Powered by Deep Web Technologies
Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

from Isotope Production Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium - 2 - 2:32 Isotope cancer...

2

Supplement Analysis for the Programmatic Environmental Impact Statement (PEIS) for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, (DOE/EIS-0310-SA-01) (08/05/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0-SA-01 0-SA-01 Supplement Analysis for the Programmatic Environmental Impact Statement (PEIS) for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility Introduction and Background The Department of Energy (DOE), pursuant to the National Environmental Policy Act (NEPA), issued the Final PEIS for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility (Nuclear Infrastructure (NI) PEIS, DOE/EIS-0310) in December 2000. Under the Authority of the Atomic Energy Act of 1954, the DOE's missions include: (1) producing isotopes for research and applications

3

Record of Decision for the Programmatic Environmental Impact Statement for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the U.S. (DOE/EIS-0310) (1/26/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

77 77 Federal Register / Vol. 66, No. 18 / Friday, January 26, 2001 / Notices DEPARTMENT OF ENERGY Record of Decision for the Programmatic Environmental Impact Statement for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility AGENCY: Department of Energy (the Department). ACTION: Record of Decision (ROD). SUMMARY: Under the authority of the Atomic Energy Act of 1954, the Department's missions include: (1) Producing isotopes for research and applications in medicine and industry; (2) meeting nuclear material needs of other Federal agencies; and (3) conducting research and development activities for civilian use of nuclear power. The Department has evaluated

4

Isotopes: Isotope Production, Medical IsotopesOffice of Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Managers Put a short description of the graphic or its primary message here Isotope Production and Applications The Los Alamos National Laboratory has produced radioactive...

5

Strategic Isotope Production | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Isotope Production SHARE Strategic Isotope Production ORNL's unique facilities at the High Flux Isotope Reactor (HFIR), Radiochemical Engineering Development Center...

6

NNSA Works to Minimize the use of HEU in Medical Isotope Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Works to Minimize the use of HEU in Medical Isotope Production | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

7

NIDC: Online Catalog of Isotope Products Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalog of Isotope Products Please select an option below. PRODUCTS VIEWING Select using PERIODIC TABLE or NUCLIDE CHART or LIST SEARCHING SEARCH for a Product REQUESTING REQUEST a...

8

Isotope Development & Production | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Radioisotope Radiochemical Separation & Processing Strategic Isotope Production Super Heavy Element Discovery Nuclear Security Science & Technology Nuclear Systems...

9

Selenide isotope generator for the Galileo Mission. Program final report  

SciTech Connect

This final report for the Selenide Isotope Generator for the Galileo Mission (SIG/GM) documents the work performed by Teledyne Energy Systems (TES) under US Department of Energy (DOE) Contract No. DE-AC01-78ET33009 (formerly ET-78-C-01-2865) during the period April 10, 1978 to June 30, 1979. Because of technical difficulties with the thermoelectric converter being developed by the 3M Company under separate DOE contract, a Stop Work Order, dated January 29, 1979, was issued by DOE. The TES effort up to the receipt of the Stop Work Order as well as limited technical activities up to the contract conclusion on June 30, 1979 are reported.

1979-06-01T23:59:59.000Z

10

Isotope production facility produces cancer-fighting actinium  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major...

11

Strategic Isotope Production | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Isotope Strategic Isotope Production SHARE Strategic Isotope Production Typical capsules used in the transport of 252Cf source material inside heavily shielded shipping casks. ORNL's unique facilities at the High Flux Isotope Reactor (HFIR), Radiochemical Engineering Development Center (REDC), Irradiated Fuels Examination Laboratory (IFEL), and Irradiated Materials Examination Testing facility (IMET) are routinely used in the production, purification, packaging, and shipping of a number of isotopes of national importance, including: 75Se, 63Ni, 238Pu, 252Cf, and others. The intense neutron flux of the HFIR (2.0 x 1015 neutrons/cm²·s) permits the rapid formation of such isotopes. These highly irradiated materials are then processed and packaged for shipping using the facilities at the REDC, IFEL, and IMET.

12

EIS-0249: Medical Isotopes Production Project | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

49: Medical Isotopes Production Project EIS-0249: Medical Isotopes Production Project Summary This EIS evaluates the potential environmental impacts of a proposal to establish a...

13

Isotope Production and Distribution Program`s Fiscal Year 1997 financial statement audit  

SciTech Connect

The Department of Energy Isotope Production and Distribution Program mission is to serve the national need for a reliable supply of isotope products and services for medicine, industry and research. The program produces and sells hundreds of stable and radioactive isotopes that are widely utilized by domestic and international customers. Isotopes are produced only where there is no U.S. private sector capability or other production capacity is insufficient to meet U.S. needs. The Department encourages private sector investment in new isotope production ventures and will sell or lease its existing facilities and inventories for commercial purposes. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund established by the Fiscal Year (FY) 1990 Energy and Water Appropriations Act and maintains financial viability by earning revenues from the sale of isotopes and services and through annual appropriations. The FY 1995 Energy and Water Appropriations Act modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Although the Isotope Program functions as a business, prices set for small-volume, high-cost isotopes that are needed for research purposes may not achieve full-cost recovery. As a result, isotopes produced by the Isotope Program for research and development are priced to provide a reasonable return to the U.S. Government without discouraging their use. Commercial isotopes are sold on a cost-recovery basis. Because of its pricing structure, when selecting isotopes for production, the Isotope Program must constantly balance current isotope demand, market conditions, and societal benefits with its determination to operate at the lowest possible cost to U.S. taxpayers. Thus, this report provides a financial analysis of this situation.

1998-03-27T23:59:59.000Z

14

Selenide isotope generator for the Galileo mission. Reliability program plan  

DOE Green Energy (OSTI)

The reliability program plan for the Selenide Isotope Generator (SIG) program is presented. It delineates the specific tasks that will be accomplished by Teledyne Energy Systems and its suppliers during design, development, fabrication and test of deliverable Radioisotopic Thermoelectric Generators (RTG), Electrical Heated Thermoelectric Generators (ETG) and associated Ground Support Equipment (GSE). The Plan is formulated in general accordance with procedures specified in DOE Reliability Engineering Program Requirements Publication No. SNS-2, dated June 17, 1974. The Reliability Program Plan presented herein defines the total reliability effort without further reference to Government Specifications. The reliability tasks to be accomplished are delineated herein and become the basis for contract compliance to the extent specified in the SIG contract Statement of Work.

Not Available

1978-10-01T23:59:59.000Z

15

NIDC: Online Catalog of Isotope Products | Product List  

NLE Websites -- All DOE Office Websites (Extended Search)

List List Please select an available isotope product from the lists below. If you would like an isotope product that is not listed, you can make a request by clicking here. Stable Isotope Products Radio-Isotope Products Antimony Argon (Alt) Barium Bromine Bromine (Alt) Cadmium Calcium Carbon (Alt) Cerium Chlorine Chlorine (Alt) Chromium Copper Dysprosium Erbium Europium Gadolinium Gallium Germanium Hafnium Helium (Alt) Indium Iridium Iron Krypton (Alt) Lanthanum Lead Lithium Lutetium Magnesium Mercury Molybdenum Neodymium Neon (Alt) Nickel Nitrogen (Alt) Osmium Oxygen (Alt) Palladium Platinum Potassium Rhenium Rubidium Ruthenium Samarium Selenium Silicon Silver Strontium Sulfur Sulfur (Alt) Tantalum Tellurium Thallium Tin Titanium Tungsten Vanadium Xenon (Alt) Ytterbium Zinc Zirconium Actinium-225 Aluminum-26 Americium-241

16

Lunar lander propellant production for a multiple site exploration mission  

E-Print Network (OSTI)

A model has been developed to analyze the benefit of utilizing a processing plant architecture so that a lunar oxygen production demonstration mission can also provide a significant exploration and scientific return. This ...

Neubert, Joshua, 1981-

2004-01-01T23:59:59.000Z

17

ISOTOPES  

E-Print Network (OSTI)

Theory of Isotope Separation as Applied to the Large~scale Production of 235 u National Nuclear Energy

Lederer, C. Michael

2013-01-01T23:59:59.000Z

18

Final Report, NEAC Subcommittee for Isotope Research & Production Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report, NEAC Subcommittee for Isotope Research & Production Final Report, NEAC Subcommittee for Isotope Research & Production Planning Final Report, NEAC Subcommittee for Isotope Research & Production Planning Isotopes, including both radioactive and stable isotopes, make important contributions to research, medicine, and industry in the United States and throughout the world. For nearly fifty years, the Department of Energy (DOE) has actively promoted the use of isotopes by funding (a) production of isotopes at a number of national laboratories with unique nuclear reactors or particle accelerators, (b) nuclear medicine research at the laboratories and in academia, (c) research into industrial applications of isotopes, and (d) research into isotope production and processing methods. The radio- pharmaceutical and radiopharmacy industries have their origin in

19

Mission  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Accomplishments NETL Accomplishments - the lab 2 Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. Message from the Director NETL: The First 100 Years 4 6 3 Contents Advanced Power Systems Gasification Switching to Switchgrass: Using Biomass to Reduce Greenhouse Gas Emissions Hydrogen Fuel Cells Turbines Advanced Combustion Materials Meeting the Challenge: NETL's Materials Capabilities Clean Energy Carbon Capture Carbon Storage Carbon Sequestration Partnerships Demand-Side Efficiency Air, Water, Land Computational Sciences: It's a Virtual World Reliable Supply Energy Infrastructure Methane Hydrates Natural Gas and Oil Production Rocking at the Extreme Drilling Laboratory Science & Technology Leadership

20

Mission  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission Mission Mission LANL's mission is to develop and apply science and technology to ensure the safety, security, and effectiveness of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. April 12, 2012 Radio telescope, Los Alamos National Laboratory New Mexico sunset behind an 82-foot-diameter radio telescope at Los Alamos National Laboratory (Technical Area 33) - one of 10 in the Very Long Baseline Array spanning 5,351 miles. Contact Operator Los Alamos National Laboratory (505) 667-5061 Our mission: to provide early identification, creative maturation, and timely delivery of scientifically robust solutions to the most urgent and technically challenging security issues facing the nation. LANL Mission

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Small-Scale Reactor for the Production of Medical Isotopes  

Small-Scale Reactor for the Production of Medical Isotopes IP Home; Search/Browse Technology ... Drawing upon proven technology with minimal research effort required;

22

Mission  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission Mission /about/_assets/images/icon-70th.jpg Mission LANL's mission is to develop and apply science and technology to ensure the safety, security, and effectiveness of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Nuclear Deterrence» Global Security» Mission» Energy Security» Vision & Values» Goals» Cibola satellite Scientist, Daniel Seitz, works on the Cibola satellite at LANL. Cibola is part of the U.S. Department of Defense Space Test Program. It was designed to prove that off-the-shelf computer processors called field-programmable gate arrays can be used for supercomputing in space. The processors can be reconfigured while the satellite is in orbit, enabling researchers to modify them for different tasks, such as studying lightning, disturbances

23

Isotope Development & Production for Research and Applications (IDPRA) |  

NLE Websites -- All DOE Office Websites (Extended Search)

Research » Isotope Research » Isotope Development & Production for Research and Applications (IDPRA) Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Research Isotope Development & Production for Research and Applications (IDPRA) Print Text Size: A A A RSS Feeds FeedbackShare Page The Isotope subprogram supports the production, and the development of production techniques of radioactive and stable isotopes that are in short supply for research and applications. Isotopes are high-priority

24

Cancer-fighting treatment gets boost from Isotope Production Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Cancer-fighting treatment gets boost from Isotope Production Facility Cancer-fighting treatment gets boost from Isotope Production Facility New capability expands existing program, creates treatment product in quantity. April 13, 2012 Medical Isotope Work Moves Cancer Treatment Agent Forward Medical Isotope Work Moves Cancer Treatment Agent Forward - Los Alamos scientist Meiring Nortier holds a thorium foil test target for the proof-of-concept production experiments. Research indicates that it will be possible to match current annual, worldwide production of Ac-225 in just two to five days of operations using the accelerator at Los Alamos and analogous facilities at Brookhaven. Alpha particles are energetic enough to destroy cancer cells but are unlikely to move beyond a tightly controlled target region and destroy

25

Mission  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Energy Department is to ensure Americas security andprosperity by addressing its energy, environmental and nuclear challenges throughtransformative science and...

26

Mission  

Energy.gov (U.S. Department of Energy (DOE))

Our mission is to remove environmental legacies resulting from more than 60 years nuclear weapons development and government-sponsored nuclear energy research. Each of Oak Ridges three...

27

ISOTOPIC MASS FRACTIONATION OF SOLAR WIND: EVIDENCE FROM FAST AND SLOW SOLAR WIND COLLECTED BY THE GENESIS MISSION  

Science Conference Proceedings (OSTI)

NASA's Genesis space mission returned samples of solar wind collected over {approx}2.3 years. We present elemental and isotopic compositions of He, Ne, and Ar analyzed in diamond-like carbon targets from the slow and fast solar wind collectors to investigate isotopic fractionation processes during solar wind formation. The solar wind provides information on the isotopic composition for most volatile elements for the solar atmosphere, the bulk Sun and hence, on the solar nebula from which it formed 4.6 Ga ago. Our data reveal a heavy isotope depletion in the slow solar wind compared to the fast wind composition by 63.1 {+-} 2.1 per mille for He, 4.2 {+-} 0.5 per mille amu{sup -1} for Ne and 2.6 {+-} 0.5 per mille amu{sup -1} for Ar. The three Ne isotopes suggest that isotopic fractionation processes between fast and slow solar wind are mass dependent. The He/H ratios of the collected slow and fast solar wind samples are 0.0344 and 0.0406, respectively. The inefficient Coulomb drag model reproduces the measured isotopic fractionation between fast and slow wind. Therefore, we apply this model to infer the photospheric isotopic composition of He, Ne, and Ar from our solar wind data. We also compare the isotopic composition of oxygen and nitrogen measured in the solar wind with values of early solar system condensates, probably representing solar nebula composition. We interpret the differences between these samples as being due to isotopic fractionation during solar wind formation. For both elements, the magnitude and sign of the observed differences are in good agreement with the values predicted by the inefficient Coulomb drag model.

Heber, Veronika S.; Baur, Heinrich; Wieler, Rainer [Institute for Geochemistry and Petrology, ETH Zurich, Clausiusstrasse 25, CH-8092 Zurich (Switzerland); Bochsler, Peter [Physikalisches Institut, Universitaet Bern, Sidlerstasse 5, CH-3012 Bern (Switzerland); McKeegan, Kevin D. [Department of Earth and Space Sciences, University of California Los Angeles, 595 Charles Young Drive East, Box 951567, Los Angeles, CA 90095-1567 (United States); Neugebauer, Marcia [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092 (United States); Reisenfeld, Daniel B. [Department of Physics and Astronomy, University of Montana, Missoula, MT 59812 (United States); Wiens, Roger C., E-mail: heber@ess.ucla.edu [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2012-11-10T23:59:59.000Z

28

Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility.  

SciTech Connect

Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,{gamma}), (n,2n), (n,p), and ({gamma},n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. For the nuclides with a very high capture microscopic cross section, such as iridium, rhenium, and samarium, their specific activities are reduced by a factor of 30 when the self-shielding effect is included. Four irradiation locations were considered in the analyses to maximize the medical isotope production rate. The results show the self-shield effect reduces the specific activity values and changes the irradiation location for obtaining the maximum possible specific activity. The axial and radial distributions of the specific activity were used to define the irradiation sample size for producing each isotope.

Talamo, A.; Gohar, Y.; Nuclear Engineering Division

2007-05-15T23:59:59.000Z

29

Domestic production of medical isotope Mo-99 moves a step closer  

NLE Websites -- All DOE Office Websites (Extended Search)

Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 moves a step closer Irradiated uranium fuel has been recycled and reused for molybdenum-99...

30

Selenide isotope generator for the Galileo mission. Quality assurance program plan  

DOE Green Energy (OSTI)

This Quality Program Plan has been prepared to describe the quality activities associated with the development, production, test and delivery of hardware for the Selenide Isotope Generator Program. The objective of the Quality Program Plan is to establish and maintain an effective and economical quality assurance system to assure that end items are in accordance with contractural specifications. Section I.9 of Appendix A (Statement of Work) states: The Contractor shall prepare, implement and maintain a Quality Assurance program in accordance with a DOE approved Quality Assurance Program Plan which, for purposes of this contract, the parties agree represent a modified compliance with the latest requirements of the latest NRA-1 in effect at the time of the contract issuance. NRA-1 sets forth general requirements for quality assurance programs covering a wide variety of nuclear systems and is sufficiently expansive in scope to outline the quality activities of a broad range of contractural efforts. This Quality Assurance Program Plan, including the individual Quality Directives (Quality Procedures referenced in various Quality Directives provide only historical foundations of Quality Policy and as such are not relevant to the specifics of this plan.) attached in Appendix I, defines the quality activities that are to be accomplished under the current contractural work effort. The extent to which this Plan provides activity to accomplish the major intent of each section of NRA-1 is summarized in Table 1. NRA-1 however, provides only the skeletal foundation for the plan and it should not be construed that sections or portions not explicitly quoted are implied. The Plan will function as an independent and self-supportative document.

Not Available

1978-08-01T23:59:59.000Z

31

Oak Ridge Isotope Production Cyclotron Facility and Target Handling  

SciTech Connect

Abstract The Nuclear Science Advisory Committee issued in August 2009 an Isotopes Subcommittee report that recommended the construction and operation of a variable-energy, high-current, multiparticle accelerator for producing medical radioisotopes. To meet the needs identified in the report, Oak Ridge National Laboratory is developing a technical concept for a commercial 70 MeV dual-port-extraction, multiparticle cyclotron to be located at the Holifield Radioactive Ion Beam Facility. The conceptual design of the isotope production facility as envisioned would provide two types of targets for use with this new cyclotron. One is a high-power target cooled by water circulating on both sides, and the other is a commercial target cooled only on one side. The isotope facility concept includes an isotope target vault for target irradiation and a shielded transfer station for radioactive target handling. The targets are irradiated in the isotope target vault. The irradiated targets are removed from the target vault and packaged in an adjoining shielded transfer station before being sent out for postprocessing. This paper describes the conceptual design of the target-handling capabilities required for dealing with these radioactive targets and for minimizing the contamination potential during operations.

Bradley, Eric Craig [ORNL; Varma, Venugopal Koikal [ORNL; Egle, Brian [ORNL; Binder, Jeffrey L [ORNL; Mirzadeh, Saed [ORNL; Tatum, B Alan [ORNL; Burgess, Thomas W [ORNL; Devore, Joe [Oak Ridge National Laboratory (ORNL); Rennich, Mark [Oak Ridge National Laboratory (ORNL); Saltmarsh, Michael John [ORNL; Caldwell, Benjamin Cale [Oak Ridge National Laboratory (ORNL)

2011-01-01T23:59:59.000Z

32

Computer Study of Isotope Production in High Power Accelerators  

E-Print Network (OSTI)

Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

Van Riper, K A; Wilson, W B

1999-01-01T23:59:59.000Z

33

Computer Study of Isotope Production in High Power Accelerators  

E-Print Network (OSTI)

Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

K. A. Van Riper; S. G. Mashnik; W. B. Wilson

1999-01-25T23:59:59.000Z

34

Scoping assessment on medical isotope production at the Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

The Scoping Assessment addresses the need for medical isotope production and the capability of the Fast Flux Test Facility to provide such isotopes. Included in the discussion are types of isotopes used in radiopharmaceuticals, which types of cancers are targets, and in what way isotopes provide treatment and/or pain relief for patients.

Scott, S.W.

1997-08-29T23:59:59.000Z

35

NIDC: Online Catalog of Isotope Products | Request a New Product  

NLE Websites -- All DOE Office Websites (Extended Search)

Request a New Product Request a New Product Step 1 - Enter the new product's criteria below. Element Name Actinium Aluminum Americium Antimony Argon Arsenic Astatine Barium Berkelium Beryllium Bismuth Bohrium Boron Bromine Cadmium Caesium Calcium Californium Carbon Cerium Chlorine Chromium Cobalt Copernicium Copper Curium Darmstadtium Dubnium Dysprosium Einsteinium Erbium Europium Fermium Fluorine Francium Gadolinium Gallium Germanium Gold Hafnium Hassium Helium Holmium Hydrogen Indium Iodine Iridium Iron Krypton Lanthanum Lawrencium Lead Lithium Lutetium Magnesium Manganese Meitnerium Mendelevium Mercury Molybdenum Neodymium Neon Neptunium Nickel Niobium Nitrogen Nobelium Osmium Oxygen Palladium Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Promethium Protactinium Radium Radon Rhenium Rhodium Roentgenium Rubidium Ruthenium Rutherfordium Samarium Scandium Seaborgium Selenium Silicon Silver Sodium Strontium Sulfur Tantalum Technetium Tellurium Terbium Thallium Thorium Thulium Tin Titanium Tungsten Ununhexium Ununoctium Ununpentium Ununquadium Ununseptium Ununtrium Uranium Vanadium Xenon Ytterbium Yttrium Zinc Zirconium

36

NIDC: Online Catalog of Isotope Products | Product Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Product Search Product Search Step 1 - Enter your search criteria below. Element Name Actinium Aluminum Americium Antimony Argon Arsenic Astatine Barium Berkelium Beryllium Bismuth Bohrium Boron Bromine Cadmium Caesium Calcium Californium Carbon Cerium Chlorine Chromium Cobalt Copernicium Copper Curium Darmstadtium Dubnium Dysprosium Einsteinium Erbium Europium Fermium Fluorine Francium Gadolinium Gallium Germanium Gold Hafnium Hassium Helium Holmium Hydrogen Indium Iodine Iridium Iron Krypton Lanthanum Lawrencium Lead Lithium Lutetium Magnesium Manganese Meitnerium Mendelevium Mercury Molybdenum Neodymium Neon Neptunium Nickel Niobium Nitrogen Nobelium Osmium Oxygen Palladium Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Promethium Protactinium Radium Radon Rhenium Rhodium Roentgenium Rubidium Ruthenium Rutherfordium Samarium Scandium Seaborgium Selenium Silicon Silver Sodium Strontium Sulfur Tantalum Technetium Tellurium Terbium Thallium Thorium Thulium Tin Titanium Tungsten Ununhexium Ununoctium Ununpentium Ununquadium Ununseptium Ununtrium Uranium Vanadium Xenon Ytterbium Yttrium Zinc Zirconium

37

Selenide isotope generator for the Galileo Mission. Axially-grooved heat pipe: accelerated life test results  

SciTech Connect

The results through SIG/Galileo contract close-out of accelerated life testing performed from June 1978 to June 1979 on axially-grooved, copper/water heat pipes are presented. The primary objective of the test was to determine the expected lifetime of axially-grooved copper/water heat pipes. The heat pipe failure rate, due to either a leak or a build-up of non-condensible gas, was determined. The secondary objective of the test was to determine the effects of time and temperature on the thermal performance parameters relevant to long-term (> 50,000 h) operation on a space power generator. The results showed that the gas generation rate appears to be constant with time after an initial sharp rise although there are indications that it drops to approximately zero beyond approx. 2000 h. During the life test, the following pipe-hours were accumulated: 159,000 at 125/sup 0/C, 54,000 at 165/sup 0/C, 48,000 at 185/sup 0/C, and 8500 at 225/sup 0/C. Heated hours per pipe ranged from 1000 to 7500 with an average of 4720. Applying calculated acceleration factors yields the equivalent of 930,000 pipe-h at 125/sup 0/C. Including the accelerated hours on vendor tested pipes raises this number to 1,430,000 pipe-hours at 125/sup 0/C. It was concluded that, for a heat pipe temperature of 125/sup 0/C and a mission time of 50,000 h, the demonstrated heat pipe reliability is between 80% (based on 159,000 actual pipe-h at 125/sup 0/C) and 98% (based on 1,430,000 accelerated pipe-h at 125/sup 0/C). Measurements indicate some degradation of heat transfer with time, but no detectable degradation of heat transport. (LCL)

1979-08-01T23:59:59.000Z

38

Method for production of an isotopically enriched compound  

Science Conference Proceedings (OSTI)

A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.

Watrous, Matthew G.

2012-12-11T23:59:59.000Z

39

Small-Scale Reactor for the Production of Medical Isotopes ...  

Currently, there is a severe worldwide shortage of medical isotopes-specifically Molybdenum 99 (Mo-99) which is essential in cancer treatment, ...

40

Isotope production and distribution Programs Fiscal Year (FY) 1995 Financial Statement Audit (ER-FC-96-01)  

SciTech Connect

The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium and deuterium, and related isotope services. Services provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund, as established by the Fiscal Year 1990 Energy and Water Appropriations Act (Public Law 101-101). The Fiscal Year 1995 Appropriations Act (Public Law 103-316) modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Prices set for small-volume, high-cost isotopes that are needed for research may not achieve full-cost recovery. Isotope Program costs are financed by revenues from the sale of isotopes and associated services and through payments from the isotope support decision unit, which was established in the DOE fiscal year 1995 Energy, Supply, Research, and Development appropriation. The isotope decision unit finances the production and processing of unprofitable isotopes that are vital to the national interest.

1996-02-12T23:59:59.000Z

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Feasibility study of medical isotope production at Sandia National Laboratories  

Science Conference Proceedings (OSTI)

In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for {sup 99}Mo, the parent of {sup 99m}Tc, in the event of an interruption in the current Canadian supply. {sup 99m}Tc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for {sup 99}Mo and to identify and examine all issues with potential for environmental impact.

Massey, C.D.; Miller, D.L.; Carson, S.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Regulatory Assessment Dept.] [and others

1995-12-01T23:59:59.000Z

42

Isotope Production and Distribution Program. Financial statements, September 30, 1994 and 1993  

SciTech Connect

The attached report presents the results of the independent certified public accountants` audit of the Isotope Production and Distribution (IP&D) Program`s financial statements as of September 30, 1994. The auditors have expressed an unqualified opinion on IP&D`s 1994 statements. Their reports on IP&D`s internal control structure and on compliance with laws,and regulations are also provided. The charter of the Isotope Program covers the production and sale of radioactive and stable isotopes, byproducts, and related isotope services. Prior to October 1, 1989, the Program was subsidized by the Department of Energy through a combination of appropriated funds and isotope sales revenue. The Fiscal Year 1990 Appropriations Act, Public Law 101-101, authorized a separate Isotope Revolving Fund account for the Program, which was to support itself solely from the proceeds of isotope sales. The initial capitalization was about $16 million plus the value of the isotope assets in inventory or on loan for research and the unexpended appropriation available at the close of FY 1989. During late FY 1994, Public Law 103--316 restructured the Program to provide for supplemental appropriations to cover costs which are impractical to incorporate into the selling price of isotopes. Additional information about the Program is provided in the notes to the financial statements.

Marwick, P.

1994-11-30T23:59:59.000Z

43

Light Weight Radioisotopic Heater Unit (LWRHU) production for the Galileo Mission  

SciTech Connect

The Light Weight Radioisotopic Heater Unit (LWRHU) is a /sup 238/PuO/sub 2)minus/ fueled heat source designed to provide a thermal watt of power for space missions. The LWRHU will be used to maintain the temperature of various components on the spcaecraft at the required level. The heat source consists of a /sup 238/PuO/sub 2/ fuel pellet, a Pt-30Rh capsule, a pyrolytic graphite insulator, and a woven graphite aeroshell assembly. Los Alamos National Laboratory (LANL) has fabricated 134 heater units which will be used on the Galileo Mission. This report summarizes the specifications, fabrication processes, and production data for the heat sources fabricated at LANL. 4 figs., 15 tabs

Rinehart, G.H.

1988-04-01T23:59:59.000Z

44

The HIgh Flux Isotope Reactor: Past, Present, and Future  

Science Conference Proceedings (OSTI)

HFIR construction began in 1965 and completed in 1966. During the first 15 years of operation, the heavy actinide isotope production mission was dominant. HFIR is now positioned as one of the most versataile research reactors in the world.

Beierschmitt, Kelly J [ORNL; Farrar, Mike B [ORNL

2009-01-01T23:59:59.000Z

45

Domestic production of medical isotope Mo-99 moves a step closer  

NLE Websites -- All DOE Office Websites (Extended Search)

Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 moves a step closer Irradiated uranium fuel has been recycled and reused for molybdenum-99 (Mo-99) production, with virtually no losses in Mo-99 yields or uranium recovery. May 13, 2013 From left, Los Alamos scientists Roy Copping, Sean Reilly, and Daniel Rios. Copping examines the Buchi Multivapor P-12 Evaporator, and Reilly and Rios are at the Agilent Technologies Cary 60 UV-Vis Spectrometer. From left, Los Alamos scientists Sean Reilly, Roy Copping, and Daniel Rios. Sean is looking at the Buchi Multivapor P-12 Evaporator, and Roy and Daniel are at the Agilent Technologies Cary 60 UV-Vis Spectrometer. Contact Nancy Ambrosiano Communications Office (505) 667-0471

46

Studies of Plutonium-238 Production at the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) is a versatile 85 MW{sub th}, pressurized, light water-cooled and -moderated research reactor. The core consists of two fuel elements, an inner fuel element (IFE) and an outer fuel element (OFE), each constructed of involute fuel plates containing high-enriched-uranium (HEU) fuel ({approx}93 wt% {sup 235}U/U) in the form of U{sub 3}O{sub 8} in an Al matrix and encapsulated in Al-6061 clad. An over-moderated flux trap is located in the center of the core, a large beryllium reflector is located on the outside of the core, and two control elements (CE) are located between the fuel and the reflector. The flux trap and reflector house numerous experimental facilities which are used for isotope production, material irradiation, and cold/thermal neutron scattering. Over the past five decades, the US Department of Energy (DOE) and its agencies have been producing radioisotope power systems used by the National Aeronautics and Space Administration (NASA) for unmanned, long-term space exploration missions. Plutonium-238 is used to power Radioisotope Thermoelectric Generators (RTG) because it has a very long half-life (t{sub 1/2} {approx} 89 yr.) and it generates about 0.5 watts/gram when it decays via alpha emission. Due to the recent shortage and uncertainty of future production, the DOE has proposed a plan to the US Congress to produce {sup 238}Pu by irradiating {sup 237}Np as early as in fiscal year 2011. An annual production rate of 1.5 to 2.0 kg of {sup 238}Pu is expected to satisfy these needs and could be produced in existing national nuclear facilities like HFIR and the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Reactors at the Savannah River Site were used in the past for {sup 238}Pu production but were shut down after the last production in 1988. The nation's {sup 237}Np inventory is currently stored at INL. A plan for producing {sup 238}Pu at US research reactor facilities such as the High Flux Isotope Reactor at ORNL has been initiated by the US DOE and NASA for space exploration needs. Two Monte Carlo-based depletion codes, TRITON (ORNL) and VESTA (IRSN), were used to study the {sup 238}Pu production rates with varying target configurations in a typical HFIR fuel cycle. Preliminary studies have shown that approximately 11 grams and within 15 to 17 grams of {sup 238}Pu could be produced in the first irradiation cycle in one small and one large VXF facility, respectively, when irradiating fresh target arrays as those herein described. Important to note is that in this study we discovered that small differences in assumptions could affect the production rates of Pu-238 observed. The exact flux at a specific target location can have a significant impact upon production, so any differences in how the control elements are modeled as a function of exposure, will also cause differences in production rates. In fact, the surface plot of the large VXF target Pu-238 production shown in Figure 3 illustrates that the pins closest to the core can potentially have production rates as high as 3 times those of pins away from the core, thus implying that a cycle-to-cycle rotation of the targets may be well advised. A methodology for generating spatially-dependent, multi-group self-shielded cross sections and flux files with the KENO and CENTRM codes has been created so that standalone ORIGEN-S inputs can be quickly constructed to perform a variety of {sup 238}Pu production scenarios, i.e. combinations of the number of arrays loaded and the number of irradiation cycles. The studies herein shown with VESTA and TRITON/KENO will be used to benchmark the standalone ORIGEN.

Lastres, Oscar [University of Tennessee, Knoxville (UTK); Chandler, David [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Jarrell, Joshua J [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

47

Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2009 Balance Sheet Audit, OAS-FS-12-08  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy's Isotope Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2009 Balance Sheet OAS-FS-12-08 March 2012 ISOTOPE DEVELOPMENT AND PRODUCTION FOR RESEARCH AND APPLICATIONS PROGRAM Fiscal Year 2009 Annual Report and Balance Sheet September 30, 2009 i UNITED STATES DEPARTMENT OF ENERGY ISOTOPE DEVELOPMENT AND PRODUCTION FOR RESEARCH AND APPLICATIONS PROGRAM Fiscal Year 2009 Annual Report and Balance Sheet Table of Contents Page Management's Discussion and Analysis 1 Isotope Program Overview 2 Isotope Program Funding 4 Isotope Program Performance 5 Financial Performance 6 Management Challenges and Significant Issues 7 Balance Sheet Limitations 7

48

Homogeneous fast-flux isotope-production reactor  

DOE Patents (OSTI)

A method is described for producing tritium in a liquid metal fast breeder reactor. Lithium target material is dissolved in the liquid metal coolant in order to facilitate the production and removal of tritium.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

49

Maximum Reasonable Radioxenon Releases from Medical Isotope Production Facilities and Their Effect on Monitoring Nuclear Explosions  

SciTech Connect

Fission gases such as 133Xe are used extensively for monitoring the world for signs of nuclear testing in systems such as the International Monitoring System (IMS). These gases are also produced by nuclear reactors and by fission production of 99Mo for medical use. Recently, medical isotope production facilities have been identified as the major contributor to the background of radioactive xenon isotopes (radioxenon) in the atmosphere (Saey, et al., 2009). These releases pose a potential future problem for monitoring nuclear explosions if not addressed. As a starting point, a maximum acceptable daily xenon emission rate was calculated, that is both scientifically defendable as not adversely affecting the IMS, but also consistent with what is possible to achieve in an operational environment. This study concludes that an emission of 5109 Bq/day from a medical isotope production facility would be both an acceptable upper limit from the perspective of minimal impact to monitoring stations, but also appears to be an achievable limit for large isotope producers.

Bowyer, Ted W.; Kephart, Rosara F.; Eslinger, Paul W.; Friese, Judah I.; Miley, Harry S.; Saey, Paul R.

2013-01-01T23:59:59.000Z

50

Strontium Isotope Study of Coal Untilization By-products Interacting with Environmental Waters  

SciTech Connect

Sequential leaching experiments on coal utilization by-products (CUB) were coupled with chemical and strontium (Sr) isotopic analyses to better understand the influence of coal type and combustion processes on CUB properties and the release of elements during interaction with environmental waters during disposal. Class C fly ash tended to release the highest quantity of minor and trace elementsincluding alkaline earth elements, sodium, chromium, copper, manganese, lead, titanium, and zincduring sequential extraction, with bottom ash yielding the lowest. Strontium isotope ratios ({sup 87}Sr/{sup 86}Sr) in bulk-CUB samples (total dissolution of CUB) are generally higher in class F ash than in class C ash. Bulk-CUB ratios appear to be controlled by the geologic source of the mineral matter in the feed coal, and by Sr added during desulfurization treatments. Leachates of the CUB generally have Sr isotope ratios that are different than the bulk value, demonstrating that Sr was not isotopically homogenized during combustion. Variations in the Sr isotopic composition of CUB leachates were correlated with mobility of several major and trace elements; the data suggest that arsenic and lead are held in phases that contain the more radiogenic (high-{sup 87}Sr/{sup 86}Sr) component. A changing Sr isotope ratio of CUB-interacting waters in a disposal environment could forecast the release of certain strongly bound elements of environmental concern. This study lays the groundwork for the application of Sr isotopes as an environmental tracer for CUBwater interaction.

Spivak-Birndorf, Lev J; Stewart, Brian W; Capo, Rosemary C; Chapman, Elizabeth C; Schroeder, Karl T; Brubaker, Tonya M

2011-09-01T23:59:59.000Z

51

METHOD OF AND APPARATUS FOR WITHDRAWING LIGHT ISOTOPIC PRODUCT FROM A LIQUID THERMAL DIFFUSION PLANT  

DOE Patents (OSTI)

An improved process and apparatus are described for removing enriched product from the columns of a thermal diffusion plant for separation of isotopes. In the removal cycle, light product at the top cf the diffusion columns is circulated through the column tops and a shipping cylinder connected thereto unttl the concertation of enriched product in the cylinder reaches the desired point. During the removal, circulation through the bottoms is blocked bv freezing. in the diffusion cycle, the bottom portion is unfrozen, fresh feed is distributed to the bottoms of the columns, ard heavy product is withdrawn from the bottoms, while the tops of the columns are blocked by freezing.

Dole, M.

1959-09-22T23:59:59.000Z

52

Neutron-Rich Isotope Production Using a Uranium Carbide Carbon Nanotubes SPES Target Prototype  

SciTech Connect

The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.

Corradetti, Stefano [ORNL; Biasetto, Lisa [INFN, Laboratori Nazionali di Legnaro, Italy; Manzolaro, Mattia [INFN, Laboratori Nazionali di Legnaro, Italy; Scarpa, Daniele [ORNL; Carturan, S. [INFN, Laboratori Nazionali di Legnaro, Italy; Andrighetto, Alberto [INFN, Laboratori Nazionali di Legnaro, Italy; Prete, Gianfranco [ORNL; Vasquez, Jose L [ORNL; Zanonato, P. [Dipartimento di Scienze Chimiche, Padova, Italy; Colombo, P. [Dipartimento di Ingegneria Meccanica, Padova, Italy; Jost, Carola [University of Tennessee, Knoxville (UTK); Stracener, Daniel W [ORNL

2013-01-01T23:59:59.000Z

53

Selenide isotope generator for the Galileo Mission: copper/water axially-grooved heat pipe topical report  

SciTech Connect

This report presents a summary of the major accomplishments for the development, fabrication, and testing of axially-grooved copper/water heat pipes for Selenide Isotopic Generator (SIG) applications. The early development consisted of chemical, physical, and analytical studies to define an axially-grooved tube geometry that could be successfully fabricated and provide the desired long term (up to seven years) performance is presented. Heat pipe fabrication procedures, measured performance and accelerated life testing of heat pipes S/Ns AL-5 and LT-57 conducted at B and K Engineering are discussed. S/N AL-5 was the first axially-grooved copper/water heat pipe that was fabricated with the new internal coating process for cupric oxide (CuO) and the cleaning and water preparation methods developed by Battelle Columbus Laboratories. Heat pipe S/N LT-57 was fabricated along with sixty other axially-grooved heat pipes allocated for life testing at Teledyne Energy Systems. As of June 25, 1979, heat pipes S/Ns AL-5 and LT-57 have been accelerated life tested for 13,310 and 6,292 respectively, at a nominal operating temperature of 225/sup 0/C without any signs of thermal performance degradation. (TFD)

Strazza, N.P.

1979-06-30T23:59:59.000Z

54

The Effects of Flux Spectrum Perturbation on Transmutation of Actinides: Optimizing the Production of Transcurium Isotopes  

SciTech Connect

This research presented herein involves the optimization of transcurium production in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Due to the dependence of isotope cross sections on incoming neutron energy, the efficiency with which an isotope is transmuted is highly dependent upon the flux spectrum. There are certain energy bands in which the rate of fission of transcurium production feedstock materials is minimized, relative to the rate of non-fission absorptions. It is proposed that by perturbing the flux spectrum, it is possible to increase the amount of key isotopes, such as 249Bk and 252Cf, that are produced during a transmutation cycle, relative to the consumption of feedstock material. This optimization process is carried out by developing an iterative objective framework involving problem definition, flux spectrum and cross section analysis, simulated transmutation, and analysis of final yields and transmutation parameters. It is shown that it is possible to perturb the local flux spectrum in the transcurium target by perturbing the composition of the target. It is further shown that these perturbations are able to alter the target yields in a non-negligible way. Future work is necessary to develop the optimization framework, and identify the necessary algorithms to update the problem definition based upon progress towards the optimization goals.

Hogle, Susan L [ORNL; Maldonado, G Ivan [ORNL; Alexander, Charles W [ORNL

2012-01-01T23:59:59.000Z

55

New routes for production of proton-rich Tc isotopes  

Science Conference Proceedings (OSTI)

Proton-rich Tc radionuclides have been identified as potential candidates for specific clinical and biological applications in the last decade. So far, these radionuclides have been produced either by proton-induced reaction on Mo targets or {alpha}-particle-induced reaction on Nb targets. This article lightens two heavy-ion-induced production routes of {sup 93,94,95,96}Tc radionuclides through {sup 7}Li+{sup nat}Zr and {sup 9}Be+{sup nat}Y reactions and provides important cross-sectional information in the projectile energy ranges 37-45 MeV and 30-48 MeV, respectively. Excitation functions of those reactions have been measured using the stacked-foil technique followed by the off-line {gamma}-spectrometric studies. Measured cross-sectional data have been interpreted comparing theoretical predictions of the two nuclear reaction model codes PACE-II and ALICE91. Experimental cross sections agreed with the theory. Measured production cross sections of {sup 94,95}Tc have been compared with those produced from the {alpha}+{sup 93}Nb reaction.

Maiti, Moumita; Lahiri, Susanta [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064 (India)

2010-02-15T23:59:59.000Z

56

Medical Isotope Production Using A 60 MeV Linear Electron Accelerator , R.C. Block1  

E-Print Network (OSTI)

Medical Isotope Production Using A 60 MeV Linear Electron Accelerator Y. Danon1 , R.C. Block1 , R@rpi.edu) 2 AlphaMed Inc, 20 Juniper Ridge Road, Acton, MA 01720 INTRODUCTION Medical isotopes can be produced

Danon, Yaron

57

United States Department of Energy Office of Nuclear Energy, Isotope Production and Distribution Program financial statements, September 30, 1996 and 1995  

Science Conference Proceedings (OSTI)

The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium, and related isotope services. Service provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. This report presents the results of the independent certified public accountants` audit of the Isotope Production and Distribution Program`s (Isotope) financial statements as of September 30, 1996.

NONE

1997-04-01T23:59:59.000Z

58

Silver isotopic anomalies in iron meteorites: cosmic-ray production and other possible sources  

Science Conference Proceedings (OSTI)

The sources of excess /sup 107/Ag observed in iron meteorites by Kaiser, Kelly, and Wasserburg (1980) are examined, with emphasis on the reactions of cosmic-ray particles with palladium. The cross sections for the production of the silver isotopes from palladium by energetic cosmic-ray particles are evaluated or estimated and used to calculate spallogenic production rates relative to that of /sup 53/Mn from iron. The upper limit for the production rate of excess /sup 107/Ag by galactic-cosmic-ray particles is 400 atoms/min/kg(Pd) which, over an exposure age of 10/sup 9/ years, would make only 1% of the observed excesses of /sup 107/Ag. Neutron-capture reactions with Pd isotopes produce mainly /sup 109/Ag. Binary fission of a siderophilic superheavy element would be expected to yield more /sup 109/Ag than /sup 107/Ag. An intense proton irradiation in the early solar system probably would produce a lower ratio of (/sup 107/Pd//sup 108/Pd) to (/sup 26/Al//sup 27/Al) than observed in meteorites. Therefore the presence of excess /sup 107/Ag in iron meteorites with large Pd/Ag ratios very likely is due to the incorporation of 6.5 x 10/sup 6/-year /sup 107/Pd of nucleosynthetic origin in these meteorites.

Reedy, R.C.

1980-04-18T23:59:59.000Z

59

Light weight radioisotope heater unit (LWRHU) production for the Cassini mission  

DOE Green Energy (OSTI)

The Light-Weight Radioisotope Heater Unit (LWRHU) is a [sup 238]PuO[sub 2] fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. The heat sources are required to maintain the temperature of specific components within normal operating ranges. The heat source consists of a hot- pressed [sup 238]PuO[sub 2] fuel pellet, a Pt-3ORh vented capsule, a pyrolytic graphite insulator, and a woven graphite aeroshell assembly. Los Alamos National Laboratory has fabricated 180 heat sources, 157 of which will be used on the Cassini mission.

Rinehart, G.H.

1997-01-01T23:59:59.000Z

60

A CYCLOTRON CONCEPT TO SUPPORT ISOTOPE PRODUCTION FOR SCIENCE AND MEDICAL APPLICATIONS  

Science Conference Proceedings (OSTI)

In August of 2009, the Nuclear Science Advisory Committee (NSAC) recommended a variable-energy, high-current multi-particle accelerator for the production of medical radioisotopes. The Oak Ridge National Laboratory is developing a technical concept for a 70 MeV dual-extraction multi-particle cyclotron that will meet the needs identified in the NSAC report. The cyclotron, which will be located at the Holifield Radioactive Ion Beam Facility (HRIBF), will operate on a 24/7 basis and will provide approximately 6000 hours per year of quality beam time for both the production R&D and production of medical and industrial radioisotopes. The proposed cyclotron will be capable of accelerating dual beams of 30 to 70 MeV H at up to 750 A, and up to 50 A of 15-35 MeV D , 35 MeV H2, and 70 MeV -particles. In dual-extraction H mode, a total of 750 A of 70 MeV protons will be provided simultaneously to both HRIBF and Isotope Production Facility. The isotope facility will consist of two target stations: a 2 water-cooled station and a 4 water-cooled high-energy-beam research station. The multi-particle capability and high beam power will enable research into new regimes of accelerator-produced radioisotopes, such as 225Ac, 211At, 68Ge, and 7B. The capabilities of the accelerator will enable the measurement of excitation functions, thick target yield measurements, research in high-power-target design, and will support fundamental research in nuclear and radiochemistry.

Egle, Brian [ORNL; Mirzadeh, Saed [ORNL; Tatum, B Alan [ORNL; Varma, Venugopal Koikal [Oak Ridge National Laboratory (ORNL); Bradley, Eric Craig [ORNL; Burgess, Thomas W [ORNL; Aaron, W Scott [ORNL; Binder, Jeffrey L [ORNL; Beene, James R [ORNL; Saltmarsh, Michael John [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Continuous production of tritium in an isotope-production reactor with a separate circulation system  

DOE Patents (OSTI)

A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium is allowed to flow through the reactor in separate loops in order to facilitate the production and removal of tritium.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

62

METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS  

DOE Patents (OSTI)

A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.

Hoffman, J.D.; Ballou, J.K.

1957-11-19T23:59:59.000Z

63

MECHANICAL ALLOYING AND THERMAL TREATMENT FOR PRODUCTION OF ZIRCONIUM IRON HYDROGEN ISOTOPE GETTERS  

DOE Green Energy (OSTI)

The objective of this task was to demonstrate that metal hydrides could be produced by mechanical alloying in the quantities needed to support production-scale hydrogen isotope separations. Three starting compositions (ratios of elemental Zr and Fe powders) were selected and attritor milled under argon for times of 8 to 60 hours. In general, milling times of at least 24 hours were required to form the desired Zr{sub 2}Fe and Zr{sub 3}Fe phases, although a considerable amount of unalloyed Zr and Fe remained. Milling in liquid nitrogen does not appear to provide any advantages over milling in hexane, particularly due to the formation of ZrN after longer milling times. Carbides of Zr formed during some of the milling experiments in hexane. Elemental Zr was present in the as-milled material but not detected after annealing for milling times of 48 and 60 hours. It may be that after intimate mixing of the powders in the attritor mill the annealing temperature was sufficient to allow for the formation of a Zr-Fe alloy. Further investigation of this conversion is necessary, and could provide an opportunity for reducing the amount of unreacted metal powder after milling.

Fox, K.

2008-02-20T23:59:59.000Z

64

Audit Report - Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit, OAS-FS-13-09  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audits and Inspections Audits and Inspections Audit Report Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit OAS-FS-13-09 January 2013 MEMORANDUM FOR THE DIRECTOR, OFFICE OF SCIENCE FROM: Daniel M. Weeber Assistant Inspector General for Office of Inspector General SUBJECT: INFORMATION Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit The attached report presents the results of the independent certified public accountants' audit of the Department of Energy's Isotope Development and Production for Research and Applications Program's (Isotope Program) and 2009. The Office of Inspector General (OIG) engaged the independent public accounting firm of

65

B plant mission analysis report  

SciTech Connect

This report further develops the mission for B Plant originally defined in WHC-EP-0722, ``System Engineering Functions and Requirements for the Hanford Cleanup Mission: First Issue.`` The B Plant mission analysis will be the basis for a functional analysis that breaks down the B Plant mission statement into the necessary activities to accomplish the mission. These activities are the product of the functional analysis and will then be used in subsequent steps of the systems engineering process, such as identifying requirements and allocating those requirements to B Plant functions. The information in this mission analysis and the functional and requirements analysis are a part of the B Plant technical baseline.

Lund, D.P.

1995-05-24T23:59:59.000Z

66

Discovery of the Mercury Isotopes  

E-Print Network (OSTI)

Forty mercury isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

D. Meierfrankenfeld; M. Thoennessen

2009-12-01T23:59:59.000Z

67

Environmental Impact Statement for the Proposed Production of Plutonium - 238 for Use in Advanced Radioisotope Power Systems for Future Space Missions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

98 98 Federal Register / Vol. 63, No. 192 / Monday, October 5, 1998 / Notices DEPARTMENT OF ENERGY Environmental Impact Statement for the Proposed Production of Plutonium- 238 for Use in Advanced Radioisotope Power Systems for Future Space Missions AGENCY: Department of Energy (DOE). ACTION: Notice of Intent. SUMMARY: Pursuant to the National Environmental Policy Act (NEPA), DOE announces its intent to prepare an environmental impact statement (EIS) for the proposed production of plutonium-238 (Pu-238) using one or more DOE research reactors and facilities. The Pu-238 would be used in advanced radioisotope power systems for potential future space missions. Without a long-term supply of Pu-238, DOE would not be able to provide the radioisotope power systems that may be required for these potential future space

68

An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Isotopic Composition Predictions  

SciTech Connect

The expanded use of burnup credit in the United States (U.S.) for storage and transport casks, particularly in the acceptance of credit for fission products, has been constrained by the availability of experimental fission product data to support code validation. The U.S. Nuclear Regulatory Commission (NRC) staff has noted that the rationale for restricting the Interim Staff Guidance on burnup credit for storage and transportation casks (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issues of burnup credit criticality validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the isotopic composition (depletion) validation approach and resulting observations and recommendations. Validation of the criticality calculations is addressed in a companion paper at this conference. For isotopic composition validation, the approach is to determine burnup-dependent bias and uncertainty in the effective neutron multiplication factor (keff) due to bias and uncertainty in isotopic predictions, via comparisons of isotopic composition predictions (calculated) and measured isotopic compositions from destructive radiochemical assay utilizing as much assay data as is available, and a best-estimate Monte Carlo based method. This paper (1) provides a detailed description of the burnup credit isotopic validation approach and its technical bases, (2) describes the application of the approach for representative pressurized water reactor and boiling water reactor safety analysis models to demonstrate its usage and applicability, (3) provides reference bias and uncertainty results based on a quality-assurance-controlled prerelease version of the Scale 6.1 code package and the ENDF/B-VII nuclear cross section data.

Radulescu, Georgeta [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Wagner, John C [ORNL

2011-01-01T23:59:59.000Z

69

Short-lived isotopes and 23Na production in low mass AGB Stars  

E-Print Network (OSTI)

We discuss the synthesis of some short-lived isotopes and of 23Na in thermally pulsing AGB stars with initial mass of 2 Msun and two different metallicities (Z=1.5e-2, corresponding to the metal amount in the Sun, and Z=1e-4), representative of disk and halo stars, respectively. The different nucleosynthesis channels are illustrated in some details. As previously found, the 13C formed after each third dredge up episode is usually completely consumed by alpha captures before the onset of the subsequent thermal pulse, releasing neutrons. This is the most efficient neutron source in low mass AGB stars and the resulting s-process nucleosynthesis is at the origin of the solar main component. However, in the solar metallicity model, we find that the temperature of the first formed 13C pocket remains too low during the interpulse and the 13C is not completely burnt, being partially engulfed in the convective zone generated by the following thermal pulse. Due to the rapid convective mixing in this zone, the 13C is exposed to a larger temperature and a nucleosynthesis characterized by a relatively high neutron density develops. The main effect is the strong enhancement of isotopes located beyond some critical branching in the neutron-capture path, like 60Fe, otherwise only marginally produced during a standard s-process nucleosynthesis.

S. Cristallo; R. Gallino; O. Straniero; L. Piersanti; I. Dominguez

2006-06-15T23:59:59.000Z

70

DOE/EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory (12/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

88 88 FINAL Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee December 2004 U. S. Department of Energy Oak Ridge Operations 04-049(doc)/120204 04-049(doc)/120204 SCIENCE APPLICATIONS INTERNATIONAL CORPORATION contributed to the preparation of this document and should not be considered an eligible contractor for its review. Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee Date Issued-December 2004 U. S. Department of Energy Oak Ridge Operations 04-049(doc)/120204 CONTENTS

71

The laser ion source trap for highest isobaric selectivity in online exotic isotope production  

Science Conference Proceedings (OSTI)

The improvement in the performance of a conventional laser ion source in the laser ion source and trap (LIST) project is presented, which envisages installation of a repeller electrode and a linear Paul trap/ion guide structure. This approach promises highest isobaric purity and optimum temporal and spatial control of the radioactive ion beam produced at an online isotope separator facility. The functionality of the LIST was explored at the offline test separators of University of Mainz (UMz) and ISOLDE/CERN, using the UMz solid state laser system. Ionization efficiency and selectivity as well as time structure and transversal emittance of the produced ion beam was determined. Next step after complete characterization is the construction and installation of the radiation-hard final trap structure and its first online application.

Schwellnus, F.; Gottwald, T.; Mattolat, C.; Wendt, K. [Institut fuer Physik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Blaum, K. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Catherall, R.; Crepieux, B.; Fedosseev, V.; Marsh, B.; Rothe, S.; Stora, T. [CERN, CH-1211 Geneva 23 (Switzerland); Kluge, H.-J. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany)

2010-02-15T23:59:59.000Z

72

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission National Environmental Policy Act of 1969 (NEPA) NEPA is our basic national charter for protection of the environment. Signed into law by President Richard Nixon on January 1, 1970, NEPA was established to foster and promote the general welfare, to create and maintain conditions under which man and nature can exist in productive harmony, and fulfill the social, economic, and other requirements of present and future generations of Americans. NEPA establishes policy, sets goals (section 101), and provides means (section 102) for carrying out the policy. Section 102(2) contains "action-forcing" provisions to make sure that federal agencies act according to the letter and spirit of the Act. The President, the federal agencies, and the courts share responsibility for enforcing the Act so as to achieve the substantive requirements of section 101.

73

Method for separating boron isotopes  

SciTech Connect

A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

Rockwood, Stephen D. (Los Alamos, NM)

1978-01-01T23:59:59.000Z

74

Short-lived isotopes and 23Na production in low mass AGB Stars  

E-Print Network (OSTI)

We discuss the synthesis of some short-lived isotopes and of 23Na in thermally pulsing AGB stars with initial mass of 2 Msun and two different metallicities (Z=1.5e-2, corresponding to the metal amount in the Sun, and Z=1e-4), representative of disk and halo stars, respectively. The different nucleosynthesis channels are illustrated in some details. As previously found, the 13C formed after each third dredge up episode is usually completely consumed by alpha captures before the onset of the subsequent thermal pulse, releasing neutrons. This is the most efficient neutron source in low mass AGB stars and the resulting s-process nucleosynthesis is at the origin of the solar main component. However, in the solar metallicity model, we find that the temperature of the first formed 13C pocket remains too low during the interpulse and the 13C is not completely burnt, being partially engulfed in the convective zone generated by the following thermal pulse. Due to the rapid convective mixing in this zone, the 13C is ex...

Cristallo, S; Straniero, O; Piersanti, L; Dominguez, I

2006-01-01T23:59:59.000Z

75

Assemblies with both target and fuel pins in an isotope-production reactor  

DOE Patents (OSTI)

A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins adjacent to fuel pins in order to increase the tritium production rate.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

76

Fuel pins with both target and fuel pellets in an isotope-production reactor  

DOE Patents (OSTI)

A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

77

Mission Advancing  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Accomplishments NETL Accomplishments - the lab 2 Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. Renewed Prosperity Through Technological Innovation - Letter from the Director NETL: the ENERGY lab 4 6 3 Contents Technology Transfer Patents and Commercialization Sharing Our Expertise Noteworthy Publications 60 62 63 64 66 Environment, Economy, & Supply Carbon Capture and Storage Partnerships Work to Reduce Atmospheric CO 2 Demand-Side Efficiencies New NETL Facility Showcases Green Technologies Environment & Economy Materials Mercury Membranes NETL Education Program Produces Significant Achievement Monitoring Water Economy & Supply NETL's Natural Gas Prediction Tool Aids Hurricane Recovery Energy Infrastructure

78

Mission Motors Company | Open Energy Information  

Open Energy Info (EERE)

Motors Company Place San Francisco, California Zip 94103 Product San Francisco-based electric Motorcycle manufacturer. References Mission Motors Company1 LinkedIn...

79

Automated product recovery in a HG-196 photochemical isotope separation process  

DOE Patents (OSTI)

A method of removing deposited product from a photochemical reactor used in the enrichment of .sup.196 Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

1992-01-01T23:59:59.000Z

80

Isotope ratio analysis of actinides, fission products, and geolocators by high-efficiency multi-collector thermal ionization mass spectrometry  

SciTech Connect

A ThermoFisher 'Triton' multi-collector thermal ionization mass spectrometer (MC-TIMS) was evaluated for trace and ultra-trace level isotoperatioanalysis of actinides (uranium, plutonium, and americium), fission products and geolocators (strontium, cesium, and neodymium). Total efficiencies (atoms loaded to ions detected) of up to 0.5-2% for U, Pu, and Am, and 1-30% for Sr, Cs, and Nd can be reported employing resin bead load techniques onto flat ribbon Re filaments or resin beads loaded into a millimeter-sized cavity drilled into a Re rod. This results in detection limits of <0.1 fg (10{sup 4} atoms to 10{sup 5} atoms) for {sup 239-242+244}Pu, {sup 233+236}U, {sup 241-243}Am, {sup 89,90}Sr, and {sup 134,135,137}Cs, and {le} 1 pg for natural Nd isotopes (limited by the chemical processing blank) using a secondary electron multiplier (SEM) or multiple-ion counters (MICs). Relative standard deviations (RSD) as small as 0.1% and abundance sensitivities of 1 x 10{sup 6} or better using a SEM are reported here. Precisions of RSD {approx} 0.01-0.001% using a multi-collector Faraday cup array can be achieved at sub-nanogram concentrations for strontium and neodymium and are suitable to gain crucial geolocation information. The analytical protocols reported herein are of particular value for nuclear forensic and nuclear safeguard applications.

Brger, Stefan [New Brunswick Laboratory, Argonne, IL; Riciputi, Lee R [Los Alamos National Laboratory (LANL); Bostick, Debra A [ORNL; Turgeon, Steven [University of Alberta, Edmondton, Canada; McBay, Eddie H [ORNL; Lavelle, Mark [ORNL

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit, OAS-FS-13-11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit OAS-FS-13-11 February 2013 January 31, 2013 Mr. Gregory Friedman, Inspector General Dr. Jehanne Gillo, Director, Facilities and Project Management Division, Office of Nuclear Physics U.S. Department of Energy Washington, DC 20585 Dear Mr. Friedman and Dr. Gillo: We have audited the balance sheet of the United States Department of Energy's (Department or DOE) Isotope Development and Production for Research and Applications Program (the Program) (a component of the Department) as of September 30, 2010, and have issued our report thereon dated December 21, 2012. In planning and performing our audit of the balance sheet, in accordance with auditing standards

82

NERSC8_Mission_Need_Final  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission Need Statement Mission Need Statement NERSC-8 Page 1 Mission Need Statement for the Next Generation High Performance Production Computing System Project (NERSC-8) (Non-major acquisition project) Office of Advanced Scientific Computing Research Office of Science U.S. Department of Energy Date Approved: Month / Year Mission Need Statement NERSC-8 Page 2 Submitted by: David Goodwin, Program Manager Date Advanced Scientific Computing Research, Office of Science, DOE Concurrence: Daniel Lehman, Director, Date Office of Project Assessment, Office of Science, DOE Approval: Daniel Hitchcock, Acquisition Executive, Associate Director, Date Advanced Scientific Computing Research, Office of Science, DOE Mission Need Statement

83

Our Mission Statement  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Mission Statement The Environmental Management (EM) Program Mission in Oak Ridge is to complete cleanup safely with reduced risks to the public, workers, and the environment at...

84

Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

Freels, James D [ORNL; Jain, Prashant K [ORNL; Hobbs, Randy W [ORNL

2012-01-01T23:59:59.000Z

85

Oxygen Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of...

86

DOE and NNSA labs work with CTBTO to reduce medical isotope emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

NNSA labs work with CTBTO to reduce medical isotope emissions, enhance the effectiveness of nuclear explosion monitoring | National Nuclear Security Administration Our Mission...

87

Design, construction, and operation of a laboratory scale reactorfor the production of high-purity, isotopically enriched bulksilicon  

DOE Green Energy (OSTI)

The design and operation of a recirculating flow reactor designed to convert isotopically enriched silane to polycrystalline Si with high efficiency and chemical purity is described. The starting material is SiF{sub 4}, which is enriched in the desired isotope by a centrifuge method and subsequently converted to silane. In the reactor, the silane is decomposed to silicon on the surface of a graphite starter rod (3 mm diameter) heated to 700-750 C. Flow and gas composition (0.3-0.5% silane in hydrogen) are chosen to minimize the generation of particles by homogeneous nucleation of silane and to attain uniform deposition along the length of the rod. Growth rates are 5 {micro}m/min, and the conversion efficiency is greater than 95%. A typical run produces 35 gm of polycrystalline Si deposited along a 150 mm length of the rod. After removal of the starter rod, dislocation-free single crystals are formed by the floating zone method. Crystals enriched in all 3 stable isotopes of Si have been made: {sup 28}Si (99.92%), {sup 29}Si (91.37%), and {sup 30}Si (88.25%). Concentrations of electrically active impurities (P and B) are as low as mid-10{sup 13} cm{sup -3}. Concentrations of C and O lie below 10{sup 16} and 10{sup 15} cm{sup -3}, respectively.

Ager III, J.W.; Beeman, J.W.; Hansen, W.L.; Haller, E.E.

2004-12-20T23:59:59.000Z

88

Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site  

Science Conference Proceedings (OSTI)

Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)

1991-09-01T23:59:59.000Z

89

The Uncertainties in the 22Ne + alpha-capture Reaction Rates and the Production of the Heavy Magnesium Isotopes in Asymptotic Giant Branch Stars of Intermediate Mass  

E-Print Network (OSTI)

We present new rates for the 22Ne(alpha, n)25Mg and 22Ne(alpha,gamma)26Mg reactions, with uncertainties that have been considerably reduced compared to previous estimates, and we study how these new rates affect the production of the heavy magnesium isotopes in models of intermediate mass Asymptotic Giant Branch (AGB) stars of different initial compositions. All the models have deep third dredge-up, hot bottom burning and mass loss. Calculations have been performed using the two most commonly used estimates of the 22Ne + alpha rates as well as the new recommended rates, and with combinations of their upper and lower limits. The main result of the present study is that with the new rates, uncertainties on the production of isotopes from Mg to P coming from the 22Ne + alpha-capture rates have been considerably reduced. We have therefore removed one of the important sources of uncertainty to effect models of AGB stars. We have studied the effects of varying the mass-loss rate on nucleosynthesis and discuss other uncertainties related to the physics employed in the computation of stellar structure, such as the modeling of convection, the inclusion of a partial mixing zone and the definition of convective borders. These uncertainties are found to be much larger than those coming from 22Ne + alpha-capture rates, when using our new estimates. Much effort is needed to improve the situation for AGB models.

A. Karakas; M. Lugaro; M. Wiescher; J. Goerres; C. Ugalde

2006-01-27T23:59:59.000Z

90

Carbon Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Carbon Isotopes Atmospheric Trace Gases » Carbon Isotopes Carbon Isotopes Gateway Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of Various Isotopic Species from Ice Cores Carbon-13 13C in CO Measurements from Niwot Ridge, Colorado and Montana de Oro, California (Tyler) 13C in CO2 NOAA/CMDL Flask Network (White and Vaughn) CSIRO GASLAB Flask Network (Allison, Francey, and Krummel) CSIRO in situ measurements at Cape Grim, Tasmania (Francey and Allison) Scripps Institution of Oceanography (Keeling et al.) 13C in CH4 NOAA/CMDL Flask Network (Miller and White) Northern & Southern Hemisphere Sites (Quay and Stutsman) Northern & Southern Hemisphere Sites (Stevens)

91

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission Mission - OE's Core Purpose, Why OE Exists OE drives electric grid modernization and resiliency in the energy infrastructure. OE leads the Department of Energy's efforts to ensure a resilient, reliable, and flexible electricity system. OE accomplishes this mission through research, partnerships, facilitation, modeling and analytics, and emergency preparedness. Vision - OE's Aspirations for the Future OE recognizes that our Nation's sustained economic prosperity, quality of life, and global competitiveness depend on access to an abundance of secure, reliable, and affordable energy resources. Through a mix of technology and policy solutions, we will address the changing dynamics and uncertainties in which the electric system will operate. We will leverage

92

Mission | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission Mission Mission The Office of Economic Impact and Diversity develops and executes Department-wide policies to implement applicable legislation and Executive Orders that strengthen diversity and inclusion goals affecting equal employment opportunities, small and disadvantaged businesses, minority educational institutions, and historically under-represented communities. Our mission is to identify and implement ways of ensuring that everyone is afforded an opportunity to participate fully in the Department of Energy's programs, opportunities, and resources. We encourage partnerships with Minority Serving Institutions and other minority-owned and serving entities to join us in our mission-critical work. We seek to increase contracting opportunities for small and

93

Heavy isotope production by multinucleon transfer reactions with /sup 254/Es. [101 MeV /sup 16/O, 98 MeV /sup 18/O, 127 MeV /sup 22/Ne  

Science Conference Proceedings (OSTI)

Fast automated on-line and quasi-on-line radiochemical techniques were applied to search for new isotopes, to measure their decay characteristics, and to study the cross sections of the heaviest, most neutron-rich actinide isotopes in reactions of /sup 16,18/O and /sup 22/Ne projectiles with /sup 254/Es as a target. The measured yields for isotopes up to Lr-260 are three or more orders of magnitude higher than in any other reaction used so far. A comparison with data for similar transfers from /sup 248/Cm targets is made. Transfer cross sections are extrapolated for the production of unknown, neutron-rich isotopes of elements 101 through 105, and the unique potential of /sup 254/Es as a target to make these exoctic nuclei accessible is demonstrated. 18 refs., 2 figs., 1 tab.

Schaedel, M.; Bruechle, W.; Bruegger, M.; Gaeggeler, H.; Moody, K.J.; Schardt, D.; Suemmerer, K.; Hulet, E.K.; Douran, A.D.; Dougan, R.J.

1985-01-01T23:59:59.000Z

94

Nuclear Energy Protocol for Research Isotopes Owen Lowe  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protocol for Protocol for Research Isotopes Owen Lowe Office of Isotopes for Medicine and Science Office of Nuclear Energy, Science and Technology April 16, 2002 Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology Lowe/April16_02 NEPRI to NERAC.ppt (2) Nuclear Energy Protocol For Research Isotopes Nuclear Energy Protocol For Research Isotopes Why NEPRI? 6 NEPRI implements DOE funding priorities for fiscal year 2003 6 NEPRI will * Bring order to DOE's responses to requests for research isotopes * Introduce a high-quality peer review to the selection of research isotopes * Enable DOE to concentrate on operating its unique isotope production facilities Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology

95

Mission and Goals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission and Goals Mission and Goals Mission and Goals October 10, 2013 - 11:56am Addthis Mission Develop and demonstrate new, energy-efficient processing and materials technologies at a scale adequate to prove their value to manufacturers and spur investment. Develop broadly applicable manufacturing processes that reduce energy intensity and improve production. Develop and demonstrate pervasive materials technologies, enabling improved products that use less energy throughout their lifecycles. Conduct technical assistance activities that promote use of advanced technologies and better energy management to capture U.S. competitive advantage. Goal Reduce by 50% in 10 years the life-cycle energy consumption of manufactured goods by targeting the production and use of advanced manufacturing

96

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission The mission of the Office of Environmental Management (EM) is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. The EM program has made significant progress in shifting away from risk management to embracing a mission completion philosophy based on reducing risk and reducing environmental liability. As an established operating cleanup completion and risk reduction program, EM is demonstrating the importance of remaining steadfast to operating principles while staying focused on the mission. For example: EM is constructing and operating facilities to treat radioactive liquid tank waste into a safe, stable form to enable ultimate disposition.

97

Management Letter on the Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2009 Balance Sheet Audit, OAS-FS-12-09  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Balance 09 Balance Sheet Audit OAS-FS-12-09 June 2012 January 30, 2012 Mr. Gregory Friedman, Inspector General Dr. Jehanne Gillo, Director, Facilities and Project Management Division, Office of Nuclear Physics U.S. Department of Energy Washington, DC 20585 Dear Mr. Friedman and Dr. Gillo: We have audited the balance sheet of the United States Department of Energy's (Department or DOE) Isotope Development and Production for Research and Applications Program (the Program) (a component of the Department) as of September 30, 2009, and have issued our report thereon dated January 30, 2012. In planning and performing our audit of the balance sheet, in accordance with auditing standards generally accepted in the United States of America, we considered the Program's internal control over financial

98

Radiochemistry Student, Postdoc and Invited Speaker Support for New Directions in Isotope Production, Nuclear Forensics and Radiochemistry Supported by the DOE  

SciTech Connect

The Division of Nuclear Chemistry and Technology (NUCL) of the American Chemistry Society (ACS) is sponsoring a symposium entitled "New Directions in Isotope Production, Nuclear Forensics and Radiochemistry Supported by the DOE" at the 240th ACS National Meeting in Boston, MA 22-26 August 2010. Radiochemistry and nuclear science is a critical area of research and funding for which the DOE has provided support over the years. Radiochemistry is undergoing a renaissance in interdisciplinary areas including medicine, materials, nanotechnology, nuclear forensics and energy. For example, interest in nuclear energy is growing in response to global warming. The field of nuclear forensics has grown significantly since 9/11 in response to potential terror threats and homeland security. Radioactive molecular imaging agents and targeted radiotherapy are revolutionizing molecular medicine. The need for radiochemists is growing, critical, and global. The NUCL Division of the ACS has been involved in various areas of radiochemistry and nuclear chemistry for many years, and is the host of the DOE supported Nuclear Chemistry Summer Schools. This Symposium is dedicated to three of the critical areas of nuclear science, namely isotope production, nuclear forensics and radiochemistry. An important facet of this meeting is to provide support for young radiochemistry students/postdoctoral fellows to attend this Symposium as participants and contributors. The funding requested from DOE in this application will be used to provide bursaries for U.S. students/postdoctoral fellows to enable them to participate in this symposium at the 240th ACS National Meeting, and for invited scientists to speak on the important issues in these areas.

Jurisson, Silvia, S.

2011-04-11T23:59:59.000Z

99

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission The primary mission of the Office of Nuclear Energy is to advance nuclear power as a resource capable of meeting the Nation's energy, environmental, and national security needs by resolving technical, cost, safety, proliferation resistance, and security barriers through research, development, and demonstration as appropriate. NE's program is guided by the four research objectives detailed in its Nuclear Energy Research and Development Roadmap: Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals. Develop sustainable fuel cycles.

100

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission The Mission of the Office of Management is to provide the Department of Energy with centralized direction and oversight for the full range of management, procurement and administrative services. Project Management Project Management Awardees The Office of Management's activities include project and contract management, cost estimating, and policy development and oversight, One of the principal outcomes in exercising this responsibility is the delivery of projects on schedule, within budget, with the required performance capability, and compliant with quality, environmental, safety and health standards. Learn more Administrative Services Technician replacing nameplate The Office of Management provides many of the administrative services that

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Interplanetary mission fission  

NLE Websites -- All DOE Office Websites (Extended Search)

A new fission experiment demonstrates the viability of a small nuclear reactor to power solar-system-exploring spacecraft. July 15, 2013 Interplanetary mission fission Artist's...

102

Mission | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Calendar Year Reports Recovery Act Peer Reviews DOE Directives Performance Strategic Plan Testimony Financial Statements Semiannual Reports Work Plan Mission About Us...

103

Hanford Isotope Project strategic business analysis Cesium-137 (Cs-137)  

SciTech Connect

The purpose of this business analysis is to address the beneficial reuse of Cesium 137 (Cs-137) in order to utilize a valuable national asset and possibly save millions of tax dollars. Food irradiation is the front runner application along with other uses. This business analysis supports the objectives of the Department of Energy National Isotope Strategy distributed in August 1994 which describes the DOE plans for the production and distribution of isotope products and services. As part of the Department`s mission as stated in that document. ``The Department of Energy will also continue to produce and distribute other radioisotopes and enriched stable isotopes for medical diagnostics and therapeutics, industrial, agricultural, and other useful applications on a businesslike basis. This is consistent with the goals and objectives of the National Performance Review. The Department will endeavor to look at opportunities for private sector to co-fund or invest in new ventures. Also, the Department will seek to divest from ventures that can more profitably or reliably be operated by the private sector.``

NONE

1995-10-01T23:59:59.000Z

104

Production and supply of radioisotopes with high-energy particle accelerators current status and future directions  

Science Conference Proceedings (OSTI)

Although the production of radioisotopes in reactors or in low to medium energy cyclotrons appears to be relatively well established, especially for those isotopes that are routinely used and have a commercial market, certain isotopes can either be made only in high-energy particle accelerators or their production is more cost effective when made this way. These facilities are extremely expensive to build and operate, and isotope production is, in general, either not cost-effective or is in conflict with their primary mandate or missions which involve physics research. Isotope production using high-energy accelerators in the US, therefore, has been only an intermittent and parasitic activity. However, since a number of isotopes produced at higher energies are emerging as being potentially useful for medical and other applications, there is a renewed concern about their availability in a continuous and reliable fashion. In the US, in particular, the various aspects of the prediction and availability of radioisotopes from high-energy accelerators are presently undergoing a detailed scrutiny and review by various scientific and professional organizations as well as the Government. A number of new factors has complicated the supply/demand equation. These include considerations of cost versus needs, reliability factors, mission orientation, research and educational components, and commercial viability. This paper will focus on the present status and projected needs of radioisotope production with high-energy accelerators in the US, and will compare and examine the existing infrastructure in other countries for this purpose.

Srivastava, S.C.; Mausner, L.F.

1994-03-01T23:59:59.000Z

105

OUR COLLEGE MISSION, AND  

E-Print Network (OSTI)

our college community to incorporate shared values into our daily work lives. Members of the ExecutiveOUR COLLEGE TAGLINE, MISSION, AND SHARED VALUES #12;#12;OUR TAG LINE Helping animals, people. Accountability Collaboration Team Transparency OUR MISSION AND VALUES College faculty and staff discuss tag line

Stephens, Graeme L.

106

Mission & Roles, Environmental Protection Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission Mission The Environmental Protection Division develops and delivers high quality environmental products and services for all Brookhaven National Laboratory stakeholders.* Line management at Brookhaven National Laboratory is responsible and accountable for environmental stewardship, and it is our job to provide them with value-added, timely, effective and efficient support that enables them to conduct operations in an environmentally responsible manner. *Stakeholders include federal, state and local regulators, the public, the U.S. Department of Energy, and internal customers Roles Support Services Provides environmental technical support services and products for the programs listed above to the Laboratory to enhance and achieve environmental stewardship and compliance. These services and products are

107

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission Develop and implement innovative HCM business solutions relating to corporate recruiting, organizational and workforce development, workforce and succession planning, talent capacity, and diversity outreach. Functions Directing the activities of the Corporate Outreach and Recruitment Council (with representatives from across the Department including NNSA, the Power Marketing Administrations, and the National Labs); including enhancing entry-level and mid to senior level hiring across DOE, furthering the use of automated technology in outreach and recruitment efforts, designing effective marketing and branding efforts to attract the right candidate for the right job, incorporating diversity strategies, and developing measures of success Designing and managing strategic employment programs that address

108

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission The Assistant Secretary for Policy and International Affairs (PI) is the primary policy advisor to the Secretary, Deputy Secretary, and Under Secretary on domestic and international policy development and implementation as well as DOE policy analysis and activities. The Office of Policy and International Affairs' role is to deliver unbiased advice to the Department of Energy's leadership on existing and prospective energy-related policies, based on integrated and well-founded data and analysis. The Office of Policy and International Affairs has primary responsibility for the Department of Energy's international energy activities including international emergency management, national security, and international cooperation in science and technology.

109

I. Nuclear Production Reaction and Chemical Isolation Procedure for 240Am II. New Superheavy Element Isotopes: 242Pu(48Ca,5n)285-114  

E-Print Network (OSTI)

Plot of radioactivity in plutonium-isopropanol solutions asion-induced reac- tions in plutonium isotopes. Phys. Rev. ,uranium, neptunium, and plutonium An updating. Tech. Rep.

Ellison, Paul Andrew

2011-01-01T23:59:59.000Z

110

Compelling Research Opportunities using Isotopes  

SciTech Connect

Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.

None

2009-04-23T23:59:59.000Z

111

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission Office of Indian Energy Policy and Programs The DOE Office of Indian Energy Policy and Programs, or Office of Indian Energy, is charged by Congress to direct, foster, coordinate, and implement energy planning, education, management, and programs that assist Tribes with energy development, capacity building, energy infrastructure, energy costs, and electrification of Indian lands and homes. Led by Director Tracey A. LeBeau, a member of the Cheyenne River Sioux Tribe of South Dakota, the Office of Indian Energy works within DOE, across government agencies, and with Indian Tribes and organizations to promote Indian energy policies and initiatives. The Office of Indian Energy performs these functions within the scope of DOE's mission and consistently with the

112

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission The U.S. Department of Energy's Office of Fossil Energy plays a key role in helping the United States meet its continually growing need for secure, reasonably priced and environmentally sound fossil energy supplies. Put simply, FE's primary mission is to ensure the nation can continue to rely on traditional resources for clean, secure and affordable energy while enhancing environmental protection. Realizing the Promise of Clean Coal For the first time in the long history of fossil fuel use, we now see emerging from our laboratories and test sites the tools and technologies that can turn the concept of a virtually zero-emission-including carbon dioxide (CO2)-coal-based energy plant into a viable reality, not 50 or 100 years into the future, but within the coming decade.

113

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission The mission of the U.S. Department of Energy's Southeastern Power Administration is to market and deliver Federal hydroelectric power at the lowest possible cost to public bodies and cooperatives in the southeastern United States in a professional, innovative, customer-oriented manner, while continuing to meet the challenges of an ever-changing electric utility environment through continuous improvements. Market and deliver economical and dependable hydropower to customers The objectives of Southeastern are to market the electric power and energy generated by the Federal reservoir projects and toe encourage widespread use of the power at the lowest possible cost to consumers. Make Southeastern an employer of choice Strategies to achieve this goal include: Promote SEPA as an "Employer of

114

PNNL: About - Mission and Vision  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission, Vision, Values At PNNL, our mission is to transform the world through courageous discovery and innovation. It is our vision that PNNL science and technology will inspire...

115

ISOTOPE SEPARATORS  

DOE Patents (OSTI)

An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

Bacon, C.G.

1958-08-26T23:59:59.000Z

116

Final Report on Isotope Ratio Techniques for Light Water Reactors  

SciTech Connect

The Isotope Ratio Method (IRM) is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods.

Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Mitchell, Mark R.; Meriwether, George H.; Reid, Bruce D.

2009-07-01T23:59:59.000Z

117

Observations of the Li, Be, and B isotopes and Constraints on Cosmic-ray Propagation  

Science Conference Proceedings (OSTI)

The abundance of Li, Be, and B isotopes in galactic cosmic rays (GCR) between E=50-200 MeV/nucleon has been observed by the Cosmic Ray Isotope Spectrometer (CRIS) on NASA's ACE mission since 1997 with high statistical accuracy. Precise observations of Li, Be, B can be used to constrain GCR propagation models. We find that a diffusive reacceleration model with parameters that best match CRIS results (e.g. B/C, Li/C, etc) are also consistent with other GCR observations. A {approx}15-20% overproduction of Li and Be in the model predictions is attributed to uncertainties in the production cross-section data. The latter becomes a significant limitation to the study of rare GCR species that are generated predominantly via spallation.

de Nolfo, Georgia A.; Moskalenko, I.V.; Binns, W.R.; Christian, E.R.; Cummings, A.C.; Davis, A.J.; George, J.S.; Hink, P.L.; Israel, M.H.; Leske, R.A.; Lijowski, M.; Mewaldt, R.A.; Stone, E.C.; Strong, A.W.; von Rosenvinge, T.T.; Wiedenbeck, M.E.; Yanasak, N.E.; /NASA, Goddard /Stanford U., HEPL /Washington U., St. Louis /NASA, Headquarters /Caltech, SRL /Aerospace Corp. /Garching, Max Planck Inst., MPE /Caltech, JPL

2006-11-15T23:59:59.000Z

118

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission The Director of the Office of Energy Policy and Systems Analysis is the primary energy policy advisor to the Secretary and Deputy Secretary on domestic energy policy development and implementation as well as DOE policy analysis and activities. The role of the Office of Energy Policy and Systems Analysis is to deliver unbiased energy analysis to the Department of Energy's leadership on existing and prospective energy-related policies, focusing in part on integrative analysis of energy systems. The Office of Energy Policy and Systems Analysis includes the Secretariat of the Quadrennial Energy Review with primary responsibility for supporting the White House interagency process and providing to it data collection, analysis, stakeholder engagement, and data synthesis.

119

NASA low power DIPS [Dynamic Isotope Power System] conceptual design requirements document  

DOE Green Energy (OSTI)

This document describes the requirements for a low power (0.5--1.0 kwe) Dynamic Isotope Power System (DIPS) for interplanetary and space exploration missions using the Mariner Mark II spacecraft. The reference mission used to establish these requirements was the Cassini orbiter mission to Saturn. Requirements specific to two other missions (Outer Planet Orbiter/Probe and Comet Nucleus Sample Return) are also included. A list of references used to develop these requirements is provided. 17 refs., 2 figs., 2 tabs.

Johnson, G.; Determan, W.; Otting, W.

1990-01-01T23:59:59.000Z

120

Mission Critical Networking  

SciTech Connect

Mission-Critical Networking (MCN) refers to networking for application domains where life or livelihood may be at risk. Typical application domains for MCN include critical infrastructure protection and operation, emergency and crisis intervention, healthcare services, and military operations. Such networking is essential for safety, security and economic vitality in our complex world characterized by uncertainty, heterogeneity, emergent behaviors, and the need for reliable and timely response. MCN comprise networking technology, infrastructures and services that may alleviate the risk and directly enable and enhance connectivity for mission-critical information exchange among diverse, widely dispersed, mobile users.

Eltoweissy, Mohamed Y.; Du, David H.C.; Gerla, Mario; Giordano, Silvia; Gouda, Mohamed; Schulzrinne, Henning; Youssef, Moustafa

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The ALEXIS mission recovery  

SciTech Connect

The authors report the recovery of the ALEXIS small satellite mission. ALEXIS is a 113-kg satellite that carries an ultrasoft x-ray telescope array and a high-speed VHF receiver/digitizer (BLACKBEARD), supported by a miniature spacecraft bus. It was launched by a Pegasus booster on 1993 April 25, but a solar paddle was damaged during powered flight. Initial attempts to contact ALEXIS were unsuccessful. The satellite finally responded in June, and was soon brought under control. Because the magnetometer had failed, the rescue required the development of new attitude control-techniques. The telemetry system has performed nominally. They discuss the procedures used to recover the ALEXIS mission.

Bloch, J.; Armstrong, T.; Dingler, B.; Enemark, D.; Holden, D.; Little, C.; Munson, C.; Priedhorsky, B.; Roussel-Dupre, D.; Smith, B. [Los Alamos National Lab., NM (United States); Warner, R.; Dill, B.; Huffman, G.; McLoughlin, F.; Mills, R.; Miller, R. [AeroAstro, Inc., Herndon, VA (United States)

1994-03-01T23:59:59.000Z

122

JGI - DOE Mission Relevance  

NLE Websites -- All DOE Office Websites (Extended Search)

User Programs User Programs Project Management Office Community Science Program Emerging Technologies Opportunity Program Technology Development Pilot Program Genomic Encyc. of Bacteria and Archaea MyJGI: Information for Collaborators DOE Mission Relevance CSP | Overview | How to Propose a Project | Review Process | DOE Relevance Proposal Schedule | FAQ The Department of Energy Joint Genome Institute (DOE JGI) is managed by the Department of Energy's Office of Biological and Environmental Research (OBER) to produce high-throughput DNA sequencing and analysis in support of its missions in alternative energy, global carbon cycling, and biogeochemistry. These areas mirror DOE and national priorities to develop abundant sources of clean energy, to control greenhouse gas accumulation in

123

Climate VISION: Program Mission  

Office of Scientific and Technical Information (OSTI)

PROGRAM MISSION PROGRAM MISSION Climate VISION - Voluntary Innovative Sector Initiatives: Opportunities Now - is a voluntary public-private partnership initiative to improve energy efficiency and greenhouse gas intensity in energy-intensive industrial sectors. Climate VISION - Voluntary Innovative Sector Initiatives: Opportunities Now - is a public-private partnership initiative launched by the Department of Energy on February 12, 2003. Its primary goal is to identify and pursue cost-effective options to improve the energy or GHG intensity of industry operations by accelerating the transition to technologies, practices, and processes that are cleaner, more efficient, and capable of reducing, capturing or sequestering GHGs. Climate VISION links these objectives with technology development,

124

Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site  

Science Conference Proceedings (OSTI)

In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

Not Available

1991-09-01T23:59:59.000Z

125

AVLIS enrichment of medical isotopes  

SciTech Connect

Under the Sponsorship of the United states Enrichment Corporation (USEC), we are currently investigating the large scale separation of several isotopes of medical interest using atomic vapor isotope separation (AVLIS). This work includes analysis and experiments in the enrichment of thallium 203 as a precursor to the production of thallium 201 used in cardiac imaging following heart attacks, on the stripping of strontium 84 from natural strontium as precursor to the production of strontium 89, and on the stripping of lead 210 from lead used in integrated circuits to reduce the number of alpha particle induced logic errors.

Haynam, C.A.; Scheibner, K.F.; Stern, R.C.; Worden, E.F. [Lawrence Livermore National Laboratory, CA (United States)

1996-12-31T23:59:59.000Z

126

Selenide isotope generator for the Galileo Mission: safety test plan  

DOE Green Energy (OSTI)

The intent of this safety test plan is to outline particular kinds of safety tests designed to produce information which would be useful in the safety analysis process. The program deals primarily with the response of the RTG to accident environments; accordingly two criteria were established: (1) safety tests should be performed for environments which are the most critical in terms of risk contribution; and (2) tests should be formulated to determine failure conditions for critical heat source components rather than observe heat source response in reference accident environments. To satisfy criterion 1. results of a recent safety study were used to rank various accidents in terms of expected source terms. Six kinds of tests were then proposed which would provide information meeting the second criterion.

Not Available

1979-01-31T23:59:59.000Z

127

The use of post detonation analysis of stable isotope ratios to determine the type and production process of the explosive involved  

SciTech Connect

The detonation of a series of explosives was performed in a controlled manner to collect the resulting, solid residue or {open_quotes}soot.{close_quotes} This residue was examined to determine the ratios of the stable carbon, hydrogen, and nitrogen isotopes. The goal of the experiment was to determine if these ratios could be used to indicate, from the post detonation residues, the type and origin of the detonated explosive. The ratios of the stated stable isotopes in the undetonated explosive were also determined. Despite some reservations in the quality of the data resulting from contamination by nonexplosive components, certain trends can be discerned. (1) Carbon isotopes allow aromatic explosives to be distinguished from nonaromatic explosives. This trend seems to carry through the detonation so that the distinction might be made after the fact. (2) The amination process for TATB can be detected through the hydrogen and, to some extent, the nitrogen isotope ratios. Unfortunately, the data are not sufficiently good to determine if this differential carries through the detonation. (3) The relative magnitude and sign of the nitrogen isotope ratio seems to carry through the detonation: some exchange with atmospheric nitrogen is probable. Even though this set of experiments must also be viewed as preliminary, there is a definite indication that certain qualitative characteristics of explosives can be detected after the detonation. This {open_quotes}signature{close_quotes} could have application to both intelligence and counter terrorism.

McGuire, R.R.; Velsko, C.A.; Lee, C.G.; Raber, E.

1993-03-05T23:59:59.000Z

128

About Brookhaven Mission  

NLE Websites -- All DOE Office Websites (Extended Search)

passion passion for discover y Cover photo: Map showing magnetic flux lines for nickel nanoparticles passion for discover y About Brookhaven Mission Brookhaven National Laboratory's primary mission is to deliver science-based solutions to the nation's energy, environmental, and security needs. The Laboratory is noted for the design, construction, and operation of large-scale, cutting-edge research facilities that support thousands of scientists worldwide, its fundamental research into the nature of matter and materials and for biomedical and climate studies. Location Upton, New York (on Long Island, 60 miles east of New York City) Funding About $500 million, primarily from the U.S. Department of Energy (DOE) Management Brookhaven National Laboratory is operated and managed for the U.S. Department

129

EnviroMission Ltd | Open Energy Information  

Open Energy Info (EERE)

EnviroMission Ltd EnviroMission Ltd Jump to: navigation, search Name EnviroMission Ltd Place Melbourne, Victoria, Australia Zip 3205 Sector Solar Product Australia-based firm that develops, owns and operates solar thermal convection tower power plants. Coordinates -37.817532°, 144.967148° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-37.817532,"lon":144.967148,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Pump Systems Matter Mission and Vision:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pump Systems Matter Mission and Vision: Pump Systems Matter Mission and Vision: Pump Systems Matter(tm) (PSM) places a primary focus on pump systems education and outreach and addresses energy savings and total cost of pump ownership. Vision: Pump Systems Matter initiative assists North American pump users gain a more competitive business advantage through strategic, broad-based energy management and pump system performance optimization. Mission: To provide the marketplace with tools and collaborative opportunities to integrate pump system performance optimization and efficient energy management practices into normal business operations. Essential Elements: * Build awareness of the benefits of systems optimization and pump system life cycle cost at the management, production and technical levels of companies throughout the supply chain.

131

Mission | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

132

Stable Isotope Enrichment Capabilities at ORNL  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

Egle, Brian [ORNL; Aaron, W Scott [ORNL; Hart, Kevin J [ORNL

2013-01-01T23:59:59.000Z

133

Mission Motors | Open Energy Information  

Open Energy Info (EERE)

Motors Motors Jump to: navigation, search Name Mission Motors Place San Francisco, California Sector Vehicles Product Electric Motorcycles Year founded 2007 Number of employees 11-50 Website http://www.ridemission.com/ Coordinates 37.7749295°, -122.4194155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7749295,"lon":-122.4194155,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Glossary Term - Isotope  

NLE Websites -- All DOE Office Websites (Extended Search)

Helios Previous Term (Helios) Glossary Main Index Next Term (Joule) Joule Isotope The Three Isotopes of Hydrogen - Protium, Deuterium and Tritium Atoms that have the same number of...

135

Discovery of Scandium, Titanium, Mercury, and Einsteinium Isotopes  

E-Print Network (OSTI)

Currently, twenty-three scandium, twenty-five titanium, forty mercury and seventeen einsteinium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

D. Meierfrankenfeld; A. Bury; M. Thoennessen

2010-03-26T23:59:59.000Z

136

Method for separating isotopes  

DOE Patents (OSTI)

Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

Jepson, B.E.

1975-10-21T23:59:59.000Z

137

Stable isotope studies  

SciTech Connect

The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

Ishida, T.

1992-01-01T23:59:59.000Z

138

Our Mission | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

139

Isotope separation by photochromatography  

DOE Patents (OSTI)

An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

Suslick, Kenneth S. (Stanford, CA)

1977-01-01T23:59:59.000Z

140

The XEUS Mission  

E-Print Network (OSTI)

XEUS, the X-ray Evolving Universe Spectroscopy mission, is at present an ESA-ISAS initiative for the study of the evolution of the hot Universe in the post-Chandra/XMM-Newton era. The key science objectives of XEUS are: Search for the origin, and subsequent study of growth, of the first massive black holes in the early Universe; assessment of the formation of the first gravitationally bound dark matter dominated systems and their evolution; study of the evolution of metal synthesis up till the present epoch; characterization of the true intergalactic medium. To reach these ambitious science goals the two salient characteristics of the XEUS observatory entail: (1) Its effective spectroscopic grasp, combining a sensitive area > 20 m^2 below 2 keV with a spectral resolution better than 2 eV. This allows significant detection of the most prominent X-ray emission lines (e.g. O-VII, Si-XIII and Fe-XXV) in cosmologically distant sources against the sky background; (2) Its angular resolving power, between 2 and 5 arc seconds, to minimize source confusion as well as noise due to the galactic X-ray foreground emission. To accommodate these instrument requirements a mission concept has been developed featuring an X-ray telescope of 50-m focal length, comprising two laser-locked (separate) mirror and detector spacecraft's. The telescope is injected in a low earth orbit with an inclination commensurate with the ISS. At present an on-orbit growth of the mirror spacecraft is foreseen with the aid of the ISS, raising the mirror diameter from 4.5 to 10 m. The detector spacecraft will be replaced at 5 year intervals after run-out of consumables with an associated upgrade of the focal plane package.

Johan Bleeker; Mariano Mendez

2002-07-12T23:59:59.000Z

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NEET Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEET Mission NEET Mission NEET Mission The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies that directly support and complement the Office of Nuclear Energy's (NE) development of new and advanced reactor concepts and fuel cycle technologies. The program will focus on innovative research relevant to multiple reactor and fuel cycle concepts that offer the promise of dramatically improved performance. Crosscutting Technology Development (CTD) include the development of advanced reactor materials, research on innovative nuclear manufacturing methods, new sensor technologies and creative approaches to further reduce proliferation risks. Energy Innovation Hub for Modeling & Simulation (HUB) will provide crosscutting support to facilitate future improvement of

142

Diversity Issues Committee - Mission Statement  

NLE Websites -- All DOE Office Websites (Extended Search)

Diversity Issues Committee Mission Statement Investigate and study issues relating to diversity in the SUF workforce. Provide recommendations to SUF management to improve the work...

143

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

Stevens, Charles G. (Pleasanton, CA)

1978-01-01T23:59:59.000Z

144

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

Stevens, C.G.

1978-08-29T23:59:59.000Z

145

I. Nuclear Production Reaction and Chemical Isolation Procedure for 240Am II. New Superheavy Element Isotopes: 242Pu(48Ca,5n)285-114  

E-Print Network (OSTI)

material and common nuclear fission products in the 1 eV of destroying long-lived nuclear fission products by neutronFlerov Laboratory of Nuclear Reactions Fission product Focal

Ellison, Paul Andrew

2011-01-01T23:59:59.000Z

146

Project Management Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economically as possible. Implementation and completion of the deactivation project will further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S&M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities, that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project.

NONE

1995-04-01T23:59:59.000Z

147

Amended Record of Decision for the Department of Energy's Final Programmatic Environmental Impact Statement for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the U.S. (DOE/EIS-0310) (08/13/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Federal Register / Vol. 69, No. 156 / Friday, August 13, 2004 / Notices (LLW), mixed low-level waste (MLLW), Transuranic (TRU) waste, and immobilized low activity waste to support clean up at Hanford and to assist other DOE sites in completing their cleanup programs. DOE decided in the ROD to (1) limit the volumes of LLW and MLLW received at Hanford from other sites for disposal; (2) dispose of LLW in lined disposal facilities, a practice already used for MLLW; (3) construct and operate a lined, combined-use disposal facility (previously referenced in this Notice of Intent as the ''Integrated Disposal Facility'') in Hanford's 200 East Area for disposal of LLW and MLLW, and further limit offsite waste receipts until the IDF is constructed; (4) treat LLW and MLLW

148

Draft Mission Plan Amendment  

SciTech Connect

The Department of Energy`s Office Civilian Radioactive Waste Management has prepared this document to report plans for the Civilian Radioactive Waste Management Program, whose mission is to manage and dispose of the nation`s spent fuel and high-level radioactive waste in a manner that protects the health and safety of the public and of workers and the quality of the environment. The Congress established this program through the Nuclear Waste Policy Act of 1982. Specifically, the Congress directed us to isolate these wastes in geologic repositories constructed in suitable rock formations deep beneath the surface of the earth. In the Nuclear Waste Policy Amendments Act of 1987, the Congress mandated that only one repository was to be developed at present and that only the Yucca Mountain candidate site in Nevada was to be characterized at this time. The Amendments Act also authorized the construction of a facility for monitored retrievable storage (MRS) and established the Office of the Nuclear Waste Negotiator and the Nuclear Waste Technical Review Board. After a reassessment in 1989, the Secretary of Energy restructured the program, focusing the repository effort scientific evaluations of the Yucca Mountain candidate site, deciding to proceed with the development of an MRS facility, and strengthening the management of the program. 48 refs., 32 figs.

1991-09-01T23:59:59.000Z

149

Isotope Enrichment Calculator  

Science Conference Proceedings (OSTI)

... incremental isotopic percentages which are compared with an input experimentally derived profile. The theoretical profile of 15 N percentage which ...

2012-10-09T23:59:59.000Z

150

Isotopic Generation and Confirmation of the PWR Application Model  

SciTech Connect

The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from pressurized water reactors (PWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000). The isotopic database consists of the set of 14 actinides and 15 fission products presented in Section 3.5.2.1.1 of YMP 2000 for use in CSNF burnup credit. This set of 29 isotopes is referred to as the principal isotopes. The oxygen isotope from the UO{sub 2} fuel is also included in the database. The isotopic database covers enrichments of {sup 235}U ranging from 1.5 to 5.5 weight percent (wt%) and burnups ranging from approximately zero to 75 GWd per metric ton of uranium (mtU). The choice of fuel assembly and operating history values used in generating the isotopic database are provided is Section 5. Tables of isotopic concentrations for the 29 principal isotopes (plus oxygen) as a function of enrichment and burnup are provided in Section 6.1. Results of the confirmation of the conservatism with respect to criticality in the isotopic concentration values are provided in Section 6.2.

L.B. Wimmer

2003-11-10T23:59:59.000Z

151

Isotopically controlled semiconductors  

SciTech Connect

Semiconductor bulk crystals and multilayer structures with controlled isotopic composition have attracted much scientific and technical interest in the past few years. Isotopic composition affects a large number of physical properties, including phonon energies and lifetimes, bandgaps, the thermal conductivity and expansion coefficient and spin-related effects. Isotope superlattices are ideal media for self-diffusion studies. In combination with neutron transmutation doping, isotope control offers a novel approach to metal-insulator transition studies. Spintronics, quantum computing and nanoparticle science are emerging fields using isotope control.

Haller, Eugene E.

2001-12-21T23:59:59.000Z

152

ISOTOPE CONVERSION DEVICE  

DOE Patents (OSTI)

This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

1957-12-01T23:59:59.000Z

153

DOE/EA-1488: Finding of No Significant Impact U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory (12/10/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT FINDING OF NO SIGNIFICANT IMPACT U-233 DISPOSITION, MEDICAL ISOTOPE PRODUCTION, AND BUILDING 3019 COMPLEX SHUTDOWN AT THE OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE AGENCY: U. S. Department of Energy ACTION: Finding of No Significant Impact. SUMMARY: The U. S. Department of Energy (DOE) has completed an Environmental Assessment (EA) [DOE/EA-1488] that evaluates the processing of uranium-233 ( 233 U) stored at the Oak Ridge National Laboratory (ORNL) and other small quantities of similar material currently stored at other DOE sites in order to render it suitable for safe, long-term, economical storage. The 233 U is stored within Bldg. 3019A, which is part of the Bldg. 3019 Complex. Additionally, the proposed action would increase the availability of medical

154

ARM - Measurement - Isotope ratio  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsIsotope ratio govMeasurementsIsotope ratio ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Isotope ratio Ratio of stable isotope concentrations. Categories Atmospheric Carbon, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes Field Campaign Instruments FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes Datastreams FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes

155

Seasat: Results of the Mission  

Science Conference Proceedings (OSTI)

On 26 June 1978 the world's first oceanographic satellite, Seasat, was launched into orbit, beginning a 104-day mission of observing the oceans. After an extensive analysis of the accuracy of data from the satellite by all groups interested in ...

Robert H. Stewart

1988-12-01T23:59:59.000Z

156

Mission and Goals | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission and Goals The mission of the Advanced Photon Source (APS) is to deliver world-class science and technology by operating an outstanding synchrotron radiation research...

157

Sources, production et transfert du carbone organique dissous dans les bassins versants lmentaires sur socle : apports des isotopes stables du carbone.  

E-Print Network (OSTI)

??En dpit de son importance pour les cosystmes aquatiques, l'origine et les mcanismes de production du carbone organique dissous (COD) sont toujours sujets discussion. (more)

Lambert, Thibault

2013-01-01T23:59:59.000Z

158

Laser Isotope Enrichment for Medical and Industrial Applications  

SciTech Connect

Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old calutrons (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation repression. In this scheme a gas, of the selected isotopes for enrichment, is irradiated with a laser at a particular wavelength that would excite only one of the isotopes. The entire gas is subject to low temperatures sufficient to cause condensation on a cold surface. Those molecules in the gas that the laser excited are not as likely to condense as are the unexcited molecules. Hence the gas drawn out of the system will be enriched in the isotope that was excited by the laser. We have evaluated the relative energy required in this process if applied on a commercial scale. We estimate the energy required for laser isotope enrichment is about 20% of that required in centrifuge separations, and 2% of that required by use of "calutrons".

Leonard Bond

2006-07-01T23:59:59.000Z

159

Economical Production of Pu-238  

SciTech Connect

All space exploration missions traveling beyond Jupiter must use radioisotopic power sources for electrical power. The best isotope to power these sources is plutonium-238. The US supply of Pu-238 is almost exhausted and will be gone within the next decade. The Department of Energy has initiated a production program with a $10M allocation from NASA but the cost is estimated at over $100 M to get to production levels. The Center for Space Nuclear Research has conceived of a potentially better process to produce Pu-238 earlier and for significantly less cost. The new process will also produce dramatically less waste. Potentially, the front end costs could be provided by private industry such that the government only had to pay for the product produced. Under a NASA Phase I NIAC grant, the CSNR has evaluated the feasibility of using a low power, commercially available nuclear reactor to produce at least 1.5 kg of Pu-238 per year. The impact on the neutronics of the reactor have been assessed, the amount of Neptunium target material estimated, and the production rates calculated. In addition, the size of the post-irradiation processing facility has been established. In addition, a new method for fabricating the Pu-238 product into the form used for power sources has been identified to reduce the cost of the final product. In short, the concept appears to be viable, can produce the amount of Pu-238 needed to support the NASA missions, can be available within a few years, and will cost significantly less than the current DOE program.

Steven D. Howe; Douglas Crawford; Jorge Navarro; Terry Ring

2013-02-01T23:59:59.000Z

160

NNSA Production Office | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Production Office | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing...

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Seversk Plutonium Production Elimination Project (SPPEP) | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Seversk Plutonium Production Elimination Project (SPPEP) | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

162

Zheleznogorsk Plutonium Production Elimination Project (ZPPEP...  

NLE Websites -- All DOE Office Websites (Extended Search)

Zheleznogorsk Plutonium Production Elimination Project (ZPPEP) | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

163

Measurement of Trace Uranium Isotopes  

Science Conference Proceedings (OSTI)

The extent to which thermal ionization mass spectrometry (TIMS) can measure trace quantities of 233U and 236U in the presence of a huge excess of natural uranium is evaluated. This is an important nuclear non-proliferation measurement. Four ion production methods were evaluated with three mass spectrometer combinations. The most favorable combinations are not limited by abundance sensitivity; rather, the limitations are the ability to generate a uranium ion beam of sufficient intensity to obtain the required number of counts on the minor isotopes in relationship to detector background. The most favorable situations can measure isotope ratios in the range of E10 if sufficient sample intensity is available. These are the triple sector mass spectrometer with porous ion emitters (PIE) and the single sector mass spectrometer with energy filtering.

Matthew G. Watrous; James E. Delmore

2011-05-01T23:59:59.000Z

164

Cold Fusion Production and Decay of Neutron-Deficient Isotopes of Dubnium and Development of Extraction Systems for Group V Elements  

E-Print Network (OSTI)

separator for the study of fusion reaction products."by heavy-ion induced fusion?" Zeitschrift Fur Physik a-J. Wilczy?ski (2003). "Fusion by Diffusion." Acta Physica

Gates, Jacklyn M.

2008-01-01T23:59:59.000Z

165

Cold Fusion Production and Decay of Neutron-Deficient Isotopes of Dubnium and Development of Extraction Systems for Group V Elements  

E-Print Network (OSTI)

of transfermium elements in cold fusion reactions." Physical1. Introduction Part I: Cold Fusion Production and Decay of1.2. Hot versus Cold Fusion 1.3. Excitation Functions 1.3.1.

Gates, Jacklyn M.

2008-01-01T23:59:59.000Z

166

I. Nuclear Production Reaction and Chemical Isolation Procedure for 240Am II. New Superheavy Element Isotopes: 242Pu(48Ca,5n)285-114  

E-Print Network (OSTI)

48 Ca, 5n) 285 114 nuclear reaction cross section. . . . .240 Am(n, f ) cross section 1.4 Nuclear properties of 2401.5 Nuclear reactions for the production of 240 Am . 2

Ellison, Paul Andrew

2011-01-01T23:59:59.000Z

167

HYDROGEN ISOTOPE TARGETS  

DOE Patents (OSTI)

The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

Ashley, R.W.

1958-08-12T23:59:59.000Z

168

Hybrid isotope separation scheme  

DOE Patents (OSTI)

A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

Maya, Jakob (Brookline, MA)

1991-01-01T23:59:59.000Z

169

Hydraulic Institute Mission and Vision:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Institute Mission and Vision: Institute Mission and Vision: Vision: To be a global authority on pumps and pumping systems. Mission: To be a value-adding resource to member companies and pump users worldwide by: * Developing and delivering comprehensive industry standards. * Expanding knowledge by providing education and tools for the effective application, testing, installation, operation and maintenance of pumps and pumping systems. * Serving as a forum for the exchange of industry information. The Hydraulic Institute is a non-profit industry (trade) association established in 1917. HI and its members are dedicated to excellence in the engineering, manufacture, and application of pumping equipment. The Institute plays a leading role in the development of pump standards in North America and worldwide. HI

170

Project management plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory. Environmental Restoration Program  

Science Conference Proceedings (OSTI)

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place nineteen former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economically as possible. Implementation and completion of the deactivation project win further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S&M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project.

NONE

1995-04-01T23:59:59.000Z

171

Stable Isotope Enrichment by Thermal Diffusion, Chemical Exchange, and Distillation  

SciTech Connect

Applications of stable isotopes in medicine are becoming more widespread. This has resulted from the increased availability and reduced cost of these isotopes and the improved reliability and sensitivity of detection techniques such as carbon-13 nuclear magnetic resonance. Isotopes are used in compounds labeled with either the stable isotope itself, such as carbon-13 and oxygen-18, or with the radioactive isotope that can be produced by irradiating the stable isotope, such as the irradiation of xenon-124 to produce iodine-125. As the demand for stable isotopes increases, larger scale production facilities will be justifiable. The increased size of production facilities should result in yet lower unit selling prices. A large number of methods has been suggested for the separation of stable isotopes. This paper concerns itself with four methods which have proven extremely useful for the separation of the isotopes of low and medium atomic weight elements. The four processes discussed are gas phase thermal diffusion, liquid phase thermal diffusion, chemical exchange, and distillation.

Schwind, Dr. Roger A.; Rutherford, Dr. William M.

1973-03-01T23:59:59.000Z

172

Isotopic Analysis | Open Energy Information  

Open Energy Info (EERE)

Structural: Hydrological: Source of fluids, circulation, andor mixing. Thermal: Heat source and general reservoir temperatures Dictionary.png Isotopic Analysis: Isotopes...

173

Fuel Cycle and Isotopes Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Divisions Fuel Cycle and Isotopes Division Jeffrey Binder, Division Director Jeffrey Binder, Division Director The Fuel Cycle and Isotopes Division (FCID) of the Nuclear Science...

174

Isotope Enrichment | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern electromagnetic isotope separator developed and being scaled-up to replace the Manhattan Project-era Calutrons used for stable isotope enrichment. Since 1945, ORNL has...

175

Laser isotope separation  

DOE Patents (OSTI)

A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

1975-11-26T23:59:59.000Z

176

Isotope GeochemistryIsotope Geochemistry Isotopes do not fractionate during partial  

E-Print Network (OSTI)

/204Pb, 207Pb/204Pb, due to U and Th decay The isotope geology of PbThe isotope geology of Pb #12;The isotope geology of PbThe isotope geology of Pb µ = 238U/204Pb Primeval lead (Isotope ratios of Pb tT t eea Pb Pb -µ+= 30.90 204 206 == a Pb Pb i 29.100 204 207 == b Pb Pb i #12;The isotope geology

Siebel, Wolfgang

177

Odyssey: a Solar System Mission  

E-Print Network (OSTI)

The Solar System Odyssey mission uses modern-day high-precision experimental techniques to test the laws of fundamental physics which determine dynamics in the solar system. It could lead to major discoveries by using demonstrated technologies. The mission proposes to perform a set of precision gravitation experiments from the vicinity of Earth to the outer Solar System. Its scientific objectives can be summarized as follows: i) test of the gravity force law in the Solar System up to and beyond the orbit of Saturn; ii) precise investigation of navigation anomalies at the fly-bys; iii) measurement of Eddington's parameter at occultations; iv) mapping of gravity field in the outer solar system and study of the Kuiper belt. To this aim, the Odyssey mission is built up on a main spacecraft, designed to fly up to 13 AU, with the following components: a) a high-precision accelerometer, with bias-rejection system, measuring the deviation of the trajectory from the geodesics; b) Ka-band transponders, as for Cassini, for a precise range and Doppler measurement up to 13 AU, with additional VLBI equipment; c) optional laser equipment, which would allow one to improve the range and Doppler measurement. In this baseline concept, the main spacecraft is designed to operate beyond the Saturn orbit, up to 13 AU. It experiences multiple planetary fly-bys at Earth, Mars or Venus, and Jupiter. The cruise and fly-by phases allow the mission to achieve its baseline scientific objectives (i) to iii) in the above list). In addition to this baseline concept, the Odyssey mission proposes the release of the Enigma radio-beacon at Saturn, allowing one to extend the deep space gravity test up to at least 50 AU, while achieving the scientific objective of a mapping of gravity field in the outer Solar System.

B. Christophe; P. H. Andersen; J. D. Anderson; S. Asmar; Ph. Brio; O. Bertolami; R. Bingham; F. Bondu; Ph. Bouyer; S. Bremer; J. -M. Courty; H. Dittus; B. Foulon; P. Gil; U. Johann; J. F. Jordan; B. Kent; C. Lmmerzahl; A. Lvy; G. Mtris; O. Olsen; J. Pramos; J. D. Prestage; S. V. Progrebenko; E. Rasel; A. Rathke; S. Reynaud; B. Rievers; E. Samain; T. J. Sumner; S. Theil; P. Touboul; S. Turyshev; P. Vrancken; P. Wolf; N. Yu

2007-11-13T23:59:59.000Z

178

Isotope Shift Measurements of Stable and Short-Lived Lithium Isotopes for Nuclear Charge Radii Determination  

E-Print Network (OSTI)

Changes in the mean-square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a new laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8 ms lifetime isotope with production rates on the order of only 10,000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope Li-11 at the on-line isotope separators at GSI, Darmstadt, Germany and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results.

Nrtershuser, W; Ewald, G; Dax, A; Behr, J; Bricault, P; Bushaw, B A; Dilling, J; Dombsky, M; Drake, G W F; Gtte, S; Kluge, H -J; Khl, Th; Lassen, J; Levy, C D P; Pachucki, K; Pearson, M; Puchalski, M; Wojtaszek, A; Yan, Z -C; Zimmermann, C

2010-01-01T23:59:59.000Z

179

Mission and Functions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission and Functions Mission and Functions Mission and Functions Office of Technology Mission and Functions Mission The Office of Technology manages the Technology Deployment and Technology Development programs to improve the security posture of the Department of Energy and the protection of its assets and facilities through the deployment of new safeguards and security technologies and development of advanced technologies that reduce operating costs, save protective force lives, and improve security effectiveness. Functions Conducts security system testing and analyses of safeguards and security technology and related equipment and techniques associated with programmatic mission requirements for deployment at field and Headquarters sites. Assembles, leads, and manages teams of subject-matter experts to review,

180

RELAP5 model of the high flux isotope reactor with low enriched fuel thermal flux profiles  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor (HFIR) currently uses highly enriched uranium (HEU) fabricated into involute-shaped fuel plates. It is desired that HFIR be able to use low enriched uranium (LEU) fuel while preserving the current performance capability for its diverse missions in material irradiation studies, isotope production, and the use of neutron beam lines for basic research. Preliminary neutronics and depletion simulations of HFIR with LEU fuel have arrived to feasible fuel loadings that maintain the neutronics performance of the reactor. This article illustrates preliminary models developed for the analysis of the thermal-hydraulic characteristics of the LEU core to ensure safe operation of the reactor. The beginning of life (BOL) LEU thermal flux profile has been modeled in RELAP5 to facilitate steady state simulation of the core cooling, and of anticipated and unanticipated transients. Steady state results are presented to validate the new thermal power profile inputs. A power ramp, slow depressurization at the outlet, and flow coast down transients are also evaluated. (authors)

Banfield, J.; Mervin, B.; Hart, S.; Ritchie, J.; Walker, S.; Ruggles, A.; Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee Knoxville, Knoxville, TN 37996-2300 (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A simulation pipeline for the Planck mission  

E-Print Network (OSTI)

We describe an assembly of numerical tools to model the output data of the Planck satellite. These start with the generation of a CMB sky in a chosen cosmology, add in various foreground sources, convolve the sky signal with arbitrary, even non-symmetric and polarised beam patterns, derive the time ordered data streams measured by the detectors depending on the chosen satellite-scanning strategy, and include noise signals for the individual detectors and electronic systems. The simulation products are needed to develop, verify, optimise, and characterise the accuracy and performance of all data processing and scientific analysis steps of the Planck mission, including data handling, data integrity checking, calibration, map making, physical component separation, and power spectrum estimation. In addition, the simulations allow detailed studies of the impact of many stochastic and systematic effects on the scientific results. The efficient implementation of the simulation allows the build-up of extended statistics of signal variances and co-variances. Although being developed specifically for the Planck mission, it is expected that the employed framework as well as most of the simulation tools will be of use for other experiments and CMB-related science in general.

Martin Reinecke; Klaus Dolag; Reinhard Hell; Matthias Bartelmann; Torsten Ensslin

2005-08-24T23:59:59.000Z

182

Isotopically controlled semiconductors  

SciTech Connect

The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

Haller, Eugene E.

2006-06-19T23:59:59.000Z

183

Ceramic fuel pellets for isotopic heat sources  

DOE Green Energy (OSTI)

The General-Purpose Heat Source (GPHS) will supply power for future space missions. The GPHS fuel pellets are fabricated by hot pressing a blended mixture of /sup 238/PuO/sub 2/ granules prepared from calcined plutonium oxalate. Results of a test program which led to the development of the production process are described.

Rankin, D.T.; Congdon, J.W.; Livingston, J.T.; Duncan, N.D.

1980-01-01T23:59:59.000Z

184

Mission  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Energy Efficiency and Renewable Energy (EERE) is at the center of creating the clean energy economy today. EERE leads the U.S. Department of Energy's efforts to develop and...

185

Mission  

NLE Websites -- All DOE Office Websites (Extended Search)

Underground experiments and ground-based telescopes uncover the nature of dark matter and dark energy. The Fermilab complex efficiently and safely delivers the highest levels of...

186

Mission  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Energy Efficiency and Renewable Energy (EERE) is at the center of creating the clean energy economy today. They lead the U.S. Department of Energy's efforts to develop and deliver...

187

Mission design for LISA Pathfinder  

E-Print Network (OSTI)

Here we describe the mission design for SMART-2/LISA Pathfinder. The best trade-off between the requirements of a low-disturbance environment and communications distance is found to be a free-insertion Lissajous orbit around the first co-linear Lagrange point of the Sun-Earth system L1, 1.5x 10^6 km from Earth. In order to transfer SMART-2/LISA Pathfinder from a low Earth orbit, where it will be placed by a small launcher, the spacecraft carries out a number of apogee-raise manoeuvres, which ultimatively place it to a parabolic escape trajectory towards L1. The challenges of the design of a small mission are met, fulfilling the very demanding technology demonstration requirements without creating excessive requirements on the launch system or the ground segment.

M. Landgraf; M. Hechler; S. Kemble

2004-11-15T23:59:59.000Z

188

The genesis solar-wind sample return mission  

SciTech Connect

The compositions of the Earth's crust and mantle, and those of the Moon and Mars, are relatively well known both isotopically and elementally. The same is true of our knowledge of the asteroid belt composition, based on meteorite analyses. Remote measurements of Venus, the Jovian atmosphere, and the outer planet moons, have provided some estimates of their compositions. The Sun constitutes a large majority, > 99%, of all the matter in the solar system. The elemental composition of the photosphere, the visible 'surface' of the Sun, is constrained by absorption lines produced by particles above the surface. Abundances for many elements are reported to the {+-}10 or 20% accuracy level. However, the abundances of other important elements, such as neon, cannot be determined in this way due to a relative lack of atomic states at low excitation energies. Additionally and most importantly, the isotopic composition of the Sun cannot be determined astronomically except for a few species which form molecules above sunspots, and estimates derived from these sources lack the accuracy desired for comparison with meteoritic and planetary surface samples measured on the Earth. The solar wind spreads a sample of solar particles throughout the heliosphere, though the sample is very rarified: collecting a nanogram of oxygen, the third most abundant element, in a square centimeter cross section at the Earth's distance from the Sun takes five years. Nevertheless, foil collectors exposed to the solar wind for periods of hours on the surface of the Moon during the Apollo missions were used to determine the helium and neon solar-wind compositions sufficiently to show that the Earth's atmospheric neon was significantly evolved relative to the Sun. Spacecraft instruments developed subsequently have provided many insights into the composition of the solar wind, mostly in terms of elemental composition. These instruments have the advantage of observing a number of parameters simultaneously, including charge state distributions, velocities, and densities, all of which have been instrumental in characterizing the nature of the solar wind. However, these instruments have lacked the ability to make large dynamic range measurements of adjacent isotopes (i.e., {sup 17}O/{sup 16}O {approx} 2500) or provide the permil (tenths of percent) accuracy desirable for comparison with geochemical isotopic measurements. An accurate knowledge of the solar and solar-wind compositions helps to answer important questions across a number of disciplines. It aids in understanding the acceleration mechanisms of the solar wind, gives an improved picture of the charged particle environment near the photosphere, it constrains processes within the Sun over its history, and it provides a database by which to compare differences among planetary systems with the solar system's starting composition, providing key information on planetary evolution. For example, precise knowledge of solar isotopic and elemental compositions of volatile species in the Sun provides a baseline for models of atmospheric evolution over time for Earth, Venus, and Mars. Additionally, volatile and chemically active elements such as C, H, O, N, and S can tell us about processes active during the evolution of the solar nebula. A classic example of this is the oxygen isotope system. In the 1970s it was determined that the oxygen isotopic ratio in refractory inclusions in primitive meteorites was enriched {approx}4% in {sup 16}O relative to the average terrestrial, lunar, and thermally processed meteorite materials. In addition, all processed solar-system materials appeared to each have a unique oxygen isotopic composition (except the Moon and Earth, which are thought to be formed from the same materials), though differences are in the fraction of a percent range, much smaller than the refractory material {sup 16}O enrichment. Several theories were developed over the years to account for the oxygen isotope heterogeneity, each theory predicting a different solar isotopic composition and each invoking a differ

Wiens, Roger C [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

189

Mission Statements | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

190

Antimatter Driven Sail for Deep Space Missions  

Science Conference Proceedings (OSTI)

The concept of the Antimatter Driven Sail (ADS) has been examined in three major areas: Mission Architecture

Steven D. Howe; Gerald P. Jackson

2005-01-01T23:59:59.000Z

191

Mission Areas | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

192

Mission Statements | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering...

193

HEU Minimization and the Reliable Supply of Medical Isotopes Nuclear  

National Nuclear Security Administration (NNSA)

HEU Minimization and the Reliable Supply of Medical Isotopes Nuclear HEU Minimization and the Reliable Supply of Medical Isotopes Nuclear Security Summit: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > HEU Minimization and the Reliable Supply of ... Fact Sheet HEU Minimization and the Reliable Supply of Medical Isotopes Nuclear

194

Enabling Grid technologies for Planck space mission  

Science Conference Proceedings (OSTI)

PLANCK, the ESA satellite aimed at mapping the microwave sky through two complete sky surveys, will fly in 2007. It is an extremely demanding space mission in terms of computing power and data storage. PLANCK simulations mimic the whole mission starting ... Keywords: CMB, EGEE, HPC, Planck satellite mission, globus, grid computing

Giuliano Taffoni; Davide Maino; Claudio Vuerli; Giuliano Castelli; Riccardo Smareglia; Andrea Zacchei; Fabio Pasian

2007-02-01T23:59:59.000Z

195

Mission Assurance Challenges within the Military Environment  

Science Conference Proceedings (OSTI)

Virtually all modern organizations have embedded information and communication technologies into their core processes as a means to increase operational efficiency, improve decision quality, and reduce operational costs. However, this dependence can ... Keywords: Cyber Mission Assurance, Embedded Information and Communication Technologies, Mission Assurance, Mission-to-Cyber Relationships, Risk Management

Scott Musman, Michael R. Grimaila

2013-04-01T23:59:59.000Z

196

EA-178-B Edison Mission Marketing & Trading, Inc | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-B Edison Mission Marketing & Trading, Inc EA-178-B Edison Mission Marketing & Trading, Inc Order authorizing Edison Mission Marketing & Trading, Inc to export electric energy to...

197

Hydraulic Institute Mission and Vision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Institute Mission and Vision Hydraulic Institute Mission and Vision Mission: To be a value-adding resource to member companies and pump users worldwide by: * Developing...

198

White House Mission Requests Memorandum | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White House Mission Requests Memorandum White House Mission Requests Memorandum White House Mission Requests Memorandum More Documents & Publications THE WHITE HOUSE THE WHITE...

199

The rare isotope accelerator (RIA) facility project  

DOE Green Energy (OSTI)

The envisioned Rare-Isotope Accelerator (RIA) facility would add substantially to research opportunities for nuclear physics and astrophysics by combining increased intensities with a greatly expanded variety of high-quality rare-isotope beams. A flexible superconducting driver linac would provide 100 kW, 400 MeV/nucleon beams of any stable isotope from hydrogen to uranium onto production targets. Combinations of projectile fragmentation, target fragmentation, fission, and spallation would produce the needed broad assortment of short-lived secondary beams. This paper describes the project's background, purpose, and status, the envisioned facility, and the key subsystem, the driver linac. RIA's scientific purposes are to advance current theoretical models, reveal new manifestations of nuclear behavior, and probe the limits of nuclear existence [3]. Figures 1 and 2 show, respectively, examples of RIA research opportunities and the yields projected for pursuing them. Figure 3 outlines a conceptual approach for delivering the needed beams.

Christoph Leemann

2000-08-01T23:59:59.000Z

200

Production  

E-Print Network (OSTI)

There are serious concerns about the greenhouse gas (GHG) emissions, energy and nutrient and water use efficiency of large-scale, first generation bio-energy feedstocks currently in use. A major question is whether biofuels obtained from these feedstocks are effective in combating climate change and what impact they will have on soil and water resources. Another fundamental issue relates to the magnitude and nature of their impact on food prices and ultimately on the livelihoods of the poor. A possible solution to overcome the current potentially large negative effects of large-scale biofuel production is developing second and third generation conversion techniques from agricultural residues and wastes and step up the scientific research efforts to achieve sustainable biofuel production practices. Until such sustainable techniques are available governments should scale back their support for and promotion of biofuels. Multipurpose feedstocks should be investigated making use of the bio-refinery concept (bio-based economy). At the same time, the further development of non-commercial, small scale

Science Council Secretariat

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Isotopes as Environmental Tracers in Archived Biological ...  

Science Conference Proceedings (OSTI)

... Tissue Archival and Monitoring Program (STAMP ... and isotopes) and carbon/nitrogen (isotopes). The carbon/nitrogen isotope data provide valuable ...

2012-10-02T23:59:59.000Z

202

Small power plant reverse trade mission  

DOE Green Energy (OSTI)

This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

Not Available

1989-09-06T23:59:59.000Z

203

Multimedia from NASA's GLAST Mission  

DOE Data Explorer (OSTI)

GLAST is short for Gamma-ray Large Area Space Telescope, but its name is Fermi. Launched in June, 2008, Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is spectacularly different from the one we perceive with our own eyes. With a huge leap in all key capabilities, Fermi data will enable scientists to answer persistent questions across a broad range of topics, including supermassive black-hole systems, pulsars, the origin of cosmic rays, and searches for signals of new physics. The mission is an astrophysics and particle physics partnership, developed by NASA in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the United States. [Copied, edited from http://www.nasa.gov/mission_pages/GLAST/main/index.html] GLAST has two main components, the Large Area Telescope (LAT) and the Gamma Burst Monitor(GBM). The LAT is managed at SLAC National Accelerator Laboratory, and data feeds from Fermi flow to both DOE and NASA. NASA is responsible for maintaining and distributing the data. The multimedia offerings at NASA's GLAST web page are plentiful. Both videos and image collections are available, along with scientific and technical information packaged in a variety of attractive and educational forms.

204

Separation of sulfur isotopes  

DOE Patents (OSTI)

Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

DeWitt, Robert (Centerville, OH); Jepson, Bernhart E. (Dayton, OH); Schwind, Roger A. (Centerville, OH)

1976-06-22T23:59:59.000Z

205

Stable Isotopes in Hailstones. Part I: The Isotopic Cloud Model  

Science Conference Proceedings (OSTI)

Equations describing the isotopic balance between five water species (vapor, cloud water, rainwater, cloud ice and graupel)have been incorporated into a one-dimensional steady-state cloud model. The isotope contents of the various water ...

B. Federer; N. Brichet; J. Jouzel

1982-06-01T23:59:59.000Z

206

Laser-induced separation of hydrogen isotopes in the liquid phase  

DOE Patents (OSTI)

Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

Freund, Samuel M. (Los Alamos, NM); Maier, II, William B. (Los Alamos, NM); Beattie, Willard H. (Los Alamos, NM); Holland, Redus F. (Los Alamos, NM)

1980-01-01T23:59:59.000Z

207

DOE Selects Mission Support Alliance, LLC for Mission Support Contract at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Support Alliance, LLC for Mission Support Mission Support Alliance, LLC for Mission Support Contract at its Hanford Site DOE Selects Mission Support Alliance, LLC for Mission Support Contract at its Hanford Site September 3, 2008 - 3:20pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the Mission Support Alliance, LLC has been selected as the mission support contractor for DOE's Hanford Site in southeastern Washington State. The contract is a cost-plus award-fee contract valued at approximately $3.0 billion over ten years (a five-year base period with options to extend it for up to another five years). The Mission Support Alliance, LLC is a limited liability company formed by Lockheed Martin Integrated Technology, LLC; Jacobs Engineering Group, Inc.; and Wackenhut Services, Inc. Pre-selected subcontractors include Abadan,

208

ISOTOPE SEPARATION AND ISOTOPE EXCHANGE. A Bibliography with Abstracts  

SciTech Connect

The unclassified literature covering 2498 reports from 1907 through 1957 has been searched for isotopic exchange and isotepic separation reactions involving U and the lighter elements of the periodic chart through atomic number 30. From 1953 to 1957, all elements were included Numerous references to isotope properties, isotopic ratios, and kinetic isotope effects were included. This is a complete revision of TID-3036 (Revised) issued June 4, 1954. An author index is included. (auth)

Begun, G.M.

1959-10-28T23:59:59.000Z

209

The real mission of ITER  

DOE Green Energy (OSTI)

For future machines, the plasma stored energy is going up by factors of 20-40x, and plasma currents by 2-3x, while the surface to volume ratio is at the same time decreasing. Therefore the disruption forces, even for constant B, (which scale like IxB), and associated possible localized heating on machine components, are more severe. Notably, Tore Supra has demonstrated removal of more than 1 GJ of input energy, over nearly a 400 second period. However, the instantaneous stored energy in the Tore Supra system (which is most directly related to the potential for disruption damage) is quite small compared to other large tokamaks. The goal of ITER is routinely described as studying DT burning plasmas with a Q {approx} 10. In reality, ITER has a much more important first order mission. In fact, if it fails at this mission, the consequences are that ITER will never get to the eventual stated purpose of studying a burning plasma. The real mission of ITER is to study (and demonstrate successfully) plasma control with {approx}10-17 MA toroidal currents and {approx}100-400 MJ plasma stored energy levels in long-pulse scenarios. Before DT operation is ever given a go-ahead in ITER, the reality is that ITER must demonstrate routine and reliable control of high energy hydrogen (and deuterium) plasmas. The difficulty is that ITER must simultaneously deal with several technical problems: (1) heat removal at the plasma/wall interface, (2) protection of the wall components from off-normal events, and (3) generation of dust/redeposition of first wall materials. All previous tokamaks have encountered hundred's of major disruptions in the course of their operation. The consequences of a few MA of runaway electrons (at 20-50 MeV) being generated in ITER, and then being lost to the walls are simply catastrophic. They will not be deposited globally, but will drift out (up, down, whatever, depending on control system), and impact internal structures, unless 'ameliorated'. Basically, this represents an extraordinarily robust e-beam welding machine, capable of deep penetration into any armor tiles, to the cooling channels which are embedded less than 1 cm below the tile surface. When energy is deposited in a fraction of a second on (or in) a tile, the presence of underlying water cooling does no good for the purposes of heat removal.

Wurden, G A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

210

Our Mission | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Mission | National Nuclear Security Administration Mission | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Our Mission Home > Our Mission Our Mission NNSA is responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation, and naval reactor programs. It also responds to nuclear and radiological emergencies in the United States

211

Isotope Development & Production | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

palliation Ni-62 Precursor for Ni-63 radioisotope for drug and explosive detection, beta battery power sources Ni-64 Precursor for Cu-64 radioisotope for cancer PET imaging and...

212

Isotope and Nuclear Chemistry Division annual report, FY 1983  

Science Conference Proceedings (OSTI)

This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

Heiken, J.H.; Lindberg, H.A. (eds.)

1984-05-01T23:59:59.000Z

213

DEEP WATER ISOTOPIC CURRENT ANALYZER  

DOE Patents (OSTI)

A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

Johnston, W.H.

1964-04-21T23:59:59.000Z

214

Integrated Safety Management- Building Mission Success  

NLE Websites -- All DOE Office Websites (Extended Search)

ISM Integrated Safety Management- Building Mission Success Approximately 500 federal and contractor employees will arrive in Idaho Falls to participate in the 2008 Integrated...

215

Office of Information Management - Mission and Functions  

NLE Websites -- All DOE Office Websites (Extended Search)

security of HSS Department-wide databases and systems in support of the HSS missions in health, safety, and security. Manages technology-related organizational change and advises...

216

Facility Representative Program: Program Mission Statement  

NLE Websites -- All DOE Office Websites (Extended Search)

General Program Information Program Mission Statement Program Directives and Guidance Facility Representative of the Year Award Program Facility Representative of the Year Award FR...

217

Microsoft PowerPoint - Mission.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Administration's mission is to market and reliably deliver Federal hydroelectric power with preference to public bodies and cooperatives. This is accomplished by maximizing the use...

218

Office of Sustainability Support - Mission and Functions  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Support (HS-21) Reports to the Office of Environmental Protection, Sustainability Support & Corporate Safety Analysis Mission The Office of Sustainability Support...

219

Mission of the Accelerator Systems Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source and to pursue research and development profitable to the science of accelerators and future light source technologies. This mission is accomplished by pursuing the...

220

Sandia National Laboratories: National Security Missions  

NLE Websites -- All DOE Office Websites (Extended Search)

chemical and biological weapons of mass destruction, and other acts of terrorism. Nuclear Weapons Weapons researcher Sandia's primary mission is ensuring the U.S. nuclear...

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sandia National Laboratories: National Security Missions: Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Missions Nuclear Weapons Stockpile Stewardship Ensuring the nation's nuclear weapons stockpile is safe, secure, and reliable. About Nuclear Weapons Since 1949, Sandia's scientists...

222

Equal Employment Opportunity: Collaborating for Mission Success  

National Nuclear Security Administration (NNSA)

Equal Employment Opportunity: Collaborating for Mission Success U.S. DEPARTMENT OF ENERGY National Nuclear Security Administration 2012 EEO Report of Accomplishment 2012 NNSA...

223

h. tms mission-driven development guidelines  

Science Conference Proceedings (OSTI)

Guidelines on Mission-Driven Development within TMS ... in compliance with existing TMS articles of incorporation, bylaws, policies, practices, and procedures .

224

Equal Employment Opportunity: Collaborating for Mission Success  

National Nuclear Security Administration (NNSA)

r Equal Employment Opportunity: Collaborating for Mission Success April 2013 EEO Complaint BURDEN OF PROOF IN THE EEO COMPLAINT PROCESS Equal Employment Opportunity: Collaborating...

225

Atomic vapor laser isotope separation  

SciTech Connect

Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

Stern, R.C.; Paisner, J.A.

1985-11-08T23:59:59.000Z

226

Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area (1982) | Open  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area (1982) Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area (1982) Exploration Activity Details Location Steamboat Springs Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Notes Helium isotope ratios have been measured in geothermal fluids. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, Ra; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering

227

Postgraduate Medical Education PGME MISSION STATEMENT  

E-Print Network (OSTI)

Postgraduate Medical Education PGME MISSION STATEMENT FACULTY OF MEDICINE ­ VISION Creating the future of health. FACULTY OF MEDICINE ­ MISSION An innovative medical school committed to excellence and leadership in education, research, and service to society. INTRODUCTION Postgraduate Medical Education

Habib, Ayman

228

ARM-UAV Mission Gateway System  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM-UAV Mission Gateway System ARM-UAV Mission Gateway System S. T. Moore and S. Bottone Mission Research Corporation Santa Barbara, California Introduction The Atmospheric Radiation Measurement-unmanned aerospace vehicle (ARM-UAV) Mission Gateway System (MGS) is a new field support system for the recently reconfigured ARM-UAV payload. The MGS is responsible for the following critical tasks: * Provides an interface for command and control of the ARM-UAV payload during a flight. * Receives and displays mid-flight state of health information, to help ensure the integrity and safety of the payload. * Receives and displays data snapshots, averaged data, or sub-sampled data. * Provides a user configurable, moving map display to enable the Mission Controller and the science

229

Isotope Related Reports | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Isotope Isotope Related Reports Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Isotope Development & Production for Research and Applications (IDPRA) Isotope Related Reports Print Text Size: A A A RSS Feeds FeedbackShare Page REPORT MATERIALS Isotope Research & Production Planning .pdf file (1.6MB), Nuclear Energy Research Advisory Committee (NERAC), April 2000. Mark J. Rivard, Leo M. Bobek, Ralph A. Butler, marc A. Garland, David J. Hill, Jeanne K. Krieger, James B. Muckerheide, Brad D. Patton, Edward B. Silberstein, The U.S. National Isotope Program: Current Status and Strategy for Future Success, .pdf file (442KB) February 2005.

230

Candidate processes for diluting the {sup 235}U isotope in weapons-capable highly enriched uranium  

SciTech Connect

The United States Department of Energy (DOE) is evaluating options for rendering its surplus inventories of highly enriched uranium (HEU) incapable of being used to produce nuclear weapons. Weapons-capable HEU was earlier produced by enriching uranium in the fissile {sup 235}U isotope from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by diluting its concentration of the fissile {sup 235}U isotope in a uranium blending process, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel.

Snider, J.D.

1996-02-01T23:59:59.000Z

231

Mission Biofuels India Pvt Ltd MBIPL | Open Energy Information  

Open Energy Info (EERE)

Ltd MBIPL Ltd MBIPL Jump to: navigation, search Name Mission Biofuels India Pvt Ltd (MBIPL) Place Mumbai, Maharashtra, India Zip 400076 Sector Wind energy Product Mumbai-based subsidiary of Mission NewEnergy Limited for the upstream jatropha curcas feedstock business and wind energy project development. Coordinates 19.076191°, 72.875877° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.076191,"lon":72.875877,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Laser-assisted isotope separation of tritium  

DOE Patents (OSTI)

Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.

Herman, Irving P. (Castro Valley, CA); Marling, Jack B. (Livermore, CA)

1983-01-01T23:59:59.000Z

233

Isotopes facilities deactivation project at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

The production and distribution of radioisotopes for medical, scientific, and industrial applications has been a major activity at Oak Ridge National Laboratory (ORNL) since the late 1940s. As the demand for many of these isotopes grew and their sale became profitable, the technology for the production of the isotopes was transferred to private industry, and thus, many of the production facilities at ORNL became underutilized. In 1989, the U.S. Department of Energy (DOE) instructed ORNL to identify and prepare various isotopes production facilities for safe shutdown. In response, ORNL identified 19 candidate facilities for shutdown and established the Isotopes Facilities Shutdown Program. In 1993, responsibility for the program was transitioned from the DOE Office of Nuclear Energy to the DOE Office of Environmental Management and Uranium Enrichment Operation`s Office of Facility Transition and Management. The program was retitled the Isotopes Facilities Deactivation Project (IFDP), and implementation responsibility was transferred from ORNL to the Lockheed Martin Energy Systems, Inc. (LMES), Environmental Restoration (ER) Program.

Eversole, R.E.

1997-05-01T23:59:59.000Z

234

Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination  

Science Conference Proceedings (OSTI)

Changes in the mean square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8-ms-lifetime isotope with production rates on the order of only 10 000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope {sup 11}Li at the on-line isotope separators at GSI, Darmstadt, Germany, and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results.

Noertershaeuser, W.; Sanchez, R. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Institut fuer Kernchemie, Universitaet Mainz, D-55099 Mainz (Germany); Ewald, G.; Dax, A.; Goette, S.; Kluge, H.-J.; Kuehl, Th.; Wojtaszek, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Behr, J.; Bricault, P.; Dilling, J.; Dombsky, M.; Lassen, J.; Levy, C. D. P.; Pearson, M. [TRIUMF, Vancouver, British Columbia, V6T 2A3 (Canada); Bushaw, B. A. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Drake, G. W. F. [Department of Physics, University of Windsor, Windsor, Ontario, N9B 3P4 (Canada); Pachucki, K. [Faculty of Physics, University of Warsaw, PL-00-681 Warsaw (Poland); Puchalski, M. [Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, PL-60-780 Poznan (Poland); Yan, Z.-C. [Department of Physics, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 (Canada)

2011-01-15T23:59:59.000Z

235

High Flux Isotope Reactor (HFIR) | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

High Flux Isotope Reactor High Flux Isotope Reactor May 30, 2013 The High Flux Isotope Reactor (HFIR) first achieved criticality on August 25, 1965, and achieved full power in August 1966. It is a versatile 85-MW isotope production, research, and test reactor with the capability and facilities for performing a wide variety of irradiation experiments and a world-class neutron scattering science program. HFIR is a beryllium-reflected, light water-cooled and moderated flux-trap type swimming pool reactor that uses highly enriched uranium-235 as fuel. HFIR typically operates seven 23-to-27 day cycles per year. Irradiation facility capabilities include Flux trap positions: Peak thermal flux of 2.5X1015 n/cm2/s with similar epithermal and fast fluxes (Highest thermal flux available in the

236

Method and Apparatus for Production of 213Bi from a High ...  

automated generator system would enable highly reproducible and error-free production of 213Bi isotope; Related Links.

237

Office of Security Operations: Mission and Functions  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission and Functions Mission and Functions Mission The Office of Headquarters Security Operations strengthens national security by protecting personnel, facilities, property, classified information, and sensitive unclassified information for DOE Headquarters facilities in the National Capital Area under normal and abnormal (i.e., emergency) conditions; managing access authorization functions; ensuring that executives and dignitaries are fully protected, and supporting efforts to ensure the continuity of government in all circumstances as mandated by Presidential Decision Directive. The Office is the database owner for the principal personnel security information processing activities of the Department and personnel security administrative review process. Functions

238

Optical Payload for the STARE Mission  

Science Conference Proceedings (OSTI)

Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) is a nano-sat based mission designed to better determine the trajectory of satellites and space debris in orbit around earth. In this paper, we give a brief overview of the mission and its place in the larger context of Space Situational Awareness (SSA). We then describe the details of the central optical payload, touching on the optical design and characterization of the on-board image sensor used in our Cubesat based prototype. Finally, we discuss the on-board star and satellite track detection algorithm central to the success of the mission.

Simms, L; Riot, V; De Vries, W; Olivier, S S; Pertica, A; Bauman, B J; Phillion, D; Nikolaev, S

2011-03-13T23:59:59.000Z

239

Critical Mission Support Through Energy Secuirty  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Mission Support Critical Mission Support Through Energy Security Development of an Army Energy Security Assessment Model FUPWG Mr. Chuck Tremel, CTC 21 October 2010 2 2 Purpose * Provide an overview of the Army Energy Security Assessment (ESA) methodology - Being developed by Concurrent Technologies Corporation - Monitored by the US Army Corps of Engineers (USACE), Engineering Research and Development-Construction Engineering Research Laboratory (ERDC-CERL) * Engage Utility and Government Stakeholders 3 3 Overall Program Objectives * Develop/enhance the draft ESA methodology demonstrated under the Army Power and Energy Initiative (APEI) - Leverage existing processes (e.g., Anti-terrorism/Force Protection) - Critical Mission focused * Validate the methodology at an Army installation

240

Medium Power Lead Alloy Reactors: Missions for this Reactor Technology  

Science Conference Proceedings (OSTI)

A multiyear project at the Idaho National Engineering and Environmental Laboratory and the Massachusetts Institute of Technology investigated the potential of medium-power lead-alloy-cooled technology to perform two missions: (1) the production of low-cost electricity and (2) the burning of actinides from light water reactor (LWR) spent fuel. The goal of achieving a high power level to enhance economic performance simultaneously with adoption of passive decay heat removal and modularity capabilities resulted in designs in the range of 600-800 MW(thermal), which we classify as a medium power level compared to the lower [~100 MW(thermal)] and higher [2800 MW(thermal)] power ratings of other lead-alloy-cooled designs. The plant design that was developed shows promise of achieving all the Generation-IV goals for future nuclear energy systems: sustainable energy generation, low overnight capital cost, a very low likelihood and degree of core damage during any conceivable accident, and a proliferation-resistant fuel cycle. The reactor and fuel cycle designs that evolved to achieve these missions and goals resulted from study of the following key trade-offs: waste reduction versus reactor safety, waste reduction versus cost, and cost versus proliferation resistance. Secondary trade-offs that were also considered were monolithic versus modular design, active versus passive safety systems, forced versus natural circulation, alternative power conversion cycles, and lead versus lead-bismuth coolant. These studies led to a selection of a common modular design with forced convection cooling, passive decay heat removal, and a supercritical CO2 power cycle for all our reactor concepts. However, the concepts adopt different core designs to optimize the achievement of the two missions. For the low-cost electricity production mission, a design approach based on fueling with low enriched uranium operating without costly reprocessing in a once-through cycle was pursued to achieve a long operating cycle length by enhancing in-core breeding. For the actinide-burning mission three design variants were produced: (1) a fertile-free actinide burner, i.e., a single-tier strategy, (2) a minor actinide burner with plutonium burned in the LWR fleet, i.e., a two-tier strategy, and (3) an actinide burner with characteristics balanced to also favor economic electricity production.

Neil E. Todreas; Philip E. MacDonald; Pavel Hejzlar; Jacopo Buongiorno; Eric Loewen

2004-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S&M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S&M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

NONE

1995-05-01T23:59:59.000Z

242

Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

NONE

1995-08-01T23:59:59.000Z

243

Metal hydride based isotope separation: Large-scale operations  

DOE Green Energy (OSTI)

A program to develop a metal hydride based hydrogen isotope separation process began at the Savannah River Laboratory in 1980. This semi-continuous gas chromatographic separation process will be used in new tritium facilities at the Savannah River Site. A tritium production unit is scheduled to start operation in 1993. An experimental, large-scale unit is currently being tested using protium and deuterium. Operation of the large-scale unit has demonstrated separation of mixed hydrogen isotopes (55% protium and 45% deuterium), resulting in protium and deuterium product streams with purities better than 99.5%. 3 refs., 4 figs.

Horen, A.S.; Lee, Myung W.

1991-01-01T23:59:59.000Z

244

Metal hydride based isotope separation: Large-scale operations  

DOE Green Energy (OSTI)

A program to develop a metal hydride based hydrogen isotope separation process began at the Savannah River Laboratory in 1980. This semi-continuous gas chromatographic separation process will be used in new tritium facilities at the Savannah River Site. A tritium production unit is scheduled to start operation in 1993. An experimental, large-scale unit is currently being tested using protium and deuterium. Operation of the large-scale unit has demonstrated separation of mixed hydrogen isotopes (55% protium and 45% deuterium), resulting in protium and deuterium product streams with purities better than 99.5%. 3 refs., 4 figs.

Horen, A.S.; Lee, Myung W.

1991-12-31T23:59:59.000Z

245

Isotopically labeled compositions and method  

DOE Patents (OSTI)

Compounds having stable isotopes .sup.13C and/or .sup.2H were synthesized from precursor compositions having solid phase supports or affinity tags.

Schmidt, Jurgen G. (Los Alamos, NM); Kimball, David B. (Los Alamos, NM); Alvarez, Marc A. (Santa Fe, NM); Williams, Robert F. (Los Alamos, NM); Martinez, Rudolfo A. (Santa Fe, NM)

2011-07-12T23:59:59.000Z

246

Mission and Vision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission and Vision Mission and Vision Mission and Vision Mission ARI is a DOE-wide effort to advance the beneficial reuse of its unique and diverse mix of assets, including land, facilities, infrastructure, equipment, technologies, natural resources and highly skilled workforce. ARI promotes a more efficient business environment to encourage collaboration between public and private resources. ARI efforts will maximize benefits to achieve energy and environmental goals as well as to stimulate and diversify regional economies impacted by changes to DOE sites and operations. Vision In 2020, the DOE complex will be composed of about two dozen primary sites. Those sites are sufficient to meet DOE's infrastructure requirements and include the following characteristics: * Operations are conducted in a sustainable manner; facilities and

247

Afghanistan-NREL Mission | Open Energy Information  

Open Energy Info (EERE)

Afghanistan-NREL Mission Afghanistan-NREL Mission Jump to: navigation, search Logo: NREL Mission to Afghanistan Name NREL Mission to Afghanistan Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Energy Efficiency, Buildings, Solar, Wind Topics Background analysis Program Start 2009 Country Afghanistan Southern Asia References NREL Now Lab Talk Week of December 21, 2009[1] Abstract In August 2009, the Commandant of the U.S. Marine Corps sent a team of active-duty Marines accompanied by two civilian experts to visit bases in Afghanistan to assess the potential for reducing fuel and water demands through energy efficiency and renewable energy measures. In August 2009, the Commandant of the U.S. Marine Corps sent a team of active-duty Marines accompanied by two civilian experts to visit bases in

248

Deep Space Mission Radiation Shielding Optimization  

Science Conference Proceedings (OSTI)

Providing protection against the hazards of space radiation is a major challenge to the exploration and development of space. The great cost of added radiation shielding is a potential limiting factor in deep space missions. In the present report, we ...

Tripathi R. K.; Wilson J. W.; Cucinotta F. A.; Nealy J. E.; Clowdsley M. S.; Kim M-H. Y.

2001-07-01T23:59:59.000Z

249

The Soil Moisture Active Passive (SMAP) Mission  

E-Print Network (OSTI)

The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey. SMAP will make global measurements of ...

Entekhabi, Dara

250

Sample Returns Missions in the Coming Decade  

Science Conference Proceedings (OSTI)

In the coming decade, several missions will attempt to return samples to Earth from varying parts of the solar system. These samples will provide invaluable insight into the conditions present during the early formation of the solar system, and possibly ...

Desai Prasun N.; Mitcheltree Robert A.; Cheatwood F. McNeil

2000-10-01T23:59:59.000Z

251

Selection of Isotopes and Elements for Fuel Cycle Analysis  

Science Conference Proceedings (OSTI)

Fuel cycle system analysis simulations examine how the selection among fuel cycle options for reactors, fuel, separation, and waste management impact uranium ore utilization, waste masses and volumes, radiotoxicity, heat to geologic repositories, isotope-dependent proliferation resistance measures, and so forth. Previously, such simulations have tended to track only a few actinide and fission product isotopes, those that have been identified as important to a few criteria from the standpoint of recycled material or waste, taken as a whole. After accounting for such isotopes, the residual mass is often characterized as fission product other or actinide other. However, detailed assessment of separation and waste management options now require identification of key isotopes and residual mass for Group 1A/2A elements (Rb, Cs, Sr, Ba), inert gases (Kr, Xe), halogens (Br, I), lanthanides, transition metals, transuranic (TRU), uranium, actinide decay products. The paper explains the rationale for a list of 81 isotopes and chemical elements to better support separation and waste management assessment in dynamic system analysis models such as Verifiable Fuel Cycle Simulation (VISION)

Steven J. Piet

2009-04-01T23:59:59.000Z

252

Tank waste remediation system mission analysis report  

SciTech Connect

This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors` facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission.

Acree, C.D.

1998-01-09T23:59:59.000Z

253

Office of Cyber Security Evaluations - Mission and Functions  

NLE Websites -- All DOE Office Websites (Extended Search)

Cyber Security Evaluations Reports to the Independent Oversight Program Mission and Functions Mission The Office of Cyber Security Evaluations is responsible for the independent...

254

Site Transition Process upon Completion of the Cleanup Mission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process upon Completion of the Cleanup Mission: Fact Sheet (September 2013) Site Transition Process upon Completion of the Cleanup Mission: Fact Sheet (September 2013) DOE's...

255

Reference No. DE-SOL-0005388 - Sources Sought Notice - Mission...  

NLE Websites -- All DOE Office Websites (Extended Search)

88 Sources Sought Notice Mission Execution and Strategic Analysis (MESA) Support Services Reference No. DE-SOL-0005388-The previous separate actions for Mission Execution...

256

Directors Advance EM Mission with Help from Rigorous Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Directors Advance EM Mission with Help from Rigorous Project Management Program Directors Advance EM Mission with Help from Rigorous Project Management Program October 30, 2013 -...

257

Experimental Design for the LATOR Mission  

E-Print Network (OSTI)

This paper discusses experimental design for the Laser Astrometric Test Of Relativity (LATOR) mission. LATOR is designed to reach unprecedented accuracy of 1 part in 10^8 in measuring the curvature of the solar gravitational field as given by the value of the key Eddington post-Newtonian parameter \\gamma. This mission will demonstrate the accuracy needed to measure effects of the next post-Newtonian order (~G^2) of light deflection resulting from gravity's intrinsic non-linearity. LATOR will provide the first precise measurement of the solar quadrupole moment parameter, J2, and will improve determination of a variety of relativistic effects including Lense-Thirring precession. The mission will benefit from the recent progress in the optical communication technologies -- the immediate and natural step above the standard radio-metric techniques. The key element of LATOR is a geometric redundancy provided by the laser ranging and long-baseline optical interferometry. We discuss the mission and optical designs, as well as the expected performance of this proposed mission. LATOR will lead to very robust advances in the tests of Fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments.

Slava G. Turyshev; Michael Shao; Kenneth L. Nordtvedt

2004-10-08T23:59:59.000Z

258

ISOTOPE FRACTIONATION PROCESS  

DOE Patents (OSTI)

A new method is described for isotopic enrichment of uranium. It has been found that when an aqueous acidic solution of ionic tetravalent uraniunn is contacted with chelate complexed tetravalent uranium, the U/sup 238/ preferentially concentrates in the complexed phase while U/sup 235/ concentrates in the ionic phase. The effect is enhanced when the chelate compound is water insoluble and is dissolved in a water-immiscible organic solvent. Cupferron is one of a number of sultable complexing agents, and chloroform is a suitable organic solvent.

Clewett, G.H.; Lee, DeW.A.

1958-05-20T23:59:59.000Z

259

Chromatographic hydrogen isotope separation  

DOE Patents (OSTI)

Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

Aldridge, Frederick T. (Livermore, CA)

1981-01-01T23:59:59.000Z

260

Mission | OSTI, US Dept of Energy, Office of Scientific and Technical  

Office of Scientific and Technical Information (OSTI)

Mission Mission The mission of the Office of Scientific and Technical Information (OSTI) is to advance science and sustain technological creativity by making R&D findings available and useful to Department of Energy (DOE) researchers and the public. Ongoing strategies for accomplishing this mission: Collaborate within DOE through the Scientific and Technical Information Program to develop and maintain efficient, state-of-the-art access and delivery of research results. Partner with others to facilitate alliances for national and international cooperation and information exchange. Develop, deliver, and maintain customized information products and services for a variety of constituencies. Implement Department-wide STI policy and best business practices. Preserve STI, in tangible copies or electronically, as appropriate.

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Isotope correlation studies relative to high enrichment test reactor fuels  

SciTech Connect

Several correlations of fission product isotopic ratios with atom percent fission and neutron flux, for highly enriched /sup 235/U fuel irradiated in two different water moderated thermal reactors, have been evaluated. In general, excellent correlations were indicated for samples irradiated in the same neutron spectrum; however, significant differences in the correlations were noted with the change in neutron spectrum. For highly enriched /sup 235/U fuel, the correlation of the isotopic ratio /sup 143/Nd//sup 145 +146/Nd with atom percent fission has wider applicability than the other fission product isotopic ratio evaluated. The /sup 137/Cs//sup 135/Cs atom ratio shows promise for correlation with neutron flux. Correlations involving heavy element ratios are very sensitive to the neutron spectrum.

Maeck, W.J.; Tromp, R.L.; Duce, F.A.; Emel, W.A.

1978-06-01T23:59:59.000Z

262

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and  

Open Energy Info (EERE)

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Details Activities (3) Areas (3) Regions (0) Abstract: Helium isotope ratios have been measured in geothermal fluids from Iceland, The Geysers, Raft River, Steamboat Springs and Hawaii. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, R,sub>a; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering release of crustal He, magma aging and

263

Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Fluid Isotopic Analysis- Fluid Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Fluid Details Activities (61) Areas (32) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Origin of hydrothermal fluids; Mixing of hydrothermal fluids Thermal: Isotopic ratios can be used to characterize and locate subsurface thermal anomalies. Dictionary.png Isotopic Analysis- Fluid: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in

264

It's Elemental - Isotopes of the Element Neptunium  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Previous Element (Uranium) The Periodic Table of Elements Next Element (Plutonium) Plutonium Isotopes of the Element Neptunium Click for Main Data Most of the isotope...

265

It's Elemental - Isotopes of the Element Sulfur  

NLE Websites -- All DOE Office Websites (Extended Search)

Phosphorus Previous Element (Phosphorus) The Periodic Table of Elements Next Element (Chlorine) Chlorine Isotopes of the Element Sulfur Click for Main Data Most of the isotope...

266

It's Elemental - Isotopes of the Element Argon  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorine Previous Element (Chlorine) The Periodic Table of Elements Next Element (Potassium) Potassium Isotopes of the Element Argon Click for Main Data Most of the isotope data...

267

It's Elemental - Isotopes of the Element Ruthenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Technetium Previous Element (Technetium) The Periodic Table of Elements Next Element (Rhodium) Rhodium Isotopes of the Element Ruthenium Click for Main Data Most of the isotope...

268

It's Elemental - Isotopes of the Element Molybdenum  

NLE Websites -- All DOE Office Websites (Extended Search)

Niobium Previous Element (Niobium) The Periodic Table of Elements Next Element (Technetium) Technetium Isotopes of the Element Molybdenum Click for Main Data Most of the isotope...

269

It's Elemental - Isotopes of the Element Thorium  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Elements Next Element (Protactinium) Protactinium Isotopes of the Element Thorium Click for Main Data Most of the isotope data on this site has been obtained from...

270

It's Elemental - Isotopes of the Element Protactinium  

NLE Websites -- All DOE Office Websites (Extended Search)

Thorium Previous Element (Thorium) The Periodic Table of Elements Next Element (Uranium) Uranium Isotopes of the Element Protactinium Click for Main Data Most of the isotope data...

271

High-Precision Isotopic Reference Materials  

Science Conference Proceedings (OSTI)

... sources, is now capable of measuring isotope ratios with ... revolution in the use of isotopes by revealing ... This program will have an impact in several ...

2012-10-22T23:59:59.000Z

272

The marine biogeochemistry of zinc isotopes  

E-Print Network (OSTI)

Zinc (Zn) stable isotopes can record information about important oceanographic processes. This thesis presents data on Zn isotopes in anthropogenic materials, hydrothermal fluids and minerals, cultured marine phytoplankton, ...

John, Seth G

2007-01-01T23:59:59.000Z

273

Method of separating boron isotopes  

SciTech Connect

A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

Jensen, Reed J. (Los Alamos, NM); Thorne, James M. (Provo, UT); Cluff, Coran L. (Provo, UT); Hayes, John K. (Salt Lake City, UT)

1984-01-01T23:59:59.000Z

274

Production reactor characteristics  

SciTech Connect

Reactors for the production of special nuclear materials share many similarities with commercial nuclear power plants. Each relies on nuclear fission, uses uranium fuel, and produces large quantities of thermal power. However, there are some important differences in production reactor characteristics that may best be discussed in terms of mission, role, and technology.

Thiessen, C.W.; Hootman, H.E.

1990-01-01T23:59:59.000Z

275

Selenide isotope generator for the Galileo mission. ETG acceptance test plan  

DOE Green Energy (OSTI)

Electrically-Heated Thermoelectric Generators (ETGs) shall be subjected to a flight level acceptance test program to certify the design of the SIG/Galileo flight generator. Each test in the test program is designed to simulate critical conditions and environments associated with generator ground handling, spacecraft launch and in-space operations. Successful completion of the test program shall be evidenced by the satisfactory performance of the ETG during and after the application of the various test environments. The ETG Acceptance Test Plan is designed to specify the testing sequence, the severity of the applied test environments and the acceptance criteria for assessing generator performance. Two test facilities shall be required for the execution of the proposed test program. The Teledyne Energy Systems (TES) facility in Timonium, Maryland shall be the site for the ETG thermal performance evaluation testing; and the Naval Surface Weapons Center (NSWC) facility in White Oak, Maryland, shall be the site of the dynamic, mass-properties and magnetic properties testing.

Not Available

1978-12-01T23:59:59.000Z

276

Welding Isotopic Heat Sources for the Cassini Mission to Saturn (U)  

DOE Green Energy (OSTI)

In 1997 NASA will launch the Cassini scientific probe to the planet Saturn. Electric power for this probe will be provided by Radioisotope Thermoelectric Generators thermally driven by General Purpose Heat Source modules.

Franco-Ferreira, E.A. [Westinghouse Savannah River Company, SC (United States); George, T.G. [Los Alamos National Laboratory, CA (United States)

1995-02-28T23:59:59.000Z

277

Mars mission laser tool heads to JPL  

NLE Websites -- All DOE Office Websites (Extended Search)

Mars mission laser tool Mars mission laser tool Mars mission laser tool heads to JPL Curiosity will carry the newly delivered laser instrument to reveal which elements are present in Mars' rocks and soils. September 21, 2010 A bright ball of plasma is produced by ChemCam's invisible laser beam striking a rock within the Mars sample chamber. A bright ball of plasma is produced by ChemCam's invisible laser beam striking a rock within the Mars sample chamber. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "ChemCam will act as a geochemical observatory, providing composition data to understand if Mars was, is, or will be a habitable world." Star Wars photon gun will give Mars rover hands-free rock ID LOS ALAMOS, New Mexico, September 21, 2010-The ChemCam instrument has

278

America's Missions: The Home Missions Movement and the Story of the Early Republic  

E-Print Network (OSTI)

This dissertation seeks to enhance our understanding of the early American republic by providing a study of the home missions movement from 1787 to 1845. The home missions movement was a nationwide, multi-denominational religious movement, led by mission societies, and aimed at bringing the Protestant gospel to the various peoples of the states and territories. A history of this movement not only fills a gap in the historiography of early American religious history, but also enlightens our understanding of the broader socio-political world of the early republic. The founding years of the home missions movement, from 1787 to 1815, were led by Congregationalists, Presbyterians, and Baptists. Despite interdenominational competition at home and diplomatic tension with Britain, Protestants tended to cooperate both interdenominationally and transatlantically in order to achieve broader, evangelical goals in their missions. Home missions societies also shed light on a third form of cooperation: cooperation between church and state. We can better understand the relationship between church and state in the early republic by rejecting the idea that these two entities functioned separately. Instead, they functioned within a complex system of cooperation, evidenced by consistent government subsidization of and participation in missions to both white settlers and Indians, as well as by a broad culture of cooperation with Protestant projects in American society. During the early antebellum period, the home missions movement underwent a significant transformation, from functioning as a nationwide group of loosely-affiliated societies, which focused on nearby peoples, to a highly-centralized affair, dominated by a handful of national mission societies, which focused on the salvation of the entire nation. The growing importance of the population of the Mississippi Valley and the national trend toward a more centralized government and economic system played the two key roles in this transformation. This centralization - religious, economic, and political - helped give rise to the antimission movement, a nationwide Protestant protest against mission societies. This movement sheds light on the religious and ideological underpinnings of antebellum sectionalism.

Franklin, Brian 1983-

2012-12-01T23:59:59.000Z

279

The Swift Gamma-Ray Burst Mission  

E-Print Network (OSTI)

The Swift mission, scheduled for launch in early 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is the first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts per year and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to determine the origin of GRBs; classify GRBs and search for new types; study the interaction of the ultra-relativistic outflows of GRBs with their surrounding medium; and use GRBs to study the early universe out to z>10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector; a narrow-field X-ray telescope; and a narrow-field UV/optical telescope. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of ~1 mCrab (~2x10^{-11} erg cm^{-2} s^{-1} in the 15-150 keV band), more than an order of magnitude better than HEAO A-4. A flexible data and operations system will allow rapid follow-up observations of all types of high-energy transients, with rapid data downlink and uplink available through the NASA TDRSS system. The mission is currently funded for 2 years of operations and the spacecraft will have a lifetime to orbital decay of ~8 years. [ABRIDGED

N. Gehrels; G Chincarini; P. Giommi; K. O. Mason; J. A. Nousek; A. A. Wells; N. E. White; S. D. Barthelmy; D. N. Burrows; L. R. Cominsky; K. C. Hurley; F. E. Marshall; P. Meszaros; P. W. A. Roming; Swift Science Team

2004-05-12T23:59:59.000Z

280

Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Rock Details Activities (13) Areas (11) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Isotopic Analysis- Rock: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE and NNSA labs work with CTBTO to reduce medical isotope emissions,  

National Nuclear Security Administration (NNSA)

and NNSA labs work with CTBTO to reduce medical isotope emissions, and NNSA labs work with CTBTO to reduce medical isotope emissions, enhance the effectiveness of nuclear explosion monitoring | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > DOE and NNSA labs work with CTBTO ... DOE and NNSA labs work with CTBTO to reduce medical isotope emissions,

282

New Mexico Center for Isotopes in Medicine  

Science Conference Proceedings (OSTI)

The purpose of the New Mexico Center for Isotopes in Medicine (NMCIM) is to support research, education and service missions of the UNM College of Pharmacy Radiopharmaceutical Sciences Program (COP RSP) and the Cancer Research and Treatment Center (CRTC). NMCIM developed and coordinated unique translational research in cancer radioimaging and radiotherapy agents based on novel molecules developed at UNM and elsewhere. NMCIM was the primary interface for novel radioisotopes and radiochemistries developed at the Los Alamos National Laboratory (LANL) for SPECT/PET imaging and therapy. NMCIM coordinated the use of the small animal imaging facility with the CRTC provided support services to assist investigators in their studies. NMCIM developed education and training programs that benefited professional, graduate, and postdoctoral students that utilized its unique facilities and technologies. UNM COP RSP has been active in writing research and training grants, as well as supporting contract research with industrial partners. The ultimate goal of NMCIM is to bring new radiopharmaceutical imaging and therapeutic agents into clinical trials that will benefit the health and well being of cancer and other patients in New Mexico and the U.S.

Burchiel, Scott W.

2012-12-13T23:59:59.000Z

283

Novel hybrid isotope separation scheme and apparatus  

DOE Patents (OSTI)

A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means.

Maya, Jakob (Brookline, MA)

1991-01-01T23:59:59.000Z

284

Isotope Brayton ground demonstration testing and flight qualification. Volume 1. Technical program  

SciTech Connect

A program is proposed for the ground demonstration, development, and flight qualification of a radioisotope nuclear heated dynamic power system for use on space missions beginning in the 1980's. This type of electrical power system is based upon and combines two aerospace technologies currently under intense development; namely, the MHW isotope heat source and the closed Brayton cycle gas turbine. This power system represents the next generation of reliable, efficient economic electrical power equipment for space, and will be capable of providing 0.5 to 2.0 kW of electric power to a wide variety of spacecraft for earth orbital and interplanetary missions. The immediate design will be based upon the requirements for the Air Force SURVSATCOM mission. The proposal is presented in three volumes plus an Executive Summary. This volume describes the tasks in the technical program.

1974-12-09T23:59:59.000Z

285

Studies in Photosynthesis with Isotopes  

E-Print Network (OSTI)

chlorophyll) SCHEMATIC DIAGRAM OF PHOTOSYNTHESIS Fig, P Fig.2 Time of photosynthesis 60c.f M U 1646 Fig. 5 Fig. 8 Fig. 94705-eng-48 STUDIES IN PHOTOSYNTHESIS WITH ISOTOPES M Calvin

Calvin, M.; Bassham, J.A.

1952-01-01T23:59:59.000Z

286

Sandia National Laboratories Medical Isotope Reactor concept.  

SciTech Connect

This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

2010-04-01T23:59:59.000Z

287

Hanford defense mission: Past, present and future  

SciTech Connect

This paper describes the origin of Hanford, and its role in the Manhattan Project, its current role, and what is seen for Hanford in the future. Emphasis is on Hanford's defense mission. However, Hanford is a national resource in a number of areas and some of these are mentioned as well.

Munson, L.F.

1986-10-01T23:59:59.000Z

288

Solar composition from the Genesis Discovery Mission  

E-Print Network (OSTI)

Solar composition from the Genesis Discovery Mission D. S. Burnett1 and Genesis Science Team2: the isoto- pic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments

289

Draft Strategic Laboratory Missions Plan. Volume II  

SciTech Connect

This volume described in detail the Department`s research and technology development activities and their funding at the Department`s laboratories. It includes 166 Mission Activity Profiles, organized by major mission area, with each representing a discrete budget function called a Budget and Reporting (B & R) Code. The activities profiled here encompass the total research and technology development funding of the laboratories from the Department. Each profile includes a description of the activity and shows how the funding for that activity is distributed among the DOE laboratories as well as universities and industry. The profiles also indicate the principal laboratories for each activity, as well as which other laboratories are involved. The information in this volume is at the core of the Strategic Laboratory Mission Plan. It enables a reader to follow funds from the Department`s appropriation to a specific activity description and to specific R & D performing institutions. This information will enable the Department, along with the Laboratory Operations Board and Congress, to review the distribution of R & D performers chosen to execute the Department`s missions.

1996-03-01T23:59:59.000Z

290

SunShot Initiative: Mission, Vision, and Goals  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission, Vision, and Goals to Mission, Vision, and Goals to someone by E-mail Share SunShot Initiative: Mission, Vision, and Goals on Facebook Tweet about SunShot Initiative: Mission, Vision, and Goals on Twitter Bookmark SunShot Initiative: Mission, Vision, and Goals on Google Bookmark SunShot Initiative: Mission, Vision, and Goals on Delicious Rank SunShot Initiative: Mission, Vision, and Goals on Digg Find More places to share SunShot Initiative: Mission, Vision, and Goals on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Balance of Systems Mission, Vision, and Goals Photo of a male silhouetted against a solar array. Researcher Josh Stein of Sandia National Laboratories studies how clouds impact large-scale solar photovoltaic (PV) power plants. Photo from Randy

291

Simple, rapid method for the preparation of isotopically labeled formaldehyde  

Science Conference Proceedings (OSTI)

Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

Hooker, Jacob Matthew (Port Jefferson, NY); Schonberger, Matthias (Mains, DE); Schieferstein, Hanno (Aabergen, DE); Fowler, Joanna S. (Bellport, NY)

2011-10-04T23:59:59.000Z

292

Isotope separation apparatus and method  

DOE Patents (OSTI)

The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

Feldman, Barry J. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

293

President Roosevelt Approves Production of Atomic Bomb | National...  

National Nuclear Security Administration (NNSA)

Approves Production of Atomic Bomb | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

294

President Truman Increases Production of Uranium and Plutonium...  

National Nuclear Security Administration (NNSA)

Increases Production of Uranium and Plutonium | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

295

Kansas City Plant submits productivity savings under share-in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Kansas City Plant submits productivity savings under share-in-savings program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation...

296

President Truman Increases Production of Uranium and Plutonium...  

NLE Websites -- All DOE Office Websites (Extended Search)

content Facebook Flickr RSS Twitter YouTube President Truman Increases Production of Uranium and Plutonium | National Nuclear Security Administration Our Mission Managing the...

297

Elimination of Weapons-Grade Plutonium Production | National...  

National Nuclear Security Administration (NNSA)

Elimination of Weapons-Grade Plutonium Production | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

298

Carbon Isotope Separation and Molecular Formation in Laser-Induced...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Isotope Separation and Molecular Formation in Laser-Induced Plasmas by Laser Ablation Molecular Isotopic Spectrometry Title Carbon Isotope Separation and Molecular Formation...

299

Definition: Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Isotopic Analysis- Fluid Jump to: navigation, search Dictionary.png Isotopic Analysis- Fluid Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable. Fluid isotopes are used to characterize a fluids origin, age, and/or interaction with rocks or other fluids based on unique isotopic ratios or concentrations.[1] View on Wikipedia Wikipedia Definition Isotope geochemistry is an aspect of geology based upon study of the relative and absolute concentrations of the elements and their isotopes in

300

Definition: Isotopic Analysis | Open Energy Information  

Open Energy Info (EERE)

Analysis Analysis Jump to: navigation, search Dictionary.png Isotopic Analysis Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.[1] View on Wikipedia Wikipedia Definition Isotope analysis is the identification of isotopic signature, the distribution of certain stable isotopes and chemical elements within chemical compounds. This can be applied to a food web to make it possible to draw direct inferences regarding diet, trophic level, and subsistence. Isotope ratios are measured using mass spectrometry, which separates the different isotopes of an element on the basis of their mass-to-charge

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Isotopic Analysis-Fluid At Geysers Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

82) 82) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Geysers Geothermal Area (1982) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Notes Helium isotope ratios have been measured in geothermal fluids. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, Ra; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering release of crustal He, magma aging and tritiugenic addition of 3He). Raft

302

Mission, Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mission, Kansas: Energy Resources Mission, Kansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.0277832°, -94.6557914° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0277832,"lon":-94.6557914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

Integrated Safety Management Workshop - Building Mission Success  

NLE Websites -- All DOE Office Websites (Extended Search)

Image layout spacer Integrated Safety Management Workshop - Building Mission Success Acting Deputy Secretary Jeff Kupfer addresses the audience at the 2008 ISM Workshop. Over 500 U.S. Department of Energy and contractor employees started the Labor Day weekend with safety in mind. Hosted by the U.S. Department of Energy's Idaho Operations Office, along with the prime contractors at the Idaho National Laboratory Site, the 2008 Integrated Safety Management Workshop, which was held in Idaho Falls, concluded Aug. 28. Acting Deputy Secretary for the Department of Energy, Jeff Kupfer described the workshop as "the Department of Energy's signature safety event," stating that safety enables the Department's mission success, and complacent work is safety's enemy. Kupfer also noted that workshop participation helps to

304

Equal Employment Opportunity: Collaborating for Mission Success  

National Nuclear Security Administration (NNSA)

r r Equal Employment Opportunity: Collaborating for Mission Success April 2013 EEO Complaint BURDEN OF PROOF IN THE EEO COMPLAINT PROCESS Equal Employment Opportunity: Collaborating for Mission Success WHERE WE ARE Things to Consider Before you Decide to File.... NNSA Office of Civil Rights, NA-1.2 PO Box 5400 Bldg 384, 2 nd floor, North end Albuquerque, NM 87185 Phone: (505) 845-5517 Toll Free: (800) 825-5256 (enter 845-5517 at voice prompt) TTY: (866) 872-1011 Fax: (505) 845-4963 WHO Has to Prove Discrimination Occurred? The burden of proof ultimately rests with the aggrieved person at all times; however, there is a three-step process utilized by the EEOC and the courts when deciding if discrimination occurred

305

The NASA Soil Moisture Active Passive (SMAP) mission: Overview  

E-Print Network (OSTI)

The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey. Its mission design consists of L-band ...

O'Neill, Peggy

306

Using the NEPA Process to Further the Department's Mission and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Using the NEPA Process to Further the Department's Mission and Goals Using the NEPA Process to Further the Department's Mission and Goals This is a statement by DOE's Assistant...

307

Human-automation collaborative RRT for UAV mission path planning  

E-Print Network (OSTI)

Future envisioned Unmanned Aerial Vehicle (UAV) missions will be carried out in dynamic and complex environments. Human-automation collaboration will be required in order to distribute the increased mission workload that ...

Caves, Amrico De Jess (Caves Corral)

2010-01-01T23:59:59.000Z

308

High Performance Computing Systems for Autonomous Spaceborne Missions  

Science Conference Proceedings (OSTI)

Future-generation space missions across the solar system to the planets, moons, asteroids, and comets may someday incorporate supercomputers both to expand the range of missions being conducted and to significantly reduce their cost. By performing science ...

Thomas Sterling; Daniel S. Katz; Larry Bergman

2001-08-01T23:59:59.000Z

309

Office of Security Training Operations - Mission and Functions  

NLE Websites -- All DOE Office Websites (Extended Search)

Security Training Operations Please click on this link to go to the National Training Center. Mission The mission of the Office of Security Training Operations is to develop and...

310

Mission analysis of photovoltaic solar energy systems. Final report. Volume I. Summary  

SciTech Connect

A summary report of a study program whose principal objective was to develop methods for the technical and economic evaluation of potential missions (applications) for photovoltaic solar energy conversion in the southwestern United States in the 1980 to 2000 period is presented. A secondary objective was to apply the methodology, when developed, to the evaluation of a number of illustrative examples of candidate missions in order to obtain at least a preliminary indication of the competitive position of the photovoltaic technology in the future energy economy of the Southwest. Because of their large potential significance, most of the effort in the study was devoted to two main classes of missions: on-site applications (in which the photovoltaic system serves an electric load point that is colocated with the system) and central station power plant applications. A smaller amount of attention was given to the electrolytic production of hydrogen with electric power generated by the photovoltaic conversion of solar energy. (WHK)

1975-12-01T23:59:59.000Z

311

Isotope separation apparatus and method  

DOE Patents (OSTI)

The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

Cotter, Theodore P. (Los Alamos, NM)

1982-12-28T23:59:59.000Z

312

Microsats for On-Orbit Support Missions  

SciTech Connect

I appreciate the opportunity to address this conference and describe some of our work and plans for future space missions and capabilities. My presentation will consist of a short overview of our program, some potential missions and enabling technologies, as well as, a description of some of our test vehicles and ongoing docking experiments. The Micro-Satellite Technology Program at Lawrence Livermore National Laboratory is developing technologies for a new generation of a very highly capable autonomous microsats. A microsat is defined here as a vehicle that's less than 100 kilograms in mass. We're looking at a number of different microsat design configurations, between 0.5 to 1 meter in length and less than 40 kg in mass. You'll see several ground-test vehicles that we have been building that are modeled after potential future on-orbit systems. In order to have very aggressive missions, these microsats will require new integrated proximity operation sensors, advanced propulsion, avionics and guidance systems. Then to make this dream a reality a new approach to high fidelity ''hardware-in-the-loop'' ground testing, will be discussed that allows repeated tests with the same vehicle multiple times. This will enable you to ''get it right'' before going into space. I'll also show some examples of our preliminary docking work completed as of today.

Ledebuhr, A G

2001-03-15T23:59:59.000Z

313

NREL: Technology Transfer - NREL Mission and CSP Highlighted ...  

National Renewable Energy Laboratory Technology Transfer NREL Mission and CSP Highlighted in Innovation Magazine April 29, 2008. Laboratory Director ...

314

Environmental assessment for the relocation and storage of isotopic heat sources, Hanford Site, Richland, Washington  

SciTech Connect

As part of a bilateral agreement between the Federal Minister for Research and Technology of the Federal Republic of Germany (FRG) and the DOE, Pacific Northwest National Laboratory (PNNL) developed processes for the treatment and immobilization of high-level radioactive waste. One element of this bilateral agreement was the production of sealed isotopic heat sources. During the mid-1980s, 30 sealed isotopic heat sources were manufactured. The sources contain a total of approximately 8.3 million curies consisting predominantly of cesium-137 and strontium-90 with trace amounts of transuranic contamination. Currently, the sources are stored in A-Cell of the 324 Building. Intense radiation fields from the sources are causing the cell windows and equipment to deteriorate. Originally, it was not intended to store the isotopic heat sources for this length of time in A-cell. The 34 isotopic heat sources are classified as remote handled transuranic wastes. Thirty-one of the isotopic heat sources are sealed, and seals on the three remaining isotopic heat sources have not been verified. However, a decision has been made to place the remaining three isotopic heat sources in the CASTOR cask(s). The Washington State Department of Health (WDOH) has concurred that isotopic heat sources with verified seals or those placed into CASTOR cask(s) can be considered sealed (no potential to emit radioactive air emissions) and are exempt from WAC Chapter 246-247, Radiation Protection-Air Emissions.

NONE

1997-06-01T23:59:59.000Z

315

MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY  

E-Print Network (OSTI)

MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY Mission Gerald Navratil Need Mohamed Abdou and Symposium 1-2 December 2010 #12;FUSION NUCLEAR SCIENCE FACILITY: COMMENTS ON MISSION Gerald A. Navratil Component Test Facility Theory & Simulation FESAC/Snowmass Report: ITER-Based Development Path #12;FUSION

316

Hydrogen isotope separation  

DOE Patents (OSTI)

A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

Bartlit, John R. (Los Alamos, NM); Denton, William H. (Abingdon, GB3); Sherman, Robert H. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

317

It's Elemental - Isotopes of the Element Mendelevium  

NLE Websites -- All DOE Office Websites (Extended Search)

The Periodic Table of Elements Next Element (Nobelium) Nobelium Isotopes of the Element Mendelevium Click for Main Data Most of the isotope data on this site has been obtained...

318

It's Elemental - Isotopes of the Element Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Periodic Table of Elements Next Element (Neptunium) Neptunium Isotopes of the Element Uranium Click for Main Data Most of the isotope data on this site has been obtained from...

319

It's Elemental - Isotopes of the Element Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

Periodic Table of Elements Next Element (Beryllium) Beryllium Isotopes of the Element Lithium Click for Main Data Most of the isotope data on this site has been obtained from...

320

It's Elemental - Isotopes of the Element Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

The Periodic Table of Elements Next Element (Helium) Helium Isotopes of the Element Hydrogen Click for Main Data Most of the isotope data on this site has been obtained from...

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ISOTOPE FRACTIONATION Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. The  

E-Print Network (OSTI)

for the utilization of stable isotopes in geology, geochemistry, biogeochemistry, paleoceanography and elsewhere____________________________ ISOTOPE FRACTIONATION ____________________________ Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. The term `isotope

Zeebe, Richard E.

322

Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986  

Science Conference Proceedings (OSTI)

This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

Heiken, J.H. (ed.)

1987-06-01T23:59:59.000Z

323

TRImP - A new facility to produce and trap radioactive isotopes  

E-Print Network (OSTI)

At the Kernfysisch Vensneller Institiutr (KVI) in Groningen, NL, a new facility (TRImP) is under development. It aims for producing, slowing down, and trapping of radioactive isotopes in order to perform accurate measurements on fundamental symmetries and interactions. A production target station and a dual magnetic separator installed and commissioned. We will slow down the isotopes of interest using an ion catcher and in a further stage a radiofrequency quadropole gas cooler (RFQ). The isotopes will finally be trapped in an atomic trap for precision studies.

Sohani, M

2006-01-01T23:59:59.000Z

324

TRImP - A new facility to produce and trap radioactive isotopes  

E-Print Network (OSTI)

At the Kernfysisch Vensneller Institiutr (KVI) in Groningen, NL, a new facility (TRImP) is under development. It aims for producing, slowing down, and trapping of radioactive isotopes in order to perform accurate measurements on fundamental symmetries and interactions. A production target station and a dual magnetic separator installed and commissioned. We will slow down the isotopes of interest using an ion catcher and in a further stage a radiofrequency quadropole gas cooler (RFQ). The isotopes will finally be trapped in an atomic trap for precision studies.

M. Sohani

2006-01-17T23:59:59.000Z

325

SIGNIFICANCE OF ISOTOPICALLY LABILE ORGANIC HYDROGEN IN THERMAL MATURATION OF ORGANIC MATTER  

DOE Green Energy (OSTI)

Isotopically labile organic hydrogen in organic matter occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation. We monitor and interpret changes in the H-isotopic exchangeability and D/H ratio in maturing kerogens in order to evaluate the diagenetic and/or paleoenvironmental significance of OD values in different types of kerogen, and in the maturation products oil and fractions of oil. We investigate the utility of FTIR, NMR, and Raman Spectroscopy as proxies for thermal maturation, and the paleoenvironmental significance of an apparent correlation between hydrogen exchangeability and the O15N values in kerogens in stratigraphic sequences.

Schimmelmann, Arndt; Mastalerz, Maria

2002-09-11T23:59:59.000Z

326

Isotope GeoloGy1 Unlike physics or chemistry, teaching isotope  

E-Print Network (OSTI)

Isotope GeoloGy1 Unlike physics or chemistry, teaching isotope geochemistry is difficult because. Writing an effective book on geochemistry is thus even more difficult. Claude Allègre's Isotope Geology geochemistry book, given how effective the texts by Faure and Dickin are. However, Allègre's Isotope Geology

Lee, Cin-Ty Aeolus

327

PRODUCTION OF TRITIUM  

DOE Patents (OSTI)

This invention relates to a process for the production of tritium by subjecting comminuted solid lithium fluoride containing the lithium isotope of atomic mass number 6 to neutron radiation in a self-sustaining neutronic reactor. The lithium fiuoride is heated to above 450 deg C. in an evacuated vacuum-tight container during radiation. Gaseous radiation products are withdrawn and passed through a palladium barrier to recover tritium. (AEC)

Jenks, G.H.; Shapiro, E.M.; Elliott, N.; Cannon, C.V.

1963-02-26T23:59:59.000Z

328

Isotopic Abundance in Atom Trap Trace Analysis  

isotopes for climate change and nuclear proliferation interests. The Invention Argonne scientists have created a novel method and system for

329

"Environmental Isotope Geochemistry": Past, Present Mark Baskaran  

E-Print Network (OSTI)

Chapter 1 "Environmental Isotope Geochemistry": Past, Present and Future Mark Baskaran 1.1 Introduction and Early History A large number of radioactive and stable isotopes of the first 95 elements unraveling many secrets of our Earth and its environmental health. These isotopes, because of their suitable

Baskaran, Mark

330

Design of a 2 MeV Compton scattering gamma-ray source for DNDO missions  

Science Conference Proceedings (OSTI)

Nuclear resonance fluorescence-based isotope-specific detection and imaging is a powerful new technology that can enable access to new mission spaces for DNDO. Within this context, the development of advanced mono-energetic gamma ray sources plays an important role in the DNDO R&D portfolio, as it offers a faster, more precise, and safer alternative to conventional Bremsstrahlung sources. In this report, a specific design strategy is presented, along with a series of theoretical and computational tools, with the goal of optimizing source parameters for DNDO applications. In parallel, key technologies are outlined, along with discussions justifying specific choices and contrasting those with other alternatives. Finally, a complete conceptual design is described, and machine parameters are presented in detail.

Hartemann, F V; Albert, F

2009-08-24T23:59:59.000Z

331

Radioactive isotopes on the Moon  

SciTech Connect

A limited review of experiments and studies of radioactivity and isotope ratios in lunar materials is given. Observations made on the first few millimeters of the surface where the effects of solar flare particles are important, some measurements on individual rocks, and some studies of radioactivities produced deep in the lunar soil by galactic cosmic rays, are among the experiments discussed. (GHT)

Davis, R. Jr.

1975-01-01T23:59:59.000Z

332

HIGH FLUX ISOTOPE REACTOR PRELIMINARY DESIGN STUDY  

SciTech Connect

A comparison of possible types of research reactors for the production of transplutonium elements and other isotopes indicates that a flux-trap reactor consisting of a beryllium-reflecteds light-water-cooled annular fuel region surrounding a light-water island provides the required thermal neutron fluxes at minimum cost. The preliminary desigu of such a reactor was carried out on the basis of a parametric study of the effect of dimensions of the island and fuel regions heat removal rates, and fuel loading on the achievable thermal neutmn fluxes in the island and reflector. The results indicate that a 12- to 14-cm- diam. island provides the maximum flux for a given power density. This is in good agreement with the US8R critical experiments. Heat removal calculations indicate that average power densities up to 3.9 Mw/liter are achievable with H/ sub 2/O-cooled, platetype fuel elements if the system is pressurized to 650 psi to prevent surface boiling. On this basis, 100 Mw of heat can be removed from a 14-cm-ID x 36-cm-OD x 30.5-cm-long fuel regions resulting in a thermal neutron flux of 3 x 10/sup 15/ in the island after insertion of 100 g of Cm/sup 244/ or equivalent. The resulting production of Cf/sup 252/ amounts to 65 mg for a 1 1/2- year irradiation. Operation of the reactor at the more conservative level of 67 Mw, providing an irradiation flux of 2 x 10/sup 15/ in the islands will result in the production of 35 mg of Cf/sup 252/ per 18 months from 100 g of Cm/sup 244/. A development program is proposed to answer the question of the feasibility of the higher power operation. In addition to the central irradiation facility for heavyelement productions the HFIR contains ten hydraulic rabbit tubes passing through the beryllium reflector for isotope production and four beam holes for basic research, Preliminary estimates indicate that the cost of the facility, designed for an operating power level of 100 Mw, will be approximately 2 million. (auth)

Lane, J.A.; Cheverton, R.D.; Claiborne, G.C.; Cole, T.E.; Gambill, W.R.; Gill, J.P.; Hilvety, N.; McWherther, J.R.; Vroom, D.W.

1959-03-20T23:59:59.000Z

333

Process for preparing a chemical compound enriched in isotope content  

DOE Patents (OSTI)

A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

Michaels, Edward D. (Spring Valley, OH)

1982-01-01T23:59:59.000Z

334

Definition: Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search Dictionary.png Isotopic Analysis- Rock Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.[1] View on Wikipedia Wikipedia Definition References ↑ http://wwwrcamnl.wr.usgs.gov/isoig/isopubs/itchch2.html Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Isotopic_Analysis-_Rock&oldid=687702" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties

335

Terms of Reference Administrative Assistant to the Deputy Head of Mission (G5) Election Observation Mission  

E-Print Network (OSTI)

The ODIHR is the leading agency in Europe in the field of election observation. It co-ordinates and organizes the deployment of several observation missions with thousands of observers every year to assess the compliance of elections in OSCE participating States in line with OSCE commitments, other international standards for democratic elections and national legislation. Its unique methodology provides an in-depth insight into all elements of an electoral process, and permits to make concrete recommendations to further improve electoral processes. Under the supervision of the Deputy Head of Mission for the ODIHR Election Observation Mission (EOM), the Administrative Assistant to the Deputy Head of Mission assists the Deputy Head of Mission (DHoM). S/he reports directly to the DHoM. Tasks and responsibilities:- Arrange appointments and maintain supervisors calendar, receive high-ranking visitors, place and screen telephone calls and answer queries with discretion- Organize various meetings with senior officials from presidential administration, national election authorities, relevant ministries, leaders of political parties, representatives of the media and civil society- Interpret meetings to/from English from/to local language- Translate sensitive documents from and to English- Draft non-substantive correspondence and ensure follow up- Keep lists of names, addresses and phone number of the DHoMs interlocutors- Perform other tasks as required. Education and Experience:- Completion of secondary education- Five years of relevant experience. Experience in international organizations is an asset.- Tact, discretion, self-confidence and diplomacy- Ability to work long hours and under pressure- Demonstrated ability to work with people of different cultural and religious backgrounds,

unknown authors

2007-01-01T23:59:59.000Z

336

Management of Heavy Isotope in the DOE Complex  

Science Conference Proceedings (OSTI)

Currently each Department Of Energy (DOE) Program office manages its own nuclear materials through activities such as production, processing, storage, transportation, and disposition. However, recognizing the need to strengthen its strategic approach to the integrated life-cycle management of nuclear materials, DOE established the Nuclear Materials Management Stewardship Initiative (NMMSI) in January 2000. The NMMSI's first visible product was the Integrated Nuclear Material Management Plan in which it was generally recommended that DOE take a cross-cutting look at managing its nuclear materials, and specifically recommended that four Nuclear Material Management Groups (NMMGs) be formed. These groups were established to facilitate management of nuclear materials for which DOE has or may have responsibility, including many presently not in DOE's direct control. One of these NMMGs, the Heavy Isotope Management Group (HIMG) was established at Oak Ridge National Laboratory in Dec ember 2000, to facilitate management of (a) actinide and their decay products (except sealed sources) and (b) isotopically enriched stable and radioactive isotopes except uranium and lithium, but excluding thorium, uranium, spent fuel, and weapons or reactor grade plutonium which are addressed by other NMMGs. Despite its short duration and relatively limited funding, the HIMG has facilitated the disposition of heavy isotopes from Lawrence Berkeley National Laboratory (LBNL), Rocky Flats Environmental Technology Site (RFETS), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL), and Idaho National Engineering and Environmental Laboratory (INEEL). The primary disposition options have been to facilitate reuse of valuable heavy isotopes by matching custodians of unwanted materials with other users that seek such materials for new applications. This approach has the dual advantages of avoiding custodian disposal costs plus cost to the user of obtaining newly produced material. The HIMG has also prepared issue papers on neptunium and americium/curium that identify the resources, potential uses, and disposal pathways for the materials across the DOE Complex. In the future the HIMG expects to comprehensively identify the status of the U.S. heavy isotope inventory, prepare additional issue papers and plans charting the future of this inventory, and to facilitate execution of the plan.

Canon, R.; Croff, A.; Boyd, L.

2002-02-27T23:59:59.000Z

337

METHOD FOR PRODUCING ISOTOPIC METHANES FROM LITHIUM CARBONATE AND LITHIUM HYDRIDE  

DOE Patents (OSTI)

A process is descrlbed for the production of methane and for the production of methane containing isotopes of hydrogen and/or carbon. Finely divided lithium hydrlde and litldum carbonate reactants are mixed in intimate contact and subsequently compacted under pressures of from 5000 to 60,000 psl. The compacted lithium hydride and lithium carbenate reactunts are dispised in a gas collecting apparatus. Subsequently, the compact is heated to a temperature in the range 350 to 400 deg C whereupon a solid-solid reaction takes place and gaseous methane is evolved. The evolved methane is contaminated with gaseous hydrogen and a very small amount of CO/sub 2/; however, the desired methane product is separated from sald impurities by well known chemical processes, e.g., condensation in a cold trap. The product methane contalns isotopes of carbon and hydrogen, the Isotopic composition being determined by the carbon isotopes originally present In the lithium carbonate and the hydrogen isotopes originally present in the lithium hydride.

Frazer, J.W.

1959-10-27T23:59:59.000Z

338

Unmanned and autonomous systems mission based test and evaluation  

Science Conference Proceedings (OSTI)

We propose to apply principles from the Army Evaluation Center's Mission Based Test and Evaluation (MBT&E) to Unmanned and Autonomous Systems (UAS) Test and Evaluation (T&E) in order to conduct rigorous, real-world testing based on anticipated military ... Keywords: capability based evaluation, measures of effectiveness, measures of performance, mission and means framework, mission based test and evaluation, simulation based test and evaluation, unmanned and autonomous system test and evaluation

Philipp A. Djang; Frank Lopez

2009-09-01T23:59:59.000Z

339

Sandia National Laboratories: Sandia National Laboratories: Missions:  

NLE Websites -- All DOE Office Websites (Extended Search)

Accomplishments Accomplishments About Defense Systems & Assessments Program Areas Accomplishments Archives Cybersecurity Missions Accomplishments Protecting the nation Sandia lasers test and calibrate sensors on U.S. satellites Sandia's scientists and engineers have a significant impact on national security and continually deliver results, including these noteworthy successes from fiscal year 2012: AHW Launch Advanced Hypersonic Weapon test flight Sandia conducted a highly successful first test flight of the Advanced Hypersonic Weapon (AHW) concept for the U.S. Army Space and Missile Defense Command. Designed to fly within the earth's atmosphere at hypersonic speed and long range, the first-of-its-kind glide vehicle launched from Sandia's Kauai Test Facility in Kauai, Hawaii, using a three-stage

340

Power beaming: Mission enabling for lunar exploration  

SciTech Connect

This paper explores several beam power concepts proposed for powering either lunar base or rover vehicles. At present, power requirements to support lunar exploration activity are met by integral self-contained power system designs. To provide requisite energy flexibility for human expansion into space, an innovative approach to replace on-board self-contained power systems is needed. Power beaming provides an alternative approach to supplying power that would ensure increased mission flexibility while reducing total mass launched into space. Providing power to the moon presents significant design challenges because of the duration of the lunar night. Power beaming provides an alternative to solar photovoltaic systems coupled with battery storage, radioisotope thermoelectric generation, and surface nuclear power. The Synthesis Group describes power beaming as a technology supporting lunar exploration. In this analysis beam power designs are compared to conventional power generation methods.

Bamberger, J.A.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

LLNL/LANS mission committee meeting  

SciTech Connect

Recent events continue to show the national security imperative of the global security mission: (1) Fighting Proliferation - (a) At Yongbyon, 'a modern, industrial-scale U-enrichment facility w/2000 centrifuges' seen Nov. 2010, (b) In Iran, fueling began at Bushehr while P5+1/lran talks delayed to Dec. 2010; (2) Continuing need to support the warfighter and IC - (a) tensions on the Korean peninsula, (b) primitative IEDs a challenge in Afghanistan, (c) cyber command, (d)another Georgian smuggling event; and (3) Countering terrorisms on US soil - (a) toner cartridge bomb, (b) times square bomb, (c) christmas tree bomb. Joint Technical Operations Team (JTOT) and Accident Response Group (ARG) elements deployed to two East Coast locations in November to work a multi-weapon scenario. LANL provided 70% of on-duty field and reconstitution teams for both Marble Challenge 11-01 and JD 11-01. There were a total of 14 deployments in FY10.

Burns, Michael J [Los Alamos National Laboratory

2010-12-06T23:59:59.000Z

342

Analysis of hydrogen isotope mixtures  

DOE Patents (OSTI)

Disclosed are an apparatus and a method for determining concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, E.

1992-12-31T23:59:59.000Z

343

Analysis of hydrogen isotope mixtures  

DOE Patents (OSTI)

An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, Eliel (Aiken, SC)

1994-01-01T23:59:59.000Z

344

Progress in the Use of Isotopes: The Atomic Triad - Reactors, Radioisotopes and Radiation  

DOE R&D Accomplishments (OSTI)

Recent years have seen a substantial growth in the use of isotopes in medicine, agriculture, and industry: up to the minute information on the production and use of isotopes in the U.S. is presented. The application of radioisotopes to industrial processes and manufacturing operations has expanded more rapidly than any one except its most ardent advocates expected. New uses and new users are numerous. The adoption by industry of low level counting techniques which make possible the use of carbon-14 and tritium in the control of industrial processes and in certain exploratory and research problems is perhaps most promising of current developments. The latest information on savings to industry will be presented. The medical application of isotopes has continued to develop at a rapid pace. The current trend appears to be in the direction of improvements in technique and the substitution of more effective isotopes for those presently in use. Potential and actual benefits accruing from the use of isotopes in agriculture are reviewed. The various methods of production of radioisotopes are discussed. Not only the present methods but also interesting new possibilities are covered. Although isotopes are but one of the many peaceful uses of the atom, it is the first to pay its way. (auth)

Libby, W. F.

1958-08-04T23:59:59.000Z

345

Edison Mission Marktg & Trdg Inc | Open Energy Information  

Open Energy Info (EERE)

Marktg & Trdg Inc Jump to: navigation, search Name Edison Mission Marktg & Trdg Inc Place Massachusetts Utility Id 3601 Utility Location Yes Ownership W Activity Wholesale...

346

SLAC National Accelerator Laboratory Our Vision. Our Mission...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Accelerator Laboratory Our Vision. Our Mission. Our Values. SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park, CA 94025-7015 slac.stanford.edu Great...

347

Don Cook talks about future of Pantex mission | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Defense Programs, last week spoke to Pantexans about the future mission of Pantex and the critical role the plant will play in maintaining the nation's stockpile for...

348

Cu isotope fractionation during bornite dissolution: An in situ X-ray diffraction analysis  

Science Conference Proceedings (OSTI)

Low-temperature ore deposits exhibit a large variation in {delta}{sup 65}Cu ({approx}12{per_thousand}), and this range has been attributed, in part, to isotope fractionation during weathering reactions of primary minerals such as chalcocite and chalcopyrite. Here, we examine the fractionation of Cu isotopes during dissolution of another important Cu ore mineral, bornite, using a novel approach that combines time-resolved X-ray diffraction (XRD) and isotope analysis of reaction products. During the initial stages of bornite oxidative dissolution by ferric sulfate ( 20 mol% Cu was leached from the solid, the difference between the Cu isotope composition of the aqueous and mineral phases approached zero, with {Delta}{sub aq - min}{sup 0} values ranging from - 0.21 {+-} 0.61{per_thousand} to 0.92 {+-} 0.25{per_thousand}. XRD analysis allowed us to correlate changes in the atomic structure of bornite with the apparent isotope fractionation as the dissolution reaction progressed. These data revealed that the greatest degree of apparent fractionation is accompanied by a steep contraction in the unit-cell volume, which we identified as a transition from stoichiometric to non-stoichiometric bornite. We propose that the initially high {Delta}{sub aq - min} values result from isotopically heavy Cu ({sup 65}Cu) concentrating within Cu{sup 2+} during dissolution. The decrease in the apparent isotope fractionation as the reaction progresses occurs from the distillation of isotopically heavy Cu ({sup 65}Cu) during dissolution or kinetic isotope effects associated with the depletion of Cu from the surfaces of bornite particles.

Wall, Andrew J.; Mathur, Ryan; Post, Jeffrey E.; Heaney, Peter J. (Juniata); (Smithsonian); (Penn)

2012-10-24T23:59:59.000Z

349

Pulsed CO laser for isotope separation of uranium  

SciTech Connect

This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

Baranov, Igor Y.; Koptev, Andrey V. [Rocket-Space Technics Department, Baltic State Technical University, 1, 1st Krasnoarmeyskaya st.,St. Petersburg, 190005 (Russian Federation)

2012-07-30T23:59:59.000Z

350

Electromagnetic Isotope Separation Lab (EMIS) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Electromagnetic Isotope Separation Lab Electromagnetic Isotope Separation Lab May 30, 2013 ORNL established the Stable Isotope Enrichment Laboratory (SIEL) as part of a project funded by the DOE Office of Science, Nuclear Physics Program to develop a modernized electromagnetic isotope separator (EMIS), optimized for separation of a wide range of stable isotopes. The SIEL is located in the Building 6010 Shield Test Station, space formerly allocated to the Oak Ridge Electron Linear Accelerator, on the main campus of ORNL. ORNL staff have designed and built a nominal 10 mA ion current EMIS (sum of all isotopes at the collector) in the SIEL. This EMIS is currently being tested to determine basic performance metrics such as throughput and enrichment factor per pass. This EMIS unit and space will be used to

351

METHOD AND APPARATUS FOR COLLECTING ISOTOPES  

DOE Patents (OSTI)

A method and apparatus for collecting isotopes having a high vapor pressure, such as isotopes of mercury, in a calutron are described. Heretofore, the collected material would vaporize and escape from the ion receiver as fast as it was received. By making the receiver of pure silver, the mercury isotopes form a nonvolatile amalgam with the silver at the water cooled temperature of the receiver, and the mercury is thus retained.

Leyshon, W.E.

1957-08-01T23:59:59.000Z

352

Isotopic Analysis (Not Available) | Open Energy Information  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown Notes Meeting proceedings - large list of papers and presentations dealing mostly with various isotopic analyses and their applications...

353

It's Elemental - Isotopes of the Element Nobelium  

NLE Websites -- All DOE Office Websites (Extended Search)

Mendelevium Previous Element (Mendelevium) The Periodic Table of Elements Next Element (Lawrencium) Lawrencium Isotopes of the Element Nobelium Click for Main Data Most of the...

354

It's Elemental - Isotopes of the Element Fermium  

NLE Websites -- All DOE Office Websites (Extended Search)

Einsteinium Previous Element (Einsteinium) The Periodic Table of Elements Next Element (Mendelevium) Mendelevium Isotopes of the Element Fermium Click for Main Data Most of the...

355

Available Technologies: Real Time High Throughput Isotopic ...  

Space exploration; Any scientific research involving the tracking of isotopic labels, as in: Solar power; Scintillators (deuterated, 10 B, 6 Li, 3 He) Batteries (doping)

356

Zeolite Cryopumps for Hydrogen Isotopes Transportation  

Science Conference Proceedings (OSTI)

Tritium Processing / Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995

Ivan A. Alekseev; Sergey P. Karpov; Veniamin D. Trenin

357

It's Elemental - Isotopes of the Element Rhodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 89 1.5 microseconds Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available...

358

It's Elemental - Isotopes of the Element Promethium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 126 No Data Available Electron Capture (suspected) No Data Available 127 No Data Available Proton Emission...

359

It's Elemental - Isotopes of the Element Niobium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 81 < 200 nanoseconds Electron Capture No Data Available 82 50 milliseconds Electron Capture 100.00% Electron...

360

It's Elemental - Isotopes of the Element Indium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 97 No Data Available Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available...

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

It's Elemental - Isotopes of the Element Cerium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 119 No Data Available Electron Capture (suspected) No Data Available 120 No Data Available Electron Capture...

362

WEB RESOURCE: Exploring the Table of Isotopes  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... This page offers an interactive table of isotopes, an animated glossary of nuclear terms and relevant support documents created by the...

363

HFIR | High Flux Isotope Reactor | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

HFIR Working with HFIR Neutron imaging offers new tools for exploring artifacts and ancient technology Home | User Facilities | HFIR HFIR | High Flux Isotope Reactor SHARE The High...

364

Isotopic Exchange in Air Detritiation Dryers  

Science Conference Proceedings (OSTI)

Tritium Processing / Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988)

A.E. Everatt; A.H. Dombra; R.E. Johnson

365

CLUMPED ISOTOPIC EQUILIBRIUM AND THE RATE OF ISOTOPE EXCHANGE BETWEEN CO2 AND WATER  

E-Print Network (OSTI)

CLUMPED ISOTOPIC EQUILIBRIUM AND THE RATE OF ISOTOPE EXCHANGE BETWEEN CO2 AND WATER HAGIT P. AFFEK Department of Geology and Geophysics, Yale University, 210 Whitney Ave., New Haven, Connecticut, 06511, USA the exchange of oxygen isotopes with water. The use of 18 O as an environmental indicator typically assumes

366

SEIS for the Production of Tritium in a Commercial Light Water...  

National Nuclear Security Administration (NNSA)

SEIS for the Production of Tritium in a Commercial Light Water Reactor | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation...

367

Radiation Analysis for the Human Lunar Return Mission  

Science Conference Proceedings (OSTI)

An analysis of the radiation hazards that are anticipated on an early Human Lunar Return (HLR) mission in support of NASA deep space exploration activities is presented. The HLR mission study emphasized a low cost lunar return to expand human capabilities ...

Wilson J. W.; Simonsen L. C.; Shinn J. L.; Dubey R. R.; Jordan W.; Kim M.

1997-09-01T23:59:59.000Z

368

GLOBAL SECURITY & NONPROLIFERATION PROGRAMS MISSION STATEMENT AND FACT SHEET  

E-Print Network (OSTI)

GLOBAL SECURITY & NONPROLIFERATION PROGRAMS MISSION STATEMENT AND FACT SHEET MISSION The Oak Ridge National Laboratory (ORNL) Global Security & Nonproliferation Programs (GS&N) develop, coordinate a strategic threat to the United States. Through its nonproliferation programs, the ORNL GS&N is a primary

Pennycook, Steve

369

Schedule of the Joint Mission to support Burkina Faso in  

E-Print Network (OSTI)

Joint Mission Objective: Based on the findings of the stocktaking analysis conducted by the government with MDBs support and consultations with all stakeholders, the main objective of the mission is to elaborate the first draft of the FIP Investment Strategy raising the main investment priorities and related projects ideas

Forest Investment Program; Fip Burkina Faso

2011-01-01T23:59:59.000Z

370

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission  

E-Print Network (OSTI)

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission R. P. fla B. Dennis, G mission is to investigate the physics of particle acceleration and energy release in solar flares, through-ray/gamma-ray spectroscopy 1. INTRODUCTION The primary scientific objective of the Reuven Ramaty High Energy Solar

California at Berkeley, University of

371

The Solar Orbiter mission and its prospects for helioseismology  

E-Print Network (OSTI)

Solar Orbiter is intended to become ESA's next solar mission in heritage of the successful SOHO project. The scientific objectives of the mission, its design, and its scientific payload are reviewed. Specific emphasis is given to the perspectives of Solar Orbiter with respect to helioseismology.

Woch, J; 10.1002/asna.200610743

2010-01-01T23:59:59.000Z

372

Light stable isotope study of the Roosevelt Hot Springs thermal area, Southwestern Utah  

DOE Green Energy (OSTI)

The isotopic composition of hydrogen, oxygen, and carbon has been determined for regional cold springs, thermal fluids, and rocks and minerals from the Roosevelt Hot Springs thermal area. The geothermal system has developed within plutonic granitic rocks and amphibolite facies gneiss, relying upon fracture-controlled permeability for the migration of the thermal fluids. Probably originating as meteoric waters in the upper elevations of the Mineral Mountains, the thermal waters sampled in the production wells display an oxygen isotopic shift of at least +1.2. Depletions of delta /sup 18/O in wole rock, K-feldspar, and biotite have a positive correlation with alteration intensity. W/R mass ratios, calculated from the isotopic shifts of rock and water, range up to 3.0 in a producing horizon of one well, although the K-feldspar has experienced only 30% exchange with the thermal waters. While veinlet quartz has equilibrated with the thermal waters, the /sup 18/O values of K-mica clay, an alteration product of plagioclase, mimic the isotopic composition of K-feldspar and whole rock. This suggests that locally small W/R ratios enable plagioclase to influence its alteration products by isotopic exchange.

Rohrs D.T.; Bowman, J.R.

1980-05-01T23:59:59.000Z

373

Changes in mixing ratio and isotopic composition of CO2 in urban air from the Los Angeles basin, California, between 1972 and 2003  

E-Print Network (OSTI)

reflects a change in the relative proportion of natural gas and petroleum products burned in the regionChanges in mixing ratio and isotopic composition of CO2 in urban air from the Los Angeles basin December 2008. [1] Atmospheric CO2 mixing ratios and C and O isotopic compositions are reported for the Los

374

Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators January 29, 2008 - 7:06pm Addthis Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASA/JPL-Caltech. Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASA/JPL-Caltech. What are the key facts? Over the last four decades, the United States has launched 26

375

DOE Exercises Option for Mission Support Contract | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exercises Option for Mission Support Contract Exercises Option for Mission Support Contract DOE Exercises Option for Mission Support Contract December 16, 2013 - 12:00pm Addthis Media Contact Cameron Salony, DOE 509-376-0402, Cameron.Salony@rl.doe.gov Mission Support Alliance to Provide Site Services at Hanford through May 2017 WASHINGTON, DC - The Department of Energy (DOE) is extending Mission Support Alliance's (MSA) contract for infrastructure and site services at the Hanford Site in southeastern Washington state by three years. In 2009, following a competitive bid, DOE awarded MSA a cost-plus-award-fee contract valued at approximately $3 billion for up to 10 years, with a five-year base period. The department is exercising the first of two options for extension. The contract has been extended through May 2017 for

376

Mission Plan for the Civilian Radioactive Waste Management Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Plan for the Civilian Radioactive Waste Management Program Mission Plan for the Civilian Radioactive Waste Management Program Mission Plan for the Civilian Radioactive Waste Management Program Summary In response to the the requirement of the Nuclear Waste Policy Act of 1982, the Office of Civilian Radioactive Waste Management in the Department of Energy (DOE) has prepared this Mission Plan for the Civilian Radioactive Waste Management Program. The Mission Plan is divided into two parts. Part I describes the overall goals, objectives, and strategy for the disposal of spent nuclear fuel and high-level waste. It explains that, to meet the directives of the Nuclear Waste Policy Act, the DOE intends to site, design, construct., and start operating a mined geologic repository by January 31, 1998. The Act specifies that the costs of these

377

NNSA Mission Featured on NPR | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Mission Featured on NPR | National Nuclear Security Administration Mission Featured on NPR | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA Mission Featured on NPR NNSA Mission Featured on NPR Posted By NNSA Public Affairs NNSA Blog NNSA's successful removal of all remaining highly enriched uranium (HEU) from Ukraine was featured on NPR's "All Things Considered" this past

378

Nuclear Systems Powering a Mission to Mars | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Powering a Mission to Mars Systems Powering a Mission to Mars Nuclear Systems Powering a Mission to Mars November 28, 2011 - 11:23am Addthis Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy Curiosity Mission: investigate whether the Gale Crater on Mars has ever offered environmental conditions that support the development of microbial life. This past weekend, the Mars Science Laboratory rover Curiosity launched from Cape Canaveral with the most advanced payload of scientific gear ever used on the red planet. Its mission: to investigate whether the Gale Crater on Mars has ever

379

Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Gas Emissions Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Gas Emissions October 7, 2013 - 11:46am Addthis YOU ARE HERE: Step 2 As Federal agencies work to identify opportunities for right-sizing the fleet and replacing inefficient vehicles with new, efficient, and/or alternatively fueled models to reduce greenhouse gas (GHG) emissions, they should flag potential mission constraints associated with vehicle usage. This may involve further data collection to understand the mission considerations associated with individual vehicles. For instance, in Figure 1, Vehicle 004 appears to be underutilized, having both a low user-to-vehicle ratio and a relatively low time in use per day. However,

380

Tank waste remediation system retrieval and disposal mission initial updated baseline summary  

SciTech Connect

This document provides a summary of the Tank Waste Remediation System (TWRS) Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost), developed to demonstrate Readiness-to-Proceed (RTP) in support of the TWRS Phase 1B mission. This Updated Baseline is the proposed TWRS plan to execute and measure the mission work scope. This document and other supporting data demonstrate that the TWRS Project Hanford Management Contract (PHMC) team is prepared to fully support Phase 1B by executing the following scope, schedule, and cost baseline activities: Deliver the specified initial low-activity waste (LAW) and high-level waste (HLW) feed batches in a consistent, safe, and reliable manner to support private contractors` operations starting in June 2002; Deliver specified subsequent LAW and HLW feed batches during Phase 1B in a consistent, safe, and reliable manner; Provide for the interim storage of immobilized HLW (IHLW) products and the disposal of immobilized LAW (ILAW) products generated by the private contractors; Provide for disposal of byproduct wastes generated by the private contractors; and Provide the infrastructure to support construction and operations of the private contractors` facilities.

Swita, W.R.

1998-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mercury Isotope Fractionation by Environmental Transport and Transformation Processes  

E-Print Network (OSTI)

isotope fractionation in fossil hydrothermal systems. Geology,isotopes: Evaporation, chemical diffusion and Soret diffusion. Chemical Geology,isotope records of atmospheric and riverine pollution from two major European heavy metal refineries. Chemical Geology,

Koster van Groos, Paul Gijsbert

2011-01-01T23:59:59.000Z

382

Mission analysis of photovoltaic solar energy systems. Quarterly progress report, 1 March 1976-31 May 1976  

DOE Green Energy (OSTI)

The main emphasis of the activity during the second quarter of this project continued to be on Task 1, Analysis of Near-Term Missions, and on Task 2, Analysis of Major Mid-Term Missions. In addition, considerable progress was also made on Task 6, Comparison of the True Societal Costs of Conventional and Photovoltaic Power Production, and starts were made on Task 3, Review and Updating of the ERDA Technology Implementation Plan, and Task 4, Critical External Issues. As was planned, work on Task 5, Impact of Incentives, was deferred to the second half of the program. Progress is reported. (WHK)

Leonard, S.L.; Munjal, P.K.; Rattin, E.J.

1976-06-01T23:59:59.000Z

383

A mission taxonomy-based approach to planetary rover cost-reliability tradeoffs  

Science Conference Proceedings (OSTI)

Our earlier work on robot mission reliability provides tradeoff analysis between input parameters such as mission success rate, robot team size, and robot component reliability, but only for specific tasks. Here we take a more comprehensive approach ... Keywords: failure, mission cost, mission design, mission taxonomy, planetary robot, reliability, robot configuration optimization

David Asikin; John M. Dolan

2009-09-01T23:59:59.000Z

384

Isotopic Analysis At Newberry Caldera Area (Carothers, Et Al...  

Open Energy Info (EERE)

H. Mariner, Terry E. C. Keith (1987) Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Retrieved from "http:en.openei.orgwindex.php?titleIsotopicA...

385

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and...

386

CALIFORNIUM ISOTOPES FROM BOMBARDMENT OF URANIUM WITH CARBON IONS  

E-Print Network (OSTI)

Isotopes from Bombardment of Uranium with Carbon Ions A.ISOTOPES FROM BOMBARDMENT OF URANIUM WITH CARBON IONS A.the irradiations, the uranium was dissolved in dilute

Ghiorso, A.; Thompson, S.G.; Street, K. Jr.; Seaborg, G.T.

2008-01-01T23:59:59.000Z

387

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope...

388

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith &...  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-...

389

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...  

Open Energy Info (EERE)

Inyo and Kern Counties, California. Supplement. Isotope geochemistry and Appendix H. Final report Retrieved from "http:en.openei.orgwindex.php?titleIsotopicAnalysis-Flu...

390

Advanced Mass Spectrometers for Hydrogen Isotope Analyses  

DOE Green Energy (OSTI)

This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

Chastagner, P.

2001-08-01T23:59:59.000Z

391

Positive and inverse isotope effect on superconductivity  

E-Print Network (OSTI)

This article improves the BCS theory to include the inverse isotope effect on superconductivity. An affective model can be deduced from the model including electron-phonon interactions, and the phonon-induced attraction is simply and clearly explained on the electron Green function. The focus of this work is on how the positive or inverse isotope effect occurs in superconductors.

Tian De Cao

2009-09-04T23:59:59.000Z

392

The Quest for the Heaviest Uranium Isotope  

E-Print Network (OSTI)

We study Uranium isotopes and surrounding elements at very large neutron number excess. Relativistic mean field and Skyrme-type approaches with different parametrizations are used in the study. Most models show clear indications for isotopes that are stable with respect to neutron emission far beyond N=184 up to the range of around N=258.

S. Schramm; D. Gridnev; D. V. Tarasov; V. N. Tarasov; W. Greiner

2011-07-06T23:59:59.000Z

393

5, 547577, 2008 Isotope hydrology of  

E-Print Network (OSTI)

HESSD 5, 547­577, 2008 Isotope hydrology of cave dripwaters L. Fuller et al. Title Page Abstract are under open-access review for the journal Hydrology and Earth System Sciences Isotope hydrology of Geology and Palaeontology, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria 3 School

Paris-Sud XI, Université de

394

Dynamical aspects of isotopic scaling  

E-Print Network (OSTI)

Investigation of the effect of the dynamical stage of heavy-ion collisions indicates that the increasing width of the initial isospin distributions is reflected by a significant modification of the isoscaling slope for the final isotopic distributions after de-excitation. For narrow initial distributions, the isoscaling slope assumes the limiting value of the two individual initial nuclei while for wide initial isotopic distributions the slope for hot fragments approaches the initial value. The isoscaling slopes for final cold fragments increase due to secondary emissions. The experimentally observed evolution of the isoscaling parameter in multifragmentation of hot quasiprojectiles at E$_{inc}$=50 AMeV, fragmentation of $^{86}$Kr projectiles at E$_{inc}$=25 AMeV and multifragmentation of target spectators at relativistic energies was reproduced by a simulation with the dynamical stage described using the appropriate model (deep inelastic transfer and incomplete fusion at the Fermi energy domain and spectator-participant model at relativistic energies) and the de-excitation stage described with the statistical multifragmentation model. In all cases the isoscaling behavior was reproduced by a proper description of the dynamical stage and no unambiguous signals of the decrease of the symmetry energy coefficient were observed.

M. Veselsky

2006-07-17T23:59:59.000Z

395

ISOTOPES  

E-Print Network (OSTI)

depends on the cost and energy efficiency of the laser.and the low cost and energy efficiency of existing, large-

Lederer, C. Michael

2013-01-01T23:59:59.000Z

396

ISOTOPES  

E-Print Network (OSTI)

uranium, heavy-water-moderated CANDU reactor, as contrastedis important, and in the CANDU power reactor, which uses

Lederer, C. Michael

2013-01-01T23:59:59.000Z

397

ISOTOPES  

E-Print Network (OSTI)

U.S. Department of Energy: Uranium Enrichment (1978). UnitedRaux and W.L. Grant, uranium Enrichment in South Africa,for heavy~water and uranium enrichment is more severe. In

Lederer, C. Michael

2013-01-01T23:59:59.000Z

398

ISOTOPES  

E-Print Network (OSTI)

is somewhat uncertain~ and projections have been reducedFigure 15 shows the recent CONAES projections for the U.S. (72,90), along with earlier projections for the U.S. and the

Lederer, C. Michael

2013-01-01T23:59:59.000Z

399

ISOTOPES  

E-Print Network (OSTI)

Klein and S.V. Peterson, May 9-ll, 1973, Argonne NationalLaboratory, Argonne, Illinois (1973). 97. R.A. Muller,S.V. Peterson, May 9-11, 1973, Argonne National Laboratory,

Lederer, C. Michael

2013-01-01T23:59:59.000Z

400

ISOTOPES  

E-Print Network (OSTI)

A Guidebook to Nuclear Reactors, University of Californiaa thermal position of a nuclear reactor followed by analysisproduced by six large nuclear reactors. The power usage per

Lederer, C. Michael

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ISOTOPES  

E-Print Network (OSTI)

as occurs in batch distillation. The urgency of developingor one plate of a distillation column, for example. Anas in the case of a distillation column, for which any other

Lederer, C. Michael

2013-01-01T23:59:59.000Z

402

Record of Decision for the Medical Isotopes Production Project: Molybdenum-99 and Related Isotopes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21 21 Federal Register / Vol. 61, No. 181 / Tuesday, September 17, 1996 / Notices property at Fort Ord, California. The FSEIS also analyzes impacts on a range of potential reuse alternatives. Copies of the FSEIS have been forwarded to various federal, state and local agencies, and predetermined interested organizations and individuals. DATES: This FSEIS will be available to the public for 30 days, after which the Army will prepare a Record of Decision for the Army action. ADDRESSES: Copies of the Final Supplemental Environmental Impact Statement can be obtained by writing or calling Mr. Bob Verkade, Sacramento District, U.S. Army Corps of Engineers, 1325 J Street, Sacramento, California 95814-2922, telephone (916) 557-7423, fax (916) 557-5307. Raymond J. Fatz, Deputy Assistant Secretary of the Army

403

Ramakrishna Mission initiative impact study: final report  

DOE Green Energy (OSTI)

This report has been prepared by the Tata Energy Research Institute (TERI) for the National Renewable Energy Laboratory. It presents the results of the evaluation and impact assessment of solar photovoltaic lighting systems in the region of Sunderbans, West Bengal, that were deployed by a reputable non-governmental organization (Ramakrishna Mission) under the auspices of the INDO-US collaborative project. The objectives of the study were to evaluate the solar photovoltaic systems for their impact on the individual households as well as on the community, to assess the effectiveness of the implementation and financial mechanisms, and to draw a long-term strategy for NREL's activities in Sunderbans based on case studies of similar interventions. Under the project, provision was made to supply 300 domestic lighting systems (DLS) based on 53-Wp module capacity to individual households and a few other systems such as for lighting, medical refrigeration, and pumping water to community centers. For this study, 152 households were surveyed, of which 29 had also been a part of earlier pre- and post-installation surveys, 47 had been a part of the earlier post-installation survey, and 76 were households that were surveyed for the first time. A set of 46, out of the total 152 households, was selected for evaluating the systems for their technical performance with respect to module output, condition of the battery, and daily energy consumption. Of the total 300 modules, 2 had been stolen, 9 out of the total 300 batteries needed to be replaced, and 10 out of the 300 charge controllers were non-functional. The statistics for the surveyed households indicate 32 luminaire-related faults (blackening or flickering of compact fluorescent lights) and 11 other faults related to fuses, switches, etc.

Chaurey, A.

2000-07-06T23:59:59.000Z

404

It's Elemental - Isotopes of the Element Radon  

NLE Websites -- All DOE Office Websites (Extended Search)

Astatine Astatine Previous Element (Astatine) The Periodic Table of Elements Next Element (Francium) Francium Isotopes of the Element Radon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Radon has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 193 1.15 milliseconds Alpha Decay 100.00% 194 0.78 milliseconds Alpha Decay 100.00% 195 6 milliseconds Alpha Decay 100.00% 195m 5 milliseconds Alpha Decay 100.00% 196 4.4 milliseconds Alpha Decay 99.90% Electron Capture ~ 0.10% 197 53 milliseconds Alpha Decay 100.00% 197m 25 milliseconds Alpha Decay 100.00% 198 65 milliseconds Alpha Decay No Data Available

405

Selected Isotopes for Optimized Fuel Assembly Tags  

SciTech Connect

In support of our ongoing signatures project we present information on 3 isotopes selected for possible application in optimized tags that could be applied to fuel assemblies to provide an objective measure of burnup. 1. Important factors for an optimized tag are compatibility with the reactor environment (corrosion resistance), low radioactive activation, at least 2 stable isotopes, moderate neutron absorption cross-section, which gives significant changes in isotope ratios over typical fuel assembly irradiation levels, and ease of measurement in the SIMS machine 2. From the candidate isotopes presented in the 3rd FY 08 Quarterly Report, the most promising appear to be Titanium, Hafnium, and Platinum. The other candidate isotopes (Iron, Tungsten, exhibited inadequate corrosion resistance and/or had neutron capture cross-sections either too high or too low for the burnup range of interest.

Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

2008-10-01T23:59:59.000Z

406

It's Elemental - Isotopes of the Element Francium  

NLE Websites -- All DOE Office Websites (Extended Search)

Radon Radon Previous Element (Radon) The Periodic Table of Elements Next Element (Radium) Radium Isotopes of the Element Francium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Francium has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 199 12 milliseconds Alpha Decay > 0.00% Electron Capture No Data Available 200 49 milliseconds Alpha Decay 100.00% 201 62 milliseconds Alpha Decay 100.00% 201m 19 milliseconds Alpha Decay 100.00% 202 0.30 seconds Alpha Decay 100.00% 202m 0.29 seconds Alpha Decay 100.00% 203 0.55 seconds Alpha Decay <= 100.00% 204 1.8 seconds Alpha Decay 92.00%

407

Medium-Power Lead-Alloy Reactors: Missions for This Reactor Technology  

Science Conference Proceedings (OSTI)

A multiyear project at the Idaho National Engineering and Environmental Laboratory and the Massachusetts Institute of Technology investigated the potential of medium-power lead-alloy-cooled technology to perform two missions: (1) the production of low-cost electricity and (2) the burning of actinides from light water reactor (LWR) spent fuel. The goal of achieving a high power level to enhance economic performance simultaneously with adoption of passive decay heat removal and modularity capabilities resulted in designs in the range of 600-800 MW(thermal), which we classify as a medium power level compared to the lower [{approx}100 MW(thermal)] and higher [2800 MW(thermal)] power ratings of other lead-alloy-cooled designs. The plant design that was developed shows promise of achieving all the Generation-IV goals for future nuclear energy systems: sustainable energy generation, low overnight capital cost, a very low likelihood and degree of core damage during any conceivable accident, and a proliferation-resistant fuel cycle. The reactor and fuel cycle designs that evolved to achieve these missions and goals resulted from study of the following key trade-offs: waste reduction versus reactor safety, waste reduction versus cost, and cost versus proliferation resistance. Secondary trade-offs that were also considered were monolithic versus modular design, active versus passive safety systems, forced versus natural circulation, alternative power conversion cycles, and lead versus lead-bismuth coolant.These studies led to a selection of a common modular design with forced convection cooling, passive decay heat removal, and a supercritical CO{sub 2} power cycle for all our reactor concepts. However, the concepts adopt different core designs to optimize the achievement of the two missions. For the low-cost electricity production mission, a design approach based on fueling with low enriched uranium operating without costly reprocessing in a once-through cycle was pursued to achieve a long operating cycle length by enhancing in-core breeding. For the actinide-burning mission three design variants were produced: (1) a fertile-free actinide burner, i.e., a single-tier strategy, (2) a minor actinide burner with plutonium burned in the LWR fleet, i.e., a two-tier strategy, and (3) an actinide burner with characteristics balanced to also favor economic electricity production.

Todreas, Neil E. [Massachusetts Institute of Technology (United States); MacDonald, Philip E. [INEEL0Bechtel BWXT Idaho (United States); Hejzlar, Pavel [Massachusetts Institute of Technology (United States); Buongiorno, Jacopo [Idaho National Engineering and Environmental Laboratory (United States); Loewen, Eric P. [Idaho National Engineering and Environmental Laboratory (United States)

2004-09-15T23:59:59.000Z

408

X-ray Science Division: Mission and Goals | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Science Division: Mission and Goals The mission of the X-ray Science Division (XSD) is to enable and perform world class research using x-rays. This mission is accomplished...

409

Solar proton events in cosmogenic isotope data Ilya G. Usoskin,1  

E-Print Network (OSTI)

Solar proton events in cosmogenic isotope data Ilya G. Usoskin,1 Sami K. Solanki,2 Gennady A March 2006; published 27 April 2006. [1] A possible contribution of solar energetic particle events to the production of cosmogenic 10 Be and 14 C in the atmosphere is studied. The solar particle effect is negligible

Usoskin, Ilya G.

410

Applied Radiation and Isotopes 62 (2005) 525532 Production of [17  

E-Print Network (OSTI)

continuous low-energy beam output in excess of 300 mA overnight. The two dome charging chains are rated for neon reaction) via 1/16" stainless steel tubing at a typical total flow rate of 400 ml/min. The gas for improved fast radiochemistry, and ease of implementa- tion on low-energy proton cyclotrons. The purpose

Oakes, Terry

411

NIDC: Online Catalog of Isotope Products | Request a Quote  

NLE Websites -- All DOE Office Websites (Extended Search)

Selenium Silicon Silver Sodium Strontium Sulfur Tantalum Technetium Tellurium Thallium Thorium Tin Titanium Tungsten Uranium Vanadium Xenon Ytterbium Yttrium Zinc Zirconium Find...

412

Apparatus for storing hydrogen isotopes  

DOE Green Energy (OSTI)

An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas(es) is (are) stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forming at a significantly lower temperature).

McMullen, John W. (Los Alamos, NM); Wheeler, Michael G. (Los Alamos, NM); Cullingford, Hatice S. (Houston, TX); Sherman, Robert H. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

413

Mission | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Mission Mission High Energy Physics (HEP) HEP Home About Research Snowmass / P5 Planning Process Intensity Frontier Cosmic Frontier Theoretical Physics Advanced Technology R&D Accelerator R&D Stewardship Mission Background HEP Accelerator R&D Expertise Connecting Accelerator R&D to User Needs Workshop Reports Research Highlights .pdf file (13.1MB) Questions for the Universe Accomplishments Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » Accelerator R&D Stewardship Mission Print Text Size: A A A

414

Early science runs prepare Sequoia for national security missions |  

National Nuclear Security Administration (NNSA)

Early science runs prepare Sequoia for national security missions | Early science runs prepare Sequoia for national security missions | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Early science runs prepare Sequoia for national ... Early science runs prepare Sequoia for national security missions Posted By Office of Public Affairs

415

Oak Ridge Project Opens Possibilities for Future Mission Work, Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Opens Possibilities for Future Mission Work, Project Opens Possibilities for Future Mission Work, Development Oak Ridge Project Opens Possibilities for Future Mission Work, Development April 29, 2013 - 12:00pm Addthis Environmental sampling helps identify which reservation locations are not contaminated. Environmental sampling helps identify which reservation locations are not contaminated. OAK RIDGE, Tenn. - EM is refining the picture of uncontaminated areas within the 33,500-acre Oak Ridge Reservation through a review of historic documents and extensive sampling, analysis and characterization. The EM program has verified thousands of acres are not contaminated, or otherwise meet existing regulatory standards, and therefore do not require cleanup, creating possibilities for future mission work and economic development.

416

DOE SUCCESS STORIES: THE ENERGY MISSION IN THE MARKETPLACE  

NLE Websites -- All DOE Office Websites (Extended Search)

SUCCESS STORIES: THE ENERGY MISSION IN THE MARKETPLACE SUCCESS STORIES: THE ENERGY MISSION IN THE MARKETPLACE Published by: DOE Office of Science Policy 5/95 Contact person: Bob Marley, Director of Office of Science Policy, (202) 5863900 l DOE Success Stories: The Energy Mission in the Marketplace 0 Energy Mission 0 Role of Federal R&D 0 What Successes 0 Improved R&D 0 Economic Successes 0 R&D Management Principles 0 R&D Considerations 0 Deficit Reduction or Revenue Enhancement l Increasinp Energy Efficiency 0 Building Technologies n Fluorescent Lamp Electronic Ballasts n Advanced Energy Efficient Windows n Sulfur Lamp I Computerized AnalyticalTool for Energy Efficient Building Design n High Efficiency Refrigerator Freezer Compressor w Flame Retention Head Oil Burner n Flame Quality Indicator

417

THE ATMOSPHERIC DYNAMICS MISSION FOR GLOBAL WIND FIELD MEASUREMENT  

Science Conference Proceedings (OSTI)

The prime aim of the Atmospheric Dynamics Mission is to demonstrate measurements of vertical wind profiles from space. Extensive studies conducted by the European Space Agency over the past 15 years have culminated in the selection of a high-...

Ad Stoffelen; Jean Pailleux; Erland Klln; J. Michael Vaughan; Lars Isaksen; Pierre Flamant; Werner Wergen; Erik Andersson; Harald Schyberg; Alain Culoma; Roland Meynart; Martin Endemann; Paul Ingmann

2005-01-01T23:59:59.000Z

418

The Tropical Rainfall Measuring Mission (TRMM) Sensor Package  

Science Conference Proceedings (OSTI)

This note is intended to serve primarily as a reference guide to users wishing to make use of the Tropical Rainfall Measuring Mission data. It covers each of the three primary rainfall instruments: the passive microwave radiometer, the ...

Christian Kummerow; William Barnes; Toshiaki Kozu; James Shiue; Joanne Simpson

1998-06-01T23:59:59.000Z

419

OSTI Mission | OSTI, US Dept of Energy, Office of Scientific...  

Office of Scientific and Technical Information (OSTI)

Newsletter for Office of Scientific and Technical Information OSTI.gov Newsletter OSTI has been making government R&D results open and transparent since 1947 OSTI Mission OSTI...

420

Don Cook talks about future of Pantex mission | National Nuclear...  

National Nuclear Security Administration (NNSA)

Follow this link to skip to the main content Facebook Flickr RSS Twitter YouTube Don Cook talks about future of Pantex mission | National Nuclear Security Administration Our...

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Mission planning and navigation support for lunar and planetary exploration  

E-Print Network (OSTI)

When mankind returns to the moon and eventually voyages to Mars, the ability to effectively carry out surface extra-vehicular activities (EVAs) ill be critical to overall mission success. This thesis investigates improving ...

Essenburg, Joseph R

2008-01-01T23:59:59.000Z

422

Software Construction and Analysis Tools for Future Space Missions  

Science Conference Proceedings (OSTI)

NASA and its international partners will increasingly depend on software-based systems to implement advanced functions for future space missions, such as Martian rovers that autonomously navigate long distances exploring geographic features formed by ...

Michael R. Lowry

2002-04-01T23:59:59.000Z

423

Jefferson Lab Science Series - Mars Missions and the Search for...  

NLE Websites -- All DOE Office Websites (Extended Search)

me?) Radiation: What is it and how can it affect me? Mars Missions and the Search for Life Dr. Robert Mitcheltree - NASA Langley Research Center February 15, 2000 How engineering...

424

Using a Publication Analysis to Explore Mission Success  

Science Conference Proceedings (OSTI)

This paper examines the mission success of a federally funded research center by using bibliometric methods that include quantitative, descriptive, and citation analyses. We developed a methodology to facilitate examination of patterns in ...

Steven A. Ackerman; Jean M. Phillips; Daniel S. Bull; Thomas A. Achtor

2009-09-01T23:59:59.000Z

425

Review/Verify Strategic Skills Needs/Forecasts/Future Mission...  

NLE Websites -- All DOE Office Websites (Extended Search)

ReviewVerify Strategic Skills NeedsForecastsFuture Mission Shifts Annual Lab Plan (1-10 yrs) Fermilab Strategic Agenda (2-5 yrs) Sector program Execution Plans (1-3...

426

Mesoscale Mapping Capabilities of Multiple-Satellite Altimeter Missions  

Science Conference Proceedings (OSTI)

The purpose of this paper is to quantify the contribution of merging multiple-satellite altimeter missions to the mesoscale mapping of sea level anomaly (H), and zonal (U) and meridional (V) geostrophic velocities. A space/time suboptimal ...

P. Y. Le Traon; G. Dibarboure

1999-09-01T23:59:59.000Z

427

Formation flying for a Fresnel lens observatory mission  

E-Print Network (OSTI)

The employment of a large area Phase Fresnel Lens (PFL) in a gamma-ray telescope offers the potential to image astrophysical phenomena with micro-arcsecond angular resolution. In order to assess the feasibility of this concept, two detailed studies have been conducted of formation flying missions in which a Fresnel lens capable of focussing gamma-rays and the associated detector are carried on two spacecraft separated by up to 10$^6$ km. These studies were performed at the NASA Goddard Space Flight Center Integrated Mission Design Center (IMDC) which developed spacecraft, orbital dynamics, and mission profiles. The results of the studies indicated that the missions are challenging but could be accomplished with technologies available currently or in the near term. The findings of the original studies have been updated taking account of recent advances in ion thruster propulsion technology.

Krizmanic, J; Gehrels, N; Krizmanic, John; Skinner, Gerry; Gehrels, Neil

2006-01-01T23:59:59.000Z

428

Formation flying for a Fresnel lens observatory mission  

E-Print Network (OSTI)

The employment of a large area Phase Fresnel Lens (PFL) in a gamma-ray telescope offers the potential to image astrophysical phenomena with micro-arcsecond angular resolution. In order to assess the feasibility of this concept, two detailed studies have been conducted of formation flying missions in which a Fresnel lens capable of focussing gamma-rays and the associated detector are carried on two spacecraft separated by up to 10$^6$ km. These studies were performed at the NASA Goddard Space Flight Center Integrated Mission Design Center (IMDC) which developed spacecraft, orbital dynamics, and mission profiles. The results of the studies indicated that the missions are challenging but could be accomplished with technologies available currently or in the near term. The findings of the original studies have been updated taking account of recent advances in ion thruster propulsion technology.

John Krizmanic; Gerry Skinner; Neil Gehrels

2006-01-03T23:59:59.000Z

429

TOGA COARE Aircraft Mission Summary Images: An Electronic Atlas  

Science Conference Proceedings (OSTI)

An electronic atlas of research aircraft missions in TOGA COARE (Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment) has been prepared and is available on the Internet via World Wide Web browsers such as Mosaic. These ...

S. E. Yuter; R. A. Houze Jr.; S. R. Brodzik; B. F. Smull; J. R. Daugherty; F. D. Marks Jr.

1995-03-01T23:59:59.000Z

430

Data system design for a hyperspectral imaging mission concept  

E-Print Network (OSTI)

Global ecosystem observations are important for Earth-system studies. The National Research Council's report entitled Earth Science and Applications from Space is currently guiding NASA's Earth science missions. It calls ...

Graham, Lindley C.

431

SLAC National Accelerator Laboratory - Our Vision and Mission  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Vision and Mission All employee gathering at SLAC SLAC is one of 10 national laboratories under the stewardship of the U.S. Department of Energy Office of Science. To learn...

432

Mission & Functions Statement for the Office of Environmental Management  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Office of Environmental Management (EM) is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government...

433

Ground Validation for the Tropical Rainfall Measuring Mission (TRMM)  

Science Conference Proceedings (OSTI)

An overview of the Tropical Rainfall Measuring Mission (TRMM) Ground Validation (GV) Program is presented. This ground validation (GV) program is based at NASA Goddard Space Flight Center in Greenbelt, Maryland, and is responsible for processing ...

David B. Wolff; D. A. Marks; E. Amitai; D. S. Silberstein; B. L. Fisher; A. Tokay; J. Wang; J. L. Pippitt

2005-04-01T23:59:59.000Z

434

A Ground Validation Network for the Global Precipitation Measurement Mission  

Science Conference Proceedings (OSTI)

A prototype Validation Network (VN) is currently operating as part of the Ground Validation System for NASAs Global Precipitation Measurement (GPM) mission. The VN supports precipitation retrieval algorithm development in the GPM prelaunch era. ...

Mathew R. Schwaller; K. Robert Morris

2011-03-01T23:59:59.000Z

435

CRC handbook of NASA future missions and payloads  

Science Conference Proceedings (OSTI)

The author presents a detailed and quantitative description of all of the programs, systems, sensors and experiments associated with the next 30 years of space endeavors by the National Aeronautics and Space Administration. Derived from the fifth issue of the NASA Space Systems Technology Model, the missions and payloads are categorized by applications area: solar system exploration, astrophysics, earth sciences, communications, space transportation and utilization of the space environment. Far-term missions are described as opportunity missions and landmark missions, for the distant future. Technology requirements are collected by discipline: power, propulsion, materials, structures, information systems, navigation, guidance and control. Payload technology requirements are organized by instrument sensing range. This information defines in quantitative terms, the opportunities and limits for future civilian space system capabilities.

Hord, M.

1986-01-01T23:59:59.000Z

436

Probabilistic search optimization and mission assignment for heterogeneous autonomous agents  

Science Conference Proceedings (OSTI)

This paper presents an algorithmic framework for conducting search and identification missions using multiple heterogeneous agents. Dynamic objects of type "neutral" or "target" move through a discretized environment. Probabilistic representation of ...

Timothy H. Chung; Moshe Kress; Johannes O. Royset

2009-05-01T23:59:59.000Z

437

A Proposed Tropical Rainfall Measuring Mission (TRMM) Satellite  

Science Conference Proceedings (OSTI)

The Tropical Rainfall Measuring Mission (TRMM) satellite is planned for an operational duration of at least three years, beginning in the mid-1990's. The main scientific goals for it are to determine the distribution and variability of ...

Joanne Simpson; Robert F. Adler; Gerald R. North

1988-03-01T23:59:59.000Z

438

A Tale of 2 Missions (And Hopefully 2 Different Landings)  

SciTech Connect

This talk, to be given at the LANL IGPP Annual Review dinner in Santa Fe, NM on July 17, 2012, highlights two important NASA missions LANL played a key role in: The Genesis mission was the first to return to Earth from beyond the Moon, bearing solar particles to help understand the composition of the Sun; and Curiosity, a 1-ton Mars rover launched to the red planet in 2011 with a suite of instruments from LANL called ChemCam.

Wiens, Roger C. [Los Alamos National Laboratory

2012-07-19T23:59:59.000Z

439

Rainfall Observation from Tropical Rainfall Measuring Mission (TRMM) Satellite  

Science Conference Proceedings (OSTI)

National Space Development Agency of Japan (NASDA) successfully launched the Tropical Rainfall Measuring Mission (TRMM) observatory at 06:27 (JST) on Nov. 28, 1997. The TRMM satellite carries the first spaceborne Precipitation Radar (PR) which was developed ... Keywords: Clouds and the Earth's Radiant Energy System (CERES), El Nio, Lightning Imaging Sensor (LIS), Precipitation Radar (PR), TRMM Microwave Imager (TMI), Tropical Rainfall Measuring Mission (TRMM), Visible Infrared Scanner (VIRS), heavy rain, tropical cyclone

K. Hiroshima

1999-01-01T23:59:59.000Z

440

Tritium Isotope Separation Using Adsorption-Distillation Column  

Science Conference Proceedings (OSTI)

Technical Paper / Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation

Satoshi Fukada

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Atmospheric Trace Gases, Carbon Isotopes, Radionuclides, and Aerosols: Isotopes in Greenhouse Gases Data from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer (OSTI)

(Scroll down to find Isotopes in Greenhouse Gases, a subheading under the broader heading of Atmospheric Trace Gases, etc.) CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to isotopes in greenhouse gases includes: Monthly atmospheric 13C/12C isotopic ratios for 10 SIO stations, (2005) (Trends Online) Mixing ratios of CO, CO2, CH4, and isotope ratios of associated 13C, 18O, and 2H in air samples from Niwot Ridge, Colorado, and Montaa de Oro, California, USA (2004) Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from Fossil-Fuel Consumption in the U.S.A., (2004) (Trends Online) ?13C in CO2 from the CSIRO GASLAB Flask Sampling Network (Trends Online) In Situ 13CO2 from Cape Grim, Tasmania, Australia: 1982-1993 (2001) (Trends Online) In situ Carbon 13 and Oxygen 18 Ratios of Atmospheric CO2 from Cape Grim, Tasmania, Australia: 1982-1993 (1995) Carbon-13 Isotopic Abundance and concentration of Atmospheric Methane for Background Air in the Southern and Northern Hemispheres from 1978 to 1989 (1995) Measurements of Atmospheric Methane and 13C/12C of Atmospheric Methane from Flask Air Samples (1999) 14CO 2 Observations from Schauinsland, Germany (1997) (Trends Online) Carbon-14 Measurements in Atmospheric CO 2 from Northern and Southern Hemisphere Sites, 1962-1992 (1996) Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 (1998) (Specialized Interface)

442

Photonuclear reactions on mercury isotopes in the region of the giant-dipole-resonance energy  

Science Conference Proceedings (OSTI)

The induced-activity method is used to measure yields of photonuclear reactions induced in stable mercury isotopes by beams of bremsstrahlung photons whose spectra have the endpoint energies of 19.5 and 29.1 MeV. On the basis of a collective model, the partial cross sections and yields are calculated for photoproton and photoneutron reactions on these isotopes. The yields calculated theoretically are compared with their measured counterparts. The possibility for the production in photonuclear reactions of the bypassed nucleus {sup 196}Hg, which cannot be formed in astrophysical r and s processes, is analyzed.

Ishkhanov, B. S.; Orlin, V. N.; Troschiev, S. Yu., E-mail: sergey.troschiev@googlemail.com [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

2011-05-15T23:59:59.000Z

443

Distributed Production of Radionuclide Mo-99 Charles A. Gentile...  

NLE Websites -- All DOE Office Websites (Extended Search)

A. Gentile, Adam B. Cohen and George Ascione This invention is for the production of Technetium-99m (Tc-99m), a widely used medical isotope in a distributed and in-situ fashion....

444

Workforce Retention Accomplishments Presentation - Sustainability Assessment of Workforce Well-Being and Mission Readiness  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainability Assessment of Workforce Sustainability Assessment of Workforce Well-Being and Mission Readiness Jodi M. Jacobson, Ph.D., University of Maryland 2 Illness and Injury Lost Work Time Generational Divide Recruitment & Retention Competition Retirement & Aging Workforce Health & Well-Being Stress Depression & Anxiety Budget Cuts Technology Talent Management Work/Life Balance Safety Accountability Security Leadership Development Workforce Sustainability Chronic Health Conditions Globalization Critical Skills Shortage Job Skill Re-Alignment Job Transitioning Healthcare Costs YOU ARE NOT ALONE! 3 Indirect Costs  "You can"t manage what you can"t measure" (Dr. Ron Goetzel, Director, Institute for Health & Productivity Studies, Cornell University)

445

GPHS-RTGs in support of the CRAF/Cassini missions  

DOE Green Energy (OSTI)

The technical progress achieved during the period 30 September 1911 through 29 March 1992 on Contract DE-AC03-91SF18852.000 Radioisotope Thermoelectric Generators and Ancillary Activities is described in this document. This report is organized by the program task structure as follows: spacecraft integration and liaison, engineering support, safety, qualified unicouple production, ETG fabrication, assembly and test, ground support equipment (GSE), RTG shipping and launch support, designs, reviews, and mission applications, project management, quality assurance, reliability, contract changes, and non-capital CAGO, and CAGO acquisition (Capital Funds).

Not Available

1992-04-20T23:59:59.000Z

446

Preface to bLithium isotope geochemistryQ The use of light stable isotopes to elucidate Earth  

E-Print Network (OSTI)

Li reflect heavier isotopic ratios. Chemical Geology 212 (2004) 1­4 wwwPreface Preface to bLithium isotope geochemistryQ The use of light stable isotopes to elucidate isotope geochemistry. Taylor and Urey (1938) used ion exchange chromatography to sepa- rate 6 Li from 7 Li

Rudnick, Roberta L.

447

Selective Isotope Determination of Uranium using HR-RIMS  

Science Conference Proceedings (OSTI)

The detection of lowest abundances of the ultra trace isotope {sup 236}U in environmental samples requires an efficient detection method which allows a high elemental and isotopic selectivity to suppress neighbouring isotopes of the same element and other background. High Resolution Laser Resonance Ionization Mass Spectrometry (HR-RIMS) uses the individual electron structure of each isotope to provide an outstanding element and isotope selective ionization.

Raeder, S.; Fies, S.; Wendt, K. D. A. [Institut fuer Physik, Johannes Gutenberg Universitaet Mainz, 55128 Mainz (Germany); Tomita, H. [Nagoya University (Japan)

2009-03-17T23:59:59.000Z

448

It's Elemental - Isotopes of the Element Magnesium  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium Sodium Previous Element (Sodium) The Periodic Table of Elements Next Element (Aluminum) Aluminum Isotopes of the Element Magnesium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 24 78.99% STABLE 25 10.00% STABLE 26 11.01% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 19 4.0 picoseconds Double Proton Emission 100.00% 20 90.8 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission ~ 27.00% 21 122 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 32.60% Electron Capture with delayed Alpha Decay < 0.50%

449

It's Elemental - Isotopes of the Element Chlorine  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur Sulfur Previous Element (Sulfur) The Periodic Table of Elements Next Element (Argon) Argon Isotopes of the Element Chlorine [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 35 75.76% STABLE 37 24.24% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 28 No Data Available Proton Emission (suspected) No Data Available 29 < 20 nanoseconds Proton Emission No Data Available 30 < 30 nanoseconds Proton Emission No Data Available 31 150 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.70% 32 298 milliseconds Electron Capture 100.00%

450

It's Elemental - Isotopes of the Element Potassium  

NLE Websites -- All DOE Office Websites (Extended Search)

Argon Argon Previous Element (Argon) The Periodic Table of Elements Next Element (Calcium) Calcium Isotopes of the Element Potassium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 39 93.2581% STABLE 40 0.0117% 1.248×10+9 years 41 6.7302% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 32 No Data Available Proton Emission (suspected) No Data Available 33 < 25 nanoseconds Proton Emission No Data Available 34 < 25 nanoseconds Proton Emission No Data Available 35 178 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.37% 36 342 milliseconds Electron Capture 100.00%

451

It's Elemental - Isotopes of the Element Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Previous Element (Nitrogen) The Periodic Table of Elements Next Element (Fluorine) Fluorine Isotopes of the Element Oxygen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 16 99.757% STABLE 17 0.038% STABLE 18 0.205% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 12 1.139×10-21 seconds Proton Emission No Data Available 13 8.58 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 14 70.620 seconds Electron Capture 100.00% 15 122.24 seconds Electron Capture 100.00% 16 STABLE - - 17 STABLE - - 18 STABLE - - 19 26.88 seconds Beta-minus Decay 100.00%

452

It's Elemental - Isotopes of the Element Gallium  

NLE Websites -- All DOE Office Websites (Extended Search)

Zinc Zinc Previous Element (Zinc) The Periodic Table of Elements Next Element (Germanium) Germanium Isotopes of the Element Gallium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 69 60.108% STABLE 71 39.892% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 56 No Data Available Proton Emission (suspected) No Data Available 57 No Data Available Proton Emission (suspected) No Data Available 58 No Data Available Proton Emission (suspected) No Data Available 59 No Data Available Proton Emission (suspected) No Data Available 60 70 milliseconds Electron Capture 98.40%

453

It's Elemental - Isotopes of the Element Sodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Neon Neon Previous Element (Neon) The Periodic Table of Elements Next Element (Magnesium) Magnesium Isotopes of the Element Sodium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 23 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 18 1.3×10-21 seconds Proton Emission 100.00% 19 < 40 nanoseconds Proton Emission No Data Available 20 447.9 milliseconds Electron Capture with delayed Alpha Decay 20.05% Electron Capture 100.00% 21 22.49 seconds Electron Capture 100.00% 22 2.6027 years Electron Capture 100.00% 23 STABLE - - 24 14.997 hours Beta-minus Decay 100.00%

454

It's Elemental - Isotopes of the Element Neon  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorine Fluorine Previous Element (Fluorine) The Periodic Table of Elements Next Element (Sodium) Sodium Isotopes of the Element Neon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 20 90.48% STABLE 21 0.27% STABLE 22 9.25% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 16 9×10-21 seconds Double Proton Emission 100.00% 17 109.2 milliseconds Electron Capture with delayed Alpha Decay No Data Available Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 18 1.6670 seconds Electron Capture 100.00% 19 17.22 seconds Electron Capture 100.00% 20 STABLE - -

455

It's Elemental - Isotopes of the Element Copper  

NLE Websites -- All DOE Office Websites (Extended Search)

Nickel Nickel Previous Element (Nickel) The Periodic Table of Elements Next Element (Zinc) Zinc Isotopes of the Element Copper [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 63 69.15% STABLE 65 30.85% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 52 No Data Available Proton Emission No Data Available 53 < 300 nanoseconds Electron Capture No Data Available Proton Emission No Data Available 54 < 75 nanoseconds Proton Emission No Data Available 55 27 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 15.0% 56 93 milliseconds Electron Capture 100.00%

456

It's Elemental - Isotopes of the Element Boron  

NLE Websites -- All DOE Office Websites (Extended Search)

Beryllium Beryllium Previous Element (Beryllium) The Periodic Table of Elements Next Element (Carbon) Carbon Isotopes of the Element Boron [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 10 19.9% STABLE 11 80.1% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 6 No Data Available Double Proton Emission (suspected) No Data Available 7 3.255×10-22 seconds Proton Emission No Data Available Alpha Decay No Data Available 8 770 milliseconds Electron Capture 100.00% Electron Capture with delayed Alpha Decay 100.00% 9 8.439×10-19 seconds Proton Emission 100.00% Double Alpha Decay 100.00%

457

It's Elemental - Isotopes of the Element Tungsten  

NLE Websites -- All DOE Office Websites (Extended Search)

Tantalum Tantalum Previous Element (Tantalum) The Periodic Table of Elements Next Element (Rhenium) Rhenium Isotopes of the Element Tungsten [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 180 0.12% >= 6.6×10+17 years 182 26.50% STABLE 183 14.31% > 1.3×10+19 years 184 30.64% STABLE 186 28.43% > 2.3×10+19 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 157 275 milliseconds Electron Capture No Data Available 158 1.25 milliseconds Alpha Decay 100.00% 158m 0.143 milliseconds Isomeric Transition No Data Available Alpha Decay No Data Available 159 7.3 milliseconds Alpha Decay ~ 99.90%

458

It's Elemental - Isotopes of the Element Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Boron Boron Previous Element (Boron) The Periodic Table of Elements Next Element (Nitrogen) Nitrogen Isotopes of the Element Carbon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 12 98.93% STABLE 13 1.07% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 8 1.981×10-21 seconds Proton Emission 100.00% Alpha Decay No Data Available 9 126.5 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 61.60% Electron Capture with delayed Alpha Decay 38.40% 10 19.308 seconds Electron Capture 100.00% 11 20.334 minutes Electron Capture 100.00% 12 STABLE - -

459

It's Elemental - Isotopes of the Element Rhenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Tungsten Tungsten Previous Element (Tungsten) The Periodic Table of Elements Next Element (Osmium) Osmium Isotopes of the Element Rhenium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 185 37.40% STABLE 187 62.60% 4.33×10+10 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 159 No Data Available No Data Available No Data Available 160 0.82 milliseconds Proton Emission 91.00% Alpha Decay 9.00% 161 0.44 milliseconds Proton Emission 100.00% Alpha Decay <= 1.40% 161m 14.7 milliseconds Alpha Decay 93.00% Proton Emission 7.00% 162 107 milliseconds Alpha Decay 94.00% Electron Capture 6.00%

460

Isotopically engineered semiconductors: from the bulk tonanostructures  

SciTech Connect

Research performed with semiconductors with controlled isotopic composition is evolving from the measurement of fundamental properties in the bulk to those measured in superlattices and nanostructures. This is driven in part by interests associated with the fields of 'spintronics' and quantum computing. In this topical review, which is dedicated to Prof. Abstreiter, we introduce the subject by reviewing classic and recent measurements of phonon frequencies, thermal conductivity, bandgap renormalizations, and spin coherence lifetimes in isotopically controlled bulk group IV semiconductors. Next, we review phonon properties measured in isotope heterostructures, including pioneering work made possible by superlattices grown by the group of Prof. Abstreiter. We close the review with an outlook on the exciting future possibilities offered through isotope control in 1, 2, and 3 dimensions that will be possible due to advances in nanoscience.

Ager III, Joel W.; Haller, Eugene E.

2006-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Atomic vapor laser isotope separation process  

DOE Patents (OSTI)

A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

Wyeth, R.W.; Paisner, J.A.; Story, T.

1990-08-21T23:59:59.000Z

462

It's Elemental - Isotopes of the Element Dysprosium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 138 No Data Available Electron Capture (suspected) No Data Available 139 0.6 seconds Electron Capture No Data...

463

It's Elemental - Isotopes of the Element Antimony  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 103 1.5 microseconds Electron Capture (suspected) No Data Available 104 0.44 seconds Electron Capture 100.00%...

464

Stable isotope investigations of chlorinated aliphatic hydrocarbons.  

Science Conference Proceedings (OSTI)

Stable isotope ratio measurements for carbon (C) and chlorine (Cl) can be used to elucidate the processes affecting transformation and transportation of chlorinated aliphatic hydrocarbons (CAHs) in the environment. Methods recently developed in our laboratory for isotopic analysis of CAHs have been applied to laboratory measurements of the kinetic isotope effects associated with aerobic degradation of dichloromethane (DCM) and with both anaerobic and aerobic cometabolic degradation of trichlomethene (TCE) in batch and column microbial cultures. These experimental determinations of fractionation factors are crucial for understanding the behavior of CAHs in complex natural systems, where the extent of biotransformation can be masked by dispersion and volatilization. We have also performed laboratory investigations of kinetic isotope effects accompanying evaporation of CAHs, as well as field investigations of natural attenuation and in situ remediation of CAHs in a number of contaminated shallow aquifers at sites operated by the federal government and the private sector.

Abrajano, T.; Heraty, L. J.; Holt, B. D.; Huang, L.; Sturchio, N. C.

1999-06-01T23:59:59.000Z

465

Improved process for preparing strontium-82 isotope  

DOE Patents (OSTI)

This invention is comprised of a process for making {sup 82}Sr by bombarding a molybdenum target enriched in light-mass molybdenum isotopes with high energy protons resulting in high yield, high purity {sup 82}Sr.

Michaels, G.E.; Beaver, J.E.; Moody, D.C.

1991-12-31T23:59:59.000Z

466

It's Elemental - Isotopes of the Element Phosphorus  

NLE Websites -- All DOE Office Websites (Extended Search)

Silicon Silicon Previous Element (Silicon) The Periodic Table of Elements Next Element (Sulfur) Sulfur Isotopes of the Element Phosphorus [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 31 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 24 No Data Available Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available 25 < 30 nanoseconds Proton Emission 100.00% 26 43.7 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission No Data Available 27 260 milliseconds Electron Capture 100.00% Electron Capture with

467

Isotope Enrichment Detection by Laser Ablation - Dual Tunable Diode Laser Absorption Spectrometry  

Science Conference Proceedings (OSTI)

The rapid global expansion of nuclear energy is motivating the expedited development of new safeguards technology to mitigate potential proliferation threats arising from monitoring gaps within the uranium enrichment process. Current onsite enrichment level monitoring methods are limited by poor sensitivity and accuracy performance. Offsite analysis has better performance, but this approach requires onsite hand sampling followed by time-consuming and costly post analysis. These limitations make it extremely difficult to implement comprehensive safeguards accounting measures that can effectively counter enrichment facility misuse. In addition, uranium enrichment by modern centrifugation leads to a significant proliferation threat, since the centrifuge cascades can quickly produce a significant quantity of highly enriched uranium (HEU). The Pacific Northwest National Laboratory is developing an engineered safeguards approach having continuous aerosol particulate collection and uranium isotope analysis to provide timely detection of HEU production in a low enriched uranium facility. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy, to characterize the 235U/238U isotopic ratio by subtle differences in atomic absorption wavelengths arising from differences in each isotopes nuclear mass, volume, and spin (hyperfine structure for 235U). Environmental sampling media is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes a 10 to 20-m sample diameter. The ejected plasma forms a plume of atomic vapor. A plume for a sample containing uranium has atoms of the 235U and 238U isotopes present. Tunable diode lasers are directed through the plume to selectively excite each isotope and their presence is detected by monitoring absorbance signals on a shot-to-shot basis. Single-shot detection sensitivity approaching the femtogram range and abundance uncertainty less than 10% have been demonstrated with measurements on surrogate materials. In this paper we present measurement results on samples containing background materials (e.g., dust, minerals, soils) laced with micron-sized target particles having isotopic ratios ranging from 1 to 50%.

Anheier, Norman C.; Bushaw, Bruce A.

2009-07-01T23:59:59.000Z

468

Workshop on The Nation's Needs for Isotopes: Present and Future | U.S.  

Office of Science (SC) Website

Workshop Workshop on The Nation's Needs for Isotopes: Present and Future Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Isotope Development & Production for Research and Applications (IDPRA) Workshop on The Nation's Needs for Isotopes: Present and Future Print Text Size: A A A RSS Feeds FeedbackShare Page August 5-7, 2008 Hilton Hotel, Rockville, MD Sponsored by the Department of Energy Office of Science for Nuclear Physics and Office of Nuclear Energy

469

DOELEA-1211 Environmental Assessment Relocation and Storage of Isotopic Heat Sources, Hanford Site,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOELEA-1211 DOELEA-1211 - Environmental Assessment Relocation and Storage of Isotopic Heat Sources, Hanford Site, Richland, Washington U.S. Department of Energy Richland, Washington June 1997 DOE/EA-1211 ENVIRONMENTAL ASSESSMENT FOR THE RELOCATION AND STORAGE OF ISOTOPIC HEAT SOURCES HANFORD SITE RICHLAND, WASHINGTON JUNE 1997 U.S. DEPARTMENT OF ENERGY NCHLAND, WASHINGTON Portions of this document may be iiIegiile in electronic image products. Images are produced from the best available original dornmeut DOWEA- 1 2 1 1 U.S. Department of Energy Preface PREFACE This environmental assessment (EA) has been prep- to assess potentia environmental impacts associated with the U.S. Department of Energy proposed action: Relocation and storage of the isotopic heat sources.

470

Fiskenaesset Anorthosite Complex: Stable isotope evidence for shallow emplacement into Archean ocean crust  

DOE Green Energy (OSTI)

Oxygen and hydrogen isotope ratios indicate that unusual rocks at the upper contact of the Archean Fiskenaesset Anorthosite Complex at Fiskenaesset Harbor (southwest Greenland) are the products of hydrothermal alteration by seawater at the time of anorthosite intrusion. Subsequent granulite-facies metamorphism of these Ca-poor and Al- and Mg-rich rocks produced sapphirine- and kornerupine-bearing assemblages. Because large amounts of surface waters cannot penetrate to depths of 30 km during granulite-facies metamorphism, the isotopic signature of the contact rocks must have been obtained prior to regional metamorphism. The stable isotope and geochemical characteristics of the contact rocks support a model of shallow emplacement into Archean ocean crust for the Fiskenaesset Anorthosite Complex. 45 refs., 3 figs., 2 tabs.

Peck, W.H.; Valley, J.W. [Univ. of Wisconsin, Madison, WI (United States)] [Univ. of Wisconsin, Madison, WI (United States)

1996-06-01T23:59:59.000Z

471

A Low Temperature Distillation System for Separating Mixtures of Protium, Deuterium, and Tritium Isotopes  

SciTech Connect

A low temperature (24 K) distillation system for separating mixtures of hydrogen isotopes has been designed, fabricated, and delivered for use as the main component of the Hydrogen Isotope Separation System (HISS) at Mound. The HISS will handle feed mixtures of all six isotopic species of hydrogen (H2, HD, HT, D2, DT, T2) and will enrich the tritium while producing a stackable raffinate. Arther D. Little, Inc. (ADL) was the prime contractor for the distillation system. The design and fabrication techniques used for the HISS distillation system are similar to those used for previous stills which were also designed and built by ADL. The distillation system was tested with mixtures of protium and deuterium at the ADL shop. This system, as well as the feed, product, and raffinate handling systems are presently being installed at Mound where integrated testing is scheduled next calendar year.

Embury, Michael, C.; Watkins, Reed A.; Hinckley, Richard; Post, Jr., Arthur H.

1985-04-30T23:59:59.000Z

472

Iron isotopic fractionation during continental weathering  

SciTech Connect

The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

Fantle, Matthew S.; DePaolo, Donald J.

2003-10-01T23:59:59.000Z

473

R&D organizational reform to provide profitable products  

E-Print Network (OSTI)

Providing profitable products for corporate business success is an important mission for the R&D organization. Although good organization design may not guarantee corporate business success, it can be a critical factor to ...

Iwasaki, Satoru, 1970-

2004-01-01T23:59:59.000Z

474

Isotopes Tell Origin and Operation of the Sun  

E-Print Network (OSTI)

The Iron Sun formed on the collapsed core of a supernova and now acts as a magnetic plasma diffuser, as did the precursor star, separating ions by mass. This process covers the solar surface with lightweight elements and with lighter isotopes of each element. Running difference images expose rigid, iron-rich structures below the fluid photosphere made of lightweight elements. The energy source for the Sun and ordinary stars seems to be neutron-emission and neutron-decay, with partial fusion of the decay product, rather than simple fusion of hydrogen into helium or heavier elements. Neutron-emission from the solar core and neutron-decay generate about sixty five percent of solar luminosity and H-fusion generates about thirty-five percent. The upward flow of H ions maintains mass-separation in the Sun. Only about one percent of this neutron decay product survives its upward journey to depart as solar-wind hydrogen.

O. Manuel; Sumeet A. Kamat; Michael Mozina

2005-09-28T23:59:59.000Z

475

Isotope separation by photodissociation of Van der Waal's molecules  

DOE Patents (OSTI)

A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

Lee, Yuan T. (Berkeley, CA)

1977-01-01T23:59:59.000Z

476

TRMM Common Microphysics Products: A Tool for Evaluating Spaceborne Precipitation Retrieval Algorithms  

Science Conference Proceedings (OSTI)

A customized product for analysis of microphysics data collected from aircraft during field campaigns in support of the Tropical Rainfall Measuring Mission (TRMM) program is described. These common microphysics products (CMPs) are designed to ...

David E. Kingsmill; Sandra E. Yuter; Andrew J. Heymsfield; Peter V. Hobbs; Alexei V. Korolev; Stith Jeffrey L; Aaron Bansemer; Julie A. Haggerty; Arthur L. Rangno

2004-11-01T23:59:59.000Z

477

Waste Encapsulation and Storage Facility mission analysis report  

Science Conference Proceedings (OSTI)

This report defines the mission for the Waste Encapsulation and Storage Facility (WESF). It contains summary information regarding the mission analysis which was performed by holding workshops attended by relevant persons involved in the WESF operations. The scope of the WESF mission is to provide storage of Cesium (Cs) and Strontium (Sr) capsules, previously produced at WESF, until every capsule has been removed from the facility either to another storage location, for disposal or for beneficial use by public or private enterprises. Since the disposition of the capsules has not yet been determined, they may be stored at WESF for many years, even decades. The current condition of the WESF facility must be upgraded and maintained to provide for storage which is safe, cost effective, and fully compliant with DOE direction as well as federal, state, and local laws and regulations. The Cs capsules produced at WESF were originally released to private enterprises for uses such as the sterilization of medical equipment; but because of the leakage of one capsule, all are being returned. The systems, subsystems, and equipment not required for the storage mission will be available for use by other projects or private enterprises. Beyond the storage of the Cs and Sr capsules, no future mission for the WESF has been identified.

Lund, D.P.

1995-05-24T23:59:59.000Z

478

Towards an ASSL specification model for NASA swarm-based exploration missions  

Science Conference Proceedings (OSTI)

NASA swarm-based exploration missions represent a new class of concept missions based on the cooperative nature of a hive culture. A mission of this class requires an autonomic system, comprising a set of autonomous mobile units. The design and implementation ... Keywords: autonomic computing, formal specification language, swarm missions

Emil Vassev; Mike Hinchey; Joey Paquet

2008-03-01T23:59:59.000Z

479

SP-100 planetary mission/system preliminary design study. Final report, technical information report  

SciTech Connect

This report contains a discussion on many aspects of a nuclear electric propulsion planetary science mission and spacecraft using the proposed SP-100 nuclear power subsystem. A review of the science rationale for such missions is included. A summary of eleven nuclear electric propulsion planetary missions is presented. A conceptual science payload, mission design, and spacecraft design is included for the Saturn Ring Rendezvous mission. Spacecraft and mission costs have been estimated for two potential sequences of nuclear electric propulsion planetary missions. The integration issues and requirements on the proposed SP-100 power subsystems are identified.

Jones, R.M. [ed.

1986-02-01T23:59:59.000Z

480

Hydrogen isotope separation from water  

DOE Patents (OSTI)

A process for separating tritium from tritium-containing water or deuterium enrichment from water is described. The process involves selective, laser-induced two-photon excitation and photodissociation of those water molecules containing deuterium or tritium followed by immediate reaction of the photodissociation products with a scavenger gas which does not substantially absorb the laser light. The reaction products are then separated from the undissociated water. (auth)

Jensen, R.J.

1975-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "isotope production missions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

New Horizons Mission Powered by Space Radioisotope Power Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Horizons Mission Powered by Space Radioisotope Power Systems New Horizons Mission Powered by Space Radioisotope Power Systems New Horizons Mission Powered by Space Radioisotope Power Systems January 30, 2008 - 6:47pm Addthis Artist's concept of the New Horizons spacecraft during its planned encounter with Pluto and its moon, Charon. The craft's miniature cameras, radio science experiment, ultraviolet and infrared spectrometers and space plasma experiments are run by the Department of Energy's Radioisotope Thermoelectric Generator (RTG). | Photo courtesy of Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI) Artist's concept of the New Horizons spacecraft during its planned encounter with Pluto and its moon, Charon. The craft's miniature cameras, radio science experiment, ultraviolet and infrared spectrometers and space