National Library of Energy BETA

Sample records for isotope geothermometry liquid

  1. Isotope Geothermometry | Open Energy Information

    Open Energy Info (EERE)

    Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Geothermometry Information Provided by Technique...

  2. Liquid Geothermometry | Open Energy Information

    Open Energy Info (EERE)

    Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Geothermometry Information Provided by Technique...

  3. Category:Geothermometry | Open Energy Information

    Open Energy Info (EERE)

    Technique Subcategories This category has the following 2 subcategories, out of 2 total. G Gas Geothermometry 1 pages I Isotope Geothermometry 1 pages Pages in...

  4. Geothermometry | Open Energy Information

    Open Energy Info (EERE)

    In The Past 20 Years- Geochemistry In Geothermal Exploration Resource Evaluation And Reservoir Management Geothermometry (Powell and Cumming, 2010) Any Spreadsheets for...

  5. Gas Geothermometry | Open Energy Information

    Open Energy Info (EERE)

    Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Geothermometry Information Provided by Technique...

  6. Category:Gas Geothermometry | Open Energy Information

    Open Energy Info (EERE)

    Gas Geothermometry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Gas Geothermometry page? For detailed information on Gas...

  7. Geothermometry At Yellowstone Region (Fournier, 1979) | Open...

    Open Energy Info (EERE)

    Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Enthalpy-Chloride digram. Not exactly cation geothermometry...

  8. Geology, hydrothermal petrology, stable isotope geochemistry, and fluid inclusion geothermometry of LASL geothermal test well C/T-1 (Mesa 31-1), East Mesa, Imperial Valley, California, USA

    SciTech Connect (OSTI)

    Miller, K.R.; Elders, W.A.

    1980-08-01

    Borehole Mesa 31-1 (LASL C/T-1) is an 1899-m (6231-ft) deep well located in the northwestern part of the East Mesa Geothermal Field. Mesa 31-1 is the first Calibration/Test Well (C/T-1) in the Los Alamos Scientific Laboratory (LASL), Geothermal Log Interpretation Program. The purpose of this study is to provide a compilation of drillhole data, drill cuttings, well lithology, and formation petrology that will serve to support the use of well LASL C/T-1 as a calibration/test well for geothermal logging. In addition, reviews of fluid chemistry, stable isotope studies, isotopic and fluid inclusion geothermometry, and the temperature log data are presented. This study provides the basic data on the geology and hydrothermal alteration of the rocks in LASL C/T-1 as background for the interpretation of wireline logs.

  9. Integrated Chemical Geothermometry System for Geothermal Exploration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chemical Geothermometry System for Geothermal Exploration Integrated Chemical Geothermometry System for Geothermal Exploration DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids. tracers_spycher_integrated_chemical.pdf (272.32 KB) More Documents & Publications Integrated Chemical Geothermometry System for Geothermal Exploration

  10. Geothermometry At Central Nevada Seismic Zone Region (Shevenell...

    Open Energy Info (EERE)

    Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry...

  11. Geothermometry At Nw Basin & Range Region (Shevenell & De Rocher...

    Open Energy Info (EERE)

    Geothermometry At Nw Basin & Range Region (Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nw...

  12. Geothermometry At Blackfoot Reservoir Area (Hutsinpiller & Parry...

    Open Energy Info (EERE)

    Activity Details Location Blackfoot Reservoir Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown References Amy Hutsinpiller, W. T....

  13. Improvements in geothermometry. Final technical report

    SciTech Connect (OSTI)

    Potter, J.; Dibble, W.; Parks, G.; Nur, A.

    1982-07-01

    The following are covered: the basis of the Na-K-Ca geothermometer, geothermometry via model calculations, non ideality and complexing, and experimental calibration.

  14. Temperature effects on the behavior of liquid hydrogen isotopes...

    Office of Scientific and Technical Information (OSTI)

    liquid hydrogen isotopes inside a spherical-shell directly driven inertial confinement fusion target Kim, K.; Mok, L.S. 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; LASER TARGETS;...

  15. Isotopic Discrimination of Some Solutes in Liquid Ammonia

    DOE R&D Accomplishments [OSTI]

    Taube, H.; Viste, A.

    1966-01-01

    The nitrogen isotopic discrimination of some salts and metals, studies in liquid ammonia solution at -50�C, decreases in magnitude in the order Pb{sup ++}, Ca{sup ++}, Li{sup +}, AG{sup +}, Na{sup +}, Li, K{sup +}, Na, K. The isotopic discrimination appears to provide qualitative information about the strength of the cation-solvent interaction in liquid ammonia.

  16. Geothermometry At Mt St Helens Area (Shevenell & Goff, 1995)...

    Open Energy Info (EERE)

    St Helens Area (Shevenell & Goff, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Mt St Helens Area (Shevenell & Goff,...

  17. Geothermometry At Walker-Lane Transitional Zone Region (Shevenell...

    Open Energy Info (EERE)

    (Shevenell & De Rocher, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness...

  18. Geothermometry At Walker-Lane Transitional Zone Region (Laney...

    Open Energy Info (EERE)

    Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness...

  19. Geothermometry At Blue Mountain Geothermal Area (Casteel, Et...

    Open Energy Info (EERE)

    Details Location Blue Mountain Geothermal Area Exploration Technique Geothermometry Activity Date 2010 - 2010 Usefulness useful DOE-funding Unknown Exploration Basis A water...

  20. Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell...

    Open Energy Info (EERE)

    Activity Details Location Upper Hot Creek Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Ten water samples were collected...

  1. Geothermometry At Clear Lake Area (Thompson, Et Al., 1992) |...

    Open Energy Info (EERE)

    Activity Details Location Clear Lake Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Based on the above discussion,...

  2. Geothermometry At Silver Peak Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Silver Peak Area (DOE GTP) Exploration Activity...

  3. Geothermometry At Alum Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Alum Area (DOE GTP) Exploration Activity Details Location...

  4. Geothermometry At The Needles Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    The Needles Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At The Needles Area (DOE GTP) Exploration Activity...

  5. Geothermometry At New River Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At New River Area (DOE GTP) Exploration Activity Details...

  6. Geothermometry At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fort Bliss Area (DOE GTP) Exploration Activity...

  7. Geothermometry At Lassen Volcanic National Park Area (Thompson...

    Open Energy Info (EERE)

    Thompson, 1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lassen Volcanic National Park Area (Thompson, 1985) Exploration...

  8. Geothermometry At Chena Geothermal Area (Kolker, 2008) | Open...

    Open Energy Info (EERE)

    1973 - 1974 Usefulness not indicated DOE-funding Unknown Exploration Basis Masters thesis Norma Biggar, Geophysical Institute University of Alaska Notes Geothermometry...

  9. Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

  10. Geothermometry At Akutan Fumaroles Area (Kolker, Et Al., 2010...

    Open Energy Info (EERE)

    Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes The chemistry of the hot springs strongly suggests the existence of a neutral chloride reservoir...

  11. Geothermometry At Desert Queen Area (Garchar & Arehart, 2008...

    Open Energy Info (EERE)

    Desert Queen Area (Garchar & Arehart, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Desert Queen Area (Garchar &...

  12. Geothermometry At Nevada Test And Training Range Area (Sabin...

    Open Energy Info (EERE)

    Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nevada Test And...

  13. Multicomponent Equilibrium Models for Testing Geothermometry Approaches

    SciTech Connect (OSTI)

    Cooper, D. Craig; Palmer, Carl D.; Smith, Robert W.; McLing, Travis L.

    2013-02-01

    Geothermometry is an important tool for estimating deep reservoir temperature from the geochemical composition of shallower and cooler waters. The underlying assumption of geothermometry is that the waters collected from shallow wells and seeps maintain a chemical signature that reflects equilibrium in the deeper reservoir. Many of the geothermometers used in practice are based on correlation between water temperatures and composition or using thermodynamic calculations based a subset (typically silica, cations or cation ratios) of the dissolved constituents. An alternative approach is to use complete water compositions and equilibrium geochemical modeling to calculate the degree of disequilibrium (saturation index) for large number of potential reservoir minerals as a function of temperature. We have constructed several “forward” geochemical models using The Geochemist’s Workbench to simulate the change in chemical composition of reservoir fluids as they migrate toward the surface. These models explicitly account for the formation (mass and composition) of a steam phase and equilibrium partitioning of volatile components (e.g., CO2, H2S, and H2) into the steam as a result of pressure decreases associated with upward fluid migration from depth. We use the synthetic data generated from these simulations to determine the advantages and limitations of various geothermometry and optimization approaches for estimating the likely conditions (e.g., temperature, pCO2) to which the water was exposed in the deep subsurface. We demonstrate the magnitude of errors that can result from boiling, loss of volatiles, and analytical error from sampling and instrumental analysis. The estimated reservoir temperatures for these scenarios are also compared to conventional geothermometers. These results can help improve estimation of geothermal resource temperature during exploration and early development.

  14. New Mexico conservative ion water chemistry data and chalcedony geothermometry

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shari Kelley

    2015-10-21

    Compilation of boron, lithium, bromine, and silica data from wells and springs throughout New Mexico from a wide variety of sources. The chalcedony geothermometry calculation is included in this file.

  15. Microbial impacts on geothermometry temperature predictions

    SciTech Connect (OSTI)

    Yoshiko Fujita; David W. Reed; Kaitlyn R. Nowak; Vicki S. Thompson; Travis L. McLing; Robert W. Smith

    2013-02-01

    Conventional geothermometry approaches assume that the composition of a collected water sample originating in a deep geothermal reservoir still reflects chemical equilibration of the water with the deep reservoir rocks. However, for geothermal prospecting samples whose temperatures have dropped to <120°C, temperature predictions may be skewed by the activity of microorganisms; microbial metabolism can drastically and rapidly change the water’s chemistry. We hypothesize that knowledge of microbial impacts on exploration sample geochemistry can be used to constrain input into geothermometry models and thereby improve the reliability of reservoir temperature predictions. To evaluate this hypothesis we have chosen to focus on sulfur cycling, because of the significant changes in redox state and pH associated with sulfur chemistry. Redox and pH are critical factors in defining the mineral-fluid equilibria that form the basis of solute geothermometry approaches. Initially we are developing assays to detect the process of sulfate reduction, using knowledge of genes specific to sulfate reducing microorganisms. The assays rely on a common molecular biological technique known as quantitative polymerase chain reaction (qPCR), which allows estimation of the number of target organisms in a particular sample by enumerating genes specific to the organisms rather than actually retrieving and characterizing the organisms themselves. For quantitation of sulfate reducing genes using qPCR, we constructed a plasmid (a piece of DNA) containing portions of two genes (known as dsrA and dsrB) that are directly involved with sulfate reduction and unique to sulfate reducing microorganisms. Using the plasmid as well as DNA from other microorganisms known to be sulfate reducers or non-sulfate reducers, we developed qPCR protocols and showed the assay’s specificity to sulfate reducers and that a qPCR standard curve using the plasmid was linear over >5 orders of magnitude. As a first test

  16. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOE Patents [OSTI]

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  17. Methods for separating medical isotopes using ionic liquids

    DOE Patents [OSTI]

    Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

    2014-10-21

    A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

  18. Mineral Selection for Multicomponent Equilibrium Geothermometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Plamer, C. D.; Ohly, S. R.; Smith, R. W.; Neupane, G.; McLing, T.; Mattson, E.

    2015-04-01

    Multicomponent geothermometry requires knowledge of the mineral phases in the reservoir with which the geothermal fluids may be equilibrated. These minerals phases are most often alteration products rather than primary minerals. We have reviewed the literature on geothermal systems representing most major geologic environments typically associated with geothermal activity and identified potential alteration products in various environments. We have included this information in RTEst, a code we have developed to estimate reservoir conditions (temperature, CO2 fugacity) from the geochemistry of near-surface geothermal waters. The information has been included in RTEst through the addition of filters that decrease the potential numbermore » of minerals from all possibilities based on the basis species to those that are more relevant to the particular conditions in which the user is interested. The three groups of filters include host rock type (tholeiitic, calc-alkaline, silicic, siliciclastic, carbonate), water type (acidic, neutral), and the temperature range over which the alteration minerals were formed (low, medium, high). The user-chosen mineral assemblage is checked to make sure that it does not violate the Gibbs phase rule. The user can select one of three mineral saturation weighting schemes that decrease the chance the optimization from being skewed by reaction stoichiometry or analytical uncertainty.« less

  19. Mineral Selection for Multicomponent Equilibrium Geothermometry

    SciTech Connect (OSTI)

    Plamer, C. D.; Ohly, S. R.; Smith, R. W.; Neupane, G.; McLing, T.; Mattson, E.

    2015-04-01

    Multicomponent geothermometry requires knowledge of the mineral phases in the reservoir with which the geothermal fluids may be equilibrated. These minerals phases are most often alteration products rather than primary minerals. We have reviewed the literature on geothermal systems representing most major geologic environments typically associated with geothermal activity and identified potential alteration products in various environments. We have included this information in RTEst, a code we have developed to estimate reservoir conditions (temperature, CO2 fugacity) from the geochemistry of near-surface geothermal waters. The information has been included in RTEst through the addition of filters that decrease the potential number of minerals from all possibilities based on the basis species to those that are more relevant to the particular conditions in which the user is interested. The three groups of filters include host rock type (tholeiitic, calc-alkaline, silicic, siliciclastic, carbonate), water type (acidic, neutral), and the temperature range over which the alteration minerals were formed (low, medium, high). The user-chosen mineral assemblage is checked to make sure that it does not violate the Gibbs phase rule. The user can select one of three mineral saturation weighting schemes that decrease the chance the optimization from being skewed by reaction stoichiometry or analytical uncertainty.

  20. Isotope Geothermometry At Lightning Dock Geothermal Area (Witcher...

    Open Energy Info (EERE)

    Usefulness useful DOE-funding Unknown Exploration Basis Part of the Geothermal Resource Evaluation and Definition (GRED) Program administered by DOE-AAO under Cooperative...

  1. Improved Geothermometry Through Multivariate Reaction Path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators

    Broader source: Energy.gov [DOE]

    Improved Geothermometry Through Multivariate Reaction Path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators presentation at the April 2013 peer review meeting held in Denver, Colorado.

  2. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print Wednesday, 24 September 2008 00:00 The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding

  3. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  4. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  5. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  6. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  7. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  8. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  9. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  10. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  11. Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure

  12. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    SciTech Connect (OSTI)

    Watkins, J.M.; DePaolo, D.J.; Ryerson, F.J.; Peterson, B.

    2011-03-01

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}; denoted AN), albite (NaAlSi{sub 3}O{sub 8}; denoted AB), and diopside (CaMgSi{sub 2}O{sub 6}; denoted DI) were held at 1450C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the ABAN experiment, D{sub Ca}/D{sub Si} ~ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D{sub Ca}/D{sub Si} ~ 1. In the ABDI experiment, D{sub Ca}/D{sub Si} ~ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the ABAN experiment. In the ABDI experiment, D{sub Mg}/D{sub Si} ~ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivitythe ratio of the diffusivity of the cation (D{sub Ca}) to the diffusivity of silicon (D{sub Si}). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D{sub cation}/D{sub Si

  13. Process for hydrogen isotope concentration between liquid water and hydrogen gas

    DOE Patents [OSTI]

    Stevens, William H.

    1976-09-21

    A process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas, wherein liquid water and hydrogen gas are contacted, in an exchange section, with one another and with at least one catalyst body comprising at least one metal selected from Group VIII of the Periodic Table and preferably a support therefor, the catalyst body has a liquid-water-repellent, gas permeable polymer or organic resin coating, preferably a fluorinated olefin polymer or silicone coating, so that the isotope concentration takes place by two simultaneously occurring steps, namely, ##EQU1## WHILE THE HYDROGEN GAS FED TO THE EXCHANGE SECTION IS DERIVED IN A REACTOR VESSEL FROM LIQUID WATER THAT HAS PASSED THROUGH THE EXCHANGE SECTION.

  14. Ionic Liquids as New Solvents for Improved Separation of Medical Isotopes -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Ionic Liquids as New Solvents for Improved Separation of Medical Isotopes Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00234_ID2580 (2).pdf (942 KB) Technology Marketing SummaryA series of ionic liquids (ILs) have recently been applied as new solvents for potentially effective separation of different

  15. Methods for separating medical isotopes using ionic liquids ...

    Office of Scientific and Technical Information (OSTI)

    liquid with the aqueous solution to transfer at least a portion of said radioisotope ... of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more ...

  16. Improved Geothermometry Through Multivariate Reaction Path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Geothermometry Through Multivariate Reaction Path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators Project Officer: Eric Hass Total Project Funding: $999,000 April 24, 2013 Craig Cooper Larry Hull Idaho National Laboratory This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Program eere.energy.gov Relevance/Impact of Research Geothermometry enables estimation of

  17. Isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science » Nuclear Physics » Isotopes Isotopes Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Get Expertise Eva Birnbaum (505) 665-7167 Email Wolfgang Runde (505) 667-3350 Email Isotope Production and Applications isotopes Isotopes produced at IPF are critical for medical diagnosis and disease treatment. These positron emission tomography images were made possible using isotopes produced at LANL.

  18. Isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eva Birnbaum (505) 665-7167 Email Wolfgang Runde (505) 667-3350 Email Isotope Production and Applications isotopes Isotopes produced at IPF are critical for medical diagnosis and ...

  19. METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS

    DOE Patents [OSTI]

    Hoffman, J.D.; Ballou, J.K.

    1957-11-19

    A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.

  20. Boron isotope fractionation in liquid chromatography with boron-specific resins as column packing material

    SciTech Connect (OSTI)

    Oi, Takao; Shimazaki, Hiromi; Ishii, Reiko; Hosoe, Morikazu

    1997-07-01

    Boron-specific resins with n-methyl glucamine as the functional group were used as column packing material of liquid chromatography for boron isotope separation. The shapes of chromatograms in reverse breakthrough experiments were heavily dependent on the pH of the eluents, and there existed a pH value at which a chromatogram of the displacement type was realized nearly ideally. The value of the single-stage separation factor for the boron isotopes varied between 1.010 and 1.022, depending on the temperature and the form of the resins. The existence of the three-coordinate boron species in addition to the four-coordinate species in the resin phase is suggested.

  1. Geothermometry At Long Valley Caldera Geothermal Area (Mariner...

    Open Energy Info (EERE)

    California R.O. Fournier, Michael L. Sorey, Robert H. Mariner, Alfred H. Truesdell (1979) Chemical and Isotopic Prediction of Aquifer Temperatures in the Geothermal System at Long...

  2. Geothermometry At Coso Geothermal Area (1980) | Open Energy Informatio...

    Open Energy Info (EERE)

    DOE-funding Unknown Exploration Basis Fluid temperature of feed water Notes Cation and sulfate isotope geothermometers indicate that the reservoir feeding water to the Coso Hot...

  3. Geochemistry Sampling for Traditional and Multicomponent Equilibrium Geothermometry in Southeast Idaho

    SciTech Connect (OSTI)

    Cannon, Cody; Wood, Thomas; Neupane, Ghanashyam; McLing, Travis; Mattson, Earl; Dobson, Patrick; Conrad, Mark

    2014-10-01

    The Eastern Snake River Plain (ESRP) is an area of high regional heat flux due the movement of the North American Plate over the Yellowstone Hotspot beginning ca.16 Ma. Temperature gradients between 45-60 °C/km (up to double the global average) have been calculated from deep wells that penetrate the upper aquifer system (Blackwell 1989). Despite the high geothermal potential, thermal signatures from hot springs and wells are effectively masked by the rapid flow of cold groundwater through the highly permeable basalts of the Eastern Snake River Plain aquifer (ESRPA) (up to 500+ m thick). This preliminary study is part of an effort to more accurately predict temperatures of the ESRP deep thermal reservoir while accounting for the effects of the prolific cold water aquifer system above. This study combines the use of traditional geothermometry, mixing models, and a multicomponent equilibrium geothermometry (MEG) tool to investigate the geothermal potential of the ESRP. In March, 2014, a collaborative team including members of the University of Idaho, the Idaho National Laboratory, and the Lawrence Berkeley National Laboratory collected 14 thermal water samples from and adjacent to the Eastern Snake River Plain. The preliminary results of chemical analyses and geothermometry applied to these samples are presented herein.

  4. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOE Patents [OSTI]

    Rutherford, William M.

    1988-05-24

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtainable in the prior art.

  5. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOE Patents [OSTI]

    Rutherford, W.M.

    1985-12-04

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.

  6. ISOTOPE CONVERSION DEVICE

    DOE Patents [OSTI]

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  7. Improved Geothermometry Through Multivariate Reaction-path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators: Final Report

    SciTech Connect (OSTI)

    Mattson, Earl; Smith, Robert; Fujita, Yoshiko; McLing, Travis; Neupane, Ghanashyam; Palmer, Carl; Reed, David; Thompson, Vicki

    2015-03-01

    The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoir temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.

  8. First calibration measurements of an FTIR absorption spectroscopy system for liquid hydrogen isotopologues for the isotope separation system of fusion power plants

    SciTech Connect (OSTI)

    Groessle, R.; Beck, A.; Bornschein, B.; Fischer, S.; Kraus, A.; Mirz, S.; Rupp, S.

    2015-03-15

    Fusion facilities like ITER and DEMO will circulate huge amounts of deuterium and tritium in their fuel cycle with an estimated throughput of kg per hour. One important capability of these fuel cycles is to separate the hydrogen isotopologues (H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, DT). For this purpose the Isotope Separation System (ISS), using cryogenic distillation, as part of the Tritium Enrichment Test Assembly (TRENTA) is under development at Tritium Laboratory Karlsruhe. Fourier transform infrared absorption spectroscopy (FTIR) has been selected to prove its capability for online monitoring of the tritium concentration in the liquid phase at the bottom of the distillation column of the ISS. The actual research-development work is focusing on the calibration of such a system. Two major issues are the identification of appropriate absorption lines and their dependence on the isotopic concentrations and composition. For this purpose the Tritium Absorption IR spectroscopy experiment has been set up as an extension of TRENTA. For calibration a Raman spectroscopy system is used. First measurements, with equilibrated mixtures of H{sub 2}, D{sub 2} and HD demonstrate that FTIR can be used for quantitative analysis of liquid hydro-gen isotopologues and reveal a nonlinear dependence of the integrated absorbance from the D{sub 2} concentration in the second vibrational branch of D{sub 2} FTIR spectra. (authors)

  9. Investigation of parameters of interaction of hydrogen isotopes with liquid lithium and lithium capillary-porous system under reactor irradiation

    SciTech Connect (OSTI)

    Tazhibayeva, I. L. Kulsartov, T. V.; Gordienko, Yu. N.; Zaurbekova, Zh. A.; Ponkratov, Yu. V.; Barsukov, N. I.; Tulubayev, Ye. Yu.; Baklanov, V. V.; Gnyrya, V. S.; Kenzhin, Ye. A.

    2015-12-15

    In this study, the effect of reactor irradiation on the processes of interaction of hydrogen with liquid lithium and a lithium capillary-porous system (CPS) is considered. The experiments are carried out by the gas-absorption method with use of a specially designed ampoule device. The results of investigation of the interaction of hydrogen with liquid lithium and a lithium CPS under conditions of reactor irradiation are described; namely, these are the temperature dependences of the rate constant for the interaction of hydrogen with liquid lithium at different reactor powers, the activation energies of the processes, and the pre-exponential factor in the Arrhenius dependence. The effect of increasing absorption of hydrogen by the samples under investigation as a result of the reactor irradiation is fixed. The effect can be explained by increasing mobility of hydrogen in liquid lithium due to hot spots in lithium bulk and the interaction of helium and tritium ions (formed as a result of the nuclear reaction of {sup 6}Li with neutron) with a surface hydride film.

  10. Chemistry Data for Geothermometry Mapping of Deep Hydrothermal Reservoirs in Southeastern Idaho

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Earl Mattson

    2016-01-18

    This dataset includes chemistry of geothermal water samples of the Eastern Snake River Plain and surrounding area. The samples included in this dataset were collected during the springs and summers of 2014 and 2015. All chemical analysis of the samples were conducted in the Analytical Laboratory at the Center of Advanced Energy Studies in Idaho Falls, Idaho. This data set supersedes #425 submission and is the final submission for AOP 3.1.2.1 for INL. Isotopic data collected by Mark Conrad will be submitted in a separate file.

  11. DEEP WATER ISOTOPIC CURRENT ANALYZER

    DOE Patents [OSTI]

    Johnston, W.H.

    1964-04-21

    A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

  12. The Use of Isotope Dilution Alpha Spectrometry and Liquid Scintillation Counting to Determine Radionuclides in Environmental Samples

    SciTech Connect (OSTI)

    Bylyku, Elida

    2009-04-19

    In Albania in recent years it has been of increasing interest to determine various pollutants in the environment and their possible effects on human health. The radiochemical procedure used to identify Pu, Am, U, Th, and Sr radioisotopes in soil, sediment, water, coal, and milk samples is described. The analysis is carried out in the presence of respective tracer solutions and combines the procedure for Pu analysis based on anion exchange, the selective method for Sr isolation based on extraction chromatography using Sr-Spec resin, and the application of the TRU-Spec column for separation of Am fraction. An acid digestion method has been applied for the decomposition of samples. The radiochemical procedure involves the separation of Pu from Th, Am, and Sr by anion exchange, followed by the preconcentration of Am and Sr by coprecipitation with calcium oxalate. Am is separated from Sr by extraction chromatography. Uranium is separated from the bulk elements by liquid-liquid extraction using UTEVA registered resin. Thin sources for alpha spectrometric measurements are prepared by microprecipitation with NdF3. Two International Atomic Energy Agency reference materials were analyzed in parallel with the samples.

  13. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area ...

    Open Energy Info (EERE)

    Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid Mixing and Chemical Geothermometry Additional References Retrieved from "http:...

  14. Isotope Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Production 35 years of experience in isotope production, processing, and applications. Llllll Committed to the safe and reliable production of radioisotopes, products, and services. Contact: Kevin John LANL Isotope Program Manager kjohn@lanl.gov 505-667-3602 Sponsored by the Department of Energy National Isotope Program http://www.nuclear.energy.gov/isotopes/nelsotopes2a.html Isotopes for Environmental Science Isotopes produced at Los Alamos National Laboratory are used as

  15. Isotopes Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other isotopes that have recently shipped from LANL's isotope program include cadmium-109 (X-ray fluorescence sources), arsenic-72 (medical research), and sodium-22 (PET sources).

  16. Isotope separation

    DOE Patents [OSTI]

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  17. Isotope geochemistry

    SciTech Connect (OSTI)

    Cole, D.R.; Curtis, D.B.; DePaolo, D.J.; Gerlach, T.M.; Laul, J.C.; Shaw, H.; Smith, B.M.; Sturchio, N.C.

    1990-09-01

    This document represents the consensus of members of the ad hoc Committee on Isotope Geochemistry in the US Department of Energy; the committee is composed of researchers in isotope geochemistry from seven of the national laboratories. Information included in this document was presented at workshops at Lawrence Berkeley Laboratory (April 1989) and at Los Alamos National Laboratory (August 1989).

  18. Isotopes Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes Products Isotopes Products Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Products stress and rest Stress and rest Rb-82 PET images in a patient with dipyridamole stress-inducible lateral wall and apical ischemia. (http://www.fac.org.ar/scvc/llave/image/machac/machaci.htm#f2,3,4) Strontium-82 is supplied to our customers for use in Sr-82/Rb-82 generator technologies. The generators in turn are supplied to

  19. Geochemistry and Isotopes of Fluids from Sulphur Springs, Valles...

    Open Energy Info (EERE)

    >Non-condensible gases consist of roughly 99% CO2 with minor amounts of H2S, H2, and CH4. Empirical gas geothermometry suggests a deep reservoir temperature of 215 to 280C....

  20. ISOTOPE SEPARATORS

    DOE Patents [OSTI]

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  1. I ISOTOPES

    Office of Legacy Management (LM)

    fl6-6 ' , WTELEEYNE I ISOTOPES i - ' 50<77 /,' y. 6 IWL-5025-473 SUBSURFACE URASIUM OJ: THE GROUNDS OF NL BEARINGS, ALBAh'Y Heyitt Iv. Jeter Douglas M. Eagleson Fred J. Frullo TELEDYNE ISOTOPES 50 VAK BUREN A\!EMJE WESTKOOD, NEK JERSEY 07675 7 Dcccmhcr 1953 Prepnrcd for NL f%carings/NL Tndustrics, Inc. 1130 CCVltrill AXr~lMIC Allmy, New York 12205 TABLE OF CONTEhTS 1.0 INTRODUCTION 2.0 METHODS 2.1 Soil Sampling 2.2 Sample Preparation 2.3 Analysis of Samples 3.0 RESULTS 4.0 SUMMARY REFERENCES

  2. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  3. A Method to Distill Hydrogen Isotopes from Lithium | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Distill Hydrogen Isotopes from Lithium This white paper outlines a method for the removal of tritium and deuterium from liquid lithium. The method is based on rapid or flash ...

  4. Advanced isotope separation

    SciTech Connect (OSTI)

    Not Available

    1982-05-04

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems.

  5. System and method for high precision isotope ratio destructive analysis

    DOE Patents [OSTI]

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  6. Separation of the isotopes of boron by chemical exchange reactions

    DOE Patents [OSTI]

    McCandless, Frank P.; Herbst, Ronald S.

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  7. Separation of the isotopes of boron by chemical exchange reactions

    DOE Patents [OSTI]

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  8. Method for separating isotopes

    DOE Patents [OSTI]

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  9. Stable isotope studies

    SciTech Connect (OSTI)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  10. Isotope separation by photochromatography

    DOE Patents [OSTI]

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  11. Isotope separation by photochromatography

    DOE Patents [OSTI]

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  12. Manus Water Isotope Investigation

    Office of Scientific and Technical Information (OSTI)

    ENERGY Office of Science DOESC-ARM-15-079 Manus Water Isotope Investigation Field ... DOESC-ARM-15-079 Manus Water Isotope Investigation Field Campaign Report JL Conroy, ...

  13. Manus Water Isotope Investigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Manus Water Isotope Investigation Field Campaign Report JL Conroy D Noone KM Cobb March ... DOESC-ARM-15-079 Manus Water Isotope Investigation Field Campaign Report JL Conroy, ...

  14. Generation of Radixenon Isotopes

    SciTech Connect (OSTI)

    McIntyre, Justin I.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Morris, Scott J.; Panisko, Mark E.; Pitts, W. K.; Pratt, Sharon L.; Reeder, Paul L.; Thomas, Charles W.

    2003-06-30

    Pacific Northwest National Laboratory has developed an automated system for separating Xe from air and can detect the following radioxenon isotopes, 131mXe, 133mXe, 133Xe, and 135Xe. This report details the techniques used to generate the various radioxenon isotopes that are used for the calibration of the detector as well as other isotopes that have the potential to interfere with the fission produced radioxenon isotopes. Fission production is covered first using highly enriched uranium followed by a description and results from an experiment to produce radioxenon isotopes from neutron activation of ambient xenon.

  15. Code System for the Radioactive Liquid Tank Failure Study.

    Energy Science and Technology Software Center (OSTI)

    2000-01-03

    Version 01 RATAF calculates the consequences of radioactive liquid tank failures. In each of the processing systems considered, RATAF can calculate the tank isotopic concentrations in either the collector tank or the evaporator bottoms tank.

  16. "Stationary Flowing Liquid Lithium System For Pumping Out Atomic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium System For Pumping Out Atomic Hydrogen Isotopes and Ions" Leonid E. Zakharov and Charles Gentile The system is comprised of a stationary closed loop for liquid lithium flow ...

  17. Conceptual Geologic Model and Native State Model of the Roosevelt...

    Open Energy Info (EERE)

    (Faulder, 1991) Geothermometry At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Ground Gravity Survey At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Isotopic...

  18. Equations of state and phase diagrams of hydrogen isotopes

    SciTech Connect (OSTI)

    Urlin, V. D.

    2013-11-15

    A new form of the semiempirical equation of state proposed for the liquid phase of hydrogen isotopes is based on the assumption that its structure is formed by cells some of which contain hydrogen molecules and others contain hydrogen atoms. The values of parameters in the equations of state of the solid (molecular and atomic) phases as well as of the liquid phase of hydrogen isotopes (protium and deuterium) are determined. Phase diagrams, shock adiabats, isentropes, isotherms, and the electrical conductivity of compressed hydrogen are calculated. Comparison of the results of calculations with available experimental data in a wide pressure range demonstrates satisfactory coincidence.

  19. HYDROGEN ISOTOPE TARGETS

    DOE Patents [OSTI]

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  20. Uranium Isotopic Assay Instrument

    SciTech Connect (OSTI)

    Anheier, Norman C.; Wojcik, Michael D.; Bushaw, Bruce A.

    2006-12-01

    The isotopic assay instrument under development at Pacific Northwest National Laboratory (PNNL) is capable of rapid prescreening to detect small and rare particles containing high concentrations of uranium in a heterogeneous sample. The isotopic measurement concept is based on laser vaporization of solid samples followed with sensitive isotope specific detection using either uranium atomic fluorescence emission or uranium atomic absorbance. Both isotopes are measured concurrently, following a single ablation laser pulse, using two external-cavity violet diode lasers. The simultaneous measurement of both isotopes enables the correlation of the fluorescence and absorbance signals on a shot-to-shot basis. This measurement approach demonstrated negligible channel crosstalk between isotopes. Rapid sample scanning provides high spatial resolution isotopic fluorescence and absorbance sample imagery of heterogeneous samples. Laser ablation combined with measurements of laser-induced fluorescence (LALIF) and through-plume laser absorbance (LAPLA) was applied to measure gadolinium isotope ratios in solid samples. Gadolinium has excitation wavelengths very close to the transitions of interest in uranium. Gadolinium has seven stable isotopes, and the natural 152Gd:160Gd ratio of 0.009 is in the range of what will be encountered for 235U:238U isotopic ratios. LAPLA measurements were demonstrated clearly using 152Gd (0.2% isotopic abundance) with a good signal-to-noise ratio. The ability to measure gadolinium abundances at this level indicates that measurements of 235U/238U isotopic ratios for natural (0.72%), depleted (0.25%), and low enriched uranium samples will be feasible.

  1. ARM - Measurement - Isotope ratio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsIsotope ratio ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Isotope ratio Ratio of stable isotope concentrations. Categories Atmospheric State, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  2. Hybrid isotope separation scheme

    DOE Patents [OSTI]

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  3. Hybrid isotope separation scheme

    DOE Patents [OSTI]

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

  4. Stable isotope enrichment

    ScienceCinema (OSTI)

    Egle, Brian

    2014-07-15

    Brian Egle is working to increase the nation's capacity to produce stable isotopes for use including medicine, industry and national security.

  5. Stable isotope enrichment

    SciTech Connect (OSTI)

    Egle, Brian

    2014-07-14

    Brian Egle is working to increase the nation's capacity to produce stable isotopes for use including medicine, industry and national security.

  6. PRINCIPAL ISOTOPE SELECTION REPORT

    SciTech Connect (OSTI)

    K. D. Wright

    1998-08-28

    Utilizing nuclear fuel to produce power in commercial reactors results in the production of hundreds of fission product and transuranic isotopes in the spent nuclear fuel (SNF). When the SNF is disposed of in a repository, the criticality analyses could consider all of the isotopes, some principal isotopes affecting criticality, or none of the isotopes, other than the initial loading. The selected set of principal isotopes will be the ones used in criticality analyses of the SNF to evaluate the reactivity of the fuel/waste package composition and configuration. This technical document discusses the process used to select the principal isotopes and the possible affect that these isotopes could have on criticality in the SNF. The objective of this technical document is to discuss the process used to select the principal isotopes for disposal criticality evaluations with commercial SNF. The principal isotopes will be used as supporting information in the ''Disposal Criticality Analysis Methodology Topical Report'' which will be presented to the United States Nuclear Regulatory Commission (NRC) when approved by the United States Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM).

  7. Price Quotes and Isotope Ordering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ordering Price Quotes and Isotope Ordering Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Isotope...

  8. Photolytic separation of isotopes in cryogenic solution

    DOE Patents [OSTI]

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Battie, W.H.

    Separation of carbon isotopes by photolysis of CS/sub 2/ in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distributionn of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of /sup 13/CS/sub 2/ is greater than that of /sup 12/CS/sub 2/ (because the absorption of 206 nm radiation is greater for /sup 13/CS/sub 2/), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  9. Photolytic separation of isotopes in cryogenic solution

    DOE Patents [OSTI]

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1985-01-01

    Separation of carbon isotopes by photolysis of CS.sub.2 in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distribution of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of .sup.13 CS.sub.2 is greater than that of .sup.12 CS.sub.2 (because the absorption of 206 nm radiation is greater for .sup.13 CS.sub.2), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  10. Photochemical isotope separation

    DOE Patents [OSTI]

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  11. Laser isotope separation

    DOE Patents [OSTI]

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  12. Photochemical isotope separation

    DOE Patents [OSTI]

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  13. Laser isotope separation

    DOE Patents [OSTI]

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  14. LIQUID-LIQUID EXTRACTION COLUMNS

    DOE Patents [OSTI]

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  15. METHOD OF ISOTOPE CONCENTRATION

    DOE Patents [OSTI]

    Taylor, T.I.; Spindel, W.

    1960-02-01

    A method of concentrating N/sup 15/ in a liquid is described. Gaseous nitric oxide and at least one liquid selected from the group consisting of the aqueous oxyacids and oxides of nitrogen, wherein the atomic ratio of oxygen to nitrogen is greater than unity, are brought into intimate contact to cause an enrichment of the liquid and a depletion of the gas in N/sup 15/. The liquid is, thereafter, reacted with sulfur dioxide to produce a gas contuining nitric oxide. The gas contuining nitric oxide is then continuously passed in countercurrent contact with the liquid to cause further enrichment of the liquid.

  16. Science on Tap - Isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Tap - Isotopes Science on Tap - Isotopes WHEN: Jun 16, 2016 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, New Mexico 87544 USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Short presentation followed by lively interaction on the topic at hand. While isotopes are chemical elements (think periodic table), their varying numbers of neutrons mean they can be used in lots of different way. Join us

  17. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1986-08-15

    The atomic vapor laser isotope separation (AVLIS) process for the enrichment of uranium is evaluated. (AIP)

  18. Plasma isotope separation methods

    SciTech Connect (OSTI)

    Grossman, M.W. ); Shepp, T.A. )

    1991-12-01

    Isotope separation has many important industrial, medical, and research applications. Large-scale processes have typically utilized complex cascade systems; for example, the gas centrifuge. Alternatively, high single-stage enrichment processes (as in the case of the calutron) are very energy intensive. Plasma-based methods being developed for the past 15 to 20 years have attempted to overcome these two drawbacks. In this review, six major types of isotope separation methods which involve plasma phenomena are discussed. These methods are: plasma centrifuge, AVLIS (atomic vapor laser isotope separation), ion wave, ICR (ion-cyclotron resonance), calutron, and gas discharge. The emphasis of this paper is to describe the plasma phenomena in these major categories. An attempt was made to include enough references so that more detailed study or evaluation of a particular method could readily be pursued. A brief discussion of isotope separation using mass balance concepts is also carried out.

  19. LIQUID TARGET

    DOE Patents [OSTI]

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  20. Dual pressure-dual temperature isotope exchange process

    DOE Patents [OSTI]

    Babcock, D.F.

    1974-02-12

    A liquid and a gas stream, each containing a desired isotope, flow countercurrently through two liquid-gas contacting towers maintained at different temperatures and pressures. The liquid is enriched in the isotope in one tower while the gas is enriched within the other and a portion of at least one of the enriched streams is withdrawn from the system for use or further enrichment. The tower operated at the lower temperature is also maintained at the lower pressure to prevent formation of solid solvates. Gas flow between the towers passes through an expander-compressor apparatas to recover work from the expansion of gas to the lower pressure and thereby compress the gas returning to the tower of higher pressure. (Official Gazette)

  1. Salt effects on isotope partitioning and their geochemical implications: An overview

    SciTech Connect (OSTI)

    Horita, J.; Cole, D.R.; Fortier, S.M.

    1996-01-01

    Essential to the use of stable isotopes as natural tracers and geothermometers is the knowledge of equilibrium isotope partitioning between different phases and species, which is usually a function of temperature only. The one exception known to date is oxygen and hydrogen isotope fractionation between liquid water and other phases (steam, gases, minerals), which changes upon the addition of salts to water, i.e., the isotope salt salt effect. Our knowledge of this effect, the difference between activity and composition (a-X) of isotopic water molecules in salt solutions, is very limited and controversial, especially at elevated temperatures. For the last several years, we have been conducting a detailed, systematic experimental study at Oak Ridge National Laboratory to determine the isotope salt effects from room temperature to elevated temperatures (currently to 500{degree}C). From this effort, a simple, coherent picture of the isotope salt effect is emerging, that differs markedly from the complex results reported in the literature. In this communication, we present an overview on the isotope salt effect, obtained chiefly from our study. Observed isotope salt effects in salt solutions are significant even at elevated temperatures. The importance and implications of the isotope salt effect for isotopic studies of brine-dominated systems are also discussed in general terms.

  2. Transportation of medical isotopes

    SciTech Connect (OSTI)

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  3. Separation of sulfur isotopes

    DOE Patents [OSTI]

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  4. Isotope separation apparatus

    DOE Patents [OSTI]

    Arnush, Donald; MacKenzie, Kenneth R.; Wuerker, Ralph F.

    1980-01-01

    Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.

  5. Improved Geothermometry Through Multivariate Reaction Path Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the April 2013 peer review meeting held in Denver, Colorado. geothermometrycooperpeer2013.pdf (922.86 KB) More Documents & Publications track 4: enhanced geothermal ...

  6. Geothermometry (Klein, 2007) | Open Energy Information

    Open Energy Info (EERE)

    In The Past 20 Years- Geochemistry In Geothermal Exploration Resource Evaluation And Reservoir Management Additional References Retrieved from "http:en.openei.orgw...

  7. Improvements in geothermometry. Final technical report. Rev

    SciTech Connect (OSTI)

    Potter, J.; Dibble, W.; Parks, G.; Nur, A.

    1982-08-01

    Alkali and alkaline earth geothermometers are useful for estimating geothermal reservoir temperatures, though a general theoretical basis has yet to be established and experimental calibration needs improvement. Equilibrium cation exchange between feldspars provided the original basis for the Na-K and Na-K-Ca geothermometers (Fournier and Truesdell, 1973), but theoretical, field and experimental evidence prove that neither equilibrium nor feldspars are necessary. Here, evidence is summarized in support of these observations, concluding that these geothermometers can be expected to have a surprisingly wide range of applicability, but that the reasons behind such broad applicability are not yet understood. Early experimental work proved that water-rock interactions are slow at low temperatures, so experimental calibration at temperatures below 150/sup 0/ is impractical. Theoretical methods and field data were used instead for all work at low temperatures. Experimental methods were emphasized for temperatures above 150/sup 0/C, and the simplest possible solid and solution compositions were used to permit investigation of one process or question at a time. Unexpected results in experimental work prevented complete integration of the various portions of the investigation.

  8. Colorado thermal spring water geothermometry (public dataset...

    Open Energy Info (EERE)

    chemical geothermometers for Colorado thermal springs. Data citations include Barrett, J. K. and Pearl, R. H. (1976), George, R. D., Curtis, H. A., Lester, O. C., Crook, J. K.,...

  9. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

  10. Kinetic Isotopic Fractionation During Diffusion of Ionic Speciesin Water

    SciTech Connect (OSTI)

    Richter, Frank M.; Mendybaev, Ruslan A.; Christensen, John; Hutcheon, Ian D.; Williams, Ross W.; Sturchio, Neil C.; Beloso Jr.,Abelardo D.

    2005-06-09

    Experiments specifically designed to measure the ratio of the diffusivities of ions dissolved in water were used to determine D{sub Li}/D{sub K}, D{sub 7{sub Li}}/D{sub 6{sub Li}}, D{sub 25{sub Mg}}/D{sub 24{sub Mg}}, D{sub 26{sub Mg}}/D{sub 25{sub Mg}}, and D{sub 37{sub Cl}}/D{sub 35{sub Cl}}. The measured ratio of the diffusion coefficients for Li and K in water (D{sub Li}/D{sub K} = 0.6) is in good agreement with published data, providing evidence that the experimental design being used resolves the relative mobility of ions with adequate precision to also be used for determining the fractionation of isotopes by diffusion in water. In the case of Li we found measurable isotopic fractionation associated with the diffusion of dissolved LiCl (D{sub 7{sub Li}}/D{sub 6{sub Li}} = 0.99772 {+-} 0.00026). This difference in the diffusion coefficient of {sup 7}Li compared to {sup 6}Li is significantly less than reported in an earlier study, a difference we attribute to the fact that in the earlier study Li diffused through a membrane separating the water reservoirs. Our experiments involving Mg diffusing in water found no measurable isotopic fractionation (D{sub 25{sub Mg}}/D{sub 24{sub Mg}} = 1.00003 {+-} 0.00006). Cl isotopes were fractionated during diffusion in water (D{sub 37{sub Cl}}/D{sub 35{sub Cl}} = 0.99857 {+-} 0.00080) whether or not the co-diffuser (Li or Mg) was isotopically fractionated. The isotopic fractionation associated with the diffusion of ions in water is much smaller than values we found previously for the isotopic fractionation of Li and Ca isotopes by diffusion in molten silicate liquids. A major distinction between water and silicate liquids is that water, being a polar liquid, surrounds dissolved ions with hydration shells, which very likely play an important but still poorly understood role in reducing isotopic fractionation associated with diffusion.

  11. Method for separating boron isotopes

    DOE Patents [OSTI]

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  12. Anomalously large isotope effect in the glass transition of water

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gainaru, Catalin; Agapov, Alexander L.; Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Nelson, Helge; Köster, Karsten W.; Kolesnikov, Alexander I.; Novikov, Vladimir N.; Richert, Ranko; Böhmer, Roland; et al

    2014-11-24

    Here we present the discovery of an unusually large isotope effect in the structural relaxation and the glass transition temperature Tg of water. Dielectric relaxation spectroscopy of low-density as well as of vapor deposited amorphous water reveal Tg differences of 10±2K between H2O and D2O, sharply contrasting with other hydrogen bonded liquids for which H/D exchange increases Tg by typically less than 1K. We show that the large isotope effect and the unusual variation of relaxation times in water at low temperatures can be explained in terms of quantum effects. Thus, our findings shed new light on water's peculiar low-temperaturemore » dynamics and the possible role of quantum effects in its structural relaxation, and possibly in dynamics of other low molecular weight liquids.« less

  13. ISOTOPE SEPARATING APPARATUS CONTROL

    DOE Patents [OSTI]

    Barnes, S.W.

    1959-08-25

    An improved isotope separating apparatus of the electromagnetic type, commonly referred to as a calutron, is described. Improvements in detecting and maintaining optimum position and focus of the ion beam are given. The calutron collector is provided with an additional electrode insulated from and positioned between the collecting pockets. The ion beams are properly positioned and focused until the deionizing current which flows from ground to this additional electrode ts a minimum.

  14. Liquid electrode

    DOE Patents [OSTI]

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  15. Laser isotope separation of erbium and other isotopes

    DOE Patents [OSTI]

    Haynam, Christopher A.; Worden, Earl F.

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  16. Laser isotope separation of erbium and other isotopes

    DOE Patents [OSTI]

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  17. Isotope and Temperature Effects in Liquid Water Probed by Soft...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This is probably true, but not on an atomic scale Surprisingly, our microscopic knowledge ... How can we find out? In recent years, soft x-ray spectroscopy has emerged as a new tool to ...

  18. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1988-02-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high-abundance, naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  19. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for nondestructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Material Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  20. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1984-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  1. Isotopically labeled compositions and method

    DOE Patents [OSTI]

    Schmidt, Jurgen G.; Kimball, David B.; Alvarez, Marc A.; Williams, Robert F.; Martinez, Rudolfo A.

    2011-07-12

    Compounds having stable isotopes .sup.13C and/or .sup.2H were synthesized from precursor compositions having solid phase supports or affinity tags.

  2. Liquid electrode

    DOE Patents [OSTI]

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  3. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  4. ISOTOPE FRACTIONATION PROCESS

    DOE Patents [OSTI]

    Clewett, G.H.; Lee, DeW.A.

    1958-05-20

    A new method is described for isotopic enrichment of uranium. It has been found that when an aqueous acidic solution of ionic tetravalent uraniunn is contacted with chelate complexed tetravalent uranium, the U/sup 238/ preferentially concentrates in the complexed phase while U/sup 235/ concentrates in the ionic phase. The effect is enhanced when the chelate compound is water insoluble and is dissolved in a water-immiscible organic solvent. Cupferron is one of a number of sultable complexing agents, and chloroform is a suitable organic solvent.

  5. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  6. Isotope Program Transportation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Isotope Program Transportation Isotope Program Transportation Isotope Program Transportation (894.11 KB) More Documents & Publications Nuclear Fuel Storage and Transportation Planning Project Overview Section 180(c) Ad Hoc Working Group DOE Office of Nuclear Energy

  7. Phonon coherence in isotopic silicon superlattices

    SciTech Connect (OSTI)

    Frieling, R.; Radek, M.; Eon, S.; Bracht, H.; Wolf, D. E.

    2014-09-29

    Recent experimental and theoretical investigations have confirmed that a reduction in thermal conductivity of silicon is achieved by isotopic silicon superlattices. In the present study, non-equilibrium molecular dynamics simulations are performed to identify the isotope doping and isotope layer ordering with minimum thermal conductivity. Furthermore, the impact of isotopic intermixing at the superlattice interfaces on phonon transport is investigated. Our results reveal that the coherence of phonons in isotopic Si superlattices is prevented if interfacial mixing of isotopes is considered.

  8. Method of separating boron isotopes

    DOE Patents [OSTI]

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  9. Method of separating boron isotopes

    DOE Patents [OSTI]

    Jensen, R.J.; Thorne, J.M.; Cluff, C.L.

    1981-01-23

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  10. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing.

  11. Isotopic Trends in Production of Superheavies

    SciTech Connect (OSTI)

    Antonenko, N.V.; Adamian, G.G.; Zubov, A.S.; Scheid, W.

    2005-11-21

    The isotopic trends are discussed for cold and hot fusion reactions leading to superheavies. The possibilities of production of new isotopes in incomplete fusion reactions are treated.

  12. Heavy Isotopes Lead Materials Management Organization (LMMO)...

    Office of Scientific and Technical Information (OSTI)

    Heavy Isotopes Lead Materials Management Organization (LMMO) Update Citation Details In-Document Search Title: Heavy Isotopes Lead Materials Management Organization (LMMO) Update ...

  13. Isotope separation by laser means

    DOE Patents [OSTI]

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1982-06-15

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  14. Container for hydrogen isotopes

    DOE Patents [OSTI]

    Solomon, David E.

    1977-01-01

    A container for the storage, shipping and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same which has compactness, which is safe against fracture or accident, and which is reusable. The container consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example, of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and will be retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates.

  15. Laser separation of medical isotopes

    SciTech Connect (OSTI)

    Eerkens, J.W.; Puglishi, D.A.; Miller, W.H.

    1996-12-31

    There is an increasing demand for different separated isotopes as feed material for reactor and cyclotron-produced radioisotopes used by a fast-growing radiopharmaceutical industry. One new technology that may meet future demands for medical isotopes is molecular laser isotope separation (MLIS). This method was investigated for the enrichment of uranium in the 1970`s and 1980s by Los Alamos National Laboratory, Isotope Technologies, and others around the world. While South Africa and Japan have continued the development of MLIS for uranium and are testing pilot units, around 1985 the United States dropped the LANL MLIS program in favor of AVLIS (atomic vapor LIS), which uses electron-beam-heated uranium metal vapor. AVLIS appears difficult and expensive to apply to most isotopes of medical interest, however, whereas MLIS technology, which is based on cooled hexafluorides or other gaseous molecules, can be adapted more readily. The attraction of MLIS for radiopharmaceutical firms is that it allows them to operate their own dedicated separators for small-quantity productions of critical medical isotopes, rather than having to depend on large enrichment complexes run by governments, which are only optimal for large-quantity productions. At the University of Missouri, the authors are investigating LIS of molybdenum isotopes using MoF{sub 6}, which behaves in a way similar to UF{sub 6}, studied in the past.

  16. REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS

    DOE Patents [OSTI]

    Bradley, J.G.

    1957-10-29

    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  17. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  18. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1983-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  19. Compelling Research Opportunities using Isotopes

    SciTech Connect (OSTI)

    2009-04-23

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine

  20. Apparatus and process for separating hydrogen isotopes

    DOE Patents [OSTI]

    Heung, Leung K; Sessions, Henry T; Xiao, Xin

    2013-06-25

    The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.

  1. Method for laser induced isotope enrichment

    DOE Patents [OSTI]

    Pronko, Peter P.; Vanrompay, Paul A.; Zhang, Zhiyu

    2004-09-07

    Methods for separating isotopes or chemical species of an element and causing enrichment of a desired isotope or chemical species of an element utilizing laser ablation plasmas to modify or fabricate a material containing such isotopes or chemical species are provided. This invention may be used for a wide variety of materials which contain elements having different isotopes or chemical species.

  2. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOE Patents [OSTI]

    Harney, Robert C.; Bloom, Stewart D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  3. Quantum fluctuations and isotope effects in ab initio descriptions of water

    SciTech Connect (OSTI)

    Wang, Lu; Markland, Thomas E.; Ceriotti, Michele

    2014-09-14

    Isotope substitution is extensively used to investigate the microscopic behavior of hydrogen bonded systems such as liquid water. The changes in structure and stability of these systems upon isotope substitution arise entirely from the quantum mechanical nature of the nuclei. Here, we provide a fully ab initio determination of the isotope exchange free energy and fractionation ratio of hydrogen and deuterium in water treating exactly nuclear quantum effects and explicitly modeling the quantum nature of the electrons. This allows us to assess how quantum effects in water manifest as isotope effects, and unravel how the interplay between electronic exchange and correlation and nuclear quantum fluctuations determine the structure of the hydrogen bond in water.

  4. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1985-02-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for non-destructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, /sup 40/Ca and /sup 56/Fe. All request for the loan of samples should be submitted with a summary of the purpose of the loan to: Isotope Distribution Office, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831. Requests from non-DOE contractors and from foreign institutions require DOE approval.

  5. Physics with isotopically controlled semiconductors

    SciTech Connect (OSTI)

    Haller, E. E.

    2010-07-15

    This paper is based on a tutorial presentation at the International Conference on Defects in Semiconductors (ICDS-25) held in Saint Petersburg, Russia in July 2009. The tutorial focused on a review of recent research involving isotopically controlled semiconductors. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, is the most prominent effect for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples.

  6. Novel hybrid isotope separation scheme and apparatus

    DOE Patents [OSTI]

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means.

  7. Novel hybrid isotope separation scheme and apparatus

    DOE Patents [OSTI]

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means. 3 figures.

  8. Isotope separation apparatus and method

    DOE Patents [OSTI]

    Feldman, Barry J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  9. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  10. Atomic line emission analyzer for hydrogen isotopes (Patent)...

    Office of Scientific and Technical Information (OSTI)

    Atomic line emission analyzer for hydrogen isotopes Title: Atomic line emission analyzer for hydrogen isotopes Apparatus for isotopic analysis of hydrogen comprises a low pressure ...

  11. Isotope separation by photochromatography (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Patent: Isotope separation by photochromatography Citation Details In-Document Search Title: Isotope separation by photochromatography An isotope separation method which comprises ...

  12. Department of Energy's Isotope Development and Production for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The Isotope Program prices isotopes sold for medical and industrial applications to recover full cost. Isotopes sold for research and development are priced to recover direct costs ...

  13. Isotope production facility produces cancer-fighting actinium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major ...

  14. Isotope separation apparatus and method

    DOE Patents [OSTI]

    Cotter, Theodore P.

    1982-12-28

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  15. Liquid level detector

    DOE Patents [OSTI]

    Grasso, Albert P.

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  16. Liquid level detector

    DOE Patents [OSTI]

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  17. Isotope specific arbitrary material sorter

    DOE Patents [OSTI]

    Barty, Christopher P.J.

    2015-12-08

    A laser-based mono-energetic gamma-ray source is used to provide a rapid and unique, isotope specific method for sorting materials. The objects to be sorted are passed on a conveyor in front of a MEGa-ray beam which has been tuned to the nuclear resonance fluorescence transition of the desired material. As the material containing the desired isotope traverses the beam, a reduction in the transmitted MEGa-ray beam occurs. Alternately, the laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  18. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high-abundance, naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56. All requests for the loan of samples should be submitted with a summary of the purpose of the loan to: Iotope Distribution Office, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831. Requests from non-DOE contractors and from foreign institutions require DOE approval.

  19. AVLIS enrichment of medical isotopes

    SciTech Connect (OSTI)

    Haynam, C.A.; Scheibner, K.F.; Stern, R.C.; Worden, E.F.

    1996-12-31

    Under the Sponsorship of the United states Enrichment Corporation (USEC), we are currently investigating the large scale separation of several isotopes of medical interest using atomic vapor isotope separation (AVLIS). This work includes analysis and experiments in the enrichment of thallium 203 as a precursor to the production of thallium 201 used in cardiac imaging following heart attacks, on the stripping of strontium 84 from natural strontium as precursor to the production of strontium 89, and on the stripping of lead 210 from lead used in integrated circuits to reduce the number of alpha particle induced logic errors.

  20. Isotope geochronology of metamorphic processes

    SciTech Connect (OSTI)

    Ovchinnikov, L.N.; Voronovskiy, S.N.; Ovchinnikova, L.V.

    1986-05-01

    The long history of the earth and its crust is a history of uninterrupted and continuing transformation, making metamorphism the most common and most extensive geological process on this planet. Metamorphism has occurred in all epochs and is a factor in all endogenic processes: geodynamics, magmatism, and the action of intratelluric fluids. But it varies in scale, type, and mechanism, and is always combined with metasomatism - the chemical and mineral transformation of material. This paper discusses methodological principles of isotope dating, laws characterizing changes in indicator minerals, internal stability of isotopic systems, and interesting geological problems. 13 references.

  1. Precision liquid level sensor

    DOE Patents [OSTI]

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  2. Online Catalog of Isotope Products from DOE's National Isotope Development Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. The Isotope subprogram supports the production, and the development of production techniques of radioactive and stable isotopes that are in short supply for research and applications. Isotopes are high-priority commodities of strategic importance for the Nation and are essential for energy, medical, and national security applications and for basic research; a goal of the program is to make critical isotopes more readily available to meet domestic U.S. needs. This subprogram is steward of the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL), the Brookhaven Linear Isotope Producer (BLIP) facility at BNL, and hot cell facilities for processing isotopes at ORNL, BNL and LANL. The subprogram also coordinates and supports isotope production at a suite of university, national laboratory, and commercial accelerator and reactor facilities throughout the Nation to promote a reliable supply of domestic isotopes. The National Isotope Development Center (NIDC) at ORNL coordinates isotope production across the many facilities and manages the business operations of the sale and distribution of isotopes.

  3. Laboratory studies on the removal of radon-born lead from KamLAND׳s organic liquid scintillator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Keefer, G.; Grant, C.; Piepke, A.; Ebihara, T.; Ikeda, H.; Kishimoto, Y.; Kibe, Y.; Koseki, Y.; Ogawa, M.; Shirai, J.; et al

    2014-09-28

    We studied the removal of radioactivity from liquid scintillator in preparation of a low background phase of KamLAND. We describe the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. Lastly, we report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon daughters from liquid scintillator.

  4. Science with Beams of Radioactive Isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pacifichem 2015 Pacifichem 2015 The International Chemical Congress of Pacific Basin Societies Science with Beams of Radioactive Isotopes (# 340) Honolulu, Hawaii, USA December 15-20, 2015 Science with Beams of Radioactive Isotopes (# 340) All of the elements that make up the periodic chart have been created from nuclear reactions. Many of the stable nuclei in the universe are daughters of unstable isotopes, and their true origin lies in the stellar reactions of these radioactive isotopes. Thus

  5. Isotope Production in Light of Increasing Demand

    SciTech Connect (OSTI)

    Patton, B.

    2004-10-05

    This presentation is a part of the panel discussion on isotope production in light of increasing demand.

  6. Isotopes for cancer and cardiac care

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes for cancer Isotopes for cancer and cardiac care Eva Birnbaum is interviewed on KSFR radio on the Lab's Isotope Program February 4, 2016 hot cell facility A worker uses remote manipulator arms to handle a highly radioactive target inside the Lab's radiochemistry hot cell facility. Isotopes from Los Alamos are used for the diagnosis of cardiac disease, for the calibration of PET scanners which in turn diagnose cancer, neurological disease, inflammatory diseases, trauma, and other

  7. Development of NDA instruments for the Los Alamos SIS (Special Isotope Separation) Facility

    SciTech Connect (OSTI)

    Li, T.K.; Rinard, P.M.; Schneider, C.M.; Atencio, J.D.; Hyman, D.H.; Kroncke, K.E.; Painter, J.; Siebelist, R.; Holbrooks, O.; Halbig, J.K.

    1989-01-01

    The Los Alamos Special Isotope Separation Facility produces special plutonium isotopes and converts plutonium scrap by using the molecular laser isotope separation (MLIS) process in a gaseous plutonium hexafluoride (PuF/sub 6/) phase. To provide important process-development and accountability information, we have developed and installed four nondestructive assay (NDA) instruments for that facility. These instruments are (1) an in-line plutonium isotopic analysis system to measure plutonium isotopes in gaseous, solid, and liquid phases, (2) an in-line sodium iodide (NaI) monitoring system consisting of six 2-in. by 2-in., two 2-in. by 24-in., and one 2-in. by 22-in. NaI detectors at specified components (a feed bottle, a feed-transfer cold trap, a compressor, a heat exchanger, a collector, a nozzle prefilter, and a tails cold trap) in the flow loop, (3) a portable high-resolution germanium gamma-ray system for plutonium isotopic analysis, and (4) a portable NaI gamma-ray holdup monitor. This paper discusses the measurement principles, hardware and software designs, and performance associated with these NDA instruments. 2 refs, 11 figs., 2 tabs.

  8. Renewable liquid reflection grating

    DOE Patents [OSTI]

    Ryutov, Dmitri D.; Toor, Arthur

    2003-10-07

    A renewable liquid reflection grating. Electrodes are operatively connected to a conducting liquid in an arrangement that produces a reflection grating and driven by a current with a resonance frequency. In another embodiment, the electrodes create the grating by a resonant electrostatic force acting on a dielectric liquid.

  9. Liquid detection circuit

    DOE Patents [OSTI]

    Regan, Thomas O.

    1987-01-01

    Herein is a circuit which is capable of detecting the presence of liquids, especially cryogenic liquids, and whose sensor will not overheat in a vacuum. The circuit parameters, however, can be adjusted to work with any liquid over a wide range of temperatures.

  10. Isotope Cancer Treatment Research at LANL

    ScienceCinema (OSTI)

    Weidner, John; Nortier, Meiring

    2014-06-02

    Los Alamos National Laboratory has produced medical isotopes for diagnostic and imaging purposes for more than 30 years. Now LANL researchers have branched out into isotope cancer treatment studies. New results show that an accelerator-based approach can produce clinical trial quantities of actinium-225, an isotope that has promise as a way to kill tumors without damaging surrounding healthy cells.

  11. Isotope Cancer Treatment Research at LANL

    SciTech Connect (OSTI)

    Weidner, John; Nortier, Meiring

    2012-04-11

    Los Alamos National Laboratory has produced medical isotopes for diagnostic and imaging purposes for more than 30 years. Now LANL researchers have branched out into isotope cancer treatment studies. New results show that an accelerator-based approach can produce clinical trial quantities of actinium-225, an isotope that has promise as a way to kill tumors without damaging surrounding healthy cells.

  12. Dry phase reactor for generating medical isotopes

    DOE Patents [OSTI]

    Mackie, Thomas Rockwell; Heltemes, Thad Alexander

    2016-05-03

    An apparatus for generating medical isotopes provides for the irradiation of dry-phase, granular uranium compounds which are then dissolved in a solvent for separation of the medical isotope from the irradiated compound. Once the medical isotope is removed, the dissolved compound may be reconstituted in dry granular form for repeated irradiation.

  13. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, James E.; Bolton, Richard D.

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  14. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  15. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    SciTech Connect (OSTI)

    Nimz, G. J., LLNL

    1998-06-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water. Many solutes in natural waters are derived from the interaction between the water and the rock and/or soil within the system - these are termed `lithogenic` solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both within and outside of the catchment - i.e., in addition to being derived from catchment rock and soil, they are solutes that are also transported into the catchment. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing `cosmogenic` nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing `thermonuclear` nuclides), or radioactive and fission decay of naturally-occurring elements, principally {sup 238}U (producing `in-situ` lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading `cosmogenic nuclides`, and for simplicity we will often follow that usage here, although always indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute concentrations in catchment waters, and how the isotopic compositions of the solutes can be used in integrative ways to identify these processes, thereby revealing the physical history of the water within a catchment system. The concept of a `system` is important in catchment hydrology. A catchment is the smallest landscape unit that can both participate in all of the aspects of the hydrologic cycle and

  16. Measuring SNM Isotopic Distributions using FRAM

    SciTech Connect (OSTI)

    Geist, William H.

    2015-12-02

    The first group of slides provides background information on the isotopic composition of plutonium. It is shown that 240Pu is the critical isotope in neutron coincidence/multiplicity counting. Next, response function analysis to determine isotopic composition is discussed. The isotopic composition can be determined by measuring the net peak counts from each isotope and then taking the ratio of the counts for each isotope relative to the total counts for the element. Then FRAM (Fixed energy Response function Analysis with Multiple efficiencies) is explained. FRAM can control data acquisition, automatically analyze newly acquired data, analyze previously acquired data, provide information on the quality of the analysis, and facilitate analysis in unusual situations (non-standard energy calibrations, gamma rays from non-SNM isotopes, poor spectra (within limits)).

  17. Laser ablation molecular isotopic spectrometry of carbon isotopes

    SciTech Connect (OSTI)

    Bol'shakov, Alexander A.; Jain, Jinesh; Russo, Richard E.; McIntyre, Dustin; Mao, Xianglei

    2015-08-28

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented:empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5–476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrumyielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies

  18. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  19. Liquid level detector

    DOE Patents [OSTI]

    Tshishiku, Eugene M.

    2011-08-09

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  20. LIQUID CYCLONE CONTACTOR

    DOE Patents [OSTI]

    Whatley, M.E.; Woods, W.M.

    1962-09-01

    This invention relates to liquid-liquid extraction systems. The invention, an improved hydroclone system, comprises a series of serially connected, axially aligned hydroclones, each of which is provided with an axially aligned overflow chamber. The chambers are so arranged that rotational motion of a fluid being passed through the system is not lost in passing from chamber to chamber; consequently, this system is highly efficient in contacting and separating two immiscible liquids. (AEC)

  1. Production of radioactive isotopes through cosmic muon spallation in KamLAND

    SciTech Connect (OSTI)

    Abe, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Kibe, Y.; Kishimoto, Y.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.

    2010-02-15

    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in nu detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be Y{sub n}=(2.8+-0.3)x10{sup -4} mu{sup -1} g{sup -1} cm{sup 2}. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  2. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    SciTech Connect (OSTI)

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  3. HV in Noble Liquids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Noble Liquids 8 Nov 2013 High Voltage Tests for MicroBooNE Byron Lundberg Fermilab presenting for the Collaboration & Task Force 4 1 Friday, November 8, 13 HV in Noble Liquids MicroBooNE Experiment  A liquid argon time projection chamber (LAr TPC) containing 170 tons of liquid argon, and located on the Booster Neutrino Beamline.  MiniBooNE  MicroBooNE 8,#256#wires;#U,V,Y#planes;#3#mm#spacing# 32#PMTs#for#fast#light#collec?ons# @ L A r T F 2 Friday, November 8, 13 HV in Noble

  4. RENEWABLE LIQUID GETTERING PUMP

    DOE Patents [OSTI]

    Batzer, T.H.

    1962-08-21

    A method and structure were developed for pumping gases by simple absorption into a liquid gettering material. The invention comprises means ror continuously pumping a liquid getterrng material from a reservoir to the top of a generally vertical surface disposed in a vacuum pumping chamber to receive gaseous and other particles in the liquid gettering material which continuously flows downward over the vertical suiface. Means are provided for continuous removal, degassing, and return of a portion of the liquid gettering material from the reservoir connected with collectrng means at the base of the generally vertical plate. (AEC)

  5. Gas scrubbing liquids

    DOE Patents [OSTI]

    Lackey, Walter J.; Lowrie, Robert S.; Sease, John D.

    1981-01-01

    Fully chlorinated and/or fluorinated hydrocarbons are used as gas scrubbing liquids for preventing noxious gas emissions to the atmosphere.

  6. Liquid Crystal Optofluidics

    SciTech Connect (OSTI)

    Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

    2012-10-11

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  7. Ultrasonic liquid level detector

    DOE Patents [OSTI]

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  8. Stable Isotope Enrichment Capabilities at ORNL

    SciTech Connect (OSTI)

    Egle, Brian; Aaron, W Scott; Hart, Kevin J

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

  9. METHOD AND APPARATUS FOR COLLECTING ISOTOPES

    DOE Patents [OSTI]

    Leyshon, W.E.

    1957-08-01

    A method and apparatus for collecting isotopes having a high vapor pressure, such as isotopes of mercury, in a calutron are described. Heretofore, the collected material would vaporize and escape from the ion receiver as fast as it was received. By making the receiver of pure silver, the mercury isotopes form a nonvolatile amalgam with the silver at the water cooled temperature of the receiver, and the mercury is thus retained.

  10. Synthesis of ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  11. Synthesis of ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Luo, Huimin (Knoxville, TN)

    2011-11-01

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  12. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  13. Precision liquid level sensor

    DOE Patents [OSTI]

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  14. Precision liquid level sensor

    DOE Patents [OSTI]

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  15. Atomic vapor laser isotope separation process

    DOE Patents [OSTI]

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique.

  16. Isotope production agreement benefits medical patients | National...

    National Nuclear Security Administration (NNSA)

    LLC (NSTec), and Henderson, Nevada-based Global Medical Isotope Systems, LLC (GMIS). ... Known primarily as the management and operations contractor for the Nevada National ...

  17. Method for isotope enrichment by photoinduced chemiionization

    DOE Patents [OSTI]

    Dubrin, James W.

    1985-01-01

    Isotope enrichment, particularly .sup.235 U enrichment, is achieved by irradiating an isotopically mixed vapor feed with radiant energy at a wavelength or wavelengths chosen to selectively excite the species containing a desired isotope to a predetermined energy level. The vapor feed if simultaneously reacted with an atomic or molecular reactant species capable of preferentially transforming the excited species into an ionic product by a chemiionization reaction. The ionic product, enriched in the desired isotope, is electrostatically or electromagnetically extracted from the reaction system.

  18. Categorical Exclusion 4577: Lithium Isotope Separation & Enrichment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Isotope Separation & Enrichment Technologies (4577) Program or Field Office: Y-12 Site Office Location(s) (CityCountyState): Oak Ridge, Anderson County, Tennessee...

  19. EIS-0249: Medical Isotopes Production Project

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to establish a production capability for molybdenum-99 (Mo-99) and related medical isotopes.

  20. Uranium isotopes fingerprint biotic reduction

    SciTech Connect (OSTI)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  1. Uranium isotopes fingerprint biotic reduction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  2. Hydrogen-isotope permeation barrier

    DOE Patents [OSTI]

    Maroni, Victor A.; Van Deventer, Erven H.

    1977-01-01

    A composite including a plurality of metal layers has a Cu-Al-Fe bronze layer and at least one outer layer of a heat and corrosion resistant metal alloy. The bronze layer is ordinarily intermediate two outer layers of metal such as austenitic stainless steel, nickel alloys or alloys of the refractory metals. The composite provides a barrier to hydrogen isotopes, particularly tritium that can reduce permeation by at least about 30 fold and possibly more below permeation through equal thicknesses of the outer layer material.

  3. Uranium molecular laser isotope separation

    SciTech Connect (OSTI)

    Jensen, R.J.; Sullivan, A.

    1982-01-01

    The Molecular Laser Isotope Separation program is moving into the engineering phase, and it is possible to determine in some detail the plant cost terms involved in the process economics. A brief description of the MLIS process physics is given as a motivation to the engineering and economics discussion. Much of the plant cost arises from lasers and the overall optical system. In the paper, the authors discuss lasers as operating units and systems, along with temporal multiplexing and Raman shifting. Estimates of plant laser costs are given.

  4. Spatial periphery of lithium isotopes

    SciTech Connect (OSTI)

    Galanina, L. I. Zelenskaja, N. S.

    2013-12-15

    The spatial structure of lithium isotopes is studied with the aid of the charge-exchange and (t, p) reactions on lithium nuclei. It is shown that an excited isobaric-analog state of {sup 6}Li (0{sup +}, 3.56MeV) has a halo structure formed by a proton and a neutron, that, in the {sup 9}Li nucleus, there is virtually no neutron halo, and that {sup 11}Li is a Borromean nucleus formed by a {sup 9}Li core and a two-neutron halo manifesting itself in cigar-like and dineutron configurations.

  5. Renewable liquid reflecting zone plate

    DOE Patents [OSTI]

    Toor, Arthur; Ryutov, Dmitri D.

    2003-12-09

    A renewable liquid reflecting zone plate. Electrodes are operatively connected to a dielectric liquid in a circular or other arrangement to produce a reflecting zone plate. A system for renewing the liquid uses a penetrable substrate.

  6. CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS

    SciTech Connect (OSTI)

    Xiao, S.; Heung, L.

    2010-10-07

    Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

  7. NEST-GENERATION TCAP HYDROGEN ISOTOPE SEPARATION PROCESS

    SciTech Connect (OSTI)

    Heung, L; Henry Sessions, H; Anita Poore, A; William Jacobs, W; Christopher Williams, C

    2007-08-07

    A thermal cycling absorption process (TCAP) for hydrogen isotope separation has been in operation at Savannah River Site since 1994. The process uses a hot/cold nitrogen system to cycle the temperature of the separation column. The hot/cold nitrogen system requires the use of large compressors, heat exchanges, valves and piping that is bulky and maintenance intensive. A new compact thermal cycling (CTC) design has recently been developed. This new design uses liquid nitrogen tubes and electric heaters to heat and cool the column directly so that the bulky hot/cold nitrogen system can be eliminated. This CTC design is simple and is easy to implement, and will be the next generation TCAP system at SRS. A twelve-meter column has been fabricated and installed in the laboratory to demonstrate its performance. The design of the system and its test results to date is discussed.

  8. Liquid sampling system

    DOE Patents [OSTI]

    Larson, L.L.

    1984-09-17

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

  9. Liquid sampling system

    DOE Patents [OSTI]

    Larson, Loren L.

    1987-01-01

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

  10. Universally oriented renewable liquid mirror

    DOE Patents [OSTI]

    Ryutov, Dmitri D.; Toor, Arthur

    2004-07-20

    A universally oriented liquid mirror. A liquid and a penetrable unit are operatively connected to provide a mirror that can be universally oriented.

  11. Liquid-level detector

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    Aliquid level sensor is described which has a pair of upright conductors spaced by an insulator defining a first high resistance path between the conductors. An electrically conductive path is interposed between the upright conductors at a discrete location at which liquid level is to be measured. It includes a liquid accessible gap of a dimension such that the electrical resistance across the conductor when the gap is filled with the liquid is detectably less than when the gap is emptied. The conductor might also be physically altered by temperature changes to serve also as an indicator of elevated temperature.

  12. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  13. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  14. Efficient palladium isotope chromatograph for hydrogen (EPIC)

    SciTech Connect (OSTI)

    Embury, M.C.; Ellefson, R.E.; Melke, H.B. )

    1992-03-01

    The Efficient Palladium Isotope Chromatograph (EPIC) is a rapid cycling, computer-operated displacement chromatograph for the separation of hydrogen isotopes. EPIC incorporates several features that optimize product throughput and purity. This paper describes this palladium displacement chromatograph, the operations with protium and deuterium, and the design modifications for operation with tritium.

  15. Isotope mass spectrometry from 1968 to 1989

    SciTech Connect (OSTI)

    DeBievre, P. )

    1989-11-01

    The principal developments in isotope mass spectrometry are described with respect to instrument construction, detector technology, measurement precision, measurement accuracy, and reference materials. The increase in the application of isotope mass spectrometry is summarized, with special emphasis on its use in safeguards of nuclear materials. The future potential versus the present achievements of the field are discussed.

  16. Isotope separation by selective photodissociation of glyoxal

    DOE Patents [OSTI]

    Marling, John B.

    1976-01-01

    Dissociation products, mainly formaldehyde and carbon monoxide, enriched in a desired isotope of carbon, oxygen, or hydrogen are obtained by the selective photodissociation of glyoxal wherein glyoxal is subjected to electromagnetic radiation of a predetermined wavelength such that photon absorption excites and induces dissociation of only those molecules of glyoxal containing the desired isotope.

  17. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    SciTech Connect (OSTI)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  18. Isotopic Analysis At Fenton Hill Hdr Geothermal Area (Goff, Et...

    Open Energy Info (EERE)

    Isotopic Analysis At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Redirect page Jump to: navigation, search REDIRECT Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal...

  19. Advances in Hydrogen Isotope Separation Using Thermal Cycling...

    Office of Environmental Management (EM)

    Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) Advances in Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) Presentation ...

  20. Manus Water Isotope Investigation Field Campaign Report (Program...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Program Document: Manus Water Isotope Investigation Field Campaign Report Citation Details In-Document Search Title: Manus Water Isotope ...

  1. Plutonium Isotopes in the Terrestrial Environment at the Savannah...

    Office of Scientific and Technical Information (OSTI)

    Plutonium Isotopes in the Terrestrial Environment at the Savannah River Site, USA. A Long-Term Study Citation Details In-Document Search Title: Plutonium Isotopes in the ...

  2. Expert Panel: Forecast Future Demand for Medical Isotopes | Department...

    Office of Environmental Management (EM)

    Though the cost of providing a reliable and diverse supply of isotopes for medical use may ... More Documents & Publications Final Report, NEAC Subcommittee for Isotope Research & ...

  3. Review of hydrogen isotope permeability through materials (Technical...

    Office of Scientific and Technical Information (OSTI)

    Review of hydrogen isotope permeability through materials Citation Details In-Document Search Title: Review of hydrogen isotope permeability through materials You are accessing ...

  4. Device and method for separating oxygen isotopes

    DOE Patents [OSTI]

    Rockwood, Stephen D.; Sander, Robert K.

    1984-01-01

    A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.

  5. Selected Isotopes for Optimized Fuel Assembly Tags

    SciTech Connect (OSTI)

    Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

    2008-10-01

    In support of our ongoing signatures project we present information on 3 isotopes selected for possible application in optimized tags that could be applied to fuel assemblies to provide an objective measure of burnup. 1. Important factors for an optimized tag are compatibility with the reactor environment (corrosion resistance), low radioactive activation, at least 2 stable isotopes, moderate neutron absorption cross-section, which gives significant changes in isotope ratios over typical fuel assembly irradiation levels, and ease of measurement in the SIMS machine 2. From the candidate isotopes presented in the 3rd FY 08 Quarterly Report, the most promising appear to be Titanium, Hafnium, and Platinum. The other candidate isotopes (Iron, Tungsten, exhibited inadequate corrosion resistance and/or had neutron capture cross-sections either too high or too low for the burnup range of interest.

  6. Atomic vapor laser isotope separation of lead-210 isotope

    DOE Patents [OSTI]

    Scheibner, Karl F.; Haynam, Christopher A.; Johnson, Michael A.; Worden, Earl F.

    1999-01-01

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207.

  7. Atomic vapor laser isotope separation of lead-210 isotope

    DOE Patents [OSTI]

    Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.

    1999-08-31

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.

  8. Direct liquid injection of liquid petroleum gas

    SciTech Connect (OSTI)

    Lewis, D.J.; Phipps, J.R.

    1984-02-14

    A fuel injector and injection system for injecting liquified petroleum gas (LPG) into at least one air/fuel mixing chamber from a storage means that stores pressurized LPG in its liquid state. The fuel injector (including a body), adapted to receive pressurized LPG from the storage means and for selectively delivering the LPG to the air/fuel mixing chamber in its liquified state. The system including means for correcting the injector activation signal for pressure and density variations in the fuel.

  9. Liquid level controller

    DOE Patents [OSTI]

    Mangus, J.D.; Redding, A.H.

    1975-07-15

    A system for maintaining two distinct sodium levels within the shell of a heat exchanger having a plurality of J-shaped modular tube bundles each enclosed in a separate shell which extends from a common base portion. A lower liquid level is maintained in the base portion and an upper liquid level is maintained in the shell enwrapping the long stem of the J-shaped tube bundles by utilizing standpipes with a notch at the lower end which decreases in open area the distance from the end of the stand pipe increases and a supply of inert gas fed at a constant rate to produce liquid levels, which will remain generally constant as the flow of liquid through the vessel varies. (auth)

  10. Liquid blocking check valve

    DOE Patents [OSTI]

    Merrill, John T.

    1984-01-01

    A liquid blocking check valve useful particularly in a pneumatic system utilizing a pressurized liquid fill chamber. The valve includes a floatable ball disposed within a housing defining a chamber. The housing is provided with an inlet aperture disposed in the top of said chamber, and an outlet aperture disposed in the bottom of said chamber in an offset relation to said inlet aperture and in communication with a cutaway side wall section of said housing.