National Library of Energy BETA

Sample records for island offshore system

  1. Mustang Island Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Island Offshore Wind Farm Jump to: navigation, search Name Mustang Island Offshore Wind Farm Facility Mustang Island Offshore Wind Farm Sector Wind energy Facility Type Offshore...

  2. Rhode Island Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rhode Island Offshore Wind Farm Jump to: navigation, search Name Rhode Island Offshore Wind Farm Facility Rhode Island Offshore Wind Farm Sector Wind energy Facility Type Offshore...

  3. Offshore Islands Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Offshore Islands Ltd Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  4. Long Island New York City Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Long Island New York City Offshore Wind Farm Jump to: navigation, search Name Long Island New York City Offshore Wind Farm Facility Long Island New York City Offshore Wind Farm...

  5. Rhode Island to Build First Offshore Wind Farm

    Broader source: Energy.gov [DOE]

    Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island’s first offshore wind farm.

  6. Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development

    SciTech Connect (OSTI)

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2010-11-23

    Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.

  7. Assessment of Offshore Wind System Design, Safety, and Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Offshore Wind System Design, Safety, and Operation Standards Assessment of Offshore Wind System Design, Safety, and Operation Standards The U.S. Department of ...

  8. Arctic & Offshore Technical Data System

    Energy Science and Technology Software Center (OSTI)

    1990-07-01

    AORIS is a computerized information system to assist the technology and planning community in the development of Arctic oil and gas resources. In general, AORIS is geographically dependent and, where possible, site specific. The main topics are sea ice, geotechnology, oceanography, meteorology, and Arctic engineering, as they relate to such offshore oil and gas activities as exploration, production, storage, and transportation. AORIS consists of a directory component that identifies 85 Arctic energy-related databases and tellsmore » how to access them; a bibliographic/management information system or bibliographic component containing over 8,000 references and abstracts on Arctic energy-related research; and a scientific and engineering information system, or data component, containing over 800 data sets, in both tabular and graphical formats, on sea ice characteristics taken from the bibliographic citations. AORIS also contains much of the so-called grey literature, i.e., data and/or locations of Arctic data collected, but never published. The three components are linked so the user may easily move from one component to another. A generic information system is provided to allow users to create their own information systems. The generic programs have the same query and updating features as AORIS, except that there is no directory component.« less

  9. Arctic & Offshore Technical Data System

    Energy Science and Technology Software Center (OSTI)

    1990-07-01

    AORIS is a computerized information system to assist the technology and planning community in the development of Arctic oil and gas resources. In general, AORIS is geographically dependent and, where possible, site specific. The main topics are sea ice, geotechnology, oceanography, meteorology, and Arctic engineering, as they relate to such offshore oil and gas activities as exploration, production, storage, and transportation. AORIS consists of a directory component that identifies 85 Arctic energy-related databases and tellsmorehow to access them; a bibliographic/management information system or bibliographic component containing over 8,000 references and abstracts on Arctic energy-related research; and a scientific and engineering information system, or data component, containing over 800 data sets, in both tabular and graphical formats, on sea ice characteristics taken from the bibliographic citations. AORIS also contains much of the so-called grey literature, i.e., data and/or locations of Arctic data collected, but never published. The three components are linked so the user may easily move from one component to another. A generic information system is provided to allow users to create their own information systems. The generic programs have the same query and updating features as AORIS, except that there is no directory component.less

  10. NREL: Wind Research - Energy Analysis of Offshore Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis of Offshore Systems Chart of cost data for actual and projected offshore wind projects as reported by developers. Enlarge image NREL has a long history of ...

  11. Offshore Wind Energy Systems Engineering Curriculum Development

    SciTech Connect (OSTI)

    McGowan, Jon G.; Manwell, James F.; Lackner, Matthew A.

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This course was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.

  12. Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2

    SciTech Connect (OSTI)

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2011-03-01

    Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

  13. Statoil's offshore submerged turret loading system

    SciTech Connect (OSTI)

    Brevik, K. ); Smedal, S. )

    1993-01-01

    Statoil, the Norwegian state oil company, and Marine Consulting Group (MCG), with support from Norwegian research institutes, are jointly developing a new offshore shuttle tanker loading concept called the Submerged Turret Loading (STL) system. The STL comprises a spread-moored buoy and export line riser configured such that, when not in use, the buoy remains submerged. For shuttle tanker loading, the vessel moves over the buoy and pulls it into a compartment in the bottom of its hull. Mooring loads are then transferred into the vessel's hull; and the export riser is connected to the shuttle's tankage within the chamber, below waterline. Principal features of the innovative new system that allows operations in seastates well beyond present-system limits, increases safety and reduces pollution potential are outlined here.

  14. Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

    2013-04-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

  15. Applications for concrete offshore

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The report collects and summarizes the various proposals for development offshore which have in common the use of concrete as the main structural material, and where possible, indicates their relative feasibility. A study encompassing such diverse schemes as offshore windmills, concrete LNG carriers, hydrocarbon production platforms and floating airports cannot be completely exhaustive on each subject, so references to sources of further information have been given wherever possible. Details of individual projects and proposals are included for Power plants, Hydrocarbon production platforms, Concrete ships, Storage systems and industrial plants, Subsea systems, Offshore islands, Coastal works and Other concrete structures.

  16. Offshore Wind Balance-of-System Cost Modeling

    SciTech Connect (OSTI)

    Maness, Michael; Stehly, Tyler; Maples, Ben; Mone, Christopher

    2015-09-29

    Offshore wind balance-of-system (BOS) costs contribute up to 70% of installed capital costs. Thus, it is imperative to understand the impact of these costs on project economics as well as potential cost trends for new offshore wind technology developments. As a result, the National Renewable Energy Laboratory (NREL) developed and recently updated a BOS techno-economic model using project cost estimates created from wind energy industry sources.

  17. Conceptual Model of Offshore Wind Environmental Risk Evaluation System

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.; Unwin, Stephen D.; Hamilton, Erin L.

    2010-06-01

    In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of offshore wind energy generation projects. The development of ERES for offshore wind is closely allied to a concurrent process undertaken to examine environmental effects of marine and hydrokinetic (MHK) energy generation, although specific risk-relevant attributes will differ between the MHK and offshore wind domains. During FY10, a conceptual design of ERES for offshore wind will be developed. The offshore wind ERES mockup described in this report will provide a preview of the functionality of a fully developed risk evaluation system that will use risk assessment techniques to determine priority stressors on aquatic organisms and environments from specific technology aspects, identify key uncertainties underlying high-risk issues, compile a wide-range of data types in an innovative and flexible data organizing scheme, and inform planning and decision processes with a transparent and technically robust decision-support tool. A fully functional version of ERES for offshore wind will be developed in a subsequent phase of the project.

  18. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect (OSTI)

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  19. Petroleum prospects for offshore sedimentary basins in the eastern Papua New Guinea and Solomon Islands regions

    SciTech Connect (OSTI)

    Bruns, T.R.; Vedder, J.G. )

    1990-06-01

    Intra-arc basins in the Buka-Bougainville region of Papua New Guinea and in the Solomon Islands contain thick sedimentary sequences that may be prospective for petroleum. The Queen Emma basin, between Bougainville and New Ireland, contains as much as 8 km of deformed Oligocene and younger strata. The Central Solomons Trough, which underlies New Georgia Sound, is a composite intra-arc basin that contains late Oligocene and younger strata as much as 7 km thick. Farther east, beneath Indispensable Strait, the down-faulted Indispensable basin locally contains as much as 5.4 km of Miocene( ) and younger strata, and the offshore part of Mbokokimbo basin off eastern Guadalcanal includes 6 km or more of late Miocene and younger strata. All of these basins have some of the attributes necessary to generate and trap petroleum. Structural and stratigraphic traps are common, including faulted anticlines, sedimentary wedges, and carbonate reefs and reef-derived deposits on submarine ridges and along the basin margins. The thickness of the basin deposits ensures that some strata are buried deeply enough to be within the thermal regime required for hydrocarbon generation. However, little source or reservoir rock information is available because of the lack of detailed surface and subsurface stratigraphy. Moreover, much of the basin sediment is likely to consist of volcaniclastic material, derived from uplifted volcanogenic rocks surrounding the basins, and may be poor in source and reservoir rocks. Until additional stratigraphic information is available, analysis of the petroleum potential of these basins is a matter of conjecture.

  20. Regional offshore geology of central and western Solomon Islands and Bougainville, Papua New Guinea

    SciTech Connect (OSTI)

    Vedder, J.G.; Colwell, J.B.; Bruns, T.R.; Cooper, A.K.

    1986-07-01

    The central and western Solomon Islands and the Bougainville regions are parts of a complex island-arc system that includes an intra-arc basin and remnants of both forearc and back-arc depositional wedges. These features formed in response to episodic Cenozoic tectonism along the convergent boundary between the Pacific and Australia-India plates. Presumed early Tertiary southwest-directed subduction of the Pacific plate and associated arc magmatism were curtailed by impingement of the leading edge of the Ontong Java Plateau. Aprons of back-arc and forearc sediment were derived from highstanding parts of the arc during the late Oligocene and early Miocene. Late Tertiary arc-polarity reversal and northeastward-directed subduction of the Woodlark spreading system caused a renewal of island-arc magmatism that completed the construction of the Central Solomons Trough as an enclosed intra-arc basin. Interpretations of multichannel profiles from 1982 and 1984 CCOP/SOPAC Tripartite Cruises of the research vessel R/V S.P. Lee indicate that the Central Solomons Trough is a composite intra-arc basin containing as much as 5.5 km of late Oligocene(.) and younger sedimentary rocks. As many as five lenticular seismic-stratigraphic units can be identified on the basis of unconformities and abrupt velocity changes. Late Miocene and younger folds and faults deform the northeast and southwest flanks of the basin. Profiles across the Kilinailau Trench show Ontong Java Plateau rocks covered by 2-4 km of trench sediment. The inner trench wall consists of folded, upfaulted, and rotated blocks of trench and forearc strata. The deep-water basin northwest of Bougainville is a southeastward extension of the New Ireland forearc basin, the southern margin of which is formed by a subsided part of the early Cenozoic arc. There, Oligocene(.) and younger basin strata, as much as 7 km thick, are deformed by pre-Pliocene faults and folds.

  1. Offshore LNG (liquefied natural gas) production and storage systems

    SciTech Connect (OSTI)

    Barden, J.K.

    1982-01-01

    A barge, outfitted with gas liquefaction processing equipment and liquefied natural gas (LNG) storage tanks, is suggested as a possible way to exploit remote offshore gas production. A similar study with a barge-mounted methanol plant was conducted several years ago, also using remote offshore feed gas. This barge-mounted, LNG system is bow-moored to a single point mooring through which feed gas is piped via seafloor pipeline from a nearby gas production facility. The barge is arranged with personnel accommodation forward, LNG storage midships, and gas liquefaction processing equipment aft. A flare boom is cantilevered off the barge's stern. The basis of design stipulates feed gas properties, area environmental data, gas liquefaction process, LNG storage tank type plus other parameters desirable in a floating process plant. The latter were concerned with safety, low maintenance characteristics, and the fact that the process barge also would serve as an offshore port where LNG export tankers would moor periodically. A brief summary of results for a barge-mounted methanol plant from an earlier study is followed then by a comparison of LNG and methanol alternatives.

  2. Offshore Resource Assessment and Design Conditions: A Data Requirements and Gaps Analysis for Offshore Renewable Energy Systems

    SciTech Connect (OSTI)

    Elliott, Dennis; Frame, Caitlin; Gill, Carrie; Hanson, Howard; Moriarty, Patrick; Powell, Mark; Shaw, William J.; Wilczak, Jim; Wynne, Jason

    2012-03-01

    The offshore renewable energy industry requires accurate meteorological and oceanographic (“metocean”) data for evaluating the energy potential, economic viability, and engineering requirements of offshore renewable energy projects. It is generally recognized that currently available metocean data, instrumentation, and models are not adequate to meet all of the stakeholder needs on a national scale. Conducting wind and wave resource assessments and establishing load design conditions requires both interagency collaboration as well as valuable input from experts in industry and academia. Under the Department of Energy and Department of Interior Memorandum of Understanding, the Resource Assessment and Design Condition initiative supports collaborative national efforts by adding to core atmospheric and marine science knowledge relevant to offshore energy development. Such efforts include a more thorough understanding and data collection of key metocean phenomena such as wind velocity and shear; low-level jets; ocean, tidal, and current velocities; wave characteristics; geotechnical data relating to surface and subsurface characteristics; seasonal and diurnal variations; and the interaction among these conditions. Figure 1 presents a graphical representation of some metocean phenomena that can impact offshore energy systems. This document outlines the metocean observations currently available; those that are not available; and those that require additional temporal-spatial coverage, resolution, or processing for offshore energy in an effort to gather agreed-upon, needed observations.

  3. Assessment of Offshore Wind System Design, Safety, and Operation Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contract No. DE-AC36-08GO28308 Assessment of Offshore Wind System Design, Safety, and Operation Standards Senu Sirnivas and Walt Musial National Renewable Energy Laboratory Bruce Bailey and Matthew Filippelli AWS Truepower LLC Technical Report NREL/TP-5000-60573 January 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National

  4. Offshore Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ... Twitter Google + Vimeo GovDelivery SlideShare Offshore ...

  5. Monhegan Island | Open Energy Information

    Open Energy Info (EERE)

    Island Jump to: navigation, search Name Monhegan Island Facility Monhegan Island Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Maine State Dept of...

  6. New Report Shows Trend Toward Larger Offshore Wind Systems, with...

    Energy Savers [EERE]

    projects that have at least signed a power purchase agreement, received approval for ... sizes, and the increased severity of wind and wave loading at offshore wind projects. ...

  7. Assessment of Offshore Wind System Design, Safety, and Operation Standards

    SciTech Connect (OSTI)

    Sirnivas, S.; Musial, W.; Bailey, B.; Filippelli, M.

    2014-01-01

    This report is a deliverable for a project sponsored by the U.S. Department of Energy (DOE) entitled National Offshore Wind Energy Resource and Design Data Campaign -- Analysis and Collaboration (contract number DE-EE0005372; prime contractor -- AWS Truepower). The project objective is to supplement, facilitate, and enhance ongoing multiagency efforts to develop an integrated national offshore wind energy data network. The results of this initiative are intended to 1) produce a comprehensive definition of relevant met-ocean resource assets and needs and design standards, and 2) provide a basis for recommendations for meeting offshore wind energy industry data and design certification requirements.

  8. Offshore Wind Balance-of-System Cost Modeling (Poster), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameters, can yield a rise in BOS cost, such as the spike near 500 megawatts. Figure 4. Offshore wind fixed substructure BOS costs decrease as turbine rating increases, which is...

  9. New Report Shows Trend Toward Larger Offshore Wind Systems

    Broader source: Energy.gov [DOE]

    The Energy Department released a new report showing progress for the U.S. offshore wind energy market in 2012, including 11 commercial-scale U.S. projects reaching an advanced stage of development.

  10. New Report Shows Trend Toward Larger Offshore Wind Systems, with 11

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Stage Projects Proposed in U.S. Waters | Department of Energy Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters October 23, 2013 - 10:52am Addthis The Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012, including the completion of two commercial

  11. EIS-0006: Wind Turbine Generator System, Block Island, Rhode Island

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this EIS to evaluate the environmental impacts of installing and operating a large experimental wind turbine, designated the MOD-OA, which is proposed to be installed on a knoll in Rhode Island's New Meadow Hill Swamp, integrated with the adjacent Block Island Power Company power plant and operated to supply electricity to the existing utility network.

  12. Environmental Risk Evaluation System (ERES) for Offshore Wind - Mock-Up of ERES, Fiscal Year 2010 Progress Report

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

    2010-11-01

    The Environmental Risk Evaluation System (ERES) has been created to set priorities among the environmental risks from offshore wind development. This report follows the conceptual design for ERES and shows what the system would look like, using a web interface created as part of a Knowledge Management System (KMS) for offshore wind. The KMS, called Zephyrus, and ERES for offshore wind, will be populated and made operational in a later phase of the project.

  13. 28. annual offshore technology conference: Proceedings. Volume 4: Field drilling and development systems

    SciTech Connect (OSTI)

    1996-12-31

    The 88 papers in this volume cover the following topics: Small operator implementation of subsea technology; Control system umbilicals, components and ROV interfacing; DeepStar--Results and plans; Deepwater subsea manifold systems; Drilling technology; Limit state design criteria for pipelines; Liuhua project; Mobile offshore drilling units; Offshore coiled tubing operations; Oman-India gas pipeline; Paraffin and hydrate control; Pompano--A deepwater subsea development; Severe operating conditions; Subsea production systems; and Well completions technology. Papers have been processed separately for inclusion on the data base.

  14. ISLANDER

    Energy Science and Technology Software Center (OSTI)

    003251WKSTN00 Genomic Island Identification Software v 1.0 http://bioinformatics.sandia.gov/software

  15. Cold box shuttle - a system for the recovery of offshore gas - applied to Sweden

    SciTech Connect (OSTI)

    Smith, D.; Eriksson, L.; Pehrsson, L.O.; Strom-Olsen, H.

    1982-01-01

    The recovery of offshore gas as LNG, by heat exchange on an LNG carrier with liquid nitrogen, was studied in the context of a North Sea gas source and a Swedish market. The technical suitability of each component of this cold-box shuttle system was examined and the capital and operating costs were estimated. It was concluded that the system is technically robust and flexible and that, for the case studied, gas could be landed at a competitive cost.

  16. Experiences from the offshore installation of a composite materials firewater system

    SciTech Connect (OSTI)

    Ciaraldi, S.W.

    1993-12-31

    A prototype 300 m composite dry deluge firewater system was installed in December 1991 at the Valhall Field in the southern North Sea Norwegian offshore sector. This installation followed successful safety verification of the explosion and fire resistant design concept consisting of glass-fiber reinforced epoxy (GRE) piping components protected with a reinforced intumescent epoxy fire insulation. The installation was based primarily on the use of prefabricated GRE piping spools and fire insulation cast onto the piping or applied in the form of cast half shells. Significant experiences gained from the project are described. These experiences involve pre-engineering activities, detailed engineering, onshore fabrication, shipping, offshore hook-up, quality assurance, safety and economics. Although the overall installation was successful and the system is functioning as intended, areas of possible optimization and cost reduction for future composite firewater systems were identified. These findings are also briefly reviewed.

  17. Island Energy Conference

    Broader source: Energy.gov [DOE]

    The sixth annual Island Energy Conference will include speakers and panels on Friday, November 6, and a site visit to Star Island, New Hampshire, that hosts Northern New England’s largest offshore...

  18. An Energy Preserving Time Integration Method for Gyric Systems: Development of the Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Preserving Time Integration Method for Gyric Systems: Development of the Offshore Wind Energy Simulation Toolkit Brian C. Owens Texas A&M University brian_owens@tamu.edu John E. Hurtado Texas A&M University jehurtado@tamu.edu Matthew Barone Sandia National Laboratories* mbarone@sandia.gov Joshua A. Paquette Sandia National Laboratories* japaque@sandia.gov *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned

  19. Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    SciTech Connect (OSTI)

    Ling, Hao; Hamilton, Mark F.; Bhalla, Rajan; Brown, Walter E.; Hay, Todd A.; Whitelonis, Nicholas J.; Yang, Shang-Te; Naqvi, Aale R.

    2013-09-30

    Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

  20. AWEA Offshore WINDPOWER 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AWEA Offshore WINDPOWER 2016 AWEA Offshore WINDPOWER 2016 October 25, 2016 8:00AM EDT to October 26, 2016 5:00PM EDT Warwick, Rhode Island Crowne Plaza Hotel Providence-Warwick 801 Greenwich Ave Warwick, RI 02886 United States The American Wind Energy Association (AWEA) Offshore WINDPOWER 2016 Conference & Exhibition program gathers top developers and experts in offshore wind energy to define the next steps in maintaining a positive trend for the industry. An exciting program awaits this

  1. Arctic ice islands

    SciTech Connect (OSTI)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  2. Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... HomeStationary PowerEnergy Conversion EfficiencyWind EnergyOffshore Wind Offshore Wind Tara Camacho-Lopez 2016-0... March 2014, Barcelona, Spain, PO 225. Griffith, D.T., and ...

  3. Offshore Wind Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

  4. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  5. Definition of a 5-MW Reference Wind Turbine for Offshore System Development

    SciTech Connect (OSTI)

    Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G.

    2009-02-01

    This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

  6. 27. Annual Offshore Technology Conference: 1995 Proceedings. Volume 4: Field drilling and development systems

    SciTech Connect (OSTI)

    1995-12-31

    This conference proceedings represents volume 4 of a four volume set of offshore oil and gas operation and development. This proceedings includes papers dealing with subsea flowlines and connectors; well completion practices; new technologies associated with subsea wellheads; multiphase flow pumping and flow meters; and materials testing procedures for well tubulars. It also has a section on the overall technology utilization in developing the offshore areas of Brazil and Norway.

  7. Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems

    Broader source: Energy.gov [DOE]

    The design basis for an offshore wind farm establishes the conditions, needs, and requirements to be taken into account in designing the facility. To address design knowledge gaps and facilitate safe deployment of U.S. offshore wind projects in areas along the U.S. Atlantic Coast, DOE is funding research by a team consisting of DOE's Savannah River National Laboratory, Coastal Carolina University, MMI Engineering, and DOE's National Renewable Energy Laboratory.

  8. Hybrid energy system cost analysis: San Nicolas Island, California

    SciTech Connect (OSTI)

    Olsen, T.L.; McKenna, E.

    1996-07-01

    This report analyzes the local wind resource and evaluates the costs and benefits of supplementing the current diesel-powered energy system on San Nicolas Island, California (SNI), with wind turbines. In Section 2.0 the SNI site, naval operations, and current energy system are described, as are the data collection and analysis procedures. Section 3.0 summarizes the wind resource data and analyses that were presented in NREL/TP 442-20231. Sections 4.0 and 5.0 present the conceptual design and cost analysis of a hybrid wind and diesel energy system on SNI, with conclusions following in Section 6. Appendix A presents summary pages of the hybrid system spreadsheet model, and Appendix B contains input and output files for the HYBRID2 program.

  9. Block Island Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Deepwater Wind Location Offshore from Block Island RI Coordinates 41.1, -71.53 Show Map Loading...

  10. Bluewater Wind Rhode Island | Open Energy Information

    Open Energy Info (EERE)

    Island Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner NRG Bluewater Wind Developer NRG Bluewater Wind Location Atlantic Ocean RI Coordinates...

  11. Offshore Code Comparison Collaboration, Continuation: Phase II Results of a Floating Semisubmersible Wind System: Preprint

    SciTech Connect (OSTI)

    Robertson, A.; Jonkman, J.; Musial, W.; Vorpahl, F.; Popko, W.

    2013-11-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. The Offshore Code Comparison Collaboration (OC3), which operated under the International Energy Agency (IEA) Wind Task 23, was established to verify the accuracy of these simulation tools [1]. This work was then extended under the Offshore Code Comparison Collaboration, Continuation (OC4) project under IEA Wind Task 30 [2]. Both of these projects sought to verify the accuracy of offshore wind turbine dynamics simulation tools (or codes) through code-to-code comparison of simulated responses of various offshore structures. This paper describes the latest findings from Phase II of the OC4 project, which involved the analysis of a 5-MW turbine supported by a floating semisubmersible. Twenty-two different organizations from 11 different countries submitted results using 24 different simulation tools. The variety of organizations contributing to the project brought together expertise from both the offshore structure and wind energy communities. Twenty-one different load cases were examined, encompassing varying levels of model complexity and a variety of metocean conditions. Differences in the results demonstrate the importance and accuracy of the various modeling approaches used. Significant findings include the importance of mooring dynamics to the mooring loads, the role nonlinear hydrodynamic terms play in calculating drift forces for the platform motions, and the difference between global (at the platform level) and local (at the member level) modeling of viscous drag. The results from this project will help guide development and improvement efforts for these tools to ensure that they are providing the accurate information needed to support the design and

  12. Summary of Conclusions and Recommendations Drawn from the DeepCWind Scaled Floating Offshore Wind System Test Campaign: Preprint

    SciTech Connect (OSTI)

    Robertson, A. N.; Jonkman, J. M.; Masciola, M. D.; Molta, P.; Goupee, A. J.; Coulling, A. J.; Prowell, I.; Browning, J.

    2013-07-01

    The DeepCwind consortium is a group of universities, national labs, and companies funded under a research initiative by the U.S. Department of Energy (DOE) to support the research and development of floating offshore wind power. The two main objectives of the project are to better understand the complex dynamic behavior of floating offshore wind systems and to create experimental data for use in validating the tools used in modeling these systems. In support of these objectives, the DeepCwind consortium conducted a model test campaign in 2011 of three generic floating wind systems, a tension-leg platform (TLP), a spar-buoy (spar), and a semisubmersible (semi). Each of the three platforms was designed to support a 1/50th-scale model of a 5 MW wind turbine and was tested under a variety of wind/wave conditions. The focus of this paper is to summarize the work done by consortium members in analyzing the data obtained from the test campaign and its use for validating the offshore wind modeling tool, FAST.

  13. A review of current anti-islanding methods for photovoltaic power system

    SciTech Connect (OSTI)

    Yu, Byunggyu; Yu, Gwonjong; Matsui, Mikihiko

    2010-05-15

    Islanding phenomenon is undesirable because it leads to a safety hazard to utility service personnel and may cause damage to power generation and power supply facilities as a result of unsynchronized re-closure. Until now, various anti-islanding methods (AIMs) for detecting and preventing islanding of photovoltaic and other distributed generations (DGs) have been proposed. This paper presents an overview of recent anti-islanding method developments for grid-connected photovoltaic (PV) power generation, focusing on the concept and operating principle, mainly based on single phase system. For the performance comparison, the experimental results of the various AIMs with 3 kW PV inverter are provided based on the islanding detection capability and power quality. As a result, the active AIMs have better islanding detection capability rather than the passive one. However, the active AIMs have power quality degradation on harmonic distortion or displacement power factor based on the injected active signal type. In addition to the evaluation and comparison of the main anti-islanding methods, this paper also summarizes the related anti-islanding standards to evaluate anti-islanding capability for PV system. This paper can be used as a useful anti-islanding reference for future work in DG like PV, and wind turbine. (author)

  14. Geographic information system for Long Island: An epidemiologic systems approach to identify environmental breast cancer risks on Long Island. Phase 1

    SciTech Connect (OSTI)

    Barancik, J.I.; Kramer, C.F.; Thode, H.C. Jr.

    1995-12-01

    BNL is developing and implementing the project ``Geographic Information System (GIS) for Long Island`` to address the potential relationship of environmental and occupational exposures to breast cancer etiology on Long Island. The project is divided into two major phases: The four month-feasibility project (Phase 1), and the major development and implementation project (Phase 2). This report summarizes the work completed in the four month Phase 1 Project, ``Feasibility of a Geographic Information System for Long Island.`` It provides the baseline information needed to further define and prioritize the scope of work for subsequent tasks. Phase 2 will build upon this foundation to develop an operational GIS for the Long Island Breast Cancer Study Project (LIBCSP).

  15. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in ...

  16. Final Report DE-EE0005380 Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UNIVERSITY OF TEXAS AT AUSTIN Final Report DE-EE0005380 Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Prepared for: U.S. Department of Energy Prepared by: Hao Ling (UT) Mark F. Hamilton (ARL:UT) Rajan Bhalla (SAIC) Walter E. Brown (ARL:UT) Todd A. Hay (ARL:UT) Nicholas J. Whitelonis (UT) Shang-Te Yang (UT) Aale R. Naqvi (UT) 9/30/2013 DE-EE0005380 The University of Texas at Austin ii Notice and Disclaimer This report is being disseminated by

  17. Screening Analysis for the Environmental Risk Evaluation System Fiscal Year 2011 Report Environmental Effects of Offshore Wind Energy

    SciTech Connect (OSTI)

    Copping, Andrea E.; Hanna, Luke A.

    2011-11-01

    Potential environmental effects of offshore wind (OSW) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and avian and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2011, Pacific Northwest National Laboratory (PNNL) scientists adapted and applied the Environmental Risk Evaluation System (ERES), first developed to examine the effects of marine and hydrokinetic energy devices on aquatic environments, to offshore wind development. PNNL scientists conducted a risk screening analysis on two initial OSW cases: a wind project in Lake Erie and a wind project off the Atlantic coast of the United States near Atlantic City, New Jersey. The screening analysis revealed that top-tier stressors in the two OSW cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device, such as alterations in bottom habitats. Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted during FY 2012. The ERES screening analysis provides an assessment of the vulnerability of environmental receptors to stressors associated with OSW installations; a probability analysis is needed to determine specific risk levels to receptors. As more data become available that document effects of offshore wind farms on specific receptors in U.S. coastal and Great Lakes waters, probability analyses will be performed.

  18. Offshore and onshore engineering practices compared

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The comparison between the practices relevant to onshore and offshore developments is the overall theme of this book. It provides help and guidance to people familiar with onshore practices who are venturing offshore for the first time or vice versa. They draw attention to the lessons of experience which benefit future developments and point to future guidelines and regulations. CONTENTS: Project economic evaluation and conceptual planning - the differences between onshore and offshore projects; A comparison of offshore and onshore plant design; Gas compression equipment - design differences between onshore and offshore applications; Experience in reliable pump design for onshore and offshore applications; Operability, reliability and maintenance - the differences onshore and offshore; Risk analysis in layout and safety engineering for platforms and terminals; The design of electrical supplies for equipment operation; Production measurements for a North Sea oil field; Chemical treatment and process equipment for water injection and oily water treatment systems offshore and onshore; Gas desulphurisation - the consequence of moving the process offshore; A comparison of offshore and onshore pipeline construction and commissioning; Pre-commissioning and commissioning of facilities onshore and offshore; Some aspects of revamp work on onshore and offshore plants.

  19. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect (OSTI)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Greg; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  20. U.S. Virgin Islands- Renewable Energy Feed-in-Tariff

    Broader source: Energy.gov [DOE]

    There is a 10 MW limit for aggregate production via feed-in-tariff contracts on the islands of St. Thomas, St. John, Water Island, and other offshore keys and islands and a similar 5 MW limit for...

  1. San Miguel Island, Channel Islands National Park, California | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Miguel Island, Channel Islands National Park, California San Miguel Island, Channel Islands National Park, California Photo of Wind/Photovoltaic Power System at San Miguel Island San Miguel Island is one of five islands that make up Channel Islands National Park on the coast of southern California. The islands comprise 249,353 acres (100,910 hectares) of land and ocean that teems with terrestrial and marine life. The National Park Service (NPS) protects the pristine resources at

  2. Integrating Renewable Energy into the Transmission and Distribution System of the U. S. Virgin Islands

    SciTech Connect (OSTI)

    Burman, K.; Olis, D.; Gevorgian, V.; Warren, A.; Butt, R.; Lilienthal, P.; Glassmire, J.

    2011-09-01

    This report focuses on the economic and technical feasibility of integrating renewable energy technologies into the U.S. Virgin Islands transmission and distribution systems. The report includes three main areas of analysis: 1) the economics of deploying utility-scale renewable energy technologies on St. Thomas/St. John and St. Croix; 2) potential sites for installing roof- and ground-mount PV systems and wind turbines and the impact renewable generation will have on the electrical subtransmission and distribution infrastructure, and 3) the feasibility of a 100- to 200-megawatt power interconnection of the Puerto Rico Electric Power Authority (PREPA), Virgin Islands Water and Power Authority (WAPA), and British Virgin Islands (BVI) grids via a submarine cable system.

  3. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    SciTech Connect (OSTI)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  4. National Offshore Wind Energy Grid Interconnection Study Full Report

    SciTech Connect (OSTI)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  5. National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Offshore Wind Energy Grid Interconnection Study (NOWEGIS) National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. NOWEGIS Full Report.pdf (20.21 MB) NOWEGIS Executive Summary.pdf (808.92 KB) More Documents &

  6. Wind Energy Deployment in Isolated Islanded Power Systems: Challenges & Realities (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2014-05-01

    Rising costs of fuels, energy surety, and the carbon impacts of diesel fuel are driving remote and islanded communities dependent on diesel power generation to look for alternatives. Over the past few years, interest in using wind energy to reduce diesel fuel consumption has increased dramatically, potentially providing economic, environmental, social, and security benefits to the energy supply of isolated and islanded communities. However, the task of implementing such systems has remained elusive and subject to many cases of lower-than-expected performance. This poster describes the current status of integrating higher contribution wind technology into islanded power systems, the progress of recent initiatives implemented by the U.S. Department of Energy and Interior, and some of the lingering technical and commercial challenges. Operating experience from a number of power systems is described. The worldwide market for wind development in islanded communities (some of these supplying large domestic loads) provides a strong market niche for the wind industry, even in the midst of a slow global recovery.

  7. A National Offshore Wind Strategy: Creating an Offshore Wind Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry in the United States | Department of Energy A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States Strategic plan for accelerating the responsible deployment of offshore wind energy in the United States. A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States. (1.35 MB) More Documents & Publications

  8. Tillamook Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Tillamook Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  9. Galveston Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Galveston Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  10. New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

    Broader source: Energy.gov [DOE]

    The Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012, including the completion of two commercial lease auctions for federal Wind Energy Areas and 11 commercial-scale U.S. projects repre

  11. Offshore Code Comparison Collaboration, Continuation within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System: Preprint

    SciTech Connect (OSTI)

    Robertson, A.; Jonkman, J.; Vorpahl, F.; Popko, W.; Qvist, J.; Froyd, L.; Chen, X.; Azcona, J.; Uzungoglu, E.; Guedes Soares, C.; Luan, C.; Yutong, H.; Pengcheng, F.; Yde, A.; Larsen, T.; Nichols, J.; Buils, R.; Lei, L.; Anders Nygard, T.; et al.

    2014-03-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, Continuation (OC4) project, which operates under the International Energy Agency (IEA) Wind Task 30. In the latest phase of the project, participants used an assortment of simulation codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating semisubmersible in 200 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants? codes, thus improving the standard of offshore wind turbine modeling.

  12. Small Wind Electric Systems: A Rhode Island Consumer's Guide

    SciTech Connect (OSTI)

    2003-06-01

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  13. New method developed for LPG offshore loading

    SciTech Connect (OSTI)

    Not Available

    1985-10-01

    An innovative concept for refrigerated LPG offshore loading has been developed by TOTAL and Enterprise D'Equipments Mecaniques at Hydrauliques. Known as CHAGAL, the system integrates with the catenary anchor leg mooring offshore loading system commonly used for crude oil. CHAGAL provides a suitable answer to short-term development schemes of LPG trade. It can be adapted for possible extrapolation to cryogenic temperatures of LNG and it opens a new way to the development of offshore liquefaction projects for which the offloading of production is still an unsolved key problem.

  14. Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Kari Burman, Dan Olis, Vahan Gevorgian, Adam Warren, and Robert Butt National Renewable Energy Laboratory Peter Lilienthal and John Glassmire HOMER Energy LLC Technical Report NREL/TP-7A20-51294 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No.

  15. East Spar: Alliance approach for offshore gasfield development

    SciTech Connect (OSTI)

    1998-04-01

    East spar is a gas/condensate field 25 miles west of Barrow Island, offshore Western Australia. Proved plus probable reserves at the time of development were estimated at 430 Bcf gas and 28 million bbl of condensate. The field was discovered in early 1993 when the Western Australia gas market was deregulated and the concept of a gas pipeline to the gold fields was proposed. This created a window of opportunity for East Spar, but only if plans could be established quickly. A base-case development plan was established to support gas marketing while alternative plans could be developed in parallel. The completed East Spar facilities comprise two subsea wells, a subsea gathering system, and a multiphase (gas/condensate/water) pipeline to new gas-processing facilities. The subsea facilities are controlled through a navigation, communication, and control (NCC) buoy. The control room and gas-processing plant are 39 miles east of the field on Varanus Island. Sales gas is exported through a pre-existing gas-sales pipeline to the Dampier-Bunbury and Goldfields Gas Transmission pipelines. Condensate is stored in and exported by use of pre-existing facilities on Varanus Island. Field development from approval to first production took 22 months. The paper describes its field development.

  16. Maryland Offshore Wind Annual Meeting

    Broader source: Energy.gov [DOE]

    This event will provide updates on regional offshore wind projects and will help attendees understand Maryland's offshore wind project and the team members required. Participants will also learn...

  17. Offshore Wind Jobs and Economic Development Impacts in the United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of fixed-bottom technologies. The current JEDI model does not accommodate floating offshore wind turbine systems. ... Maryland Michigan Florida South Carolina Delaware ...

  18. NREL Collaborates with SWAY on Offshore Wind Demonstration (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on an offshore wind energy demonstration project deployed off the coast of Bergen, Norway. ... SWAY's one-fifth scale prototype demonstration wind energy system installed off the coast ...

  19. Philippine Islands: a tectonic railroad siding

    SciTech Connect (OSTI)

    Gallagher, J.J. Jr.

    1984-09-01

    In 1976, significant quantities of oil were discovered offshore northwest of Palawan Island by a Philippine-American consortium led by Philippines-Cities Service Inc. This was the first commercial oil found in the Philippine Islands. Other exploration companies had decided that there was no commercial oil in the Philippines. They fell prey to a situation Wallace E. Pratt, who began his career in 1909 in the Philippines, later described: There are many instances where our knowledge, supported in some cases by elaborate and detailed studies has convinced us that no petroleum resources were present in areas which subsequently became sites of important oil fields. Some explorers are blinded by the negative implications of the same knowledge that successful explorers use to find important oil fields. The Palawan discoveries are examples of successful use of knowledge. Recognition that the Philippine Islands are a tectonic railroad siding may be the key to future exploration success. These islands are continental fragments, each with its own individual geologic characteristics, that have moved from elsewhere to their present positions along a major strike-slip zone. Play concepts can be developed in the Philippines for continental fragments in each of the three major present-day tectono-stratigraphic systems that are dominated by strike-slip, but include subduction and extension tectonics, with both carbonate and clastic sediments.

  20. Use of a United States mid-Pacific Island territory for a Pacific Island Repository System (PIRS): Extended summary

    SciTech Connect (OSTI)

    Forsberg, C.W.

    1987-08-01

    The concept of using a mid-ocean island for a geologic high-level waste repository was investigated. The technical advantages include geographical isolation and near-infinite ocean dilution as a backup to repository geological waste isolation. The institutional advantages are reduced siting problems and the potential of creating an international waste repository. Establishment of international waste repository would allow cost sharing, aid US nonproliferation goals, and assure proper disposal of spent fuel from developing countries. The major uncertainties in this concept are rock conditions at waste disposal depths and costs. 13 refs., 2 tabs.

  1. DOE to Host a Booth at Offshore WINDPOWER | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Host a Booth at Offshore WINDPOWER DOE to Host a Booth at Offshore WINDPOWER October 1, 2013 - 12:14pm Addthis This is an excerpt from the Third Quarter 2013 edition of the Wind Program R&D Newsletter. The Wind Program will be exhibiting at the American Wind Energy Association (AWEA) Offshore WINDPOWER 2013 Conference & Exhibition in Providence, Rhode Island, from October 22-23, 2013. If you're attending, visit DOE's booth, #401, to learn more about the program's latest offshore wind

  2. Articles about Offshore Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    unprecedented information on offshore wind patterns, making it possible to harness wind power in entirely new locations.

    Mon, 07 Dec 2015 18:52:00 +0000...

  3. Offshore Development and Production

    Reports and Publications (EIA)

    1999-01-01

    Natural gas production in the federal offshore has increased substantially in recent years, gaining more than 400 billion cubic feet between 1993 and 1997 to a level of 5.14 trillion cubic feet.

  4. Apex Offshore Phase 2 | Open Energy Information

    Open Energy Info (EERE)

    2 Jump to: navigation, search Name Apex Offshore Phase 2 Facility Apex Offshore Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Apex Wind...

  5. Apex Offshore Phase 1 | Open Energy Information

    Open Energy Info (EERE)

    1 Jump to: navigation, search Name Apex Offshore Phase 1 Facility Apex Offshore Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Apex Wind...

  6. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Final Report DE-EE0005380 - Assessment of Offshore...

  7. Development of Offshore Wind Recommended Practice for U.S. Waters: Preprint

    SciTech Connect (OSTI)

    Musial, W. D.; Sheppard, R. E.; Dolan, D.; Naughton, B.

    2013-04-01

    This paper discusses how the American Petroleum Institute oil and gas standards were interfaced with International Electrotechnical Commission and other wind turbine and offshore industry standards to provide guidance for reliable engineering design practices for offshore wind energy systems.

  8. Operational Impacts of Large Deployments of Offshore Wind (Poster)

    SciTech Connect (OSTI)

    Ibanez, E.; Heaney, M.

    2014-10-01

    The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

  9. 2014 U.S. Offshore Wind Market Report: Industry Trends, Technology Advancement, and Cost Reduction

    SciTech Connect (OSTI)

    Smith, Aaron; Stehly, Tyler; Walter Musial

    2015-09-29

    2015 has been an exciting year for the U.S. offshore wind market. After more than 15 years of development work, the U.S. has finally hit a crucial milestone; Deepwater Wind began construction on the 30 MW Block Island Wind Farm (BIWF) in April. A number of other promising projects, however, have run into economic, legal, and political headwinds, generating much speculation about the future of the industry. This slow, and somewhat painful, start to the industry is not without precedent; each country in northern Europe began with pilot-scale, proof-of-concept projects before eventually moving to larger commercial scale installations. Now, after more than a decade of commercial experience, the European industry is set to achieve a new deployment record, with more than 4 GW expected to be commissioned in 2015, with demonstrable progress towards industry-wide cost reduction goals. DWW is leveraging 25 years of European deployment experience; the BIWF combines state-of-the-art technologies such as the Alstom 6 MW turbine with U.S. fabrication and installation competencies. The successful deployment of the BIWF will provide a concrete showcase that will illustrate the potential of offshore wind to contribute to state, regional, and federal goals for clean, reliable power and lasting economic development. It is expected that this initial project will launch the U.S. industry into a phase of commercial development that will position offshore wind to contribute significantly to the electric systems in coastal states by 2030.

  10. A Technical and Economic Optimization Approach to Exploring Offshore Renewable Energy Development in Hawaii

    SciTech Connect (OSTI)

    Larson, Kyle B.; Tagestad, Jerry D.; Perkins, Casey J.; Oster, Matthew R.; Warwick, M.; Geerlofs, Simon H.

    2015-09-01

    This study was conducted with the support of the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office (WWPTO) as part of ongoing efforts to minimize key risks and reduce the cost and time associated with permitting and deploying ocean renewable energy. The focus of the study was to discuss a possible approach to exploring scenarios for ocean renewable energy development in Hawaii that attempts to optimize future development based on technical, economic, and policy criteria. The goal of the study was not to identify potentially suitable or feasible locations for development, but to discuss how such an approach may be developed for a given offshore area. Hawaii was selected for this case study due to the complex nature of the energy climate there and DOE’s ongoing involvement to support marine spatial planning for the West Coast. Primary objectives of the study included 1) discussing the political and economic context for ocean renewable energy development in Hawaii, especially with respect to how inter-island transmission may affect the future of renewable energy development in Hawaii; 2) applying a Geographic Information System (GIS) approach that has been used to assess the technical suitability of offshore renewable energy technologies in Washington, Oregon, and California, to Hawaii’s offshore environment; and 3) formulate a mathematical model for exploring scenarios for ocean renewable energy development in Hawaii that seeks to optimize technical and economic suitability within the context of Hawaii’s existing energy policy and planning.

  11. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Articles about Offshore Wind RSS Below are stories about offshore wind featured by the U.S. Department of Energy (DOE) Wind Program. December 7, 2015 Articles about Offshore Wind Wind Measurement Buoy Advances Offshore Wind Energy A next-generation buoy will provide unprecedented information on offshore wind patterns, making it possible to harness wind power in entirely new locations. October 27, 2015 Articles about Offshore Wind Innovative Study Helps Offshore Wind Developers

  12. GAOH Offshore | Open Energy Information

    Open Energy Info (EERE)

    GAOH Offshore Jump to: navigation, search Name: GAOH Offshore Place: St Peter Port, United Kingdom Zip: GY1 4EE Sector: Wind energy Product: Intends to become the preferred...

  13. Energy from Offshore Wind: Preprint

    SciTech Connect (OSTI)

    Musial, W.; Butterfield, S.; Ram, B.

    2006-02-01

    This paper provides an overview of the nascent offshore wind energy industry including a status of the commercial offshore industry and the technologies that will be needed for full market development.

  14. Bundled pipe speeds offshore laying

    SciTech Connect (OSTI)

    Brockbank, J. )

    1990-05-07

    Technology which allows pipelines to be installed in bundles is expediting pipelay operations in the North Sea. This paper reports how the piggyback system was recently used on 60 km of North Sea gas pipelines for three major projects. For 7 years the practice of installing two or more pipelines in one operation has become an established practice for North Sea offshore oil and gas projects. The technique, commonly referred to as a piggyback operation, reduces installation costs, improves operation reliability, and cuts maintenance time.

  15. 41 Offshore Wind Power R&D Projects Receive Energy Department Funding |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 Offshore Wind Power R&D Projects Receive Energy Department Funding 41 Offshore Wind Power R&D Projects Receive Energy Department Funding September 7, 2011 - 3:02pm Addthis Department of Energy Awards $43 Million to speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy systems. Applicant Location DOE Award Description U.S. Offshore Wind: Technology Development Funding Opportunity Modeling & Analysis Design

  16. Modeling the conversion of hydroacoustic to seismic energy at island and continental margins: preliminary analysis of Ascension Island data

    SciTech Connect (OSTI)

    Harben, P.; Rodgers, A.

    1999-07-26

    Seismic stations at islands and continental margins will be an essential component of the International Monitoring System (IMS) for event location and identification in support of Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring. Particularly important will be the detection and analysis of hydroacoustic-to-seismic converted waves (T-phases) at island or continental margins. Acoustic waves generated by sources in or near the ocean propagate for long distances very efficiently due to the ocean sound speed channel (SOFAR) and low attenuation. When ocean propagating acoustic waves strike an island or continental margin they are converted to seismic (elastic) waves. We are using a finite difference code to model the conversion of hydroacoustic T-waves at an island or continental margin. Although ray-based methods are far more efficient for modeling long-range (> 1000 km) high-frequency hydroacoustic propagation, the finite difference method has the advantage of being able to model both acoustic and elastic wave propagation for a broad range of frequencies. The method allows us to perform simulations of T-phases to relatively high frequencies ({>=}10 Hz). Of particular interest is to identify factors that affect the efficiency of T-phase conversion, such as the topographic slope and roughness at the conversion point and elastic velocity structure within the island or continent. Previous studies have shown that efficient T-phase conversion occurs when the topographic slope at the conversion point is steep (Cansi and Bethoux, 1985; Talandier and Okal, 1998). Another factor impacting T-phase conversion may be the near-shore structure of the sound channel. It is well known that the depth to the sound channel axis decreases in shallow waters. This can weaken the channeled hydroacoustic wave. Elastic velocity structure within the island or continent will impact how the converted seismic wave is refracted to recording stations at the surface and thus impact the T

  17. EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore ...

  18. Offshore finds inspire optimism

    SciTech Connect (OSTI)

    Not Available

    1988-08-01

    The author reviews the oil market in Australia and the Pacific. Some of the highlights are: Australia/Pacific drilling hit 308 in 1987; about 300 seen for 1988; Offshore holds action in New Zealand, while onshore Papua makes news; Reduced taxes, relaxed foreign investment rules aid Aussie development work; Four solid solid discoveries made in Papua's Southern Highlands in 18 months; and Austrialia and New Zealand enact industry degregulation measures.

  19. Offshore megaproject instrumentation needs planning

    SciTech Connect (OSTI)

    Guerrero, V.

    1986-05-05

    The design and construction of the Statfjord ''C'' drilling/production platform in the North Sea is a good example of the demands a megaproject like this can put on instrumentation activities. The huge platform is in production in the Norwegian sector of the North Sea. It is a result of modern construction techniques. Such techniques emphasize the fabrication of large modular subassemblies limited in size only by the ability to transport or lift them into position. These modules are constructed as complete as possible before being assembled and interconnected to become an integrated whole. The instrumentation distributed throughout the modules must eventually be operated and maintained as systems. Therefore, these systems should have the same types of hardware and be installed in a uniform way. This article describes the coordination of instrumentation activities required to achieve this objective in an offshore platform project that consisted of some 30 modules built at 11 construction sites in 4 countries.

  20. Assessment of Offshore Wind Energy Potential in the United States (Poster)

    SciTech Connect (OSTI)

    Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Musial, W.

    2011-05-01

    The development of an offshore wind resource database is one of the first steps necessary to understand the magnitude of the resource and to plan the distribution and development of future offshore wind power facilities. The U.S. Department of Energy supported the production of offshore wind resource maps and potential estimates for much of the United States. This presentation discusses NREL's 2010 offshore wind resources report; current U.S., regional, and state offshore maps; methodology for the wind mapping and validation; wind potential estimates; the Geographic Information Systems database; and future work and conclusions.

  1. Modeling the National Potential for Offshore Wind: Preprint

    SciTech Connect (OSTI)

    Short, W.; Sullivan, P.

    2007-06-01

    The Wind Deployment System (WinDS) model was created to assess the potential penetration of offshore wind in the United States under different technology development, cost, and policy scenarios.

  2. CT Offshore | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: CT Offshore Place: Otterup, Denmark Zip: 5450 Sector: Wind energy Product: Denmark-based consultancy which provides assistance for project...

  3. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Articles about Offshore Wind RSS Below are stories about offshore wind featured by the U.S. Department of Energy (DOE) Wind Program. December 7, 2015 Articles about...

  4. Analysis of the Three Mile Island submerged demineralizer system vessel burial data

    SciTech Connect (OSTI)

    Jasen, W.G.; Amir, S.J.

    1989-09-01

    The Submerged Demineralizer System (SDS) was used during the Three Mile Island (TMI) nuclear reactor cleanup to remove cesium and strontium from contaminated water. The SDS vessels are 2-ft-in diameter and 4-ft tall stainless steel cylinders containing up to 60 kCi of radioactive cesium and strontium loaded on damp zeolite. The water in the damp zeolite absorbs some of the ionizing radiation and decomposes to hydrogen and oxygen by a process called radiolysis. Gas generation rates approaching 1 L/h (Quinn et al. 1984) have been calculated and measured for some of these loaded vessels. Each of the SDS vessels contains a catalyst bed to recombine the available hydrogen and oxygen back to water. Tests have proven this hydrogen control method to be highly effective, even under very wet (but unsubmerged) conditions. Nineteen SDS vessels, packaged one at a time in a shielded and licensed shipping cask, were shipped to Rockwell Hanford Operations (Rockwell). Collectively, these vessels contain approximately 7,500 kCi of radioactive material. Sixteen vessels were transloaded into concrete overpacks and buried at the Hanford Site. The contents of the other three vessels were vitrified at Pacific Northwest Laboratory. Subsequent to placement of the SDS vessels in the burial grounds, DOE Order 5820.2A (DOE 1988) was issued in September 1988. This order requires wastes to be evaluated against 10 CFR 61.55 for radioactivity above greater-than-class C(GTCC) limits. Fourteen of the sixteen vessels buried at the Hanford Site have been determined to be GTCC waste. 5 refs., 3 figs., 3 tabs.

  5. Wind Offshore Port Readiness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Port Readiness Wind Offshore Port Readiness This study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations. Assessment of Ports for Offshore Wind Development in the United States (4.37 MB) More Documents & Publications U.S. Offshore Wind Port Readiness

  6. Underwater robotic work systems for Russian arctic offshore oil/gas industry: Final report. Export trade information

    SciTech Connect (OSTI)

    1997-12-15

    The study was performed in association with Rosshelf, a shelf developing company located in Moscow. This volume involves developing an underwater robotic work system for oil exploration in Russia`s Arctic waters, Sea of Okhotsk and the Caspian Sea. The contents include: (1) Executive Summary; (2) Study Background; (3) Study Outline and Results; (4) Conclusions; (5) Separately Published Elements; (6) List of Subcontractors.

  7. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Surface, Subsurface and Airborne Electronic Systems | Department of Energy Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Report that assesses possible interference to various kinds of equipment operating in the marine environment where offshore wind farms could be installed.

  8. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m ...

  9. Offshore Wind Accelerator | Open Energy Information

    Open Energy Info (EERE)

    search Name: Offshore Wind Accelerator Place: United Kingdom Sector: Wind energy Product: Research and development initiative aimed at cutting the cost of offshore wind energy....

  10. Optimizing Installation, Operation, and Maintenance at Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in...

  11. Norfolk Offshore Wind NOW | Open Energy Information

    Open Energy Info (EERE)

    Norfolk Offshore Wind NOW Jump to: navigation, search Name: Norfolk Offshore Wind (NOW) Place: United Kingdom Sector: Wind energy Product: Formed to develop the 100MW Cromer...

  12. Optimizing Installation, Operation, and Maintenance at Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in ...

  13. Developing Integrated National Design Standards for Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing Integrated National Design Standards for Offshore Wind Plants Developing Integrated National Design Standards for Offshore Wind Plants January 6, 2014 - 10:00am Addthis ...

  14. Capital Energy Offshore | Open Energy Information

    Open Energy Info (EERE)

    Sector: Wind energy Product: JV between Gamesa and Capital Energy to develop offshore wind farms References: Capital Energy Offshore1 This article is a stub. You can help...

  15. Offshore Wind Technology Development Projects | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Technology Development Projects The Wind Program invests in projects to develop the engineering modeling and analysis tools required to lower overall offshore ...

  16. Energy Department Announces Offshore Wind Demonstration Awardees...

    Energy Savers [EERE]

    Offshore Wind Demonstration Awardees Energy Department Announces Offshore Wind Demonstration Awardees January 10, 2013 - 1:08pm Addthis This is an excerpt from the Fourth Quarter ...

  17. Three Offshore Wind Advanced Technology Demonstration Projects...

    Energy Savers [EERE]

    Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding ...

  18. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment

    SciTech Connect (OSTI)

    Jonkman, J.; Musial, W.

    2010-12-01

    This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

  19. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    SciTech Connect (OSTI)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-09-03

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (15 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  20. Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report describes one area in which islands may lead: integrating a high percentage of renewable energy resources into an isolated grid. In addition, it explores the challenges, feasibility, and potential benefits of interconnecting the USVI grids with the much larger Puerto Rican grid.

  1. Large-scale Offshore Wind Power in the United States. Assessment of Opportunities and Barriers

    SciTech Connect (OSTI)

    Musial, Walter; Ram, Bonnie

    2010-09-01

    This report describes the benefits of and barriers to large-scale deployment of offshore wind energy systems in U.S. waters.

  2. Offshore Renewable Energy R&D (Fact Sheet), NREL (National Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and structural dynamics such as power take-off and control system responses. Offshore Wind Modeling Researchers at NREL have developed a new complex modeling and analysis tool...

  3. Basaltic island sand provenance

    SciTech Connect (OSTI)

    Marsaglia, K.M. . Dept. of Geological Sciences)

    1992-01-01

    The Hawaiian Islands are an ideal location to study basaltic sand provenance in that they are a series of progressively older basaltic shield volcanoes with arid to humid microclimates. Sixty-two sand samples were collected from beaches on the islands of Hawaii, Maui, Oahu and Kauai and petrographically analyzed. The major sand components are calcareous bioclasts, volcanic lithic fragments, and monomineralic grains of dense minerals and plagioclase. Proportions of these components vary from island to island, with bioclastic end members being more prevalent on older islands exhibiting well-developed fringing reef systems and volcanic end members more prevalent on younger, volcanically active islands. Climatic variations across the island of Hawaii are reflected in the percentage of weathered detritus, which is greater on the wetter, northern side of the island. The groundmass of glassy, basaltic lithics is predominantly black tachylite, with lesser brown sideromelane; microlitic and lathwork textures are more common than holohyaline vitric textures. Other common basaltic volcanic lithic fragments are holocrystalline aggregates of silt-sized pyroxene or olivine, opaque minerals and plagioclase. Sands derived from alkalic lavas are texturally and compositionally indistinguishable from sands derived from tholeiitic lavas. Although Hawaiian basaltic sands overlap in composition with magmatic arc-derived sands in terms of their relative QFL, QmPK and LmLvLs percentages, they are dissimilar in that they lack felsic components and are more enriched in lathwork volcanic lithic fragments, holocrystalline volcanic lithic fragments, and dense minerals.

  4. Proceedings of the 22nd annual offshore technology conference

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This book contains the proceedings of the 22nd annual offshore technology conference, Volume 2. Topics covered include: Exploration update: Mackenzie Delta/Beaufort Sea Region, Arctic Canada; Dispersion of waves from hurricane Gilbert and their intermittent reception of the Alabama coast; a Bothnian Bay manganese nodule deposit: a case of inference of seabed variability; and use of an electronic imaging system on a major offshore project.

  5. International Effort Advances Offshore Wind Turbine Design Codes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy International Effort Advances Offshore Wind Turbine Design Codes International Effort Advances Offshore Wind Turbine Design Codes September 12, 2014 - 12:16pm Addthis For the past several years, the U.S. Department of Energy's National Renewable Energy Laboratory has teamed with the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) in Germany to lead an international effort under the International Energy Agency's (IEA) Task 30 to improve the tools

  6. Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)

    SciTech Connect (OSTI)

    Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

    2012-10-01

    No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

  7. Compliant offshore platform

    SciTech Connect (OSTI)

    Danaczko, M.A.; Finn, L.D.; Glasscock, M.S.; Piazza, M.P.; Steele, K.M.; Weaver, T.O.

    1987-09-29

    A compliant offshore platform is described for use in hydrocarbon drilling and producing operations, comprising: a deck; a substantially rigid vertical tower adapted to support the deck above the ocean surface. The tower has a base and is adapted to pivot relative to the ocean floor about its base in response to the action of waves. The combination of the deck and tower have a net negative buoyancy and are free from guyline support; and means for applying a vertical couple to the tower in response to pivoting of the tower. The couple is applied at a position on the tower intermediate the tower base and the bottom of the wave zone of the ocean environment in which the tower is situated. The vertical couple tends to resist sway of the tower away from the vertical.

  8. Offshore Wind Potential Tables

    Wind Powering America (EERE)

    Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40

  9. Accelerating Offshore Wind Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Development Accelerating Offshore Wind Development December 12, 2012 - 2:15pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? The 2012 investments support innovative offshore installations for commercial deployment by 2017. The 2011 grants were targeted at projects that aim to either improve the technology used for offshore wind generation or remove the market barriers to offshore wind generation. View the

  10. Islands and Our Renewable Energy Future (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

    2012-05-01

    Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

  11. Garden State Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Garden State Offshore Energy Location Offshore from Avalon NJ Coordinates 39.08, -74.310556...

  12. Texas Offshore Pilot Research Project | Open Energy Information

    Open Energy Info (EERE)

    Offshore Pilot Research Project Jump to: navigation, search Name Texas Offshore Pilot Research Project Facility Texas Offshore Pilot Research Project Sector Wind energy Facility...

  13. Michigan Offshore Wind Pilot Project | Open Energy Information

    Open Energy Info (EERE)

    Michigan Offshore Wind Pilot Project Jump to: navigation, search Name Michigan Offshore Wind Pilot Project Facility Michigan Offshore Wind Pilot Project Sector Wind energy Facility...

  14. Assessment of Offshore Wind Energy Resources for the United States...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Offshore Wind Energy Resources for the United States Assessment of Offshore Wind Energy Resources for the United States This report summarizes the offshore wind ...

  15. Islanded Grid Wind Power Workshop | Department of Energy

    Energy Savers [EERE]

    The event will provide an opportunity for attendees to learn, network, and share information on wind systems in island and islanded grid environments through expert panel ...

  16. Offshore Wind Energy Market Overview (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2013-07-01

    This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.

  17. Brigantine OffshoreMW Phase 1 | Open Energy Information

    Open Energy Info (EERE)

    Brigantine OffshoreMW Phase 1 Jump to: navigation, search Name Brigantine OffshoreMW Phase 1 Facility Brigantine OffshoreMW Phase 1 Sector Wind energy Facility Type Offshore Wind...

  18. REAP Islanded Grid Wind Power Conference

    Broader source: Energy.gov [DOE]

    Hosted by Renewable Energy Alaska Project, this three-day conference will show attendees how to learn, network, and share information on wind systems in island and islanded grid environments through expert panel discussions, stakeholder dialogue, and training.

  19. REAP Islanded Grid Wind Power Conference

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hosted by Renewable Energy Alaska Project, this three-day conference will show attendees how to learn, network, and share information on wind systems in island and islanded grid environments...

  20. New Report Characterizes Existing Offshore Wind Grid Interconnection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3, 2014 - ...

  1. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 29, 2014 New Reports Highlight Major Potential in Offshore Wind Energy The Energy Department today announced a new report showing steady progress for the U.S. offshore wind...

  2. Scira Offshore Energy | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: NR32 1DE Sector: Wind energy Product: Developer of the Sheringham Shoals offshore wind farm. References: Scira Offshore Energy1 This article is a stub. You can...

  3. Offshore Energy Knowledge Exchange Workshop Report

    SciTech Connect (OSTI)

    none,

    2012-04-12

    A report detailing the presentations and topics discussed at the Offshore Energy Knowledge Exchange Workshop, an event designed to bring together offshore energy industry representatives to share information, best practices, and lessons learned.

  4. Offshore Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Offshore Wind Power Place: St Albans, United Kingdom Zip: AL1 3AW Sector: Wind energy Product: Formed to develop offshore wind farms around the coast of Great Britain. References:...

  5. 4C Offshore Limited | Open Energy Information

    Open Energy Info (EERE)

    database and interactive map for global offshore wind development. The Global Offshore Wind Farms Database contains details on over 600 wind farms in over30 countries. The 4C...

  6. INFOGRAPHIC: Offshore Wind Outlook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INFOGRAPHIC: Offshore Wind Outlook INFOGRAPHIC: Offshore Wind Outlook December 12, 2012 - 2:15pm Addthis According to a new report commissioned by the Energy Department, a U.S. ...

  7. Foam pigs solve pipe cleaning problems offshore Brazil

    SciTech Connect (OSTI)

    Lima, P.C.R.; Neto, S.J.A.

    1995-10-02

    Pipeline systems in which conventional pigs cannot be run are common in such complex offshore installations as are found in Brazil`s Campos basin. These systems may contain changing pipe diameters or wet christmas trees and manifolds. A new concept for using low cost, low-density foam pigs for both liquid removal in wet-gas pipelines and paraffin removal in oil and multiphase pipelines has been successfully tested offshore Brazil. Although the present discussion focuses on condensate and paraffin removal in pipelines, the principles can be applied to several kinds of operations including general pipeline cleaning, product removal or separation in pipeline, corrosion evaluation, and chemical product application.

  8. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens For more than eight years, NREL has worked with the U.S. Department of Energy (DOE) to become an international leader in offshore wind energy research. NREL's offshore wind turbine research capabilities focus on critical areas that reflect the long-term needs of the industry and DOE. National Wind Technology Center (NWTC) researchers are perpetually exploring new wind and water power concepts, materials, and

  9. European Wind Atlas: Offshore | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-offshore,http:c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  10. Offshore Wind Research, Development, and Deployment Projects...

    Broader source: Energy.gov (indexed) [DOE]

    Offshore Wind Research, Development, and Deployment Projects View All Maps Addthis Careers & Internships EERE Home Contact EERE Energy.gov

  11. Offshore Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2016. Offshore Wind Energy Projects 2006-2016 (4.2 MB) More Documents & Publications Testing, Manufacturing, and Component Development Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects

  12. Offshore Renewable Energy R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the offshore renewable energy R&D efforts at NREL's NWTC. As the United States increases its efforts to tap the domestic energy sources needed to diversify its energy portfolio and secure its energy supply, more attention is being focused on the rich renewable resources located offshore. Offshore renewable energy sources include offshore wind, waves, tidal currents, ocean and river currents, and ocean thermal gradients. According to a report published by the National Renewable Energy Laboratory (NREL) in 2010,1 U.S. offshore wind resources have a gross potential generating capacity four times greater than the nation's present electric capacity, and the Electric Power Research Institute estimates that the nation's ocean energy resources could ultimately supply at least 10% of its electric supply. For more than 30 years, NREL has advanced the science of renewable energy while building the capabilities to guide rapid deployment of commercial applications. Since 1993, NREL's National Wind Technology Center (NWTC) has been the nation's premier wind energy research facility, specializing in the advancement of wind technologies that range in size from a kilowatt to several megawatts. For more than 8 years, the NWTC has been an international leader in the field of offshore floating wind system analysis. Today, researchers at the NWTC are taking their decades of experience and extensive capabilities and applying them to help industry develop cost-effective hydrokinetic systems that convert the kinetic energy in water to provide power for our nation's heavily populated coastal regions. The center's capabilities and experience cover a wide spectrum of wind and water energy engineering disciplines, including atmospheric and ocean fluid mechanics, aerodynamics; aeroacoustics, hydrodynamics, structural dynamics, control systems, electrical systems, and testing.

  13. An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery from the Complex Monterey Reservoir of South Ellwood Field, Offshore California

    SciTech Connect (OSTI)

    Steve Horner

    2006-01-31

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  14. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect (OSTI)

    Steve Horner

    2005-08-01

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  15. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    Wind Powering America (EERE)

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  16. Virginia Offshore Wind Cost Reduction Through Innovation Study (VOWCRIS) (Poster)

    SciTech Connect (OSTI)

    Maples, B.; Campbell, J.; Arora, D.

    2014-10-01

    The VOWCRIS project is an integrated systems approach to the feasibility-level design, performance, and cost-of-energy estimate for a notional 600-megawatt offshore wind project using site characteristics that apply to the Wind Energy Areas of Virginia, Maryland and North Carolina.

  17. US Virgin Islands-Energy Development in Island Nations (EDIN...

    Open Energy Info (EERE)

    US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project Jump to: navigation, search Logo: US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot...

  18. Holbrook Substation Superconductor Cable System, Long Island, New York Final Report

    SciTech Connect (OSTI)

    Maguire, James; McNamara, Joseph

    2010-06-25

    The LIPA Superconductor project broke ground on July 4, 2006, was first energized on April 22, 2008 (Earth Day) and was commissioned on June 25, 2008. Since commissioning, up until early March, 2009, there were numerous refrigeration events that impacted steady state operations. This led to the review of the alarms that were being generated and a rewrite of the program logic in order to decrease the hypersensitivity surrounding these alarms. The high temperature superconductor (HTS) cable was energized on March 5, 2009 and ran uninterrupted until a human error during a refrigeration system switchover knocked the cable out of the grid in early February 2010. The HTS cable was in the grid uninterrupted from March 5, 2009 to February 4, 2010. Although there have been refrigeration events (propagated mainly by voltage sags/surges) during this period, the system was able to automatically switch over from the primary to the backup refrigeration system without issue as required during this period. On February 4, 2010, when switching from the backup over to the primary refrigeration system, two rather than one liquid nitrogen pumps were started inadvertently by a human error (communication) causing an overpressure in the cable cooling line. This in turn activated the pressure relief valve located in the grounding substation. The cable was automatically taken out of the grid without any damage to the components or system as a result of signals sent from the AMSC control cabinet to the LIPA substation. The cable was switched back into the grid again on March 16, 2010 without incident and has been operational since that time. Since switching from the backup to the primary is not an automatic process, a recent improvement was added to the refrigeration operating system to allow remote commands to return the system from backup to primary cooling. This improvement makes the switching procedure quicker since travel to the site to perform this operation is no longer necessary and

  19. Energy Department Announces Offshore Wind Demonstration Awardees |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Announces Offshore Wind Demonstration Awardees Energy Department Announces Offshore Wind Demonstration Awardees January 10, 2013 - 1:08pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy (DOE) Wind Program recently announced seven technology demonstration partnerships with broad consortia that are developing breakthrough offshore wind energy generation projects. The primary goals of

  20. Accelerating Offshore Wind Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating Offshore Wind Development Accelerating Offshore Wind Development Click on a project for more information. The Energy Department has selected seven projects that will accelerate the commercialization of innovative offshore wind technologies in the United States. Each project will receive up to $4 million from the Energy Department to complete the engineering, site evaluation, and planning phase of their project. Upon completion of this phase, the Energy Department will select the up

  1. Offshore Infrastructure Associates Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Offshore Infrastructure Associates Inc Region: Puerto Rico Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  2. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 10, 2013 Energy Department Announces Offshore Wind Demonstration Awardees This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter....

  3. NREL: Wind Research - Offshore Wind Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience ... Testing Applying 35 years of wind turbine testing expertise, NREL has developed ...

  4. Offshore Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Offshore Wind Energy Jump to: navigation, search The Middelgrunden Wind Farm was established as a...

  5. Gulf of Mexico Federal Offshore Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Federal Offshore Alabama, Louisiana, and Texas. See Definitions, Sources, and Notes link above for more information on this table. Release Date: 12...

  6. Oregon Department of Energy Webinar: Offshore Wind

    Broader source: Energy.gov [DOE]

    The intended audience for this webinar on offshore wind basics is decision-makers, energy industry practitioners, utilities, and those knowledgeable about renewable energy. The webinar will feature...

  7. Offshore Ostsee Wind AG | Open Energy Information

    Open Energy Info (EERE)

    Ostsee Wind AG Jump to: navigation, search Name: Offshore Ostsee Wind AG Place: Brgerende, Mecklenburg-Western Pomerania, Germany Zip: 18211 Sector: Wind energy Product: Joint...

  8. Offshore Wind Advanced Technology Demonstration Projects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Demonstration Projects Offshore Wind Advanced Technology Demonstration Projects With roughly 80% of the U.S. electricity demand originating from coastal states, ...

  9. WINDExchange Webinar: Offshore Wind Market Update

    Broader source: Energy.gov [DOE]

    Aaron Smith, an energy analyst at the National Renewable Energy Laboratory, will present an overview and update of the U.S. offshore wind market.

  10. Brigantine OffshoreMW Phase 2 | Open Energy Information

    Open Energy Info (EERE)

    2 Jump to: navigation, search Name Brigantine OffshoreMW Phase 2 Facility Brigantine OffshoreMW Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  11. 2014 Offshore Wind Market & Economic Analysis Cover Photo | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Offshore Wind Market & Economic Analysis Cover Photo 2014 Offshore Wind Market & Economic Analysis Cover Photo Navigant 2014 Offshore Wind Market and Economic Analysis.JPG (33.04 ...

  12. Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine

    SciTech Connect (OSTI)

    Roald, L.; Jonkman, J.; Robertson, A.

    2014-05-01

    The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.

  13. NREL: Wind Research - Offshore Design Tools and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Tools and Methods Graphic of a modular depiction of the FAST tool, which includes aerodynamics, hydrodynamics, control and electrical system dynamics, and structural dynamics modules. NREL's CAE Tool, FAST, and its Sub-Modules Illustration of wind turbines in various environments including land-based, shallow water (0-30m), transitional depth (30-60m), and deep water floating (greater than 60m). FAST has the capability of modeling a wide range of offshore wind system configurations

  14. Advancing strategic environmental assessment in the offshore oil and gas sector: Lessons from Norway, Canada, and the United Kingdom

    SciTech Connect (OSTI)

    Fidler, Courtney; Noble, Bram

    2012-04-15

    Abstract: Strategic environmental assessment (SEA) for offshore oil and gas planning and development is utilized in select international jurisdictions, but the sector has received limited attention in the SEA literature. While the potential benefits of and rationale for SEA are well argued, there have been few empirical studies of SEA processes for the offshore sector. Hence, little is known about the efficacy of SEA offshore, in particular its influence on planning and development decisions. This paper examines SEA practice and influence in three international offshore systems: Norway, Atlantic Canada and the United Kingdom, with the intent to identify the challenges, lessons and opportunities for advancing SEA in offshore planning and impact assessment. Results demonstrate that SEA can help inform and improve the efficacy and efficiency of project-based assessment in the offshore sector, however weak coordination between higher and lower tiers limit SEA's ability to influence planning and development decisions in a broad regional environmental and socioeconomic context. - Highlights: Black-Right-Pointing-Pointer SEA can inform and improve the efficacy and efficiency of project EA offshore Black-Right-Pointing-Pointer Scope and deliverables of SEA offshore often differ from stakeholder expectations Black-Right-Pointing-Pointer Considerable variability in influence of SEA output beyond licensing decisions Black-Right-Pointing-Pointer Sector-based SEA offshore is often too restrictive to generate expected benefits.

  15. Offshore survey provides answers to coastal stability and potential offshore extensions of landslides into Abalone Cove, Palos Verdes peninsula, Calif

    SciTech Connect (OSTI)

    Dill, R.F. ); Slosson, J.E. )

    1993-04-01

    The configuration and stability of the present coast line near Abalone Cove, on the south side of Palos Verdes Peninsula, California is related to the geology, oceanographic conditions, and recent and ancient landslide activity. This case study utilizes offshore high resolution seismic profiles, side-scan sonar, diving, and coring, to relate marine geology to the stability of a coastal region with known active landslides utilizing a desk top computer and off-the-shelf software. Electronic navigation provided precise positioning that when applied to computer generated charts permitted correlation of survey data needed to define the offshore geology and sea floor sediment patterns. A mackintosh desk-top computer and commercially available off-the-shelf software provided the analytical tools for constructing a base chart and a means to superimpose template overlays of topography, isopachs or sediment thickness, bottom roughness and sediment distribution patterns. This composite map of offshore geology and oceanography was then related to an extensive engineering and geological land study of the coastal zone forming Abalone Cove, an area of active landslides. Vibrocoring provided ground sediment data for high resolution seismic traverses. This paper details the systems used, present findings relative to potential landslide movements, coastal erosion and discuss how conclusions were reached to determine whether or not onshore landslide failures extend offshore.

  16. Analyzing the Deployment of Large Amounts of Offshore Wind to Design an Offshore Transmission Grid in the United States: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Mai, T.; Coles, L.

    2012-09-01

    This paper revisits the results from the U.S. Department of Energy's '20% Wind Energy By 2030' study, which envisioned that 54 GW of offshore wind would be installed by said year. The analysis is conducted using the Regional Energy Deployment System (ReEDS), a capacity expansion model developed by the National Renewable Energy Laboratory. The model is used to optimize the deployment of the 54 GW of wind capacity along the coasts and lakes of the United States. The graphical representation of the results through maps will be used to provide a qualitative description for planning and designing an offshore grid. ReEDS takes into account many factors in the process of siting offshore wind capacity, such as the quality of the resource, capital and O&M costs, interconnection costs, or variability metrics (wind capacity value, forecast error, expected curtailment). The effect of these metrics in the deployment of offshore wind will be analyzed through examples in the results.

  17. EMGeo: Risk Minimizing Software for Finding Offshore Fossil Fuels...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search EMGeo: Risk Minimizing Software for Finding Offshore ... developed advanced software for discovering and mapping offshore fossil fuel deposits. ...

  18. Thanks to Energy Department Funding, Safer Access to Offshore...

    Office of Environmental Management (EM)

    Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine Platforms is Demonstrated Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine ...

  19. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy Energy Search Icon Sandia Home ... Google + Vimeo Newsletter Signup SlideShare Innovative Offshore Vertical-Axis Wind Turbine ...

  20. EA-1792: University of Maine's Deepwater Offshore Floating Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration ...

  1. Sandia Energy - Sandia-Univ. of Minnesota (UMN) Floating Offshore...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE-sponsored offshore wind Funding Opportunity Announcement on high-resolution offshore wind turbinefarm modeling. UMN's contribution is experimentation and wind turbine...

  2. Tackling the Challenges of Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tackling the Challenges of Offshore Wind Tackling the Challenges of Offshore Wind January 10, ... Charlestown, Massachusetts-While electricity produced by land-based wind farms in the ...

  3. DOE Releases Comprehensive Report on Offshore Wind Power in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Releases Comprehensive Report on Offshore Wind Power in the United States DOE Releases Comprehensive Report on Offshore Wind Power in the United States October 7, 2010 -...

  4. Strengthening America's Energy Security with Offshore Wind (Fact Sheet) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This fact sheet provides a brief description of offshore wind energy development in the U.S. and DOE's Wind Program offshore wind R&D activities.

  5. Foundation for Offshore Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    for Offshore Wind Energy Jump to: navigation, search Name: Foundation for Offshore Wind Energy Place: Varel, Germany Zip: D-26316 Sector: Wind energy Product: Foundation...

  6. Texas--State Offshore Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  7. ,"US--Federal Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Federal Offshore Natural Gas Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","US--Federal Offshore Natural Gas Gross Withdrawals ...

  8. ,"Louisiana State Offshore Nonassociated Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana State Offshore Nonassociated Natural Gas, Wet After ... to Contents","Data 1: Louisiana State Offshore Nonassociated Natural Gas, Wet After ...

  9. Alaska--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alaska--State Offshore Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  10. ,"Mississippi (with State Offshore) Natural Gas Plant Liquids...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected ... 1: Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected ...

  11. Alaska--State Offshore Natural Gas Withdrawals from Oil Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  12. Texas State Offshore Nonassociated Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved ... Separation, as of Dec. 31 TX, State Offshore Nonassociated Natural Gas Proved ...

  13. Louisiana State Offshore Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion ... Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore ...

  14. Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ...312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, State Offshore

  15. Federal Offshore--Texas Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Federal Offshore--Texas Natural Gas Marketed ... Referring Pages: Natural Gas Marketed Production Federal Offshore Texas Natural Gas Gross ...

  16. ,"Lower 48 Federal Offshore Coalbed Methane Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion ... to Contents","Data 1: Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion ...

  17. ,"Louisiana (with State Offshore) Shale Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic ... Contents","Data 1: Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic ...

  18. Louisiana--State Offshore Crude Oil Reserves in Nonproducing...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--State Offshore ... Referring Pages: Proved Nonproducing Reserves of Crude Oil LA, State Offshore Proved ...

  19. ,"Texas--State Offshore Natural Gas Gross Withdrawals (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--State Offshore Natural Gas Gross Withdrawals ... "Back to Contents","Data 1: Texas--State Offshore Natural Gas Gross Withdrawals (MMcf)" ...

  20. ,"Louisiana--State Offshore Crude Oil Reserves in Nonproducing...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--State Offshore Crude Oil Reserves in Nonproducing ... to Contents","Data 1: Louisiana--State Offshore Crude Oil Reserves in Nonproducing ...

  1. ,"Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, ... to Contents","Data 1: Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, ...

  2. Federal Offshore--Louisiana and Alabama Crude Oil Reserves in...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--Louisian... Proved Nonproducing Reserves of Crude Oil Federal Offshore, Gulf of Mexico, Louisiana & ...

  3. US--Federal Offshore Natural Gas Gross Withdrawals (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) US--Federal Offshore Natural Gas Gross Withdrawals ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  4. Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  5. ,"Federal Offshore--Texas Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Liquids Lease ... AM" "Back to Contents","Data 1: Federal Offshore--Texas Natural Gas Liquids Lease ...

  6. ,"Louisiana State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana State Offshore Dry Natural Gas Expected Future ... to Contents","Data 1: Louisiana State Offshore Dry Natural Gas Expected Future ...

  7. Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  8. ,"Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--State Offshore Crude Oil Reserves in Nonproducing ... "Back to Contents","Data 1: Texas--State Offshore Crude Oil Reserves in Nonproducing ...

  9. Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ...2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore U.S.

  10. ,"Texas (with State Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas (with State Offshore) Coalbed Methane Proved Reserves ... to Contents","Data 1: Texas (with State Offshore) Coalbed Methane Proved Reserves ...

  11. US--Federal Offshore Natural Gas Withdrawals from Oil Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) US--Federal Offshore Natural Gas Withdrawals from Oil Wells ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  12. Louisiana--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Louisiana--State Offshore Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  13. Texas--State Offshore Natural Gas Liquids Lease Condensate, Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels) Texas--State Offshore Natural ... Lease Condensate Proved Reserves as of Dec. 31 TX, State Offshore Lease Condensate Proved ...

  14. ,"Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, ... to Contents","Data 1: Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, ...

  15. ,"Federal Offshore--Texas Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Gross Withdrawals ... AM" "Back to Contents","Data 1: Federal Offshore--Texas Natural Gas Gross Withdrawals ...

  16. ,"Federal Offshore--Louisiana Natural Gas Marketed Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Louisiana Natural Gas Marketed ... AM" "Back to Contents","Data 1: Federal Offshore--Louisiana Natural Gas Marketed ...

  17. US--Federal Offshore Natural Gas Withdrawals from Gas Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) US--Federal Offshore Natural Gas Withdrawals from Gas Wells ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  18. Energy Department Announces Innovative Offshore Wind Energy Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Offshore Wind Energy Projects Energy Department Announces Innovative Offshore Wind Energy Projects May 7, 2014 - 2:05pm Addthis NEWS MEDIA CONTACT (202) 586-4940 ...

  19. Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels) Lower 48 Federal Offshore ... Lease Condensate Proved Reserves as of Dec. 31 Federal Offshore U.S. Lease Condensate ...

  20. ,"Texas--State Offshore Natural Gas Marketed Production (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--State Offshore Natural Gas Marketed Production ... "Back to Contents","Data 1: Texas--State Offshore Natural Gas Marketed Production (MMcf)" ...

  1. ,"Alaska (with Total Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska (with Total Offshore) Coalbed Methane Proved Reserves ... to Contents","Data 1: Alaska (with Total Offshore) Coalbed Methane Proved Reserves ...

  2. Louisiana--State Offshore Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels) Louisiana--State Offshore ... Lease Condensate Proved Reserves as of Dec. 31 LA, State Offshore Lease Condensate Proved ...

  3. Alaska--State Offshore Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  4. ,"Texas--State Offshore Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--State Offshore Natural Gas Liquids Lease Condensate, ... "Back to Contents","Data 1: Texas--State Offshore Natural Gas Liquids Lease Condensate, ...

  5. ,"Texas State Offshore Crude Oil + Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas State Offshore Crude Oil + Lease Condensate Proved ... "Back to Contents","Data 1: Texas State Offshore Crude Oil + Lease Condensate Proved ...

  6. ,"Louisiana--State Offshore Coalbed Methane Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion ... to Contents","Data 1: Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion ...

  7. ,"US--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Natural Gas Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","US--State Offshore Natural Gas Gross Withdrawals ...

  8. ,"Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Texas Coalbed Methane Proved Reserves ... AM" "Back to Contents","Data 1: Federal Offshore--Texas Coalbed Methane Proved Reserves ...

  9. Alabama--State Offshore Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals from Gas Wells (Million Cubic Feet) Alabama--State Offshore Natural Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  10. Texas State Offshore Associated-Dissolved Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved ... Separation, as of Dec. 31 TX, State Offshore Associated-Dissolved Natural Gas Proved ...

  11. Federal Offshore--Gulf of Mexico Natural Gas Repressuring (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas ... Natural Gas Used for Repressuring Federal Offshore Gulf of Mexico Natural Gas Gross ...

  12. Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  13. Texas--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Texas--State Offshore Natural Gas Gross Withdrawals ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  14. ,"Texas State Offshore Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas State Offshore Natural Gas, Wet After Lease Separation ... "Back to Contents","Data 1: Texas State Offshore Natural Gas, Wet After Lease Separation ...

  15. ,"Texas (with State Offshore) Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas (with State Offshore) Natural Gas Plant Liquids, Expected ... to Contents","Data 1: Texas (with State Offshore) Natural Gas Plant Liquids, Expected ...

  16. Louisiana State Offshore Nonassociated Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After ... Separation, as of Dec. 31 LA, State Offshore Nonassociated Natural Gas Proved ...

  17. EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy ...

  18. New Research Facility to Remove Hurdles to Offshore Wind and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Facility to Remove Hurdles to Offshore Wind and Water Power Development New Research Facility to Remove Hurdles to Offshore Wind and Water Power Development January 10, ...

  19. ,"Louisiana (with State Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Louisiana (with State Offshore) Coalbed Methane Proved Reserves ... Contents","Data 1: Louisiana (with State Offshore) Coalbed Methane Proved Reserves ...

  20. ,"Louisiana (with State Offshore) Natural Gas Plant Liquids,...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected ... Contents","Data 1: Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected ...

  1. Federal Offshore--Louisiana Natural Gas Withdrawals from Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Withdrawals from ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  2. Louisiana--State Offshore Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Marketed ... Natural Gas Marketed Production Louisiana State Offshore Natural Gas Gross Withdrawals and ...

  3. ,"Alabama (with State Offshore) Shale Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic ... Contents","Data 1: Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic ...

  4. ,"Texas (with State Offshore) Shale Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas (with State Offshore) Shale Proved Reserves (Billion Cubic ... to Contents","Data 1: Texas (with State Offshore) Shale Proved Reserves (Billion Cubic ...

  5. Texas State Offshore Crude Oil + Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas State Offshore Crude ... Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 TX, State Offshore Crude ...

  6. Louisiana State Offshore Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet ... Separation, as of Dec. 31 LA, State Offshore Associated-Dissolved Natural Gas Proved ...

  7. Federal Offshore--Texas Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Federal Offshore--Texas Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  8. ,"Alabama--State Offshore Natural Gas Marketed Production (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alabama--State Offshore Natural Gas Marketed Production ... to Contents","Data 1: Alabama--State Offshore Natural Gas Marketed Production (MMcf)" ...

  9. ,"Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Gross Withdrawals ... AM" "Back to Contents","Data 1: Federal Offshore--Alabama Natural Gas Gross Withdrawals ...

  10. Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...