Powered by Deep Web Technologies
Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Clouds, Aerosols and Precipitation in the Marine Boundary Layer (CAP-MBL) AMF Deployment Graciosa Island, Azores, NE Atlantic Ocean May 2009-December 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

the Marine Boundary Layer (CAP-MBL) Graciosa Island, Azores, NE Atlantic Ocean May 2009-December 2010 Rob Wood, University of Washington CAP-MBL Proposal Team AMF Deployment Team Thanks to Mark Miller: AMF Site Scientist Kim Nitschke: AMF Site Manager Importance of Low-Clouds for Climate Imperative that we understand the processes controlling the formation, maintenance and dissipation of low clouds in order to improve their representation in climate models. Which clouds matter for climate sensitivity? Climate Feedbacks Model Intercomparison Project (CFMIP) 12 slab ocean models 2xCO 2 - control Correlation of global mean CRF with local values Mark Webb, Hadley Center 90 N 45 N 0 45 S 90S 0 90 E 180 90 W 0

2

US NE MA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

NE MA NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption results in households spending 22% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S. However, spending on electricity is closer to the national average due to higher

3

US NE MA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

NE MA NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption results in households spending 22% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S. However, spending on electricity is closer to the national average due to higher

4

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Household Characteristics by West Census Region, 2a. Household Characteristics by West Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.8 1.1 Total .............................................................. 107.0 23.3 6.7 16.6 NE Household Size 1 Person ...................................................... 28.2 5.6 1.8 3.8 5.4 2 Persons .................................................... 35.1 7.3 1.9 5.5 4.9 3 Persons .................................................... 17.0 3.5 0.9 2.6 7.6 4 Persons .................................................... 15.6 3.5 1.1 2.4 6.4 5 Persons .................................................... 7.1 2.0 0.6 1.4 9.7 6 or More Persons

5

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Household Characteristics by Midwest Census Region, 0a. Household Characteristics by Midwest Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.7 Total .............................................................. 107.0 24.5 17.1 7.4 NE Household Size 1 Person ...................................................... 28.2 6.7 4.7 2.0 6.2 2 Persons .................................................... 35.1 8.0 5.4 2.6 5.0 3 Persons .................................................... 17.0 3.8 2.7 1.1 7.9 4 Persons .................................................... 15.6 3.5 2.5 1.0 8.1 5 Persons .................................................... 7.1 1.7

6

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Space Heating by Northeast Census Region, 9a. Space Heating by Northeast Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.7 Total .............................................................. 107.0 20.3 14.8 5.4 NE Heat Home .................................................... 106.0 20.1 14.7 5.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.9 No Heating Equipment ................................ 0.5 Q Q Q 39.5 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q 38.7 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 20.1 14.7 5.4 NE Natural Gas .................................................

7

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Space Heating by Midwest Census Region, 0a. Space Heating by Midwest Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Heat Home .................................................... 106.0 24.5 17.1 7.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.8 No Heating Equipment ................................ 0.5 Q Q Q 39.2 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q 38.4 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 24.5 17.1 7.4 NE Natural Gas

8

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Space Heating by West Census Region, 2a. Space Heating by West Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.6 1.0 1.6 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Heat Home .................................................... 106.0 22.6 6.7 15.9 NE Do Not Heat Home ....................................... 1.0 0.7 Q 0.7 10.6 No Heating Equipment ................................ 0.5 0.4 Q 0.4 18.1 Have Equipment But Do Not Use It ............................................... 0.4 0.2 Q 0.2 27.5 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 22.6 6.7 15.9 NE Natural Gas .................................................

9

EIA - Household Transportation report: Household Vehicles ...  

U.S. Energy Information Administration (EIA)

This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of ...

10

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Household Characteristics by South Census Region, 1a. Household Characteristics by South Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.1 1.5 1.6 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Household Size 1 Person ...................................................... 28.2 9.9 5.0 1.8 3.1 6.3 2 Persons .................................................... 35.1 13.0 6.7 2.5 3.8 4.2 3 Persons .................................................... 17.0 6.6 3.7 1.2 1.7 8.8 4 Persons .................................................... 15.6 6.0 3.3 0.8 1.9 10.7 5 Persons ....................................................

11

NE-20  

Office of Legacy Management (LM)

hi v. !&-2:. hi v. !&-2:. /qL lo 1 OCT 2 9 1984 NE-20 -. Authorization for Remedial Action of the Ashland 2 Site, Tonawanda, New York f! Joe LaGrone, Manager Oak Ridge Operations Office Based on the Aerial Radiological Survey (Attachment 1) and a "walk-on" radiologlcal survey (Attachment 2 , excerpted from the ORNL draft report "Ground-Level Investigation of Anomalous Gamma Radiation Levels in the Tonawanda, New York, Area," January 1980), the property identified as Ashland 2 is authorized for remedial action. It should be noted that the attached survey data are for designation purposes only and Bechtel National, Inc. (EM), should conduct appropriate comprehensive characterization surveys to determine the extent and magnitude of the

12

NE-23,  

Office of Legacy Management (LM)

t:"'. ? - ' t:"'. ? - ' y5 NE-23, wk$& Dr. Joseph A. Warburton Chainnan, Radiological and Toxicological Safety Board University of Nevada System DRI/ASC, P.O. Box 60220 Reno, Nevada 89506 Dear Dr. Warburton: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on the Mackay School of M ines facility at the University of Nevada, Reno, Nevada, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the Atomic Energy Commission (a predecessor to DOE). A radiological survey indicated that the radiation levels at the involved portion of the facility are at or near background levtrls. Therefore, no remedial action is required, and DGE is eliminating

13

NE-24  

Office of Legacy Management (LM)

VW- VW- 50 "id AU6 3 1983 NE-24 .' . _ : ' : R&D Decontamination Projects Under the Formerly Utilized Sites Remedial Actlon Program (FUSRAP) '_ F .- ,: 'J,.LaGrone, Manager . Oak Ridge Operations Office As a result of the House-Senate Conference Report and the Energy and Water Appropriations Act for FY 1984, and based on the data in the attached reports indicating radioactive contamination in excess of acceptable guidelines, the sites listed in the attachment and their respective vicinity properties (contaminated with radioactive materials from these sites) are being designated as decontamination research and development projects under the FUSRAP. Each site and the associated vicinity properties should be treated as a separate project. The objective of each project is to decontaminate the vicinity properties

14

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Home Office Equipment by Northeast Census Region, 9a. Home Office Equipment by Northeast Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.1 1.4 1.2 Total .............................................................. 107.0 20.3 14.8 5.4 NE Households Using Office Equipment ......................................... 96.2 17.9 12.8 5.0 1.3 Personal Computers 1 ................................. 60.0 10.9 7.7 3.3 3.1 Number of Desktop PCs 1 ................................................................ 45.1 8.7 6.2 2.5 3.7 2 or more ................................................... 9.1 1.4 0.9 0.5 12.9 Number of Laptop PCs 1 ................................................................

15

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Home Office Equipment by Midwest Census Region, 0a. Home Office Equipment by Midwest Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Households Using Office Equipment ......................................... 96.2 22.4 15.7 6.7 1.3 Personal Computers 1 ................................. 60.0 14.1 9.9 4.2 3.7 Number of Desktop PCs 1 ................................................................ 45.1 10.4 7.2 3.2 3.7 2 or more ................................................... 9.1 2.3 1.6 0.7 10.1 Number of Laptop PCs 1 ................................................................

16

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Space Heating by South Census Region, 1a. Space Heating by South Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.9 1.2 1.4 1.3 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Heat Home .................................................... 106.0 38.8 20.2 6.8 11.8 NE Do Not Heat Home ....................................... 1.0 Q Q Q Q 20.1 No Heating Equipment ................................ 0.5 Q Q Q Q 39.8 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q Q 39.0 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0

17

Section J: HOUSEHOLD CHARACTERISTICS  

U.S. Energy Information Administration (EIA)

2001 Residential Energy Consumption Survey Form EIA-457A (2001)--Household Questionnaire OMB No.: 1905-0092, Expiring February 29, 2004 42 Section J: HOUSEHOLD ...

18

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2001 2001 Household Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.0 1.5 1.5 Total .............................................................. 107.0 7.1 12.3 7.7 6.3 NE Household Size 1 Person ...................................................... 28.2 2.2 2.4 1.8 1.7 7.3 2 Persons .................................................... 35.1 2.2 4.0 2.4 2.0 6.9 3 Persons .................................................... 17.0 1.1 2.0 1.2 1.2 9.5 4 Persons .................................................... 15.6 0.8 1.9 1.3 0.9 11.2 5 Persons .................................................... 7.1 0.4 1.1 0.4 0.5 19.8 6 or More Persons ....................................... 4.0 0.4 0.9 0.4 0.1 16.4 2001 Household Income Category

19

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Household Tables Household Tables (Million U.S. Households; 24 pages, 122 kb) Contents Pages HC2-1a. Household Characteristics by Climate Zone, Million U.S. Households, 2001 2 HC2-2a. Household Characteristics by Year of Construction, Million U.S. Households, 2001 2 HC2-3a. Household Characteristics by Household Income, Million U.S. Households, 2001 2 HC2-4a. Household Characteristics by Type of Housing Unit, Million U.S. Households, 2001 2 HC2-5a. Household Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 2 HC2-6a. Household Characteristics by Type of Rented Housing Unit, Million U.S. Households, 2001 2 HC2-7a. Household Characteristics by Four Most Populated States, Million U.S. Households, 2001 2

20

char_household2001.pdf  

Annual Energy Outlook 2012 (EIA)

9a. Household Characteristics by Northeast Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row...

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Appliances by Northeast Census Region, 9a. Appliances by Northeast Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.3 1.6 Total .............................................................. 107.0 20.3 14.8 5.4 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 19.6 14.5 5.2 1.1 1 .............................................................. 95.2 18.2 13.3 4.9 1.1 2 or More ................................................. 6.5 1.4 1.1 0.3 11.7 Most Used Oven ...................................... 101.7 19.6 14.5 5.2 1.1 Electric .....................................................

22

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Appliances by West Census Region, 2a. Appliances by West Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.7 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 22.1 6.6 15.5 1.1 1 .............................................................. 95.2 20.9 6.4 14.5 1.1 2 or More ................................................. 6.5 1.2 0.2 1.0 14.6 Most Used Oven ...................................... 101.7 22.1 6.6 15.5 1.1 Electric .....................................................

23

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Home Office Equipment by South Census Region, 1a. Home Office Equipment by South Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.2 1.3 1.6 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Households Using Office Equipment ......................................... 96.2 34.6 18.4 6.0 10.1 1.2 Personal Computers 1 ................................. 60.0 20.7 11.7 3.2 5.8 4.0 Number of Desktop PCs 1 ................................................................ 45.1 15.5 8.6 2.6 4.3 4.9 2 or more ................................................... 9.1 3.1 2.0 0.4 0.7 9.6 Number of Laptop PCs

24

NE Blog Archive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ne/blog-archive 1000 Independence Ave. SWWashington DC ne/blog-archive 1000 Independence Ave. SWWashington DC 20585202-586-5000 en Generation IV International Forum Updates Technology Roadmap and Builds Future Collaboration http://energy.gov/ne/articles/generation-iv-international-forum-updates-technology-roadmap-and-builds-future ne/articles/generation-iv-international-forum-updates-technology-roadmap-and-builds-future" class="title-link">Generation IV International Forum Updates Technology Roadmap and Builds Future Collaboration

25

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

26

Car Sharing within Households –  

E-Print Network (OSTI)

The objective of this paper was to analyse two activities: who rents a car and why? Which households share the driving of their cars? In order to do that, the Parc-Auto (Car-Fleet) database, built from annual postal surveys conducted with a panel of 10,000 French households, has been processed. Among approximately one hundred questions in the survey, two key questions have been crossed against many social, economic, demographic, geographic or time variables. KQ1: “During the last 12 months, did you — or another person from your home — rent a car in France for personal purposes? ” KQ2: “Is this car occasionally used by other persons?” Here are the main findings. Renting households are mainly working, high income households, living in the core of big cities, and in particular in Paris. Most of them have two wage-sheets and two cars, one of which is generally a recent, high power, high quality car. Car rental is mainly an occasional practice. Yet for a minority of renters, it is a sustained habit. Households with more licence holders than cars share the most: about three quarters of them share their cars. On the contrary, single driver-single car households have less opportunity to share: only 15 % share. Household car sharing shed light on the gender role within households: while 58 % of the main users of the shared cars are male, 55 % of secondary users are female. Household car sharing is mainly a regular practice. Finally, without diminishing the merits of innovative transport solutions proposed here and there, it is not a waste of time to give some insight on self established behaviour within households. This reveals that complex patterns have been built over time by the people themselves, to cope with diverse situations that cannot be easily handled by straightforward classifications. The car cannot be reduced to a personal object. Household car sharing also carries strong links with the issue of car dependency. Sifting car availability and choice

Francis Papon; Laurent Hivert

2008-01-01T23:59:59.000Z

27

PRELIMINARY DATA Housing Unit and Household Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

PRELIMINARY DATA Housing Unit and Household Characteristics RSE Column Factor: Total Households (million) Households With Fans (million) Percent of Households With Fans Number of...

28

A Framework for Corporate Householding  

E-Print Network (OSTI)

Previous research on corporate household and corporate householding has presented examples, literature review, and working definitions. In this paper, we first improve our ...

Madnick, Stuart

2003-03-21T23:59:59.000Z

29

MiniBooNE  

SciTech Connect

To begin, we examine the relationship between MiniBooNE and the neutrino beam geometry at Fermilab. In Figure 1, a schematic representation is shown of the plan view of the location of MiniBooNE relative to SciBooNE and the NuMI target, where it can be seen that SciBooNE and MiniBooNE share the same beamline and neutrino flux, and therefore share some of the same systematic effects -- A combined analysis between the two experimental groups could yield a superior result compared to segregated individual analysis. MiniBooNE makes an angle of 6.3 degrees with the NuMI beamline, an off-axis measurement if you will, that provides a relatively high yield of electron neutrinos from kaon decay. Furthermore, the proton beam incident on the MiniBooNE target possesses a 53 MHz structure that will be important in timing studies related to the low energy excess. Let's review of the results of the MiniBooNE: As is well known, MiniBooNE, a test of the LSND effect [1], adds experimental inspiration to the possible existence of new phenomena; although two neutrino-family oscillations were shown to be an unlikely candidate to explain the LSND effect, a low energy excess of 3.0 sigma in the neutrino sector at energies between 200 to 475 MeV [2] - an effect that appears to have no counterpart in the antineutrino sector [3], combined with the 3.8 sigma LSND result - at roughly 50 MeV - strains phenomenology for insight. Miniboones continues to run and collect antineutrino data; will combine disappearance analysis with SciBooNE; take data from the NuMI target, an unusual source with a potentially new look at the low energy anomaly; and use beam timing techniques to further constrain phenomenological models. In this paper we will review current topics related to MiniBooNE and other associated experiments and phenomenology.

Stefanski, Ray; /Fermilab

2009-10-01T23:59:59.000Z

30

Eliyahu Ne'eman  

NLE Websites -- All DOE Office Websites (Extended Search)

Eliyahu Ne'eman Eliyahu Ne'eman Consulting Engineer on Lighting and Daylighting Lawrence Berkeley National Laboratory This speaker was a visiting speaker who delivered a talk or talks on the date(s) shown at the links below. This speaker is not otherwise associated with Lawrence Berkeley National Laboratory, unless specifically identified as a Berkeley Lab staff member. Eliyahu Ne'eman is a leading international expert on lighting and daylighting. He has been involved in education, research and practice for over 40 years while working in Israel, UK, Germany and the US(LBNL). He has worked extensively in the area of occupant response in luminous spaces and he has been leading the CIE Task Group that has revised the CIE Museum Lighting Guide. This Speaker's Seminars Control of Damage to Museum Objects by Optical Radiation

31

housingunit_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Unit Tables Housing Unit Tables (Million U.S. Households; 49 pages, 210 kb) Contents Pages HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 2001 5 HC1-2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 2001 4 HC1-3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 2001 4 HC1-4a. Housing Unit Characteristics by Type of Housing Unit, Million U.S. Households, 2001 4 HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 4 HC1-6a. Housing Unit Characteristics by Type of Rented Housing Unit, Million U.S. Households, 2001 4 HC1-7a. Housing Unit Characteristics by Four Most Populated States, Million U.S. Households, 2001 4

32

usage_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Usage Indicators Tables Usage Indicators Tables (Million U.S. Households; 60 pages, 247 kb) Contents Pages HC6-1a. Usage Indicators by Climate Zone, Million U.S. Households, 2001 5 HC6-2a. Usage Indicators by Year of Construction, Million U.S. Households, 2001 5 HC6-3a. Usage Indicators by Household Income, Million U.S. Households, 2001 5 HC6-4a. Usage Indicators by Type of Housing Unit, Million U.S. Households, 2001 5 HC6-5a. Usage Indicators by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 5 HC6-6a. Usage Indicators by Type of Rented Housing Unit, Million U.S. Households, 2001 5 HC6-7a. Usage Indicators by Four Most Populated States, Million U.S. Households, 2001 5

33

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Home Office Equipment Tables Home Office Equipment Tables (Million U.S. Households; 12 pages, 123 kb) Contents Pages HC7-1a. Home Office Equipment by Climate Zone, Million U.S. Households, 2001 1 HC7-2a. Home Office Equipment by Year of Construction, Million U.S. Households, 2001 1 HC7-3a. Home Office Equipment by Household Income, Million U.S. Households, 2001 1 HC7-4a. Home Office Equipment by Type of Housing Unit, Million U.S. Households, 2001 1 HC7-5a. Home Office Equipment by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 1 HC7-6a. Home Office Equipment by Type of Rented Housing Unit, Million U.S. Households, 2001 1 HC7-7a. Home Office Equipment by Four Most Populated States, Million U.S. Households, 2001 1

34

Household Vehicles Energy Use Cover Page  

U.S. Energy Information Administration (EIA) Indexed Site

Household Vehicles Energy Use Cover Page Glossary Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use Cover Page Contact Us * Feedback *...

35

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

36

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

37

Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products  

E-Print Network (OSTI)

Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products containing toxic chemicals. These wastes CANNOT be disposed of in regular garbage. Any should be considered hazardous. You cannot treat hazardous wastes like other kinds of garbage

de Lijser, Peter

38

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Air Conditioning Tables Air Conditioning Tables (Million U.S. Households; 24 pages, 138 kb) Contents Pages HC4-1a. Air Conditioning by Climate Zone, Million U.S. Households, 2001 2 HC4-2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 2 HC4-3a. Air Conditioning by Household Income, Million U.S. Households, 2001 2 HC4-4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 2001 2 HC4-5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 2 HC4-6a. Air Conditioning by Type of Rented Housing Unit, Million U.S. Households, 2001 2 HC4-7a. Air Conditioning by Four Most Populated States, Million U.S. Households, 2001 2 HC4-8a. Air Conditioning by Urban/Rural Location, Million U.S. Households, 2001 2

39

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

40

Category:Omaha, NE | Open Energy Information  

Open Energy Info (EERE)

Omaha, NE Omaha, NE Jump to: navigation, search Go Back to PV Economics By Location Media in category "Omaha, NE" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Omaha NE Omaha Public Power District.png SVFullServiceRestauran... 63 KB SVHospital Omaha NE Omaha Public Power District.png SVHospital Omaha NE Om... 61 KB SVLargeHotel Omaha NE Omaha Public Power District.png SVLargeHotel Omaha NE ... 61 KB SVLargeOffice Omaha NE Omaha Public Power District.png SVLargeOffice Omaha NE... 63 KB SVMediumOffice Omaha NE Omaha Public Power District.png SVMediumOffice Omaha N... 65 KB SVMidriseApartment Omaha NE Omaha Public Power District.png SVMidriseApartment Oma... 62 KB SVOutPatient Omaha NE Omaha Public Power District.png SVOutPatient Omaha NE ...

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Spending and Vulnerable Households  

E-Print Network (OSTI)

 off than before. In particular large households with low  incomes seem to have been adversely affected by the new tariff structures since  they have comparably large energy expenditure (Bennet et al., 2002).    5. Vulnerable Households and Energy Spending  The...  tariffs can play an important part in the public debate  on  eradicating  fuel  poverty  and  helping  the  vulnerable  households.  Smart  metering  can  provide  consumers  with  information  on  the  actual  energy  consumption and might  lead  to...

Jamasb, Tooraj; Meier, Helena

2011-01-26T23:59:59.000Z

42

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

DOEEIA-0464(91) Distribution Category UC-950 Household Vehicles Energy Consumption 1991 December 1993 Energy Information Administration Office of Energy Markets and End Use U.S....

43

Household Energy Consumption and Expenditures  

Reports and Publications (EIA)

Presents information about household end use consumption of energy and expenditures for that energy. These data were collected in the 2005 Residential Energy Consumption Survey (RECS)

Information Center

2008-09-01T23:59:59.000Z

44

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

a regular basis at the time of the 1990 RECS personal interviews. Electricity: See Main Heating Fuel. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991...

45

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

AdministrationHousehold Vehicles Energy Consumption 1994 110 Electricity: See Main Heating Fuel. Energy Used in the Home: For electricity or natural gas, the quantity is the...

46

NE-23 W  

Office of Legacy Management (LM)

>:-1. ,- '"CC3 >:-1. ,- '"CC3 . ' NE-23 .+ W h itm~ l-l& Mr. Victor 3. Canilov, Director Museum of Science and Industry East 57th Street and Lake Shore Drive Chicago, Illinois 60037 Dear kr. Danilov: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSPSIP), has reviewed information on the Museum cf Science and Industry, Chicago, Illinois, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the Manhattan Engineer District or the Atomic Energy C o m m ission (predecessors to DOE). A radiological survey indicated that the radiation levels are equal to natural background. Therefore, no remedial action is required, ant DOE is eliminating the Museum of Science and Industry from further

47

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Household Characteristics by Household Income, 3a. Household Characteristics by Household Income, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Household Size 1 Person ....................................... 28.2 9.7 -- -- -- 6.5 11.3 5.7 2 Persons ...................................... 35.1 4.3 -- -- -- 2.0 7.8 5.8 3 Persons ...................................... 17.0 -- 3.3 -- -- 2.2 5.2 7.3 4 Persons ...................................... 15.6 -- 2.2 -- -- -- 4.3 8.1 5 Persons ...................................... 7.1

48

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

49

Extending Efficiency Services to Underserved Households: NYSERDA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Extending Efficiency Services to Underserved Households: NYSERDA's Assisted Home Performance with ENERGY STAR Program Title Extending Efficiency Services to Underserved Households:...

50

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

51

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

52

Cover Page of Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

Household Vehicles Energy Use Cover Page Cover Page of Household Vehicles Energy Use: Latest Data & Trends...

53

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

W as hi ng to n, DC DOEEIA-0464(94) Distribution Category UC-950 Household Vehicles Energy Consumption 1994 August 1997 Energy Information Administration Office of Energy Markets...

54

ac_household2001.pdf  

Annual Energy Outlook 2012 (EIA)

2a. Air Conditioning by West Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total...

55

Household vehicles energy consumption 1991  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

56

Household savings and portfolio choice  

E-Print Network (OSTI)

This thesis consists of three essays that examine household savings and portfolio choice behavior. Chapter One analyses the effects of employer matching contributions and tax incentives on participation and contribution ...

Klein, Sean Patrick

2010-01-01T23:59:59.000Z

57

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Air Conditioning by Household Income, 3a. Air Conditioning by Household Income, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.5 1.4 1.1 1.0 0.9 1.5 0.9 Households With Electric Air-Conditioning Equipment ........ 82.9 12.3 17.4 21.5 31.7 9.6 23.4 3.9 Air Conditioners Not Used ............ 2.1 0.4 0.7 0.5 0.5 0.4 0.9 20.8 Households Using Electric Air-Conditioning 2 .......................... 80.8 11.9 16.7 21.0 31.2 9.1 22.6 3.9 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 .............. 57.5 6.2 10.7 15.2 25.3 4.5 12.4 5.3 Without a Heat Pump .................. 46.2 4.9 9.1 12.1 20.1 3.6 10.4 6.1 With a Heat Pump

58

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

a. Household Characteristics by Climate Zone, a. Household Characteristics by Climate Zone, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.1 1.2 1.0 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 7.8 Household Size 1 Person ....................................... 28.2 2.5 8.1 6.5 4.8 6.2 9.9 2 Persons ...................................... 35.1 3.1 9.4 8.2 6.5 7.9 8.7 3 Persons ...................................... 17.0 1.3 4.3 4.0 3.3 4.1 10.7 4 Persons ...................................... 15.6 1.4 3.9 3.4 3.4 3.5 10.5 5 Persons ......................................

59

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Household Characteristics by Type of Rented Housing Unit, 6a. Household Characteristics by Type of Rented Housing Unit, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.1 0.9 2.5 Total Rented Units ........................ 34.3 10.5 7.4 15.2 1.1 6.9 Household Size 1 Person ....................................... 12.3 2.5 2.6 7.0 0.3 10.0 2 Persons ...................................... 9.2 2.5 2.5 4.1 Q 11.8 3 Persons ...................................... 5.4 2.0 1.1 2.0 0.4 13.9 4 Persons ...................................... 3.8 1.6 0.7 1.4 Q 17.7 5 Persons ...................................... 2.0 0.9 0.4 0.6 Q 24.1 6 or More Persons ........................

60

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Household Characteristics by Type of Owner-Occupied Housing Unit, 5a. Household Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Homes Two to Four Units Five or More Units 0.3 0.4 2.0 2.9 1.3 Total Owner-Occupied Units ....... 72.7 63.2 2.1 1.8 5.7 6.7 Household Size 1 Person ....................................... 15.8 12.5 0.8 0.9 1.6 10.3 2 Persons ...................................... 25.9 23.4 0.5 0.5 1.5 10.1 3 Persons ...................................... 11.6 9.6 0.5 Q 1.3 12.1 4 Persons ...................................... 11.8 10.9 Q Q 0.7 15.7 5 Persons ...................................... 5.1 4.5 Q Q 0.4 24.2 6 or More Persons

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Household Characteristics by Urban/Rural Location, 8a. Household Characteristics by Urban/Rural Location, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.4 1.3 1.4 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.1 Household Size 1 Person ...................................................... 28.2 14.6 5.3 4.8 3.6 6.4 2 Persons .................................................... 35.1 15.7 5.7 6.9 6.8 5.4 3 Persons .................................................... 17.0 7.6 2.8 3.5 3.1 7.2 4 Persons .................................................... 15.6 6.8 2.3 4.1 2.4 8.1 5 Persons .................................................... 7.1 3.1 1.3 1.3 1.4 12.3 6 or More Persons

62

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Home Office Equipment by Household Income, 3a. Home Office Equipment by Household Income, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.4 1.9 1.2 1.0 0.6 1.9 0.9 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 47.6 3.0 Households Using Office Equipment .......................... 96.2 13.2 19.8 25.5 37.7 10.7 38.8 3.2 Personal Computers 2 ................... 60.0 3.7 8.7 16.0 31.6 3.7 17.4 4.6 Number of Desktop PCs 1 .................................................. 45.1 2.8 7.1 12.8 22.4 2.8 13.6 5.1 2 or more .................................... 9.1 0.6 0.7 1.7 6.2 0.6 2.2 13.0 Number of Laptop PCs

63

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Household Characteristics by Year of Construction, 2a. Household Characteristics by Year of Construction, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.6 1.2 1.0 1.2 1.2 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Household Size 1 Person ....................................... 28.2 2.5 4.5 5.1 4.0 3.7 8.3 7.5 2 Persons ...................................... 35.1 4.8 6.2 6.6 4.5 5.3 7.8 5.8 3 Persons ...................................... 17.0 2.5 3.3 2.9 2.3 1.9 4.1 8.4 4 Persons ...................................... 15.6 3.4 2.8 2.3 1.9 1.8 3.4 9.6 5 Persons ...................................... 7.1 1.6 1.2 1.3 0.6 0.7 1.6 14.3 6 or More Persons

64

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

HOW MANY HYBRID HOUSEHOLDS IN THE CALIFORNIA NEW CAR MARKET?average 2.43 cars per household, then the hybrid householdnumber of multi-car households that fit our hybrid household

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

65

Household energy in South Asia  

Science Conference Proceedings (OSTI)

This research study on the use of energy in South Asis (India, Pakistan, Sri Lanka and Bangladesh) was sponsored by the Food and Agriculture Organization of the UN, the International Bank for Reconstruction and Development (the World Bank), and the Directorate-General for Development of the Commission of the European Communities. The aim of this book is to improve the understanding of household energy and its linkages, by reviewing the data resources on household energy use, supply, prices and other relevant factors that exist in South Asia.

Leach, G.

1987-01-01T23:59:59.000Z

66

Assumptions to the Annual Energy Outlook 2002 - Household Expenditures...  

Annual Energy Outlook 2012 (EIA)

Expenditures Module The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and...

67

Table WH1. Total Households Using Water Heating Equipment, 2005 ...  

U.S. Energy Information Administration (EIA)

Table WH1. Total Households Using Water Heating Equipment, 2005 Million U.S. Households Fuels Used (million U.S. households) Number of Water Heaters Used

68

Residential market for fuelwood in Rhode Island: demand, supply, and policy implications  

Science Conference Proceedings (OSTI)

Fuelwood consumption in Rhode Island has tripled since the 1973 oil shortage as a result of household substitution of wood for relatively more expensive heating fuels. A telephone survey of 515 randomly selected households in Rhode Island determined the incidence of wood-burning (25%), the quantities of wood households consumed, their reasons for burning wood, the manner in which they obtained the wood, etc. Households were hypothesized to behave like cost-minimizing firms in producing heat from the lowest-cost combination of inputs (wood and stove efficiency). It was further hypothesized that households process their own firewood as an alternative to purchasing it where the opportunity cost of household labor is less than the commercial value added, thus freeing household income for other uses. These hypotheses were put into testable form as a four-level econometric model containing (1) the discrete household decision to participate in wood heat production, (2) the determination of the cost-minimizing vector of inputs given heat output and relative input prices, (3) the discrete household decision to harvest its own wood and, (4) the determination of how much wood to harvest, how much household labor to invest in wood processing, and the implicit price of fuelwood. Both these hypotheses were well validated via econometric testing.

Mackenzie, J.

1985-01-01T23:59:59.000Z

69

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Space Heating by Household Income, 3a. Space Heating by Household Income, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Heat Home ..................................... 106.0 18.4 22.7 26.8 38.1 14.6 33.4 3.3 Do Not Heat Home ........................ 1.0 0.3 Q 0.3 0.3 0.3 0.4 23.4 No Heating Equipment .................. 0.5 Q Q Q 0.2 Q Q 35.0 Have Equipment But Do Not Use It ................................ 0.4 Q Q Q Q 0.2 0.3 22.8 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 106.0 18.4 22.7

70

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Appliances by Household Income, 3a. Appliances by Household Income, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.5 1.4 1.1 1.0 0.8 1.6 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 18.0 22.0 26.1 35.6 14.4 32.6 3.2 1 ................................................ 95.2 17.3 21.1 24.8 32.0 13.8 31.1 3.4 2 or More .................................. 6.5 0.8 0.9 1.3 3.6 0.6 1.5 13.1 Most Used Oven ........................ 101.7 18.0 22.0 26.1 35.6 14.4 32.6 3.2

71

Household Energy Consumption and Expenditures 1993 -- Executive ...  

U.S. Energy Information Administration (EIA)

national level data on energy-related issues on households and energy expenditures in the residential sector.

72

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

73

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

74

Energy and household expenditure patterns  

Science Conference Proceedings (OSTI)

Since households account, either directly or indirectly, for two-thirds of the energy consumed in the US, changes in household activities will affect energy use. Expected changes in prices, personal income, and family spending over the next 20 years are looked at as well as the implications for energy consumption. The analysis shows that direct energy purchases will break with past trends, dropping from 2.6% to 0.2% annual growth for the rest of the century. Growth in spending on energy-using goods is also likely to slow down. The year 2000 will see a marked decrease in the growth of national energy consumption. 58 references, 3 figures, 35 tables.

Lareau, T.J.; Darmstadter, J.

1983-01-01T23:59:59.000Z

75

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Air Conditioning by Midwest Census Region, 0a. Air Conditioning by Midwest Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 20.5 13.6 6.8 2.2 Air Conditioners Not Used ........................... 2.1 0.3 Q Q 27.5 Households Using Electric Air-Conditioning 1 ........................................ 80.8 20.2 13.4 6.7 2.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 14.3 9.5 4.8 3.8 Without a Heat Pump ................................ 46.2 13.6 9.0 4.6 3.9 With a Heat Pump .....................................

76

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Air Conditioning by Urban/Rural Location, 8a. Air Conditioning by Urban/Rural Location, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.4 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 36.8 13.6 18.9 13.6 4.3 Air Conditioners Not Used ........................... 2.1 1.2 0.2 0.4 0.3 21.4 Households Using Electric Air-Conditioning 2 ........................................ 80.8 35.6 13.4 18.6 13.3 4.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 ............................ 57.5 23.6 8.6 15.8 9.4 5.1 Without a Heat Pump ................................ 46.2 19.3 7.4 13.1 6.4 6.3 With a Heat Pump ..................................... 11.3 4.4

77

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Air Conditioning by Type of Owner-Occupied Housing Unit, 5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.5 1.5 1.4 1.8 Households With Electric Air-Conditioning Equipment ........ 59.5 58.7 6.5 12.4 5.3 5.2 Air Conditioners Not Used ............ 1.2 1.1 Q 0.6 Q 23.3 Households Using Electric Air-Conditioning 1 .......................... 58.2 57.6 6.3 11.8 5.1 5.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 44.7 43.6 3.2 7.1 3.5 7.0 Without a Heat Pump .................. 35.6 35.0 2.4 6.1 2.7 7.7 With a Heat Pump .......................

78

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Air Conditioning by Type of Rented Housing Unit, 6a. Air Conditioning by Type of Rented Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.8 0.5 1.4 1.2 1.6 Households With Electric Air-Conditioning Equipment ........ 23.4 58.7 6.5 12.4 5.3 6.1 Air Conditioners Not Used ............ 0.9 1.1 Q 0.6 Q 23.0 Households Using Electric Air-Conditioning 1 .......................... 22.5 57.6 6.3 11.8 5.1 6.2 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 12.7 43.6 3.2 7.1 3.5 8.5 Without a Heat Pump .................. 10.6 35.0 2.4 6.1 2.7 9.3 With a Heat Pump ....................... 2.2 8.6 0.8 1.0

79

Inconsistent pathways of household waste  

Science Conference Proceedings (OSTI)

The aim of this study was to provide policy-makers and waste management planners with information about how recycling programs affect the quantities of specific materials recycled and disposed of. Two questions were addressed: which factors influence household waste generation and pathways? and how reliable are official waste data? Household waste flows were studied in 35 Swedish municipalities, and a wide variation in the amount of waste per capita was observed. When evaluating the effect of different waste collection policies, it was found to be important to identify site-specific factors influencing waste generation. Eleven municipal variables were investigated in an attempt to explain the variation. The amount of household waste per resident was higher in populous municipalities and when net commuting was positive. Property-close collection of dry recyclables led to increased delivery of sorted metal, plastic and paper packaging. No difference was seen in the amount of separated recyclables per capita when weight-based billing for the collection of residual waste was applied, but the amount of residual waste was lower. Sixteen sources of error in official waste statistics were identified and the results of the study emphasize the importance of reliable waste generation and composition data to underpin waste management policies.

Dahlen, Lisa [Division of Waste Science and Technology, Lulea University of Technology, SE, 971 87 Lulea (Sweden)], E-mail: lisa.dahlen@ltu.se; Aberg, Helena [Department of Food, Health and Environment, University of Gothenburg, P.O. Box 12204, SE, 402 42 Gothenburg (Sweden); Lagerkvist, Anders [Division of Waste Science and Technology, Lulea University of Technology, SE, 971 87 Lulea (Sweden); Berg, Per E.O. [HB Anttilator, Stagnellsgatan 3, SE, 652 23, Karlstad (Sweden)

2009-06-15T23:59:59.000Z

80

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Air Conditioning by South Census Region, 1a. Air Conditioning by South Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.2 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 37.2 19.3 6.4 11.5 1.5 Air Conditioners Not Used ........................... 2.1 0.4 Q Q Q 28.2 Households Using Electric Air-Conditioning 1 ........................................ 80.8 36.9 19.0 6.4 11.5 1.6 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 30.4 16.1 5.0 9.2 2.8 Without a Heat Pump ................................ 46.2 22.1 10.4 3.4 8.3 5.6 With a Heat Pump

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Air Conditioning by Northeast Census Region, 9a. Air Conditioning by Northeast Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.8 Households With Electric Air-Conditioning Equipment ...................... 82.9 14.5 11.3 3.2 3.3 Air Conditioners Not Used ........................... 2.1 0.3 0.3 Q 28.3 Households Using Electric Air-Conditioning 1 ........................................ 80.8 14.2 11.1 3.2 3.4 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 5.7 4.9 0.8 8.9 Without a Heat Pump ................................ 46.2 5.2 4.5 0.7 9.2 With a Heat Pump .....................................

82

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Air Conditioning by Year of Construction, 2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.6 1.2 1.1 1.2 1.1 0.9 Households With Electric Air-Conditioning Equipment ........ 82.9 13.6 16.0 14.7 10.4 10.5 17.6 4.7 Air Conditioners Not Used ............ 2.1 Q 0.3 0.5 0.3 0.4 0.5 27.2 Households Using Electric Air-Conditioning 2 .......................... 80.8 13.4 15.8 14.2 10.1 10.2 17.1 4.7 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 .............. 57.5 12.6 13.7 11.0 7.1 6.6 6.4 5.9 Without a Heat Pump .................. 46.2 10.1 10.4 8.0 6.1 5.9 5.7 7.0 With a Heat Pump ....................... 11.3 2.5 3.3

83

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Air Conditioning by Type of Housing Unit, 4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.6 1.5 1.4 1.8 Households With Electric Air-Conditioning Equipment ........ 82.9 58.7 6.5 12.4 5.3 4.9 Air Conditioners Not Used ............ 2.1 1.1 Q 0.6 Q 21.8 Households Using Electric Air-Conditioning 1 .......................... 80.8 57.6 6.3 11.8 5.1 4.9 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 57.5 43.6 3.2 7.1 3.5 6.7 Without a Heat Pump .................. 46.2 35.0 2.4 6.1 2.7 7.7 With a Heat Pump ....................... 11.3 8.6 0.8 1.0 0.8 19.7 Room Air-Conditioning

84

A household carbon footprint calculator for islands: Case study of the United States Virgin Islands  

E-Print Network (OSTI)

transportation fuels, bio-ethanol, electricity, SNG, hydrogen and other chemical products such as fertilizers time SNG synthetic natural gas TCOD total chemical oxygen demand TOP combined torrefaction

Kammen, Daniel M.

85

Overview of NE Research Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NE Research Programs NE Research Programs Sue Lesica Office of Nuclear Energy U.S. Department of Energy July 31, 2013 2 R&D Budgets FY 2013 FY 2014 Congressional Request House Mark Senate Mark SMR Licensing Technical Support 62,999 70,000 110,000 70,000 Small Modular Reactor R&D 23,958 20,000 20,000 20,000 Next Generation Nuclear Plant 38,720 0 0 0 LWR Sustainability 24,218 21,500 21,500 21,500 Advanced Reactor Concepts 21,178 31,000 45,000 21,000 Reactor Concepts RD&D 108,075 72,500 86,500 62,500 Modeling and Simulation Hub 24,588 24,300 24,300 24,300 Crosscutting Technology Development 17,242 13,901 27,885 25,437 NEAMS 13,646 9,536 National Scientific Users Facility 14,563 14,563 14,563 14,563 Nuclear Energy Enabling Technologies 70,040 62,300 66,748 62,300

86

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7a Glossary U.S. Residential Housing Primary Page Last Revised: July 2009

87

Nationwide Survey on Household Energy Use  

U.S. Energy Information Administration (EIA)

4 ~ Apartment in house or building divided into 2, 3, or 4 apartments ... of your family (living in your household). Include income from all sources--before taxes

88

Alston S. Householder Fellowship | Careers | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

in Scientific Computing honors Dr. Alston S. Householder, founding Director of the Mathematics Division (now Computer Science and Mathematics Division) at the Oak Ridge National...

89

Household Vehicles Energy Consumption 1994 - PDF Tables  

U.S. Energy Information Administration (EIA)

Table 1 U.S. Number of Vehicles, Vehicle Miles, Motor Fuel Consumption and Expenditures, 1994 Table 2 U.S. per Household Vehicle Miles Traveled, Vehicle Fuel ...

90

Home > Households, Buildings & Industry > Energy Efficiency ...  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Residential Buildings Energy Intensities > Table 4 Total Square Feet of U.S. Housing Units

91

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 5c Glossary U.S. Residential Housing Site Page Last Revised: July 2009

92

Residential Energy Usage by Origin of Householder  

U.S. Energy Information Administration (EIA)

Home > Energy Users > Residential Home Page > Energy Usage by Origin of Householder. Consumption and Expenditures. NOTE: To View and/or Print PDF's ...

93

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7b Glossary U.S. Residential Housing Primary Energy Intensity

94

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 8b Glossary U.S. Residential Buildings Primary Energy Intensity

95

Electricity Prices for Households - EIA  

Gasoline and Diesel Fuel Update (EIA)

Households for Selected Countries1 Households for Selected Countries1 (U.S. Dollars per Kilowatthour) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA 0.023 NA NA Australia 0.091 0.092 0.094 0.098 NA NA NA NA NA Austria 0.144 0.154 0.152 0.163 0.158 0.158 0.178 0.201 NA Barbados NA NA NA NA NA NA NA NA NA Belgium NA NA NA NA NA NA NA NA NA Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA 0.145 0.171 NA Canada 0.067 0.069 0.070 0.071 0.076 0.078 NA NA NA Chile NA NA NA NA NA NA 0.140 0.195 NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) 0.075 0.071 0.074 0.076 0.079 0.079 0.080 0.086 NA Colombia NA NA NA NA NA NA 0.111 0.135 NA

96

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Home Office Equipment by Year of Construction, 2a. Home Office Equipment by Year of Construction, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.4 1.1 1.1 1.2 1.2 1.0 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Households Using Office Equipment .......................... 96.2 14.9 16.7 17.0 12.2 13.0 22.4 4.4 Personal Computers 2 ................... 60.0 11.0 11.6 10.3 7.2 7.8 12.0 5.3 Number of Desktop PCs 1 .................................................. 45.1 8.0 9.0 7.7 5.3 6.1 9.1 5.8 2 or more .................................... 9.1 1.8 1.6 2.0 1.1 1.0 1.6 11.8 Number of Laptop PCs 1 ..................................................

97

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2001 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.7 1.2 1.2 Households With Electric Air-Conditioning Equipment ...................... 82.9 4.9 6.0 7.4 6.2 2.4 Air Conditioners Not Used ........................... 2.1 0.1 0.8 Q 0.1 23.2 Households Using Electric Air-Conditioning 1 ........................................ 80.8 4.7 5.2 7.4 6.1 2.6 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 1.3 3.9 6.2 5.7 6.7 Without a Heat Pump ................................ 46.2 1.2 3.2 5.5 3.8 8.1 With a Heat Pump ..................................... 11.3 Q 0.8 0.6 1.9 14.7 Room Air-Conditioning ................................ 23.3 3.4 1.2 1.2 0.3 13.6 1 Unit

98

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

a. Home Office Equipment by Climate Zone, a. Home Office Equipment by Climate Zone, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.2 1.1 1.0 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 7.9 Households Using Office Equipment .......................... 96.2 8.4 26.2 21.1 19.0 21.5 7.8 Personal Computers 2 ................... 60.0 5.7 16.7 13.1 12.1 12.6 7.4 Number of Desktop PCs 1 .................................................. 45.1 4.2 12.8 9.6 8.8 9.6 7.8 2 or more .................................... 9.1 0.8 2.4 2.3 2.0 1.7 12.1 Number of Laptop PCs 1 ..................................................

99

Assumptions to the Annual Energy Outlook - Household Expenditures Module  

Gasoline and Diesel Fuel Update (EIA)

Household Expenditures Module Household Expenditures Module Assumption to the Annual Energy Outlook Household Expenditures Module Figure 5. United States Census Divisions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and demographic characteristics, and consumption and expenditures for fuels for various end-uses. These data are combined with NEMS forecasts of household disposable income, fuel consumption, and fuel expenditures by end-use and household type. The HEM disaggregation algorithm uses these combined results to forecast household fuel consumption and expenditures by income quintile and Census Division (see

100

Characterization of household waste in Greenland  

Science Conference Proceedings (OSTI)

The composition of household waste in Greenland was investigated for the first time. About 2 tonnes of household waste was sampled as every 7th bag collected during 1 week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants. The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated by magazine type paper) and glass (7%) were other important material fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste and the low content of paper make Greenlandic waste much different from Danish household waste. The moisture content, calorific value and chemical composition (55 elements, of which 22 were below detection limits) were determined for each material fraction. These characteristics were similar to what has been found for material fractions in Danish household waste. The chemical composition and the calorific value of the plastic fraction revealed that this fraction was not clean but contained a lot of biowaste. The established waste composition is useful in assessing alternative waste management schemes for household waste in Greenland.

Eisted, Rasmus, E-mail: raei@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

2011-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Factors influencing county level household fuelwood use  

Science Conference Proceedings (OSTI)

This study explains household fuelwood consumption behavior at the county level by linking it to economic and demographic conditions in counties. Using this link, counties are identified where potential fuelwood use problems and benefits are greatest. A probit equation estimates household probability of wood use (percent woodburners in a county heating degree days, household income, nonwood fuel price, fuelwood price, percent forest land, population density, and fraction of households using various types of heating equipment. A linear-in-parameters equation estimates average wood consumed by a woodburner based on county heating degree days, household income, percent forest land, and price of nonwood fuel divided by fuelwood price. Parameters are estimated using fuelwood use data for individual households from a 1908-81 nationwide survey. The probit equation predicts percentage of wood burns well over a wide range of county conditions. The wood consumption equation overpredicts for counties with high income and high population density (over 6000 persons per square mile). The model shows average woodburning per household over all households decreases with increasing population density, and the influence of county economic characteristics varies with density.

Skog, K.E.

1986-01-01T23:59:59.000Z

102

NE - Nuclear Energy - Energy Conservation Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR ENERGY (NE) NUCLEAR ENERGY (NE) ENERGY CONSERVATION PLAN NE has heavily emphasized the use of flexiplace, both regular and situational. Since approximately 56 percent of NE staff use flexiplace, our plan is based on the Forrestal/Germantown (FORS/GTN) office spaces, and flexiplace office space. There are other common sense actions and policies that will be used to improve energy efficiency in the offices at both FORS and GTN. In the FORS/GTN office space: 1. Use flexiplace to the maximum extent possible. Saving an average of 1.5 gallons of gasoline per day per person (e.g., 13 miles per work x 2 = 26 miles, an average of 17 mpg), on a normal workday, NE employees save (56 percent of 145 = 71 times 1.2 days per pay period = 85.2 workdays x 1.5 gals = 127.8 gallons/pay

103

Probit Model Estimation Revisited: Trinomial Models of Household Car Ownership  

E-Print Network (OSTI)

Household Ownership of Car Davidon, W. C. (1959) VariableStudy Report 9: Models of Car Ownership and License Holding.Trinomial Models of Household Car Ownership. Transportation

Bunch, David S.; Kitamura, Ryuichi

1991-01-01T23:59:59.000Z

104

Modeling patterns of hot water use in households  

E-Print Network (OSTI)

7 No Dishwashers . . . . . . . .to households without dishwashers. no_cw is only applied towasher; the absence of a dishwasher; a household consisting

Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

1996-01-01T23:59:59.000Z

105

ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS  

SciTech Connect

The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprint of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.

Kramer, Klaas Jan; Homan, Greg; Brown, Rich; Worrell, Ernst; Masanet, Eric

2009-04-15T23:59:59.000Z

106

Urban household energy use in Thailand  

SciTech Connect

Changes in household fuel and electricity use that accompany urbanization in Third World countries bear large economic and environmental costs. The processes driving the fuel transition, and the policy mechanisms by which it can be influenced, need to be better understood for the sake of forecasting and planning, especially in the case of electricity demand. This study examines patterns of household fuel use and electrical appliance utilization in Bangkok, Chieng Mai and Ayutthaya, Thailand, based on the results of a household energy survey. Survey data are statistically analyzed using a variety of multiple regression techniques to evaluate the relative influence of various household and fuel characteristics on fuel and appliance choice. Results suggest that changes to the value of women's time in urban households, as women become increasingly active in the labor force, have a major influence on patterns of household energy use. The use of the home for small-scale commercial activities, particularly food preparation, also has a significant influence on fuel choice. In general, household income does not prove to be an important factor in fuel and appliance selection in these cities, although income is closely related to total electricity use. The electricity use of individual household appliances is also analyzed using statistical techniques as well as limited direct metering. The technology of appliance production in Thailand is evaluated through interviews with manufacturers and comparisons of product performance. These data are used to develop policy recommendations for improving the efficiency of electrical appliances in Thailand by relying principally on the dynamism of the consumer goods market, rather than direct regulation. The annual electricity savings from the recommended program for fostering rapid adoption of efficient technologies are estimated to reach 1800 GWh by the year 2005 for urban households alone.

Tyler, S.R.

1992-01-01T23:59:59.000Z

107

Did Household Consumption Become More Volatile?  

E-Print Network (OSTI)

I show that after accounting for predictable variation arising from movements in real interest rates, preferences, income shocks, liquidity constraints and measurement errors, volatility of household consumption in the US increased between 1970 and 2004. For households headed by nonwhite and/or poorly educated individuals, this rise was significantly larger. This stands in sharp contrast with the dramatic fall in instability of the aggregate U.S. economy over the same period. Thus, while aggregate shocks affecting households fell over time, idiosyncratic shocks increased. This finding may lead to significant welfare implications.

Olga Gorbachev

2009-01-01T23:59:59.000Z

108

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

a. Appliances by Climate Zone, a. Appliances by Climate Zone, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.1 1.2 1.1 Total .................................................. 107.0 9.2 28.6 24.0 21.0 24.1 7.8 Kitchen Appliances Cooking Appliances Oven .............................................. 101.7 9.1 27.9 23.1 19.4 22.2 7.8 1 ................................................... 95.2 8.7 26.0 21.6 17.7 21.2 7.9 2 or More ..................................... 6.5 0.4 1.9 1.5 1.7 1.0 14.7 Most Used Oven ........................... 101.7 9.1 27.9 23.1 19.4 22.2

109

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Appliances by Type of Housing Unit, 4a. Appliances by Type of Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.5 1.7 1.6 1.9 Total ............................................... 107.0 73.7 9.5 17.0 6.8 4.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 69.1 9.4 16.7 6.6 4.3 1 ................................................ 95.2 63.7 8.9 16.2 6.3 4.3 2 or More .................................. 6.5 5.4 0.4 0.4 0.2 15.9 Most Used Oven ........................ 101.7 69.1 9.4 16.7 6.6 4.3 Electric ...................................... 63.0 43.3 5.2 10.9 3.6

110

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Space Heating by Urban/Rural Location, 8a. Space Heating by Urban/Rural Location, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.6 0.9 1.3 1.3 1.2 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.3 Heat Home .................................................... 106.0 49.1 18.0 21.2 17.8 4.3 Do Not Heat Home ....................................... 1.0 0.7 0.1 0.1 0.1 25.8 No Heating Equipment ................................ 0.5 0.4 0.1 Q 0.1 33.2 Have Equipment But Do Not Use It ............................................... 0.4 0.3 Q Q Q 30.2 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 49.1 18.0 21.2 17.8 4.3 Natural Gas

111

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Space Heating by Type of Owner-Occupied Housing Unit, 5a. Space Heating by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.4 1.9 3.0 1.3 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Heat Home ..................................... 72.4 63.0 2.0 1.7 5.7 6.7 Do Not Heat Home ........................ 0.4 0.2 Q Q Q 46.2 No Heating Equipment .................. 0.3 0.2 Q Q Q 39.0 Have Equipment But Do Not Use It ................................ Q Q Q Q Q NF Main Heating Fuel and Equipment (Have and Use Equipment) ............ 72.4 63.0 2.0 1.7 5.7 6.7 Natural Gas

112

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Space Heating by Year of Construction, 2a. Space Heating by Year of Construction, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.5 1.5 1.1 1.1 1.1 1.1 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.3 Heat Home ..................................... 106.0 15.4 18.2 18.6 13.6 13.9 26.4 4.3 Do Not Heat Home ........................ 1.0 Q Q Q 0.2 0.3 Q 23.2 No Heating Equipment .................. 0.5 Q Q Q 0.2 Q Q 30.3 Have Equipment But Do Not Use It ................................ 0.4 Q Q Q Q Q Q 37.8 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 106.0 15.4 18.2 18.6 13.6 13.9 26.4 4.3 Natural Gas ...................................

113

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Appliances by Type of Owner-Occupied Housing Unit, 5a. Appliances by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.3 0.4 2.1 3.1 1.3 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Kitchen Appliances Cooking Appliances Oven ........................................... 68.3 59.1 2.0 1.7 5.4 7.0 1 ................................................ 62.9 54.1 2.0 1.6 5.2 7.1 2 or More .................................. 5.4 5.0 Q Q 0.2 22.1 Most Used Oven ........................ 68.3 59.1 2.0 1.7 5.4 7.0 Electric ......................................

114

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Space Heating by Type of Housing Unit, 4a. Space Heating by Type of Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.5 1.5 1.4 1.7 Total ............................................... 107.0 73.7 9.5 17.0 6.8 4.4 Heat Home ..................................... 106.0 73.4 9.4 16.4 6.8 4.5 Do Not Heat Home ........................ 1.0 0.3 Q 0.6 Q 19.0 No Heating Equipment .................. 0.5 0.2 Q 0.3 Q 24.2 Have Equipment But Do Not Use It ................................ 0.4 Q Q 0.3 Q 28.1 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 106.0 73.4 9.4 16.4 6.8 4.5 Natural Gas ...................................

115

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Appliances by Year of Construction, 2a. Appliances by Year of Construction, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.5 1.2 1.1 1.2 1.1 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 14.3 17.2 17.8 12.9 13.7 25.9 4.2 1 ................................................ 95.2 13.1 16.3 16.6 12.1 12.7 24.3 4.4 2 or More .................................. 6.5 1.2 0.9 1.1 0.7 1.0 1.6 14.8 Most Used Oven ........................ 101.7 14.3 17.2 17.8 12.9 13.7 25.9 4.2 Electric ......................................

116

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Space Heating by Type of Rented Housing Unit, 6a. Space Heating by Type of Rented Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.1 0.9 2.5 Total ............................................... 34.3 10.5 7.4 15.2 1.1 6.9 Heat Home ..................................... 33.7 10.4 7.4 14.8 1.1 6.9 Do Not Heat Home ........................ 0.6 Q Q 0.5 Q 21.4 No Heating Equipment .................. 0.2 Q Q Q Q 84.5 Have Equipment But Do Not Use It ................................ 0.4 Q Q 0.3 Q 36.4 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 33.7 10.4 7.4 14.8 1.1 6.9 Natural Gas ...................................

117

CO2 Emissions - Ryukyu Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Ryukyu Islands Graphics CO2 Emissions from the Ryukyu Islands Data graphic Data CO2 Emissions from the Ryukyu Islands image...

118

CO2 Emissions - Leeward Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

Central America, South America, and the Caribbean Nations Leeward Islands Graphics CO2 Emissions from Leeward Islands Data graphic Data CO2 Emissions from Leeward Islands image...

119

Microsoft Word - Household Energy Use CA  

U.S. Energy Information Administration (EIA) Indexed Site

0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site consumption results in households spending 30% less for energy than the U.S. average.  Average site electricity consumption in California homes is among the lowest in the nation, as the mild climate in much of the state leads to less reliance on

120

Microsoft Word - Household Energy Use CA  

Gasoline and Diesel Fuel Update (EIA)

0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site consumption results in households spending 30% less for energy than the U.S. average.  Average site electricity consumption in California homes is among the lowest in the nation, as the mild climate in much of the state leads to less reliance on

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. Household Electricity Report  

Reports and Publications (EIA)

Brief analysis reports on the amount of electricity consumed annually by U.S. households for each of several end uses, including space heating and cooling, water heating, lighting, and the operation of more than two dozen appliances.

Barbara Fichman

2005-07-14T23:59:59.000Z

122

Household energy consumption and expenditures 1993  

Science Conference Proceedings (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

123

Do Disaster Expectations Explain Household Portfolios?  

E-Print Network (OSTI)

use the American Consumer Expenditure Survey (CEX) for consumption ex- penditure information. The data covers the period between 1983 and 2004. The expenditure information is recorded quarterly with approximately 5000 households in each wave. Every...

Alan, Sule

124

Household gasoline demand in the United States  

E-Print Network (OSTI)

Continuing rapid growth in U.S. gasoline consumption threatens to exacerbate environmental and congestion problems. We use flexible semiparametric and nonparametric methods to guide analysis of household gasoline consumption, ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

125

Arctic ice islands  

SciTech Connect

The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

1988-01-01T23:59:59.000Z

126

Household and environmental characteristics related to household energy-consumption change: A human ecological approach  

Science Conference Proceedings (OSTI)

This study focused on the family household as an organism and on its interaction with the three environments of the human ecosystem (natural, behavioral, and constructed) as these influence energy consumption and energy-consumption change. A secondary statistical analysis of data from the US Department of Energy Residential Energy Consumption Surveys (RECS) was completed. The 1980 and 1983 RECS were used as the data base. Longitudinal data, including household, environmental, and energy-consumption measures, were available for over 800 households. The households were selected from a national sample of owner-occupied housing units surveyed in both years. Results showed a significant( p = household, cooling degree days, heating degree days, year the housing unit was built, and number of stories in the housing unit.

Guerin, D.A.

1988-01-01T23:59:59.000Z

127

Interatomic Coulombic decay following Ne 1s Auger decay in NeAr  

SciTech Connect

Using momentum-resolved electron-ion multicoincidence spectroscopy, we have investigated interatomic Coulombic decay (ICD) in the heteronuclear NeAr dimer following Ne 1s Auger decay. The measured intensity ratio for the three ICD transitions Ne{sup 2+}(2s{sup -1}2p{sup -1} {sup 1}P)Ar to Ne{sup 2+}(2p{sup -2} {sup 1}S)-Ar{sup +}(3p{sup -1}), Ne{sup 2+}(2s{sup -1}2p{sup -1} {sup 1}P)Ar to Ne{sup 2+}(2p{sup -2} {sup 1}D)-Ar{sup +}(3p{sup -1}), and Ne{sup 2+}(2s{sup -1}2p{sup -1} {sup 3}P)Ar to Ne{sup 2+}(2p{sup -2} {sup 3}P)-Ar{sup +}(3p{sup -1}) reasonably agree with predictions. The kinetic energy release distribution for the fragmentation to Ne{sup 2+}(2p{sup -2} {sup 1}D)-Ar{sup +}(3p{sup -1}) after the ICD transition from singlet Ne{sup 2+}(2s{sup -1}2p{sup -1} {sup 1}P)Ar state, which is a mirror image of the kinetic energy distribution of the emitted ICD electrons, suggests that the corresponding ICD rate is roughly two times lower than predicted by ab initio calculations.

Ouchi, T.; Sakai, K.; Fukuzawa, H.; Ueda, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Higuchi, I.; Tamenori, Y. [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Demekhin, Ph. V.; Chiang, Y.-C.; Stoychev, S. D.; Kuleff, A. I. [Theoretische Chemie, Universitaet Heidelberg, D-69120 Heidelberg (Germany); Mazza, T. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Cimaina and Dipartimento di Fisica, Universita degli Studi di Milano, via Celoria 16, I-20133 Milano (Italy); Schoeffler, M. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Nagaya, K.; Yao, M. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Saito, N. [National Institute of Advanced Industrial Science and Technology, National Meteorology Institute of Japan, Tsukuba 305-8568 (Japan)

2011-05-15T23:59:59.000Z

128

Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 8, 1: January 8, 2007 Household Vehicle Trips to someone by E-mail Share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Facebook Tweet about Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Twitter Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Google Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Delicious Rank Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Digg Find More places to share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on AddThis.com... Fact #451: January 8, 2007 Household Vehicle Trips In a day, the average household traveled 32.7 miles in 2001 (the latest

129

Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

2: October 3, 2: October 3, 2005 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on AddThis.com... Fact #392: October 3, 2005 Household Vehicle Ownership Household vehicle ownership has changed significantly over the last 40

130

Census Snapshot: Rhode Island  

E-Print Network (OSTI)

The presence of a senior or disabled partner in a couple mayleast one partner who is disabled: 33% of same-sex couples,partner over 65 Percent disabled Average household income

Romero, Adam P; Baumle, Amanda; Badgett, M.V. Lee; Gates, Gary J

2007-01-01T23:59:59.000Z

131

NE SARE Arbuscular Mycorrhiza Research following canola  

E-Print Network (OSTI)

NE SARE Arbuscular Mycorrhiza Research Corn grown following canola Corn grown following soybeans The planting of canola, a non-mycorrhizal crop, has been shown to reduce arbuscular mycorrhizal fungi following canola. To address this problem, we intercropped canola with oats, a mycorrhizal crop

Kaye, Jason P.

132

Model documentation: household model of energy  

Science Conference Proceedings (OSTI)

The Household Model of Energy is an econometric model, meaning that energy use is determined quantitatively with the use of economic variables such as fuel prices and income. HOME is also primarily a structural model, meaning that energy use is determined as the result of interactions of intermediate components such as the number of households, the end use fuel shares and the energy use per household. HOME forecasts energy consumption in all occupied residential structures (households) in the United States on an annual basis through 1990. The forecasts are made based upon a number of initial conditions in 1980, various estimated elasticities, various parameters and assumptions, and a set of forecasted fuel prices and income. In addition to the structural detail, HOME operates on a more disaggregated level. This includes four end-use services (space heating, water heating, air conditioning, and others), up to seven fuel/technology types (dependent upon the end use service), two housing types, four structure vintages, and four Census regions. When the model is run as a module in IFFS, a sharing scheme further disaggregates the model to 10 Federal regions.

Holte, J.A.

1984-02-01T23:59:59.000Z

133

Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: February 5, 5: February 5, 2007 Household Vehicle Miles to someone by E-mail Share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Facebook Tweet about Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Twitter Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Google Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Delicious Rank Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Digg Find More places to share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on AddThis.com... Fact #455: February 5, 2007 Household Vehicle Miles The graphs below show the average vehicle miles of travel (VMT) - daily

134

Competition Helps Kids Learn About Energy and Save Their Households...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition Helps Kids Learn About Energy and Save Their Households Some Money Competition Helps Kids Learn About Energy and Save Their Households Some Money May 21, 2013 - 2:40pm...

135

Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3: January 22, 3: January 22, 2007 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on AddThis.com... Fact #453: January 22, 2007 Household Vehicle Ownership

136

Vehicle Technologies Office: Fact #259: March 17, 2003 Household...  

NLE Websites -- All DOE Office Websites (Extended Search)

9: March 17, 2003 Household Travel by Gender to someone by E-mail Share Vehicle Technologies Office: Fact 259: March 17, 2003 Household Travel by Gender on Facebook Tweet about...

137

Essays on household decision making in developing countries  

E-Print Network (OSTI)

This dissertation contains three essays on household decision making in the areas of education and health in developing countries. The first chapter explores intra-household decision making in the context of conditional ...

Berry, James W. (James Wesley)

2009-01-01T23:59:59.000Z

138

Development of the Household Sample for Furnace and Boiler Life...  

NLE Websites -- All DOE Office Websites (Extended Search)

households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler...

139

ANALYSIS OF CEE HOUSEHOLD SURVEY NATIONAL AWARENESS OF ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ANALYSIS OF CEE HOUSEHOLD SURVEY ANALYSIS OF CEE HOUSEHOLD SURVEY NATIONAL AWARENESS OF ENERGY STAR ® FOR 2012 TABLE OF CONTENTS Acknowledgements .................................................................................. ii Executive Summary ............................................................................ ES-1 Introduction ............................................................................................... 1 Methodology Overview ............................................................................. 2 Key Findings ............................................................................................. 5 Recognition .................................................................................................................. 5 Understanding ........................................................................................................... 12

140

Household energy and consumption and expenditures, 1990. Supplement, Regional  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CO2 Emissions - Wake Island  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions Regional Oceania Wake Island Graphics CO2 Emissions from Wake Island Data graphic Data CO2 Emissions from Wake Island image Per capita CO2...

142

Household carbon dioxide production in relation to the greenhouse effect  

SciTech Connect

A survey of 655 households from eastern suburbs of Melbourne was undertaken to determine householders[prime] attitudes to, and understanding of, the greenhouse effect. Carbon dioxide emissions resulting from car, electricity and gas use were computed and household actions which could reduce CO[sub 2] emissions were addressed. Preliminary analysis of the results indicates that householders in this area are aware of, and concerned about, the greenhouse effect, although their understanding of its causes is often poor. Many appreciate the contribution of cars, but are unclear about the relative importance of other household activities. Carbon dioxide emissions from the three sources examined averaged 21[center dot]2 tonnes/year per household and 7[center dot]4 tonnes/year per person. Electricity was the largest contributor (8[center dot]6 tonnes/year), cars the next largest (7[center dot]7 tonnes/year) and gas third (5[center dot] tonnes/year) per household. Emissions varied considerably from household to household. There was a strong positive correlation between availability of economic resources and household CO[sub 2] output from all sources. Carbon dioxide production, particularly from car use, was greater from households which were most distant from a railway station, and from larger households, and numbers of children in the household had little effect on emissions. There were also some economics of scale for households containing more adults. Understanding the causes of the greenhouse bore little relation to change in CO[sub 2] emissions; being concerned about it was associated with a small reduction; but actual actions to reduce car use and household heating, however motivated, produced significant reductions. 12 refs., 9 figs., 6 tabs.

Stokes, D.; Lindsay, A.; Marinopoulos, J.; Treloar, A.; Wescott, G. (Deakin Univ., Clayton (Australia))

1994-03-01T23:59:59.000Z

143

Mitigating Carbon Emissions: the Potential of Improving Efficiency of Household Appliances in China  

E-Print Network (OSTI)

Efficiency of Household Appliances in China Jiang Lin8 Appliance Market inEfficiency of Household Appliances in China Executive

Lin, Jiang

2006-01-01T23:59:59.000Z

144

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

by electric and hybrid vehicles", SAE Technical Papers No.household response to hybrid vehicles. Finally, we suggestas electric or hybrid vehicles. Transitions in choices of

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

145

Householder’s Perceptions of Insulation Adequacy and Drafts in the Home in 2001  

E-Print Network (OSTI)

In order to improve the estimation of end-use heating consumption, the Energy Information Administration's (EIA), 2001 Residential Energy Consumption Survey (RECS), for the first time, asked respondents to judge how drafty they perceived their homes to be as a measure of insulation quality. The analysis of the 2001 RECS data shows that householders in newlyconstructed homes perceived their homes to be better insulated and less drafty than do householders in older homes. Single-family homes are perceived to be better insulated and less drafty than are apartments in buildings with two to four units. Cross-variable comparisons also provide the associations between the level of insulation and winter drafts in the homes with household characteristics and location of the home.

Behjat Hojjati

2004-01-01T23:59:59.000Z

146

Conservation Strategy for Sable Island  

E-Print Network (OSTI)

Towards a Conservation Strategy for Sable Island Environment Canada, Canadian Wildlife Service, Atlantic Region #12;SABLE ISLAND CONSERVATION STRATEGY page - i March, 1998 A CONSERVATION STRATEGY FOR SABLE ISLAND PREPARED BY This Conservation Strategy for Sable Island was prepared for Environment Canada

Jones, Ian L.

147

Harbour Island: The Comparative Archaeology of a Maritime Community  

E-Print Network (OSTI)

Archaeological research at Harbour Island, Bahamas, was designed to help explore and develop the concept of maritimity, or identity grounded in perceived (or imagined) shared traits deriving from a community’s relationship with the maritime environment. Maritimity can best be identified by using three broad and overlapping categories of Landscape, Maritime Resources and Maritime Material Culture. Historical documents and maritime cultural landscape elements establish the maritimity of Harbour Island in the context of these categories. Artifacts, procured through archaeological survey of nine properties inhabited since at least the eighteenth century, are analyzed to investigate whether there any notable differences in the archaeological assemblages of maritime communities that indicate maritimity. Analysis relies on Stanley South's artifact classification system and his Carolina Artifact pattern. The nine properties are compared among themselves as well as with four other sites from the western British Atlantic region. Comparisons between the Harbour Island sites reveal a strong homogeneity of ceramic types at all households and a low representation of personal and clothing artifacts that indicate the relative poverty of the community. Maritime activities are not strongly represented in the archaeological record. When compared to four other sites from Jamaica, South Carolina, North Carolina, and Delaware, the assemblage from the Harbour Island community is relatively comparable to other sites influenced by British colonial culture. Although the domestic artifacts contain little maritime material culture, the development of the island's built environment demonstrates maritimity in both the categories of Landscape and Maritime Material Culture. Faunal remains from Harbour Island, consisting primarily of fish and shellfish, provide archaeological evidence of the importance of the Maritime Resources category. Only when the evidence from all three categories of maritimity is considered together can Harbour Island be identified archaeologically as a community that strongly identified with both the maritime environment and the dominant British Colonial Atlantic culture.

Hatch, Heather E

2013-08-01T23:59:59.000Z

148

AMCHITICA ISLAND, ALASKA  

Office of Legacy Management (LM)

Environment o Environment o f AMCHITICA ISLAND, ALASKA hlelvin L. hlerritt Sandia Laboratories Albuquerque, New Mexico Editors R. Glen Fuller Battelle Colu~nbus Laboratories Columbus, Ohio Prepared for Division of Military Application Energy Research and Development Administration Published by Technical Infor~nation Center Energy Research and Development Administration Library of Congress Cataloging in Pt~blication Data hlain entry under title: The Environment of Amchitka Island, Alaska "TlD-26712." Bibliography: p. Includrs indcx. 1. Eeology-Alarka-Amchirka Island. 2. Underground nuclear explorions-lIsland. 3. Cannikin Projcct. I. hlerritt, hlelvin Leroy, 1921- 11. Fuiler, Rtxeben Glen, 1910- 111. United Stater. Energy Research and Development

149

Islands in Zonal Flow  

Science Conference Proceedings (OSTI)

The impact of a meridional gradient in sea surface temperature (warm toward the equator, cold toward the pole) on the circulation around an island is investigated. The upper-ocean eastward geostrophic flow that balances such a meridional gradient ...

Michael A. Spall

2003-12-01T23:59:59.000Z

150

NE Blog Archive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Archive Blog Archive NE Blog Archive RSS December 31, 2013 GIF Policy Group Meeting in Brussels, Belgium, November 2013 Generation IV International Forum Updates Technology Roadmap and Builds Future Collaboration The Generation IV International Forum (GIF) held its 36th Policy Group (PG) meeting on November 21-22 in Brussels, Belgium. The PG reviewed progress on a number of on-going actions and received progress reports from the GIF Experts Group (EG) and the GIF Senior Industry Advisory Panel (SIAP). December 12, 2013 The basics of small modular reactor technology explained. | Infographic by Sarah Gerrity, Energy Department. Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear

151

Microsoft PowerPoint - NE- Milton  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University University Program (NEUP) Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities Ingrid M. Milton Department of Energy Office of Nuclear Energy July 9, 2009 195725 (2) Overview The Office of Nuclear Energy (NE) is committed to strengthening the Nation's educational programs in nuclear science and engineering. * Established the Nuclear Energy University Program (NEUP). * Award grants and contracts through competitive selection process. NEUP enables universities to maintain and expand their nuclear science curriculum and programs to ensure future availability of technical experts for U.S. nuclear programs. * NEUP is managed by the Center for Advanced Energy Studies (CAES). 2 195725 (3) Nuclear Energy University Program -

152

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

F (2001) -- Household Natural Gas Usage Form F (2001) -- Household Natural Gas Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Natural Gas Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

153

Towards sustainable household energy use in the Netherlands, Int  

E-Print Network (OSTI)

Abstract: Households consume direct energy, using natural gas, heating oil, gasoline and electricity, and consume indirect energy, the energy related to the production of goods and the delivery of services for the households. Past trends and present-day household energy use (direct and indirect) are analysed and described. A comparison of these findings with objectives concerning ecological sustainability demonstrates that present-day household energy use is not sustainable. A scenario towards sustainable household energy use is designed containing far-reaching measures with regard to direct energy use. Scenario evaluation shows a substantial reduction of direct energy use; however, this is not enough to meet the sustainability objectiv es. Based on these results, the possibilities and the limitations are discussed to enable households to make their direct and indirect energy use sustainable on the long run.

Jack Van Der Wal; Henri C. Moll

2001-01-01T23:59:59.000Z

154

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

E (2001) - Household Electricity Usage Form E (2001) - Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Electricity Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

155

A Model of Household Demand for Activity Participation and Mobility  

E-Print Network (OSTI)

household car ownership, car usage, and travel by differentownership demand, and car usage demand. Modal travel demand,mode), car ownership, and car usage for spatial aggregations

Golob, Thomas F.

1996-01-01T23:59:59.000Z

156

Crime and the Nation’s Households, 2000 By  

E-Print Network (OSTI)

experienced 1 or more violent or property crimes in 2000, according to data from the National Crime Victimization Survey (NCVS). About 4.3 million households had members who experienced 1 or more nonfatal violent crimes, including rape, sexual assault, robbery, and aggravated or simple assault. About 14.8 million households experienced 1 or more property crimes — household burglary, motor vehicle theft, or theft. Vandalism, presented for the first time in a Bureau of Justice Statistics (BJS) report, victimized about 6.1 million households. The households that sustained vandalism were counted separately from those experiencing other crimes. Because vandalism is included for the first time, findings are presented in a box on page 4. Beginning in 2001, NCVS victimizations will be measured both with and without vandalism. Measuring the extent to which households are victimized by crime One measure of the impact of crime throughout the Nation is gained through estimating the number and percentage of households victimized Highlights During 2000, 16 % of U.S. households had a member who experienced a crime, with 4 % having a member victimized by violent crime. During 1994, 25 % of households experienced at least one crime; 7 % a violent crime.

Patsy A. Klaus

2002-01-01T23:59:59.000Z

157

Barriers to household investment in residential energy conservation: preliminary assessment  

Science Conference Proceedings (OSTI)

A general assessment of the range of barriers which impede household investments in weatherization and other energy efficiency improvements for their homes is provided. The relationship of similar factors to households' interest in receiving a free energy audits examined. Rates of return that underly household investments in major conservation improvements are assessed. A special analysis of household knowledge of economically attractive investments is provided that compares high payback improvements specified by the energy audit with the list of needed or desirable conservation improvements identified by respondents. (LEW)

Hoffman, W.L.

1982-12-01T23:59:59.000Z

158

Household Responses to the Financial Crisis in Indonesia  

E-Print Network (OSTI)

on farm households in Indonesia and Thailand,” World Bank20. Cameron, Lisa. (1999). “Indonesia: a quarterly review,”The Real Costs of Indonesia's Economic Crisis: Preliminary

Thomas, Duncan; Frankenberg, Elizabeth

2005-01-01T23:59:59.000Z

159

Answers to Frequently Asked Questions About the Household Bottled ...  

U.S. Energy Information Administration (EIA)

Form EIA-457D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey

160

SUPPLEMENTAL ENERGY-RELATED DATA FOR THE 2001 NATIONAL HOUSEHOLD ...  

U.S. Energy Information Administration (EIA)

... vehicle manufacturer, vehicle model, vehicle model year, and vehicle type – several ENERGY INFORMATION ADMINISTRATION/2001 NATIONAL HOUSEHOLD TRAVEL SURVEY K-23 ...

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Essays on the effects of demographics on household consumption.  

E-Print Network (OSTI)

??My dissertation analyses the relationship between households' consumption behavior and changes in family demographic characteristics. The first paper studies consumption over the period of the… (more)

Stepanova, Ekaterina, 1977-

2006-01-01T23:59:59.000Z

162

Table 1. Household Characteristics by Ceiling Fans, 2001  

U.S. Energy Information Administration (EIA)

A reporting of the number of housing units using ceiling fans in U.S. households as reported in the 2001 Residential Energy Consumption Survey

163

U.S. households are incorporating energy–efficient features ...  

U.S. Energy Information Administration (EIA)

... area of increased efficiency: about 60% of households use at least some energy-efficient compact fluorescent (CFL) or light-emitting diode (LED) ...

164

Analysis of the energy requirement for household consumption.  

E-Print Network (OSTI)

??Humans in households use energy for their activities. This use is both direct, for example electricity and natural gas, but also indirect, for the production,… (more)

Vringer, Kees

2005-01-01T23:59:59.000Z

165

Householder's Perceptions of Insulation Adequacy and Drafts in the ...  

U.S. Energy Information Administration (EIA)

The 2001 RECS was the first RECS to request household perceptions regarding the presence of winter drafts in the home. The data presented in this report ...

166

1997 Residential Energy Consumption and Expenditures per Household ...  

U.S. Energy Information Administration (EIA)

Return to: Residential Home Page . Changes in the 1997 RECS: Housing Unit Type Per Household Member Per Building Increase. Residential Energy Consumption ...

167

Answers to Frequently Asked Questions About the Household ...  

U.S. Energy Information Administration (EIA)

Form EIA-457E (2001) – Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey

168

Appliance Commitment for Household Load Scheduling  

Science Conference Proceedings (OSTI)

This paper presents a novel appliance commitment algorithm that schedules thermostatically-controlled household loads based on price and consumption forecasts considering users comfort settings to meet an optimization objective such as minimum payment or maximum comfort. The formulation of an appliance commitment problem was described in the paper using an electrical water heater load as an example. The thermal dynamics of heating and coasting of the water heater load was modeled by physical models; random hot water consumption was modeled with statistical methods. The models were used to predict the appliance operation over the scheduling time horizon. User comfort was transformed to a set of linear constraints. Then, a novel linear, sequential, optimization process was used to solve the appliance commitment problem. The simulation results demonstrate that the algorithm is fast, robust, and flexible. The algorithm can be used in home/building energy-management systems to help household owners or building managers to automatically create optimal load operation schedules based on different cost and comfort settings and compare cost/benefits among schedules.

Du, Pengwei; Lu, Ning

2011-06-30T23:59:59.000Z

169

Household energy consumption and expenditures 1987  

SciTech Connect

This report is the third in the series of reports presenting data from the 1987 Residential Energy Consumption Survey (RECS). The 1987 RECS, seventh in a series of national surveys of households and their energy suppliers, provides baseline information on household energy use in the United States. Data from the seven RECS and its companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are made available to the public in published reports such as this one, and on public use data files. This report presents data for the four Census regions and nine Census divisions on the consumption of and expenditures for electricity, natural gas, fuel oil and kerosene (as a single category), and liquefied petroleum gas (LPG). Data are also presented on consumption of wood at the Census region level. The emphasis in this report is on graphic depiction of the data. Data from previous RECS surveys are provided in the graphics, which indicate the regional trends in consumption, expenditures, and uses of energy. These graphs present data for the United States and each Census division. 12 figs., 71 tabs.

Not Available

1990-01-22T23:59:59.000Z

170

In-vessel composting of household wastes  

Science Conference Proceedings (OSTI)

The process of composting has been studied using five different types of reactors, each simulating a different condition for the formation of compost; one of which was designed as a dynamic complete-mix type household compost reactor. A lab-scale study was conducted first using the compost accelerators culture (Trichoderma viridae, Trichoderma harzianum, Trichorus spirallis, Aspergillus sp., Paecilomyces fusisporus, Chaetomium globosum) grown on jowar (Sorghum vulgare) grains as the inoculum mixed with cow-dung slurry, and then by using the mulch/compost formed in the respective reactors as the inoculum. The reactors were loaded with raw as well as cooked vegetable waste for a period of 4 weeks and then the mulch formed was allowed to maturate. The mulch was analysed at various stages for the compost and other environmental parameters. The compost from the designed aerobic reactor provides good humus to build up a poor physical soil and some basic plant nutrients. This proves to be an efficient, eco-friendly, cost-effective, and nuisance-free solution for the management of household solid wastes.

Iyengar, Srinath R. [Civil and Environmental Engineering Department, V.J. Technological Institute, H.R. Mahajani Road, Matunga, Mumbai 400 019 (India)]. E-mail: srinathrangamani@yahoo.com; Bhave, Prashant P. [Civil and Environmental Engineering Department, V.J. Technological Institute, H.R. Mahajani Road, Matunga, Mumbai 400 019 (India)]. E-mail: drppbhave@vsnl.net

2006-07-01T23:59:59.000Z

171

Fox Islands Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Fox Islands Electric Coop, Inc Fox Islands Electric Coop, Inc Place Maine Utility Id 8780 Utility Location Yes Ownership C NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Large Commercial Service Commercial Large Power Service Commercial Outdoor Lighting Service Lighting Residential Peak Period Service Residential Residential Service Residential Small Power Service Commercial Street Light Service 100HP sodium Lighting Street Light Service 175 Mercury Lighting Average Rates

172

Fishers Island Utility Co Inc | Open Energy Information  

Open Energy Info (EERE)

Utility Co Inc Utility Co Inc Jump to: navigation, search Name Fishers Island Utility Co Inc Place New York Utility Id 6369 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Class 5 Commercial Residential Class 1 Residential Residential Class 2 Residential Residential Class 7 Residential Average Rates Residential: $0.3290/kWh Commercial: $0.2550/kWh The following table contains monthly sales and revenue data for Fishers Island Utility Co Inc (New York).

173

Kodiak Island Wind Farm | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Kodiak Island Wind Farm Jump to: navigation, search Name Kodiak Island Wind Farm Facility Kodiak Island...

174

Mr. Andrew Wallo, III, NE-23  

Office of Legacy Management (LM)

9% L'Enfam Plaza, S, W.. Warhin@on, D.C. 2002ijl74j Tekphow (202) 488ddO 9% L'Enfam Plaza, S, W.. Warhin@on, D.C. 2002ijl74j Tekphow (202) 488ddO 7117-03.87.cdy.'i3 23 September 1967 ~ s ~ Mr. Andrew Wallo, III, NE-23 Oivision of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND IJNIVFRSITIES , The attached elimination reconnnendation was prepar!ad in accordance with your suggestion during our meeting on 22 September! The recommendation includes 26 colleges and universities identified,in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated 27 May 1987; three institutions (Tufts College, University of Virginia, and the University of Washington) currently identified!on ithe FUSRAP list of sites under consideration; and six institutions recently iden-

175

REPLY TO ATTN OF NE-301  

Office of Legacy Management (LM)

N\I&?' d,' g N\I&?' d,' g 4 DATE. fdov 2 5 1980 REPLY TO ATTN OF NE-301 .* - memoraadu SUBJECT Remedial Action for Linde Air Products Plant, Tonawanda, New York TO W. E. Mott, EV In view of the General Counsel's reconsideration of the authority to proceed with remedial action on this site and your determination that remedial action is needed to protect the public health and safety, we will include this site in our program for remedial action. of this memorandum. Oak Ridge is requested to do so by copy I am somewhat surprised at the urgency of remedial action which you implied in your memorandum since your previous memorandum designating this site stated that it has a low priority. The site radiological survey report DOE/EV-005/5 concludes that air and water contamination were below the non-occupational

176

NE Press Releases | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Press Releases Press Releases NE Press Releases RSS December 12, 2013 Energy Department Announces New Investment in Innovative Small Modular Reactor The Energy Department tannounced an award to NuScale Power LLC to support a new project to design, certify and help commercialize innovative small modular reactors in the United States. November 12, 2013 Public Invited to Comment on Draft Environmental Assessment for the Resumption of Transient Testing of Nuclear Fuels and Materials The U.S. Department of Energy invites the public to read and comment on a draft environmental assessment it has prepared for a proposal to resume transient testing of nuclear fuels and materials at either Idaho National Laboratory (INL) or Sandia National Laboratories (SNL). November 4, 2013 Factsheet: Second Meeting of the United States-Japan Bilateral Commission

177

Notices 888 First Street, NE., Washington, DC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 Federal Register 11 Federal Register / Vol. 76, No. 122 / Friday, June 24, 2011 / Notices 888 First Street, NE., Washington, DC 20426. The filings in the above-referenced proceeding are accessible in the Commission's eLibrary system by clicking on the appropriate link in the above list. They are also available for review in the Commission's Public Reference Room in Washington, DC. There is an eSubscription link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov or call (866) 208-3676 (toll free). For TTY, call (202) 502-8659. Dated: June 20, 2011. Kimberly D. Bose, Secretary. [FR Doc. 2011-15859 Filed 6-23-11; 8:45 am]

178

Notices 888 First Street NE., Washington, DC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

53 Federal Register 53 Federal Register / Vol. 78, No. 56 / Friday, March 22, 2013 / Notices 888 First Street NE., Washington, DC 20426. This filing is accessible on-line at http://www.ferc.gov, using the ''eLibrary'' link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an ''eSubscription'' link on the Web site that enables subscribers to receive email notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please email FERCOnlineSupport@ferc.gov, or call (866) 208-3676 (toll free). For TTY, call (202) 502-8659. Comment Date: 5:00 p.m. Eastern Time on April 2, 2013. Dated: March 15, 2013. Kimberly D. Bose, Secretary. [FR Doc. 2013-06602 Filed 3-21-13; 8:45 am] BILLING CODE 6717-01-P

179

Mr. Andrew Wallo, III, NE-23  

Office of Legacy Management (LM)

suite 7900,955 L%l/onr Plaza, S. W., Washingion, D.C. 20024.?174,, Telephone: (202) 488.~ suite 7900,955 L%l/onr Plaza, S. W., Washingion, D.C. 20024.?174,, Telephone: (202) 488.~ Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 7117~03.87.dy.43 23 September 1987 I j / Dear Mr. Wallo: I ELIMINATION RECOMMENDATION -- COLLEGES AND UN&ITIES I . The attached elimination recommendation was prepared in accordance with your suggestion during our meeting on 22 September!. The recommend includes 26 colleges and universities identified,in Enclosure 4 to Aerospace letter subject: Status of Actions 27 May 1987; three institutions (Tufts and the University of Washington) currently list of sites under consideration; and six institutions tified during a search of Hanford records.

180

M r. Andrew Wallo, III, NE-23  

Office of Legacy Management (LM)

300.955 L*Enfom Plaza, S. Iv.. Washrhington. D.C. 200242174, Tekphonc (202) 300.955 L*Enfom Plaza, S. Iv.. Washrhington. D.C. 200242174, Tekphonc (202) 7117-03.87.cdy.43 23 September 1987 M r. Andrew Wallo, III, NE-23 Division of Facility & Site Deconnnissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES The attached elimination recommendation was prepared in accordi with your suggestion during our meeting on 22 September. The reconu includes 26 colleges and universities identified.in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Sites List, da: 27 May 1987; three institutions.(Tufts College, University of Virgil and the University of Washington) currently identified'on the FUSFN list of sites under consideration; and six.institutions recently idI

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

MiniBooNE Oscillation Results 2011  

SciTech Connect

The MiniBooNE neutrino oscillation search experiment at Fermilab has recently updated results from a search for {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillations, using a data sample corresponding to 8.58 x 10{sup 20} protons on target in anti-neutrino mode. This high statistics result represent an increase in statistics of 52% compared to result published in 2010. An excess of 57.7 {+-} 28.5 events is observed in the energy range 200 MeV < E{sub {nu}} < 3000 MeV. The data favor LSND-like {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillations over a background only hypothesis at 91.1% confidence level in the energy range 475 < E{sub {nu}} < 3000 MeV.

Djurcic, Zelimir

2012-01-01T23:59:59.000Z

182

A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409, "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"  

E-Print Network (OSTI)

EPRI EA-3409, "Household Appliance Choice: Revision of REEPSEA",3409: "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPSreport EA-3409, "Household Appliance Choice: Revi- sion of

Wood, D.J.

2010-01-01T23:59:59.000Z

183

Simulating household activities to lower consumption peaks: demonstration  

Science Conference Proceedings (OSTI)

Energy experts need fine-grained dynamics oriented tools to investigate household activities in order to improve power management in the residential sector. This paper presents the SMACH framework for modelling, simulating and analy- sis of household ... Keywords: agent-based modelling, energy, social simulation

Edouard Amouroux, Francois Sempé, Thomas Huraux, Nicolas Sabouret, Yvon Haradji

2013-05-01T23:59:59.000Z

184

Elements of consumption: an abstract visualization of household consumption  

Science Conference Proceedings (OSTI)

To promote sustainability consumers must be informed about their consumption behaviours. Ambient displays can be used as an eco-feedback technology to convey household consumption information. Elements of Consumption (EoC) demonstrates this by visualizing ... Keywords: a-life, eco-feedback, household consumption, sustainability

Stephen Makonin; Philippe Pasquier; Lyn Bartram

2011-07-01T23:59:59.000Z

185

NE-23 List of California Sites NE-23 Hattie Car-well, SAN/NSQA Division  

Office of Legacy Management (LM)

NE-23 NE-23 Hattie Car-well, SAN/NSQA Division Attached for your information is the list of California sites we identified in our search of Manhattdn Engineer District records for the Formerly Utilized Sites Remedial Action Program (FUSRAP). None of the facilities listed qualified"fbr'FUSRAP:'~- The only site in California,that was included in FUSRAP was Gilman Hall on the University of California-Berkeley Campus. All California sites that are in our Surplus Facilities Management Prcgram are under San Francisco Operations and are at the Santa Susana Field Laboratory or the University of California-Davis. If you have questions on any of the sites on the list, please call me at FTS 233-5439. /ct( Andrew Walls III. Desiynation and Certification Manager

186

Long Island Solar Farm  

SciTech Connect

The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

Anders, R.

2013-05-01T23:59:59.000Z

187

Version 1.0 Lithium hyper ne splitting  

E-Print Network (OSTI)

Version 1.0 Lithium hyper#12;ne splitting Krzysztof Pachucki #3; Institute of Theoretical Physics approach for the calculation of relativistic m#11; 6 corrections to the lithium ground state hyper#12;ne problem. We will concentrate on lithium as the simplest alkali-metal atom, for which several precise

Pachucki, Krzysztof

188

Traffic Flow Measurement: Experiences with NeTraMet  

Science Conference Proceedings (OSTI)

This memo records experiences in implementing and using the Traffic Flow Measurement Architecture and Meter MIB. It discusses the implementation of NeTraMet (a traffic meter) and NeMaC (a combined manager and meter reader), considers the writing of ...

N. Brownlee

1997-03-01T23:59:59.000Z

189

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households by Household Income, 2001 RSE Column Factor: Total 2001 Household Income Below Poverty

190

The Effect of Islands on Surface Waves  

E-Print Network (OSTI)

offshore islands, e.g. , the Aleutian chain and the Orkneysare also noted in the Aleutian Island passages where "

Arthur, Robert S

1951-01-01T23:59:59.000Z

191

Renewable Energy Initiative (Prince Edward Island, Canada) |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Initiative (Prince Edward Island, Canada) Renewable Energy Initiative (Prince Edward Island, Canada) Eligibility Agricultural Savings For Buying & Making...

192

Biomass Guidelines (Prince Edward Island, Canada) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Guidelines (Prince Edward Island, Canada) Biomass Guidelines (Prince Edward Island, Canada) Eligibility Agricultural Construction Developer Industrial Investor-Owned...

193

Nuclear deformation of {sup 20}Ne from {sup 20}Ne(105 MeV)+{sup 208}Pb scattering  

Science Conference Proceedings (OSTI)

We have measured differential cross section for quasielastic scattering of {sup 20}Ne+{sup 208}Pb at a lab energy of 105 MeV. The data are analyzed by a rotational-model coupled-channels calculation including the 0{sup +} ground state, 2{sup +} and 4{sup +} states of {sup 20}Ne.

Strojek, I.; Czarnacki, W.; Keeley, N. [Department of Nuclear Reaction, The Andrzej Soltan Institute for Nuclear Studies, 00681 Warsaw (Poland); Kisielinski, M.; Piasecki, E.; Rusek, K. [Department of Nuclear Reaction, The Andrzej Soltan Institute for Nuclear Studies, 00681 Warsaw (Poland); Heavy Ion Laboratory, Warsaw University, 02093 Warsaw (Poland); Kliczewski, S.; Siudak, R. [Niewodniczanski Institute of Nuclear Physics PAN, 31342 Cracow (Poland); Kordiasz, A.; Trzcinska, A. [Heavy Ion Laboratory, Warsaw University, 02093 Warsaw (Poland); Koshchiy, E. [V. N. Karazin Kharkiv National University, 61077 Kharkiv (Ukraine); Kowalczyk, M. [Heavy Ion Laboratory, Warsaw University, 02093 Warsaw (Poland); Faculty of Physics, Warsaw University, 00681 Warsaw (Poland); Piorkowska, A.; Stuad, A. [University of Silesia, 40007 Katowice (Poland)

2010-04-26T23:59:59.000Z

194

GREEN HOMES LONG ISLAND  

E-Print Network (OSTI)

developed a program that enables residents to make improvements that will decrease their home energy usage energy bill, reduce your carbon footprint... at little or no cost to you. #12;A Message From Supervisor energy-efficient and reduce our community's carbon footprint. Why do we call it Long Island Green Homes

Kammen, Daniel M.

195

Table AC1. Total Households Using Air-Conditioning Equipment, 2005 ...  

U.S. Energy Information Administration (EIA)

Table AC1. Total Households Using Air-Conditioning Equipment, 2005 Million U.S. Households Type of Air-Conditioning Equipment (millions) Central System

196

Table SH1. Total Households Using a Space Heating Fuel, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households Using a Space Heating Fuel, 2005 Million U.S. Households Using a Non-Major Fuel 5 ... Space Heating (millions) Energy Information Administration

197

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

1994) Demand for Electric Vehicles in Hybrid Households: A nand the Household Electric Vehicle Market: A Constraintsthe mar- ket for electric vehicles in California. Presented

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

198

Table CE2-3c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household4,a Physical Units of Space-Heating Consumption per Household,3 Where the Main Space-Heating Fuel Is:

199

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

200

Table CE2-12c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Table CE2-4c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

202

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3 Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

203

Material World: Forecasting Household Appliance Ownership in a Growing Global Economy  

E-Print Network (OSTI)

of Household Income and Appliance Ownership. ECEEE Summerof decreasing prices of appliances, if price data becomesForecasting Household Appliance Ownership in a Growing

Letschert, Virginie

2010-01-01T23:59:59.000Z

204

Projecting household energy consumption within a conditional demand framework  

SciTech Connect

Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

Teotia, A.; Poyer, D.

1991-01-01T23:59:59.000Z

205

Projecting household energy consumption within a conditional demand framework  

Science Conference Proceedings (OSTI)

Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

Teotia, A.; Poyer, D.

1991-12-31T23:59:59.000Z

206

CA Mr. Andrew Wallo, III, NE-23  

Office of Legacy Management (LM)

?9OQ, 95.5 L'E&nt Plaza, SW.. W.ashin@.m, D.C. 20024.2174, Tekphone: (202) 488AQOO ?9OQ, 95.5 L'E&nt Plaza, SW.. W.ashin@.m, D.C. 20024.2174, Tekphone: (202) 488AQOO 7117-03.B7.cdy.43 23 September 1987 CA Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Oepartment of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES zh/ ! o-01 lM!tl5 ML)!o-05 PI 77!0> The attached elimination recoannendation was prepared in accordance . -1 rlL.0~ with your suggestion during our meeting on 22 September. The recommendation flD.o-02 includes 26 colleges and universities identified~in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated MO.07. 27 May 1987; three institutions (Tufts College, University of Virginia, UCIIOJ and the University of Washington) currently identified on the FUSRAP

207

Mr. Andrew Wallo, III, NE-23  

Office of Legacy Management (LM)

300, 955 L'E~~MI Phm.SW.:. Washin@on. LX. 200242174, T~kphonc(202)48ll. 5 300, 955 L'E~~MI Phm.SW.:. Washin@on. LX. 200242174, T~kphonc(202)48ll. 5 7117-03.87.cdy.43 23 September 1987 cA Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES M/).0-05 pl 0.0% The attached elimination recommendation was prepared in accordance ML.05 with your suggestion during our meeting on 22 September. The recommendation flD.o-02 includes 26 colleges and universities identified.in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated NO.03. 27 May 1987; three institutions (Tufts College, University of Virginia, rJc..of and the University of Washington) currently identified on the FUSRAP

208

Pion inelastic scattering from sup 20 Ne  

SciTech Connect

Angular distributions for {sup 20}Ne({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime}) were measured on the Energetic Pion Channel and Spectrometer (EPICS) at the Clinton P. Anderson Meson Physics Facility (LAMPF). Data were taken with both {pi}{sup {plus}} and {pi}{sup {minus}} over an angular range of 12{degree} to 90{degree} for T{sub {pi}}=180 MeV and with {pi}{sup +} from 15{degree} to 90{degree} for T{sub {pi}}=120 MeV. The data were analyzed using both the distorted-wave impulse approximation (DWIA) and the coupled-channels impulse approximation (CCIA) with collective transition densities. In addition, microscopic transition densities were used in the DWIA analysis for states in the lowest rotational bands. The transitions to the 6.73-MeV 0{sup +} and several 1{sup {minus}} states, including the states at 5.79 MeV and 8.71 MeV, were studied using several models for the transition density. Strong evidence for the importance of two-step routes in pion inelastic scattering was seen in several angular distributions, including the 5.79-MeV 1{sup {minus}}, the first three 4{sup +} states, and the 8.78-MeV 6{sup +}. 100 refs., 81 figs., 33 tabs.

Burlein, M. (Pennsylvania Univ., Philadelphia, PA (USA). Dept. of Physics)

1989-12-01T23:59:59.000Z

209

Measurement of nicotine in household dust  

Science Conference Proceedings (OSTI)

An analytical method of measuring nicotine in house dust was optimized and associations among three secondhand smoking exposure markers were evaluated, i.e., nicotine concentrations of both house dust and indoor air, and the self-reported number of cigarettes smoked daily in a household. We obtained seven house dust samples from self-reported nonsmoking homes and 30 samples from smoking homes along with the information on indoor air nicotine concentrations and the number of cigarettes smoked daily from an asthma cohort study conducted by the Johns Hopkins Center for Childhood Asthma in the Urban Environment. House dust nicotine was analyzed by isotope dilution gas chromatography-mass spectrometry (GC/MS). Using our optimized method, the median concentration of nicotine in the dust of self-reported nonsmoking homes was 11.7 ng/mg while that of smoking homes was 43.4 ng/mg. We found a substantially positive association (r=0.67, P<0.0001) between house dust nicotine concentrations and the numbers of cigarettes smoked daily. Optimized analytical methods showed a feasibility to detect nicotine in house dust. Our results indicated that the measurement of nicotine in house dust can be used potentially as a marker of longer term SHS exposure.

Kim, Sungroul [Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Institute for Global Tobacco Control, 627 N. Washington Street, 2nd Floor Baltimore, MD 21205 (United States); Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States)], E-mail: srkim@jhsph.edu; Aung, Ther; Berkeley, Emily [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States); Diette, Gregory B. [Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States); Department of Medicine, Johns Hopkins University School of Medicine (United States); Breysse, Patrick N. [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States)

2008-11-15T23:59:59.000Z

210

NUCLEAR ISLANDS International Leasing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ISLANDS ISLANDS International Leasing of Nuclear Fuel Cycle Sites to Provide Enduring Assurance of Peaceful Use Christopher E. Paine and Thomas B. Cochran Current International Atomic Energy Agency safeguards do not provide adequate protection against the diversion to military use of materials or technology from certain types of sensitive nuclear fuel cycle facilities. In view of highly enriched uranium's relatively greater ease of use as a nuclear explosive material than plutonium and the significant diseconomies of commercial spent fuel reprocessing, this article focuses on the need for improved international controls over uranium enrichment facilities as the proximate justification for creation of an International Nuclear Fuel Cycle Association (INFCA). In principle, the proposal is equally applicable to alleviating the proliferation concerns provoked by nuclear fuel

211

Rhode Island.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

212

Three Mile Island  

SciTech Connect

The Three Mile Island accident was the worst accident ever experienced by the nuclear power industry. Although the radiation exposures were extremely low, the potential for greater public exposure did exist. Fortunately, the health and safety of the public were not affected by radiation, nor was anyone killed or injured; however, thousand of lives were disrupted by fear and anxiety and by a limited evacuation. The events and actions contributing to the accident are described.

Buhl, A.R.

1980-09-01T23:59:59.000Z

213

Appliance Standby Power and Energy Consumption in South African Households  

Open Energy Info (EERE)

Appliance Standby Power and Energy Consumption in South African Households Appliance Standby Power and Energy Consumption in South African Households Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Standby Power and Energy Consumption in South African Households Focus Area: Appliances & Equipment Topics: Policy Impacts Website: active.cput.ac.za/energy/web/DUE/DOCS/422/Paper%20-%20Shuma-Iwisi%20M. Equivalent URI: cleanenergysolutions.org/content/appliance-standby-power-and-energy-co Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance A modified engineering model is proposed to estimate standby power and energy losses in households. The modified model accounts for the randomness of standby power and energy losses due to unpredicted user appliance operational behavior.

214

Assumptions to the Annual Energy Outlook 2000 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Key Assumptions Key Assumptions The historical input data used to develop the HEM version for the AEO2000 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2000 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and transportation sectors as inputs to the disaggregation algorithm that results in the direct fuel expenditure analysis. Household end-use and personal transportation service consumption are obtained by HEM from the NEMS Residential and Transportation Demand Modules. Household disposable income is adjusted with forecasts of total disposable income from the NEMS Macroeconomic Activity Module.

215

Profiling energy use in households and office spaces  

Science Conference Proceedings (OSTI)

Energy consumption is largely studied in the context of different environments, such as domestic, corporate, industrial, and public sectors. In this paper, we discuss two environments, households and office spaces, where people have an especially ...

Salman Taherian; Marcelo Pias; George Coulouris; Jon Crowcroft

2010-04-01T23:59:59.000Z

216

Household Preferences for Supporting Renewable Energy, and Barriers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Household Preferences for Supporting Renewable Energy, and Barriers to Green Power Demand Speaker(s): Ryan Wiser Date: May 9, 2002 - 12:00pm Location: Bldg. 90 Nearly 40% of the...

217

Energy Consumption of Refrigerators in Ghana - Outcomes of Household...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Refrigerators in Ghana - Outcomes of Household Surveys Speaker(s): Essel Ben Hagan Date: July 12, 2007 - 12:00pm Location: 90-3122 Seminar HostPoint of...

218

Smoothing consumption across households and time : essays in development economics  

E-Print Network (OSTI)

This thesis studies two strategies that households may use to keep their consumption smooth in the face of fluctuations in income and expenses: credit (borrowing and savings) and insurance (state contingent transfers between ...

Kinnan, Cynthia Georgia

2010-01-01T23:59:59.000Z

219

A Theoretical Basis for Household Energy Conservation UsingProduct...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Theoretical Basis for Household Energy Conservation Using Product-Integrated Feedback Speaker(s): Teddy McCalley Date: October 11, 2002 - 12:00pm Location: Bldg. 90 Seminar Host...

220

Property:EIA/861/IsoNe | Open Energy Information  

Open Energy Info (EERE)

IsoNe IsoNe Jump to: navigation, search Property Name ISO_NE Property Type Boolean Description Indicates that the organization conducts operations in the New England ISO region [1] References ↑ "EIA Form EIA-861 Final Data File for 2010 - 861 Webfile Layout for 2010.doc" Pages using the property "EIA/861/IsoNe" Showing 25 pages using this property. (previous 25) (next 25) B Bangor Hydro-Electric Co + true + Barton Village, Inc (Utility Company) + true + Bozrah Light & Power Company + true + C Central Maine Power Co + true + Central Vermont Pub Serv Corp + true + CinCap IV, LLC + true + CinCap V LLC + true + Cinergy Capital & Trading, Inc + true + City of Chicopee, Massachusetts (Utility Company) + true + City of Holyoke, Massachusetts (Utility Company) + true +

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Characterizing Household Plug Loads through Self-Administered Load Research  

Science Conference Proceedings (OSTI)

Household miscellaneous loads, which include consumer electronics, are the fastest growing segment of household energy use in the United States. Although the relative energy intensity of applications such as heating and cooling is declining, the DOEAnnual Energy Outlook forecasts that the intensity of residential miscellaneous end uses will increase substantially by 2030. Studies by TIAX and Ecos Consulting reveal that miscellaneous devices8212smaller devices in terms of energy draw but growing in usage8...

2009-12-09T23:59:59.000Z

222

Neutral Current Elastic Interactions in MiniBooNE  

SciTech Connect

Neutral Current Elastic (NCE) interactions in MiniBooNE are discussed. In the neutrino mode MiniBooNE reported: the flux averaged NCE differential cross section as a function of four-momentum transferred squared, an axial mass (M{sub A}) measurement, and a measurement of the strange quark spin content of the nucleon, {Delta}s. In the antineutrino mode we present the background-subtracted data which is compared with the Monte Carlo predictions.

Dharmapalan, Ranjan; /Alabama U.

2011-10-01T23:59:59.000Z

223

Household waste disposal in Mekelle city, Northern Ethiopia  

SciTech Connect

In many cities of developing countries, such as Mekelle (Ethiopia), waste management is poor and solid wastes are dumped along roadsides and into open areas, endangering health and attracting vermin. The effects of demographic factors, economic and social status, waste and environmental attributes on household solid waste disposal are investigated using data from household survey. Household level data are then analyzed using multinomial logit estimation to determine the factors that affect household waste disposal decision making. Results show that demographic features such as age, education and household size have an insignificant impact over the choice of alternative waste disposal means, whereas the supply of waste facilities significantly affects waste disposal choice. Inadequate supply of waste containers and longer distance to these containers increase the probability of waste dumping in open areas and roadsides relative to the use of communal containers. Higher household income decreases the probability of using open areas and roadsides as waste destinations relative to communal containers. Measures to make the process of waste disposal less costly and ensuring well functioning institutional waste management would improve proper waste disposal.

Tadesse, Tewodros [Agricultural Economics and Rural Policy Group, Wageningen University, Hollandseweg 1 6706 KN Wageningen (Netherlands)], E-mail: tewodroslog@yahoo.com; Ruijs, Arjan [Environmental Economics and Natural Resources Group, Wageningen University, P.O. Box 8130, 6700 EW Wageningen (Netherlands); Hagos, Fitsum [International Water Management Institute (IWMI), Subregional Office for the Nile Basin and East Africa, P.O. Box 5689, Addis Ababa (Ethiopia)

2008-07-01T23:59:59.000Z

224

Ventilation Behavior and Household Characteristics in NewCalifornia Houses  

SciTech Connect

A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

Price, Phillip N.; Sherman, Max H.

2006-02-01T23:59:59.000Z

225

Source separation of household waste: A case study in China  

SciTech Connect

A pilot program concerning source separation of household waste was launched in Hangzhou, capital city of Zhejiang province, China. Detailed investigations on the composition and properties of household waste in the experimental communities revealed that high water content and high percentage of food waste are the main limiting factors in the recovery of recyclables, especially paper from household waste, and the main contributors to the high cost and low efficiency of waste disposal. On the basis of the investigation, a novel source separation method, according to which household waste was classified as food waste, dry waste and harmful waste, was proposed and performed in four selected communities. In addition, a corresponding household waste management system that involves all stakeholders, a recovery system and a mechanical dehydration system for food waste were constituted to promote source separation activity. Performances and the questionnaire survey results showed that the active support and investment of a real estate company and a community residential committee play important roles in enhancing public participation and awareness of the importance of waste source separation. In comparison with the conventional mixed collection and transportation system of household waste, the established source separation and management system is cost-effective. It could be extended to the entire city and used by other cities in China as a source of reference.

Zhuang Ying; Wu Songwei; Wang Yunlong [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Wu Weixiang [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)], E-mail: weixiang@zju.edu.cn; Chen Yingxu [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)

2008-07-01T23:59:59.000Z

226

Transferring 2001 National Household Travel Survey  

Science Conference Proceedings (OSTI)

Policy makers rely on transportation statistics, including data on personal travel behavior, to formulate strategic transportation policies, and to improve the safety and efficiency of the U.S. transportation system. Data on personal travel trends are needed to examine the reliability, efficiency, capacity, and flexibility of the Nation's transportation system to meet current demands and to accommodate future demand. These data are also needed to assess the feasibility and efficiency of alternative congestion-mitigating technologies (e.g., high-speed rail, magnetically levitated trains, and intelligent vehicle and highway systems); to evaluate the merits of alternative transportation investment programs; and to assess the energy-use and air-quality impacts of various policies. To address these data needs, the U.S. Department of Transportation (USDOT) initiated an effort in 1969 to collect detailed data on personal travel. The 1969 survey was the first Nationwide Personal Transportation Survey (NPTS). The survey was conducted again in 1977, 1983, 1990, 1995, and 2001. Data on daily travel were collected in 1969, 1977, 1983, 1990 and 1995. In 2001, the survey was renamed the National Household Travel Survey (NHTS) and it collected both daily and long-distance trips. The 2001 survey was sponsored by three USDOT agencies: Federal Highway Administration (FHWA), Bureau of Transportation Statistics (BTS), and National Highway Traffic Safety Administration (NHTSA). The primary objective of the survey was to collect trip-based data on the nature and characteristics of personal travel so that the relationships between the characteristics of personal travel and the demographics of the traveler can be established. Commercial and institutional travel were not part of the survey. Due to the survey's design, data in the NHTS survey series were not recommended for estimating travel statistics for categories smaller than the combination of Census division (e.g., New England, Middle Atlantic, and Pacific), MSA size, and the availability of rail. Extrapolating NHTS data within small geographic areas could risk developing and subsequently using unreliable estimates. For example, if a planning agency in City X of State Y estimates travel rates and other travel characteristics based on survey data collected from NHTS sample households that were located in City X of State Y, then the agency could risk developing and using unreliable estimates for their planning process. Typically, this limitation significantly increases as the size of an area decreases. That said, the NHTS contains a wealth of information that could allow statistical inferences about small geographic areas, with a pre-determined level of statistical certainty. The question then becomes whether a method can be developed that integrates the NHTS data and other data to estimate key travel characteristics for small geographic areas such as Census tract and transportation analysis zone, and whether this method can outperform other, competing methods.

Hu, Patricia S [ORNL; Reuscher, Tim [ORNL; Schmoyer, Richard L [ORNL; Chin, Shih-Miao [ORNL

2007-05-01T23:59:59.000Z

227

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

228

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

Massachusetts at Amherst, University of

229

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

230

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

231

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

232

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

233

Minnesota Nuclear Profile - Prairie Island  

U.S. Energy Information Administration (EIA) Indexed Site

Prairie Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

234

Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) Facilities which compost putrescible waste andor leaf and yard waste are subject to these regulations. The...

235

Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island) The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and...

236

Cool Roofs and Heat Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

(510) 486-7494 Links Heat Island Group The Cool Colors Project Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and...

237

,"Rhode Island Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

238

D:\NE WEB Sites\NE\nerac\nov2001minutes.wpd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 5-6, 2001, DoubleTree Hotel, Arlington, Virginia November 5-6, 2001, DoubleTree Hotel, Arlington, Virginia NERAC members present: John Ahearne Robert Long Joseph Comfort Warren F. Miller, Jr. Michael L. Corradini Benjamin F. Montoya Jose Luis Cortez Sekazi Mtingwa Allen Croff Lura Powell James Duderstadt (Chair) Richard Reba Marvin Fertel Joy Rempe Beverly Hartline John Taylor Andrew Klein Charles E. Till Dale Klein (Monday only) Neil Todreas NERAC members absent: Thomas Cochran Allen Sessoms Maureen S. Crandall Daniel C. Sullivan Steve Fetter C. Bruce Tarter Leslie Hartz Ashok Thadani (ad hoc) J. Bennett Johnston Joan Woodard Linda C. Knight Also present: Robert Card, Under Secretary, USDOE Nancy Carder, NERAC Staff Charles Forsberg, Researcher, Oak Ridge National Laboratory Norton Haberman, Senior Technical Advisor, NE, USDOE

239

Delivering Energy Efficiency to Middle Income Single Family Households  

NLE Websites -- All DOE Office Websites (Extended Search)

Delivering Energy Efficiency to Middle Income Single Family Households Delivering Energy Efficiency to Middle Income Single Family Households Title Delivering Energy Efficiency to Middle Income Single Family Households Publication Type Report Year of Publication 2011 Authors Zimring, Mark, Merrian Borgeson, Ian M. Hoffman, Charles A. Goldman, Elizabeth Stuart, Annika Todd, and Megan A. Billingsley Pagination 102 Date Published 12/2011 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract The question posed in this report is: How can programs motivate these middle income single family households to seek out more comprehensive energy upgrades, and empower them to do so? Research methods included interviews with more than 35 program administrators, policy makers, researchers, and other experts; case studies of programs, based on interviews with staff and a review of program materials and data; and analysis of relevant data sources and existing research on demographics, the financial status of Americans, and the characteristics of middle income American households. While there is no 'silver bullet' to help these households overcome the range of barriers they face, this report describes outreach strategies, innovative program designs, and financing tools that show promise in increasing the attractiveness and accessibility of energy efficiency for this group. These strategies and tools should be seen as models that are currently being honed to build our knowledge and capacity to deliver energy improvements to middle income households. However, the strategies described in this report are probably not sufficient, in the absence of robust policy frameworks, to deliver these improvements at scale. Instead, these strategies must be paired with enabling and complementary policies to reach their full potential.

240

Household solid waste characteristics and management in Chittagong, Bangladesh  

Science Conference Proceedings (OSTI)

Solid waste management (SWM) is a multidimensional challenge faced by urban authorities, especially in developing countries like Bangladesh. We investigated per capita waste generation by residents, its composition, and the households' attitudes towards waste management at Rahman Nagar Residential Area, Chittagong, Bangladesh. The study involved a structured questionnaire and encompassed 75 households from five different socioeconomic groups (SEGs): low (LSEG), lower middle (LMSEG), middle (MSEG), upper middle (UMSEG) and high (HSEG). Wastes, collected from all of the groups of households, were segregated and weighed. Waste generation was 1.3 kg/household/day and 0.25 kg/person/day. Household solid waste (HSW) was comprised of nine categories of wastes with vegetable/food waste being the largest component (62%). Vegetable/food waste generation increased from the HSEG (47%) to the LSEG (88%). By weight, 66% of the waste was compostable in nature. The generation of HSW was positively correlated with family size (r{sub xy} = 0.236, p management initiative. Of the respondents, an impressive 44% were willing to pay US$0.3 to US$0.4 per month to waste collectors and it is recommended that service charge be based on the volume of waste generated by households. Almost a quarter (22.7%) of the respondents preferred 12-1 pm as the time period for their waste to be collected. This study adequately shows that household solid waste can be converted from burden to resource through segregation at the source, since people are aware of their role in this direction provided a mechanism to assist them in this pursuit exists and the burden is distributed according to the amount of waste generated.

Sujauddin, Mohammad [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh)], E-mail: mohammad.sujauddin@gmail.com; Huda, S.M.S. [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh); Hoque, A.T.M. Rafiqul [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh); Laboratory of Ecology and Systematics (Plant Ecophysiology Section), Faculty of Science, Biology Division, University of the Ryukyus, Okinawa 903-0213 (Japan)

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CO2 Emissions - Pacific Islands (Palau)  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Pacific Islands (Palau) Graphics CO2 Emissions from the Pacific Islands (Palau) Data graphic Data CO2 Emissions from the Pacific Islands (Palau) image Per capita CO2...

242

Observations in Nonurban Heat Islands  

Science Conference Proceedings (OSTI)

The urban heat island is a well-known and well-described temperature anomaly, but other types of heat islands are also infrequently reported. A 10 km × 30 km data field containing more than 100 individual winter morning air temperature ...

A. W. Hogan; M. G. Ferrick

1998-02-01T23:59:59.000Z

243

Offshore Islands Ltd | Open Energy Information  

Open Energy Info (EERE)

Islands Ltd Jump to: navigation, search Name Offshore Islands Ltd Sector Marine and Hydrokinetic Website http:http:www.offshoreisla Region United States LinkedIn Connections...

244

Hainan Green Islands Power | Open Energy Information  

Open Energy Info (EERE)

Islands Power Jump to: navigation, search Name Hainan Green Islands Power Place Hainan Province, China Sector Solar Product China-based JV developing on-grid solar projects....

245

US Virgin Islands Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The U.S. Virgin Islands has few conventional energy ... the Virgin Islands Water and Power Authority is exploring undersea cable links with Puerto Rico ... solar ...

246

NREL: Technology Deployment - Technical Assistance for Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

for Islands NREL provides technical assistance to help islands reduce dependence on fossil fuels and increase energy security by implementing energy efficiency measures and...

247

Small-Scale Solar Grants (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The Rhode Island Economic Development Corporation (RIEDC) provides incentives for renewable-energy projects. Incentive programs are funded by the Rhode Island Renewable Energy Fund (RIREF) and...

248

Renewable Portfolio Standard (Prince Edward Island, Canada) ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portfolio Standard (Prince Edward Island, Canada) Renewable Portfolio Standard (Prince Edward Island, Canada) Eligibility StateProvincial Govt Savings For Buying & Making...

249

Department of Energy - Prince Edward Island  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61223 en Renewable Portfolio Standard (Prince Edward Island, Canada) http:energy.govsavingsrenewable-portfolio-standard-prince-edward-island-canada

250

US Virgin Islands Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

US Virgin Islands Quick Facts. The U.S. Virgin Islands has few conventional energy resources and depends on imported crude oil for electricity ...

251

Rhode Island Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Rhode Island Quick Facts. Rhode Island had the lowest per capita total energy consumption, the third-lowest per capita petroleum consumption, and the ...

252

An Audiomagnetotelluric Survey Over The Chaves Geothermal Field (Ne  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » An Audiomagnetotelluric Survey Over The Chaves Geothermal Field (Ne Portugal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Audiomagnetotelluric Survey Over The Chaves Geothermal Field (Ne Portugal) Details Activities (0) Areas (0) Regions (0) Abstract: In an attempt to define the resistivity model of the Chaves geothermal field in NE Portugal, a detailed survey with scalar audiomagnetotelluric measurements was performed. The soundings were made in the frequency range from 2300 to 4.1 Hz. Electrical resistivity models were derived from the application of 1-D inversion, 2-D trial and error modeling and 2-D inversion procedures. The resistivities inside the geothermal field are low, reaching not more than 30 Ωm and increasing up to 60-150 Ωm

253

Municipal Energy Agency of NE | Open Energy Information  

Open Energy Info (EERE)

Municipal Energy Agency of NE Municipal Energy Agency of NE Jump to: navigation, search Name Municipal Energy Agency of NE Place Nebraska Utility Id 21352 Utility Location Yes Ownership P NERC Location MRO NERC MRO Yes NERC SPP Yes NERC WECC Yes RTO SPP Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

254

Videos for Wind-Driven Fires: Governors Island & Laboratory ...  

Science Conference Proceedings (OSTI)

Governors Island Experiments. Governor's Island test building. (Photo credit: NIST). Together with the Fire Department of ...

2013-04-24T23:59:59.000Z

255

Water Related Energy Use in Households and Cities - an Australian  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Related Energy Use in Households and Cities - an Australian Water Related Energy Use in Households and Cities - an Australian Perspective Speaker(s): Steven Kenway Date: May 12, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner James McMahon This presentation covers the content of recent journal papers and reports focused on the water-energy nexus and the related theory of urban metabolism. This includes (i) a review of the water-energy nexus focused on cities (ii) quantifying water-related energy in cities (iii) modeling household water-related energy use including key factors, sensitivity and uncertainty analysis, and (iv) relevance and implications of the urban metabolism theoretical framework. Steven's work focuses on understanding the indirect connections between urban water management, energy use and

256

EIA - Gasoline and Diesel Fuel report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued after EIA's 1994 survey. Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. This report, Household Vehicles Energy Consumption 1991, is based on data from the 1991 Residential Transportation Energy Consumption Survey (RTECS). Focusing on vehicle miles traveled (VMT) and energy enduse consumption and expenditures by households for personal transportation, the 1991 RTECS is

257

Energy Consumption of Refrigerators in Ghana - Outcomes of Household  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Refrigerators in Ghana - Outcomes of Household Energy Consumption of Refrigerators in Ghana - Outcomes of Household Surveys Speaker(s): Essel Ben Hagan Date: July 12, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Robert Van Buskirk Galen Barbose As part of activities to develop refrigerator efficiency standards regulations in Ghana, a national survey on the energy consumption of refrigerators and refrigerator-freezers has been conducted. The survey covered 1000 households in urban, peri-urban and rural communities in various parts of the country. The survey found that, on average, refrigerators and refrigerator-freezers in Ghana use almost three times what is allowed by minimum efficiency standards in the U.S., and a few refrigerators had energy use at levels almost ten times the U.S.

258

Assumptions to the Annual Energy Outlook 2001 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Completed Copy in PDF Format Completed Copy in PDF Format Related Links Annual Energy Outlook2001 Supplemental Data to the AEO2001 NEMS Conference To Forecasting Home Page EIA Homepage Household Expenditures Module Key Assumptions The historical input data used to develop the HEM version for the AEO2001 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2001 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and

259

Econometric analysis of energy use in urban households  

SciTech Connect

This article analyzes the pattern of energy carrier consumption in the residential sector of Bangalore, a major city in south India. A 1,000-household survey was used to study the type of energy carrier used by households in different income groups for different end-uses, such as cooking, water heating, and lighting. The dependence of income on the carrier utilized is established using a carrier dependence index. Using regression analysis, the index analyses the impact of different explanatory variables such as family income, family size, and price of energy carrier on consumption. The results show that income plays an important role not only in the selection of an energy carrier but also on the quantity of consumption per household. Also, a source-service matrix is prepared for Bangalore`s residential sector, which shows the disaggregation of energy consumption by the type of energy carrier and end-use.

Reddy, B.S. [Indira Gandhi Inst. of Development Research, Bombay (India)

1995-05-01T23:59:59.000Z

260

The welfare effects of raising household energy prices in Poland  

Science Conference Proceedings (OSTI)

We examine the welfare effects from increasing household energy prices in Poland. Subsidizing household energy prices, common in the transition economies, is shown to be highly regressive. The wealthy spend a larger portion of their income on energy and consume more energy in absolute terms. We therefore rule out the oft-used social welfare argument for delaying household energy price increases. Raising prices, while targeting relief to the poor through a social assistance program is the first-best response. However, if governments want to ease the adjustment, several options are open, including: in-kind transfers to the poor, vouchers, in-cash transfers, and lifeline pricing for electricity. Our simulations show that if raising prices to efficient levels is not politically feasible at present and social assistance targeting is sufficiently weak, it may be socially better to use lifeline pricing and a large price increase than an overall, but smaller, price increase.

Freund, C.L. [Columbia Univ., New York, NY (United States); Wallich, C.I. [World Bank, Washington, DC (United States)

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Modeling patterns of hot water use in households  

Science Conference Proceedings (OSTI)

This report presents a detailed model of hot water use patterns in individual household. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies. 21 refs., 3 figs., 10 tabs.

Lutz, J.D.; Liu, Xiaomin; McMahon, J.E. [and others

1996-11-01T23:59:59.000Z

262

Modeling patterns of hot water use in households  

SciTech Connect

This report presents a detailed model of hot water use patterns in individual households. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies.

Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

1996-01-01T23:59:59.000Z

263

Table 2. Percent of Households with Vehicles, Selected Survey Years  

U.S. Energy Information Administration (EIA) Indexed Site

Percent of Households with Vehicles, Selected Survey Years " Percent of Households with Vehicles, Selected Survey Years " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",85.5450237,89.00343643,88.75545852,89.42917548,87.25590956,92.08566108 "Household Characteristics" "Census Region and Division" " Northeast",77.22222222,"NA",79.16666667,82.9015544,75.38461538,85.09615385 " New England",88.37209302,"NA",81.81818182,82.9787234,82,88.52459016 " Middle Atlantic ",73.72262774,"NA",78.37837838,82.31292517,74.30555556,83.67346939 " Midwest ",85.51401869,"NA",90.66666667,90.17094017,92.30769231,91.47286822 " East North Central",82,"NA",88.81987578,89.88095238,91.51515152,90.55555556

264

Energy Information Administration/Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

, , Energy Information Administration/Household Vehicles Energy Consumption 1994 ix Household Vehicles Energy Consumption 1994 presents statistics about energy-related characteristics of highway vehicles available for personal use by members of U.S. households. The data were collected in the 1994 Residential Transportation Energy Consumption Survey, the final cycle in a series of nationwide energy consumption surveys conducted during the 1980's and 1990's by the Energy Information Administrations. Engines Became More Powerful . . . Percent Distribution of Total Residential Vehicle Fleet by Number of Cylinders, 1988 and 1994 Percent Distribution of Vehicle Fleet by Engine Size, 1988 and 1994 Percent Percent 4 cyl Less than 2.50 liters 6 cyl 2.50- 4.49 liters 8 cyl 4.50 liters or greater 20 20 40 40 Vehicle

265

Island Wide Management Corporation  

Office of Legacy Management (LM)

9 1986 9 1986 Island Wide Management Corporation 3000 Marcus Avenue Lake Success, New York 11042 Dear Sir or Madam: I am sending you this letter and the enclosed information as you have been identified by L. I. Trinin of Glick Construction Company as the representatives of the owners of the property that was formerly the site of the Sylvania-Corning Nuclear Corporation in Bayside, New York. The Department of Energy is evaluating the radiological condition of sites that were utilized under the Manhattan Engineer District and/or the Atomic Energy Commission in the early years of nuclear energy development to determine whether they need remedial action and whether the Department has authority to perform such action. As you may know, the former Sylvania-Corning Corporation Bayside site was identified as one such site.

266

Household Energy Expenditure and Income Groups: Evidence from Great Britain  

E-Print Network (OSTI)

  and  0.024  for  district heating However, as income is not observed its effect cannot be analysed.  Wu et al. (2004) examine the demand for space heating in Armenia, Moldova, and  Kyrgyz  Republic  using  household  survey  data.  In  these  countries...  and in some regions incomes are not sufficient to  afford space heating from district heating systems making these systems unviable.  We  analyse  electricity,  gas  and  overall  energy  spending  for  a  large  sample  of  households  in  Great  Britain.  We  discern  inflection  points  and  discuss...

Jamasb, Tooraj; Meier, H

267

New York Household Travel Patterns: A Comparison Analysis  

SciTech Connect

In 1969, the U. S. Department of Transportation began collecting detailed data on personal travel to address various transportation planning issues. These issues range from assessing transportation investment programs to developing new technologies to alleviate congestion. This 1969 survey was the birth of the Nationwide Personal Transportation Survey (NPTS). The survey was conducted again in 1977, 1983, 1990 and 1995. Longer-distance travel was collected in 1977 and 1995. In 2001, the survey was renamed to the National Household Travel Survey (NHTS) and collected both daily and longer-distance trips in one survey. In addition to the number of sample households that the national NPTS/NHTS survey allotted to New York State (NYS), the state procured an additional sample of households in both the 1995 and 2001 surveys. In the 1995 survey, NYS procured an addition sample of more than 9,000 households, increasing the final NY NPTS sample size to a total of 11,004 households. Again in 2001, NYS procured 12,000 additional sample households, increasing the final New York NHTS sample size to a total of 13,423 households with usable data. These additional sample households allowed NYS to address transportation planning issues pertinent to geographic areas significantly smaller than for what the national NPTS and NHTS data are intended. Specifically, these larger sample sizes enable detailed analysis of twelve individual Metropolitan Planning Organizations (MPOs). Furthermore, they allowed NYS to address trends in travel behavior over time. In this report, travel data for the entire NYS were compared to those of the rest of the country with respect to personal travel behavior and key travel determinants. The influence of New York City (NYC) data on the comparisons of the state of New York to the rest of the country was also examined. Moreover, the analysis examined the relationship between population density and travel patterns, and the similarities and differences among New York MPOs. The 1995 and 2001 survey data make it possible to examine and identify travel trends over time. This report does not address, however, the causes of the differences and/or trends.

Hu, Patricia S [ORNL; Reuscher, Tim [ORNL

2007-05-01T23:59:59.000Z

268

A Glance at China’s Household Consumption  

SciTech Connect

Known for its scale, China is the most populous country with the world’s third largest economy. In the context of rising living standards, a relatively lower share of household consumption in its GDP, a strong domestic market and globalization, China is witnessing an unavoidable increase in household consumption, related energy consumption and carbon emissions. Chinese policy decision makers and researchers are well aware of these challenges and keen to promote green lifestyles. China has developed a series of energy policies and programs, and launched a wide?range social marketing activities to promote energy conservation.

Shui, Bin

2009-10-22T23:59:59.000Z

269

Racial and demographic differences in household travel and fuel purchase behavior  

Science Conference Proceedings (OSTI)

Monthly fuel purchase logs from the Residential Energy Consumption Survey's Household Transportation Panel (TP) were analyzed to determine the relationship between various household characteristics and purchase frequency, tank inventories, vehicle-miles traveled, and fuel expenditures. Multiple classification analysis (MCA) was used to relate observed differences in dependent variables to such index-type household characteristics as income and residence location, and sex, race and age of household head. Because it isolates the net effect of each parameter, after accounting for the effects of all other parameters, MCA is particularly appropriate for this type of analysis. Results reveal clear differences in travel and fuel purchase behavior for four distinct groups of vehicle-owning households. Black households tend to own far fewer vehicles with lower fuel economy, to use them more intensively, to purchase fuel more frequently, and to maintain lower fuel inventories than white households. Similarly, poor households own fewer vehicles with lower fuel economy, but they drive them less intensively, purchase fuel more frequently, and maintain lower fuel inventories than nonpoor households. Elderly households also own fewer vehicles with lower fuel economy. But since they drive them much less intensively, their fuel purchases are much less frequent and their fuel inventories are higher than nonelderly households. Female-headed households also own fewer vehicles but with somewhat higher fuel economy. They drive them less intensively, maintain higher fuel inventories, and purchase fuel less frequently than male-headed households. 13 refs., 8 tabs.

Gur, Y.; Millar, M.

1987-01-01T23:59:59.000Z

270

EvoNILM: evolutionary appliance detection for miscellaneous household appliances  

Science Conference Proceedings (OSTI)

To improve the energy awareness of consumers, it is necessary to provide them with information about their energy demand, not just on the household level. Non-intrusive load monitoring (NILM) gives the consumer the opportunity to disaggregate their consumed ... Keywords: evolutionary algorithm, load disaggregation, non-intrusive load monitoring

Dominik Egarter; Wilfried Elmenreich

2013-07-01T23:59:59.000Z

271

Modelling the Energy Demand of Households in a Combined  

E-Print Network (OSTI)

. Emissions from passenger transport, households'electricity and heat consumption are growing rapidly despite demand analysis for electricity (e.g. Larsen and Nesbakken, 2004; Holtedahl and Joutz, 2004; Hondroyiannis, 2004) and passenger cars (Meyer et al., 2007). Some recent studies cover the whole residential

Steininger, Karl W.

272

Interconnection Guidelines (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interconnection Guidelines (Rhode Island) Interconnection Guidelines (Rhode Island) Interconnection Guidelines (Rhode Island) < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Rhode Island Program Type Interconnection Provider Rhode Island Public Utilities Commission Rhode Island enacted legislation (HB 6222) in June 2011 to standardize the application process for the interconnection of customer-sited renewable-energy systems to the state's distribution grid. Rhode Island's interconnection policy is not nearly as comprehensive as

273

Rhode Island/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rhode Island Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Rhode Island No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Rhode Island No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Rhode Island No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Rhode Island Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

274

Better Buildings Neighborhood Program: Bainbridge Island, Washington  

NLE Websites -- All DOE Office Websites (Extended Search)

Bainbridge Bainbridge Island, Washington to someone by E-mail Share Better Buildings Neighborhood Program: Bainbridge Island, Washington on Facebook Tweet about Better Buildings Neighborhood Program: Bainbridge Island, Washington on Twitter Bookmark Better Buildings Neighborhood Program: Bainbridge Island, Washington on Google Bookmark Better Buildings Neighborhood Program: Bainbridge Island, Washington on Delicious Rank Better Buildings Neighborhood Program: Bainbridge Island, Washington on Digg Find More places to share Better Buildings Neighborhood Program: Bainbridge Island, Washington on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO

275

Climate Action Plan (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

In the fall of 2001, the Department of Environmental Management (DEM), the RI State Energy Office (SEO), and the Governor's office convened the Rhode Island Greenhouse Gas Stakeholder Project in...

276

Monhegan Island | Open Energy Information  

Open Energy Info (EERE)

Monhegan Island Monhegan Island Jump to: navigation, search Name Monhegan Island Facility Monhegan Island Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Maine State Dept of Conservation Developer DeepCWind Consortium Location Atlantic Ocean ME Coordinates 43.713°, -69.317° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.713,"lon":-69.317,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Carribean Islands | OpenEI  

Open Energy Info (EERE)

Carribean Islands Carribean Islands Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal flat-plate collectors, for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. Source NREL Date Released January 31st, 2004 (10 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords Carribean Islands Central America GEF GHI GIS Mexico NREL solar SWERA UNEP Data text/csv icon Download Data (csv, 370.6 KiB) application/zip icon Download Shapefile (zip, 244 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

278

Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island enacted legislation (H.B. 6104) in June 2011 establishing a feed-in tariff for new distributed renewable energy generators up to three megawatts (MW) in...

279

Rhode Island Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

280

Island Wakes in Deep Water  

Science Conference Proceedings (OSTI)

Density stratification and planetary rotation distinguish three-dimensional island wakes significantly from a classical fluid dynamical flow around an obstacle. A numerical model is used to study the formation and evolution of flow around an ...

Changming Dong; James C. McWilliams; Alexander F. Shchepetkin

2007-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Long Island | OpenEI  

Open Energy Info (EERE)

Long Island Long Island Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 79, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power Long Island projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Northeast Power Coordinating Council / Long Island- Reference Case (xls, 258.6 KiB)

282

Fuelwood Use by Rural Households in the Brazilian Atlantic Forest  

E-Print Network (OSTI)

Fuelwood is an important source of domestic energy in rural regions of Brazil. In the Zona da Mata of Minas Gerais, native species from the Atlantic Forest are an important source of fuelwood, supplemented by wood from eucalyptus and coffee plantations. The use of native species is complicated by their increasing scarcity and the recent enforcement of forest policies that prohibit the felling of even dead natives trees without a permit. In this study, the factors contributing to the use of fuelwood in this region, despite the simultaneous use of liquid petroleum gas in most households, are explored by examining fuelwood use patterns in four small rural communities in the Zona da Mata Mineira using household surveys and semi-structured interviews. Two hypotheses were tested using a Jacknife regression. The first hypothesis, based on the energy ladder model, tested the predictive power of socioeconomic status in relation to fuelwood use. Two dependent variables were used to represent the importance of fuelwood to a household: the amount of time a household spent collecting fuelwood (Effort) and the number of purposes a household used fuelwood for (Class of Fuelwood Use). Socioeconomic status did explain a statistically significant percentage of the variance in Effort, but not in Class of Fuelwood Use. The second hypothesis tested for a moderating effect of the availability of fuelwood on the relationship between the socioeconomic status of a household and the dependent variables. The interaction between access to fuelwood and socioeconomic status was shown to explain a significant percentage of the variance in Effort, thereby indicating that the effect of socioeconomic status on time spent collecting fuelwood depends on access to fuelwood. However, there was no statistically significant interaction found between Class of Fuelwood Use and fuelwood availability. The Atlantic Forest Policy was found to have little influence on domestic energy decisions made by surveyed households. Few research subjects had a good understanding of the basic tenets of this policy and the Forest Police do not have adequate resources to enforce the policy at this level.

Wilcox-Moore, Kellie J.

2010-05-01T23:59:59.000Z

283

Alternative Fuels Data Center: Rhode Island Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rhode Island Rhode Island Information to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Information on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Information on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Information on Google Bookmark Alternative Fuels Data Center: Rhode Island Information on Delicious Rank Alternative Fuels Data Center: Rhode Island Information on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Information on AddThis.com... Rhode Island Information This state page compiles information related to alternative fuels and advanced vehicles in Rhode Island and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact.

284

Using unlabeled Wi-Fi scan data to discover occupancy patterns of private households  

Science Conference Proceedings (OSTI)

This poster presents the homeset algorithm, a lightweight approach to estimate occupancy schedules of private households. The algorithm relies on the mobile phones of households' occupants to collect Wi-Fi scans. The scans are then used to determine ...

Wilhelm Kleiminger, Christian Beckel, Anind Dey, Silvia Santini

2013-11-01T23:59:59.000Z

285

California’s Immigrant Households and Public-Assistance Participation in the 1990s - Policy Brief  

E-Print Network (OSTI)

with Dependent Children (AFDC)/California Work Opportunitystate households participating in AFDC/ CalWORKs pro- grams.of noncitizen households received AFDC, compared to 4.5% of

2002-01-01T23:59:59.000Z

286

Table 1. Total Energy Consumption in U.S. Households by Origin ...  

U.S. Energy Information Administration (EIA)

Wood (million cords) ..... 21.4 19.8 0.8 0.6 0.3 19.3 Million Btu per Household3 Total Btu Consumption per Household, Fuels Used: Electricity Primary ...

287

An Analysis of the Price Elasticity of Demand for Household Appliances  

E-Print Network (OSTI)

Customers’ Choice of Appliance Efficiency Level: CombiningThe Effect of Income on Appliances in U.S. Households. U.S.Household’s Choice of Appliance Efficiency Level. Review of

Dale, Larry

2008-01-01T23:59:59.000Z

288

Household Vehicles Energy Use: Latest Data and Trends - Table A04  

U.S. Energy Information Administration (EIA)

... Buildings & Industry > Transportation Surveys > Household Vehicles Energy ... U.S. Vehicles by Model ... Office of Coal, Nuclear, Electric, and Alternate ...

289

Household energy and consumption and expenditures, 1990. [Contains Division, Census Region, and Climate Zone maps  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

290

19Ne levels studied with the 18F(d,n)19Ne*(18F+p) reaction  

Science Conference Proceedings (OSTI)

A good understanding of the level structure of 19Ne around the proton threshold is critical to estimating the destruction of long-lived 18F in novae. Here we report the properties of levels in 19Ne in the excitation energy range of 6.9 Ex 8.4 MeV studied via the proton-transfer 18F(d, n)Ne reaction at the Holifield Radioactive Ion Beam Facility. The populated 19Ne levels decay by breakup into p + 18F and + 15O particles. The results presented in this manuscript are those of levels that are simultaneously observed from the breakup into both channels. An s-wave state is observed at 1468 keV above the proton threshold, which is a potential candidate for a predicted broad J = 1/2+ state. The proton and partial widths are deduced to be p = 228 50 keV and = 130 30 keV for this state.

Adekola, A. S. [Ohio University, Athens; Brune, C. R. [Ohio University; Bardayan, Daniel W [ORNL; Blackmon, Jeffery C [Louisiana State University; Chae, K. Y. [University of Tennessee, Knoxville (UTK); Cizewski, J. A. [Rutgers University; Jones, K. L. [University of Tennessee, Knoxville (UTK); Kozub, R. L. [Tennessee Technological University; Massey, T. [Ohio University; Nesaraja, Caroline D [ORNL; Pain, Steven D [ORNL; ShrinerJr., J. F. [Tennessee Technological University; Smith, Michael Scott [ORNL; Thomas, J. S. [Rutgers University

2012-01-01T23:59:59.000Z

291

State Energy Program Assurances - Virgin Islands Governor de...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virgin Islands Governor de Jongh State Energy Program Assurances - Virgin Islands Governor de Jongh Letter from Virgin Islands Governor de Jongh providing Secretary Chu with the...

292

Prehistoric Exploitation of Albatross on the Southern California Channel Islands  

E-Print Network (OSTI)

J. 1959 Fauna of the Aleutian Islands and Alaska Peninsula.398. Yesner, David R. 1976 Aleutian Island Albatrosses: Aor in the more northem Aleutian Islands (Yesner 1976), these

Porcasi, Judith F.

1999-01-01T23:59:59.000Z

293

Rhode Island - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Solar › Energy in Brief. ... US Virgin Islands: Overview; Data; Economy; ... Rhode Island’s energy resources include fuelwood in the south and wind power on and ...

294

MiniBooNE "Windows on the Universe"  

Science Conference Proceedings (OSTI)

Progress in the last few decades has left neutrino physics with several vexing issues. Among them are the following questions: (1) Why are lepton mixing angles so different from those in the quark sector? (2) What is the most probable range of the reactor mixing angle? (3) Is the atmospheric mixing angle maximal? (4) What is the number of fermion generations? These are some of the issues that neutrino science hopes to study; this article will explore these questions as part of a more general scientific landscape, and will discuss the part MiniBooNE might play in this exploration. We discuss the current state of measurements taken by MiniBooNE, and emphasize the uniqueness of neutrino oscillations as an important probe into the 'Windows on the Universe.'

Stefanski, Ray; /Fermilab

2010-12-09T23:59:59.000Z

295

File:EIA-Williston-NE-Gas.pdf | Open Energy Information  

Open Energy Info (EERE)

Williston-NE-Gas.pdf Williston-NE-Gas.pdf Jump to: navigation, search File File history File usage Williston Basin, Northeast Part By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 5.95 MB, MIME type: application/pdf) Description Williston Basin, Northeast Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Montana, North Dakota, South Dakota File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

296

Overview of DOE-NE Proliferation and Terrorism Risk Assessment  

SciTech Connect

Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism. The goal is to enable the use of risk information to inform NE R&D program planning. The PTRA program supports DOE-NE's goal of using risk information to inform R&D program planning. The FY12 PTRA program is focused on terrorism risk. The program includes a mix of innovative methods that support the general practice of risk assessments, and selected applications.

Sadasivan, Pratap [Los Alamos National Laboratory

2012-08-24T23:59:59.000Z

297

Neutrino and Antineutrino Cross sections at MiniBooNE  

SciTech Connect

The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH2). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

Dharmapalan, Ranjan; /Alabama U.

2011-10-01T23:59:59.000Z

298

Ne IX emission-line ratios in solar active regions  

Science Conference Proceedings (OSTI)

Emission-line ratios for Ne IX are derived and compared with observational data for solar active regions obtained with the SOLEX B spectrometer on the P78-1 satellite. Excellent agreement is obtained, providing support for the atomic data adopted in the calculations and resolving discrepancies between existing theoretical calculations and solar data. The calculated R-ratio for the low-density limit agrees well with the SOLEX observations. 47 references.

Keenan, F.P.; Mccann, S.M.; Kingston, A.E.; Mckenzie, D.L.

1987-07-01T23:59:59.000Z

299

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

This page left blank. This page left blank. E N E R G Y O V E RV I E W ENERGY INFORMATION ADMINISTRATION/HOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS ENERGY OVERVIEW E N E R G Y O V E RV I E W INTRODUCTION Author's Note Estimates of gallons of fuel consumed, type of fuel used, price paid for fuel, and fuel economy are based on data imputed by EIA, using vehicle characteristics and vehicle-miles traveled data collected during the interview process for the 2001 National Household Travel Survey (NHTS). Rather than obtaining that information directly from fuel purchase diaries, EIA exploited its experience and expertise with modeling techniques for transportation studies, filling missing and uncollected data with information reported to other federal agencies, as described in Appendices

300

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

B B : E S T I M AT I O N M E T H O D O L O G I E S APPENDIX B A P P E N D I X B ESTIMATION METHODOLOGIES INTRODUCTION The National Household Travel Survey (NHTS) is the nation's inventory of local and long distance travel, according to the U.S. Department of Transportation. Between April 2001 and May 2002, roughly 26 thousand households 41 were interviewed about their travel, based on the use of over 53 thousand vehicles. Using confidential data collected during those interviews, coupled with EIA's retail fuel prices, external data sources of test 42 fuel economy, and internal procedures for modifying test fuel economy to on-road, in-use fuel economy, EIA has extended this inventory to include the energy used for travel, thereby continuing a data series that was discontinued by EIA in 1994. This appendix presents the methods used for each eligible sampled

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

RECS data show decreased energy consumption per household  

Reports and Publications (EIA)

Total United States energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the number and average size of housing units, according to the newly released data from the Residential Energy Consumption Survey (RECS). The average household consumed 90 million British thermal units (Btu) in 2009 based on RECS. This continues the downward trend in average residential energy consumption of the last 30 years. Despite increases in the number and the average size of homes plus increased use of electronics, improvements in efficiency for space heating, air conditioning, and major appliances have all led to decreased consumption per household. Newer homes also tend to feature better insulation and other characteristics, such as double-pane windows, that improve the building envelope.

2012-06-06T23:59:59.000Z

302

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

E E N E R G Y O V E RV I E W ENERGY INFORMATION ADMINISTRATION/HOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS ENERGY OVERVIEW E N E R G Y O V E RV I E W INTRODUCTION Author's Note Estimates of gallons of fuel consumed, type of fuel used, price paid for fuel, and fuel economy are based on data imputed by EIA, using vehicle characteristics and vehicle-miles traveled data collected during the interview process for the 2001 National Household Travel Survey (NHTS). Rather than obtaining that information directly from fuel purchase diaries, EIA exploited its experience and expertise with modeling techniques for transportation studies, filling missing and uncollected data with information reported to other federal agencies, as described in Appendices B and C of this report.

303

Energy conservation for household refrigerators and water heaters  

Science Conference Proceedings (OSTI)

An energy conservation arrangement for household refrigerators and water heaters, in which the source of cold water to the hot water heater is divided and part is caused to flow through and be warmed in the condenser of the refrigerator. The warmed water is then further heated in the oil cooling loop of the refrigerator compressor, and proceeds then to the top of the hot water tank.

Speicher, T. L.

1984-12-11T23:59:59.000Z

304

Elasticities of Electricity Demand in Urban Indian Households  

E-Print Network (OSTI)

Energy demand, and in particular electricity demand in India has been growing at a very rapid rate over the last decade. Given, current trends in population growth, industrialisation, urbanisation, modernisation and income growth, electricity consumption is expected to increase substantially in the coming decades as well. Tariff reforms could play a potentially important role as a demand side management tool in India. However, the effects of any price revisions on consumption will depend on the price elasticity of demand for electricity. In the past, electricity demand studies for India published in international journals have been based on aggregate macro data at the country or sub-national / state level. In this paper, price and income elasticities of electricity demand in the residential sector of all urban areas of India are estimated for the first time using disaggregate level survey data for over thirty thousand households. Three electricity demand functions have been estimated using monthly data for the following seasons: winter, monsoon and summer. The results show electricity demand is income and price inelastic in all three seasons, and that household, demographic and geographical variables are important in determining electricity demand, something that is not possible to determine using aggregate macro models alone. Key Words Residential electricity demand, price elasticity, income elasticity Short Title Electricity demand in Indian households Acknowledgements: The authors would like to gratefully acknowledge the National Sample Survey Organisation, Department of Statistics of the Government of India, for making available to us the unit level, household survey data. We would also like to thank Prof. Daniel Spreng for his support of our research. 2 1.

Shonali Pachauri

2002-01-01T23:59:59.000Z

305

US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project  

Open Energy Info (EERE)

US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project Jump to: navigation, search Logo: US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project Name US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project Agency/Company /Organization National Renewable Energy Laboratory, United States Department of Energy Partner EDIN Initiative Partners Sector Energy Focus Area Energy Efficiency Topics Background analysis, Low emission development planning Website http://www.edinenergy.org/usvi Country US Virgin Islands Latin America and the Caribbean References National Renewable Energy Laboratory, EERE Supported International Activities FY 2009 Annual Operating Plan (August 25, 2009 Abstract The purpose of the EDIN pilot is to have a meaningful impact in a short duration by developing clean energy technologies, policies, and financing mechanisms for the pilot island with projects whose elements can be repeated on other islands.

306

Sizing Wind/Photovoltaic Hybrids for Households in Inner Mongolia  

DOE Green Energy (OSTI)

Approximately 140,000 wind turbines currently provide electricity to about one-third of the non-grid-connected households in Inner Mongolia. However, these households often suffer from a lack of power during the low-wind summer months. This report describes an analysis of hybrid wind/photovoltaic (PV) systems for such households. The sizing of the major components is based on a subjective trade-off between the cost of the system and the percent unmet load, as determined by the Hybrid 2 software in conjunction with a simplified time-series model. Actual resource data (wind speed and solar radiation) from the region are processed so as to best represent the scenarios of interest. Small wind turbines of both Chinese and U.S. manufacture are considered in the designs. The results indicate that combinations of wind and PV are more cost-effective than either one alone, and that the relative amount of PV in the design increases as the acceptable unmet load decreases and as the average wind sp eed decreases.

Barley, C. D.; Lew, D. J.; Flowers, L. T.

1997-06-01T23:59:59.000Z

307

Long Island STEM Hub Summit  

NLE Websites -- All DOE Office Websites (Extended Search)

Questionnaire Questionnaire Event Information pulldown Registered Attendees Directions to Event Campus Map (pdf) Local Weather Visiting Brookhaven Disclaimer Event Date December 6, 2011 Event Location SUNY Farmingdale State College 2350 Broadhollow Road Farmingdale, NY 11735-1021 USA Roosevelt Hall Directions | Campus Map (pdf) Event Coordinator Ken White Bus: 631-344-7171 Fax: 631-344-5832 Email: stemhub@bnl.gov Long Island STEM Hub Summit Join us for the Launch of the Long Island Regional STEM Hub Motivation The LI Regional STEM Hub, one of ten forming in the Empire State STEM Learning Network, will focus on preparing students for the Long Island workforce through enhanced science, technology, engineering, and mathematics (STEM) experiences for students and teachers. Academic relevance will serve as the major theme by making it easy for

308

Vanishing N=20 Shell Gap: Study of Excited States in {sup 27,28}Ne  

Science Conference Proceedings (OSTI)

This Letter reports on the {sup 1}H({sup 28}Ne,{sup 28}Ne) and {sup 1}H({sup 28}Ne,{sup 27}Ne) reactions studied at intermediate energy using a liquid hydrogen target. From the cross section populating the first 2{sup +} excited state of {sup 28}Ne, and using the previously determined B(E2) value, the neutron quadrupole transition matrix element has been calculated to be M{sub n}=13.8{+-}3.7 fm{sup 2}. In the neutron knockout reaction, two low-lying excited states were populated in {sup 27}Ne. Only one of them can be interpreted by the sd shell model while the additional state may intrude from the fp shell. These experimental observations are consistent with the presence of fp shell configurations at low excitation energy in {sup 27,28}Ne nuclei caused by a vanishing N=20 shell gap at Z=10.

Dombradi, Zs.; Fueloep, Zs. [Institute of Nuclear Research of the Hungarian Academy of Sciences, P.O. Box 51, Debrecen, H-4001 (Hungary); Elekes, Z. [Institute of Nuclear Research of the Hungarian Academy of Sciences, P.O. Box 51, Debrecen, H-4001 (Hungary); Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Saito, A.; Baba, H.; Demichi, K.; Gomi, T.; Hasegawa, H.; Kanno, S.; Kawai, S.; Kurita, K.; Matsuyama, Y.; Sakai, H.K.; Takeshita, E.; Togano, Y.; Yamada, K. [Rikkyo University, 3 Nishi-Ikebukuro, Toshima, Tokyo 171 (Japan); Aoi, N.; Ishihara, M.; Kishida, T.; Kubo, T. [Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] (and others)

2006-05-12T23:59:59.000Z

309

Rhode Island Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... including hydroelectric power, municipal solid waste, and landfill gas. Rhode Island has potential wind energy generation from offshore wind farms.

310

Islands and Our Renewable Energy Future (Presentation)  

DOE Green Energy (OSTI)

Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

2012-05-01T23:59:59.000Z

311

Long Island Solar Farm Project Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Island Solar Farm Island Solar Farm Project Overview The Long Island Solar Farm (LISF) is a 32-megawatt solar photovoltaic power plant built through a collaboration including BP Solar, the Long Island Power Authority (LIPA), and the Department of Energy. The LISF, located on the Brookhaven National Laboratory site, began delivering power to the LIPA grid in November 2011, and is currently the largest solar photovoltaic power plant in the Eastern United States. It is generating enough renewable

312

Water Quality Regulations (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulations (Rhode Island) Water Quality Regulations (Rhode Island) Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public...

313

Indoor Secondary Pollutants from Household Product Emissions in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Secondary Pollutants from Household Product Emissions in the Indoor Secondary Pollutants from Household Product Emissions in the Presence of Ozone: A Bench-Scale Chamber Study Title Indoor Secondary Pollutants from Household Product Emissions in the Presence of Ozone: A Bench-Scale Chamber Study Publication Type Journal Article LBNL Report Number LBNL-58785 Year of Publication 2006 Authors Destaillats, Hugo, Melissa M. Lunden, Brett C. Singer, Beverly K. Coleman, Alfred T. Hodgson, Charles J. Weschler, and William W. Nazaroff Journal Environmental Science and Technology Volume 40 Start Page Chapter Pagination 4421-4428 Abstract Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 × 105 molecules cm-3 were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1 - 25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products

314

Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 5, 1: January 5, 2004 Number of Household Vehicles has Grown Significantly to someone by E-mail Share Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Facebook Tweet about Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Twitter Bookmark Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Google Bookmark Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Delicious Rank Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Digg Find More places to share Vehicle Technologies Office: Fact #301:

315

Fox Islands Wind Project | Open Energy Information  

Open Energy Info (EERE)

Fox Islands Wind Project Fox Islands Wind Project Facility Fox Islands Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Fox Islands Electric Cooperative Developer Fox Islands Electric Cooperative Energy Purchaser Fox Islands Electric Cooperative Location Vinalhaven Island ME Coordinates 44.088391°, -68.857802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.088391,"lon":-68.857802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

MWRA Deer Island Wind | Open Energy Information  

Open Energy Info (EERE)

MWRA Deer Island Wind MWRA Deer Island Wind Jump to: navigation, search Name MWRA Deer Island Wind Facility MWRA Deer Island Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MWRA Deer Island Energy Purchaser MWRA Deer Island Location Deer Island MA Coordinates 42.346751°, -70.957006° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.346751,"lon":-70.957006,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Magnetic island evolution in hot ion plasmas  

SciTech Connect

Effects of finite ion temperature on magnetic island evolution are studied by means of numerical simulations of a reduced set of two-fluid equations which include ion as well as electron diamagnetism in slab geometry. The polarization current is found to be almost an order of magnitude larger in hot than in cold ion plasmas, due to the strong shear of ion velocity around the separatrix of the magnetic islands. As a function of the island width, the propagation speed decreases from the electron drift velocity (for islands thinner than the Larmor radius) to values close to the guiding-center velocity (for islands of order 10 times the Larmor radius). In the latter regime, the polarization current is destabilizing (i.e., it drives magnetic island growth). This is in contrast to cold ion plasmas, where the polarization current is generally found to have a healing effect on freely propagating magnetic island.

Ishizawa, A.; Nakajima, N. [National Institute for Fusion Science, Toki 509-5292 (Japan); Waelbroeck, F. L.; Fitzpatrick, R.; Horton, W. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

2012-07-15T23:59:59.000Z

318

2013 Annual DOE-NE Materials Research Coordination Meeting | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2013 coordination meeting as a series of four web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote greater coordination among the various Office of Nuclear Energy (NE) programs. Currently, materials research is performed in several NE programs, including NE Advanced Modeling and Simulation (NEAMS), Fuel Cycle Research and Development (FCRD), Advanced Reactor Technologies

319

2013 Annual DOE-NE Materials Research Coordination Meeting | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2013 coordination meeting as a series of four web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote greater coordination among the various Office of Nuclear Energy (NE) programs. Currently, materials research is performed in several NE programs, including NE Advanced Modeling and Simulation (NEAMS), Fuel Cycle Research and Development (FCRD), Advanced Reactor Technologies

320

R-Process in Collapsing O/Ne/Mg Cores  

E-Print Network (OSTI)

Several circumstantial arguments point to the formation of the third r-process peak at A about 190, near platinum, in stars of mass of about 8-10 solar masses: 1) The delayed production of europium with respect to iron imposes a time scale that restricts the progenitor stars to less than about 10 solar masses; 2) the r-process demands a dominant robust mechanism at least for barium and above, since the relative abundance pattern of those r-process elements in low-metallicity stars is consistent with the solar pattern; 3) stars of about 8-10 solar masses produce nearly identical degenerate O/Ne/Mg cores that collapse due to electron capture; and 4) the resulting low-mass cores may produce both an r-process in a prompt explosion and a subsequent r-process in a neutrino driven wind. The prompt explosion of an O/Ne/Mg core yields low entropy and low electron fraction, and hence may produce a reasonable r-process peak at A about 190 as well as all of the r-process elements with Z greater than 56. The possible diff...

Wheeler, J C; Hillebrandt, W; Cowan, John J.; Hillebrandt, Wolfgang

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

R-Process in Collapsing O/Ne/Mg Cores  

E-Print Network (OSTI)

Several circumstantial arguments point to the formation of the third r-process peak at A about 190, near platinum, in stars of mass of about 8-10 solar masses: 1) The delayed production of europium with respect to iron imposes a time scale that restricts the progenitor stars to less than about 10 solar masses; 2) the r-process demands a dominant robust mechanism at least for barium and above, since the relative abundance pattern of those r-process elements in low-metallicity stars is consistent with the solar pattern; 3) stars of about 8-10 solar masses produce nearly identical degenerate O/Ne/Mg cores that collapse due to electron capture; and 4) the resulting low-mass cores may produce both an r-process in a prompt explosion and a subsequent r-process in a neutrino driven wind. The prompt explosion of an O/Ne/Mg core yields low entropy and low electron fraction, and hence may produce a reasonable r-process peak at A about 190 as well as all of the r-process elements with Z greater than 56. The possible differences in the neutrino-driven wind and associated r-process due to the low-mass neutron stars expected in this mass range are also discussed.

J. Craig Wheeler; John J. Cowan; Wolfgang Hillebrandt

1997-11-22T23:59:59.000Z

322

Exemplifying Business Opportunities for Improving Data Quality From Corporate Household Research  

E-Print Network (OSTI)

Corporate household (CHH) refers to the organizational information about the structure within the corporation and a variety of inter-organizational relationships. Knowledge derived from this data is ...

Madnick, Stuart

2004-12-10T23:59:59.000Z

323

U.S. households forecast to use more heating fuels this ...  

U.S. Energy Information Administration (EIA)

What is the role of coal in the United States? ... 2012 U.S. households ... many located in rural areas. Propane inventories totaled almost 76 million ...

324

Methodology and Estimation of the Welfare Impact of Energy Reforms on Households in Azerbaijan.  

E-Print Network (OSTI)

??ABSTRACT Title of Dissertation: METHODOLOGY AND ESTIMATION OF THE WELFARE IMPACT OF ENERGY REFORMS ON HOUSEHOLDS IN AZERBAIJAN Irina Klytchnikova, Doctor of Philosophy, 2006 Dissertation… (more)

Klytchnikova, Irina

2006-01-01T23:59:59.000Z

325

Table CE1-4c. Total Energy Consumption in U.S. Households by Type ...  

U.S. Energy Information Administration (EIA)

Total Energy Consumption in U.S. Households by Type of Housing Unit, 2001 RSE Column Factor: Total ... where the end use is electric air-conditioning, ...

326

The Other Energy Crisis: Managing Urban Household Energy Use in Senegal  

E-Print Network (OSTI)

for 62 percent of national energy consumption, or over 1 .1energy consumption, and (2) residential, because of the dominant role that households play in national

Leitmann, Josef

1989-01-01T23:59:59.000Z

327

Table HC6.7 Air-Conditioning Usage Indicators by Number of Household...  

Gasoline and Diesel Fuel Update (EIA)

7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 Total... 111.1 30.0 34.8 18.4 15.9...

328

Table 1. Consumption and Expenditures in U.S. Households, 1997  

U.S. Energy Information Administration (EIA)

A household is assigned to a climate zone according to the 30-year average annual degree-days for an appropriate nearby weather station. (5) ...

329

In the UNITED STATES there are 96.6 million households  

U.S. Energy Information Administration (EIA)

In the UNITED STATES there are 96.6 million households 69% are single-family homes; 25% are apartments; and 6% are mobile homes. Housing stock is ...

330

Table 1. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

This write-up presents 1997 Residential Energy Consumption and Expenditures by Origin of Householder. In 1997, there were 101.5 million residential ho ...

331

Table WH2. Total Households by Water Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Water Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Table WH2.

332

Residential energy consumption and expenditure patterns of black and nonblack households in the United States  

Science Conference Proceedings (OSTI)

Residential energy consumption and expenditures by black and nonblack households are presented by Census region and for the nation based on the Energy Information Administration's 1982-83 Residential Energy Consumption Survey (RECS). Black households were found to have significantly lower levels of electricity consumption at both the national and regional level. Natural gas is the dominant space heating fuel used by black households. Natural gas consumption was typically higher for black households. However, when considering natural gas consumption conditional on natural gas space heating no significant differences were found. 10 refs., 1 fig., 8 tabs.

Vyas, A.D.; Poyer, D.A.

1987-01-01T23:59:59.000Z

333

Table CE1-7c. Total Energy Consumption in U.S. Households by Four ...  

U.S. Energy Information Administration (EIA)

Other Appliances and Lighting ... It does include the small number of households where the fuel for central air-conditioning equipment was something other than ...

334

Household Vehicles Energy Use: Latest Data and Trends - Table A01  

U.S. Energy Information Administration (EIA)

U.S. Per Household Vehicle-Miles Traveled ... and Alternate Fuels, Form EIA-826, "Monthly Electric Utility Sales and Revenue Report with State Distributions."

335

Household Vehicles Energy Use: Latest Data and Trends - Table A01  

U.S. Energy Information Administration (EIA)

Table A1. U.S. Number of Vehicles, Vehicles-Miles, Motor Fuel Consumption and Expenditures, 2001: 2001 Household and Vehicle Characteristics

336

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network (OSTI)

In contrast to a hybrid vehicle whichcombines multiple1994) "Demand Electric Vehicles in Hybrid for Households:or 180 mile hybrid electric vehicle. Natural gas vehicles (

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

337

The impact of physical planning policy on household energy use and greenhouse emissions .  

E-Print Network (OSTI)

??This thesis investigates the impact of physical planning policy on combined transport and dwelling-related energy use by households. Separate analyses and reviews are conducted into… (more)

Rickwood, Peter

338

Table AP1. Total Households Using Home Appliances and Lighting by ...  

U.S. Energy Information Administration (EIA)

Total Consumption for Home Appliances and Lighting by Fuels Used, 2005 Quadrillion British Thermal Units (Btu) U.S. Households (millions) Electricity

339

Table SH2. Total Households by Space Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Space Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: ... Electricity Natural Gas Fuel Oil Kerosene LPG Other

340

Table 2. Fuel Oil Consumption and Expeditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Fuel Oil Consumption and Expeditures in U.S. Households ... Space Heating - Main or Secondary ... Forms EIA-457 A-G of the 2001 Residential Energy Consumption

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Effect of Income on Appliances in U.S. Households, The  

Reports and Publications (EIA)

This web page page entails how people live, the factors that cause the most differences in home lifestyle, including energy use in Geographic Location, Socioeconomics and Household Income.

Michael Laurence

2004-01-01T23:59:59.000Z

342

U.S. household expenditures for gasoline account for nearly 4% of ...  

U.S. Energy Information Administration (EIA)

Electricity. Sales, revenue and prices, power plants, fuel use, ... a rise in average gasoline prices has led to higher overall household gasoline expenditures.

343

Assessing the Environmental Costs and Benefits of Households Electricity Consumption Management.  

E-Print Network (OSTI)

?? In this study the environmental costs and benefits of smart metering technology systems installed in households in Norway have been assessed. Smart metering technology… (more)

Segtnan, Ida Lund

2011-01-01T23:59:59.000Z

344

Material World: Forecasting Household Appliance Ownership in a Growing Global Economy  

E-Print Network (OSTI)

and V. Letschert (2005). Forecasting Electricity Demand in8364 Material World: Forecasting Household ApplianceMcNeil, 2008). Forecasting Diffusion Forecasting Variables

Letschert, Virginie

2010-01-01T23:59:59.000Z

345

An Analysis of the Price Elasticity of Demand for Household Appliances  

E-Print Network (OSTI)

Refrigerators Clothes Washers Dishwashers Economic VariablesWASHERS, AND DISHWASHERS……………………………3 Physical Household andclothes washers and dishwashers. In the context of

Dale, Larry

2008-01-01T23:59:59.000Z

346

Table 3. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

This write-up presents 1997 Residential Energy Consumption and Expenditures by Origin of Householder. In 1997, there were 101.5 million residential ...

347

U.S. household expenditures for gasoline account for nearly 4% ...  

U.S. Energy Information Administration (EIA)

Gasoline expenditures in 2012 for the average U.S. household reached $2,912, or just under 4% of income before taxes, according to EIA estimates.

348

TWP Island Cloud Trail Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Pacific Island Cloud Trail Studies Pacific Island Cloud Trail Studies W. M. Porch Los Alamos National Laboratory Los Alamos, New Mexico S. Winiecki University of Chicago Chicago, Illinois Introduction Images and surface temperature measurements from the U.S. Department of Energy (DOE) Multi- spectral Thermal Imaging (MTI) satellite are combined with geostationary meteorological satellite (GMS) images during 2000 and 2001 to better understand cloud trail formation characteristics from the Atmospheric Radiation Measurement (ARM) Tropical Western Pacific (TWP) site. Figure 1 shows a comparison on two consecutive days in December 2000. The day for which a cloud trail developed was more moist and cooler at the altitude the cloud developed (about 600 m) and there was very little

349

An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage  

SciTech Connect

In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

Poyer, D.A.

1992-01-01T23:59:59.000Z

350

An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage  

SciTech Connect

In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

Poyer, D.A.

1992-06-01T23:59:59.000Z

351

A Case Study For Geothermal Exploration In The Ne German Basin...  

Open Energy Info (EERE)

icon Twitter icon A Case Study For Geothermal Exploration In The Ne German Basin- Integrated Interpretation Of Seismic Tomography, Litho-Stratigraphy, Salt Tectonics, And...

352

Pathogenicity island mobility and gene content.  

SciTech Connect

Key goals towards national biosecurity include methods for analyzing pathogens, predicting their emergence, and developing countermeasures. These goals are served by studying bacterial genes that promote pathogenicity and the pathogenicity islands that mobilize them. Cyberinfrastructure promoting an island database advances this field and enables deeper bioinformatic analysis that may identify novel pathogenicity genes. New automated methods and rich visualizations were developed for identifying pathogenicity islands, based on the principle that islands occur sporadically among closely related strains. The chromosomally-ordered pan-genome organizes all genes from a clade of strains; gaps in this visualization indicate islands, and decorations of the gene matrix facilitate exploration of island gene functions. A %E2%80%9Clearned phyloblocks%E2%80%9D method was developed for automated island identification, that trains on the phylogenetic patterns of islands identified by other methods. Learned phyloblocks better defined termini of previously identified islands in multidrug-resistant Klebsiella pneumoniae ATCC BAA-2146, and found its only antibiotic resistance island.

Williams, Kelly Porter

2013-10-01T23:59:59.000Z

353

Fire Island Wind Project | Open Energy Information  

Open Energy Info (EERE)

Island Wind Project Island Wind Project Jump to: navigation, search Name Fire Island Wind Project Facility Fire Island Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner CIRI Developer Fire Island Wind LLC Energy Purchaser Chugach Location Fire Island AK Coordinates 61.144146°, -150.217652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.144146,"lon":-150.217652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Case Closed on Nauru Island Effect  

NLE Websites -- All DOE Office Websites (Extended Search)

Closed on Nauru Island Effect Closed on Nauru Island Effect For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight The tiny 4-kilometer-by-6-kilometer island of Nauru is isolated in the equatorial Pacific Ocean with naught but a few small scattered islands for thousands of kilometers around. Thus, the ARM measurements made there are intended to represent the larger surrounding oceanic area. But decades of phosphate mining have left large barren karst fields as the predominant land surface over most of the center of the island, making it much more susceptible to solar heating than typical tropical vegetated surfaces. During the Nauru99 campaign, small cumulus clouds were observed at times forming over the center of the island, advecting over the ARM site

355

Long Island Solar Farm | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Long Island Solar Farm Long Island Solar Farm Project Overview The Long Island Solar Farm (LISF) is a 32-megawatt solar photovoltaic power plant built through a collaboration including BP Solar, the Long Island Power Authority (LIPA), and the Department of Energy. The LISF, located on the Brookhaven National Laboratory site, began delivering power to the LIPA grid in November 2011, and is currently the largest solar photovoltaic power plant in the Eastern United States. It is generating enough renewable energy to power approximately 4,500 homes, and is helping New York State meet its clean energy and carbon reduction goals. Project Developer/Owner/Operator: Long Island Solar Farm, LLC (BP Solar & MetLife) Purchaser of Power: Long Island Power Authority (LIPA) purchases 100

356

Rhode Island | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island Last updated on 2013-11-05 Current News 2012 IECC adopted July 1, 2013 Commercial Residential Code Change Current Code 2012 IECC Amendments / Additional State Code Information The Rhode Island commercial code is the 2012 IECC with reference to ASHRAE 90.1-2010. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Rhode Island (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2012 IECC Effective Date 07/01/2013 Adoption Date 07/01/2013 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes Rhode Island DOE Determination Letter, May 31, 2013 Rhode Island State Certification of Commercial and Residential Building Energy Codes

357

Idaho National Laboratory DOE-NE's National Nuclear Capability-  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4-2023 4-2023 Idaho National Laboratory DOE-NE's National Nuclear Capability- Developing and Maintaining the INL Infrastructure TEN-YEAR SITE PLAN DOE/ID-11474 Final June 2012 Sustainable INL continues to exceed DOE goals for reduction in the use of petroleum fuels - running its entire bus fleet on biodiesel while converting 75% of its light-duty fleet to E85 fuel. The Energy Systems Laboratory (ESL), slated for completion this year, will be a state-of-the-art laboratory with high-bay lab space where leading bioenergy feedstock processing, advanced battery testing, and hybrid energy systems integration research will be conducted. The Advanced Test Reactor is the world's most advanced nuclear research capability - crucial to (1) the ongoing development of safe, efficient

358

NE-24 Unlverslty of Chicayo Remedial Action Plan  

Office of Legacy Management (LM)

(YJ 4 tlsj .?I2 (YJ 4 tlsj .?I2 416 17 1983 NE-24 Unlverslty of Chicayo Remedial Action Plan 22&d 7 IA +-- E. I.. Keller, Director Technical Services Division Oak Ridge Operations Ufflce In response to your memorandum dated July 29, 1983, the Field Task Proposal/Agreement (FTP/A) received frw Aryonne National Laboratory (ANL) appears to be satisfactory, and this office concurs in the use of ANL to provide the decontamination effort as noted in the FTP/A. The final decontaminatton report should Include the data needed for certiff- cation of the cleanup and any contamination left In place, e.g., sewer lines should be so documented in the permanent records of the University as well as the certification documents and reports. The remedial action to be conducted appears to be clearly InsIgnifIcant from an environmental

359

Participants: William Naughton, COHMED Bill Sherman, NE HLRW Task Force  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

conference call May 27, 1998 conference call May 27, 1998 Participants: William Naughton, COHMED Bill Sherman, NE HLRW Task Force Bob Fronczak, AAR Mike Butler, UETC Ray English, DOE-NR George Ruberg, UETC Kevin Blackwell, FRA Markus Popa, DOE-RW Sandy Covi, UP The Rail Topic Group is currently in a transitional mode, moving simultaneously toward closure of the two rail information matrices, Comparison of CVSA Recommended National Procedures and Out-Of-Service Criteria for the Enhanced Safety Inspection of Commercial Highway Vehicles Transporting Transuranics, Spent Nuclear Fuel, and High Level Waste to Rail Inspection Standards, and Rail and Highway Regulations Relative to the Transportation of Radioactive Materials and their Applicability to States, Tribes, Shippers, and Carriers, (both

360

EG&G SURVEY REPORT NE-F-003  

Office of Legacy Management (LM)

EBJG EBJG -ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT NE-F-003 FEBRUARY 1983 NJT& THE REMOTE SENSING lRtlORlllORY OF THE UNITED STATES DEPARTMENT OF ENERGY AN AERIAL RADIOLOGICAL SURVEY OF AN AREA SURROUNDING THE FORMER M IDDLESEX SAMPLING PLANT IN M IDDLESEX, N E W JERSEY DATE OF SURVEY: M A Y 1978 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

PNM Resources 2401 Aztec NE, MS-Z100  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNM Resources PNM Resources 2401 Aztec NE, MS-Z100 Albuquerque, NM 87107 505-241-2025 Fax 505 241-2384 PNMResources.com October 29, 2013 Mr. Christopher Lawrence Office of Electricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Submitted electronically via email to: Christopher.Lawrence@hq.doe.gov Dear Mr. Lawrence: Subject: Department of Energy (DOE)- Improving Performance of Federal Permitting and Review of Infrastructure Projects, Request for Information, 78 Fed. Reg. 53436 (Aug. 29, 2013) PNM Resources (PNMR) is an energy holding company with 2012 consolidated operating revenues of $1.3 billion. Through its regulated utilities, PNM and TNMP, PNMR serves electricity to more than 739,000 homes and businesses in New

362

CA M r. Andrew Wallo, III. NE-23  

Office of Legacy Management (LM)

i5W 95.5 L' i5W 95.5 L' E&nt plom. S. W.:. Washingr on. D.C. ZOOX2i74, Tekphm: (202) 488-6OGb 7II7-03.87.cdy.43 23 September 1987. Ii CA M r. Andrew Wallo, III. NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES pqq.0' 05 PI ;p.03- The attached elimination recommendation was prepared in accordance ,I ML.05 with your suggestion during our meeting on 22 September. The recommendation flO.O-02 includes 26 colleges and universities identified in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated 27 May 1987; three institutions (Tufts College, University of Virginia, and the University of Washington) currently identified on the FUSRAP

363

The DA{Phi}NE beam position monitors  

SciTech Connect

The beam diagnostics network of DA{Phi}NE, the Frascati {Phi}-factory, includes more than 110 beam position monitors divided between button monitors and striplines. The shape of the vacuum chamber changes along the accelerator implying several different geometries for these monitors. Moreover, in the two interaction regions of the collider where the electron and positron beams pass into the same chamber, a six-button configuration has been used. A bench calibration of each family of BPMs and striplines is being performed. A polynomial correction function has been derived by fitting the calibration results. An analytical-numerical analysis of the buttons` geometry has been done in order to compare the experimental with the theoretical results. {copyright} {ital 1997 American Institute of Physics.}

Ghigo, A.; Sannibale, F.; Serio, M.; Vaccarezza, C. [INFN Laboratori Nazionali di Frascati-00044 Frascati (Roma)-Italy

1997-01-01T23:59:59.000Z

364

Charged-Current Interaction Measurements in MiniBooNE  

SciTech Connect

Neutrino oscillation is the only known phenomenon for physics beyond the standard model. To investigate this phenomenon, the understanding of low energy neutrino scattering (200NE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events on carbon. The extracted parameters include an effective axial mass, MA=1.23 {+-} 0.20 GeV, and a Pauli-blocking parameter, kappa = 1.019 {+-} 0.011.

Katori, Teppei; /Indiana U.

2007-09-01T23:59:59.000Z

365

Microsoft PowerPoint - NEAC Battelle NE Capabilities 062408.ppt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&D Facility Requirements NEAC Meeting Progress Report June 24, 2008 2 Facilitization of U.S. Nuclear R&D Infrastructure Three-step study process: * First, ASNE requested Battelle Memorial Institute to develop Industry- and-University-supported list of capabilities and facilities necessary to conduct a comprehensive nuclear R&D program. (Draft, June 12, 2008) * Second, INL, using input from all DOE and other sources, will determine current facilities and their condition and availability to support next 20 years of nuclear R&D. (Draft, June 30, 2008) * Third, recommendations will be made on priorities and on existing facilities to be maintained/preserved or otherwise supported by NE regardless of location or ownership. (Executive Team Meeting, July 1, 2008)

366

Users and households appliances: design suggestions for a better, sustainable interaction  

Science Conference Proceedings (OSTI)

The Human Machine Interaction has a big role in the user approach with households appliances. During the main phase (the use one), users are called to manage energy choices, often without available efficient information regarding the best behavior they ... Keywords: energy saving, households appliances, interaction design, interfaces, sustainability

Anna Zandanel

2011-09-01T23:59:59.000Z

367

A Comprehensive Model for Evaluation of Carbon Footprint and Greenhouse Gages Emission in Household Biogas Plants  

Science Conference Proceedings (OSTI)

Based on Life Cycle Assessment and other related methods, this paper introduced a comprehensive model for the evaluation of the carbon footprint and greenhouse gases emission in household biogas plants including nearly all the processes of the household ... Keywords: Biogas Plant, Carbon Footprint, Life Cycle, Greenhouse Gas

Jie Zhou; Shubiao Wu; Wanqin Zhang; Changle Pang; Baozhi Wang; Renjie Dong; Li Chen

2012-07-01T23:59:59.000Z

368

Residential energy use and conservation actions: analysis of disaggregate household data  

Science Conference Proceedings (OSTI)

The Energy Information Administration recently published data they collected from the National Interim Energy Consumption Survey (NIECS). NIECS includes detailed information on 4081 individual households: demographic characteristics, energy-related features of the structure, heating equipment and appliances therein, recent conservation actions taken by the household, and fuel consumption and cost for the April 1978 to March 1979 one-year period. This data set provides a new and valuable resource for analysis. The NIECS data on household energy consumption - total energy use, electricity use, and use of the primary space heating fuel, are summarized and analyzed. The regression equations constructed explain roughly half the variation in energy use among households. These equations contain ten or fewer independent variables, the most important of which are fuel price, year house was built, floor area, and heating degree days. Regression equations were developed that estimate the energy saving achieved by each household based on their recent retrofit actions. These equations predict 20 to 40% of the variation among households. Total annual energy use is the most important determinant of retrofit energy saving; other significant variables include age of household head, household income, year house was built, housing tenure, and proxies for the cost of heating and air conditioning the house.

Hirst, E.; Goeltz, R.; Carney, J.

1981-03-01T23:59:59.000Z

369

An examination of how households share and coordinate the completion of errands  

Science Conference Proceedings (OSTI)

People often complete tasks and to-dos not only for themselves but also for others in their household. In this work, we examine how household members share and accomplish errands both individually and together. We conducted a three-week diary study with ... Keywords: cooperative errands, coordination, families, roommates

Timothy Sohn; Lorikeet Lee; Stephanie Zhang; David Dearman; Khai Truong

2012-02-01T23:59:59.000Z

370

A spotlight on security and privacy risks with future household robots: attacks and lessons  

Science Conference Proceedings (OSTI)

Future homes will be populated with large numbers of robots with diverse functionalities, ranging from chore robots to elder care robots to entertainment robots. While household robots will offer numerous benefits, they also have the potential to introduce ... Keywords: cyber-physical systems, domestic robots, household robots, multi-robot attack, privacy, robots, security, single-robot attack, ubiquitous robots

Tamara Denning; Cynthia Matuszek; Karl Koscher; Joshua R. Smith; Tadayoshi Kohno

2009-09-01T23:59:59.000Z

371

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

C C : Q U A L I T Y O F T H E D ATA APPENDIX C A P P E N D I X C QUALITY OF THE DATA INTRODUCTION This section discusses several issues relating to the quality of the National Household Travel Survey (NHTS) data and to the interpretation of conclusions based on these data. In particular, the focus of our discussion is on the quality of specific data items, such as the fuel economy and fuel type, that were imputed to the NHTS via a cold-decking imputation procedure. This imputation procedure used vehicle-level information from the NHTSA Corporate Average Fuel Economy files for model year's 1978 through 2001. It is nearly impossible to quantify directly the quality of this imputation procedure because NHTS does not collect the necessary fuel economy information for comparison. At best, we have indirect evidence on the quality of our

372

Load Component Database of Household Appliances and Small Office Equipment  

Science Conference Proceedings (OSTI)

This paper discusses the development of a load component database for household appliances and office equipment. To develop more accurate load models at both transmission and distribution level, a better understanding on the individual behaviors of home appliances and office equipment under power system voltage and frequency variations becomes more and more critical. Bonneville Power Administration (BPA) has begun a series of voltage and frequency tests against home appliances and office equipments since 2005. Since 2006, Researchers at Pacific Northwest National Laboratory has collaborated with BPA personnel and developed a load component database based on these appliance testing results to facilitate the load model validation work for the Western Electricity Coordinating Council (WECC). In this paper, the testing procedure and testing results are first presented. The load model parameters are then derived and grouped. Recommendations are given for aggregating the individual appliance models to feeder level, the models of which are used for distribution and transmission level studies.

Lu, Ning; Xie, YuLong; Huang, Zhenyu; Puyleart, Francis; Yang, Steve

2008-07-24T23:59:59.000Z

373

Aeromagnetic Survey And Interpretation, Ascention Island, South...  

Open Energy Info (EERE)

potential of the island, is described. The aeromagnetic map represents a basic data set useful for the interpretation of subsurface geology. An in situ magnetic...

374

Ecosystem dynamics of the Aleutian Islands.  

E-Print Network (OSTI)

??Located between Asia and America and extending over a 1,000 mi., the Aleutian Islands have commonly been studied in a partial or fragmented manner. This… (more)

Ortiz, Ivonne

2007-01-01T23:59:59.000Z

375

WIND DATA REPORT Deer Island Outfall  

E-Print Network (OSTI)

WIND DATA REPORT Deer Island Outfall August 18, 2003 ­ December 4, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

Massachusetts at Amherst, University of

376

ANNUAL WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

ANNUAL WIND DATA REPORT Thompson Island March 1, 2002 ­ February 28, 2003 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

Massachusetts at Amherst, University of

377

WIND DATA REPORT Deer Island Parking Lot  

E-Print Network (OSTI)

WIND DATA REPORT Deer Island Parking Lot May 1, 2003 ­ July 15, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

Massachusetts at Amherst, University of

378

Appliance and Equipment Efficiency Standards (Rhode Island) ...  

Open Energy Info (EERE)

increased efficiency standards for the products currently covered may be adopted Test Methods Specified in standards or State Building Code of Rhode Island Date added to...

379

Pennsylvania Nuclear Profile - Three Mile Island  

U.S. Energy Information Administration (EIA) Indexed Site

Three Mile Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

380

Prince Edward Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Municipal Affairs under the Community Development Equity Tax Credit Act and its regulations. Its objective is to facilitate local investment in Prince Edward Island...

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Prince Edward Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Portfolio Standard (Prince Edward Island, Canada) For the calendar year beginning on January 1, 2010 and for each calendar year thereafter, every public utility shall...

382

How Do You Encourage Everyone in Your Household to Save Energy? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Encourage Everyone in Your Household to Save Energy? Do You Encourage Everyone in Your Household to Save Energy? How Do You Encourage Everyone in Your Household to Save Energy? June 18, 2009 - 5:25pm Addthis Anyone who has decided to save energy at home knows that the entire household needs to be involved if you really want to see savings. Some people-be they roommates, spouses, children, or maybe even yourself-just seem to need some extra reminders to take simple energy-saving steps. How do you encourage everyone in your household to save energy? Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles How Have You Helped Someone Else Save Energy?

383

How Do You Encourage Everyone in Your Household to Save Energy? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Everyone in Your Household to Save Energy? Everyone in Your Household to Save Energy? How Do You Encourage Everyone in Your Household to Save Energy? June 18, 2009 - 5:25pm Addthis Anyone who has decided to save energy at home knows that the entire household needs to be involved if you really want to see savings. Some people-be they roommates, spouses, children, or maybe even yourself-just seem to need some extra reminders to take simple energy-saving steps. How do you encourage everyone in your household to save energy? Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles How Have You Helped Someone Else Save Energy?

384

Household energy handbook: an interim guide and reference manual. World Bank technical paper  

SciTech Connect

A standard framework for measuring and assessing technical information on the household energy sector in developing countries is needed. The handbook is intended as a first step toward creating such a framework. Chapter I discusses energy terms and principles underlying the energy units, definitions, and calculations presented in the following chapters. Chapter II describes household consumption patterns and their relationship to income, location, and household-size variables. Chapter III evaluates energy end uses and the technologies that provide cooking, lighting, refrigeration, and space-heating services. Chapter IV examines household energy resources and supplies, focusing on traditional biomass fuels. Finally, Chapter V demonstrates simple assessment methods and presents case studies to illustrate how household energy data can be used in different types of assessments.

Leach, G.; Gowen, M.

1987-01-01T23:59:59.000Z

385

EA-1909: South Table Wind Project, Kimball County, NE | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09: South Table Wind Project, Kimball County, NE 09: South Table Wind Project, Kimball County, NE EA-1909: South Table Wind Project, Kimball County, NE Summary DOE's Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed South Table Wind Project, which would generate approximately 60 megawatts from about 40 turbines, to Western's existing Archer-Sidney 115-kV Transmission Line in Kimball County, Nebraska. Public Comment Opportunities None available at this time. Documents Available for Download August 28, 2012 EA-1909: Finding of No Significant Impact South Table Wind Project, Kimball County, NE July 16, 2012 EA-1909: Final Environmental Assessment South Table Wind Project, Kimball County, NE February 29, 2012 EA-1909: Draft Environmental Assessment

386

The MiniBooNE detector technical design report  

SciTech Connect

The MiniBooNE experiment [1] is motivated by the LSND observation, [2] which has been interpreted as {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, and by the atmospheric neutrino deficit, [3,4,5] which may be ascribed to {nu}{sub {mu}} oscillations into another type of neutrino. MiniBooNE is a single-detector experiment designed to: obtain {approx} 1000 {nu}{sub {mu}} {yields} {nu}{sub e} events if the LSND signal is due to {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, establishing the oscillation signal at the > 5{sigma} level as shown in Fig. 1.1; extend the search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations significantly beyond what has been studied previously if no signal is observed; search for {nu}{sub {mu}} disappearance to address the atmospheric neutrino deficit with a signal that is a suppression of the rate of {nu}{sub {mu}}C {yields} {mu}N events from the expected 600,000 per year; measure the oscillation parameters as shown in Fig. 1.2 if oscillations are observed; and test CP conservation in the lepton sector if oscillations are observed by running with separate {nu}{sub {mu}} and {bar {nu}}{sub {mu}} beams. The detector will consist of a spherical tank 6.1 m (20 feet) in radius, as shown in Fig. 1.3, that stands in a 45-foot diameter cylindrical vault. An inner tank structure at 5.75 m radius will support 1280 8-inch phototubes (10% coverage) pointed inward and optically isolated from the outer region of the tank. The tank will be filled with 807 t of mineral oil, resulting in a 445 t fiducial volume. The outer tank volume will serve as a veto shield for identifying particles both entering and leaving the detector with 240 phototubes mounted on the tank wall. Above the detector tank will be an electronics enclosure that houses the fast electronics and data acquisition system and a utilities enclosure that houses the plumbing, overflow tank, and calibration laser. The detector will be located {approx} 550 m from the Booster neutrino source. The neutrino beam, produced using 8 GeV protons from the Booster at FNAL, will consist of a target within a focusing system, followed by a {approx}50 m long pion decay volume. The low energy, high intensity and 1 {micro}s time-structure of a neutrino beam produced from the Booster beam are ideal for this experiment. We assume that the Booster can reliably deliver protons for a typical run which is two-thirds of a calendar year. The sensitivities discussed above assume the experiment receives 5 x 10{sup 20} protons per year. This Booster experiment is compatible with the Fermilab collider and MI programs. The Booster must run at 7.5 Hz to accommodate the MiniBooNE and collider programs simultaneously. The current schedule calls for data-taking to begin by the end of calendar year 2001.

I. Stancu et al.

2003-04-18T23:59:59.000Z

387

Household Projection and Its Application to Health/Long-Term Care Expenditures in Japan Using INAHSIM-II  

Science Conference Proceedings (OSTI)

Using a microsimulation model named Integrated Analytical Model for Household Simulation (INAHSIM), the author conducted a household projection in Japan for the period of 2010â??2050. INAHSIM-II specifically means that the initial population is ... Keywords: dynamic micro simulation, health expenditure, household projection, initial population, long-term care expenditure, transition probabilities

Tetsuo Fukawa

2011-02-01T23:59:59.000Z

388

Microsoft Word - rhode_island.doc  

Gasoline and Diesel Fuel Update (EIA)

Rhode Island Rhode Island NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 1,782 49 Electric Utilities ...................................................................................................... 7 50 Independent Power Producers & Combined Heat and Power ................................ 1,775 37 Net Generation (megawatthours) ........................................................................... 7,738,719 47

389

Biofuel Feedstock Inter-Island Transportation  

E-Print Network (OSTI)

Biofuel Feedstock Inter-Island Transportation Prepared for the U.S. Department of Energy Office agency thereof. #12;A Comparison of Hawaii's Inter-Island Maritime Transportation of Solid Versus Liquid of Honolulu Advertiser ISO Tank Container, courtesy of Hawaii Intermodal Tank Transport Petroleum products

390

Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations  

Open Energy Info (EERE)

Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations During And After The Volcanic Crisis Of Spring 1990, And Monitoring Prior To The May 2003 Eruption Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations During And After The Volcanic Crisis Of Spring 1990, And Monitoring Prior To The May 2003 Eruption Details Activities (0) Areas (0) Regions (0) Abstract: Anatahan island is 9.5 km east-west by 3.5 km north-south and truncated by an elongate caldera 5 km east-west by 2.5 km north-south. A steep-walled pit crater ~1 km across and ~200 m deep occupies the eastern part of the caldera. The island is the summit region of a mostly submarine stratovolcano. The oldest subaerial rocks (stage 1) are exposed low on the

391

Living on Long Island | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Careers at Brookhaven Careers at Brookhaven Home For Job Seekers Job List Life at Brookhaven Benefits Family Programs Recreation & Fitness Why Brookhaven? For New Hires For Employees Living on Long Island Stretching 118 miles from end to end and measuring no more than 20 miles at its widest point, Long Island was aptly named by Dutch traders who circum-navigated it in the early 1600s. Those early Dutchmen discovered what the native Indians had known for centuries: The temperate climate, the bountiful seas and the fertile land made Long Island a most hospitable home. Local Area Information Long Island Schools Parks Beaches Wineries New York City Today, Brookhaven National Laboratory sits in the geographical center of Long Island. To the west, New York City boasts Broadway shows, museums,

392

Paving materials for heat island mitigation  

NLE Websites -- All DOE Office Websites (Extended Search)

Paving materials for heat island mitigation Paving materials for heat island mitigation Title Paving materials for heat island mitigation Publication Type Report Year of Publication 1997 Authors Pomerantz, Melvin, Hashem Akbari, Allan Chen, Haider Taha, and Arthur H. Rosenfeld Keywords Cool Pavements, Heat Island Abstract This report summarizes paving materials suitable for urban streets, driveways, parking lots and walkways. The authors evaluate materials for their abilities to reflect sunlight, which will reduce their temperatures. This in turn reduces the excess air temperature of cities (the heat island effect). The report presents the compositions of the materials, their suitability for particular applications, and their approximate costs (in 1996). Both new and resurfacing are described. They conclude that, although light-colored materials may be more expensive than conventional black materials, a thin layer of light-colored pavement may produce energy savings and smog reductions whose long-term worth is greater than the extra cost.

393

Block Island Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Block Island Wind Farm Block Island Wind Farm Jump to: navigation, search Name Block Island Wind Farm Facility Block Island Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Deepwater Wind Location Offshore from Block Island RI Coordinates 41.1°, -71.53° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1,"lon":-71.53,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Electron energization during magnetic island coalescence  

SciTech Connect

Radio emission from colliding coronal mass ejection flux ropes in the interplanetary medium suggested the local generation of superthermal electrons. Inspired by those observations, a fully kinetic particle-in-cell simulation of magnetic island coalescence models the magnetic reconnection between islands as a source of energetic electrons. When the islands merge, stored magnetic energy is converted into electron kinetic energy. The simulation demonstrates that a mechanism for electron energization originally applied to open field line reconnection geometries also operates near the reconnection site of merging magnetic islands. The electron heating is highly anisotropic, and it results mainly from an electric field surrounding the reconnection site that accelerates electrons parallel to the magnetic field. A detailed theory predicts the maximum electron energies and how they depend on the plasma parameters. In addition, the global motion of the magnetic islands launches low-frequency waves in the surrounding plasma, which induce large-amplitude, anisotropic fluctuations in the electron temperature.

Le, A.; Egedal, J. [MIT, Cambridge, Massachusetts 02139 (United States); Karimabadi, H.; Roytershteyn, V. [University of California-San Diego, La Jolla, California 92093 (United States); Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-07-15T23:59:59.000Z

395

Rhode Island Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

(Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Rhode Island Gas Prices (Ciudades Selectas) - GasBuddy.com Rhode Island Gas Prices (Organizado por Condado) -...

396

Prince Edward Island/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

Island, Canada) Prince Edward Island Environmental Regulations Yes BiomassBiogas Coal with CCS Natural Gas Nuclear StateProvince Companies that operate any of the...

397

Green Island Power Authority Transmission Voltage Support System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Island Power Authority Transmission Voltage Support System Project Green Island Power Authority Transmission Voltage Support System Project Power point presentation...

398

Price of Elba Island, GA Liquefied Natural Gas Total Imports...  

Annual Energy Outlook 2012 (EIA)

Elba Island, GA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Elba Island, GA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet)...

399

Rhode Island/EZ Policies | Open Energy Information  

Open Energy Info (EERE)

are included in National Grid's tariffs, which are accessible via the PUC's web site. Job Creation Guaranty Program (Rhode Island) Rhode Island Loan Program Yes StateProvince...

400

2013 Asian American & Pacific Islander Heritage Month Resources...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Asian American & Pacific Islander Heritage Month Resources and Theme 2013 Asian American & Pacific Islander Heritage Month Resources and Theme April 3, 2013 - 1:43pm Addthis...

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Job Training Tax Credit (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Job Training Tax Credit (Rhode Island) Job Training Tax Credit (Rhode Island) Eligibility Agricultural Commercial Construction Developer Industrial InstallerContractor Savings For...

402

Renewable Energy Act (Prince Edward Island, Canada) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Act (Prince Edward Island, Canada) Renewable Energy Act (Prince Edward Island, Canada) Eligibility Commercial Developer General PublicConsumer Industrial Installer...

403

Climate Action Plan (Prince Edward Island, Canada) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Action Plan (Prince Edward Island, Canada) Climate Action Plan (Prince Edward Island, Canada) Eligibility Commercial Developer General PublicConsumer Industrial...

404

Mass Wasting in the Western Galapagos Islands  

E-Print Network (OSTI)

Oceanic island volcanoes such as those in the Hawaiian, Canary and Galapagos Islands are known to become unstable, causing failures of the subaerial and submarine slopes of the volcanic edifices. These mass wasting events appear to be the primary source of destruction and loss of volume of many oceanic islands, but our knowledge of mass wasting is still rudimentary in many seamount and island chains. To better understand mass wasting in the western Galapagos Islands, multi-beam bathymetry and backscatter sidescan sonar images were used to examine topography and acoustic backscatter signatures that are characteristic of mass wasting. Observations show that mass wasting plays an important role in the development of Galapagos volcanoes. While volcanic activity continues to conceal the submarine terrain, the data show that four forms of mass wasting are identified including debris flows, slumps sheets, chaotic slumps, and detached blocks. A total of 23 mass wasting features were found to exist in the western Galapagos Islands, including fourteen debris flows with one that incorporated a set of detached blocks, seven slump sheets, and one chaotic slump. Some of the indentified features have obvious origination zones while the sources of others are not clearly identifiable. Approximately 73 percent of the surveyed coastlines are affected by slumping on the steep upper slopes and ~64 percent are affected by debris flows on the lower slopes. Unlike the giant landslides documented by GLORIA imagery around the Hawaiian Islands, the western Galapagos Islands appear to be characterized by small slump sheets existing along the steep shallow submarine flanks of the island and by debris flows that are flanked by rift zones and extend off the platform. This study indicates that submarine mass wasting is widespread in the western Galapagos, suggesting that the production of small-scale downslope movement is part of the erosive nature of these oceanic volcanic islands.

Hall, Hillary

2011-08-01T23:59:59.000Z

405

CA CAIOlf Mr. Andrew Wallo. III, NE-23  

Office of Legacy Management (LM)

kire 7900. 955 L*E,,fa,u PLUG S. W.. Washin@ on. D.C. 20024-2174, Tekphme: (202) 488-6000 kire 7900. 955 L*E,,fa,u PLUG S. W.. Washin@ on. D.C. 20024-2174, Tekphme: (202) 488-6000 7117-03.87.cdy.43 23 September 1987 CA CAIOlf Mr. Andrew Wallo. III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 CT.05 FL .0-o/ lti.Ob id.Or Dear Mr. Wallo: In/. O-01 flA.05 ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES Mbj.o-03 I4 v.o+ The attached elimination recommendation was prepared in accordance ML.o= with your suggestion during our meeting on 22 September. The recommendation nO.O-02 includes 26 colleges and universities identified.in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated N0.63' 27 May 1987; three institutions (Tufts College, University of Virginia, kfC900

406

{sup 17}O({alpha},{gamma}){sup 21}Ne and {sup 17}O({alpha},n){sup 20}Ne for the weak s process  

Science Conference Proceedings (OSTI)

The ratio of the reaction rates of the competing channels {sup 17}O({alpha}{gamma}){sup 21}Ne and {sup 17}O({alpha},n){sup 20}Ne determines the efficiency of {sup 16}O as a neutron poison in the s process in low metallicity rotating stars. It has a large impact on the element production, either producing elements to the mass range of A=90 in case of a significant poisoning effect or extending the mass range up to the region of A=150 if the {gamma} channel is of negligible strength. We present an improved study of the reaction {sup 17}O({alpha},n){sup 20}Ne, including an independent measurement of the {sup 17}O({alpha},n{sub 1}){sup 20}Ne channel. A simultaneous R-Matrix fit to both the n{sub 0} and the n{sub 1} channels has been performed. New reaction rates, including recent data on the {sup 17}O({alpha},{gamma}){sup 21}Ne reaction, have been calculated and used as input for stellar network calculations and their impact on the s process in rotating massive stars is discussed.

Best, A.; Goerres, J.; Beard, M.; Couder, M.; Boer, R. de; Falahat, S.; Gueray, R. T.; Kontos, A.; Kratz, K.-L.; LeBlanc, P. J.; Li, Q.; O'Brien, S.; Oezkan, N.; Pignatari, M.; Sonnabend, K.; Talwar, R.; Tan, W.; Uberseder, E.; Wiescher, M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States) and Department for Biogeochemistry, Max-Planck-Institute for Chemistry, 55020 Mainz (Germany); Department of Physics, Kacaeli University, Umuttepe 41380, Kocaeli (Turkey); Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Department for Biogeochemistry, Max-Planck-Institute for Chemistry, 55020 Mainz (Germany); Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Department of Physics, Kacaeli University, Umuttepe 41380, Kocaeli (Turkey); Department of Physics, University of Basel, Basel 4056 (Switzerland); Institute for Applied Physics, Goethe-University Frankfurt, 60325 Frankfurt (Germany); Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

2012-11-20T23:59:59.000Z

407

Level-resolved R-matrix calculations for the electron-impact excitation of Ne{sup 3+} and Ne{sup 6+}  

SciTech Connect

Large-scale R-matrix calculations are carried out for the electron-impact excitation of Ne{sup 3+} and Ne{sup 6+}. For Ne{sup 3+}, a 581-LSJ-level R-matrix intermediate coupling frame transformation calculation is made for excitations up to the n=4 shell. For some transitions, large effective collision strength differences are found with current 23-jKJ-level Breit-Pauli R-matrix and earlier 22-LSJ-level R-matrix jj omega (JAJOM) calculations. For Ne{sup 6+}, a 171-jKJ-level Breit-Pauli R-matrix calculation is made for excitations up to the n=5 shell. For some transitions, large effective collision strength differences are found with current 46-jKJ-level Breit-Pauli R-matrix and earlier 46-LSJ-level R-matrix JAJOM calculations. Together with existing R-matrix calculations for other ion stages, high-quality excitation data are now available for astrophysical and laboratory plasma modeling along the entire Ne isonuclear sequence.

Ludlow, J. A.; Lee, T. G.; Ballance, C. P.; Loch, S. D.; Pindzola, M. S. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

2011-08-15T23:59:59.000Z

408

The Determinants of Homeonwership in Presence of Shocks Experienced by Mexican Households  

E-Print Network (OSTI)

Homeownership is both an individual and society objective, because of the positive neighborhood effects associated with areas of higher homeownership. To help realize these positive effects, the Mexican government has several programs directed to increasing homeownership. Many factors, however, may influence homeownership including shocks experienced by households. Shocks such as death in family, illness or accidents, unemployment, and business, crop, or livestock loss affect homeownership if households are unable to cushion the impact of the shock. Government income support programs, however, may help cushion the effect of a shock. The main objective is to determine how shocks that households’ experience and government income support programs influence homeownership in Mexico. A secondary objective is to determine how socio-demographic variables influence homeownership in Mexico. Based on the Random Utility Model, logit models of homeownership are estimated using data are from the 2002 Mexican National Survey on Living Levels of Households. Two models are estimated; with and without income. Income is excluded because of a large number of households that did not report income. Generally, inferences from the two models are similar. Homeownership appears to not be affected by shocks experienced by households. It appears households are able to cushion the impact of shocks. The two income support programs, the Program of Direct Rural Support of Mexico (PROGRESA) and the Program of Direct Rural Support of Mexico (PROCAMPO), appear to be increasing homeownership. These social welfare programs provide cash transfers to households. For whatever reason, PROGRESA has a larger effect on homeownership than PROCAMPO. Households with older heads have a larger probability of being a homeowner than households with younger heads. No statistically significance relationship exists between education and homeownership. Regional differences are seen in homeownership, with households located in the northwest region having a higher probability of homeownership than other regions. Differences in the significance of variable representing the household head’s gender, marital status, and occupation on homeownership exist between logit models that include and do not include current income. The most likely reason for these differences is interactions between the variables and a wealth effect.

Lopez Cabrera, Jesus 1977-

2012-12-01T23:59:59.000Z

409

Northern Mariana Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mariana Islands: Energy Resources Mariana Islands: Energy Resources Jump to: navigation, search Name Northern Mariana Islands 2-letter ISO code MP 3-letter ISO code MNP Numeric ISO code 580 Equivalent URI DBpedia GeoNames ID 4041468 Advanced Economy[1] No References CIA World Factbook, Appendix D[2] Wikipedia[3] Geonames[4] This article is a stub. You can help OpenEI by expanding it. The Northern Mariana Islands is a commonwealth in political union with the United States of America. Energy Incentives for Northern Mariana Islands N. Mariana Islands - Building Energy Code (N. Mariana Islands) N. Mariana Islands - Energy Star Rebate Program (N. Mariana Islands) N. Mariana Islands - Renewables Portfolio Standard (N. Mariana Islands) References ↑ IMF World Economic Outlook Database April 2009 -- WEO Groups and

410

Special Topics on Energy Use in Household Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home > Transportation Home Page > Special Topics Special Topics Change in Method for Estimating Fuel Economy for the 1988 and subsequent RTECS (Released 09/12/2000) Can Household Members Accurately Report How Many Miles Their Vehicles Are Driven? (Released 08/03/2000) Calculate your Regional Gasoline Costs of Driving using the “Transportation Calculator” updated for new model years! Choose your car or SUV and see the gasoline part of the cost of driving in various parts of the country using EIA's current weekly prices. This application uses DOE/EPA's Fuel Economy Guide to set the MPG, but you can change it to compare your estimate of your car's mpg to the average of everyone else who takes the test. (Released 04/11/2000; Updated Yearly for Fuel Economies and Weekly for Fuel Prices)

411

Household appliance choice: revision of REEPS behavioral models. Final report  

Science Conference Proceedings (OSTI)

This report describes the analysis of household decisions to install space heating, central cooling, and water heating in new housing as well as decisions to own freezers and second refrigerators. This analysis was conducted as part of the enhancements to the Residential End-Use Energy Planning System (REEPS) under EPRI project RP1918-1. The empirical models used in this analysis were the multinomial logit and its generalization the nested logit. The choice model parameters were estimated statistically on national and regional survey data. The results show that capital and operating costs are significant determinants of appliance market penetrations, and the relative magnitudes of the cost coefficients imply discount rates ranging from 3.4 to twenty-one percent. Several tests were conducted to examine the temporal and geographical stability of the key parameters. The estimated parameters have been incorporated into the REEPS computer code. The revised version of REEPS is now available on a limited release basis to EPRI member utilities for testing on their system.

Goett, A.A.

1984-02-01T23:59:59.000Z

412

A Reliable Natural Language Interface to Household Appliances  

E-Print Network (OSTI)

“I have always wished that my computer would be as easy to use as my telephone. My wish has come true. I no longer know how to use my telephone.” – Bjarne Stroustrop (originator of C++) As household appliances grow in complexity and sophistication, they become harder and harder to use, particularly because of their tiny display screens and limited keyboards. This paper describes a strategy for building natural language interfaces to appliances that circumvents these problems. Our approach leverages decades of research on planning and natural language interfaces to databases by reducing the appliance problem to the database problem; the reduction provably maintains desirable properties of the database interface. The paper goes on to describe the implementation and evaluation of the EXACT interface to appliances, which is based on this reduction. EXACT maps each English user request to an SQL query, which is transformed to create a PDDL goal, and uses the Blackbox planner [13] to map the planning problem to a sequence of appliance commands that satisfy the original request. Both theoretical arguments and experimental evaluation show that EXACT is highly reliable.

Alexander Yates

2003-01-01T23:59:59.000Z

413

Laboratory Testing of Demand-Response Enabled Household Appliances  

SciTech Connect

With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses.The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

Sparn, B.; Jin, X.; Earle, L.

2013-10-01T23:59:59.000Z

414

Amchitka Island, Alaska, special sampling project 1997  

Science Conference Proceedings (OSTI)

This 1997 special sampling project represents a special radiobiological sampling effort to augment the 1996 Long-Term Hydrological Monitoring Program (LTHMP) for Amchitka Island in Alaska. Lying in the western portion of the Aleutian Islands arc, near the International Date Line, Amchitka Island is one of the southernmost islands of the Rat Island Chain. Between 1965 and 1971, the U.S. Atomic Energy Commission conducted three underground nuclear tests on Amchitka Island. In 1996, Greenpeace collected biota samples and speculated that several long-lived, man-made radionuclides detected (i.e., americium-241, plutonium-239 and -240, beryllium-7, and cesium-137) leaked into the surface environment from underground cavities created during the testing. The nuclides of interest are detected at extremely low concentrations throughout the environment. The objectives of this special sampling project were to scientifically refute the Greenpeace conclusions that the underground cavities were leaking contaminants to the surface. This was achieved by first confirming the presence of these radionuclides in the Amchitka Island surface environment and, second, if the radionuclides were present, determining if the source is the underground cavity or worldwide fallout. This special sampling and analysis determined that the only nonfallout-related radionuclide detected was a low level of tritium from the Long Shot test, which had been previously documented. The tritium contamination is monitored and continues a decreasing trend due to radioactive decay and dilution.

U.S. Department of Energy, Nevada Operations Office

2000-06-28T23:59:59.000Z

415

Monetary Policy and Household Mobility: The Effects of Mortgage Interest Rats.  

E-Print Network (OSTI)

Homeowner Mobility and Mortgage Interest Rates: New Evidencenew mortgages. Table 2 Basic Hazard Models of Household Mobility (mobility decisions are related to increases in family size, the existence of a new

Quigley, John M.

2005-01-01T23:59:59.000Z

416

Seasonality, precautionary savings and health uncertainty: Evidence from farm households in Central Kenya  

E-Print Network (OSTI)

on rural households in Kenya." World Development 32(1):91-Second report on poverty in Kenya. Incidence and depth ofPlanning. Government of Kenya. —. 2004. "Kenya Demographic

Ndirangu, Lydia; Burger, Kees; Moll, Hank A.J.; Kuyvenhoven, Arie

2009-01-01T23:59:59.000Z

417

Trends in the Use of Natural Gas in U.S. Households, 1987 to 2001  

U.S. Energy Information Administration (EIA)

used, the RECS is ideal as a data source so as to reveal the underlying factors behind the trends in energy demand--and in this paper, household natural gas demand.

418

The Design and Implementation of a Corporate Householding Knowledge Processor to Improve Data Quality  

E-Print Network (OSTI)

Advances in Corporate Householding are needed to address certain categories of data quality problems caused by data misinterpretation. In this paper, we first summarize some of these data quality problems and our more ...

Madnick, Stuart

2004-02-06T23:59:59.000Z

419

Table CE1-4c. Total Energy Consumption in U.S. Households by Type ...  

U.S. Energy Information Administration (EIA)

Table CE1-4c. Total Energy Consumption in U.S. Households by Type of Housing Unit, 1997 ... where the end use is electric air-conditioning, ...

420

Table CE1-1c. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE1-1c. Total Energy Consumption in U.S. Households by Climate Zone, 2001 RSE Column Factor: Total Climate Zone1 RSE Row Factors Fewer than 2,000 CDD and --

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Table CE1-10c. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE1-10c. Total Energy Consumption in U.S. Households by Midwest Census Region, 2001 RSE Column Factor: Total U.S. Midwest Census Region RSE Row

422

10Tips to Spend Less on Household Goods Spend about $20 on a battery  

E-Print Network (OSTI)

10Tips to Spend Less on Household Goods Spend about $20 on a battery recharger. Over time, replace your used batteries with the kind you can use over and over again. 6 You can reuse plastic bags you get

Tullos, Desiree

423

Household water treatment and safe storage options for Northern Region Ghana : consumer preference and relative cost  

E-Print Network (OSTI)

A range of household water treatment and safe storage (HWTS) products are available in Northern Region Ghana which have the potential to significantly improve local drinking water quality. However, to date, the region has ...

Green, Vanessa (Vanessa Layton)

2008-01-01T23:59:59.000Z

424

Facts about FEMA Household Disaster Aid: Examining the 2008 Floods and Tornadoes in Missouri  

Science Conference Proceedings (OSTI)

Very little empirical work has been done on disaster aid in the United States. This paper examines postdisaster grants to households from the Federal Emergency Management Agency in the state of Missouri in 2008, when the state experienced flooding,...

Carolyn Kousky

2013-10-01T23:59:59.000Z

425

Distributional Impacts of Carbon Pricing: A General Equilibrium Approach with Micro-Data for Households  

E-Print Network (OSTI)

Many policies to limit greenhouse gas emissions have at their core efforts to put a price on carbon emissions. Carbon pricing impacts households both by raising the cost of carbon intensive products and by changing factor ...

Rausch, Sebastian

426

Table 4. LPG Consumption and Expeditures in U.S. Households by End ...  

U.S. Energy Information Administration (EIA)

Table 4. LPG Consumption and Expeditures in U.S. Households by End Uses and Census Region, 2001 RSE Column Factor: Total U.S. Census Region RSE Row

427

Table CE4-7c. Water-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE4-7c. Water-Heating Energy Consumption in U.S. Households by Four Most Populated States, 1997 RSE Column Factor: Total U.S. Four Most Populated States

428

Residential energy consumption survey. Consumption patterns of household vehicles, supplement: January 1981-September 1981  

Science Conference Proceedings (OSTI)

Information on the fuel consumption characteristics on household vehicles in the 48 contiguous States and the District of Columbia is presented by monthly statistics of fuel consumption, expenditures, miles per gallon, and miles driven.

Not Available

1983-02-01T23:59:59.000Z

429

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households by Four Most Populated States, 2001 RSE Column Factor: Total U.S. Four Most Populated States

430

Households to pay more than expected to stay warm this winter  

U.S. Energy Information Administration (EIA) Indexed Site

stay warm this winter Following a colder-than-expected November, U.S. households are forecast to consume more heating fuels than previously expected....resulting in higher heating...

431

Monitoring effective use of household water treatment and safe storage technologies in Ethiopia and Ghana  

E-Print Network (OSTI)

Household water treatment and storage (HWTS) technologies dissemination is beginning to scale-up to reach the almost 900 million people without access to an improved water supply (WHO/UNICEF/JMP, 2008). Without well-informed ...

Stevenson, Matthew M

2009-01-01T23:59:59.000Z

432

Calculating economic indexes per household and censal section from official Spanish databases  

Science Conference Proceedings (OSTI)

In the competitive environments, in which all sorts of organisations move it is of utmost importance to have information about clients. Public databases offer information about households and families. However, the non-crossed and non-georeferenced format ...

Sonia Frutos; Ernestina Menasalvas; Cesar Montes; Javier Segovia

2003-12-01T23:59:59.000Z

433

California Immigrant Households and Public Assistance Participation in the 1990s - Detailed Research Findings  

E-Print Network (OSTI)

Seon Lee. 1999. “Transitions from AFDC to Child Welfare inHouseholds Receiving AFDC/TANF by Recency of Entry, 1993?Earnings for Those Receiving AFDC/TANF, Table 7. Proportion

2002-01-01T23:59:59.000Z

434

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

or 180 mile hybrid electric vehicle. Natural gas vehicles (1994) Demand for Electric Vehicles in Hybrid Households: A nof Electric, Hybrid and Other Alternative Vehicles. A r t h

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

435

Table HC6.11 Home Electronics Characteristics by Number of Household...  

Gasoline and Diesel Fuel Update (EIA)

1 Home Electronics Characteristics by Number of Household Members, 2005 Total... 111.1 30.0 34.8 18.4 15.9 12.0...

436

Table CE5-2c. Appliances Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE5-2c. Appliances1 Energy Consumption in U.S. Households by Year of Construction, 2001 RSE Column Factor: Total Year of Construction RSE Row

437

A Case Study For Geothermal Exploration In The Ne German Basin- Integrated  

Open Energy Info (EERE)

Geothermal Exploration In The Ne German Basin- Integrated Geothermal Exploration In The Ne German Basin- Integrated Interpretation Of Seismic Tomography, Litho-Stratigraphy, Salt Tectonics, And Thermal Structure Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: A Case Study For Geothermal Exploration In The Ne German Basin- Integrated Interpretation Of Seismic Tomography, Litho-Stratigraphy, Salt Tectonics, And Thermal Structure Details Activities (0) Areas (0) Regions (0) Abstract: Unavailable Author(s): K. Bauer, I. Moeck, B. Norden, A. Schulze, M. H. Weber Published: Publisher Unknown, 2009 Document Number: Unavailable DOI: Unavailable Retrieved from "http://en.openei.org/w/index.php?title=A_Case_Study_For_Geothermal_Exploration_In_The_Ne_German_Basin-_Integrated_Interpretation_Of_Seismic_Tomography,_Litho-Stratigraphy,_Salt_Tectonics,_And_Thermal_Structure&oldid=390106"

438

EcoCAR: The NeXt Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR: The NeXt Challenge EcoCAR: The NeXt Challenge EcoCAR: The NeXt Challenge May 18, 2010 - 7:30am Addthis While most college students' experience with vehicles goes no further than the beater they picked up for a few thousand dollars, students participating in the EcoCAR: The NeXT Challenge competition get to experience the cutting-edge of driving technology. The competition, which was established by the U.S. Department of Energy and General Motors, is a three year advanced vehicle engineering contest. Yesterday, May 17, was the first day of their Year 2 judging sessions. In EcoCAR, students from 16 universities across North America are competing against each other to build the most environmentally sustainable and practical vehicle. This year's teams have adopted a number of advanced

439

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Title Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Publication Type Report LBNL Report Number LBNL-55088 Year of Publication 2005 Authors Whitehead, Camilla Dunham, Victor H. Franco, Alexander B. Lekov, and James D. Lutz Document Number LBNL-55088 Pagination 22 Date Published May 31 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated.The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

440

A Mixed Nordic Experience: Implementing Competitive Retail Electricity Markets for Household Customers  

Science Conference Proceedings (OSTI)

Although the Nordic countries were among the first to develop competition in the electricity industry, it took a long time to make retail competition work. In Norway and Sweden a considerable number of households are actively using the market but very few households are active in Finland and Denmark. One problem has been institutional barriers involving metering, limited unbundling of distribution and supply, and limited access to reliable information on contracts and prices. (author)

Olsen, Ole Jess; Johnsen, Tor Arnt; Lewis, Philip

2006-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Northern Mariana Islands - Territory Energy Profile Overview - U.S ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, biomass and ethanol. ... Puerto Rico US Virgin Islands: Overview; Data;

442

Northern Mariana Islands - Territory Energy Profile Analysis - U.S ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, biomass and ethanol. ... Puerto Rico US Virgin Islands: Overview; Data;

443

Overview of CFC replacement issues for household refrigeration  

Science Conference Proceedings (OSTI)

In 1974, the famous ozone depletion theory of Rowland and Molina claimed that chlorofluorocarbons (CFCs) diffuse into the stratosphere where they are broken down by photolysis to release chlorine atoms that catalytically destroy ozone. Although the understanding of the science is still imperfect, there is little doubt that CFCs play a major role in the Antarctic ozone hole phenomenon and the decline in ozone observed in the rest of the world. Another issue that has become increasingly important is the potential of CFCs to change the earth's temperature and to modify the climate. While the main impact in global warming is made by increased concentrations of carbon dioxide, CFCs and other trace gases also contribute to this effect. In an effort to respond to the global environmental threat, a CFC protocol was adopted during a diplomatic conference in Montreal. This document, known as the Montreal Protocol, was ratified in 1988 and put into effect on January 1, 1989. In accordance with Article 6 of the Montreal Protocol, the countries that signed the agreement shall periodically assess the control measures provided for in the Protocol. As part of that assessment process, household refrigeration was investigated to determine the status of CFC-12 replacements. The conclusion was that much progress has been made towards finding a suitable replacement. Compressors designed for HFC-134a have efficiencies comparable to those for CFC-12 and acceptable reliability tests have been obtained with ester lubricants. In addition, other replacements such as R-152a and refrigerant mixtures exist, but will require more study. Cycle options, such as the Stirling cycle, may be viable, but are further out in the future. The impact of new refrigerants is expected to result in elimination of CFC-12 consumption in developed countries by 1997 and in developing countries by 2005.

Vineyard, E.A. (Oak Ridge National Lab., TN (United States)); Roke, L. (Fisher and Paykel, Auckland (New Zealand)); Hallett, F. (Frigidaire, Washington, DC (United States))

1991-01-01T23:59:59.000Z

444

Overview of CFC replacement issues for household refrigeration  

Science Conference Proceedings (OSTI)

In 1974, the famous ozone depletion theory of Rowland and Molina claimed that chlorofluorocarbons (CFCs) diffuse into the stratosphere where they are broken down by photolysis to release chlorine atoms that catalytically destroy ozone. Although the understanding of the science is still imperfect, there is little doubt that CFCs play a major role in the Antarctic ozone hole phenomenon and the decline in ozone observed in the rest of the world. Another issue that has become increasingly important is the potential of CFCs to change the earth`s temperature and to modify the climate. While the main impact in global warming is made by increased concentrations of carbon dioxide, CFCs and other trace gases also contribute to this effect. In an effort to respond to the global environmental threat, a CFC protocol was adopted during a diplomatic conference in Montreal. This document, known as the Montreal Protocol, was ratified in 1988 and put into effect on January 1, 1989. In accordance with Article 6 of the Montreal Protocol, the countries that signed the agreement shall periodically assess the control measures provided for in the Protocol. As part of that assessment process, household refrigeration was investigated to determine the status of CFC-12 replacements. The conclusion was that much progress has been made towards finding a suitable replacement. Compressors designed for HFC-134a have efficiencies comparable to those for CFC-12 and acceptable reliability tests have been obtained with ester lubricants. In addition, other replacements such as R-152a and refrigerant mixtures exist, but will require more study. Cycle options, such as the Stirling cycle, may be viable, but are further out in the future. The impact of new refrigerants is expected to result in elimination of CFC-12 consumption in developed countries by 1997 and in developing countries by 2005.

Vineyard, E.A. [Oak Ridge National Lab., TN (United States); Roke, L. [Fisher and Paykel, Auckland (New Zealand); Hallett, F. [Frigidaire, Washington, DC (United States)

1991-12-31T23:59:59.000Z

445

Definition: Automated Islanding And Reconnection | Open Energy Information  

Open Energy Info (EERE)

Islanding And Reconnection Islanding And Reconnection Jump to: navigation, search Dictionary.png Automated Islanding And Reconnection Automated Islanding and Reconnection Automated islanding and reconnection is achieved by automated separation and subsequent reconnection (autonomous synchronization) of an independently operated portion of the T&D system (i.e., microgrid) from the interconnected electric grid. A microgrid is an integrated energy system consisting of interconnected loads and distributed energy resources which, as an integrated system, can operate in parallel with the grid or as an island.[1] View on Wikipedia Wikipedia Definition Islanding refers to the condition in which a distributed (DG) generator continues to power a location even though electrical grid power

446

Bluewater Wind Rhode Island | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search Name Bluewater Wind Rhode Island Facility Bluewater Wind Rhode Island Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner NRG Bluewater Wind Developer NRG Bluewater Wind Location Atlantic Ocean RI Coordinates 41.357°, -71.152° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.357,"lon":-71.152,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

University of Rhode Island | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Rhode Island Address Department of Ocean Engineering, Sheets Building, Bay Campus Place Narragansett, Rhode Island Zip 02882 Sector Hydro Phone number (401) 874-6139 Website http://www.oce.uri.edu/baycamp Coordinates 41.3983403°, -71.4893013° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3983403,"lon":-71.4893013,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Island Energy Solutions | Open Energy Information  

Open Energy Info (EERE)

Island Energy Solutions Island Energy Solutions Jump to: navigation, search Name Island Energy Solutions Place Kailua, Hawaii Zip 96734 Product Island Energy Solutions, Inc. is an electrical contracting company, based out of Kailua, Oahu, Hawaii. Coordinates 21.396572°, -157.740068° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.396572,"lon":-157.740068,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Recovery Act State Memos Mariana Islands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the the Northern Mariana Islands to play an important role in the new energy economy of the future. EXAMPLES OF NORTHERN MARIANA ISLANDS FORMULA GRANTS Program Award State Energy Program Weatherization Assistance Program Energy Efficiency Conservation Block Grants Energy Efficiency Appliance Rebate Program $18.7 million $29.4 million $9.6 million $0.1 million The Commonwealth of the Northern Mariana Islands has received $18.7 million in State Energy Program funds to invest in state- and territory- level energy efficiency and renewable energy priorities. The Commonwealth of the Northern Mariana Islands has received over $29.4 million in Weatherization Assistance Program funds to scale-up existing weatherization efforts in the

450

Metromorphosis : evolution on the urban island  

E-Print Network (OSTI)

Cities are very much alive. Like islands, they provide a natural testing ground for evolution. With more than half of the world's population living in urban areas now, the influence cities have on the planet's life is ...

Vezina, Kenrick (Kenrick Freitas)

2011-01-01T23:59:59.000Z

451

Extreme Rainfall Events in the Hawaiian Islands  

Science Conference Proceedings (OSTI)

Heavy rainfall and the associated floods occur frequently in the Hawaiian Islands and have caused huge economic losses as well as social problems. Extreme rainfall events in this study are defined by three different methods based on 1) the mean ...

Pao-Shin Chu; Xin Zhao; Ying Ruan; Melodie Grubbs

2009-03-01T23:59:59.000Z

452

A Numerical Investigation of Tropical Island Thunderstorms  

Science Conference Proceedings (OSTI)

A version of the United Kingdom Meteorological Office mesoscale weather prediction model is used to simulate cases of deep tropical convection from the Island Thunderstorm Experiment off the north coast of Australia. Selected cases contrast ...

B. W. Golding

1993-05-01T23:59:59.000Z

453

Interaction of Ekman Layers and Islands  

Science Conference Proceedings (OSTI)

The circulation induced by the interaction of surface Ekman transport with an island is considered using both numerical models and linear theory. The basic response is similar to that found for the interaction of Ekman layers and an infinite ...

Michael A. Spall; Joseph Pedlosky

2013-05-01T23:59:59.000Z

454

Urban Heat Island Assessment: Metadata Are Important  

Science Conference Proceedings (OSTI)

Urban heat island (UHI) analyses for the conterminous United States were performed using three different forms of metadata: nightlights-derived metadata, map-based metadata, and gridded U.S. Census Bureau population metadata. The results ...

Thomas C. Peterson; Timothy W. Owen

2005-07-01T23:59:59.000Z

455

Job Creation Guaranty Program (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

RIEDC’s Job Creation Guaranty Program provides businesses looking to expand or relocate in Rhode Island with access to capital and credit. RIEDC guarantees loans by private lenders or guarantees...

456

commentary / book review: Island Biogeography: Paradigm Lost?  

E-Print Network (OSTI)

America.    A review of this book will appear in a future 1948?6596  commentary / book review  Island Biogeography: and  Wilson’s  1967  book,  and  the  earlier  but  less 

Heaney, Lawrence R.

2011-01-01T23:59:59.000Z

457

Pennsylvania Nuclear Profile - Three Mile Island  

U.S. Energy Information Administration (EIA)

snpt3pa8011 805 6,634 94.1 PWR Three Mile Island Unit Type Data for 2010 PWR = Pressurized Light Water Reactor. Note: Totals may not equal sum of ...

458

US Virgin Islands renewable energy future  

E-Print Network (OSTI)

The US Virgin Islands must face drastic changes to its electrical system. There are two problems with electricity production in the USVI-it's dirty and it's expensive. Nearly one hundred percent of the electricity in these ...

Oldfield, Brian (Brian K.)

2013-01-01T23:59:59.000Z

459

Southern California Channel Islands Bibliography, through 1992  

E-Print Network (OSTI)

Radiolarians in the Gulf of California; Deep Sea DrillingSanta Cruz Island, California. Howell DG, AFFL: U.S. Geol.of southern California continental borderland [abstract]. in

Channel Islands National Marine Sanctuary

1992-01-01T23:59:59.000Z

460

Alternative Fuels Data Center: Rhode Island Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rhode Island Points of Rhode Island Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Points of Contact on Google Bookmark Alternative Fuels Data Center: Rhode Island Points of Contact on Delicious Rank Alternative Fuels Data Center: Rhode Island Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Points of Contact The following people or agencies can help you find more information about Rhode Island's clean transportation laws, incentives, and funding

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Recovery Act State Memos Rhode Island  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Rhode Island For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

462

Block Island Power Co | Open Energy Information  

Open Energy Info (EERE)

Block Island Power Co Block Island Power Co Jump to: navigation, search Name Block Island Power Co Place Rhode Island Utility Id 1857 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.4450/kWh Commercial: $0.4670/kWh The following table contains monthly sales and revenue data for Block Island Power Co (Rhode Island). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

463

The impact of the Persian Gulf crisis on household energy consumption and expenditure patterns  

Science Conference Proceedings (OSTI)

The Iraqi invasion of the Kingdom of Kuwait on August 2, 1990, and the subsequent war between Iraq and an international alliance led by the United States triggered first immediate and then fluctuating world petroleum prices. Increases in petroleum prices and in U.S. petroleum imports resulted in increases in the petroleum prices paid by U.S. residential, commercial, and industrial consumers. The result was an immediate price shock that reverberated throughout the U.S. economy. The differential impact of these price increases and fluctuations on poor and minority households raised immediate, significant, and potentially long-term research, policy, and management issues for a variety of federal, state, and local government agencies, including the U.S. Department of Energy (DOE). Among these issues are (1) the measurement of variations in the impact of petroleum price changes on poor, nonpoor, minority, and majority households; (2) how to use the existing policy resources and policy innovation to mitigate regressive impacts of petroleum price increases on lower-income households; and (3) how to pursue such policy mitigation through government agencies severely circumscribed by tax and expenditure limitations. Few models attempt to assess household energy consumption and energy expenditure under various alternative price scenarios and with respect to the inclusion of differential household choices correlated with such variables as race, ethnicity, income, and geographic location. This paper provides a preliminary analysis of the nature and extent of potential impacts of petroleum price changes attributable to the Persian Gulf War and its aftermath on majority, black, and Hispanic households and on overlapping poor and nonpoor households. At the time this was written, the Persian Gulf War had concluded with Iraq`s total surrender to all of the resolutions and demands of the United Nations and United States.

Henderson, L. [Univ. of Baltimore, MD (United States); Poyer, D.; Teotia, A. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

464

Patterns of rural household energy use: a study in the White Nile province - the Sudan  

Science Conference Proceedings (OSTI)

The study investigates rural household domestic energy consumption patterns in a semiarid area of the Sudan. It describes the socioeconomic and evironmental context of energy use, provides an estimation of local woody biomass production and evaluates ecological impacts of increased energy demand on the local resource base. It is based on findings derived from field surveys, a systematic questionnaire and participant observations. Findings indicate that households procure traditional fuels by self-collection and purchases. Household members spent on average 20% of their working time gathering fuels. Generally per caput and total annual expenditure and consumption of domestic fuels are determined by household size, physical availability, storage, prices, income, conservation, substitution and competition among fuel resource uses. Households spend on average 16% of their annual income on traditional fuels. Aggregation of fuels on heat equivalent basis and calculation of their contribution shows that on average firewood provides 63%, charcoal 20.7%, dung 10.4%, crop residues 3.4% and kerosene/diesel 2.5% of the total demand for domestic purposes. Estimated total household woodfuel demand exceeds woody biomass available from the local forests. This demand is presently satisfied by a net depletion of the local forests and purchases from other areas. Degradation of the resource base is further exacerbated by development of irrigation along the White Nile River, increasing livestock numbers (overgrazing) and forest clearance for rainfed cultivation. The most promising relevant and appropriate strategies to alleviate rural household domestic energy problems include: conservation of the existing forest, augmentation through village woodlots and community forestry programmes and improvements in end-use (stoves) and conversion (wood to charcoal) technologies.

Abdu, A.S.E.

1985-01-01T23:59:59.000Z

465

Greenhouse gas emissions from home composting of organic household waste  

Science Conference Proceedings (OSTI)

The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6-3.5 kg week{sup -1} and the temperature inside the composting units was in all cases only a few degrees (2-10 {sup o}C) higher than the ambient temperature. The emissions of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) were quantified as 0.4-4.2 kg CH{sub 4} Mg{sup -1} input wet waste (ww) and 0.30-0.55 kg N{sub 2}O Mg{sup -1} ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH{sub 4} and N{sub 2}O emissions) of 100-239 kg CO{sub 2}-eq. Mg{sup -1} ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH{sub 4} during mixing which was estimated to 8-12% of the total CH{sub 4} emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg{sup -1} ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO{sub 2}-eq. Mg{sup -1} ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.

Andersen, J.K., E-mail: jka@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark); Boldrin, A.; Christensen, T.H.; Scheutz, C. [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark)

2010-12-15T23:59:59.000Z

466

Improving Demographic Components of Integrated Assessment Models: The Effect of Changes in Population Composition by Household Characteristics  

SciTech Connect

This report describes results of the research project on "Improving Demographic Components of Integrated Assessment Models: The Effect of Changes in Population Composition by Household Characteristics". The overall objective of this project was to improve projections of energy demand and associated greenhouse gas emissions by taking into account demographic factors currently not incorporated in Integrated Assessment Models (IAMs) of global climate change. We proposed to examine the potential magnitude of effects on energy demand of changes in the composition of populations by household characteristics for three countries: the U.S., China, and Indonesia. For each country, we planned to analyze household energy use survey data to estimate relationships between household characteristics and energy use; develop a new set of detailed household projections for each country; and combine these analyses to produce new projections of energy demand illustrating the potential importance of consideration of households.

Brian C. O'Neill

2006-08-09T23:59:59.000Z

467

National Park Service - San Miguel Island, California | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Miguel Island, California San Miguel Island, California National Park Service - San Miguel Island, California October 7, 2013 - 10:00am Addthis Photo of Wind/Photovoltaic Power System at San Miguel Island San Miguel Island is one of five islands that make up Channel Islands National Park on the coast of southern California. The islands comprise 249,353 acres (100,910 hectares) of land and ocean that teems with terrestrial and marine life. The National Park Service (NPS) protects the pristine resources at Channel Islands National Park by conserving, recycling, using alternative fuel vehicles, applying renewable energy, and using resources wisely. It also seeks to replace conventional fuels with renewable energy wherever possible. This applies especially to diesel fuel and petroleum, which must

468

Alternative Fuels Data Center: Rhode Island Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rhode Island Laws and Rhode Island Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives Listed below are incentives, laws, and regulations related to alternative

469

"Table HC15.3 Household Characteristics by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Household Characteristics by Four Most Populated States, 2005" 3 Household Characteristics by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Household Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Household Size" "1 Person",30,1.8,1.9,2,3.2 "2 Persons",34.8,2.2,2.3,2.4,3.2 "3 Persons",18.4,1.1,1.3,1.2,1.8 "4 Persons",15.9,1,0.9,1,2.3 "5 Persons",7.9,0.6,0.6,0.9,0.9 "6 or More Persons",4.1,0.4,"Q",0.5,0.7 "2005 Annual Household Income Category" "Less than $9,999",9.9,0.8,0.7,0.9,1 "$10,000 to $14,999",8.5,0.8,0.4,0.6,0.7

470

Residential energy consumption and expenditure patterns of low-income households in the United States  

SciTech Connect

The principal objective of this study is to compare poor and non-poor households with respect to energy consumption and expenditures, housing characteristics, and energy-related behavior. We based our study on an analysis of a national data base created by the US Department of Energy, the 1982-1983 Residential Energy Consumption Survey (RECS). RECS includes detailed information on individual households: demographic characteristics, energy-related features of the structure, heating equipment and appliances, recent conservation actions taken by the household, and fuel consumption and costs for April 1982-March 1983. We found a number of statistically significant (at the 0.05 level) differences between the two income groups in terms of demographics, heating/cooling/water heating systems, appliance saturation, the thermal integrity of their home, energy conservation behavior, energy consumption, energy expenditures, and the percentage of income spent on energy costs. For example, the non-poor used 22% more energy and paid 25% more money on utilities than the poor; however, the poor spent 20% more energy per square foot than the non-poor and spent about 25% of their income on energy expenditures, compared to 7% for the non-poor. These differences suggest different approaches that might be taken for targeting energy conservation programs to low-income households. Since the poor's ''energy burden'' is large, informational, technical, and financial assistance to low-income households remains an urgent, national priority. 13 refs., 26 tabs.

Vine, E.L.; Reyes, I.

1987-09-01T23:59:59.000Z

471

Development of the household sample for furnace and boilerlife-cycle cost analysis  

Science Conference Proceedings (OSTI)

Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated. The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

Whitehead, Camilla Dunham; Franco, Victor; Lekov, Alex; Lutz, Jim

2005-05-31T23:59:59.000Z

472

Feed the Future Bangladesh: Baseline Integrated Household Survey | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed the Future Bangladesh: Baseline Integrated Household Survey Feed the Future Bangladesh: Baseline Integrated Household Survey Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Feed the Future Bangladesh: Baseline Integrated Household Survey Dataset Summary Description The Bangladesh Integrated Household Survey dataset is a thorough assessment of current standard of food security in Bangladesh taken from 2011-2012. The dataset includes all baseline household surveys made under the USAID-led Feed the Future initiative, a collaborative effort that supports country-owned processes and plans for improving food security and promoting transparency, and within the Zones of Influence as outlined by the Feed the Future Bangladesh plan .The BIHS sample is statistically representative at the following levels: (a) nationally representative of rural Bangladesh; (b) representative of rural areas of each of the seven administrative divisions of the country; and, (c) representative of the Feed the Future (FTF) zone of influence.

473

A dynamic model system of household car ownership, trip generation, and modal split: model development and simulation experiment  

E-Print Network (OSTI)

household car ownership, mode usage, and sociodemographictrip making and mode usage upon car ownership appears to beto predict car ownership and mode usage by the panel

Kitamura, Ryuichi

2009-01-01T23:59:59.000Z

474

Household energy use in urban Venezuela: Implications from surveys in Maracaibo, Valencia, Merida, and Barcelona-Puerto La Cruz  

Science Conference Proceedings (OSTI)

This report identifies the most important results of a comparative analysis of household commercial energy use in Venezuelan urban cities. The use of modern fuels is widespread among all cities. Cooking consumes the largest share of urban household energy use. The survey documents no use of biomass and a negligible use of kerosene for cooking. LPG, natural gas, and kerosene are the main fuels available. LPG is the fuel choice of low-income households in all cities except Maracaibo, where 40% of all households use natural gas. Electricity consumption in Venezuela`s urban households is remarkably high compared with the levels used in households in comparable Latin American countries and in households of industrialized nations which confront harsher climatic conditions and, therefore, use electricity for water and space heating. The penetration of appliances in Venezuela`s urban households is very high. The appliances available on the market are inefficient, and there are inefficient patterns of energy use among the population. Climate conditions and the urban built form all play important roles in determining the high level of energy consumption in Venezuelan urban households. It is important to acknowledge the opportunities for introducing energy efficiency and conservation in Venezuela`s residential sector, particularly given current economic and financial constraints, which may hamper the future provision of energy services.

Figueroa, M.J.; Sathaye, J.

1993-08-01T23:59:59.000Z

475

Essays on the Consumption and Investment Decisions of Households in the Presence of Housing and Human Capital  

E-Print Network (OSTI)

2 Housing and the Consumption Allocation of Households:of Indivisibility on Housing Consumption Volatility . 2.5and consumption allocation . . . . . . . . . . . . . . .

Betermier, Sebastien

2010-01-01T23:59:59.000Z

476

Characteristics, Welfare Use and Material Hardship Among California AFDC Households with Disabled and Chronically Ill Family Members  

E-Print Network (OSTI)

completed telephone survey o f AFDC-recipient households tocare for disabled members. When AFDC and SSI are consideredfamilies in this sample of AFDC recipient families were very

Meyers, Marcia k.

1996-01-01T23:59:59.000Z

477

Load-shifting in a new perspective: Smart scheduling of smart household appliances using an Agent-Bsaed Modelling Approach.  

E-Print Network (OSTI)

??The electricity demand of households in the Netherlands has been growing rapidly for the last decades and will continue to grow in the near future.… (more)

De Blécourt, M.J.

2012-01-01T23:59:59.000Z

478

Rhode Island Stormwater Design and Installation Standards Manual (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Stormwater Design and Installation Standards Manual Rhode Island Stormwater Design and Installation Standards Manual (Rhode Island) Rhode Island Stormwater Design and Installation Standards Manual (Rhode Island) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Environmental Regulations

479

Towards a study of the {sup 22}Ne(p,{gamma}){sup 23}Na reaction at LUNA  

SciTech Connect

The {sup 22}Ne(p,{gamma}){sup 23}Na reaction is a part of the hydrogen burning NeNa cycle. In second-generation stars hydrogen burning may proceed via this cycle. The rate of the {sup 22}Ne(p,{gamma}){sup 23}Na reaction depends on the strength of several resonances in the energy range of the LUNA 400 kV accelerator which have never been observed in direct experiments. A related study is under preparation at LUNA.

Cavanna, Francesca; Depalo, Rosanna; Menzel, Marie-Luise [Dipartimento di fisica, Universita di Genova, and INFN Sezione di Genova, Genova (Italy); Dipartimento di fisica, Universita di Padova, and INFN Sezione di Padova, Padova (Italy); Helmholtz Zentrum Dresden-Rossendorf, Dresden (Germany); Collaboration: LUNA Collaboration

2012-11-20T23:59:59.000Z

480

Analysis of ISO NE Balancing Requirements: Uncertainty-based Secure Ranges for ISO New England Dynamic Inerchange Adjustments  

SciTech Connect

The document describes detailed uncertainty quantification (UQ) methodology developed by PNNL to estimate secure ranges of potential dynamic intra-hour interchange adjustments in the ISO-NE system and provides description of the dynamic interchange adjustment (DINA) tool developed under the same contract. The overall system ramping up and down capability, spinning reserve requirements, interchange schedules, load variations and uncertainties from various sources that are relevant to the ISO-NE system are incorporated into the methodology and the tool. The DINA tool has been tested by PNNL and ISO-NE staff engineers using ISO-NE data.

Etingov, Pavel V.; Makarov, Yuri V.; Wu, Di; Hou, Zhangshuan; Sun, Yannan; Maslennikov, S.; Luo, X.; Zheng, T.; George, S.; Knowland, T.; Litvinov, E.; Weaver, S.; Sanchez, E.

2013-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "islander households ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Community Redevelopment Case Study: Jekyll Island  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Redevelopment Community Redevelopment Case Study: Jekyll Island Jones Hooks, Executive Director Jekyll Island Authority April 12, 2012 Community & Neighborhood Development...  State and Local Programs  Stakeholders  Components  Agendas  Schedule  MONEY  Others... "Nothing Hard Is Ever Easy!" Island Visitation: Long steady decline since 1989 "We always go to Jekyll..." became "We used to go to Jekyll..." Loss of Georgia state association conventions Occupied Room Nights and Total JIA Amenity Revenue/Room Night: FY1988-2008 $- $5.00 $10.00 $15.00 $20.00 $25.00 $30.00 $35.00 $40.00 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Revenue/Room Night - 50,000 100,000 150,000 200,000

482

Recovery Act State Memos Mariana Islands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Florida to play an important role in the new energy economy of the future. EXAMPLES OF NORTHERN MARIANA ISLANDS FORMULA GRANTS Program Award State Energy Program Weatherization Assistance Program Energy Efficiency Conservation Block Grants Energy Efficiency Appliance Rebate Program $18.7 million $0.8 million $9.6 million $0.1 million The Commonwealth of the Northern Mariana Islands has received $18.7 million in State Energy Program funds to invest in state- and territory-level energy efficiency and renewable energy priorities. The Commonwealth of the Northern Mariana Islands has received over $790,000 in Weatherization Assistance Program funds to scale-up existing weatherization efforts in the

483

Kauai Island Utility Cooperative | Open Energy Information  

Open Energy Info (EERE)

Island Utility Cooperative Island Utility Cooperative Jump to: navigation, search Name Kauai Island Utility Cooperative Place Hawaii Utility Id 10071 Utility Location Yes Ownership C NERC Location HICC Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png D Residential Service Residential General Light and Power Service Schedule G Commercial General Light and Power Service Schedule J Commercial Large Power Secondary Schedule P Industrial Large Power Service Schedule L Industrial

484

The Rhode Island Statewide Lighting Program  

SciTech Connect

This report summarizes the implementation and initial evaluation of the nation's first statewide conservation and load management program, the Rhode Island Statewide Lighting Program (RISLP). Rhode Island's program is unique because it is a voluntary collaborative effort and because three utilities use a single delivery mechanism for their programs. The Rhode Island Statewide Lighting Program is a unique attempt to improve the efficiency of electricity use in the commercial/industrial sector on a statewide basis. The cooperative nature of program design and implementation has strengthened communication among the participants. The process evaluation showed that both the participants and the customers are satisfied with the program. The program has had a significant effect on customer behavior.

Pierce, B.; Bjoerkqvist, O.

1992-02-01T23:59:59.000Z

485

Competition Helps Kids Learn About Energy and Save Their Households Some  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition Helps Kids Learn About Energy and Save Their Households Competition Helps Kids Learn About Energy and Save Their Households Some Money Competition Helps Kids Learn About Energy and Save Their Households Some Money May 21, 2013 - 2:40pm Addthis Students can register now to save energy and win prizes with the Home Energy Challenge. Students can register now to save energy and win prizes with the Home Energy Challenge. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Visit HomeEnergyChallenge.org to register for the competition. Third through eighth grade students and teachers will be excited to hear about a competition starting up for next school year that challenges students to learn about energy, develop techniques for saving energy, and

486

"Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Household Income, 2005" 0 Home Appliances Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Home Appliances Usage Indicators" "Total",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,2.9,2.5,1.3,0.5,1,2.4,4.6 "2 Times A Day",24.6,6.5,7,4.3,3.2,3.6,4.8,10.3 "Once a Day",42.3,8.8,9.8,8.7,5.1,10,5,12.9

487

Could a Common Household Fungus Reduce Oil Imports? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a Common Household Fungus Reduce Oil Imports? a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? June 21, 2011 - 11:37am Addthis A view of Aspergillus niger with the fungus’ DNA highlighted in green | Photo Courtesy of: PNNL. A view of Aspergillus niger with the fungus' DNA highlighted in green | Photo Courtesy of: PNNL. Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy What does this mean for me? The Department's Pacific Northwest National Laboratory (PNNL) are working to harness the natural process that spoils fruits and vegetables as a way to make fuel and other petroleum substitutes from the parts of plants that we can't eat. The genetic bases of the behaviors and abilities of these two industrially relevant fungal strains will allow researchers to exploit

488

"Table HC7.5 Space Heating Usage Indicators by Household Income, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Household Income, 2005" 5 Space Heating Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Space Heating Usage Indicators" "Total U.S. Housing Units",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Do Not Have Heating Equipment",1.2,0.5,0.3,0.2,"Q",0.2,0.3,0.6 "Have Space Heating Equipment",109.8,26.2,28.5,20.4,13,21.8,16.3,37.9 "Use Space Heating Equipment",109.1,25.9,28.1,20.3,12.9,21.8,16,37.3

489

Could a Common Household Fungus Reduce Oil Imports? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? June 21, 2011 - 11:37am Addthis A view of Aspergillus niger with the fungus’ DNA highlighted in green | Photo Courtesy of: PNNL. A view of Aspergillus niger with the fungus' DNA highlighted in green | Photo Courtesy of: PNNL. Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy What does this mean for me? The Department's Pacific Northwest National Laboratory (PNNL) are working to harness the natural process that spoils fruits and vegetables as a way to make fuel and other petroleum substitutes from the parts of plants that we can't eat. The genetic bases of the behaviors and abilities of these two industrially relevant fungal strains will allow researchers to exploit

490

NYSERDA's Green Jobs-Green New York Program: Extending Energy Efficiency Financing To Underserved Households  

Science Conference Proceedings (OSTI)

The New York legislature passed the Green Jobs-Green New York (GJGNY) Act in 2009. Administered by the New York State Energy Research and Development Authority (NYSERDA), GJGNY programs provide New Yorkers with access to free or low-cost energy assessments,1 energy upgrade services,2 low-cost financing, and training for various 'green-collar' careers. Launched in November 2010, GJGNY's residential initiative is notable for its use of novel underwriting criteria to expand access to energy efficiency financing for households seeking to participate in New York's Home Performance with Energy Star (HPwES) program.3 The GJGNY financing program is a valuable test of whether alternatives to credit scores can be used to responsibly expand credit opportunities for households that do not qualify for traditional lending products and, in doing so, enable more households to make energy efficiency upgrades.

Zimring, Mark; Fuller, Merrian

2011-01-24T23:59:59.000Z

491

2 The Financial and Economic Crises: Implications for Consumer Finance and for Households in Michigan  

E-Print Network (OSTI)

IPPSR and MSUE at Michigan State University for financial support. This paper was partially written while a Visiting Scholar at the National Poverty Center at the University of Michigan, and its Michigan is an epicenter of the recent economic and financial crises. Median personal income was 8 percent above the national average at the beginning of the decade and was 8 percent below the national average by the end of it. Between 2008 and 2009, personal income fell for the first time since 1958. Rates of unemployment and foreclosure activity remain high and above the national average. Indeed, the Michigan economy is changing in dramatic and important ways, but there is little information on household responses to this changing environment. How are Michigan households responding to economic and financial shocks? Are they smoothing income, consumption, or both? What mechanisms are they using to achieve these outcomes? On which factors does the degree of adjustment depend? Using data collected from recent household surveys,

Lisa D. Cook; Lisa D. Cook; Ann Marie Schneider; Lauren Meunier; Lisa D. Cook

2010-01-01T23:59:59.000Z

492

Microsoft PowerPoint - Freeze.NE PA Overview_052511.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Used Fuel Disposition Campaign Used Fuel Disposition Campaign Summary of DOE-NE PA Modeling for Storage and Disposal of Used Nuclear Fuel (UNF), High-Level Radioactive Waste (HLW), and Low-Level Waste (LLW) Geoff Freeze Sandia National Laboratories PA Community of Practice Technical Exchange May 25-26, 2011 Print Close Used Fuel Disposition 2 DOE-Nuclear Energy (NE) - PA Modeling Activities NE Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (Waste IPSC) Used Fuel Disposition (UFD) Generic Performance Assessment Model (GPAM) *** Initial modeling focus in both campaigns in on UNF/HLW disposal Print Close Used Fuel Disposition 3  UFD GPAM  Short time horizon (2-3 yrs) - Simplified generic system models (i.e., PA-fidelity using GoldSim) - Current computing capabilities

493

SkÃ¥ne County, Sweden: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Skåne County, Sweden: Energy Resources Skåne County, Sweden: Energy Resources Jump to: navigation, search Name Skåne County, Sweden Equivalent URI DBpedia GeoNames ID 3337385 Coordinates 55.98333°, 13.5° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.98333,"lon":13.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

494

DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-NE Light Water Reactor Sustainability Program and EPRI DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation's

495

DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-NE Light Water Reactor Sustainability Program and EPRI DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation's

496

ARM - Field Campaign - 1996 NARSTO Northeast Field Study (NARSTO-NE)  

NLE Websites -- All DOE Office Websites (Extended Search)

6 NARSTO Northeast Field Study (NARSTO-NE) 6 NARSTO Northeast Field Study (NARSTO-NE) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 1996 NARSTO Northeast Field Study (NARSTO-NE) 1996.07.01 - 1996.07.28 Lead Scientist : Larry Kleinman For data sets, see below. Description The DOE G-1 aircraft was deployed in the New York City metropolitan area as part of the North American Research Strategy for Tropospheric Ozone-Northeast effort to determine the causes of elevated ozone levels in the northeastern United States. Measurements of ozone, ozone precursors, and other photochemically active trace gases were made upwind and downwind of New York City with the objective of characterizing the ozone formation process and its dependence on ambient levels of NOx and volatile organic

497

Charged-Current Neutral Pion production at SciBooNE  

SciTech Connect

SciBooNE, located in the Booster Neutrino Beam at Fermilab, collected data from June 2007 to August 2008 to accurately measure muon neutrino and anti-neutrino cross sections on carbon below 1 GeV neutrino energy. SciBooNE is studying charged current interactions. Among them, neutral pion production interactions will be the focus of this poster. The experimental signature of neutrino-induced neutral pion production is constituted by two electromagnetic cascades initiated by the conversion of the {pi}{sup 0} decay photons, with an additional muon in the final state for CC processes. In this poster, I will present how we reconstruct and select charged-current muon neutrino interactions producing {pi}{sup 0}'s in SciBooNE.

Catala-Perez, J.; /Valencia U., IFIC

2009-10-01T23:59:59.000Z

498

First Direct Measurement of the {sup 17}F(p,{gamma}){sup 18}Ne Cross Section  

SciTech Connect

The rate of the {sup 17}F(p,{gamma}){sup 18}Ne reaction is important in various astrophysical events. A previous {sup 17}F(p,p){sup 17}F measurement identified a 3{sup +} state providing the strongest resonance contribution, but the resonance strength was unknown. We have directly measured the {sup 17}F(p,{gamma}){sup 18}Ne reaction using a mixed beam of {sup 17}F and {sup 17}O at ORNL. The resonance strength for the 3{sup +} resonance in {sup 18}Ne was found to be {omega}{gamma}=33{+-}14(stat){+-}17(syst) meV, corresponding to a {gamma} width of {gamma}{sub {gamma}}=56{+-}24(stat){+-}30(syst) meV. An upper limit on the direct capture of S(E){<=}65 keV b was determined at an energy of 800 keV.

Chipps, K. A.; Greife, U. [Colorado School of Mines, Golden, Colorado 80401 (United States); Bardayan, D. W.; Smith, M. S. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Blackmon, J. C. [Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Chae, K. Y.; Moazen, B. H.; Pittman, S. T. [University of Tennessee, Knoxville, Tennessee 37996 (United States); Hatarik, R.; Peters, W. A. [Rutgers University, New Brunswick, New Jersey 08901 (United States); Kozub, R. L.; Shriner, J. F. Jr. [Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Matei, C. [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830 (United States); Nesaraja, C. D.; Pain, S. D. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); University of Tennessee, Knoxville, Tennessee 37996 (United States)

2009-04-17T23:59:59.000Z

499

Comparative analysis of energy data bases for household residential and transportation energy use  

SciTech Connect

Survey data bases covering household residential and transportation energy use were reviewed from the perspective of energy policy analysts and data base users. Twenty-three surveys, taken from 1972 to 1985, collected information on household energy consumption and expenditures, energy-using capital stock, and conservation activities. Ten of the surveys covered residential energy use only, including that for space heating and cooling, cooking, water heating, and appliances. Six surveys covered energy use only for household travel in personal vehicles. Seven surveys included data on both of these household energy sectors. Complete energy use data for a household in one year can be estimated only for 1983, using two surveys (one residential and one transportation) taken in the same households. The last nine surveys of the 23 were recent (1983--1985). Review of those nine was based on published materials only. The large-scale surveys generally had less-comprehensive data, while the comprehensive surveys were based on small samples. The surveys were timely and useful for analyzing four types of energy policies: economic regulation, environmental regulation, federal energy production, and direct regulation of energy consumption or production. Future surveys of energy use, such as those of residential energy consumption, should try to link their energy-use questions to large surveys, such as the American Housing Survey, to allow more accurate analysis of comparative impacts of energy policies among population categories of interest (e.g., minority/majority, metropolitan/nonmetropolitan area, census regions, and income class). 78 refs., 9 figs., 29 tabs.

Teotia, A.; Klein, Y.; LaBelle, S.

1988-11-01T23:59:59.000Z

500

Use of electricity billing data to determine household energy use fingerprints  

Science Conference Proceedings (OSTI)

Ways to analyze billing data are discussed. The starting point for these analyses is a method developed at Princeton University. Their Scorekeeping model permits decomposition of total household energy use into its weather- and nonweather-sensitive elements; the weather-sensitive portion is assumed proportional to heating degree days. The Scorekeeping model also allows one to compute weather-adjusted energy consumption for each household based on its billing data and model parameters; this is the model's estimate of annual consumption under long-run weather conditions. The methods discussed here extend the Scorekeeping results to identify additional characteristics of household energy use. In particular, the methods classify households in terms of the intensity with which the particular fuel is used for space heating (primary heating fuel vs supplemental heating fuel vs no heating at all with the fuel). In addition, households that use the particular fuel for air conditioning are identified. In essence, the billing data and model results are used to determine household energy use fingerprints. The billing data and model results can also be used to identify and correct anomalous bills. The automated method discussed here identifies anomalously high or low utility bills, which are then dropped before re-estimation of the Scorekeeping model parameters. Alternatively, a pair of bills may be combined if one is very high and a temporally adjacent bill is very low. The Scorekeeping model is then re-estimated after the two bills are combined into one. The methods permit careful examination and analysis of changes in energy use from one year to another.

Hirst, E.; Goeltz, R.; White, D.

1984-08-01T23:59:59.000Z