotope enrichment. Since 1945, ORNL has...

148

Laser isotope separation  

DOE Patents (OSTI)

A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

1975-11-26T23:59:59.000Z

149

Isotope GeochemistryIsotope Geochemistry Isotopes do not fractionate during partial  

E-Print Network (OSTI)

/204Pb, 207Pb/204Pb, due to U and Th decay The isotope geology of PbThe isotope geology of Pb #12;The isotope geology of PbThe isotope geology of Pb µ = 238U/204Pb Primeval lead (Isotope ratios of Pb tT t eea Pb Pb -µ+= 30.90 204 206 == a Pb Pb i 29.100 204 207 == b Pb Pb i #12;The isotope geology

Siebel, Wolfgang

150

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System,

151

Stable Isotope Enrichment by Thermal Diffusion, Chemical Exchange, and Distillation  

SciTech Connect

Applications of stable isotopes in medicine are becoming more widespread. This has resulted from the increased availability and reduced cost of these isotopes and the improved reliability and sensitivity of detection techniques such as carbon-13 nuclear magnetic resonance. Isotopes are used in compounds labeled with either the stable isotope itself, such as carbon-13 and oxygen-18, or with the radioactive isotope that can be produced by irradiating the stable isotope, such as the irradiation of xenon-124 to produce iodine-125. As the demand for stable isotopes increases, larger scale production facilities will be justifiable. The increased size of production facilities should result in yet lower unit selling prices. A large number of methods has been suggested for the separation of stable isotopes. This paper concerns itself with four methods which have proven extremely useful for the separation of the isotopes of low and medium atomic weight elements. The four processes discussed are gas phase thermal diffusion, liquid phase thermal diffusion, chemical exchange, and distillation.

Schwind, Dr. Roger A.; Rutherford, Dr. William M.

1973-03-01T23:59:59.000Z

152

Method for isotopic analysis of chlorinated organic compounds  

DOE Patents (OSTI)

The present invention provides a method for preparing a VOC sample for carbon and chlorine isotope ratio analysis by mass spectrometer. A VOC sample is placed in a combustion tube and reacted with CuO to form CO.sub.2 and CuCl. The CO.sub.2 is then extracted and analyzed for the carbon isotope ratio. The CuCl is separated from the excess CuO and reacted with CH.sub.3 I to form CH.sub.3 Cl, extracted and analyzed for chlorine isotope ratio.

Holt, Ben D. (Hindsdale, IL); Sturchio, Neil C. (Oswego, IL)

1999-01-01T23:59:59.000Z

153

Glossary Term - Avogadro's Number  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic Number Previous Term (Atomic Number) Glossary Main Index Next Term (Beta Decay) Beta Decay Avogadro's Number Avogadro's number is the number of particles in one mole of a...

154

Isotopic Yield Distributions of Transfer- and Fusion-Induced Fission from 238U+12C Reactions in Inverse Kinematics  

E-Print Network (OSTI)

A novel method to access the complete identification in atomic number Z and mass A of fragments produced in low-energy fission of actinides is presented. This method, based on the use of multi- nucleon transfer and fusion reactions in inverse kinematics, is applied in this work to reactions between a 238U beam and a 12C target to produce and induce fission of moderately excited actinides. The fission fragments are detected and fully identified with the VAMOS spectrometer of GANIL, allowing the measurement of fragment yields of several hundreds of isotopes in a range between A ~ 80 and ~ 160, and from Z ~ 30 to ~ 64. For the first time, complete isotopic yield distributions of fragments from well-defined fissioning systems are available. Together with the precise measurement of the fragment emission angles and velocities, this technique gives further insight into the nuclear-fission process.

M. Caamaño; O. Delaune; F. Farget; X. Derkx; K. -H. Schmidt; L. Audouin; C. -O. Bacri; G. Barreau; J. Benlliure; E. Casarejos; A. Chbihi; B. Fernandez-Dominguez; L. Gaudefroy; C. Golabek; B. Jurado; A. Lemasson; A. Navin; M. Rejmund; T. Roger; A. Shrivastava; C. Schmitt

2013-04-09T23:59:59.000Z

155

Method for detecting and correcting for isotope burn-in during long-term neutron dosimetry exposure  

DOE Patents (OSTI)

A method is described for detecting and correcting for isotope burn-in during-long term neutron dosimetry exposure. In one embodiment, duplicate pairs of solid state track recorder fissionable deposits are used, including a first, fissionable deposit of lower mass to quantify the number of fissions occuring during the exposure, and a second deposit of higher mass to quantify the number of atoms of for instance .sup.239 Pu by alpha counting. In a second embodiment, only one solid state track recorder fissionable deposit is used and the resulting higher track densities are counted with a scanning electron microscope. This method is also applicable to other burn-in interferences, e.g., .sup.233 U in .sup.232 Th or .sup.238 Pu in .sup.237 Np.

Ruddy, Francis H. (Monroeville, PA)

1988-01-01T23:59:59.000Z

156

Apparatus for storing hydrogen isotopes  

DOE Green Energy (OSTI)

An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas(es) is (are) stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forming at a significantly lower temperature).

McMullen, John W. (Los Alamos, NM); Wheeler, Michael G. (Los Alamos, NM); Cullingford, Hatice S. (Houston, TX); Sherman, Robert H. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

157

Strategic Isotope Production | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Isotope Production SHARE Strategic Isotope Production ORNL's unique facilities at the High Flux Isotope Reactor (HFIR), Radiochemical Engineering Development Center...

158

Isotopes as Environmental Tracers in Archived Biological ...  

Science Conference Proceedings (OSTI)

... Tissue Archival and Monitoring Program (STAMP ... and isotopes) and carbon/nitrogen (isotopes). The carbon/nitrogen isotope data provide valuable ...

2012-10-02T23:59:59.000Z

159

Nuclear Masses in Astrophysics  

E-Print Network (OSTI)

Among all nuclear ground-state properties, atomic masses are highly specific for each particular combination of N and Z and the data obtained apply to a variety of physics topics. One of the most crucial questions to be addressed in mass spectrometry of unstable radionuclides is the one of understanding the processes of element formation in the Universe. To this end, accurate atomic mass values of a large number of exotic nuclei participating in nucleosynthesis are among the key input data in large-scale reaction network calculations. In this paper, a review on the latest achievements in mass spectrometry for nuclear astrophysics is given.

Christine Weber; Klaus Blaum; Hendrik Schatz

2008-12-09T23:59:59.000Z

160

Separation of sulfur isotopes  

DOE Patents (OSTI)

Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

DeWitt, Robert (Centerville, OH); Jepson, Bernhart E. (Dayton, OH); Schwind, Roger A. (Centerville, OH)

1976-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Stable Isotopes in Hailstones. Part I: The Isotopic Cloud Model  

Science Conference Proceedings (OSTI)

Equations describing the isotopic balance between five water species (vapor, cloud water, rainwater, cloud ice and graupel)have been incorporated into a one-dimensional steady-state cloud model. The isotope contents of the various water ...

B. Federer; N. Brichet; J. Jouzel

1982-06-01T23:59:59.000Z

162

A direct and rapid leaf water extraction method for isotopic analysis  

E-Print Network (OSTI)

technique based on centrifugation/filtration of leaf samples pulverised in their original sampling tubes for isotopic analysis via pyrolysis gas chromatography isotope ratio mass spectrometry (PYR/GC/IRMS). The new of the centrifuge(s) used. This method provides a rapid, low-cost and reliable alternative to conventional vacuum

Yakir, Dan

163

Natural mercury isotope variation in coal deposits and organic soils  

SciTech Connect

There is a need to distinguish among sources of Hg to the atmosphere in order to more fully understand global Hg pollution. In this study we investigate whether coal deposits within the United States, China, and Russia-Kazakhstan, which are three of the five greatest coal-producing regions, have diagnostic Hg isotopic fingerprints that can be used to discriminate among Hg sources. We also investigate the Hg isotopic composition of modern organic soil horizons developed in areas distant from point sources of Hg in North America. Mercury stored in coal deposits displays a wide range of both mass dependent fractionation and mass independent fractionation. {delta}{sup 202}Hg varies in coals by 3{per_thousand} and {Delta}{sup 201}Hg varies by 0.9{per_thousand}. Combining these two Hg isotope signals results in what may be a unique isotopic 'fingerprint' for many coal deposits. Mass independent fractionation of mercury has been demonstrated to occur during photochemical reactions of mercury. This suggests that Hg found in most coal deposits was subjected to photochemical reduction near the Earth's surface prior to deposition. The similarity in MDF and MIF of modern organic soils and coals from North America suggests that Hg deposition from coal may have imprinted an isotopic signature on soils. This research offers a new tool for characterizing mercury inputs from natural and anthropogenic sources to the atmosphere and provides new insights into the geochemistry of mercury in coal and soils. 35 refs., 2 figs., 1 tab.

Abir, Biswas; Joel D. Blum; Bridget A. Bergquist; Gerald J. Keeler; Zhouqing Xie [University of Michigan, Ann Arbor, MI (United States). Department of Geological Sciences

2008-11-15T23:59:59.000Z

164

Selection of Isotopes and Elements for Fuel Cycle Analysis  

Science Conference Proceedings (OSTI)

Fuel cycle system analysis simulations examine how the selection among fuel cycle options for reactors, fuel, separation, and waste management impact uranium ore utilization, waste masses and volumes, radiotoxicity, heat to geologic repositories, isotope-dependent proliferation resistance measures, and so forth. Previously, such simulations have tended to track only a few actinide and fission product isotopes, those that have been identified as important to a few criteria from the standpoint of recycled material or waste, taken as a whole. After accounting for such isotopes, the residual mass is often characterized as “fission product other” or “actinide other”. However, detailed assessment of separation and waste management options now require identification of key isotopes and residual mass for Group 1A/2A elements (Rb, Cs, Sr, Ba), inert gases (Kr, Xe), halogens (Br, I), lanthanides, transition metals, transuranic (TRU), uranium, actinide decay products. The paper explains the rationale for a list of 81 isotopes and chemical elements to better support separation and waste management assessment in dynamic system analysis models such as Verifiable Fuel Cycle Simulation (VISION)

Steven J. Piet

2009-04-01T23:59:59.000Z

165

DEEP WATER ISOTOPIC CURRENT ANALYZER  

DOE Patents (OSTI)

A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

Johnston, W.H.

1964-04-21T23:59:59.000Z

166

LITERATURE SURVEY ON ISOTOPIC ABUNDANCE RATIO MEASUREMENTS - 2001-2005  

Science Conference Proceedings (OSTI)

Along with my usual weekly review of the published literature for new nuclear data, I also search for new candidates for best measurements of isotopic abundances from a single source. Most of the published articles, that I previously had found in the Research Library at the Brookhaven Lab, have already been sent to the members of the Atomic Weights Commission, by either Michael Berglund or Thomas Walczyk. In the last few days, I checked the published literature for any other articles in the areas of natural variations in isotopic abundance ratios, measurements of isotopic abundance ratios on samples of extra-terrestrial material and isotopic abundance ratio measurements performed using ICPMS instruments. Hopefully this information will be of interest to members of the Commission, the sub-committee on isotopic abundance measurements (SIAM), members of the former sub-committee on natural isotopic fractionation (SNIF), the sub-committee on extra-terrestrial isotope ratios (SETIR), the RTCE Task Group and the Guidelines Task Group, who are dealing with ICPMS and TIMS comparisons. In the following report, I categorize the publications in one of four areas. Measurements performed using either positive or negative ions with Thermal Ionization Mass Spectrometer, TIMS, instruments; measurements performed on Inductively Coupled Plasma Mass Spectrometer, ICPMS, instruments; measurements of natural variations of the isotopic abundance ratios; and finally measurements on extra-terrestrial samples with instrumentation of either type. There is overlap in these areas. I selected out variations and ET results first and then categorized the rest of the papers by TIMS and ICPMS.

HOLDEN, N.E.

2005-08-13T23:59:59.000Z

167

Method for separating boron isotopes  

SciTech Connect

A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

Rockwood, Stephen D. (Los Alamos, NM)

1978-01-01T23:59:59.000Z

168

Molecular isotopic effects on coupled electronic and nuclear fluxes  

SciTech Connect

A full quantum treatment shows that coupled electronic and nuclear fluxes exhibit a strong sensitivity to a small mass change in a vibrating molecule. This has been exemplified with the existing isotopes of H{sub 2}{sup +} as well as few fictitious ones. We find that the fluxes undergo a significant change as one goes from one isotope of reduced mass {mu} to another. Other well-defined observables are likewise affected. It turns out that as a general rule, the heavier the isotope, the larger the flux, the smaller the dispersion, and the longer the revival period. While we were able to confirm analytically that the time at the first turning point scales as {radical}({mu}) and that the revival period changes linearly with {mu}, the mechanism of other observables remains subtle as the result of quantum interference highlighted by the pronounced difference observed on the dispersion pattern.

Kenfack, A.; Paulus, B. [Physikalische und Theoretische Chemie, Institut fuer Chemie und Biochemie, Freie Universitaet Berlin, D-14195 Berlin (Germany); Barth, I. [Physikalische und Theoretische Chemie, Institut fuer Chemie und Biochemie, Freie Universitaet Berlin, D-14195 Berlin (Germany); Max-Born-Institut, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Marquardt, F. [Visualisierung und Datenanalyse, Zuse Institut Berlin, D-14195 Berlin (Germany); Fachbereich Mathematik, Freie Universitaet Berlin, D-14195 Berlin (Germany)

2010-12-15T23:59:59.000Z

169

Measuring Mercury Isotopes in the Atmosphere and Rainfall near a Coal-Fired Power Plant  

Science Conference Proceedings (OSTI)

Recent work has shown that the seven naturally occurring stable isotopes of mercury (Hg) undergo mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) during transformation processes, especially during chemical oxidation and reduction (redox) reactions that can occur in the atmosphere. The isotopic patterns resulting from fractionation can be used to help trace the sources of Hg in the environment and to help clarify the mechanisms of Hg cycling. This project was designed with ...

2013-11-19T23:59:59.000Z

170

Sensitive dependence of isotope and isobar distribution of limiting temperatures on symmetry energy  

E-Print Network (OSTI)

The mass, isotope and isobar distributions of limiting temperature for finite nuclei are investigated by thermodynamics approach with the Skyrme energy density functional. The calculations show there is an exact corresponding relationship between the width of isotope and isobar distribution of limiting temperatures and the stiffness of the density dependence of symmetry energy. The symmetry energy with smaller slope parameter $L_{\\rm{sym}}$ provides a wider distribution of limiting temperatures of nuclei in the isotope and isobar chain. Our studies show that the widths of isotope and isobar distribution of limiting temperatures are useful to obtain the information of the density dependence of the symmetry energy at finite temperature.

Li Ou; Min Liu; Zhuxia Li

2013-10-14T23:59:59.000Z

171

Negative mass  

E-Print Network (OSTI)

Some physical aspects of negative mass are examined. Several unusual properties, such as the ability of negative mass to penetrate any armor, are analyzed. Other surprising effects include the bizarre system of negative mass chasing positive pass, naked singularities and the violation of cosmic censorship, wormholes, and quantum mechanical results as well. In addition, a brief look into the implications for strings is given.

Richard T Hammond

2013-08-06T23:59:59.000Z

172

It's Elemental - Isotopes of the Element Californium  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Number Half-life Decay Mode Branching Percentage 237 0.8 seconds Spontaneous Fission 70.00% Alpha Decay 30.00% 238 21 milliseconds Spontaneous Fission 100.00% 239 39...

173

It's Elemental - Isotopes of the Element Seaborgium  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Number Half-life Decay Mode Branching Percentage 258 2.9 milliseconds Spontaneous Fission < 100.00% Alpha Decay (suspected) No Data Available 259 0.32 seconds Alpha Decay...

174

It's Elemental - Isotopes of the Element Rutherfordium  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Number Half-life Decay Mode Branching Percentage 253 48 microseconds Spontaneous Fission < 100.00% Alpha Decay No Data Available Alpha Decay 50.00% Spontaneous Fission ...

175

Gaussian random number generators  

Science Conference Proceedings (OSTI)

Rapid generation of high quality Gaussian random numbers is a key capability for simulations across a wide range of disciplines. Advances in computing have brought the power to conduct simulations with very large numbers of random numbers and with it, ... Keywords: Gaussian, Random numbers, normal, simulation

David B. Thomas; Wayne Luk; Philip H.W. Leong; John D. Villasenor

2007-11-01T23:59:59.000Z

176

W Transverse Mass  

NLE Websites -- All DOE Office Websites (Extended Search)

Some Data Analysis Some Data Analysis The Tevatron produces millions of collisions each second in CDF and DZero. The detectors have hardware triggers to decide if a collision is "interesting," that is it contains a candidate event for any one of a number studies. Our dataset contains 48,844 candidate events for a W mass study. There are other datasets to study Z mass, top and b quarks, QCD, etc. Why don't all the W decays give exactly the same mass? Are all these candidates really Ws? What if we chose only some of these data. How would our choice effect the value of the transverse mass? Work with your classmates. Test the data to see what you can learn. Help with data analysis. Record the best estimate of the W transverse mass from your data analysis. Explain which data you used and why. Check with your classmates and explain any differences between your estimate and theirs.

177

Efficient Estimators for Quantum Instanton Evaluation of theKinetic Isotope Effects: Application to the Intramolecular HydrogenTransfer in Pentadiene  

SciTech Connect

The quantum instanton approximation is used to compute kinetic isotope effects for intramolecular hydrogen transfer in cis-1,3-pentadiene. Due to the importance of skeleton motions, this system with 13 atoms is a simple prototype for hydrogen transfer in enzymatic reactions. The calculation is carried out using thermodynamic integration with respect to the mass of the isotopes and a path integral Monte Carlo evaluation of relevant thermodynamic quantities. Efficient 'virial' estimators are derived for the logarithmic derivatives of the partition function and the delta-delta correlation functions. These estimators require significantly fewer Monte Carlo samples since their statistical error does not increase with the number of discrete time slices in the path integral. The calculation treats all 39 degrees of freedom quantum-mechanically and uses an empirical valence bond potential based on a modified general AMBER force field.

Vanicek, Jiri; Miller, William H.

2007-06-13T23:59:59.000Z

178

The Nonactinide Isotope and Sealed Sources Management Group  

SciTech Connect

The Nonactinide Isotope and Sealed Sources Management Group (NISSMG) is sponsored by the Department of Energy (DOE) Office of Environmental Management and managed by Albuquerque Operations Office (DOE/AL) to serve as a complex-wide resource for the management of DOE-owned Nonactinide Isotope and Sealed Source (NISS) materials. NISS materials are defined as including: any isotope in sealed sources or standards; and isotopes, regardless of form, with atomic number less than 90. The NISSMG assists DOE sites with the storage, reuse, disposition, transportation, and processing of these materials. The NISSMG has focused its efforts to date at DOE closure sites due to the immediacy of their problems. Recently, these efforts were broadened to include closure facilities at non-closure sites. Eventually, the NISSMG plans to make its resources available to all DOE sites. This paper documents the lessons learned in managing NISS materials at DOE sites to date.

Low, J. L.; Polansky, G. F.; Parks, D. L.

2002-02-27T23:59:59.000Z

179

First AID (Atom counting for Isotopic Determination).  

SciTech Connect

Los Alamos National Laboratory (LANL) has established an in vitro bioassay monitoring program in compliance with the requirements in the Code of Federal Regulations, 10 CFR 835, Occupational Radiation Protection. One aspect of this program involves monitoring plutonium levels in at-risk workers. High-risk workers are monitored using the ultra-sensitive Therrnal Ionization Mass Spectrometry (TIMS) technique to ensure compliance with DOE standards. TIMS is used to measure atom ratios of 239Pua nd 240Puw ith respect to a tracer isotope ('Pu). These ratios are then used to calculate the amount of 239Pu and 240Pup resent. This low-level atom counting technique allows the calculation of the concentration levels of 239Pu and 240Pu in urine for at risk workers. From these concentration levels, dose assessments can be made and worker exposure levels can be monitored. Detection limits for TIMS analysis are on the order of millions of atoms, which translates to activity levels of 150 aCi 239Pua nd 500 aCi for 240Pu. pCi for Our poster presentation will discuss the ultra-sensitive, low-level analytical technique used to measure plutonium isotopes and the data verification methods used for validating isotopic measurements.

Roach, J. L. (Jeffrey L.); Israel, K. M. (Kimberly M.); Steiner, R. E. (Robert E.); Duffy, C. J. (Clarence J.); Roench, F. R. (Fred R.)

2002-01-01T23:59:59.000Z

180

Assessment of methods for analyzing gaseous mixtures of hydrogen isotopes and helium  

DOE Green Energy (OSTI)

Mass spectrographic methods have served well in the past to analyze gaseous mixtures of the hydrogen isotopes. Alternate methods of analyses are reviewed which offer wider ranges and variety of isotopic determinations. This report describes possible improvements of the mass spectrographic determinations, gas chromatography, anti-Stokes Raman spectroscopy, microwave-induced optical emission spectroscopy, and methods of measuring tritium using radiation detection devices. Precision, accuracy, limitations, and costs are included for some of the methods mentioned. Costs range from $70,000 for the anti-Stokes Raman spectroscopy equipment, which can determine hydrogen isotopes but not helium, to less than $10,000 for the gas chromatographic equipment, which can determine hydrogen isotopes and helium with precision and accuracy comparable to those of the mass spectrometer.

Attalla, A.; Bishop, C.T.; Bohl, D.R.; Buxton, T.L.; Sprague, R.E.; Warner, D.K.

1976-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Mass Measurements  

Science Conference Proceedings (OSTI)

... NIST maintains the national standard for mass in the form of the prototype kilogram (K20) and provides services to support the parts of the national ...

2013-06-28T23:59:59.000Z

182

fehlende Masse  

NLE Websites -- All DOE Office Websites (Extended Search)

beim radioaktiven Zerfall mit der fehlenden Masse?" Zur Erinnerung: wenn Uran in Thorium und ein alpha Teilchen zerfllt, dann gehen 0.0046 u (Masseneinheiten) der...

183

Quantum Random Number Generator  

Science Conference Proceedings (OSTI)

... trusted beacon of random numbers. You could conduct secure auctions, or certify randomized audits of data. One of the most ...

2013-08-30T23:59:59.000Z

184

Isotopically labeled compositions and method  

DOE Patents (OSTI)

Compounds having stable isotopes .sup.13C and/or .sup.2H were synthesized from precursor compositions having solid phase supports or affinity tags.

Schmidt, Jurgen G. (Los Alamos, NM); Kimball, David B. (Los Alamos, NM); Alvarez, Marc A. (Santa Fe, NM); Williams, Robert F. (Los Alamos, NM); Martinez, Rudolfo A. (Santa Fe, NM)

2011-07-12T23:59:59.000Z

185

Atom probe microscopy of three-dimensional distribution of silicon isotopes in {sup 28}Si/{sup 30}Si isotope superlattices with sub-nanometer spatial resolution  

Science Conference Proceedings (OSTI)

Laser-assisted atom probe microscopy of 2 nm period {sup 28}Si/{sup 30}Si isotope superlattices (SLs) is reported. Three-dimensional distributions of {sup 28}Si and {sup 30}Si stable isotopes are obtained with sub-nanometer spatial resolution. The depth resolution of the present atom probe analysis is much higher than that of secondary ion mass spectrometry (SIMS) even when SIMS is performed with a great care to reduce the artifact due to atomic mixing. Outlook of Si isotope SLs as ideal depth scales for SIMS and three-dimensional position standards for atom probe microscopy is discussed.

Shimizu, Yasuo; Kawamura, Yoko; Uematsu, Masashi; Itoh, Kohei M. [School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Tomita, Mitsuhiro [Corporate Research and Development Center, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Sasaki, Mikio; Uchida, Hiroshi; Takahashi, Mamoru [Toshiba Nanoanalysis Corporation, 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8583 (Japan)

2009-10-01T23:59:59.000Z

186

Chromatographic hydrogen isotope separation  

DOE Patents (OSTI)

Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

Aldridge, Frederick T. (Livermore, CA)

1981-01-01T23:59:59.000Z

187

Quantification of neptunium by isotope dilution mass spectrometry  

SciTech Connect

A surface ionization-diffusion-type ionization source that uses a rhenium filament overplated with platinum has been developed and optimized for 0.1-ng neptunium samples. This source is capable of measuring the neptunium content of nuclear-test-debris samples to 0.15% precision at the 95% confidence level. 14 refs., 3 figs., 3 tabs.

Efurd, D.W.; Drake, J.; Roensch, F.R.; Cappis, J.H.; Perrin, R.E.

1986-05-01T23:59:59.000Z

188

Toward laser ablation Accelerator Mass Spectrometry of actinides  

Science Conference Proceedings (OSTI)

A project to measure neutron capture cross sections of a number of actinides in a reactor environment by Accelerator Mass Spectrometry (AMS) at the ATLAS facility of Argonne National Laboratory is underway. This project will require the precise and accurate measurement of produced actinide isotopes in many (>30) samples irradiated in the Advanced Test Reactor at Idaho National Laboratory with neutron fluxes having different energy distributions. The AMS technique at ATLAS is based on production of highlycharged positive ions in an electron cyclotron resonance (ECR) ion source followed by acceleration in the ATLAS linac and mass-to-charge (m/q) measurement at the focus of the Fragment Mass Analyzer. Laser ablation was selected as the method of feeding the actinide material into the ion source because we expect it will have higher efficiency and lower chamber contamination than either the oven or sputtering techniques, because of a much narrower angular distribution of emitted material. In addition, a new multi-sample holder/changer to allow quick change between samples and a computer-controlled routine allowing fast tuning of the accelerator for different beams, are being developed. An initial test run studying backgrounds, detector response, and accelerator scaling repeatability was conducted in December 2010. The project design, schedule, and results of the initial test run to study backgrounds are discussed.

R. C. Pardo; F. G. Kondev; S. Kondrashev; C. Nair; T. Palchan; R. Scott; D. Seweryniak; R. Vondrasek; M. Paul; P. Collon; C. Deibel; M. Salvatores; G. Palmiotti; J. Berg; J. Fonnesbeck; G. Imel

2013-01-01T23:59:59.000Z

189

It's Elemental - Isotopes of the Element Neptunium  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Previous Element (Uranium) The Periodic Table of Elements Next Element (Plutonium) Plutonium Isotopes of the Element Neptunium Click for Main Data Most of the isotope...

190

It's Elemental - Isotopes of the Element Sulfur  

NLE Websites -- All DOE Office Websites (Extended Search)

Phosphorus Previous Element (Phosphorus) The Periodic Table of Elements Next Element (Chlorine) Chlorine Isotopes of the Element Sulfur Click for Main Data Most of the isotope...

191

It's Elemental - Isotopes of the Element Argon  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorine Previous Element (Chlorine) The Periodic Table of Elements Next Element (Potassium) Potassium Isotopes of the Element Argon Click for Main Data Most of the isotope data...

192

It's Elemental - Isotopes of the Element Ruthenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Technetium Previous Element (Technetium) The Periodic Table of Elements Next Element (Rhodium) Rhodium Isotopes of the Element Ruthenium Click for Main Data Most of the isotope...

193

It's Elemental - Isotopes of the Element Molybdenum  

NLE Websites -- All DOE Office Websites (Extended Search)

Niobium Previous Element (Niobium) The Periodic Table of Elements Next Element (Technetium) Technetium Isotopes of the Element Molybdenum Click for Main Data Most of the isotope...

194

It's Elemental - Isotopes of the Element Thorium  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Elements Next Element (Protactinium) Protactinium Isotopes of the Element Thorium Click for Main Data Most of the isotope data on this site has been obtained from...

195

It's Elemental - Isotopes of the Element Protactinium  

NLE Websites -- All DOE Office Websites (Extended Search)

Thorium Previous Element (Thorium) The Periodic Table of Elements Next Element (Uranium) Uranium Isotopes of the Element Protactinium Click for Main Data Most of the isotope data...

196

High-Precision Isotopic Reference Materials  

Science Conference Proceedings (OSTI)

... sources, is now capable of measuring isotope ratios with ... revolution in the use of isotopes by revealing ... This program will have an impact in several ...

2012-10-22T23:59:59.000Z

197

The marine biogeochemistry of zinc isotopes  

E-Print Network (OSTI)

Zinc (Zn) stable isotopes can record information about important oceanographic processes. This thesis presents data on Zn isotopes in anthropogenic materials, hydrothermal fluids and minerals, cultured marine phytoplankton, ...

John, Seth G

2007-01-01T23:59:59.000Z

198

Method of separating boron isotopes  

SciTech Connect

A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

Jensen, Reed J. (Los Alamos, NM); Thorne, James M. (Provo, UT); Cluff, Coran L. (Provo, UT); Hayes, John K. (Salt Lake City, UT)

1984-01-01T23:59:59.000Z

199

Shell model description of zirconium isotopes  

Science Conference Proceedings (OSTI)

We calculate the low-lying spectra and several high-spin states of zirconium isotopes (Z=40) with neutron numbers from N=50 to N=58 using a large valence space with the {sup 78}Ni inert core, which a priori allows one to study the interplay between spherical and deformed configurations, necessary for the description of nuclides in this part of the nuclear chart. The effective interaction is derived by monopole corrections of the realistic G matrix. We reproduce essential nuclear properties, such as subshell closures in {sup 96}Zr and {sup 98}Zr. The spherical-to-deformed shape transition in {sup 100}Zr is addressed as well.

Sieja, K. [GSI-Helmholtzzentrum fuer Schwerionenforschung mbH., Planckstrasse 1, D-64-220 Darmstadt (Germany); Institut fuer Kernphysik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Nowacki, F. [Institute Pluridisciplinaire Hubert Curien, 23 rue du Loess, Strasbourg (France); Langanke, K. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main (Germany); Martinez-Pinedo, G. [GSI-Helmholtzzentrum fuer Schwerionenforschung mbH., Planckstrasse 1, D-64-220 Darmstadt (Germany)

2009-06-15T23:59:59.000Z

200

System size effects in the N/Z dependence of balance energy for isotopic series  

E-Print Network (OSTI)

We study the system size effects in the N/Z dependence of balance energy for the isotopic series. We find drastic effect of symmetry energy on the N/Z dependence of E$_{bal}$ throughout the mass range. We also find that the N/Z dependence of E$_{bal}$ for isotopic series of lighter system is slightly more sensitive to symmetry energy as compared to that of heavier systems. We also study the mass dependence of E$_{bal}$ for the N/Z range from 1.0-2.0. We find that the mass dependence of E$_{bal}$ varies with the N/Z ratio.

Sakshi Gautam; Aman Deep Sood

2011-02-13T23:59:59.000Z

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Texas Natural Gas Number of Industrial Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of...

202

Development of high through-put Sr isotope analysis for monitoring reservoir integrity for CO{sub 2} storage.  

SciTech Connect

Recent innovations in multi-collector ICP-mass spectrometry (MC-ICP-MS) have allowed for rapid and precise measurements of isotope ratios in geological samples. Naturally occurring Sr isotopes has the potential for use in Monitoring, Verification, and Accounting (MVA) associated with geologic CO2 storage. Sr isotopes can be useful for: Sensitive tracking of brine migration; Determining seal rock leakage; Studying fluid/rock reactions. We have optimized separation chemistry procedures that will allow operators to prepare samples for Sr isotope analysis off site using rapid, low cost methods.

Wall, Andy; Jain, Jinesh; Stewart, Brian; Capo, Rosemary; Hakala, Alexandra J.; Hammack, Richard; Guthrie, George

2012-01-01T23:59:59.000Z

203

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al.,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al., Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System,

204

W Transverse Mass  

NLE Websites -- All DOE Office Websites (Extended Search)

Transverse Mass Histogram Transverse Mass Histogram Data for 49,844 candidate W events are in an Excel spreadsheet with the following data as shown in the table below: A B C D 1 Run No Event No W TMass GeV/c2 Bins 2 55237 19588 68.71732 3 55237 30799 72.19464 Get the data. Sort the data by ascending mass. Be sure to sort all the data in the first three columns! Make a histogram of the data. Rather than graphing the data as individual points, physicists group the data by mass. They consider the full range of the data and divide it into "bins" of equal range size. A histogram is a graph of the number of events in each bin vs. the bin range. They are looking for a peak in the data where most of the masses fall. This will be the value of the mass as detemined by that dataset, and the width of the distribution is a reflection of the errors in the measurements.

205

Number | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number More Documents & Publications Analysis of Open Office of Inspector General Recommendations, OAS-L-08-07 Policy and International Affairs (WFP) Open Government Plan 2.0...

206

Expected Frobenius numbers  

E-Print Network (OSTI)

We show that for large instances the order of magnitude of the expected Frobenius number is (up to a constant depending only on the dimension) given by its lower bound.

Aliev, Iskander; Hinrichs, Aicke

2009-01-01T23:59:59.000Z

207

Compelling Research Opportunities using Isotopes  

SciTech Connect

Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.

None

2009-04-23T23:59:59.000Z

208

Report number codes  

SciTech Connect

This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

Nelson, R.N. (ed.)

1985-05-01T23:59:59.000Z

209

Stable carbon isotope ratio of polycyclic aromatic hydrocarbons (PAHs) in the environment: validation of isolation and stable carbon isotope analysis methods  

E-Print Network (OSTI)

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, toxic contaminants that are released to the environment from various petrogenic and pyrogenic sources. In an effort to more clearly identify and trace sources of PAHs in the environment, purification and compound specific isotope analysis methods were developed to accurately measure the stable carbon isotope ratio of individual PAHs. Development of the method included improving accuracy and precision of the isotopic measurement by producing highly pure extracts using various chromatographic techniques. The method was refined by improving compound separations using purification techniques and high resolution chromatographic columns. The purification method consists of alumina/silica gel column chromatography, gel permeation chromatography and thin layer chromatography. The mean recovery of PAHs after the purification procedure was approximately 80 %. Sample purities after purification were verified by GC/FID and full scan mass spectrometry. To better resolve peaks and provide more accurate stable carbon isotope measurements, various gas chromatographic conditions were evaluated. The precision of the method ranged between 0.08 and 0.43 . The analytical protocols were evaluated to confirm compositional and stable isotopic integrity during purification and stable isotopic analysis. To confirm the utility of the purification and isotope analysis methods, various environmental samples from marine, land and lacustrine environments were analyzed. The isolates were analyzed for the composition and the stable carbon isotope ratios of PAHs. The stable carbon isotope ratio was measured by GC/IRMS and the results, along with quantitative compound compositions, were used to characterize and identify the contaminant sources. The sources of the PAHs in the study areas were differentiated by PAH molecular ratios and confirmed by stable carbon isotope ratios. This study confirms that compound specific isotope analysis of pollutants by GC/IRMS can be used to identify PAH sources in environmental samples. The study also confirms that the purification and stable carbon isotope analysis methods that were developed can be used to accurately measure the stable carbon isotope ratios of PAHs in environmental samples for the purpose of source identification. GC/IRMS measurement of stable isotopic compositions can be an effective fingerprinting method when used in conjunction with traditional molecular composition methods.

Kim, Moon Koo

2004-08-01T23:59:59.000Z

210

Number | Open Energy Information  

Open Energy Info (EERE)

Number Number Jump to: navigation, search Properties of type "Number" Showing 200 properties using this type. (previous 200) (next 200) A Property:AvgAnnlGrossOpCpcty Property:AvgTempGeoFluidIntoPlant Property:AvgWellDepth B Property:Building/FloorAreaChurchesChapels Property:Building/FloorAreaGroceryShops Property:Building/FloorAreaHealthServices24hr Property:Building/FloorAreaHealthServicesDaytime Property:Building/FloorAreaHeatedGarages Property:Building/FloorAreaHotels Property:Building/FloorAreaMiscellaneous Property:Building/FloorAreaOffices Property:Building/FloorAreaOtherRetail Property:Building/FloorAreaResidential Property:Building/FloorAreaRestaurants Property:Building/FloorAreaSchoolsChildDayCare Property:Building/FloorAreaShops Property:Building/FloorAreaSportCenters

211

Multidetector calibration for mass spectrometers  

SciTech Connect

The International Atomic Energy Agency`s Safeguards Analytical Laboratory has performed calibration experiments to measure the different efficiencies among multi-Faraday detectors for a Finnigan-MAT 261 mass spectrometer. Two types of calibration experiments were performed: (1) peak-shift experiments and (2) peak-jump experiments. For peak-shift experiments, the ion intensities were measured for all isotopes of an element in different Faraday detectors. Repeated measurements were made by shifting the isotopes to various Faraday detectors. Two different peak-shifting schemes were used to measure plutonium (UK Pu5/92138) samples. For peak-jump experiments, ion intensities were measured in a reference Faraday detector for a single isotope and compared with those measured in the other Faraday detectors. Repeated measurements were made by switching back-and-forth between the reference Faraday detector and a selected Faraday detector. This switching procedure is repeated for all Faraday detectors. Peak-jump experiments were performed with replicate measurements of {sup 239}Pu, {sup 187}Re, and {sup 238}U. Detector efficiency factors were estimated for both peak-jump and peak-shift experiments using a flexible calibration model to statistically analyze both types of multidetector calibration experiments. Calculated detector efficiency factors were shown to depend on both the material analyzed and the experimental conditions. A single detector efficiency factor is not recommended for each detector that would be used to correct routine sample analyses. An alternative three-run peak-shift sample analysis should be considered. A statistical analysis of the data from this peak-shift experiment can adjust the isotopic ratio estimates for detector differences due to each sample analysis.

Bayne, C.K. [Oak Ridge National Lab., TN (United States); Donohue, D.L.; Fiedler, R. [IAEA, Seibersdorf (Austria). Safeguards Analytical Lab.

1994-06-01T23:59:59.000Z

212

Using Fractional Numbers of . . .  

E-Print Network (OSTI)

One of the design parameters in closed queueing networks is Np, the number of customers of class p. It has been assumed that Np must be an integer. However, integer choices will usually not achieve the target throughput for each class simultaneously. We use Mean Value Analysis with the Schweitzer-Bard approximation and nonlinear programming to determine the value of Np needed to achieve the production targets exactly, although the values of Np may be fractional. We interpret these values to represent the average number of customers of each class in the network. We implement a control rule to achieve these averages and verify our approach through simulation.

Rajan Suri; Rahul Shinde; Mary Vernon

2005-01-01T23:59:59.000Z

213

Novel hybrid isotope separation scheme and apparatus  

DOE Patents (OSTI)

A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means.

Maya, Jakob (Brookline, MA)

1991-01-01T23:59:59.000Z

214

Studies in Photosynthesis with Isotopes  

E-Print Network (OSTI)

chlorophyll) SCHEMATIC DIAGRAM OF PHOTOSYNTHESIS Fig, P Fig.2 Time of photosynthesis 60c.f M U 1646 Fig. 5 Fig. 8 Fig. 94705-eng-48 STUDIES IN PHOTOSYNTHESIS WITH ISOTOPES M Calvin

Calvin, M.; Bassham, J.A.

1952-01-01T23:59:59.000Z

215

CHEMICAL SAFETY Emergency Numbers  

E-Print Network (OSTI)

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 use, storage, handling, waste and emergency management of chemicals on the University of Northern

Bolch, Tobias

216

Disjunctive Rado numbers  

Science Conference Proceedings (OSTI)

If L1 and L2 are linear equations, then the disjunctive Rado number of the set {L1, L2} is the least integer n, provided that it exists, such that for every 2-coloring of ... Keywords: Rado, Ramsey, Schur, disjunctive

Brenda Johnson; Daniel Schaal

2005-11-01T23:59:59.000Z

217

A number of organizations,  

E-Print Network (OSTI)

buying power to purchase green power. The city of Chicago has formed an alliance with 47 other local installed solar electric systems on a number of the city's buildings, including the Chicago Center for Green to competition, the city of Chicago and 47 other local government agencies formed the Local Government Power

218

South Dakota Natural Gas Number of Commercial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers...

219

South Dakota Natural Gas Number of Residential Consumers (Number...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential...

220

South Dakota Natural Gas Number of Industrial Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers...

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Mass Finishing  

Science Conference Proceedings (OSTI)

Table 8 Operating conditions for mass finishing...Brass screw-machine parts Aluminum oxide or granite 6.4-19 0.25-0.75 [MathExpression] -6 Light matte or bright Light cutting (a) Brass stampings or screws (b) Limestone 3.2-13 0.13-0.50 2-6 Bright (a) Submerged tumbling is used for fragile and precision parts. (b) Screw-machine parts...

222

Calculating the nuclear mass at finite angular momenta  

E-Print Network (OSTI)

Mean field methods to calculate the nuclear mass are extended into the high spin regime to calculate the nuclear binding energy as a function of proton number, neutron number and angular momentum. Comparing the trend as a function of mass number for a selection of high-spin states, a similar agreement between theory and experiment is obtained as for ground state masses.

B. G. Carlsson; I. Ragnarsson

2005-03-30T23:59:59.000Z

223

Isotope production facility produces cancer-fighting actinium  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major...

224

Carbon Isotope Separation and Molecular Formation in Laser-Induced...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Isotope Separation and Molecular Formation in Laser-Induced Plasmas by Laser Ablation Molecular Isotopic Spectrometry Title Carbon Isotope Separation and Molecular Formation...

225

ELECTRICAL DISTRICT NUMBER EIGHT  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRICAL DISTRICT NUMBER EIGHT ELECTRICAL DISTRICT NUMBER EIGHT Board of Directors Reply to: Ronald Rayner C. W. Adams James D. Downing, P.E. Chairman Billy Hickman 66768 Hwy 60 Brian Turner Marvin John P.O. Box 99 Vice-Chairman Jason Pierce Salome, AZ 85348 Denton Ross Jerry Rovey Secretary James N. Warkomski ED8@HARCUVARCO.COM John Utz Gary Wood PHONE:(928) 859-3647 Treasurer FAX: (928) 859-3145 Sent via e-mail Mr. Darrick Moe, Regional Manager Western Area Power Administration Desert Southwest Region P. O. Box 6457 Phoenix, AZ 85005-6457 moe@wapa.gov; dswpwrmrk@wapa.gov Re: ED5-Palo Verde Hub Project Dear Mr. Moe, In response to the request for comments issued at the October 6 Parker-Davis Project customer th meeting, and in conjunction with comments previously submitted by the Southwest Public Power

226

Preventive Action Number:  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Preventive Action Report Planning Worksheet 11_0414 1 of 3 8 Preventive Action Report Planning Worksheet 11_0414 1 of 3 EOTA - Business Form Document Title: Preventive Action Report Planning Worksheet Document Number: F-018 Rev 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-008, Corrective/Preventive Action Notify of Changes: EOTA Employees Referenced Document(s): N/A F-018 Preventive Action Report Planning Worksheet 11_0414 2 of 3 Revision History: Rev. Description of Change 08_0613 Initial Release 09_0924 Worksheet modified to reflect External Audit recommendation for identification of "Cause for Potential Nonconformance". Minor editing changes. 11_0414 Added Preventive Action Number block to match Q-Pulse

227

Preventive Action Number:  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Corrective Action Report Planning Worksheet 11_0414 1 of 3 7 Corrective Action Report Planning Worksheet 11_0414 1 of 3 EOTA - Business Form Document Title: Corrective Action Report Planning Worksheet Document Number: F-017 Rev 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-008, Corrective/Preventive Action Notify of Changes: EOTA Employees Referenced Document(s): N/A F-017 Corrective Action Report Planning Worksheet 11_0414 2 of 3 Revision History: Rev. Description of Change 08_0613 Initial Release 11_0414 Added problem statement to first block. F-017 Corrective Action Report Planning Worksheet 11_0414 3 of 3 Corrective Action Report Planning Worksheet Corrective Action Number: Source: Details/Problem Statement: Raised By: Raised Date: Target Date:

228

Isotopic Effect on Ion Mobility and Separation of Isotopomers by High-Field Ion Mobility Spectrometry  

SciTech Connect

Since early 1900-s, when vacuum techniques and ion detectors first enabled investigations of gas-phase ions, two approaches to their separation and characterization have emerged - mass spectrometry (MS) and ion mobility spectrometry (IMS).1,2 Though both exploit that distinct charged species move in electric fields differently, MS is performed in vacuum and is based only on the ion mass/charge (m/q) ratio while IMS involves sufficiently dense buffer gases and relies on ion transport properties. The first major discovery enabled by MS was the existence of isotopes by Thomson and Aston,3 and isotopic analyses have since been integral to MS. In particular, the preparative separation of U isotopes using Lawrence’s Calutron was the first industrial application of MS,4 and isotopic labeling is key to MS quantification methods. With IMS, the issue of isotopes was largely ignored as the resolving power (R) was generally too low for their separation. Here, we demonstrate that recently developed high-resolution differential IMS can separate isotopic molecular ions, including nominal isobars with different isotopic content and isotopomers. This capability may enable a new method for isotope separation in a small-scale format at ambient pressure and aid localization of labeled sites in various molecules. Perhaps most importantly, the isotopic shifts depend on the labeled atom position and thus may contain the kind of detailed structural information that is available in solution or solid state using tools such as NMR but has not generally been obtainable for gas-phase ions.

Shvartsburg, Alexandre A.; Clemmer, David E.; Smith, Richard D.

2010-10-01T23:59:59.000Z

229

Evolution of isotopic composition of reprocessed uranium during the multiple recycling in light water reactors with natural uranium feed  

Science Conference Proceedings (OSTI)

A complex approach based on the consistent modeling of neutron-physics processes and processes of cascade separation of isotopes is applied for analyzing physical problems of the multiple usage of reprocessed uranium in the fuel cycle of light water reactors. A number of scenarios of multiple recycling of reprocessed uranium in light water reactors are considered. In the process, an excess absorption of neutrons by the {sup 236}U isotope is compensated by re-enrichment in the {sup 235}U isotope. Specific consumptions of natural uranium for re-enrichment of the reprocessed uranium depending on the content of the {sup 232}U isotope are obtained.

Smirnov, A. Yu., E-mail: a.y.smirnoff@rambler.ru; Sulaberidze, G. A. [National Research Nuclear University MEPhI (Russian Federation); Alekseev, P. N.; Dudnikov, A. A.; Nevinitsa, V. A., E-mail: neva@dhtp.kiae.ru; Proselkov, V. N.; Chibinyaev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

2012-12-15T23:59:59.000Z

230

Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1  

DOE Green Energy (OSTI)

Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

2005-10-31T23:59:59.000Z

231

Finite Neutrosophic Complex Numbers  

E-Print Network (OSTI)

In this book for the first time the authors introduce the notion of real neutrosophic complex numbers. Further the new notion of finite complex modulo integers is defined. For every $C(Z_n)$ the complex modulo integer $i_F$ is such that $2F_i = n - 1$. Several algebraic structures on $C(Z_n)$ are introduced and studied. Further the notion of complex neutrosophic modulo integers is introduced. Vector spaces and linear algebras are constructed using these neutrosophic complex modulo integers.

W. B. Vasantha Kandasamy; Florentin Smarandache

2011-11-01T23:59:59.000Z

232

MCHF calculations of isotope shifts; I program implementation and test runs II large-scale active space calculations  

Science Conference Proceedings (OSTI)

A new isotope shift program, part of the MCHF atomic structure package, has been written and tested. The program calculates the isotope shift of an atomic level from MCHF or CI wave functions. The program is specially designed to be used with very large CI expansions, for which angular data cannot be stored on disk. To explore the capacity of the program, large-scale isotope shift calculations have been performed for a number of low lying levels in B I and B II. From the isotope shifts of these levels the transition isotope shift have been calculated for the resonance transitions in B I and B II. The calculated transition isotope shifts in B I are in very good agreement with experimental shifts, and compare favourably with shifts obtained from a many-body perturbation calculation.

Joensson, P. [Lund Institute of Technology, Lund (Sweden); Fischer, C.F. [Vanderbilt Univ., Nashville, TN (United States)

1994-03-30T23:59:59.000Z

233

PLANETARY-SCALE STRONTIUM ISOTOPIC HETEROGENEITY AND THE AGE OF VOLATILE DEPLETION OF EARLY SOLAR SYSTEM MATERIALS  

SciTech Connect

Isotopic anomalies in planetary materials reflect both early solar nebular heterogeneity inherited from presolar stellar sources and processes that generated non-mass-dependent isotopic fractionations. The characterization of isotopic variations in heavy elements among early solar system materials yields important insight into the stellar environment and formation of the solar system, and about initial isotopic ratios relevant to long-term chronological applications. One such heavy element, strontium, is a central element in the geosciences due to wide application of the long-lived {sup 87}Rb-{sup 87}Sr radioactive as a chronometer. We show that the stable isotopes of Sr were heterogeneously distributed at both the mineral scale and the planetary scale in the early solar system, and also that the Sr isotopic heterogeneities correlate with mass-independent oxygen isotope variations, with only CI chondrites plotting outside of this correlation. The correlation implies that most solar system material formed by mixing of at least two isotopically distinct components: a CV-chondrite-like component and an O-chondrite-like component, and possibly a distinct CI-chondrite-like component. The heterogeneous distribution of Sr isotopes may indicate that variations in initial {sup 87}Sr/{sup 86}Sr of early solar system materials reflect isotopic heterogeneity instead of having chronological significance, as interpreted previously. For example, given the differences in {sup 84}Sr/{sup 86}Sr between calcium aluminum inclusions and eucrites ({epsilon}{sup 84}Sr > 2), the difference in age between these materials would be {approx}6 Ma shorter than previously interpreted, placing the Sr chronology in agreement with other long- and short-lived isotope systems, such as U-Pb and Mn-Cr.

Moynier, Frederic; Podosek, Frank A. [Department of Earth and Planetary Science and McDonnell Center for Space Sciences, Washington University, St. Louis, MO 63130 (United States); Day, James M. D. [Geosciences Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0244 (United States); Okui, Wataru; Yokoyama, Tetsuya [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Bouvier, Audrey [Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455-0231 (United States); Walker, Richard J., E-mail: moynier@levee.wustl.edu, E-mail: fap@levee.wustl.edu, E-mail: jmdday@ucsd.edu, E-mail: rjwalker@umd.edu, E-mail: okui.w.aa@m.titech.ac.jp, E-mail: tetsuya.yoko@geo.titech.ac.jp, E-mail: abouvier@umn.edu [Department of Geology, University of Maryland, College Park, MD 20742 (United States)

2012-10-10T23:59:59.000Z

234

Construction Project Number  

NLE Websites -- All DOE Office Websites (Extended Search)

North Execution - (2009 - 2011) North Execution - (2009 - 2011) Construction Project Number 2009 2010 2011 Project Description ANMLPL 0001C 76,675.32 - - Animas-Laplata circuit breaker and power rights CRGRFL 0001C - - 7,177.09 Craig Rifle Bay and transfer bay upgrade to 2000 amps; / Convert CRG RFL to 345 kV out of Bears Ear Sub FGE 0019C - - 39,207.86 Replace 69/25kV transformer KX2A at Flaming Gorge FGE 0020C - - 52,097.12 Flaming Gorge: Replace failed KW2A transformer HDN 0069C 16,638.52 208,893.46 3,704,578.33 Replace failed transformer with KZ1A 250 MVA 230/138kv

235

KPA Activity Number  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

supports CMM-SW Level 2 supports CMM-SW Level 2 Mapping of the DOE Systems Engineering Methodology to the Software Engineering Institute (SEI) Software Capability Maturity Model (CMM- SW) level 2. Date: September 2002 Page 1 KPA Activity Number KPA Activity SEM Section SME Work Product SQSE Web Site http://cio.doe.gov/sqse REQUIREMENTS MANAGEMENT RM-1 The software engineering group reviews the allocated requirements before they are incorporated in the software project. Chapter 3.0 * Develop High-Level Project Requirements Chapter 4.0 * Establish Functional Baseline * Project Plan * Requirements Specification Document * Requirements Management awareness * Defining Project Requirements RM-2 The software engineering group uses the allocated requirements as the basis for

236

It's Elemental - Isotopes of the Element Mendelevium  

NLE Websites -- All DOE Office Websites (Extended Search)

The Periodic Table of Elements Next Element (Nobelium) Nobelium Isotopes of the Element Mendelevium Click for Main Data Most of the isotope data on this site has been obtained...

237

It's Elemental - Isotopes of the Element Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Periodic Table of Elements Next Element (Neptunium) Neptunium Isotopes of the Element Uranium Click for Main Data Most of the isotope data on this site has been obtained from...

238

It's Elemental - Isotopes of the Element Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

Periodic Table of Elements Next Element (Beryllium) Beryllium Isotopes of the Element Lithium Click for Main Data Most of the isotope data on this site has been obtained from...

239

It's Elemental - Isotopes of the Element Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

The Periodic Table of Elements Next Element (Helium) Helium Isotopes of the Element Hydrogen Click for Main Data Most of the isotope data on this site has been obtained from...

240

Isotope GeoloGy1 Unlike physics or chemistry, teaching isotope  

E-Print Network (OSTI)

Isotope GeoloGy1 Unlike physics or chemistry, teaching isotope geochemistry is difficult because. Writing an effective book on geochemistry is thus even more difficult. Claude Allègre's Isotope Geology geochemistry book, given how effective the texts by Faure and Dickin are. However, Allègre's Isotope Geology

Lee, Cin-Ty Aeolus

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Isotope Development & Production | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Radioisotope Radiochemical Separation & Processing Strategic Isotope Production Super Heavy Element Discovery Nuclear Security Science & Technology Nuclear Systems...

242

Isotopic Abundance in Atom Trap Trace Analysis  

isotopes for climate change and nuclear proliferation interests. The Invention Argonne scientists have created a novel method and system for

243

Utah Natural Gas Number of Commercial Consumers (Number of Elements...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

244

Utah Natural Gas Number of Industrial Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

245

Utah Natural Gas Number of Residential Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

246

Illinois Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

247

Wisconsin Natural Gas Number of Industrial Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

248

Wisconsin Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

249

Wisconsin Natural Gas Number of Commercial Consumers (Number...  

Annual Energy Outlook 2012 (EIA)

Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

250

California Natural Gas Number of Industrial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

251

California Natural Gas Number of Commercial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

252

Ohio Natural Gas Number of Commercial Consumers (Number of Elements...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

253

Ohio Natural Gas Number of Residential Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

254

Ohio Natural Gas Number of Industrial Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

255

Colorado Natural Gas Number of Industrial Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

256

Colorado Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

257

Colorado Natural Gas Number of Commercial Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

258

Vermont Natural Gas Number of Residential Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

259

Vermont Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

260

Vermont Natural Gas Number of Commercial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Michigan Natural Gas Number of Residential Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

262

Michigan Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

263

Idaho Natural Gas Number of Industrial Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

264

Idaho Natural Gas Number of Commercial Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

265

Idaho Natural Gas Number of Residential Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

266

Connecticut Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

267

Hawaii Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

268

Kentucky Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

269

Tennessee Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

270

Maryland Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

271

Louisiana Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

272

Alabama Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

273

Oklahoma Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

274

Alaska Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

275

Kansas Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

276

Illinois Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

277

Maine Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

278

Florida Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

279

Iowa Natural Gas Number of Residential Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

280

Georgia Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Arkansas Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

282

Missouri Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

283

Montana Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

284

Nevada Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

285

Mississippi Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

286

Arizona Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

287

Pennsylvania Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

288

Nebraska Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

289

Minnesota Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

290

Massachusetts Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

291

Delaware Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

292

New Mexico Natural Gas Number of Industrial Consumers (Number...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

293

New Mexico Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

(Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

294

New Mexico Natural Gas Number of Commercial Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

(Number of Elements) New Mexico Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's...

295

Texas Natural Gas Number of Commercial Consumers (Number of Elements...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

296

Texas Natural Gas Number of Residential Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

297

Kinetic Isotope Effects for the Reactions of Muonic Helium and Muonium with H2  

DOE Green Energy (OSTI)

The neutral muonic helium atom may be regarded as the heaviest isotope of the hydrogen atom, with a mass of ~4.1 amu (4.1H), because the negative muon screens one proton charge. We report the reaction rate of 4.1H with 1H2 to produce 4.1H1H + 1H at 295 to 500 K. The experimental rate constants are compared with the predictions of accurate quantum mechanical dynamics calculations carried out on an accurate Born-Huang potential energy surface and with previously measured rate constants of 0.11H (where 0.11H is shorthand for muonium). Kinetic isotope effects can be compared for the unprecedentedly large mass ratio of 36. The agreement with accurate quantum dynamics is quantitative at 500 K, and variational transition state theory is used to interpret the extremely low (large inverse) kinetic isotope effects in the 10-4 to 10-2 range.

Fleming, Donald G.; Arseneau, Donald J.; Sukhorukov, Oleksandr; Brewer, Jess H.; Mielke, Steven L.; Schatz, George C.; Garrett, Bruce C.; Peterson, Kirk A.; Truhlar, Donald G.

2011-01-28T23:59:59.000Z

298

Radioactive isotopes on the Moon  

SciTech Connect

A limited review of experiments and studies of radioactivity and isotope ratios in lunar materials is given. Observations made on the first few millimeters of the surface where the effects of solar flare particles are important, some measurements on individual rocks, and some studies of radioactivities produced deep in the lunar soil by galactic cosmic rays, are among the experiments discussed. (GHT)

Davis, R. Jr.

1975-01-01T23:59:59.000Z

299

Electroplating method for producing ultralow-mass fissionable deposits  

DOE Patents (OSTI)

A method for producing ultralow-mass fissionable deposits for nuclear reactor dosimetry is described, including the steps of holding a radioactive parent until the radioactive parent reaches secular equilibrium with a daughter isotope, chemically separating the daughter from the parent, electroplating the daughter on a suitable substrate, and holding the electroplated daughter until the daughter decays to the fissionable deposit.

Ruddy, Francis H. (Monroeville, PA)

1989-01-01T23:59:59.000Z

300

California GAMA Special Study: An isotopic and dissolved gas investigation of nitrate source and transport to a public supply well in California's Central Valley  

Science Conference Proceedings (OSTI)

This study investigates nitrate contamination of a deep municipal drinking water production well in Ripon, CA to demonstrate the utility of natural groundwater tracers in constraining the sources and transport of nitrate to deep aquifers in the Central Valley. The goal of the study was to investigate the origin (source) of elevated nitrate and the potential for the deep aquifer to attenuate anthropogenic nitrate. The site is ideal for such an investigation. The production well is screened from 165-325 feet below ground surface and a number of nearby shallow and deep monitoring wells were available for sampling. Furthermore, potential sources of nitrate contamination to the well had been identified, including a fertilizer supply plant located approximately 1000 feet to the east and local almond groves. A variety of natural isotopic and dissolved gas tracers including {sup 3}H-{sup 3}He groundwater age and the isotopic composition of nitrate are applied to identify nitrate sources and to characterize nitrate transport. An advanced method for sampling production wells is employed to help identify contaminant contributions from specific screen intervals. Nitrate transport: Groundwater nitrate at this field site is not being actively denitrified. Groundwater parameters indicate oxic conditions, the dissolved gas data shows no evidence for excess nitrogen as the result of denitrification, and nitrate-N and -O isotope compositions do not display patterns typical of denitrification. Contaminant nitrate source: The ambient nitrate concentration in shallow groundwater at the Ripon site ({approx}12 mg/L as nitrate) is typical of shallow groundwaters affected by recharge from agricultural and urban areas. Nitrate concentrations in Ripon City Well 12 (50-58 mg/L as nitrate) are significantly higher than these ambient concentrations, indicating an additional source of anthropogenic nitrate is affecting groundwater in the capture zone of this municipal drinking water well. This study provides two new pieces of evidence that the Ripon Farm Services Plant is the source of elevated nitrate in Ripon City Well 12. (1) Chemical mass balance calculations using nitrate concentration, nitrate isotopic composition, and initial tritium activity all indicate that that the source water for elevated nitrate to Ripon City Well 12 is a very small component of the water produced by City Well 12 and thus must have extremely high nitrate concentration. The high source water nitrate concentration ({approx}1500 mg/L as nitrate) required by these mass balance calculations precludes common sources of nitrate such as irrigated agriculture, dairy wastewater, and septic discharge. Shallow groundwater under the Ripon Farm Services RFS plant does contain extremely high concentrations of nitrate (>1700 mg/L as nitrate). (2) Nitrogen and oxygen isotope compositions of nitrate indicate that the additional anthropogenic nitrate source to Ripon City Well 12 is significantly enriched in {delta}{sup 18}O-NO{sub 3}, an isotopic signature consistent with synthetic nitrate fertilizer, and not with human or animal wastewater discharge (i.e. dairy operations, septic system discharge, or municipal wastewater discharge), or with organic fertilizer. Monitoring wells on and near the RFS plant also have high {delta}{sup 18}O-NO{sub 3}, and the plant has handled and stored synthetic nitrate fertilizer that will have this isotopic signature. The results described here highlight the complexity of attributing nitrate found in long screened, high capacity wells to specific sources. In this case, the presence of a very high concentration source near the well site combined with sampling using multiple isotopic tracer techniques and specialized depth-specific techniques allowed fingerprinting of the source in the mixed-age samples drawn from the production well.

Singleton, M J; Moran, J E; Esser, B K; Roberts, S K; Hillegonds, D J

2010-04-14T23:59:59.000Z

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Number: 305 Most Dangerous Vehicles ...  

Science Conference Proceedings (OSTI)

... top> Number: 314 Marine Vegetation Description: Commercial harvesting of marine vegetation such as algae, seaweed and ...

2002-12-12T23:59:59.000Z

302

Reconciling Change in Oi-Horizon Carbon-14 with Mass Loss for an Oak Forest  

SciTech Connect

First-year litter decomposition was estimated for an upland-oak forest ecosystem using enrichment or dilution of the 14C-signature of the Oi-horizon. These isotopically-based mass-loss estimates were contrasted with measured mass-loss rates from past litterbag studies. Mass-loss derived from changes in the 14C-signature of the Oi-horizon suggested mean mass loss over 9 months of 45% which was higher than the corresponding 9-month rate extrapolated from litterbag studies (~35%). Greater mass loss was expected from the isotopic approach because litterbags are known to limit mass loss processes driven by soil macrofauna (e.g., fragmentation and comminution). Although the 14C-isotope approach offers the advantage of being a non-invasive method, it exhibited high variability that undermined its utility as an alternative to routine litterbag mass loss methods. However, the 14C approach measures the residence time of C in the leaf litter, rather than the time it takes for leaves to disappear; hence radiocarbon measures reflect C immobilization and recycling in the microbial pool, and do not necessarily replicate results from litterbag mass loss. The commonly applied two-compartment isotopic mixing model was appropriate for estimating decomposition from isotopic enrichment of near-background soils, but it produced divergent results for isotopic dilution of a multi-layered system with litter cohorts having independent 14C-signatures. This discrepancy suggests that cohort-based models are needed to adequately capture the complex processes involved in carbon transport associated with litter mass-loss. Such models will be crucial for predicting intra- and interannual differences in organic horizon decomposition driven by scenarios of climatic change.

Hanson, Paul J [ORNL; Swanston, Christopher W. [Lawrence Livermore National Laboratory (LLNL); Garten Jr, Charles T [ORNL; Todd Jr, Donald E [ORNL; Trumbore, Susan E. [University of California, Irvine

2005-01-01T23:59:59.000Z

303

Reconciling Change in Oi-Horizon 14C With Mass Loss for an Oak Forest  

SciTech Connect

First-year litter decomposition was estimated for an upland-oak forest ecosystem using enrichment or dilution of the {sup 14}C-signature of the Oi-horizon. These isotopically-based mass-loss estimates were contrasted with measured mass-loss rates from past litterbag studies. Mass-loss derived from changes in the {sup 14}C-signature of the Oi-horizon suggested mean mass loss over 9 months of 45% which was higher than the corresponding 9-month rate extrapolated from litterbag studies ({approx}35%). Greater mass loss was expected from the isotopic approach because litterbags are known to limit mass loss processes driven by soil macrofauna (e.g., fragmentation and comminution). Although the {sup 14}C-isotope approach offers the advantage of being a non-invasive method, it exhibited high variability that undermined its utility as an alternative to routine litterbag mass loss methods. However, the {sup 14}C approach measures the residence time of C in the leaf litter, rather than the time it takes for leaves to disappear; hence radiocarbon measures are subject to C immobilization and recycling in the microbial pool, and do not necessarily reflect results from litterbag mass loss. The commonly applied two-compartment isotopic mixing model was appropriate for estimating decomposition from isotopic enrichment of near-background soils, but it produced divergent results for isotopic dilution of a multi-layered system with litter cohorts having independent {sup 14}C-signatures. This discrepancy suggests that cohort-based models are needed to adequately capture the complex processes involved in carbon transport associated with litter mass-loss. Such models will be crucial for predicting intra- and interannual differences in organic horizon decomposition driven by scenarios of climatic change.

Hanson, P J; Swanston, C W; Garten, Jr., C T; Todd, D E; Trumbore, S E

2005-06-27T23:59:59.000Z

304

Mass terms in the Skyrme Model  

E-Print Network (OSTI)

We consider various forms of the mass term that can be used in the Skyrme model and their implications on the properties of baryonic states. We show that, with an appropriate choice for the mass term, without changing the asymptotic behaviour of the profile functions at large $r$, we can considerably reduce or increase the mass term's contribution to the classical mass of the solitons. We find that multibaryon configurations can be classically bound at large baryon numbers for some choices of this mass term.

V. B. Kopeliovich; B. Piette; W. J. Zakrzewski

2005-03-16T23:59:59.000Z

305

High-Performance Mass Spectrometry Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

HPMSF Overview HPMSF Overview Section 2-4-1 High-Performance Mass Spectrometry Facility The High-Performance Mass Spectrometry Facility (HPMSF) provides state-of-the-art mass spectrometry (MS) and separations instrumentation that has been refined for leading-edge analysis of biological problems with a primary emphasis on proteomics. Challenging research in proteomics, cell signaling, cellular molecular machines, and high-molecular weight systems receive the highest priority for access to the facility. Current research activities in the HPMSF include proteomic analyses of whole cell lysates, analyses of organic macro-molecules and protein complexes, quantification using isotopically labeled growth media, targeted proteomics analyses of subcellular fractions, and nucleic acid analysis of

306

CHANGE OF NAME TIAA Annuity Number CREF Annuity Number TIAA Policy Number  

E-Print Network (OSTI)

CHANGE OF NAME TIAA Annuity Number CREF Annuity Number TIAA Policy Number Social Security Number and only use black or dark blue ink. Return this form to: TIAA-CREF P.O. Box 1264 Charlotte, NC 28201 NOTE City State Zip Code For TIAA-CREF USE ONLY Accepted -- Teachers Insurance and Annuity Association

Snider, Barry B.

307

The on-line charge breeding program at TRIUMF's Ion Trap For Atomic and Nuclear Science for precision mass measurements  

Science Conference Proceedings (OSTI)

TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) constitutes the only high precision mass measurement setup coupled to a rare isotope facility capable of increasing the charge state of short-lived nuclides prior to the actual mass determination in a Penning trap. Recent developments around TITAN's charge breeder, the electron beam ion trap, form the basis for several successful experiments on radioactive isotopes with half-lives as low as 65 ms and in charge states as high as 22+.

Simon, M. C.; Eberhardt, B.; Jang, F.; Luichtl, M.; Robertson, D.; Chaudhuri, A.; Delheij, P.; Grossheim, A.; Kwiatkowski, A. A.; Mane, E.; Pearson, M. R.; Schultz, B. E. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Bale, J. C. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Chowdhury, U. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Ettenauer, S.; Gallant, A. T.; Dilling, J. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada); Lennarz, A. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet, D-48149 Muenster (Germany); Ma, T.; Andreoiu, C. [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); and others

2012-02-15T23:59:59.000Z

308

Nuclear Energy Protocol for Research Isotopes Owen Lowe  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protocol for Protocol for Research Isotopes Owen Lowe Office of Isotopes for Medicine and Science Office of Nuclear Energy, Science and Technology April 16, 2002 Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology Lowe/April16_02 NEPRI to NERAC.ppt (2) Nuclear Energy Protocol For Research Isotopes Nuclear Energy Protocol For Research Isotopes Why NEPRI? 6 NEPRI implements DOE funding priorities for fiscal year 2003 6 NEPRI will * Bring order to DOE's responses to requests for research isotopes * Introduce a high-quality peer review to the selection of research isotopes * Enable DOE to concentrate on operating its unique isotope production facilities Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology

309

The Distribution of Ramsey Numbers  

E-Print Network (OSTI)

We prove that the number of integers in the interval [0,x] that are non-trivial Ramsey numbers r(k,n) (3 order of magnitude (x ln x)**(1/2).

Clark, Lane

2013-01-01T23:59:59.000Z

310

Stable Isotope Enrichment Capabilities at ORNL  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

Egle, Brian [ORNL; Aaron, W Scott [ORNL; Hart, Kevin J [ORNL

2013-01-01T23:59:59.000Z

311

Electromagnetic Isotope Separation Lab (EMIS) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Electromagnetic Isotope Separation Lab Electromagnetic Isotope Separation Lab May 30, 2013 ORNL established the Stable Isotope Enrichment Laboratory (SIEL) as part of a project funded by the DOE Office of Science, Nuclear Physics Program to develop a modernized electromagnetic isotope separator (EMIS), optimized for separation of a wide range of stable isotopes. The SIEL is located in the Building 6010 Shield Test Station, space formerly allocated to the Oak Ridge Electron Linear Accelerator, on the main campus of ORNL. ORNL staff have designed and built a nominal 10 mA ion current EMIS (sum of all isotopes at the collector) in the SIEL. This EMIS is currently being tested to determine basic performance metrics such as throughput and enrichment factor per pass. This EMIS unit and space will be used to

312

Energy or Mass and Interaction  

E-Print Network (OSTI)

A review. Problems: 1-Many empirical parameters and large dimension number; 2-Gravitation and Electrodynamics are challenged by dark matter and energy. Energy and nonlinear electrodynamics are fundamental in a unified nonlinear interaction. Nuclear energy appears as nonlinear SU(2) magnetic energy. Gravitation and electromagnetism are unified giving Einstein's equation and a geometric energy momentum tensor. A solution energy in the newtonian limit gives the gravitational constant G. Outside of this limit G is variable. May be interpreted as dark matter or energy. In vacuum, known gravitational solutions are obtained. Electromagnetism is an SU(2) subgroup. A U(1) limit gives Maxwell's equations. Geometric fields determine a generalized Dirac equation and are the germ of quantum physics. Planck's h and of Einstein's c are given by the potential and the metric. Excitations have quanta of charge, flux and spin determining the FQHE. There are only three stable 1/2 spin fermions. Mass is a form of energy. The rest energies of the fermions give the proton/electron mass ratio. Potential excitations have energies equal to the weak boson masses allowing a geometric interpretation of Weinberg's angle. SU(2) gives the anomalous magnetic moments of proton, electron, neutron and generates nuclear range attractive potentials strong enough to produce the binding energies of the deuteron and other nuclides. Lepton and meson masses are due to topological excitations. The geometric mass spectrum is satisfactory. The proton has a triple structure. The alpha constant is a geometric number.

Gustavo R Gonzalez-Martin

2010-07-19T23:59:59.000Z

313

Number  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NATIONAL ENERGY POLICY NATIONAL ENERGY POLICY STATUS REPORT on Implementation of NEP Recommendations January, 2005 1 NEP RECOMMENDATIONS: STATUS OF IMPLEMENTATION Chapter 1 1. That the President issue an Executive Order to direct all federal agencies to include in any regulatory action that could significantly and adversely affect energy supplies, distribution, or use, a detailed statement of energy effects and alternatives in submissions to the Office of Management and Budget of proposed regulations covered and all notices of proposed regulations published in the Federal Register. STATUS: IMPLEMENTED. In May 2001, President Bush issued Executive Order 13211 requiring federal agencies to include, in any regulatory action that could significantly and

314

Number: 1394 Description: In what ...  

Science Conference Proceedings (OSTI)

... Number: 1752 Description: When was the Oklahoma City bombing? ... name of the plane that dropped the Atomic Bomb on Hiroshima? ...

2003-02-12T23:59:59.000Z

315

Search for long-lived isomeric states in neutron-deficient thorium isotopes  

E-Print Network (OSTI)

The discovery of naturally occurring long-lived isomeric states (t_1/2 > 10^8 yr) in the neutron-deficient isotopes 211,213,217,218Th [A. Marinov et al., Phys. Rev. C 76, 021303(R) (2007)] was reexamined using accelerator mass spectrometry (AMS). Because AMS does not suffer from molecular isobaric background in the detection system, it is an extremely sensitive technique. Despite our up to two orders of magnitude higher sensitivity we cannot confirm the discoveries of neutron-deficient thorium isotopes and provide upper limits for their abundances.

J. Lachner; I. Dillmann; T. Faestermann; G. Korschinek; M. Poutivtsev; G. Rugel

2009-07-01T23:59:59.000Z

316

Data Compression with Prime Numbers  

E-Print Network (OSTI)

A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.

Gordon Chalmers

2005-11-16T23:59:59.000Z

317

METHOD AND APPARATUS FOR COLLECTING ISOTOPES  

DOE Patents (OSTI)

A method and apparatus for collecting isotopes having a high vapor pressure, such as isotopes of mercury, in a calutron are described. Heretofore, the collected material would vaporize and escape from the ion receiver as fast as it was received. By making the receiver of pure silver, the mercury isotopes form a nonvolatile amalgam with the silver at the water cooled temperature of the receiver, and the mercury is thus retained.

Leyshon, W.E.

1957-08-01T23:59:59.000Z

318

Mass transport through polycrystalline microstructures  

SciTech Connect

Mass transport properties are important in polycrystalline materials used as protective films. Traditionally, such properties have been studied by examining model polycrystalline structures, such as a regular array of straight grain boundaries. However, these models do not account for a number of features of real grain ensembles, including the grain size distribution and variations in grain shape. In this study, a finite difference scheme is developed to study transient and steady-state mass transport through realistic two dimensional polycrystalline microstructures. Comparisons with the transport properties of traditional model microstructures provide regimes of applicability of such models. The effects of microstructural parameters such as average grain size are examined.

Swiler, T.P.; Holm, E.A.; Young, M.F.; Wright, S.A.

1994-12-31T23:59:59.000Z

319

Isotopic Analysis (Not Available) | Open Energy Information  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown Notes Meeting proceedings - large list of papers and presentations dealing mostly with various isotopic analyses and their applications...

320

It's Elemental - Isotopes of the Element Nobelium  

NLE Websites -- All DOE Office Websites (Extended Search)

Mendelevium Previous Element (Mendelevium) The Periodic Table of Elements Next Element (Lawrencium) Lawrencium Isotopes of the Element Nobelium Click for Main Data Most of the...

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

It's Elemental - Isotopes of the Element Fermium  

NLE Websites -- All DOE Office Websites (Extended Search)

Einsteinium Previous Element (Einsteinium) The Periodic Table of Elements Next Element (Mendelevium) Mendelevium Isotopes of the Element Fermium Click for Main Data Most of the...

322

Available Technologies: Real Time High Throughput Isotopic ...  

Space exploration; Any scientific research involving the tracking of isotopic labels, as in: Solar power; Scintillators (deuterated, 10 B, 6 Li, 3 He) Batteries (doping)

323

Zeolite Cryopumps for Hydrogen Isotopes Transportation  

Science Conference Proceedings (OSTI)

Tritium Processing / Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995

Ivan A. Alekseev; Sergey P. Karpov; Veniamin D. Trenin

324

WEB RESOURCE: Exploring the Table of Isotopes  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... This page offers an interactive table of isotopes, an animated glossary of nuclear terms and relevant support documents created by the ...

325

NIDC: Online Catalog of Isotope Products Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalog of Isotope Products Please select an option below. PRODUCTS VIEWING Select using PERIODIC TABLE or NUCLIDE CHART or LIST SEARCHING SEARCH for a Product REQUESTING REQUEST a...

326

HFIR | High Flux Isotope Reactor | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

HFIR Working with HFIR Neutron imaging offers new tools for exploring artifacts and ancient technology Home | User Facilities | HFIR HFIR | High Flux Isotope Reactor SHARE The High...

327

Isotopic Exchange in Air Detritiation Dryers  

Science Conference Proceedings (OSTI)

Tritium Processing / Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988)

A.E. Everatt; A.H. Dombra; R.E. Johnson

328

Isotopes Tell Origin and Operation of the Sun  

E-Print Network (OSTI)

The Iron Sun formed on the collapsed core of a supernova and now acts as a magnetic plasma diffuser, as did the precursor star, separating ions by mass. This process covers the solar surface with lightweight elements and with lighter isotopes of each element. Running difference images expose rigid, iron-rich structures below the fluid photosphere made of lightweight elements. The energy source for the Sun and ordinary stars seems to be neutron-emission and neutron-decay, with partial fusion of the decay product, rather than simple fusion of hydrogen into helium or heavier elements. Neutron-emission from the solar core and neutron-decay generate about sixty five percent of solar luminosity and H-fusion generates about thirty-five percent. The upward flow of H ions maintains mass-separation in the Sun. Only about one percent of this neutron decay product survives its upward journey to depart as solar-wind hydrogen.

O. Manuel; Sumeet A. Kamat; Michael Mozina

2005-09-28T23:59:59.000Z

329

CLUMPED ISOTOPIC EQUILIBRIUM AND THE RATE OF ISOTOPE EXCHANGE BETWEEN CO2 AND WATER  

E-Print Network (OSTI)

CLUMPED ISOTOPIC EQUILIBRIUM AND THE RATE OF ISOTOPE EXCHANGE BETWEEN CO2 AND WATER HAGIT P. AFFEK Department of Geology and Geophysics, Yale University, 210 Whitney Ave., New Haven, Connecticut, 06511, USA the exchange of oxygen isotopes with water. The use of 18 O as an environmental indicator typically assumes

330

AMR for low Mach number reacting flow  

Science Conference Proceedings (OSTI)

We present a summary of recent progress on the development and application of adaptive mesh refinement algorithms for low Mach number reacting flows. Our approach uses a form of the low Mach number equations based on a general equation of state that discretely conserves both mass and energy. The discretization methodology is based on a robust projection formulation that accommodates large density contrasts. The algorithm supports modeling of multicomponent systems and incorporates an operator-split treatment of stiff reaction terms. The basic computational approach is embedded in an adaptive projection framework that uses structured hierarchical grids with subcycling in time that preserves the discrete conservation properties of the underlying single-grid algorithm. We present numerical examples illustrating the application of the methodology to turbulent premixed combustion and nuclear flames in type Ia supernovae.

Bell, John B.

2004-01-16T23:59:59.000Z

331

Mercury Isotope Fractionation by Environmental Transport and Transformation Processes  

E-Print Network (OSTI)

isotope fractionation in fossil hydrothermal systems. Geology,isotopes: Evaporation, chemical diffusion and Soret diffusion. Chemical Geology,isotope records of atmospheric and riverine pollution from two major European heavy metal refineries. Chemical Geology,

Koster van Groos, Paul Gijsbert

2011-01-01T23:59:59.000Z

332

Isotopic Analysis At Geysers Area (Lambert & Epstein, 1992) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Geysers Area (Lambert & Isotopic Analysis- Rock At Geysers Area (Lambert & Epstein, 1992) Exploration Activity Details Location Geysers Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness useful DOE-funding Unknown Notes Measurements of 180/160, 13C/12C and D/H ratio variations were made by the usual methods (McCrea, 1950; Taylor and Epstein, 1962; Epstein and Taylor, 1970) using mass spectrometers of the type described by Nier (1947) with modifications by McKinney et al. (1950). Results are reported in 8-notation with respect to the SMOW (Craig, 1961 ) and PDB (Urey et al., 1951 ) standards. Analytical precisions for multiple analyses of any single sample were _+ 0.2%0 for oxygen and carbon and _ 1%o for hydrogen. Inhomogeneities of cuttings fractions gave rise to variations within single cuttings

333

Flow Of Mantle Fluids Through The Ductile Lower Crust- Helium Isotope  

Open Energy Info (EERE)

Of Mantle Fluids Through The Ductile Lower Crust- Helium Isotope Of Mantle Fluids Through The Ductile Lower Crust- Helium Isotope Trends Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Flow Of Mantle Fluids Through The Ductile Lower Crust- Helium Isotope Trends Details Activities (5) Areas (5) Regions (0) Abstract: Heat and mass are injected into the shallow crust when mantle fluids are able to flow through the ductile lower crust. Minimum He-3/He-4 ratios in surface fluids from the northern Basin and Range Province, western North America, increase systematically from low crustal values in the east to high mantle values in the west, a regional trend that correlates with the rates of active crustal deformation. The highest ratios occur where the extension and shear strain rates are greatest. The

334

Isotopic Analysis At Newberry Caldera Area (Carothers, Et Al...  

Open Energy Info (EERE)

H. Mariner, Terry E. C. Keith (1987) Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Retrieved from "http:en.openei.orgwindex.php?titleIsotopicA...

335

EIS-0249: Medical Isotopes Production Project | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

49: Medical Isotopes Production Project EIS-0249: Medical Isotopes Production Project Summary This EIS evaluates the potential environmental impacts of a proposal to establish a...

336

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and...

337

CALIFORNIUM ISOTOPES FROM BOMBARDMENT OF URANIUM WITH CARBON IONS  

E-Print Network (OSTI)

Isotopes from Bombardment of Uranium with Carbon Ions A.ISOTOPES FROM BOMBARDMENT OF URANIUM WITH CARBON IONS A.the irradiations, the uranium was dissolved in dilute

Ghiorso, A.; Thompson, S.G.; Street, K. Jr.; Seaborg, G.T.

2008-01-01T23:59:59.000Z

338

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope...

339

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith &...  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-...

340

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...  

Open Energy Info (EERE)

Inyo and Kern Counties, California. Supplement. Isotope geochemistry and Appendix H. Final report Retrieved from "http:en.openei.orgwindex.php?titleIsotopicAnalysis-Flu...

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Positive and inverse isotope effect on superconductivity  

E-Print Network (OSTI)

This article improves the BCS theory to include the inverse isotope effect on superconductivity. An affective model can be deduced from the model including electron-phonon interactions, and the phonon-induced attraction is simply and clearly explained on the electron Green function. The focus of this work is on how the positive or inverse isotope effect occurs in superconductors.

Tian De Cao

2009-09-04T23:59:59.000Z

342

5, 547577, 2008 Isotope hydrology of  

E-Print Network (OSTI)

HESSD 5, 547­577, 2008 Isotope hydrology of cave dripwaters L. Fuller et al. Title Page Abstract are under open-access review for the journal Hydrology and Earth System Sciences Isotope hydrology of Geology and Palaeontology, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria 3 School

Paris-Sud XI, Université de

343

High-Voltage Power Supply System for Laser Isotope Separation  

SciTech Connect

This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs.

Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

1979-06-26T23:59:59.000Z

344

Dynamical aspects of isotopic scaling  

E-Print Network (OSTI)

Investigation of the effect of the dynamical stage of heavy-ion collisions indicates that the increasing width of the initial isospin distributions is reflected by a significant modification of the isoscaling slope for the final isotopic distributions after de-excitation. For narrow initial distributions, the isoscaling slope assumes the limiting value of the two individual initial nuclei while for wide initial isotopic distributions the slope for hot fragments approaches the initial value. The isoscaling slopes for final cold fragments increase due to secondary emissions. The experimentally observed evolution of the isoscaling parameter in multifragmentation of hot quasiprojectiles at E$_{inc}$=50 AMeV, fragmentation of $^{86}$Kr projectiles at E$_{inc}$=25 AMeV and multifragmentation of target spectators at relativistic energies was reproduced by a simulation with the dynamical stage described using the appropriate model (deep inelastic transfer and incomplete fusion at the Fermi energy domain and spectator-participant model at relativistic energies) and the de-excitation stage described with the statistical multifragmentation model. In all cases the isoscaling behavior was reproduced by a proper description of the dynamical stage and no unambiguous signals of the decrease of the symmetry energy coefficient were observed.

M. Veselsky

2006-07-17T23:59:59.000Z

345

ISOTOPES  

E-Print Network (OSTI)

depends on the cost and energy efficiency of the laser.and the low cost and energy efficiency of existing, large-

Lederer, C. Michael

2013-01-01T23:59:59.000Z

346

ISOTOPES  

E-Print Network (OSTI)

uranium, heavy-water-moderated CANDU reactor, as contrastedis important, and in the CANDU power reactor, which uses

Lederer, C. Michael

2013-01-01T23:59:59.000Z

347

ISOTOPES  

E-Print Network (OSTI)

U.S. Department of Energy: Uranium Enrichment (1978). UnitedRaux and W.L. Grant, uranium Enrichment in South Africa,for heavy~water and uranium enrichment is more severe. In

Lederer, C. Michael

2013-01-01T23:59:59.000Z

348

ISOTOPES  

E-Print Network (OSTI)

is somewhat uncertain~ and projections have been reducedFigure 15 shows the recent CONAES projections for the U.S. (72,90), along with earlier projections for the U.S. and the

Lederer, C. Michael

2013-01-01T23:59:59.000Z

349

ISOTOPES  

E-Print Network (OSTI)

Klein and S.V. Peterson, May 9-ll, 1973, Argonne NationalLaboratory, Argonne, Illinois (1973). 97. R.A. Muller,S.V. Peterson, May 9-11, 1973, Argonne National Laboratory,

Lederer, C. Michael

2013-01-01T23:59:59.000Z

350

ISOTOPES  

E-Print Network (OSTI)

A Guidebook to Nuclear Reactors, University of Californiaa thermal position of a nuclear reactor followed by analysisproduced by six large nuclear reactors. The power usage per

Lederer, C. Michael

2013-01-01T23:59:59.000Z

351

ISOTOPES  

E-Print Network (OSTI)

as occurs in batch distillation. The urgency of developingor one plate of a distillation column, for example. Anas in the case of a distillation column, for which any other

Lederer, C. Michael

2013-01-01T23:59:59.000Z

352

Selected Isotopes for Optimized Fuel Assembly Tags  

SciTech Connect

In support of our ongoing signatures project we present information on 3 isotopes selected for possible application in optimized tags that could be applied to fuel assemblies to provide an objective measure of burnup. 1. Important factors for an optimized tag are compatibility with the reactor environment (corrosion resistance), low radioactive activation, at least 2 stable isotopes, moderate neutron absorption cross-section, which gives significant changes in isotope ratios over typical fuel assembly irradiation levels, and ease of measurement in the SIMS machine 2. From the candidate isotopes presented in the 3rd FY 08 Quarterly Report, the most promising appear to be Titanium, Hafnium, and Platinum. The other candidate isotopes (Iron, Tungsten, exhibited inadequate corrosion resistance and/or had neutron capture cross-sections either too high or too low for the burnup range of interest.

Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

2008-10-01T23:59:59.000Z

353

Dynamic virtual credit card numbers  

Science Conference Proceedings (OSTI)

Theft of stored credit card information is an increasing threat to e-commerce.We propose a dynamic virtual credit card number scheme that reduces the damage caused by stolen credit card numbers. A user can use an existing credit card account to generate ... Keywords: credit card theft, e-commerce

Ian Molloy; Jiangtao Li; Ninghui Li

2007-02-01T23:59:59.000Z

354

Isotope Enrichment Detection by Laser Ablation - Dual Tunable Diode Laser Absorption Spectrometry  

Science Conference Proceedings (OSTI)

The rapid global expansion of nuclear energy is motivating the expedited development of new safeguards technology to mitigate potential proliferation threats arising from monitoring gaps within the uranium enrichment process. Current onsite enrichment level monitoring methods are limited by poor sensitivity and accuracy performance. Offsite analysis has better performance, but this approach requires onsite hand sampling followed by time-consuming and costly post analysis. These limitations make it extremely difficult to implement comprehensive safeguards accounting measures that can effectively counter enrichment facility misuse. In addition, uranium enrichment by modern centrifugation leads to a significant proliferation threat, since the centrifuge cascades can quickly produce a significant quantity of highly enriched uranium (HEU). The Pacific Northwest National Laboratory is developing an engineered safeguards approach having continuous aerosol particulate collection and uranium isotope analysis to provide timely detection of HEU production in a low enriched uranium facility. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy, to characterize the 235U/238U isotopic ratio by subtle differences in atomic absorption wavelengths arising from differences in each isotope’s nuclear mass, volume, and spin (hyperfine structure for 235U). Environmental sampling media is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes a 10 to 20-µm sample diameter. The ejected plasma forms a plume of atomic vapor. A plume for a sample containing uranium has atoms of the 235U and 238U isotopes present. Tunable diode lasers are directed through the plume to selectively excite each isotope and their presence is detected by monitoring absorbance signals on a shot-to-shot basis. Single-shot detection sensitivity approaching the femtogram range and abundance uncertainty less than 10% have been demonstrated with measurements on surrogate materials. In this paper we present measurement results on samples containing background materials (e.g., dust, minerals, soils) laced with micron-sized target particles having isotopic ratios ranging from 1 to 50%.

Anheier, Norman C.; Bushaw, Bruce A.

2009-07-01T23:59:59.000Z

355

RAPID FUSION METHOD FOR DETERMINATION OF PLUTONIUM ISOTOPES IN LARGE RICE SAMPLES  

Science Conference Proceedings (OSTI)

A new rapid fusion method for the determination of plutonium in large rice samples has been developed at the Savannah River National Laboratory (Aiken, SC, USA) that can be used to determine very low levels of plutonium isotopes in rice. The recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid, reliable radiochemical analyses for radionuclides in environmental and food samples. Public concern regarding foods, particularly foods such as rice in Japan, highlights the need for analytical techniques that will allow very large sample aliquots of rice to be used for analysis so that very low levels of plutonium isotopes may be detected. The new method to determine plutonium isotopes in large rice samples utilizes a furnace ashing step, a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a column separation process with TEVA Resin? cartridges. The method can be applied to rice sample aliquots as large as 5 kg. Plutonium isotopes can be determined using alpha spectrometry or inductively-coupled plasma mass spectrometry (ICP-MS). The method showed high chemical recoveries and effective removal of interferences. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory plutonium particles are effectively digested. The MDA for a 5 kg rice sample using alpha spectrometry is 7E-5 mBq g{sup -1}. The method can easily be adapted for use by ICP-MS to allow detection of plutonium isotopic ratios.

Maxwell, S.

2013-03-01T23:59:59.000Z

356

Light stable isotope study of the Roosevelt Hot Springs thermal area, Southwestern Utah  

DOE Green Energy (OSTI)

The isotopic composition of hydrogen, oxygen, and carbon has been determined for regional cold springs, thermal fluids, and rocks and minerals from the Roosevelt Hot Springs thermal area. The geothermal system has developed within plutonic granitic rocks and amphibolite facies gneiss, relying upon fracture-controlled permeability for the migration of the thermal fluids. Probably originating as meteoric waters in the upper elevations of the Mineral Mountains, the thermal waters sampled in the production wells display an oxygen isotopic shift of at least +1.2. Depletions of delta /sup 18/O in wole rock, K-feldspar, and biotite have a positive correlation with alteration intensity. W/R mass ratios, calculated from the isotopic shifts of rock and water, range up to 3.0 in a producing horizon of one well, although the K-feldspar has experienced only 30% exchange with the thermal waters. While veinlet quartz has equilibrated with the thermal waters, the /sup 18/O values of K-mica clay, an alteration product of plagioclase, mimic the isotopic composition of K-feldspar and whole rock. This suggests that locally small W/R ratios enable plagioclase to influence its alteration products by isotopic exchange.

Rohrs D.T.; Bowman, J.R.

1980-05-01T23:59:59.000Z

357

Deformation and shape transitions in hot rotating neutron deficient Te isotopes  

SciTech Connect

Evolution of the nuclear shapes and deformations under the influence of temperature and rotation is investigated in Te isotopes with neutron number ranging from the proton drip line to the stability valley. Spin dependent critical temperatures for the shape transitions in Te nuclei are computed. Shape transitions from prolate at low temperature and spin to oblate via triaxiality are seen with increasing neutron number and spin.

Aggarwal, Mamta [UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai 400 098 (India); Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Mazumdar, I. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India)

2009-08-15T23:59:59.000Z

358

Mercury's Protoplanetary Mass  

E-Print Network (OSTI)

Major element fractionation among chondrites has been discussed for decades as ratios relative to Si or Mg. Recently, by expressing ratios relative to Fe, I discovered a new relationship admitting the possibility that ordinary chondrite meteorites are derived from two components, a relatively oxidized and undifferentiated, primitive component and a somewhat differentiated, planetary component, with oxidation state like the highly reduced enstatite chondrites, which I suggested was identical to Mercury's complement of lost elements. Here, on the basis of that relationship, I derive expressions, as a function of the mass of planet Mercury and the mass of its core, to estimate the mass of Mercury's lost elements, the mass of Mercury's alloy and rock protoplanetary core, and the mass of Mercury's gaseous protoplanet. Although Mercury's mass is well known, its core mass is not, being widely believed to be in the range of 70-80 percent of the planet mass. For a core mass of 75 percent, the mass of Mercury's lost elements is about 1.32 times the mass of Mercury, the mass of the alloy and rock protoplanetary core is about 2.32 times the mass of Mercury, and the mass of the gaseous protoplanet of Mercury is about 700 times the mass of Mercury. Circumstantial evidence is presented in support of the supposition that Mercury's lost elements is identical to the planetary component of ordinary chondrite formation.

J. Marvin Herndon

2004-10-01T23:59:59.000Z

359

Atomic vapor laser isotope separation  

SciTech Connect

Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

Stern, R.C.; Paisner, J.A.

1985-11-08T23:59:59.000Z

360

Sensitivity of the Simulated Distributions of Water Masses, CFCs, and Bomb 14C to Parameterizations of Mesoscale Tracer Transports in a Model of the North Pacific  

Science Conference Proceedings (OSTI)

A basinwide ocean general circulation model of the North Pacific Ocean is used to study the sensitivity of the simulated distributions of water masses, chlorofluorocarbons (CFCs), and bomb carbon-14 isotope (14C) to parameterizations of mesoscale ...

Yongfu Xu; Shigeaki Aoki; Koh Harada

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

Stevens, Charles G. (Pleasanton, CA)

1978-01-01T23:59:59.000Z

362

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

Stevens, C.G.

1978-08-29T23:59:59.000Z

363

Oxygen isotope records of carboniferous seasonality on the Russian platform  

E-Print Network (OSTI)

Seven isotopic and eight trace element (TE) profiles across shell growth lines are presented, based on over 1000 stable isotope and electron microprobe analyses on six brachiopod shells (Gigantoproductus), to quantify seasonal temperature change in the early Carboniferous Moscow Basin. Evidence for good shell preservation is the retention of original prismatic shell microstructure and the general lack of cathodoluminescence in shell interiors. Only shell edges show luminescent calcite. Other evidence for good preservation of the six shells includes undetectable Fe and Mn contents in mid-shell areas compared with high Fe and Mn contents at shell edges, different trends of 813C and 8180 between shell edges and mid-shell areas, and distinct growth lines in the prismatic secondary layers. Forty-one 8180 cycles are found in six profiles, with amplitudes ranging from 0.2%c to 2.7%c. The majority of cycles vary in amplitude from-0.4%0 to-1.2%0, with a mean of-0.8%o, representing annual temperature change of 2'C to 6'C in the early Carboniferous tropical zone. This seasonality is compatible with the-3'C modern tropic annual temperature range, and contrasts significantly with the conclusion based on growth rings of fossil woods that there was no significant seasonal variations in the tropics during the early Carboniferous. For carbon isotopes, temperature-depended metabolic activity appears to be the main factor controlling 81 3C variations- The numbers of cycles recorded in 180 profiles, 13C profiles, Mg profiles, and growth lines are 41, 41, 40, and 37 respectively. The similarity in cyclicity of these four different measures argues that they are all controlled by seasonal-dependent factors, such as temperature and metabolic rate. Except for number of cycles, there are no significant controlled by temperature, TE contents may be controlled by metabolic rates and perhaps the reproductive cycle.

Wang, Huayu

1998-01-01T23:59:59.000Z

364

California Natural Gas Number of Residential Consumers (Number of Elements)  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Number of Natural Gas Residential

365

First Results from the CARIBU Facility: Mass Measurements on the r-Process Path  

E-Print Network (OSTI)

The Canadian Penning Trap mass spectrometer has made mass measurements of 33 neutron-rich nuclides provided by the new Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory. The studied region includes the 132Sn double shell closure and ranges in Z from In to Cs, with Sn isotopes measured out to A = 135, and the typical measurement precision is at the 100 ppb level or better. The region encompasses a possible major waiting point of the astrophysical r process, and the impact of the masses on the r process is shown through a series of simulations. These first-ever simulations with direct mass information on this waiting point show significant increases in waiting time at Sn and Sb in comparison with commonly used mass models, demonstrating the inadequacy of existing models for accurate r-process calculations.

J. Van Schelt; D. Lascar; G. Savard; J. A. Clark; P. F. Bertone; S. Caldwell; A. Chaudhuri; 1 A. F. Levand; G. Li; G. E. Morgan; R. Orford; R. E. Segel; K. S. Sharma; M. G. Sternberg

2013-07-01T23:59:59.000Z

366

Tritium Isotope Separation Using Adsorption-Distillation Column  

Science Conference Proceedings (OSTI)

Technical Paper / Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation

Satoshi Fukada

367

FISSION HALF LIVES OF FERMIUM ISOTOPES WITHIN SKYRME HARTREE-FOCK-BOGOLIUBOV THEORY  

Science Conference Proceedings (OSTI)

Nuclear fission barriers, mass parameters and spontaneous fission half lives of fermium isotopes calculated in a framework of the Skyrme Hartree-Fock-Bogoliubov model with the SkM* force are discussed. Zero-point energy corrections in the ground state are determined for each nucleus using the Gaussian overlap approximation of the generator coordinate method and in the cranking formalism. Results of spontaneous fission half lives are compared to experimental data.

Baran, A. [Maria Curie-Sklodowska University; Staszczak, Andrzej [ORNL; Nazarewicz, A. [Oak Ridge National Laboratory (ORNL)

2011-01-01T23:59:59.000Z

368

Preface to bLithium isotope geochemistryQ The use of light stable isotopes to elucidate Earth  

E-Print Network (OSTI)

Li reflect heavier isotopic ratios. Chemical Geology 212 (2004) 1­4 wwwPreface Preface to bLithium isotope geochemistryQ The use of light stable isotopes to elucidate isotope geochemistry. Taylor and Urey (1938) used ion exchange chromatography to sepa- rate 6 Li from 7 Li

Rudnick, Roberta L.

369

Theoretical Mass Spectrometry  

Science Conference Proceedings (OSTI)

... Mass spectrometry is an important technique in analytical chemistry, essential in areas including drug development, criminal ... Facilities/Tools Used: ...

2013-03-19T23:59:59.000Z

370

Document ID Number: RL-721  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Document ID Number: Document ID Number: RL-721 REV 4 NEPA REVIEW SCREENING FORM DOE/CX-00066 I. Project Title: Nesting Bird Deterrent Study at the 241-C Tank Farm CX B3.8, "Outdoor Terrestrial Ecological and Environmental Research" II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Washington River Protection Solutions LLC (WRPS) will perform an outdoor, terrestrial ecological research study to attempt to control and deter nesting birds at the 241-C Tank Farm. This will be a preventative study to test possible methods for controlling &/or minimizing the presence and impacts of nesting birds inside the tank farm. A nesting bird

371

Stochastic Low Reynolds Number Swimmers  

E-Print Network (OSTI)

As technological advances allow us to fabricate smaller autonomous self-propelled devices, it is clear that at some point directed propulsion could not come from pre-specified deterministic periodic deformation of the swimmer's body and we need to develop strategies to extract a net directed motion from a series of random transitions in the conformation space of the swimmer. We present a theoretical formulation to describe the "stochastic motor" that drives the motion of low Reynolds number swimmers based on this concept, and use it to study the propulsion of a simple low Reynolds number swimmer, namely, the three-sphere swimmer model. When the detailed-balanced is broken and the motor is driven out of equilibrium, it can propel the swimmer in the required direction. The formulation can be used to study optimal design strategies for molecular-scale low Reynolds number swimmers.

Ramin Golestanian; Armand Ajdari

2009-01-12T23:59:59.000Z

372

Isotopically engineered semiconductors: from the bulk tonanostructures  

SciTech Connect

Research performed with semiconductors with controlled isotopic composition is evolving from the measurement of fundamental properties in the bulk to those measured in superlattices and nanostructures. This is driven in part by interests associated with the fields of 'spintronics' and quantum computing. In this topical review, which is dedicated to Prof. Abstreiter, we introduce the subject by reviewing classic and recent measurements of phonon frequencies, thermal conductivity, bandgap renormalizations, and spin coherence lifetimes in isotopically controlled bulk group IV semiconductors. Next, we review phonon properties measured in isotope heterostructures, including pioneering work made possible by superlattices grown by the group of Prof. Abstreiter. We close the review with an outlook on the exciting future possibilities offered through isotope control in 1, 2, and 3 dimensions that will be possible due to advances in nanoscience.

Ager III, Joel W.; Haller, Eugene E.

2006-04-07T23:59:59.000Z

373

Atomic vapor laser isotope separation process  

DOE Patents (OSTI)

A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

Wyeth, R.W.; Paisner, J.A.; Story, T.

1990-08-21T23:59:59.000Z

374

Elbow mass flow meter  

SciTech Connect

Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

1994-01-01T23:59:59.000Z

375

Isotope shift on the chlorine electron affinity revisited by an MCHF/CI approach  

E-Print Network (OSTI)

Today, the electron affinity is experimentally well known for most of the elements and is a useful guideline for developing ab initio computational methods. However, the measurements of isotope shifts on the electron affinity are limited by both resolution and sensitivity. In this context, theory eventually contributes to the knowledge and understanding of atomic structures, even though correlation plays a dominant role in negative ions properties and, particularly, in the calculation of the specific mass shift contribution. The present study solves the longstanding discrepancy between calculated and measured specific mass shifts on the electron affinity of chlorine (Phys. Rev. A 51 (1995) 231)

Carette, Thomas

2013-01-01T23:59:59.000Z

376

Mass modification experiment definition study  

SciTech Connect

This report summarizes an attempt to find an experiment that would test the Haisch, Rueda, and Puthoff (HRP) conjecture that the mass and inertia of a body are induced effects brought about by changes in the quantum-fluctuation energy of the vacuum. It was not possible, however, to identify a definitive experiment. But, it was possible to identify an experiment that might be able to prove or disprove that the inertial mass of a body can be altered by making changes in the vacuum surrounding the body. Other experiments, which do not involve mass modification, but which teach something about the vacuum, were also defined and included in a ranked list of experiments. This report also contains an annotated bibliography. An interesting point raised by this paper is this: We can estimate the `vacuum energy density` to be 10{sup 108} J/cc, and the vacuum mass density to be 10{sup 94} g/cc, much higher numbers than those associated with nuclear energy. Although the field of `electromagnetic fluctuation energy of the vacuum` is admittedly an esoteric, little-understood field, it does seem to have definite potential as an energy source. 47 refs.

Forward, R.L. [Forward Unlimited, Malibu, CA (United States)

1996-12-31T23:59:59.000Z

377

Iron isotopic fractionation during continental weathering  

SciTech Connect

The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

Fantle, Matthew S.; DePaolo, Donald J.

2003-10-01T23:59:59.000Z

378

Undergraduate Catalog Phone Numbers & Address  

E-Print Network (OSTI)

Interest Research Exemption Programs 11 ReglsJrationPeriod III 6 Group (WashPIRG) 14 Faculty Number 9 State NaUonal Guard ' . , Full-Time Student Requirements __'_ 9 Service and Research Credit 10 Tuition notice. All announcements in the Time Schedule are subject to change without notice and do not constitute

Kelly, Scott David

379

MOTOR POOL RESERVATIONS Reservation Number:_______________  

E-Print Network (OSTI)

MOTOR POOL RESERVATIONS Reservation Number:_______________ Evanston campus: Chicago campus: 2020: 312/503-9243 E-mail: motor-pool@northwestern.edu E-mail: motor-pool@northwestern.edu Hours: 8:00 a reservations require the "Organization Authorization for University Vehicles" form to be faxed to Motor Pool

Shull, Kenneth R.

380

ON THE OXYGEN ISOTOPIC COMPOSITION OF THE SOLAR SYSTEM  

SciTech Connect

The {sup 18}O/{sup 17}O ratio of the solar system is 5.2 while that of the interstellar medium (ISM) and young stellar objects is approx4. This difference cannot be explained by pollution of the Sun's natal molecular cloud by {sup 18}O-rich supernova ejecta because (1) the necessary B-star progenitors live longer than the duration of star formation in molecular clouds, (2) the delivery of ejecta gas is too inefficient and the amount of dust in supernova ejecta is too small compared to the required pollution (2% of total mass or approx20% of oxygen), and (3) the predicted amounts of concomitant short-lived radionuclides (SLRs) conflicts with the abundances of {sup 26}Al and {sup 41}Ca in the early solar system. Proposals for the introduction of {sup 18}O-rich material must also be consistent with any explanation for the origin of the observed slope-one relationship between {sup 17}O/{sup 16}O and {sup 18}O/{sup 16}O in the high-temperature components of primitive meteorites. The difference in {sup 18}O/{sup 17}O ratios can be explained by enrichment of the ISM by the {sup 17}O-rich winds of asymptotic giant branch (AGB) stars, the sequestration of comparatively {sup 18}O-rich gas from star-forming regions into long-lived, low-mass stars, and a monotonic decrease in the {sup 18}O/{sup 17}O ratio of interstellar gas. At plausible rates of star formation and gas infall, Galactic chemical evolution does not follow a slope-one line in a three-isotope plot, but instead moves along a steeper trajectory toward an {sup 17}O-rich state. Evolution of the ISM and star-forming gas by AGB winds also explains the difference in the carbon isotope ratios of the solar system and ISM.

Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, Honolulu, HI, 96822 (United States); Krot, Alexander N.; Huss, Gary R., E-mail: gaidos@hawaii.ed, E-mail: sasha@higp.hawaii.ed, E-mail: huss@higp.hawaii.ed [Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI, 96822 (United States)

2009-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions  

Science Conference Proceedings (OSTI)

Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}; denoted AN), albite (NaAlSi{sub 3}O{sub 8}; denoted AB), and diopside (CaMgSi{sub 2}O{sub 6}; denoted DI) were held at 1450°C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB–AN experiment, D{sub Ca}/D{sub Si} ~ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D{sub Ca}/D{sub Si} ~ 1. In the AB–DI experiment, D{sub Ca}/D{sub Si} ~ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB–AN experiment. In the AB–DI experiment, D{sub Mg}/D{sub Si} ~ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity—the ratio of the diffusivity of the cation (D{sub Ca}) to the diffusivity of silicon (D{sub Si}). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D{sub cation}/D{sub Si}. Cations diffusing in aqueous solutions display a similar relationship between isotopic separation efficiency and D{sub cation} =D{sub H 2 O} , although the efficiencies are smaller than in silicate liquids. Our empirical relationship provides a tool for predicting the magnitude of diffusive isotopic effects in many geologic environments and a basis for a more comprehensive theory of isotope separation in liquid solutions. We present a conceptual model for the relationship between diffusivity and liquid structure that is consistent with available data.

Watkins, J.M.; DePaolo, D.J.; Ryerson, F.J.; Peterson, B.

2011-03-01T23:59:59.000Z

382

RIN Number 1904-AB68  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Procurement of Energy Efficient Products Federal Procurement of Energy Efficient Products RIN NUMBER: 1904-AB68 CLOSING DATE: August 20, 2007 COMMENT NUMBER DATE RECEIVED/ DATE OF LETTER NAME & TITLE OF COMMENTATOR AFFILIATION & ADDRESS OF COMMENTATOR 1 ? 7/31/07 Edwin Pinero Federal Environmental Executive Office of the Federal Environmental Executive 1200 Pennsylvania Avenue, NW Mail Code 1600J Washington, DC 20460 2 8/8/07 (e-mail) Bob Null President Arkansas Lamp Manufacturing bnull@arkansaslamp.com 3 8/10/07 (e-mail) Dawn Gunning Environmental Program Manager Department of Justice Dawn.M.Gunning@usdoj.gov 4 8/14/07 8/14/07 Kyle Pitsor Vice President, Government Relations National Electrical Manufacturers Association 1300 North 17th Street, Suite 1752 Rosslyn, VA 22209

383

RIN Number 1904-AB68  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RULEMAKING TITLE: Federal Procurement of Energy Efficient Products RULEMAKING TITLE: Federal Procurement of Energy Efficient Products RIN NUMBER: 1904-AB68 CLOSING DATE: August 20, 2007 COMMENT NUMBER DATE RECEIVED/ DATE OF LETTER NAME & TITLE OF COMMENTATOR AFFILIATION & ADDRESS OF COMMENTATOR 1 ? 7/31/07 Edwin Pinero Federal Environmental Executive Office of the Federal Environmental Executive 1200 Pennsylvania Avenue, NW Mail Code 1600J Washington, DC 20460 2 8/8/07 (e-mail) Bob Null President Arkansas Lamp Manufacturing bnull@arkansaslamp.com 3 8/10/07 (e-mail) Dawn Gunning Environmental Program Manager Department of Justice Dawn.M.Gunning@usdoj.gov 4 8/14/07 8/14/07 Kyle Pitsor Vice President, Government Relations National Electrical Manufacturers Association 1300 North 17th Street, Suite 1752

384

RL·721 Document ID Number:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Document ID Number: Document ID Number: REV 3 NEPA REVIEW SCREENING FORM DOE/CX-00045 . J.proj(;l~t Titl~: - - - -- - - - - - - - - - - - - - - - - - -- --------- ------_. . _ - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - LIMITED FIREBREAK MAINTENANCE ON THE HANFORD SITE DURING CALENDAR YEAR 2012 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions· e.g., acres displaced/disturbed, excavation length/depth, etc.): The Department of Energy (DOE) proposes to perform firebreak maintenance in selected areas of the Hanford Site during calendar year 2012 with limited use of physical, chemical, and prescribed burning methods. Prescribed burning will be performed by the Hanford Fire Department under approved burn plans and permits; and only in previously disturbed

385

Discrete symmetries and neutrino masses  

SciTech Connect

We constructed a model of neutrino masses using Froggatt-Nielsen mechanism with U(1)xZ{sub 3}xZ{sub 2} flavor symmetry. The model predicts that (2/3)m{sub 2}/m{sub 3}{approx}{radical}(2)sin{theta}{sub 13} at lepton number violating scale M{sub 1}. It is shown that the small values for m{sub 2}/m{sub 3} and sin{theta}{sub 13} are consequences of breaking discrete symmetries.

Siyeon, Kim [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

2005-02-01T23:59:59.000Z

386

A post accelerator for the U.S. rare isotope accelerator facility.  

SciTech Connect

The proposed Rare Isotope Accelerator (RIA) Facility includes a post-accelerator for rare isotopes (RIB linac) which must produce high-quality beams of radioactive ions over the full mass range, including uranium, at energies above the coulomb barrier, and have high transmission and efficiency. The latter requires the RIB linac to accept at injection ions in the 1+ charge state. A concept for such a post accelerator suitable for ions up to mass 132 has been previously described [1]. This paper presents a modified concept which extends the mass range to uranium. A high resolution separator for purifying beams at the isobaric level precedes the RIB linac. The mass filtering process will provide high purity beams while preserving transmission. For most cases a resolution of about m/{Delta}m=20,000 is adequate at mass A=100 to obtain a separation between isobars of mass excess difference of 5 MeV. The design for a device capable of purifying beams at the isobaric level included calculations up to 5th order. The RIB linac will utilize existing superconducting heavy-ion linac technology for all but a small portion of the accelerator system. The exceptional piece, a very-low-charge-state injector, section needed for just the first few MV of the RIB accelerator, consists of a pre-buncher followed by several sections of cw, normally-conducting RFQ. Two stages of charge stripping are provided: helium gas stripping at energies of a few keV/u, and additional foil stripping at {approx}680 keV/u for the heavier ions. In extending the mass range to uranium, however, for best efficiency the helium gas stripping must be performed at different energies for different mass ions. We present numerical simulations of the beam dynamics of a design for the complete RIB linac which provides for several stripping options and uses cost-effective solenoid focusing elements in the drift-tube linac.

Ostroumov, P. N.; Kelly, M. P.; Kolomiets, A. A.; Nolen, J. A.; Portillo, M.; Shepard, K. W.; Vinogradov, N. E.

2002-06-11T23:59:59.000Z

387

Decay studies of the highly neutron-deficient indium isotopes  

Science Conference Proceedings (OSTI)

An extension of the experimentally known nuclidic mass surface to nuclei far from the region of beta-stability is of fundamental interest in providing a better determination of the input parameters for the various nuclear mass formulae, allowing a more accurate prediction of the ultimate limits of nuclear stability. In addition, a study of the shape of the mass surface in the vicinity of the doubly-closed nuclide /sup 100/Sn provides initial information on the behavior of the shell closure to be expected when Z = N = 50. Experiments measuring the decay energies of /sup 103/ /sup 105/In by ..beta..-endpoint measurements are described with special attention focused on the development of a plastic scintillator ..beta..-telescope coupled to the on-line mass separator RAMA (Recoil Atom Mass Analyzer). An attempt to measure the ..beta..-endpoint energy of /sup 102/In is also briefly described. The experimentally determined decay energies and derived masses for /sup 103/ /sup 105/In are compared with the predictions of different mass models to identify which models are more successful in this region. Furthermore, the inclusion in these comparisons of the available data on the neutron-rich indium nuclei permits a systematic study of their ground state mass behavior as a function of the neutron number between the shell closures at N = 50 and N = 82. These analyses indicate that the binding energy of /sup 103/In is 1 MeV larger than predicted by the majority of the mass models. An examination of the Q/sub EC/ surface and the single- and two-neutron separation energies in the vicinity of /sup 103/ /sup 105/In is also performed to investigate further the deviation and other possible systematic variations in the mass surface in a model-independent way.

Wouters, J.M.

1982-02-01T23:59:59.000Z

388

Measurements and Prediction of Particulate Number Concentrations and their Chemical Composition over Yanbu Industrial City, Saudi Arabia.  

E-Print Network (OSTI)

??Many recent studies have highlighted the substantial health-related impacts of particle number (PMno) rather than particle mass. The aim of this study is to determine… (more)

Al-Mahmodi, Jaafar Nasheed hameed

2011-01-01T23:59:59.000Z

389

Small system for tritium accelerator mass spectrometry  

DOE Patents (OSTI)

Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and .sup.3 He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

Roberts, Mark L. (Livermore, CA); Davis, Jay C. (Livermore, CA)

1993-01-01T23:59:59.000Z

390

Small system for tritium accelerator mass spectrometry  

DOE Patents (OSTI)

Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and [sup 3]He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

Roberts, M.L.; Davis, J.C.

1993-02-23T23:59:59.000Z

391

Small system for tritium accelerator mass spectrometry  

DOE Patents (OSTI)

This invention is comprised of an apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radiofrequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and {sup 3}He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

Roberts, M.L.; Davis, J.C.

1991-12-31T23:59:59.000Z

392

A new detector setup for ISOLTRAP and test of the Isobaric Multiplet Mass Equation  

E-Print Network (OSTI)

Installed at the on-line isotope separator ISOLDE at CERN, the tandem Penning-trap spectrometer ISOLTRAP is designed to perform high-accuracy mass measurements on short-lived radionuclides. Based on the determination of the ion cyclotron frequency $\

Yazidjian, Chabouh; Ban, Gilles

2006-01-01T23:59:59.000Z

393

Mass-Loaded Flows  

E-Print Network (OSTI)

A key process within astronomy is the exchange of mass, momentum, and energy between diffuse plasmas in many types of astronomical sources (including planetary nebulae, wind-blown bubbles, supernova remnants, starburst superwinds, and the intracluster medium) and dense, embedded clouds or clumps. This transfer affects the large scale flows of the diffuse plasmas as well as the evolution of the clumps. I review our current understanding of mass-injection processes, and examine intermediate-scale structure and the global effect of mass-loading on a flow. I then discuss mass-loading in a variety of diffuse sources.

J. M. Pittard

2006-07-13T23:59:59.000Z

394

Does Information Have Mass?  

E-Print Network (OSTI)

Does information have mass? This question has been asked many times and there are many answers even on the Internet, including on Yahoo Answers. Usually the answer is "no". Attempts have been made to assess the physical mass of information by estimating the mass of electrons feeding the power-guzzling computers and devices making up the Internet, the result being around 50 gram. Other efforts to calculate the mass of information have assumed that each electron involved in signal transfer carries one bit of information, which makes the corresponding mass to be about 10^-5 gram. We address the fundamental question of minimum mass related to a bit of information from the angles of quantum physics and special relativity. Our results indicate that there are different answers depending on the physical situation, and sometimes the mass can even be negative. We tend to be skeptical about the earlier mass estimations, mentioned above, because our results indicate that the electron's mass does not play a role in any on...

Kish, Laszlo B

2013-01-01T23:59:59.000Z

395

Laser Isotope Separation Employing Condensation Repression  

SciTech Connect

Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

Eerkens, Jeff W.; Miller, William H.

2004-09-15T23:59:59.000Z

396

The Scalable Parallel Random Number Generators (SPRNG) ...  

Science Conference Proceedings (OSTI)

... Random Number Generators (SPRNG) Library is a widely used tool for random number generation on high-performance computing platforms. ...

2011-05-04T23:59:59.000Z

397

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

398

Sandia National Labs: PCNSC: Departments: Radiation-Solid Interactions...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technetium Symbol: Tc Atomic Number: 43 Atomic Weight (Average): 98.9062 Mass (amu) no stable isotopes Abundance no stable isotopes IBA Techniques to Analyze: HIBS (Heavy Ion...

399

Quantification of abnormal intracranial pressure waves and isotope cisternography for diagnosis of occult communicating hydrocephalus  

SciTech Connect

Nineteen consecutive patients with suspected occult communicating hydrocephalus were investigated by means of clinical evaluation, neuropsychological testing, isotope cisternography, computed tomography scanning, and continuous intracranial pressure monitoring. Semi-quantitative grading systems were used in the evaluation of the clinical, neuropsychological, and cisternographic assessments. Clinical examination, neuropsychological testing, and computed tomography scanning were repeated 3 months after ventriculoperitoneal shunting. All patients showed abnormal intracranial pressure waves and all improved after shunting. There was close correlation between number, peak, and pulse pressures of B waves and the mean intracranial pressure. However, quantification of B waves by means of number, frequency, and amplitude did not help in predicting the degree of clinical improvement postshunting. The most sensitive predictor of favorable response to shunting was enlargement of the temporal horns on computed tomography scan. Furthermore, the size of temporal horns correlated with mean intracranial pressure. There was no correlation between abnormalities on isotope cisternography and clinical improvement.

Cardoso, E.R.; Piatek, D.; Del Bigio, M.R.; Stambrook, M.; Sutherland, J.B.

1989-01-01T23:59:59.000Z

400

Fission modes of mercury isotopes  

E-Print Network (OSTI)

Background: Recent experiments on beta-delayed fission in the mercury-lead region and the discovery of asym- metric fission in 180 Hg [1] have stimulated theoretical interest in the mechanism of fission in heavy nuclei. Purpose: We study fission modes and fusion valleys in 180 Hg and 198 Hg to reveal the role of shell effects in pre-scission region and explain the experimentally observed fragment mass asymmetry and its variation with A. Methods: We use the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. Results: The potential energy surfaces in multi-dimensional space of collective coordinates, including elongation, triaxiality, reflection-asymmetry, and necking, are calculated for 180 Hg and 198 Hg. The asymmetric fission valleys - well separated from fusion valleys associated with nearly spherical fragments - are found in in both cases. The density distributions at scission configurations are studied and related to the experimentally observed mass splits. Conclusions: The energy density functionals SkM\\ast and D1S give a very consistent description of the fission process in 180 Hg and 198 Hg. We predict a transition from asymmetric fission in 180 Hg towards more symmetric distribution of fission fragments in 198 Hg. For 180 Hg, both models yield 100 Ru/80 Kr as the most probable split. For 198 Hg, the most likely split is 108 Ru/90 Kr in HFB-D1S and 110 Ru/88 Kr in HFB-SkM\\ast.

M. Warda; A. Staszczak; W. Nazarewicz

2012-05-25T23:59:59.000Z

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fission Modes of Mercury Isotopes  

Science Conference Proceedings (OSTI)

Background: Recent experiments on -delayed fission in the mercury-lead region and the discovery of asymmetric fission in 180Hg [A. N. Andreyev et al., Phys. Rev. Lett. 105, 252502 (2010)] have stimulated theoretical interest in the mechanism of fission in heavy nuclei. Purpose: We study fission modes and fusion valleys in 180Hg and 198Hg to reveal the role of shell effects in the prescission region and explain the experimentally observed fragment mass asymmetry and its variation with A. Methods: We use the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. Results: The potential energy surfaces in multidimensional space of collective coordinates, including elongation, triaxiality, reflection-asymmetry, and necking, are calculated for 180Hg and 198Hg. The asymmetric fission valleys well separated from fusion valleys associated with nearly spherical fragments are found in both cases. The density distributions at scission configurations are studied and related to the experimentally observed mass splits. Conclusions: The energy density functionals SkM and D1S give a very consistent description of the fission process in 180Hg and 198Hg. We predict a transition from asymmetric fission in 180Hg toward a more symmetric distribution of fission fragments in 198Hg. For 180Hg, both models yield 100Ru/80Kr as the most probable split. For 198Hg, the most likely split is 108Ru/90Kr in HFB-D1S and 110Ru/88Kr in HFB-SkM .

Warda, M. [Maria Curie-Sk?odowska University-Poland; Staszczak, A. [Maria Curie-Sklodowska University; Nazarewicz, Witold [UTK/ORNL/University of Warsaw

2012-01-01T23:59:59.000Z

402

REPORT OF SURVEY OF OAK RIDGE ISOTOPE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OAK RIDGE ISOTOPE OAK RIDGE ISOTOPE ENRICHMENT (CALUTRON) FACILITY BUILDING 9204-3 U.S. Department of Energy Office of Environmental Management & Office of Nuclear Energy Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 FINAL May 8, 2000 Contents 1. Introduction 1.1 Purpose 1.2 Facility Description 1.3 Organization Representatives 1.4 Survey Participants 2. Summary, Conclusions & Recommendations 2.1 Transfer Considerations 2.2 Post-Transfer EM Path Forward & Management Risk 3. Survey Results 4. Stabilization and Other Actions Required for Transfer 5. Surveillance & Maintenance After Transfer 6. Other Transfer Details 7. Attachments and References Appendix A - Detailed Survey Notes

403

The rare isotope accelerator (RIA) facility project  

DOE Green Energy (OSTI)

The envisioned Rare-Isotope Accelerator (RIA) facility would add substantially to research opportunities for nuclear physics and astrophysics by combining increased intensities with a greatly expanded variety of high-quality rare-isotope beams. A flexible superconducting driver linac would provide 100 kW, 400 MeV/nucleon beams of any stable isotope from hydrogen to uranium onto production targets. Combinations of projectile fragmentation, target fragmentation, fission, and spallation would produce the needed broad assortment of short-lived secondary beams. This paper describes the project's background, purpose, and status, the envisioned facility, and the key subsystem, the driver linac. RIA's scientific purposes are to advance current theoretical models, reveal new manifestations of nuclear behavior, and probe the limits of nuclear existence [3]. Figures 1 and 2 show, respectively, examples of RIA research opportunities and the yields projected for pursuing them. Figure 3 outlines a conceptual approach for delivering the needed beams.

Christoph Leemann

2000-08-01T23:59:59.000Z

404

Atomic line emission analyzer for hydrogen isotopes  

DOE Patents (OSTI)

Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1993-01-01T23:59:59.000Z

405

Apparatus for separating and recovering hydrogen isotopes  

DOE Patents (OSTI)

An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

Heung, Leung K. (Aiken, SC)

1994-01-01T23:59:59.000Z

406

Atomic line emission analyzer for hydrogen isotopes  

DOE Patents (OSTI)

Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using, a metal hydride.

Kronberg, J.W.

1991-05-08T23:59:59.000Z

407

Atomic line emission analyzer for hydrogen isotopes  

DOE Patents (OSTI)

Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

Kronberg, J.W.

1993-03-30T23:59:59.000Z

408

Isotope Shift Measurements of Stable and Short-Lived Lithium Isotopes for Nuclear Charge Radii Determination  

E-Print Network (OSTI)

Changes in the mean-square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a new laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8 ms lifetime isotope with production rates on the order of only 10,000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope Li-11 at the on-line isotope separators at GSI, Darmstadt, Germany and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results.

Nörtershäuser, W; Ewald, G; Dax, A; Behr, J; Bricault, P; Bushaw, B A; Dilling, J; Dombsky, M; Drake, G W F; Götte, S; Kluge, H -J; Kühl, Th; Lassen, J; Levy, C D P; Pachucki, K; Pearson, M; Puchalski, M; Wojtaszek, A; Yan, Z -C; Zimmermann, C

2010-01-01T23:59:59.000Z

409

Atmospheric Trace Gases, Carbon Isotopes, Radionuclides, and Aerosols: Isotopes in Greenhouse Gases Data from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer (OSTI)

(Scroll down to find Isotopes in Greenhouse Gases, a subheading under the broader heading of Atmospheric Trace Gases, etc.) CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to isotopes in greenhouse gases includes: • Monthly atmospheric 13C/12C isotopic ratios for 10 SIO stations, (2005) (Trends Online) • Mixing ratios of CO, CO2, CH4, and isotope ratios of associated 13C, 18O, and 2H in air samples from Niwot Ridge, Colorado, and Monta±a de Oro, California, USA (2004) • Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from Fossil-Fuel Consumption in the U.S.A., (2004) (Trends Online) ?13C in CO2 from the CSIRO GASLAB Flask Sampling Network (Trends Online) • In Situ 13CO2 from Cape Grim, Tasmania, Australia: 1982-1993 (2001) (Trends Online) • In situ Carbon 13 and Oxygen 18 Ratios of Atmospheric CO2 from Cape Grim, Tasmania, Australia: 1982-1993 (1995) • Carbon-13 Isotopic Abundance and concentration of Atmospheric Methane for Background Air in the Southern and Northern Hemispheres from 1978 to 1989 (1995) • Measurements of Atmospheric Methane and 13C/12C of Atmospheric Methane from Flask Air Samples (1999) • 14CO 2 Observations from Schauinsland, Germany (1997) (Trends Online) • Carbon-14 Measurements in Atmospheric CO 2 from Northern and Southern Hemisphere Sites, 1962-1992 (1996) • Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 (1998) (Specialized Interface)

410

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

411

On the Photon Mass  

E-Print Network (OSTI)

We review the case for the photon having a tiny mass compatible with the experimental limits. We go over some possible experimental tests for such a photon mass including the violation of Lorentz symmetry. We point out that such violations may already have been witnessed in tests involving high energy gamma rays from outer space as also ultra high energy cosmic rays.

Burra G. Sidharth

2007-06-22T23:59:59.000Z

412

Thermal masses in leptogenesis  

E-Print Network (OSTI)

We investigate the validity of using thermal masses in the kinematics of final states in the decay rate of heavy neutrinos in leptogenesis calculations. We find that using thermal masses this way is a reasonable approximation, but corrections arise through quantum statistical distribution functions and leptonic quasiparticles.

Kiessig, Clemens P

2009-01-01T23:59:59.000Z

413

The origin of mass  

Science Conference Proceedings (OSTI)

The origin of mass is one of the deepest mysteries in science. Neutrons and protons, which account for almost all visible mass in the Universe, emerged from a primordial plasma through a cataclysmic phase transition microseconds after the Big Bang. However, ... Keywords: Gordon Bell Prize categories: scalability and time to solution, SC13 proceedings

Peter Boyle, Michael I. Buchoff, Norman Christ, Taku Izubuchi, Chulwoo Jung, Thomas C. Luu, Robert Mawhinney, Chris Schroeder, Ron Soltz, Pavlos Vranas, Joseph Wasem

2013-11-01T23:59:59.000Z

414

Elbow mass flow meter  

DOE Patents (OSTI)

The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

1994-08-16T23:59:59.000Z

415

RL-721 Document ID Number:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 NEPA REVIEW SCREENING FORM DOE/CX-00075 I. Project Title: Project 1-718, Electrical Utili ties Transformer Management Support Facility II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): The proposed action includes design, procurement, and construction of a pre-engineered metal building for transformer management; including inspections, routine maintenance, testing, refurbishing, and disposition of excess transformers. The building will be constructed in the previously disturbed, gravel-covered electrical utilities lay-down yard west of the 2101-M Building in 200 East Area of the Hanford Site. The building footprint

416

Control Measure Title Reference Number *  

E-Print Network (OSTI)

exhaustive search for emissions reductions to use in meeting federal Clean Air Act requirements for this 2008 PM2.5 Plan. Chapter 6 details the District’s process for developing control measures for reducing emissions of primary PM2.5 and PM2.5 precursors. This Appendix presents the product of this process: a master list of all candidate control measure ideas identified and evaluated for this plan. After assembling Appendix I, the District then screened the candidate measures into several categories: high priority measures to be implemented in the years immediately following plan adoption; measures that might be implemented in future years to allow for expected technology development; and those measures that require further study to identify when they could be implemented and what reductions they could achieve. Candidate control measure descriptions in Appendix I have the following major components:! Title and Number

unknown authors

2008-01-01T23:59:59.000Z

417

Method for production of an isotopically enriched compound  

Science Conference Proceedings (OSTI)

A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.

Watrous, Matthew G.

2012-12-11T23:59:59.000Z

418

Laser isotope separation by multiple photon absorption  

DOE Patents (OSTI)

Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

Robinson, C. Paul (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Lyman, John L. (Los Alamos, NM); Aldridge, III, Jack P. (Los Alamos, NM)

1977-01-01T23:59:59.000Z

419

Laser isotope separation by multiple photon absorption  

DOE Patents (OSTI)

Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

Robinson, C. Paul (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Lyman, John L. (Los Alamos, NM); Aldridge, III, Jack P. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

420

CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS  

DOE Green Energy (OSTI)

Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

Xiao, S.; Heung, L.

2010-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS  

SciTech Connect

Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

Xiao, S.; Heung, L.

2010-10-07T23:59:59.000Z

422

Novel Gas Isotope Interpretation Tools to Optimize Gas Shale  

NLE Websites -- All DOE Office Websites (Extended Search)

Final Report to Final Report to Report Number 08122.15.Final Novel Gas Isotope Interpretation Tools to Optimize Gas Shale Production Contract: 08122-15 Principal Investigator: William A. Goddard, III Title: Director, Materials and Process Simulation Center California Institute of Technology Wag@wag.caltech.edu Co-PIs: Yongchun Tang, Ph.D. Title: Director, Power Environmental Energy Research Institute Other Author(s) Sheng Wu, Ph.D Andrew Deev, Ph.D Qisheng Ma, Ph.D Gao Li, Ph.D. June 5, 2013 2 LEGAL NOTICE This report was prepared by California Institute of Technology as an account of work sponsored by the Research Partnership to Secure Energy for America, RPSEA. Neither RPSEA members of RPSEA, the National Energy Technology Laboratory, the U.S. Department of Energy, nor any person acting on behalf of

423

MassMass transfer andtransfer and arationstearationste  

E-Print Network (OSTI)

, temperature, T, and energy, E, are scalars and their gradient is a vector dc/dx or arationste scalars diffusion coefficient D; for species A in medium B : D = DAB 4 erföringo dx dc D dt.A dm m Massöve c cSepa dx dc )DD(m th Irreversible Thermodynamics considers Thermo-diffusion 4 erföringo T T Thermo

Zevenhoven, Ron

424

ON THE NUMBER OF NEUTRONS FROM SOME FISSION FRAGMENTS  

SciTech Connect

The number of neutrons emitted by individual fragments from U/sup 235/ fission by thermal neutrons was measured using a large detector filled with a liquid organic cadmiumcontaining scintillator. The numbers of prompt neutrons were measured under 4 pi geometry conditions as a function of fragment mass. The excitation energy spent on prompt neutrons was derived on the basis of Weizsacker's semiempirical formula. A sharp asymmetry was noticed in the distribution of excitation energies between heavy and light fragments. The new data do not agree with the Fong statistical fission theory. (tr-auth)

Apalin, V.F.; Dobrynin, Yu.P.; Zakharova, V.P.; Kutikov, I.E.; Mikaelyan, L.A.

1960-01-01T23:59:59.000Z

425

Facility for Endurance Testing of Hydrophobic Isotope Exchange Catalysts  

Science Conference Proceedings (OSTI)

Detritiation and Isotope Separation / Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2)

Lidia Matei; C. Postolache; C. Tuta; S. Brad

426

Cryogenic Adsorption of Hydrogen Isotopes over Nano-Structured Materials  

Science Conference Proceedings (OSTI)

Detritiation and Isotope Separation / Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2)

X. Xiao; L. K. Heung

427

Space isotope power program. Quarterly report, October--December 1968  

SciTech Connect

Progress during October through December 1968 in the Space Isotope Power Program at the Sandia Laboratories is reported. (LCL)

1969-02-01T23:59:59.000Z

428

Isotopic Interdiffusion Analysis and its Application in Multicomponent ...  

Science Conference Proceedings (OSTI)

Presentation Title, Isotopic Interdiffusion Analysis and its Application in Multicomponent ... Calorimetric studies of lithium ion cells and their constructing materials.

429

Nuclear mass systematics using neural networks  

E-Print Network (OSTI)

New global statistical models of nuclidic (atomic) masses based on multilayered feedforward networks are developed. One goal of such studies is to determine how well the existing data, and only the data, determines the mapping from the proton and neutron numbers to the mass of the nuclear ground state. Another is to provide reliable predictive models that can be used to forecast mass values away from the valley of stability. Our study focuses mainly on the former goal and achieves substantial improvement over previous neural-network models of the mass table by using improved schemes for coding and training. The results suggest that with further development this approach may provide a valuable alternative to conventional global models.

Athanassopoulos, S; Gernoth, K A; Clark, J W

2003-01-01T23:59:59.000Z

430

Nuclear mass systematics using neural networks  

E-Print Network (OSTI)

New global statistical models of nuclidic (atomic) masses based on multilayered feedforward networks are developed. One goal of such studies is to determine how well the existing data, and only the data, determines the mapping from the proton and neutron numbers to the mass of the nuclear ground state. Another is to provide reliable predictive models that can be used to forecast mass values away from the valley of stability. Our study focuses mainly on the former goal and achieves substantial improvement over previous neural-network models of the mass table by using improved schemes for coding and training. The results suggest that with further development this approach may provide a valuable complement to conventional global models.

S. Athanassopoulos; E. Mavrommatis; K. A. Gernoth; J. W. Clark

2003-07-31T23:59:59.000Z

431

Time-of-Flight Mass Measurements of Exotic Nuclei  

Science Conference Proceedings (OSTI)

Atomic masses play an important role in nuclear physics and astrophysics. The need of experimental mass values for unstable nuclides has triggered the development of a wide range of mass measurement techniques, with devices installed at many laboratories around the world. We have implemented a time-of-flight magnetic-rigidity (TOF-B ) technique at the National Superconducting Cyclotron Laboratory (NSCL) that includes a position measurement for magnetic rigidity corrections and uses the A1900 separator and the S800 spectrograph. We performed a successful first experiment measuring masses of neutron-rich isotopes in the region of Z 20 30, important for calculations of processes occurring in the crust of accreting neutron stars. The masses of 16 nuclei were determined, for 61V, 63Cr, 66Mn, and 74Ni for the first time, with atomic mass excesses of 30.510(890) MeV, 35.280(650) MeV, 36.900(790) MeV, and 49.210(990) MeV, respectively. The mass resolution achieved was 1.8 10 4.

Matos, M. [Michigan State Univ./JINA/Louisiana State University; Estrade, A. [Michigan State Univ./JINA/LSU/Saint Mary's Univ./GSI Darmstadt, GE; Schatz, H. [Michigan State Univ./JINA; Bazin, D. [Michigan State University, East Lansing; Famiano, M. [Western Michigan University, Kalamazoo; Gade, A. [Michigan State University, East Lansing; George, S. [NSCL, Michigan State University, East Lansing; Lynch, W. G. [NSCL, Michigan State Univ./JINA; Meisel, Z. [NSCL, Michigan State Univ./JINA; Portillo, M. [NSCL, Michigan State University, East Lansing; Rogers, A. [NSCL, Michigan State Univ./JINA; Shapira, Dan [ORNL; Stolz, A. [Michigan State University, East Lansing; Wallace, M. [Los Alamos National Laboratory (LANL); Yurkon, J. [NSCL, Michigan State University, East Lansing

2012-01-01T23:59:59.000Z

432

Discovery of Scandium, Titanium, Mercury, and Einsteinium Isotopes  

E-Print Network (OSTI)

Currently, twenty-three scandium, twenty-five titanium, forty mercury and seventeen einsteinium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

D. Meierfrankenfeld; A. Bury; M. Thoennessen

2010-03-26T23:59:59.000Z

433

Isotopic Generation and Confirmation of the PWR Application Model   

SciTech Connect

The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from pressurized water reactors (PWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000). The isotopic database consists of the set of 14 actinides and 15 fission products presented in Section 3.5.2.1.1 of YMP 2000 for use in CSNF burnup credit. This set of 29 isotopes is referred to as the principal isotopes. The oxygen isotope from the UO{sub 2} fuel is also included in the database. The isotopic database covers enrichments of {sup 235}U ranging from 1.5 to 5.5 weight percent (wt%) and burnups ranging from approximately zero to 75 GWd per metric ton of uranium (mtU). The choice of fuel assembly and operating history values used in generating the isotopic database are provided is Section 5. Tables of isotopic concentrations for the 29 principal isotopes (plus oxygen) as a function of enrichment and burnup are provided in Section 6.1. Results of the confirmation of the conservatism with respect to criticality in the isotopic concentration values are provided in Section 6.2.

L.B. Wimmer

2003-11-10T23:59:59.000Z

434

Final Report on Isotope Ratio Techniques for Light Water Reactors  

SciTech Connect

The Isotope Ratio Method (IRM) is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods.

Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Mitchell, Mark R.; Meriwether, George H.; Reid, Bruce D.

2009-07-01T23:59:59.000Z

435

E.L. Grossman Chapter 10 Oxygen Isotope Stratigraphy  

E-Print Network (OSTI)

are the mineral and water respectively. Oxygen isotopic ratios are The Geologic Time Scale 2012. DOI: 10.1016/B978E.L. Grossman Chapter 10 Oxygen Isotope Stratigraphy Abstract:Variations in the 18 O/16 O ratios for global correlation. Relying on previous compilations and new data, this chapter presents oxygen isotope

Grossman, Ethan L.

436

Resonance Ionization Mass Spectrometry System for Measurement of Environmental Samples  

Science Conference Proceedings (OSTI)

A resonance ionization mass spectrometry (RIMS) system has been developed at the National Institute of Standards and Technology (NIST) for sensitive and selective determination of radio?cesium in the environment. The overall efficiency was determined to be 4×10?7 with a combined (laser and mass spectrometer) selectivity of 108 for both 135Cs and 137Cs with respect to 133Cs. RIMS isotopic ratio measurements of 135Cs/ 137Cs were performed on a nuclear fuel burn?up sample and compared to measurements on a similar system at Pacific Northwest National Laboratory (PNNL) and to conventional thermal ionization mass spectrometry (TIMS). Results of preliminary RIMS investigations on a freshwater lake sediment sample are also discussed.

L. Pibida; C. A. McMahon; W. Nörtershäuser; B. A. Bushaw

2002-01-01T23:59:59.000Z

437

Validation of Electrochemically Modulated Separations Performed On-Line with MC-ICP-MS for Uranium and Plutonium Isotopic Analyses  

Science Conference Proceedings (OSTI)

The most time consuming process in uranium or plutonium isotopic analyses is performing the requisite chromatographic separation of the actinides. Filament preparation for thermal ionization (TIMS) adds further delays, but is generally accepted due to the unmatched performance in trace isotopic analyses. Advances in Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) are beginning to rival the performance of TIMS. Methods, such as Electrochemically Modulated Separations (EMS) can efficiently pre-concentrate U or Pu quite selectively from small solution volumes in a matrix of 0.5 M nitric acid. When performed in-line with ICP-MS, the rapid analyte release from the electrode is fast, and large transient analyte signal enhancements of >100 fold can be achieved as compared to more conventional continuous nebulization of the original starting solution. This makes the approach ideal for very low level isotope ratio measurements. In this paper, some aspects of EMS performance are described. These include low level Pu isotope ratio behavior versus concentration by MC-ICP-MS and uranium rejection characteristics that are also important for reliable low level Pu isotope ratio determinations.

Liezers, Martin; Olsen, Khris B.; Mitroshkov, Alexandre V.; Duckworth, Douglas C.

2010-08-11T23:59:59.000Z

438

A Review of Antarctic Surface Snow Isotopic Composition: Observations, Atmospheric Circulation, and Isotopic Modeling  

Science Conference Proceedings (OSTI)

A database of surface Antarctic snow isotopic composition is constructed using available measurements, with an estimate of data quality and local variability. Although more than 1000 locations are documented, the spatial coverage remains uneven ...

V. Masson-Delmotte; S. Hou; A. Ekaykin; J. Jouzel; A. Aristarain; R. T. Bernardo; D. Bromwich; O. Cattani; M. Delmotte; S. Falourd; M. Frezzotti; H. Gallée; L. Genoni; E. Isaksson; A. Landais; M. M. Helsen; G. Hoffmann; J. Lopez; V. Morgan; H. Motoyama; D. Noone; H. Oerter; J. R. Petit; A. Royer; R. Uemura; G. A. Schmidt; E. Schlosser; J. C. Simões; E. J. Steig; B. Stenni; M. Stievenard; M. R. van den Broeke; R. S. W. van de Wal; W. J. van de Berg; F. Vimeux; J. W. C. White

2008-07-01T23:59:59.000Z

439

Benchmark of SCALE (SAS2H) isotopic predictions of depletion analyses for San Onofre PWR MOX fuel  

Science Conference Proceedings (OSTI)

The isotopic composition of mixed-oxide (MOX) fuel, fabricated with both uranium and plutonium, after discharge from reactors is of significant interest to the Fissile Materials Disposition Program. The validation of the SCALE (SAS2H) depletion code for use in the prediction of isotopic compositions of MOX fuel, similar to previous validation studies on uranium-only fueled reactors, has corresponding significance. The EEI-Westinghouse Plutonium Recycle Demonstration Program examined the use of MOX fuel in the San Onofre PWR, Unit 1, during cycles 2 and 3. Isotopic analyses of the MOX spent fuel were conducted on 13 actinides and {sup 148}Nd by either mass or alpha spectrometry. Six fuel pellet samples were taken from four different fuel pins of an irradiated MOX assembly. The measured actinide inventories from those samples has been used to benchmark SAS2H for MOX fuel applications. The average percentage differences in the code results compared with the measurement were {minus}0.9% for {sup 235}U and 5.2% for {sup 239}Pu. The differences for most of the isotopes were significantly larger than in the cases for uranium-only fueled reactors. In general, comparisons of code results with alpha spectrometer data had extreme differences, although the differences in the calculations compared with mass spectrometer analyses were not extremely larger than that of uranium-only fueled reactors. This benchmark study should be useful in estimating uncertainties of inventory, criticality and dose calculations of MOX spent fuel.

Hermann, O.W.

2000-02-01T23:59:59.000Z

440

RADIATION PROTECTION AND DECONTAMINATION IN ISOTOPE LABORATORIES  

SciTech Connect

An accident trolley is described that contains everything needed if an accident with radioactive materials occurs. Instructions for decontamination are given and measures to be taken after mishaps with open isotopes are recommended. Cleansing and treatment of laundry that is contaminated with radioactive materials are discussed and an active laundry is described. (auth)

Schanze, U.O.

1963-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NEW TITANIUM ISOTOPE DATA FOR ALLENDE AND EFREMOVKA CAIs  

SciTech Connect

We measured the titanium (Ti) isotope composition, i.e., {sup 50}Ti/{sup 47}Ti, {sup 48}Ti/{sup 47}Ti, and {sup 46}Ti/{sup 47}Ti, in five calcium-rich-aluminum-rich refractory inclusions (CAIs) from the oxidized CV3 chondrite Allende and in two CAIs from the reduced CV3 chondrite Efremovka. Our data indicate that CAIs are enriched in {sup 50}Ti/{sup 47}Ti and {sup 46}Ti/{sup 47}Ti and are slightly depleted in {sup 48}Ti/{sup 47}Ti compared to normal Ti defined by ordinary chondrites, eucrites, ureilites, mesosiderites, Earth, Moon, and Mars. Some CAIs have an additional {sup 50}Ti excess of {approx}8{epsilon} relative to bulk carbonaceous chondrites, which are enriched in {sup 50}Ti by {approx}2{epsilon} relative to terrestrial values, leading to a total excess of {approx}10{epsilon}. This additional {sup 50}Ti excess is correlated with nucleosynthetic anomalies found in {sup 62}Ni and {sup 96}Zr, all indicating an origin from a neutron-rich stellar source. Bulk carbonaceous chondrites show a similar trend, however, the extent of the anomalies is either less than or similar to the smallest anomalies seen in CAIs. Mass balance calculations suggest that bulk Allende Ti possibly consists of a mixture of at least two Ti components, anomalous Ti located in CAIs and a normal component possibly for matrix and chondrules. This argues for a heterogeneous distribution of Ti isotopes in the solar system. The finding that anomalous Ti is concentrated in CAIs suggests that CAIs formed in a specific region of the solar system and were, after their formation, not homogeneously redistributed within the solar system. Combining the CAI data with improved model predictions for early solar system irradiation effects indicates that a local production scenario for the relatively short lived radionuclides can be excluded, because the production of, e.g., {sup 10}Be, {sup 26}Al, and {sup 41}Ca, would result in a significant collateral shift in Ti isotopes, which is not seen in the measured data.

Leya, Ingo [Physical Institute, Space Sciences and Planetology, University of Bern (Switzerland); Schoenbaechler, Maria [School of Earth, Atmospheric and Environmental Sciences, University of Manchester (United Kingdom); Kraehenbuehl, Urs [Laboratory for Radiochemistry, University of Bern (Switzerland); Halliday, Alex N. [Deparment of Earth Sciences, University of Oxford, Oxford (United Kingdom)], E-mail: Ingo.Leya@space.unibe.ch

2009-09-10T23:59:59.000Z

442

Comment on 'Existence of long-lived isomeric states in naturally-occurring neutron-deficient Th isotopes'  

SciTech Connect

In their article ''Existence of Long-Lived Isomeric States in Naturally-Occuring Neutron-Deficient Th Isotopes''[Phys. Rev. C 76, 021303 (2007)], Marinov et al. fail to demonstrate that basic mass spectrometric protocols, such as abundance sensitivity, linearity, and freedom from possible interferences, have been met. In particular, the claim that four isomeric states of Th have been discovered, using an inductively coupled plasma-sector field mass spectrometer (ICP-SFMS), with abundances from (1-10)x10{sup -11} relative to {sup 232}Th, cannot be accepted, given the known abundance sensitivities of other sector field mass spectrometers. Accelerator mass spectrometry is the only mass spectrometric methodology capable of measuring relative abundances of the magnitude claimed by Marinov et al.

Barber, R. C.; De Laeter, J. R. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Department of Applied Physics, Curtin University, Perth, Western Australia (Australia)

2009-04-15T23:59:59.000Z

443

Conservation of Mass in Three Dimensions in Global Analyses  

Science Conference Proceedings (OSTI)

For a number of reasons, conservation of mass in the global analyses on pressure coordinates is violated, yet this constraint is required for budget studies of all kinds. The imbalances arise from postprocessing the variables onto pressure ...

Kevin E. Trenberth; James W. Hurrell; Amy Solomon

1995-04-01T23:59:59.000Z

444

Higgs Mass Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

this sheet now. Help with data analysis Higgs Mass Plot Project Contact: Thomas Jordan - jordant@fnal.gov Web Maintainer: qnet-webmaster@fnal.gov Last Update: August 22,...

445

Solids mass flow determination  

DOE Patents (OSTI)

Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

Macko, Joseph E. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

446

Physics with Rare Isotope Beams  

Science Conference Proceedings (OSTI)

Using stable and radioactive beams provided by ATLAS nuclear reactions of special interest in astrophysics have been studied with emphasis on breakout from the hot CNO cycle to the rp-process. The masses of nuclear fragments provided by a strong fission source have been measured in order to help trace the path of the r process. 8Li ions produced by the d(7Li,8Li)n reaction have been trapped and the electrons and alphas emitted in the ensuing beta-decay measured. The neutrino directions were therefore determined, which leads to a measurement of the electron-neutrino correlation. The energies and kinematics are such that a sensitive search for any tensor admixture could be performed and an upper limit of 0.6% was placed on any such admixture. Earlier work on the electromagnetic form factors of the proton was extended. Graduate students were active participants in all of these eperiments, which formed the basis for six PhD theses.

Segel, Ralph E. [Northwestern University

2013-11-08T23:59:59.000Z

447

Isotopic validation for PWR actinide-only burnup credit using Yankee Rowe data  

Science Conference Proceedings (OSTI)

Safety analyses of criticality control systems for transportation packages include an assumption that the spent nuclear fuel (SNF) loaded into the package is fresh or unirradiated. In other words, the spent fuel is assumed to have its original, as-manufactured U-235 isotopic content. The ``fresh fuel`` assumption is very conservative since the potential reactivity of the nuclear fuel is substantially reduced after being irradiated in the reactor core. The concept of taking credit for this reduction in nuclear fuel reactivity due to burnup of the fuel, instead of using the fresh fuel assumption in the criticality safety analysis, is referred to as ``Burnup Credit.`` Burnup credit uses the actual physical composition of the fuel and accounts for the net reduction of fissile material and the buildup of neutron absorbers in the fuel as it is irradiated. Neutron absorbers include actinides and other isotopes generated as a result of the fission process. Using only the change in actinide isotopes in the burnup credit criticality analysis is referred to as ``Actinide-Only Burnup Credit.`` The use of burnup credit in the design of criticality control systems enables more spent fuel to be placed in a package. Increased package capacity results in a reduced number of storage, shipping and disposal containers for a given number of SNF assemblies. Fewer shipments result in a lower risk of accidents associated with the handling and transportation of spent fuel, thus reducing both radiological and nonradiological risk to the public. This paper describes the modeling and the results of comparison between measured and calculated isotopic inventories for a selected number of samples taken from a Yankee Rowe spent fuel assembly.

NONE

1997-11-01T23:59:59.000Z

448

Alternative Fuels Data Center: Renewable Identification Numbers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Renewable Identification Numbers to someone by E-mail Share Alternative Fuels Data Center: Renewable Identification Numbers on Facebook Tweet about Alternative Fuels Data Center: Renewable Identification Numbers on Twitter Bookmark Alternative Fuels Data Center: Renewable Identification Numbers on Google Bookmark Alternative Fuels Data Center: Renewable Identification Numbers on Delicious Rank Alternative Fuels Data Center: Renewable Identification Numbers on Digg Find More places to share Alternative Fuels Data Center: Renewable Identification Numbers on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Identification Numbers RIN Format EPA uses the following format to determine RINs for each physical gallon of

449

Why is hydrogen's atomic number 1?  

NLE Websites -- All DOE Office Websites (Extended Search)

the number of protons in an atom's nucleus. Hydrogen's atomic number is 1 because all hydrogen atoms contain exactly one proton. Author: Steve Gagnon, Science Education Specialist...

450

Reference Number PCR Kit Name Manufacturer Kit ...  

Science Conference Proceedings (OSTI)

Page 1. Reference Number PCR Kit Name Manufacturer Kit Description 1 Profiler Life Technologies AmpFlSTR® Profiler® (Part number 403038) ...

2013-11-20T23:59:59.000Z

451

Middle-Late Permian mass extinction on land  

Science Conference Proceedings (OSTI)

The end-Permian mass extinction has been envisaged as the nadir of biodiversity decline due to increasing volcanic gas emissions over some 9 million years. We propose a different tempo and mechanism of extinction because we recognize two separate but geologically abrupt mass extinctions on land, one terminating the Middle Permian (Guadalupian) at 260.4 Ma and a later one ending the Permian Period at 251 Ma. Our evidence comes from new paleobotanical, paleopedological, and carbon isotopic studies of Portal Mountain, Antarctica, and comparable studies in the Karoo Basin, South Africa. Extinctions have long been apparent among marine invertebrates at both the end of the Guadalupian and end of the Permian, which were also times of warm-wet greenhouse climatic transients, marked soil erosion, transition from high- to low-sinuosity and braided streams, soil stagnation in wetlands, and profound negative carbon isotope anomalies. Both mass extinctions may have resulted from catastrophic methane outbursts to the atmosphere from coal intruded by feeder dikes to flood basalts, such as the end-Guadalupian Emeishan Basalt and end-Permian Siberian Traps.

Retallack, G.J.; Metzger, C.A.; Greaver, T.; Jahren, A.H.; Smith, R.M.H.; Sheldon, N.D. [University of Oregon, Eugene, OR (United States). Dept. of Geological Science

2006-11-15T23:59:59.000Z

452

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas and Isotopes Geochemistry, Kennedy, van Soest and Shevenell. During FY04, we concentrated on two primary projects. The first was a detailed study of helium isotope systematics throughout Dixie Valley and the inter-relationship between the Dixie Valley geothermal reservoir and local hydrology. The second is the construction of a helium isotope "map" of the

453

Method of preparing mercury with an arbitrary isotopic distribution  

DOE Patents (OSTI)

This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.

Grossman, M.W.; George, W.A.

1986-12-16T23:59:59.000Z

454

Method of preparing mercury with an arbitrary isotopic distribution  

DOE Patents (OSTI)

This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg.sub.2 Cl.sub.2, corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H.sub.2 O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H.sub.2 O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1986-01-01T23:59:59.000Z

455

Secondary Ion Mass Spectrometry of Environmental Aerosols  

Science Conference Proceedings (OSTI)

Atmospheric particles influence many aspects of climate, air quality and human health. Understanding the composition, chemistry and behavior of atmospheric aerosols is a key remaining challenge in improving climate models. Furthermore, particles may be traced back to a particular source based on composition, stable isotope ratios, or the presence of particular surface chemistries. Finally, the characterization of atmospheric particles in the workplace plays an important role in understanding the potential for exposure and environmental and human health effects to engineered and natural nanoscale particles. Secondary ion mass spectrometry (SIMS) is a useful tool in determining any of several aspects of the structure, composition and chemistry of these particles. Often used in conjunction with other surface analysis and electron microscopy methods, SIMS has been used to determine or confirm reactions on and in particles, the presence of particular organic species on the surface of atmospheric aerosols and several other interesting and relevant findings. Various versions of SIMS instruments – dynamic SIMS, time of flight secondary ion mass spectrometry or TOF-SIMS, nanoSIMS – have been used to determine specific aspects of aerosol structure and chemistry. This article describes the strengths of each type of SIMS instrument in the characterization of aerosols, along with guidance on sample preparation, specific characterization specific to the particular information sought in the analysis. Examples and guidance are given for each type of SIMS analysis.

Gaspar, Daniel J.; Cliff, John B.

2010-08-01T23:59:59.000Z

456

A mass-dependent beta-function  

E-Print Network (OSTI)

Threshold effects related to fermion masses are considered for an all-order beta-function based on a background field momentum subtraction scheme. Far away from all thresholds, the suggested beta-function reduces to the conjectured all-order form inspired by the Novikov-Shifman-Vainshtein-Zakharov beta-function of N=1 supersymmetric gauge theories with a fixed integer number of fermion flavours. At (formally) infinite masses the corresponding pure Yang--Mills beta-function is recovered. We discuss applications to the phase diagram of non-Abelian field theories.

Dietrich, Dennis D

2009-01-01T23:59:59.000Z

457

SCALE Validation Experience Using an Expanded Isotopic Assay Database for Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

The availability of measured isotopic assay data to validate computer code predictions of spent fuel compositions applied in burnup-credit criticality calculations is an essential component for bias and uncertainty determination in safety and licensing analyses. In recent years, as many countries move closer to implementing or expanding the use of burnup credit in criticality safety for licensing, there has been growing interest in acquiring additional high-quality assay data. The well-known open sources of assay data are viewed as potentially limiting for validating depletion calculations for burnup credit due to the relatively small number of isotopes measured (primarily actinides with relatively few fission products), sometimes large measurement uncertainties, incomplete documentation, and the limited burnup and enrichment range of the fuel samples. Oak Ridge National Laboratory (ORNL) recently initiated an extensive isotopic validation study that includes most of the public data archived in the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) electronic database, SFCOMPO, and new datasets obtained through participation in commercial experimental programs. To date, ORNL has analyzed approximately 120 different spent fuel samples from pressurized-water reactors that span a wide enrichment and burnup range and represent a broad class of assembly designs. The validation studies, completed using SCALE 5.1, are being used to support a technical basis for expanded implementation of burnup credit for spent fuel storage facilities, and other spent fuel analyses including radiation source term, dose assessment, decay heat, and waste repository safety analyses. This paper summarizes the isotopic assay data selected for this study, presents validation results obtained with SCALE 5.1, and discusses some of the challenges and experience associated with evaluating the results. Preliminary results obtained using SCALE 6 and ENDF/B-VII cross sections libraries are also briefly summarized. Oak Ridge National Laboratory (ORNL) has been performing spent-fuel isotopic validation studies using the depletion analysis methods in the SCALE [1] code system for the past 20 years. These studies involve comparisons of calculated inventories against measured isotopic composition data obtained from destructive radiochemical analysis of commercial spent nuclear fuel samples. The results of these benchmark studies are used to quantify the bias and uncertainties associated with isotopic calculations and ultimately determine appropriate margins for uncertainty that can be applied in safety-related analyses such as burnup credit in criticality calculations, decay heat analysis, and source terms. Previous studies using several versions of SCALE and nuclear data libraries have been published in multiple validation reports [2-6] that evaluate selected experimental data obtained largely from public sources. A study was recently initiated at ORNL with the objectives of updating and expanding the validation calculations using a comprehensive database of experimental isotopic assay data that includes isotopic composition data obtained from both publicly available sources and international commercial programs. As part of the study, an extensive isotopic database of nearly 120 measured spent fuel samples with an expanded range of initial enrichments and burnup values compared to previously analyzed data was reviewed and analyzed. The calculations were performed using two-dimensional (2-D) assembly models and a consistent set of modeling assumptions using the SCALE 5.1 code system and ENDF/B-V 44-group cross section library. As part of the current study, detailed benchmark modeling information and measurement data are being documented in a format that is readily usable for validating depletion and decay codes. The work is being extended to include analysis results using SCALE 6 and the ENDF/B-VII 238-group cross section library. This paper describes the isotopic composition data evaluated in this study and highlights the pre

Gauld, Ian C [ORNL; Radulescu, Georgeta [ORNL; Ilas, Germina [ORNL

2009-01-01T23:59:59.000Z

458

Number, Mass and Volume Distributions of Mineral Aerosol and Soils of the Sahara  

Science Conference Proceedings (OSTI)

A direct method will be described to determine the complete mineral size distribution in aerosol (xylene-insoluble component) and soils (water-insoluble component) covering a size range from 0.01 up to 100 ?m and 1000 ?m radius, respectively, by ...

Guillaume A. d'Almeida; Lothar Schütz

1983-02-01T23:59:59.000Z

459

Fission Yield Measurements by Inductively Coupled Plasma Mass-Spectrometry  

SciTech Connect

Correct prediction of the fission products inventory in irradiated nuclear fuels is essential for accurate estimation of fuel burnup, establishing proper requirements for spent fuel transportation and storage, materials accountability and nuclear forensics. Such prediction is impossible without accurate knowledge of neutron induced fission yields. Unfortunately, the accuracy of the fission yields reported in the ENDF/B-VII.0 library is not uniform across all of the data and much of the improvement is desired for certain isotopes and fission products. We discuss our measurements of cumulative fission yields in nuclear fuels irradiated in thermal and fast reactor spectra using Inductively Coupled Plasma Mass Spectrometry.

Irina Glagolenko; Bruce Hilton; Jeffrey Giglio; Daniel Cummings; Karl Grimm; Richard McKnight

2009-11-01T23:59:59.000Z

460

Giga-Dalton Mass Spectrometry  

Current techniques to study large bio?molecules using mass spectrometer require fragmentation for the mass?to?charge ratios to be within the working range of the mass spectrometer. Analysis of the data is complex and often requires simulation ...

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Number: 894 Description: How far is it ...  

Science Conference Proceedings (OSTI)

... Number: 1198 Description: When was Hiroshima bombed? ... 1264 Description: What is the atomic weight of ...

2002-04-29T23:59:59.000Z

462

Measuring the Effect of Fuel Chemical Structure on Particulate and Gaseous Emissions using Isotope Tracing  

DOE Green Energy (OSTI)

Using accelerator mass spectrometry (AMS), a technique initially developed for radiocarbon dating and recently applied to internal combustion engines, carbon atoms within specific fuel molecules can be labeled and followed in particulate or gaseous emissions. In addition to examining the effect of fuel chemical structure on emissions, the specific source of carbon for PM can be identified if an isotope label exists in the appropriate fuel source. Existing work has focused on diesel engines, but the samples (soot collected on quartz filters or combustion gases captured in bombs or bags) are readily collected from large industrial combustors as well.

Buchholz, B A; Mueller, C J; Martin, G C; Upatnicks, A; Dibble, R W; Cheng, S

2003-09-11T23:59:59.000Z

463

Beta-decay properties of Zr and Mo neutron-rich isotopes  

E-Print Network (OSTI)

Gamow-Teller strength distributions, beta-decay half-lives, and beta-delayed neutron emission are investigated in neutron-rich Zr and Mo isotopes within a deformed quasiparticle random-phase approximation. The approach is based on a self-consistent Skyrme Hartree-Fock mean field with pairing correlations and residual separable particle-hole and particle-particle forces. Comparison with recent measurements of half-lives stresses the important role that nuclear deformation plays in the description of beta-decay properties in this mass region.

Sarriguren, P

2010-01-01T23:59:59.000Z

464

Neutronics Modeling of the High Flux Isotope Reactor using COMSOL  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor located at the Oak Ridge National Laboratory is a versatile 85 MWth research reactor with cold and thermal neutron scattering, materials irradiation, isotope production, and neutron activation analysis capabilities. HFIR staff members are currently in the process of updating the thermal hydraulic and reactor transient modeling methodologies. COMSOL Multiphysics has been adopted for the thermal hydraulic analyses and has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. Modeling reactor transients is a challenging task because of the coupling of neutronics, heat transfer, and hydrodynamics. This paper presents a preliminary COMSOL-based neutronics study performed by creating a two-dimensional, two-group, diffusion neutronics model of HFIR to study the spatially-dependent, beginning-of-cycle fast and thermal neutron fluxes. The 238-group ENDF/B-VII neutron cross section library and NEWT, a two-dimensional, discrete-ordinates neutron transport code within the SCALE 6 code package, were used to calculate the two-group neutron cross sections required to solve the diffusion equations. The two-group diffusion equations were implemented in the COMSOL coefficient form PDE application mode and were solved via eigenvalue analysis using a direct (PARDISO) linear system solver. A COMSOL-provided adaptive mesh refinement algorithm was used to increase the number of elements in areas of largest numerical error to increase the accuracy of the solution. The flux distributions calculated by means of COMSOL/SCALE compare well with those calculated with benchmarked three-dimensional MCNP and KENO models, a necessary first step along the path to implementing two- and three-dimensional models of HFIR in COMSOL for the purpose of studying the spatial dependence of transient-induced behavior in the reactor core.

Chandler, David [ORNL; Primm, Trent [ORNL; Freels, James D [ORNL; Maldonado, G Ivan [ORNL

2011-01-01T23:59:59.000Z

465

EMSL: Capabilities: Mass Spectrometry Experts  

NLE Websites -- All DOE Office Websites (Extended Search)

Related EMSL User Projects Mass Spectrometry Tools are Applied to all Science Themes Next-Generation Mass Spectrometry Proteomics Research Resource for Integrative Biology...

466

Photon: history, mass, charge  

E-Print Network (OSTI)

The talk consists of three parts. ``History'' briefly describes the emergence and evolution of the concept of photon during the first two decades of the 20th century. ``Mass'' gives a short review of the literature on the upper limit of the photon's mass. ``Charge'' is a critical discussion of the existing interpretation of searches for photon charge. Schemes, in which all photons are charged, are grossly inconsistent. A model with three kinds of photons (positive, negative and neutral) seems at first sight to be more consistent, but turns out to have its own serious problems.

L. B. Okun

2006-02-03T23:59:59.000Z

467

Mass and Heat Recovery  

E-Print Network (OSTI)

In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building (air to air heat exchanger). In my papers I use (water to air heat exchanger) as a heat recovery and I use the water as a mass recovery. The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines.

Hindawai, S. M.

2010-01-01T23:59:59.000Z

468

Diffusional exchange of isotopes in a metal hydride sphere.  

DOE Green Energy (OSTI)

This report describes the Spherical Particle Exchange Model (SPEM), which simulates exchange of one hydrogen isotope by another hydrogen isotope in a spherical metal hydride particle. This is one of the fundamental physical processes during isotope exchange in a bed of spherical metal particles and is thus one of the key components in any comprehensive physics-based model of exchange. There are two important physical processes in the model. One is the entropy of mixing between the two isotopes; the entropy of mixing is increased by having both isotopes randomly placed at interstitial sites on the lattice and thus impedes the exchange process. The other physical process is the elastic interaction between isotope atoms on the lattice. The elastic interaction is the cause for {beta}-phase formation and is independent of the isotope species. In this report the coupled diffusion equations for two isotopes in the {beta}-phase hydride are solved. A key concept is that the diffusion of one isotope depends not only on its concentration gradient, but also on the concentration gradient of the other isotope. Diffusion rate constants and the chemical potentials for deuterium and hydrogen in the {beta}-phase hydride are reviewed because these quantities are essential for an accurate model of the diffusion process. Finally, a summary of some of the predictions from the SPEM model are provided.

Wolfer, Wilhelm G.; Hamilton, John C.; James, Scott Carlton

2011-04-01T23:59:59.000Z

469

Optically pumped isotopic ammonia laser system  

DOE Patents (OSTI)

An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

Buchwald, Melvin I. (Santa Fe, NM); Jones, Claude R. (Los Alamos, NM); Nelson, Leonard Y. (Seattle, WA)

1982-01-01T23:59:59.000Z

470

Hydrogen isotope separation utilizing bulk getters  

DOE Patents (OSTI)

Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

1991-01-01T23:59:59.000Z

471

Hydrogen isotope separation utilizing bulk getters  

DOE Patents (OSTI)

Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

1990-01-01T23:59:59.000Z

472

Hydrogen isotope separation utilizing bulk getters  

DOE Patents (OSTI)

Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

Knize, R.J.; Cecchi, J.L.

1991-08-20T23:59:59.000Z

473

A METHODOLOGY FOR DETERMINING THE DOSE RATE FOR BOUNDING MASS LIMITS IN A 9977 PACKAGING  

SciTech Connect

The Small Gram Quantity (SGQ) concept is based on the understanding that the hazards associated with the shipment of a radioactive material are directly proportional to its mass. This study describes a methodology that estimates the acceptable masses for several neutron and gamma emitting isotopes that can be shipped in a 9977 Package compliant with the Title 10 of the Code of Federal Regulations, Part 71 (10CFR71) external radiation level limits. 10CFR71.33 states that a shipping application identifies the radioactive and fissile materials at their maximum quantity and provides an evaluation demonstrating compliance with the external radiation standards. Since rather small amounts of some isotopes emit sufficiently strong radiation to produce a large external dose rate, quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. A methodology was established for determining the dose rate for bounding mass limits for a set of isotopes in the Model 9977 Shipping Package. Calculations were performed to estimate external radiation levels using the MCNP radiation transport code to develop a set of response multipliers (Green's functions) for 'dose per source particle' for each neutron and photon spectral group. The source spectrum from one gram of each isotope was folded with the response multipliers to generate the dose rate per gram of each isotope in the 9977 shipping package and its associated shielded containers. The maximum amount of a single isotope that could be shipped within the regulatory limits for dose rate at the surface was determined. For a package containing a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. Furthermore, the results of this analysis can be easily extended to additional radioisotopes by simply evaluating the neutron and/or photon spectra of those isotopes and folding the spectral data with the Green's functions provided.

Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

2012-05-24T23:59:59.000Z

474

Low-energy Coulomb excitation of neutron-rich zinc isotopes  

E-Print Network (OSTI)

At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,20) values in 74-80Zn, B(E2,42) values in 74,76Zn and the determination of the energy of the first excited 2 states in 78,80Zn. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of 238U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, i...

Van de Walle, J; Behrens, T; Bildstein, V; Blazhev, A; Cederkäll, J; Clément, E; Cocolios, T E; Davinson, T; Delahaye, P; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V; Fraile, L M; Franchoo, S; Gernhäuser, R; Georgiev, G; Habs, D; Heyde, K; Huber, G; Huyse, M; Ibrahim, F; Ivanov, O; Iwanicki, J; Jolie, J; Kester, O; Köster, U; Kröll, T; Krücken, R; Lauer, M; Lisetskiy, A F; Lutter, R; Marsh, B A; Mayet, P; Niedermaier, O; Pantea, M; Raabe, R; Reiter, P; Sawicka, M; Scheit, H; Schrieder, G; Schwalm, D; Seliverstov, M D; Sieber, T; Sletten, G; Smirnova, N; Stanoiu, M; Stefanescu, I; Thomas, J C; Valiente-Dobón, J J; Van Duppen, P; Verney, D; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Wolf, B H; Zielinska, M

2009-01-01T23:59:59.000Z

475

A Mass Spectrometry Study of Isotope Separation in the Laser Plume  

E-Print Network (OSTI)

Pakistan is exacerbated by concerns over both terrorist activity and the security of its rapidly increasing nuclear

Suen, Timothy Wu

2012-01-01T23:59:59.000Z

476

A Mass Spectrometry Study of Isotope Separation in the Laser Plume  

E-Print Network (OSTI)

Attribution and Non-Proliferation Applications”, IEEETreaty on the Non-Proliferation of Nuclear Weapons (NPT)”,as detailed in the Non-Proliferation Treaty (NPT), is to

Suen, Timothy Wu

2012-01-01T23:59:59.000Z

477

A Mass Spectrometry Study of Isotope Separation in the Laser Plume  

E-Print Network (OSTI)

Proliferation of Nuclear Weapons (NPT)”, http: //www.un.org/end of the Cold War, nuclear weapons remain at the heart ofthe spread of nuclear weapons, analysis of nuclear materials

Suen, Timothy Wu

2012-01-01T23:59:59.000Z

478

A Mass Spectrometry Study of Isotope Separation in the Laser Plume  

E-Print Network (OSTI)

as detailed in the Non-Proliferation Treaty (NPT), is toUnited Nations, “Treaty on the Non-Proliferation of Nuclear

Suen, Timothy Wu

2012-01-01T23:59:59.000Z

479

Mass and Lifetime Measurements in Storage Rings  

Science Conference Proceedings (OSTI)

Masses of nuclides covering a large area of the chart of nuclides can be measured in storage rings where many ions circulate at the same time. In this paper the recent progress in the analysis of Schottky mass spectrometry data is presented as well as the technical improvements leading to higher accuracy for isochronous mass measurements with a time-of-flight detector. The high sensitivity of the Schottky method down to single ions allows to measure lifetimes of nuclides by observing mother and daughter nucleus simultaneously. In this way we investigated the decay of bare and H-like 140Pr. As we could show the lifetime can be even shortened compared to those of atomic nuclei despite of a lower number of electrons available for internal conversion or electron capture.All these techniques will be implemented with further improvements at the storage rings of the new FAIR facility at GSI in the future.

Weick, H.; Beckert, K.; Beller, P.; Bosch, F.; Dimopoulou, C.; Kozhuharov, C.; Kurcewicz, J.; Mazzocco, M.; Nociforo, C.; Nolden, F.; Steck, M.; Sun, B.; Winkler, M. [Gesellschaft fuer Schwerionenforschung mbH, 64291 Darmstadt (Germany); Brandau, C.; Chen, L.; Geissel, H.; Knoebel, R.; Litvinov, S. A.; Litvinov, Yu. A.; Scheidenberger, C. [Gesellschaft fuer Schwerionenforschung mbH, 64291 Darmstadt (Germany); II. Phys. Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany)] (and others)

2007-05-22T23:59:59.000Z

480

Warm Water Mass Formation  

Science Conference Proceedings (OSTI)

Poleward heat transport by the own implies warm Water mass formation, i.e., the retention by the tropical and subtropical ocean of some of its net radiant heat gain. Under what condition net heat retention becomes comparable to latent heat ...

G. T. Csanady

1984-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "isotopes mass number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


First Page Previous Page 1 2 3 4 5 6 7 8 9