Powered by Deep Web Technologies
Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

IRRIGATION & ELECTRICAL DISTRICTS  

NLE Websites -- All DOE Office Websites (Extended Search)

IRRIGATION & ELECTRICAL DISTRICTS IRRIGATION & ELECTRICAL DISTRICTS ASSOCIATION OF ARIZONA R.D. JUSTICE SUITE 140 WILLIAM H. STACY PRESIDENT 340 E. PALM LANE SECRETARY-TREASURER PHOENIX, ARIZONA 85004-4603 ELSTON GRUBAUGH (602) 254-5908 ROBERT S. LYNCH VICE-PRESIDENT Fax (602) 257-9542 COUNSEL AND

2

IRRIGATION & ELECTRICAL DISTRICTS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IRRIGATION & ELECTRICAL DISTRICTS IRRIGATION & ELECTRICAL DISTRICTS ASSOCIATION OF ARIZONA R. GALE PEARCE SUITE 140 ELSTON GRUBAUGH PRESIDENT 340 E. PALM LANE SECRETARY-TREASURER PHOENIX, ARIZONA 85004-4603 R.D. JUSTICE (602) 254-5908 ROBERT S. LYNCH VICE-PRESIDENT Fax (602) 257-9542 ASSISTANT SECRETARY-TREASURER

3

Central Oregon Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Oregon Irrigation District Oregon Irrigation District Jump to: navigation, search Name Central Oregon Irrigation District Place Redmond, Oregon Zip 97756 Sector Hydro Product Corporation of the State of Oregon that provides municipal, industrial, and agricultural water, as well as hydropower, for central Oregon. References Central Oregon Irrigation District[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Central Oregon Irrigation District is a company located in Redmond, Oregon . References ↑ "Central Oregon Irrigation District" Retrieved from "http://en.openei.org/w/index.php?title=Central_Oregon_Irrigation_District&oldid=343383" Categories: Clean Energy Organizations

4

Irrigation Districts: Establishment of Electric Light and Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Irrigation Districts: Establishment of Electric Light and Power Systems: Powers (Nebraska) Irrigation Districts: Establishment of Electric Light and Power Systems: Powers...

5

Turlock Irrigation District - PV Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turlock Irrigation District - PV Rebate Turlock Irrigation District - PV Rebate Eligibility Commercial Residential Savings For Solar Buying & Making Electricity Maximum Rebate 50%...

6

Vera Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Vera Irrigation District Vera Irrigation District Jump to: navigation, search Name Vera Irrigation District #15 Place Washington Utility Id 19784 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE POWER Commercial LARGE POWER INDUSTRIAL Industrial NEW SMALL GENERAL Commercial RESIDENTIAL RATES Residential Average Rates Residential: $0.0556/kWh Commercial: $0.0582/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Vera_Irrigation_District&oldid=411927

7

Modesto Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Modesto Irrigation District Modesto Irrigation District (Redirected from MID) Jump to: navigation, search Name Modesto Irrigation District Place Modesto, California Utility Id 12745 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] Energy Information Administration Form 826[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Modesto Irrigation District Smart Grid Project was awarded $1,493,149

8

Aguila Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Aguila Irrigation District Aguila Irrigation District Jump to: navigation, search Name Aguila Irrigation District Place Arizona Utility Id 737 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate 3 Commercial Average Rates Industrial: $0.0582/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Aguila_Irrigation_District&oldid=408941" Categories: EIA Utility Companies and Aliases

9

Turlock Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Turlock Irrigation District Turlock Irrigation District Jump to: navigation, search Name Turlock Irrigation District Place California Utility Id 19281 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule BP Bulk Power Industrial, Demand Metered 7,000 kW and Over,

10

Merced Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Irrigation District Irrigation District Jump to: navigation, search Name Merced Irrigation District Place California Utility Id 12312 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SCHEDULE AG-2 AGRICULTURAL DEMAND GENERAL SERVICE Industrial SCHEDULE ED-2 COMMERCIAL / INDUSTRIAL LARGE DEMAND GENERAL SERVICE Industrial SCHEDULE ED-2P COMMERCIAL / INDUSTRIAL LARGE DEMAND PRIMARY SERVICE

11

Modesto Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Modesto Irrigation District Place Modesto, California Utility Id 12745 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] Energy Information Administration Form 826[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Modesto Irrigation District Smart Grid Project was awarded $1,493,149 Recovery Act Funding with a total project value of $2,986,298.

12

RESOLUTION NO. 2011-82 ADOPTING MODESTO IRRIGATION DISTRICT'S RENEWABLE  

E-Print Network (OSTI)

RESOLUTION NO. 2011-82 ADOPTING MODESTO IRRIGATION DISTRICT'S RENEWABLE ENERGY RESOURCES. 2003-245, the Board of Directors ofthe Modesto Irrigation District adopted a Renewable Portfolio Standard (RPS) in an effort to meet 20 percent ofits retail energy sales with renewable resources by 2017

13

Merced Irrigation District - PV Buydown Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merced Irrigation District - PV Buydown Program Merced Irrigation District - PV Buydown Program Merced Irrigation District - PV Buydown Program < Back Eligibility Commercial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: 8,400 Commercial: $70,000 Program Info State California Program Type Utility Rebate Program Rebate Amount 2.80/W AC, adjusted based on expected performance Provider Merced Irrigation District Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. The rebate is $2.80 per watt (adjusted based on the expected performance of the system) with a maximum of $8,400 for residential systems and $70,000 for non-residential systems.

14

Imperial Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Imperial Irrigation District Place California Utility Id 9216 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS Schedule GS Commercial SCHEDULE A-2 GENERAL WHOLESALE POWER SERVICE Industrial SCHEDULE AL OUTDOOR AREA LIGHTING SERVICE-HIGH-PRESSURE SODIUM VAPOR 100W Lighting

15

Imperial Irrigation District | Open Energy Information  

Open Energy Info (EERE)

(Redirected from IID) (Redirected from IID) Jump to: navigation, search Name Imperial Irrigation District Place California Utility Id 9216 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS Schedule GS Commercial SCHEDULE A-2 GENERAL WHOLESALE POWER SERVICE Industrial SCHEDULE AL OUTDOOR AREA LIGHTING SERVICE-HIGH-PRESSURE SODIUM VAPOR 100W

16

Vera Irrigation District #15 - Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vera Irrigation District #15 - Energy Efficiency Rebate Program Vera Irrigation District #15 - Energy Efficiency Rebate Program Vera Irrigation District #15 - Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Commercial Weatherization Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Maximum Rebate $1,500 Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Refrigerator/Freezer Recycling: $30 Water Heaters: $100 Windows: $6/sq. ft. Heat Pumps: $450 Duct Sealing: $400 - $500 Clothes Washer: $30 Ductless Heat Pumps: $1,500 Vera Irrigation District #15 offers rebates to electric customers who improve energy efficiency. Rebates are available for water heaters,

17

Modesto Irrigation District - New Home Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modesto Irrigation District - New Home Energy Efficiency Rebate Modesto Irrigation District - New Home Energy Efficiency Rebate Program Modesto Irrigation District - New Home Energy Efficiency Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Utility Rebate Program Rebate Amount Single-Family Dwelling: $500 Multi-Family Dwelling: $250 Provider Energy Management Department Modesto Irrigation District's MPower New Home Program provides incentives to builders and homeowners for designing and building energy-efficient homes. Eligible homes must meet the guidelines for California Energy Star Qualified New Homes, listed on the program application. Each qualified new

18

Modesto Irrigation District - Photovoltaic Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modesto Irrigation District - Photovoltaic Rebate Program Modesto Irrigation District - Photovoltaic Rebate Program Modesto Irrigation District - Photovoltaic Rebate Program < Back Eligibility Agricultural Commercial Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Maximum Rebate 50% of total project costs. Program Info State California Program Type Utility Rebate Program Rebate Amount Systems >1 kW to 30 kW: $1.00/W AC. Systems >30 kW to 1 MW: performance-based incentive of $0.10/kWh for 5 years. Provider PV Program Coordinator Modesto Irrigation District offers a photovoltaic rebate program for all of their electric customers. The peak output capacity of a system must be 1 kW or greater to participate. Systems up to 30 kilowatts (kW) in capacity can

19

Irrigation Districts: Establishment of Electric Light and Power Systems:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Irrigation Districts: Establishment of Electric Light and Power Irrigation Districts: Establishment of Electric Light and Power Systems: Powers (Nebraska) Irrigation Districts: Establishment of Electric Light and Power Systems: Powers (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Nebraska Program Type Siting and Permitting Provider Natural Resources Irrigation districts, created in section 46-1xx, are encouraged to

20

Modesto Irrigation District - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modesto Irrigation District - Commercial Energy Efficiency Rebate Modesto Irrigation District - Commercial Energy Efficiency Rebate Program Modesto Irrigation District - Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Construction Commercial Weatherization Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Rebate Caps vary according to MID electric rate schedule, they range from $10,000 - $50,000. Cap exemption can be requested. Program Info Expiration Date 12/15/2012 State California Program Type Utility Rebate Program Rebate Amount Lighting and Sensors: Varies, consult program website Auto Door Closers: $56 - $65/closer Strip Curtains: $3/sq ft Plastic Swinging Doors: $4/sq ft

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modesto Irrigation District - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modesto Irrigation District - Residential Energy Efficiency Rebate Modesto Irrigation District - Residential Energy Efficiency Rebate Program Modesto Irrigation District - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Water Heating Program Info Expiration Date 12/15/2013 State California Program Type Utility Rebate Program Rebate Amount Room AC: $50 Clothes Washer: $35 Water Heater: $25 Heat Pump Water Heater: $100 Refrigerator/Freezer Recycling: $35 per unit Central AC: $250 Heat Pump: $350 High Efficiency AC/Heat Pump: $500 Mini-Split AC/Heat Pump: $500 Air Duct Sealing: up to $250 max Whole House Fan: $100 per unit

22

Modesto Irrigation District - Commercial New Construction Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modesto Irrigation District - Commercial New Construction Rebate Modesto Irrigation District - Commercial New Construction Rebate Program Modesto Irrigation District - Commercial New Construction Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Appliances & Electronics Commercial Lighting Lighting Maximum Rebate 50% of the incremental cost of the project(s) included in the application. The maximum annual payment cap is determined per account, by the applicable MID electric rate schedule: $15,000 (GS-1); $25,000 (P-3); $50,000 (GS-2); $125,000 (GS-TOU); $250,000 (GS-3); $500,000 (IC-25). Program Info Expiration Date 12/15/2013 State California Program Type

23

Modesto Irrigation District Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

District Smart Grid Project District Smart Grid Project Jump to: navigation, search Project Lead Modesto Irrigation District Recovery Act Funding $1,493,149.00 Total Project Value $2,986,298.00 Coverage Area Coverage Map: Modesto Irrigation District Smart Grid Project Coordinates 37.6390972°, -120.9968782° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

24

Modesto Irrigation District - Custom Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Modesto Irrigation District - Custom Commercial Energy Efficiency Rebate Program Modesto Irrigation District - Custom Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Rebate caps are adjusted according to MID's electric rate schedule they vary from $15,000 - $500,000. Exemptions from rebate caps can be requested. Program Info State California Program Type Utility Rebate Program Rebate Amount Lighting Measures: $250/kW reduced or $.04/kWh reduced Insulation Measures: $250/kW reduced or $.04/kWh reduced

25

Geographic information system (GIS) and simulation model for management of irrigation districts  

E-Print Network (OSTI)

IDMM (Irrigation District Management Model), a user friendly, GIS based, menu driven personal computer software program, was developed as a planning and management tool for improved water use and crop growth production in irrigation districts. It consists of IRDDESS (Irrigation District Decision Support System), a crop growth and district simulation model that was integrated into ArcView GIS software. To demonstrate the usefulness of the model, its predictions were compared with those observed in real systems with similar situations. The three simulation modules of IDMM were tested for two locations in the Brownsville Irrigation District (BID) in Texas. The POTPROD (potential production) simulation module, was used to simulate daily crop dry matter production and irrigation regimes during one season for four crops: maize, soybean, sorghum, and cotton. Generally, the larger irrigation volumes and more frequent irrigations resulted in the highest yields. The SIMDIRT (simulation under different irrigation treatments) module estimates potential yield under any combination of irrigation regimes. It was tested for sorghum for one crop season with eleven different irrigation regimes. Results show that actual yields were within 4 % of predicted in three of the irrigation regimes. The SIMWETH (simulation under different weather conditions) module allows the user to estimate yields for as many seasons as desired. Historical or stochastically produced weather data can be used to analyze how potential yields vary under a given irrigation regime over a long period of time. Proper water management in each farmer's field is important in improving the overall performance of an irrigation district; consequently IDMM's capabilities were demonstrated at the farm and the irrigation district levels. One of the most important components of IDMM is its ability to visually display and analyze all information concerning crops, fields, irrigation, gates, etc., providing irrigation districts with information crucial in the process of decision-making.

Nazarov, Azimjon S.

2000-01-01T23:59:59.000Z

26

Water transfers in Northern California : analyzing the termination of the San Francisco--Modesto Irrigation District water transfer  

E-Print Network (OSTI)

From 2011 to 2012, the Modesto Irrigation District (MID) and the San Francisco Public Utilities Commission (SFPUC) attempted to broker a deal that would transfer water from the rural Central California district to the ...

Tanner, Keith (Keith Richard)

2013-01-01T23:59:59.000Z

27

Joint irrigation districts hydropower assessment study. Final feasibility assessment report. Volume I  

DOE Green Energy (OSTI)

In August 1978, the United States Department of Energy and the Turlock Irrigation District entered into a cooperative agreement for a Joint District's Low-Head Hydropower Assessment Study. The purpose of the agreement was to carry out a study of the hydropower potential at sites within the borders of the Turlock, Merced, South San Joaquin, and Oakdale Irrigation Districts in California. The required data were gathered and analyzed. The results of this study indicate the total potential small hydropower capacity with the Joint Districts is 19,560 kW installed with an annual energy generation of 68,561,800 kWh. This is equivalent to oil-savings of 118,616 barrels per y.

None

1979-02-01T23:59:59.000Z

28

Validating the Estimated Cost of Saving Water Through Infrastructure Rehabilitation in the Texas Lower Rio Grande Valley (Hidalgo County Irrigation District No. 1)  

E-Print Network (OSTI)

A Case Study Using Actual Construction Costs for the Curry Main Pipeline Project, Hidalgo County Irrigation District No. 1 (Edinburg)

Lacewell, R. D.; Rister, M.; Sturdivant, A. W.

2005-09-01T23:59:59.000Z

29

Validating the Estimated Cost of Saving Water Through Infrastructure Rehabilitation in the Texas Lower Rio Grande Valley (Hidalgo County Irrigation District No. 2)  

E-Print Network (OSTI)

A Case Study Using Actual Construction Costs for the Lateral A Lining Project, Hidalgo County Irrigation District No. 2 (San Juan)

Lacewell, R. D.; Rister, M.; Sturdivant, A. W.

2005-09-01T23:59:59.000Z

30

Thermal Imaging of Canals for Remote Detection of Leaks: Evaluation in the United Irrigation District  

E-Print Network (OSTI)

This report summarizes our initial analysis of the potential of thermal imaging for detecting leaking canals and pipelines. Thermal imagery (video format) was obtained during a fly over of a portion of the main canal of United Irrigation District. The video was processed to produce individual images, and 45 potential sites were identified as having possible canal leakage problems (see Appendix I for all 45 thermal images). District Management System Team personnel traveled to 11 of the 45 sites to determine if canal leakage was actually occurring. Of the 11 sites, 10 had leakage problems. Thus, thermal image analysis had a success rate of 91% for leak detection. Two sites had leaks classified as severe by the DMS Team. This report also provides a detailed analysis of 4 sites, 3 with leaks and 1 without. For each site, photographs are included showing the source of the leak and/or condition of the canal segment. A literature review of thermal imagery for leak detection is included in Appendix II. Our findings and recommendations are as following: 1. thermal imaging is a promising technique for evaluation of canal conditions and leak detection; 2. the district provide should provide personnel to help the DMS Team verify the remaining 34 sites; and 3. the district should consider correcting the problems identified at sites 7 and 8.

Huang, Yanbo; Fipps, Guy

2008-11-01T23:59:59.000Z

31

Costs of Saving Water in South Texas with Irrigation District Infrastructure Rehabilitation - Using Capital Budgeting with RGIDECON  

E-Print Network (OSTI)

As a part of the irrigation district plans, economists with Texas AgriLife Research and the Texas AgriLife Extension Service (through the Rio Grande Basin Initiative), developed and applied a spreadsheet model RGIDECON (Rio Grande Irrigation District Economics) to facilitate unbiased comparisons of real project costs. That is, a Capital Budgeting Net Present Value (NPV) methodology, combined with calculation of annuity equivalent (AE) values, was developed to incorporate different initial construction costs, annual operation and maintenance costs, quantity of water saved, expected useful life, etc. of the various alternative projects. Using this combined approach allows for calculation of a single, annual $/acre-foot (af) {or $/1,000 gal} life-cycle cost, comprehensive of all relevant financial and economic parameters, thereby facilitating comparisons across and priority ranking among ID projects.

Rister, E.; Lacewell, R.; Sturdivant, A.

2013-03-01T23:59:59.000Z

32

Use of GIS as a Real Time Decision Support System for Irrigation Districts  

E-Print Network (OSTI)

The objectives were to provide the districts with a simple tool that would improve the availability of pumps and gates data from the existing SCADA system, improve the management of water orders, and allow access of data by account holders through the internet. An important component of the project was to interact and train District personnel. The final product of the project is a website, where pump and gates operations and water orders information are displayed in real-time, along with links to related historical data and other information. The on-line tool has three main components: 1) possibility to query real time and historic data from a new reorganized database created in our server; 2) status maps for display in real time of selected spatial information and alarms; 3) interactive maps for display of desired spatial information in real time and query historic spatial information. The main meaning of the status maps is to enable a friendlier and quicker access to the frequently used data. SCADA data include On/Off, current flow, upstream and downstream water level, and gate position. Water account data include pending orders, payment delinquents, and water balances.

Bonaiti, G.; Fipps, G.

2012-12-01T23:59:59.000Z

33

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 1 (Edinburg) - Curry Main - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 1 to the Bureau of Reclamation and North American Development Bank. The proposed project involves installing 1 mile of 72" pipeline to replace a segment of the Curry Main canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 49-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 2,258 ac-ft of water per year and 1,092,823,269 BTUs (320,288 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $24.68 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0000598 per BTU ($0.204 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $27.49 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0000568 per BTU ($0.194 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -2.84.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-09-01T23:59:59.000Z

34

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 1 (Edinburg) - North Branch / East Main - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 1 to the Bureau of Reclamation and North American Development Bank. The proposed project involves installing 4.83 miles of multi-size pipeline to replace a segment of the North Branch / East Main canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 48-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 5,838 ac-ft of water per year and 3,293,049,926 BTUs (965,138 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $15.58 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0000392 per BTU ($0.134 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $30.68 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0000544 per BTU ($0.186 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -1.58.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-10-01T23:59:59.000Z

35

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) - Relining Lateral A - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, (a.k.a. San Juan) to the North American Development Bank (NADBank) and Bureau of Reclamation. The proposed project involves relining Lateral A with a geomembrane and shotcrete cover. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 2,542 ac-ft of water per year and 551,738,646 BTUs (161,705 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $74.49 per ac-ft. The calculated economic and financial cost of energy savings is estimated to be $0.0003698 per BTU ($1.262 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $57.76 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0002661 per BTU ($0.908 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -14.29.

Popp, Michael; Robinson, John; Sturdivant, Allen; Lacewell, Ronald; Rister, Edward

2003-07-01T23:59:59.000Z

36

Economic and Conservation Evaluation of Capital Renovation Projects: Brownsville Irrigation District 72" and 54" Pipeline Replacing Main Canal Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Brownsville Irrigation District to the North American Development Bank (NADB) and Bureau of Reclamation (BOR). The proposed project involves constructing a 72" and 54" pipeline to replace 2.29 miles of the Main Canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 49-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 1,844 ac-ft of water per year and 313,797,977 BTUs (91,969 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $24.70 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0001740 per BTU ($0.594 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $56.74 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0003335 per BTU ($1.138 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -1.46.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-07-01T23:59:59.000Z

37

Economic and Conservation Evaluation of Capital Renovation Project: Hidalgo County Irrigation District No. 2 (San Juan) - Relining Lateral A Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, (a.k.a. San Juan) to the North American Development Bank (NADBank) and Bureau of Reclamation. The proposed project involves relining Lateral A with a geomembrane and shotcrete cover. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 2,542 ac-ft of water per year and 551,738,646 BTUs (161,705 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $74.49 per ac-ft. The calculated economic and financial cost of energy savings is estimated to be $0.0003698 per BTU ($1.262 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $57.76 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0002661 per BTU ($0.908 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -14.29.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-05-01T23:59:59.000Z

38

Economic and Conservation Evaluation of Capital Renovation Projects: Brownsville Irrigation District 72" and 48" Pipeline Replacing Main Canal Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Brownsville Irrigation District to the North American Development Bank (NADB) and Bureau of Reclamation (BOR). The proposed project involves constructing a 72" and 48" pipeline to replace 2.31 miles of the Main Canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 49-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 1,872 ac-ft of water per year and 318,479,103 BTUs (93,341 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $27.98 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0001933 per BTU ($0.660 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $58.60 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0003444 per BTU ($1.175 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -1.53.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-10-01T23:59:59.000Z

39

Economic and Conservation Evaluation of Capital Renovation Projects: Cameron County Irrigation District No. 2 (San Benito) Infrastructure Rehabilitation Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a five-component capital renovation project proposed by Cameron County Irrigation District No. 2, (a.k.a. San Benito) to the Bureau of Reclamation (BOR). The proposed project involves rehabilitating 42+ miles of canals, laterals, and pipelines. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful lives for all five components of the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 19,580 ac-ft of water per year and 2,151,277,209 BTUs (630,503 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $45.60 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0004399 per BTU ($1.501 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $46.98 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0004275 per BTU ($1.459 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -9.04.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-07-01T23:59:59.000Z

40

Economic and Conservation Evaluation of Capital Renovation Projects: Cameron County Irrigation District No. 2 (San Benito) - Infrastructure Rehabilitation - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a five-component capital renovation project proposed by Cameron County Irrigation District No. 2, (a.k.a. San Benito) to the Bureau of Reclamation (BOR). The proposed project involves rehabilitating 42+ miles of canals, laterals, and pipelines. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful lives for all five components of the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 19,580 ac-ft of water per year and 2,151,277,209 BTUs (630,503 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $45.60 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0004399 per BTU ($1.501 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $46.98 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0004275 per BTU ($1.459 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -9.04.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.; Popp, Michael C.

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Imperial Irrigation District RPS Policy (SBX1 2) Enforcement Program & Procurement Plan  

E-Print Network (OSTI)

the State mandate to encourage renewable resources · Obtain a diverse portfolio of cost-effective renewable public benefit program (PBC) portfolio. Funded through a separate state-mandated charge on GWP revenues to renewable resources. Specific objectives include: · Meet the State mandate to encourage renewable resources

42

Effect of cropping strategies on the irrigation water productivity of durum wheat Khaledian, MRa, b  

E-Print Network (OSTI)

climate with water deficiency. Author-produced version of the article published in Plant Soil Environ results in significant water savings. The highest irrigation water Author-produced version of the articleEffect of cropping strategies on the irrigation water productivity of durum wheat Khaledian, MRa, b

43

Economic and Conservation Evaluation of Capital Renovation Projects: United Irrigation District of Hidalgo County (United) Rehabilitation of Main Canal, Laterals, and Diversion Pump Station Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a three-component capital renovation project proposed by the United Irrigation District to the U.S. Bureau of Reclamation (USBR). The proposed project involves: installing 4.66 miles of pipeline in the Main Canal and Lateral 7N, installing 13.46 miles of pipeline in several laterals and sub-laterals, and rehabilitating the Districts Rio Grande diversion pumping plant. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful lives for all three components. Sensitivity results for both the cost of saving water and the cost of saving energy are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 1,522 ac-ft of water per year and 3,520,302,471 BTUs (1,031,742 kwh) of energy per year. The calculated economic and financial cost of saving water is estimated to be $341.51 per ac-ft. The calculated economic and financial cost of saving energy is estimated at $0.0001574 per BTU ($0.537 per kwh). In addition, real (vs. nominal) values are estimated for the USBRs three principal evaluation measures specified in the U.S. Public Law 106-576. The aggregate initial construction cost per ac-ft of water savings measure is $359.42 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0003468 per BTU ($1.183 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.551.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.

2006-03-01T23:59:59.000Z

44

Economic and Conservation Evaluation of Capital Renovation Projects: United Irrigation District of Hidalgo County (United) - Rehabilitation of Main Canal, Laterals, and Diversion Pump Station - Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a three-component capital renovation project proposed by the United Irrigation District to the U.S. Bureau of Reclamation (USBR). The proposed project involves: installing 4.66 miles of pipeline in the Main Canal and Lateral 7N, installing 13.46 miles of pipeline in several laterals and sub-laterals, and rehabilitating the Districts Rio Grande diversion pumping plant. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful lives for all three components. Sensitivity results for both the cost of saving water and the cost of saving energy are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 1,409 ac-ft of water per year and 4,506,882,727 BTUs (1,320,892 kwh) of energy per year. The calculated economic and financial cost of saving water is estimated to be $325.20 per ac-ft. The calculated economic and financial cost of saving energy is estimated at $0.0001113 per BTU ($0.380 per kwh). In addition, real (vs. nominal) values are estimated for the USBRs three principal evaluation measures specified in the U.S. Public Law 106-576. The aggregate initial construction cost per ac-ft of water savings measure is $354.30 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0003376 per BTU ($1.152 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.442.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.

2005-09-01T23:59:59.000Z

45

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) - Rehabilitation of Alamo Main Canal - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a two-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, to the U. S. Bureau of Reclamation (USBR). The proposed project primarily consists of relining the Alamo Main canal and installing a flow-management system in the Alamo Main canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 876 ac-ft of water per year and 331,389,647 BTUs (97,125 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $201.50 per ac-ft. The calculated economic and financial cost of energy savings is estimated to be $0.0005592 per BTU ($1.908 per kwh). In addition, expected real (vs nominal) values are indicated for the USBRs three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $182.98 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0004837 per BTU ($1.650 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -20.74.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.

2005-04-01T23:59:59.000Z

46

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) 48" Pipeline Replacing Wisconsin Canal Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, (a.k.a. San Juan) to the North American Development Bank (NADBank) and Bureau of Reclamation. The proposed project involves constructing a 48" pipeline to replace the Wisconsin Canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 977 ac-ft of water per year and 372,892,700 BTUs (109,289 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $70.97 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0002124 per BTU ($0.725 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $75.29 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0001973 per BTU ($0.673 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.12.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-05-01T23:59:59.000Z

47

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) - 48" Pipeline Replacing Wisconsin Canal - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, (a.k.a. San Juan) to the North American Development Bank (NADBank) and Bureau of Reclamation. The proposed project involves constructing a 48" pipeline to replace the Wisconsin Canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 977 ac-ft of water per year and 372,892,700 BTUs (109,289 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $70.97 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0002124 per BTU ($0.725 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $75.29 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0001973 per BTU ($0.673 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.12.

Rister, Edward; Lacewell, Ronald; Sturdivant, Allen; Robinson, John; Popp, Michael

2003-07-01T23:59:59.000Z

48

Economic and Conservation Evaluation of Capital Renovation Projects: Edinburg Irrigation District Hidalgo County No. 1 - 72" Pipeline Replacing Delivery Canal and Multi-Size Pipeline Replacing Delivery Canal  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for the capital renovation project proposed by Edinburg Irrigation District Hidalgo County No. 1 to the North American Development Bank (NADBank). Both nominal and real, expected economic and financial costs of water and energy savings are identified throughout the anticipated useful lives for both components of the proposed project (i.e., 72" pipeline replacing a segment of delivery canal along the "Curry Main" and multi-size pipeline replacing a segment of delivery canal along the "North Branch / East Main"). Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Expected cost of water savings and cost of energy savings for both components are aggregated into a composite set of cost measures for the total proposed project. Aggregate cost of water savings is estimated to be $29.87 per ac-ft and energy savings are measured at an aggregate value of $0.0000595 per BTU (i.e., $0.203 per kwh). In addition, expected values are indicated for the Bureau of Reclamation's three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $50.90 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0000777 per BTU ($0.265 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -2.01.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

2002-11-01T23:59:59.000Z

49

The Effect of Changing Input and Product Prices on the Demand for Irrigation Water in Texas  

E-Print Network (OSTI)

Agriculture is a major income-producing sector in the Texas economy and a large part of this economic activity originates in irrigated crop production. For example, in 1973, 50% of all grain sorghum and 46% of all cotton in Texas were produced on irrigated acreage [Texas Crop and Livestock Reporting Service]. These two crops alone produced 26% of the cash receipts from the sale of Texas farm commodities in 1973 [Texas Crop and Livestock Reporting Service]. There are several other crops in Texas including vegetables which generate significant levels of income and rely heavily on irrigation. Further there are several associated industries which rely on production from irrigated agriculture, such as the cattle feeding industry in the Texas Panhandle. It is evident from this rather cursory examination of statistics that irrigation plays a large role in Texas agriculture. Both producers and policy-makers have found themselves faced in the past two years with many uncertainties. The U.S., plagued in the past with surplus production and supply control problems, now finds itself in a world shortage of food products. The long range signals seem to call for increased production, yet the policy-maker faces decisions concerning not only how to increase production, but more basically, how to maintain current levels of production. Groundwater resources in many areas are being diminished and annual irrigation water supplies fully committed in other areas. Long run planning for Texas agriculture requires that interbasin transfers of water be evaluated. Texas holds a position of prominence in the production of U.S. food and fiber products, and the evaluation of these alternatives has implications not only for Texas, but for the U.S. and possibly the world. To objectively evaluate water transfer proposals, it is necessary that the value of irrigation water in different regions of Texas be established. The producer faces the same call for maintaining or increasing production as the policy-maker, but he does so with many uncertainties which often have not disturbed the policy-maker in evaluating alternatives. Product prices have risen and fallen at an unprecedented rate while input prices have steadily risen at rates which preclude realistic budgeting. For example, during the recent energy crisis, the prices of fuel and fertilizer have more than doubled. These variable input and product prices weigh heavily upon production decisions by the producer, and likewise must receive serious consideration in evaluation of resource allocation alternatives by policy-makers. The demand for irrigation water is derived from the production of crops and any change in production patterns, input prices or availability, and product prices directly affects this demand. Current and future water resources planning requires an estimate of the various quantities of water which will be used for irrigation under differing assumptions concerning price of water, other input prices, and product prices. Of particular importance are shifts in cropping patterns, changes in level of agricultural production and net effect on producers income. Since many policy decisions are made in relatively short periods of time, there is an urgent need for a capability to evaluate alternative policies and change input or product prices in a timely fashion.

Lacewell, R. D.; Condra, G. D.

1976-06-01T23:59:59.000Z

50

Effects of irrigation on crops and soils with Raft River geothermal water  

DOE Green Energy (OSTI)

The Raft River Irrigation Experiment investigated the suitability of using energy-expended geothermal water for irrigation of selected field-grown crops. Crop and soil behavior on plots sprinkled or surface irrigated with geothermal water was compared to crop and soil behavior on plots receiving water from shallow irrigation wells and the Raft River. In addition, selected crops were produced, using both geothermal irrigation water and special management techniques. Crops irrigated with geothermal water exhibited growth rates, yields, and nutritional values similar to comparison crops. Cereal grains and surface-irrigated forage crops did not exhibit elevated fluoride levels or accumulations of heavy metals. However, forage crops sprinkled with geothermal water did accumulate fluorides, and leaching experiments indicate that new soils receiving geothermal water may experience increased salinity, exchangeable sodium, and decreased permeability. Soil productivity may be maintained by leaching irrigations.

Stanley, N.E.; Schmitt, R.C.

1980-01-01T23:59:59.000Z

51

Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability  

DOE Green Energy (OSTI)

Demonstrating effective treatment technologies and beneficial uses for oil and gas produced water is essential for producers who must meet environmental standards and deal with high costs associated with produced water management. Proven, effective produced-water treatment technologies coupled with comprehensive data regarding blending ratios for productive long-term irrigation will improve the state-of-knowledge surrounding produced-water management. Effective produced-water management scenarios such as cost-effective treatment and irrigation will discourage discharge practices that result in legal battles between stakeholder entities. The goal of this work is to determine the optimal blending ratio required for irrigating crops with CBNG and conventional oil and gas produced water treated by ion exchange (IX), reverse osmosis (RO), or electro-dialysis reversal (EDR) in order to maintain the long term physical integrity of soils and to achieve normal crop production. The soils treated with CBNG produced water were characterized with significantly lower SAR values compared to those impacted with conventional oil and gas produced water. The CBNG produced water treated with RO at the 100% treatment level was significantly different from the untreated produced water, while the 25%, 50% and 75% water treatment levels were not significantly different from the untreated water. Conventional oil and gas produced water treated with EDR and RO showed comparable SAR results for the water treatment technologies. There was no significant difference between the 100% treated produced water and the control (river water). The EDR water treatment resulted with differences at each level of treatment, which were similar to RO treated conventional oil and gas water. The 100% treated water had SAR values significantly lower than the 75% and 50% treatments, which were similar (not significantly different). The results of the greenhouse irrigation study found the differences in biomass production between each soil were significant for Western Wheatgrass and Alfafla. The Sheridan sandy loam soil resulted in the highest production for western wheatgrass and alfalfa while the X-ranch sandy loam had the lowest production rate for both plants. Plant production levels resulting from untreated CBNG produced water were significantly higher compared to untreated conventional oil and gas produced water. However, few differences were found between water treatments. The biomass produced from the greenhouse study was analyzed for elemental composition and for forage value. Elemental composition indentified several interesting findings. Some of the biomass was characterized with seemly high boron and sodium levels. High levels of boron found in some of the biomass was unexpected and may indicate that alfalfa and western wheatgrass plants may have been impacted by either soil or irrigation water containing high boron levels. Plants irrigated with water treated using EDR technology appeared to contain higher levels of boron with increased levels of treatment. Forage evaluations were conducted using near infrared reflectance spectroscopy. The data collected show small differences, generally less than 10%, between produced water treatments including the no treatment and 100% treatment conditions for each plant species studied. The forage value of alfalfa and western wheatgrass did not show significant tendencies dependent on soil, the amount of produced water treatment, or treatment technology.

Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

2010-09-30T23:59:59.000Z

52

Effects of seed origin and irrigation on survival and growth of transplanted shrubs  

SciTech Connect

Revegetation is difficult in the Mojave Desert due to limited, erratic precipitation and extreme temperatures. Establishing plant cover by transplanting native shrubs is known to be a promising technique, but many questions still remain regarding its use on a large operational scale. A study was initiated on the US Department of Energy Nevada Test Site (NTS) to determine the effects of seed origin and irrigation on survival and growth of transplanted shrubs. Plants of three species (Larrea tridentata, Ambrosia dumosa, and Atriplex canescens) were grown in a greenhouse and hardened outdoors. Plants of all three species were produced from two seed sources: (1) seed collected from the NTS (Mojave Desert), and (2) commercially available seed collected from outside the NTS. One-year-old containerized plants (180 of each species) were transplanted to a site on the NTS and irrigated with two liters of water at one of the following frequencies: (1) at time of planting only, (2) at time of planting and monthly during the first growing season, and (3) at time of planting and twice monthly during the first growing season. After 16 months, survival of all species was generally greater than 80% and was unaffected by irrigation treatments. Survival of fourwing saltbush was significantly greater from local versus non-local seed. Survival of bursage and creosotebush was generally unaffected by seed origin. Shrub volumes regardless of species or seed origin increased during the first growing season, and then decreased during the second growing season. Shrub volumes for fourwing saltbush were significantly greater for shrubs from local versus non-local seed.

Winkel, V.K.

1995-10-01T23:59:59.000Z

53

Precision Irrigators Network  

E-Print Network (OSTI)

Identifying best management practices (BMPs) promoting greater water use efficiency while maintaining crop yields is essential to the future of Texas cropping systems. Available water for irrigated crops is vital for sustaining crop production throughout the state. However, the availability of this water for irrigation is diminishing through competition by urban development and, in some regions such as the Edwards Aquifer, is falling under state regulation. The awareness and improvement of efficient irrigation and best management practices to conserve water while maintaining crop production will help preserve the aquifer levels and increase water savings to producers. One component of BMPs for conserving water use is the application of decision support systems (DSS) that are used as tools for implementing irrigation BMPs. This DSS guide was developed as a complement to TWDB Report 362, "Water Conservation Best Management Practices Guide," which is a more comprehensive report on water conservation including an "Agricultural Irrigation Water Use Management" BMPs section. The full TWDB Report 362 can be found at: http://www.twdb.state.tx.us/assistance/conservation/consindex.asp. DSS include the Texas High Plains Evapotranspiration Network (TXHPET), the Precision Irrigators Network (PIN) and the Crop Production Management (CroPMan) model. These DSS strive to promote grower awareness of water conservation strategies. Irrigation conservation strategies are proposed to result in savings of approximately 1.4 million acre-feet per year by 2060 (TWDB and TWRI). TXHPET operates 18 meteorological stations located in 15 counties across the Texas North Plains and Texas South Plains. The regional coverage of TXHPET is estimated at 4 million irrigated acres. The network offers insight to evapotranspiration (ET)-based crop water use that producers and agricultural consultants can reference when making decisions on when and how much to irrigate their crops. This information is available to data users via fax or online (http://txhighplainset.tamu.edu) and currently results in approximately 300,000 downloads or faxes annually. The PIN program was formed in 2004 with a goal of saving millions of gallons of water annually by reducing irrigation water use by as much as 20 percent over several years and currently supports several crops (corn, cotton, sorghum, wheat) in seven counties of South Central Texas. Cooperation of the PIN programs consists of area producers, Texas Agricultural Experiment Station researchers, Texas Cooperative Extension personnel, San Antonio Water System, Edwards Aquifer Authority, Texas Water Resources Institute, Texas Water Development Board, Uvalde County Underground Water Conservation District and Wintergarden Water Conservation District. The PIN database will allow producers to gain historical and real-time information for better management of irrigation scheduling. The PIN program estimates that when all irrigators in the Edwards Aquifer region implement limited irrigation scheduling, approximately 50,000 to 60,000 acre-feet of water can be saved per year and made available for purposes other than agriculture. CroPMan is a computer model designed to aid producers and agricultural consultants in optimizing crop management and maximizing production and profit through a production-risk approach. CroPMan will help growers identify limitations to crop yield, assist in making replant decisions and help recognize management practices that reduce the impact of agriculture on soil erosion and water quality. CroPMan is a Windows-based application program that can be downloaded from the CroPMan Web site (http://cropman.brc.tamus.edu).

Bynum, J.; Cothren, T.; Marek, T.; Piccinni, G.

2007-08-01T23:59:59.000Z

54

The Development of a Coordinated Database for Water Resources and Flow Model in the Paso Del Norte Watershed (Phase III) Part III GIS Coverage for the Valle de Jurez Irrigation District 009 (ID-009) (Distrito de Riego 009) Chihuahua, Mxico  

E-Print Network (OSTI)

This report fulfills the deliverables required by the cooperative agreement between the U.S. Army Corps of Engineers and Texas Agricultural Experiment Station (TAES/03-PL- 02: Modification No. 3) on behalf of the Paso del Norte Watershed Council. Tasks accomplished in this phase include (a) assessment of data availability for expansion of the URGWOM model, identification of data gaps, generation of data needed from historic data using empirical methods, compilation and verification of the water quality data for reaches between the Elephant Butte Reservoir, New Mexico and Fort Quitman, Texas; (b) development of the RiverWare physical model for the Rio Grande flow for the selected reaches between Elephant Butte Reservoir and El Paso, beginning with a conceptual model for interaction of surface water and groundwater in the Rincon and Mesilla valleys, and within the limits of available data; and (c) implementation of data transfer interface between the coordinated database and hydrologic models. This Project was conducted by researchers at Texas A&M University (TAMU) and New Mexico State University (NMSU) under the direction of Zhuping Sheng of TAMU and J. Phillip King of New Mexico State University. It was developed to enhance the coordinated database, which was originally developed by the Paso del Norte Watershed Council with support of El Paso Water Utilities to fulfill needs for better management of regional water resources and to expand the Upper Rio Grande Water Operations Model (URGWOM) to cover the river reaches between Elephant Butte Dam, New Mexico and Fort Quitman, Texas. In Phases I and II of this Project (TAES/03-PL-02), hydrological data needed for flow model development were compiled and data gaps were identified and a conceptual model developed. The objectives of this phase were to develop a physical model of the Rio Grande flow between Elephant Butte Dam and American Dam by using data collected in the first development phase of the PdNWC/Corps Coordinated Water Resources Database and to enhance the data portal capabilities of the PdNWC Coordinated Database Project. This report is Part III of a three part completion report for Phase III and provides information on water sources, uses, and GIS of the canals and ditches of the Valle de Jurez Irrigation District 009 (ID 009) in the Jurez Lower Valley, Chihuahua, Mxico. The author explains that the water needs of this region have changed in recent years from being primarily for agricultural purposes to domestic and industrial uses currently. Also, the United States wanted to assess and identify new data sources on a GIS format for the Mexican side. Therefore, this project produced several maps with the location of channels and ditches along the Valle de Jurez Irrigation District. This information also will support water planning of the Valle de Jurez Irrigation District 009. The maps were produced from existing digital data regarding water resources and by adding thematic layers such as soil salinity and soil texture from analog maps. ASTER satellite imagery and official panchromatic aerial photography were used to produce the maps.

Granados, Alfredo; Srinivasan, Raghavan; Sheng, Zhuping; King, J. Phillip; Creel, Bobby; Brown, Christopher; Michelsen, Ari

2009-01-01T23:59:59.000Z

55

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States » District of Columbia United States » District of Columbia District of Columbia October 16, 2013 Vera Irrigation District #15 - Energy Efficiency Rebate Program Vera Irrigation District #15 offers rebates to electric customers who improve energy efficiency. Rebates are available for water heaters, windows, heat pumps, clothes washer, duct sealing and appliance recycling. Certain efficiency standards must be met in order to receive a rebate for water heaters or windows. Vera Irrigation District also provides a $450 rebate for the installation of energy-efficient heat pumps; ductless heat pumps are eligible incentives of up to $1,500. See the program web site or contact the utility for more information about this program. October 16, 2013 Underground Storage Tank Management (District of Columbia)

56

Regional Differences in the Influence of Irrigation on Climate  

Science Conference Proceedings (OSTI)

A global climate model experiment is performed to evaluate the effect of irrigation on temperatures in several major irrigated regions of the world. The Community Atmosphere Model, version 3.3, was modified to represent irrigation for the ...

David Lobell; Govindasamy Bala; Art Mirin; Thomas Phillips; Reed Maxwell; Doug Rotman

2009-04-01T23:59:59.000Z

57

Regional climate effects of irrigation and urbanization in the western united states: a model intercomparison  

E-Print Network (OSTI)

In the two northern grid cells, sensible heat flux decreasedthe two southern grid cells sensible heat flux increased andgrid cells that were irrigated in Figure 5. January and August latent heat

2006-01-01T23:59:59.000Z

58

The Effect of Irrigation on Warm Season Precipitation in the Southern Great Plains  

Science Conference Proceedings (OSTI)

The synoptic and subsynoptic atmospheric processes that accompany statistically determined periods of irrigation-induced rainfall increases during the warm season in the Texas Panhandle are examined. Major results are as follows.

Anthony G. Barnston; Paul T. Schickedanz

1984-06-01T23:59:59.000Z

59

Modeling the effects of groundwater-fed irrigation on terrestrial hydrology over the conterminous United States  

Science Conference Proceedings (OSTI)

Human alteration of the land surface hydrologic cycle is substantial. Recent studies suggest that local water management practices including groundwater pumping and irrigation could significantly alter the quantity and distribution of water in the ...

Guoyong Leng; Maoyi Huang; Qiuhong Tang; Huilin Gao; L. Ruby Leung

60

Table 5a. Total District Heat Consumption per Effective Occupied Square  

U.S. Energy Information Administration (EIA) Indexed Site

a. Total District Heat Consumption per Effective a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption (trillion Btu) District Heat Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 94 429 84 93 Building Floorspace (Square Feet) 1,001 to 5,000 18 Q Q Q 5,001 to 10,000 11 Q Q Q 10,001 to 25,000 28 65 144 155 25,001 to 50,000 16 Q Q Q 50,001 to 100,000 9 50 79 81 100,001 to 200,000 6 59 76 79 200,001 to 500,000 5 109 71 77 Over 500,000 1 65 62 80 Principal Building Activity Education 22 50 71 78 Food Sales and Service Q Q Q Q Health Care 3 57 100 142 Lodging 9 66 112 116 Mercantile and Service 9 Q Q Q Office 24 110 63 70 Public Assembly 10 23 64 66 Public Order and Safety Q Q Q Q Religious Worship Q Q Q Q Warehouse and Storage

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Irrigation Training Program (South Texas Edition)  

E-Print Network (OSTI)

The Irrigation Training Program is a collaborative effort between the Texas Water Resources Institute, a unit of Texas A&M AgriLife; the Texas State Soil and Water Conservation Board; and the United States Department of Agriculture Natural Resources Conservation Service. Special appreciation is expressed to the individual authors and technical advisors who have contributed to the information and publications contained in this manual; the agencies, irrigation districts, groundwater conservation districts, Texas Agricultural Irrigation Association and members of other associations who have contributed time and leadership in the delivery of irrigation training programs; and to the site coordinators and those who have shared their expertise as speakers at individual programs throughout the state.

Porter, D.

2008-10-01T23:59:59.000Z

62

Irrigation Training Program (North Texas edition)  

E-Print Network (OSTI)

The Irrigation Training Program is a collaborative effort between the Texas Water Resources Institute, a unit of Texas A&M AgriLife; the Texas State Soil and Water Conservation Board; and the United States Department of Agriculture Natural Resources Conservation Service. Special appreciation is expressed to the individual authors and technical advisors who have contributed to the information and publications contained in this manual; the agencies, irrigation districts, groundwater conservation districts, Texas Agricultural Irrigation Association and members of other associations who have contributed time and leadership in the delivery of irrigation training programs; and to the site coordinators and those who have shared their expertise as speakers at individual programs throughout the state.

Porter, D.

2008-08-01T23:59:59.000Z

63

Economic and Conservation Evaluation of Capital Renovation Projects: Harlingen Irrigation District Cameron County No. 1 Canal Meters and Telemetry Equipment, Impervious-Lining of Delivery Canals, Pipelines Replacing Delivery Canals, and On-Farm Delivery-Site Meters  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for the capital renovation project proposed by Harlingen Irrigation District Cameron County No. 1 to the North American Development Bank (NADBank). Both nominal and real, expected economic and financial costs of water and energy savings are identified throughout the anticipated useful lives for each of the four components of the proposed project (i.e., canal meters and telemetry equipment, impervious-lining of delivery canals, 24" pipelines replacing delivery canals, and on-farm delivery-site meters). Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Expected cost of water savings and cost of energy savings for each of the four components are aggregated into a composite set of cost measures for the total proposed project. Aggregate cost of water savings is estimated to be $31.37 per ac-ft and energy savings are measured at an aggregate value of $0.0002253 per BTU (i.e., $0.769 per kwh). In addition, expected values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $26.87 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0001603 per BTU ($0.547 per kwh). The amount of initial construction costs per dollar of total annual economic savings is estimated to be -1.30.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

2002-10-01T23:59:59.000Z

64

Economic and Conservation Evaluation of Capital Renovation Projects: Cameron County Irrigation District No. 2 (San Benito) Interconnect Between Canals 39 and 13-A1 and Replacement of Rio Grande Diversion Pumping Plant  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for the capital renovation project proposed by the Cameron County Irrigation District No. 2 (a.k.a. San Benito) to the North American Development Bank (NADBank) and Bureau of Reclamation. Both nominal and real, expected economic and financial costs of water and energy savings are identified throughout the anticipated useful lives for both components of the proposed project (i.e., a lined interconnect between Canals 39 and 13-A1 and replacement of the Rio Grande diversion pumping plant). Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Expected cost of water savings and cost of energy savings for both components are aggregated into a composite set of cost measures for the total proposed project. Aggregate cost of water savings is estimated to be $41.26 per ac-ft and energy savings are measured at an aggregate value of $0.0001586 per BTU (i.e., $0.541 per kwh). In addition, expected values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $157.07 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0001777 per BTU ($0.606 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.80.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

2003-01-01T23:59:59.000Z

65

Economic and Financial Costs of Saving Water and Energy: Preliminary Analysis for Hidalgo County Irrigation District No. 2 (San Juan) Replacement of Pipeline Units I-7A, I-18, and I-22  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a three-component capital renovation project proposed by Hidalgo County Irrigation District No. 2. The proposed project primarily consists of replacing aged mortar-joint pipe in pipeline units I-7A, I-18, and I-22 with new rubber-gasketed, reinforced concrete pipe. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for the cost of saving water are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 485 ac-ft of water per year and 179,486,553 BTUs {52,604 kwh} of energy per year. The calculated economic and financial cost-of-saving water is estimated to be $385.46 per ac-ft. The calculated economic and financial cost-of-saving energy is estimated to be $0.0010735 per BTU {$3.663 per kwh}. In addition, expected real (vs. nominal) values are provided for the U.S. Bureau of Reclamations three principal evaluation measures specified in U.S. Public Law 106-576. The aggregate initial construction cost per ac-ft of water saved measure is $510.92. The aggregate initial construction cost per unit of energy saved measure is $0.0013798 per BTU {$4.708 per kwh}. The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -2.53.

Sturdivant, Allen W.; Rister, M. Edward; Lacewell, Ronald D.

2007-06-01T23:59:59.000Z

66

Economic Effect of Energy Price and Economic Feasibility and Potenhal of New Technology and Improved Management for Irrigation in Texas  

E-Print Network (OSTI)

Irrigation is a major contributing factor in crop production on the Texas High Plains. It is responsible for greatly increasing crop production and farm income for the region. Two factors, a declining groundwater supply and increasing production costs, are of primary concern because they impact on farm operations and producer economic viability. Recursive linear programming models for a typical Texas High Plains irrigated farm were developed to evaluate expected impact of energy and crop price changes, tenure and new technology. The model includes a Fortran sub-routine that adjusts irrigation factors each year based on the linear programming solution of the previous year. After calculating new pumping energy requirements, well yield, and pumping lift, the Fortran component updates the linear programming model. This procedure continues automatically to the end of a specified planning period or to economic exhaustion of the groundwater, whichever occurs first. Static applications of the model, in a deep water situation, showed that a natural gas price increase from $1.50 to $2.20 per thousand cubic feet (mcf) would result in reductions in irrigation levels. Irrigation was terminated when the price of natural gas reached about $7.00 per mcf. In a shallow water situation, much higher natural gas prices were reached ($3.60 per mcf) before short-run adjustments in farm organization began to occur. Under furrow irrigation, irrigation was terminated when the natural gas price reached $7.00 per mcf. Increased natural gas prices impact heavily on returns above variable costs (up to 15 percent reductions) for a 60 percent natural gas price increase. The effects of rising natural gas prices over a longer period of time were more significant. Annual returns (above variable and fixed costs) were reduced by as much as 30 percent, and the present value of returns to water was reduced by as much as 80 percent as the natural gas price was increased annually by $0.25 per mcf (from $1.50 per mcf). The economic life of deep groundwater was shortened by as much as 18 years. Renter-operators are even more vulnerable to rising natural gas prices than are owner-operators. With rising natural gas prices, profitability over time for the renter is low. As natural gas prices continue to increase, the greater will be the incentives for renter-operators to seek more favorable rental terms such as a sharing of irrigation costs. With the problem of a declining groundwater supply and rising natural gas prices, an economic incentive exists for producers to find new technologies that will enable them to make more efficient use of remaining groundwater and of natural gas. Substantial economic gains appear feasible through improved pump efficiency. Increasing pump efficiency from 50 to 75 percent will not increase the economic life of the water supply, but can improve farm profits over time; e.g., the present value of groundwater was increased 33 percent for a typical farm with an aquifer containing 250 feet of saturated thickness and 15 percent for 75 feet of saturated thickness. Improved irrigation distribution systems can help conserve water and reduce irrigation costs. Results indicate that irrigation can be extended by 11 or more years with 50 percent improved distribution efficiency. In addition, the increase in present value of groundwater on the 1.69 million irrigated acres of the Texas High Plains was estimated to be $995 million with 50 percent improved efficiency. New technology opportunities were expanded to include analysis of the economic feasibility of wind assisted irrigation pumping. Two wind machines were analyzed, with rate outputs of 40 to 60 kilowatts (KW). Each was applied to the Northern and Southern Texas High Plains over a range of land and water resource situations. Breakeven investment was estimated at discount rates of three, five and ten percent. Cropping patterns on the Southern High Plains were dominated by irrigated cotton and were insensit

Lacewell, Ronald D.; Hardin, D. C.; Petty, J. A.; Whitson, R. E.

1982-05-01T23:59:59.000Z

67

Effectiveness of Urban Shelter-in-Place. III: Commercial Districts  

SciTech Connect

In the event of a toxic chemical release to the atmosphere, shelter-in-place (SIP) is an emergency response option available to protect public health. This paper is the last in a three-part series that examines the effectiveness of SIP at reducing adverse health effects in communities. We model a hypothetical chemical release in an urban area, and consider SIP effectiveness in protecting occupants of commercial buildings. Building air infiltration rates are predicted from empirical data using an existing model. We consider the distribution of building air infiltration rates both with mechanical ventilation systems turned off and with the systems operating. We also consider the effects of chemical sorption to indoor surfaces and nonlinear chemical dose-response relationships. We find that commercial buildings provide effective shelter when ventilation systems are off, but that any delay in turning off ventilation systems can greatly reduce SIP effectiveness. Using a two-zone model, we find that there can be substantial benefit by taking shelter in the inner parts of a building that do not experience direct air exchange with the outdoors. Air infiltration rates vary substantially among buildings and this variation is important in quantifying effectiveness for emergency response. Community-wide health metrics, introduced in the previous papers in this series, can be applied in pre-event planning and to guide real-time emergency response.

Chan, Wanyu R.; Chan, Wanyu R.; Nazaroff, William W.; Price, Phillip N.; Gadgil, Ashok J.

2007-12-28T23:59:59.000Z

68

A Modeling Study of Irrigation Effects on Surface Fluxes and LandAirCloud Interactions in the Southern Great Plains  

Science Conference Proceedings (OSTI)

In this study, the authors incorporate an operational-like irrigation scheme into the Noah land surface model as part of the Weather Research and Forecasting Model (WRF). A series of simulations, with and without irrigation, is conducted over the ...

Yun Qian; Maoyi Huang; Ben Yang; Larry K. Berg

2013-06-01T23:59:59.000Z

69

The Effect of Irrigation on Regional Temperatures: A Spatial and Temporal Analysis of Trends in California, 19342002  

Science Conference Proceedings (OSTI)

The response of air temperatures to widespread irrigation may represent an important component of past and/or future regional climate changes. The quantitative impact of irrigation on daily minimum and maximum temperatures (Tmin and Tmax) in ...

David B. Lobell; Cline Bonfils

2008-05-01T23:59:59.000Z

70

Largest irrigated district in the world  

SciTech Connect

The geothermal administration report includes the following: status of transfer of Imperial Valley Environmental Project, status of data cataloging and storage, findings of geothermal field inspections, status of cooperative efforts between industry and the County for commercialization, problems in local geothermal commercialization and recommendations for action, and the status of geothermal exploration development and production in the County. The number and types of applications for geothermal energy received, results of hearings on applications, permits issued, and EIR prepared are discussed. Other geothermal activities include the Department of Energy Region 9 meeting in April, the Department of Energy Direct Heat Developers meeting held in El Centro in April, and a new drilling company in the County. These are followed by the summary of events. (MHR)

1980-10-02T23:59:59.000Z

71

Turlock Irrigation District - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clothes Washers: 35 Sun Screens: 1.00square foot Whole House Fans: 75 Solar Attic Fan: 100 Radiant Barrier: 0.10square foot Shade Tree: 20 each (3 max) Turlock...

72

Modesto Irrigation District - Custom Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Type Utility Rebate Program Rebate Amount Lighting Measures: 250kW reduced or .04kWh reduced Insulation Measures: 250kW reduced or .04kWh reduced Air Conditioning:...

73

Pricing and Conservation of Irrigation Water in Texas and New Mexico  

E-Print Network (OSTI)

Two possible policy alternatives for management of limited water supplies in arid portions of Texas and New Mexico were analyzed for economic feasibility. Detailed studies of the potential impact of a water accumulation policy for each of two irrigation districts (El Paso County Water Improvement District No. 1 in Texas, and the Elephant Butte Irrigation District in New Mexico) were undertaken using temporal linear programming techniques. Current cropping practices, soils, groundwater conditions, historical surface water allocations for Elephant Butte Reservoir and evaporation rates were incorporated within the analysis. Estimates of the benefits of accumulation of surplus portions of irrigation district member's annual surface water allocations, with subsequent use of the unevaporated portion in later years, were deemed insufficient to cover anticipated administrative costs of implementing the proposed policy. This suggests current allocations approximate a temporal optimum. Sensitivity analyses showed greater potential benefits, however, if current groundwater conditions worsen. Additional analysis of possible price-induced water conservation for the areas within the two states currently mining groundwater from the exhaustible Ogallala aquifer was also undertaken. The High Plains of Texas served as the representative region of study, with results assumed to be analogous for the portions of Eastern New Mexico relying on the Ogallala. Both static and temporal effects of a per unit tax on water pumpage and net returns were examined using a recursive linear programming model. Results indicated that imposition of a $20 per acre-foot tax on water pumped induced very little change in water use over a 40 year period, while reducing the present value of producer net returns from 9% to 27% depending upon initial groundwater conditions and the irrigation technology in use. These results imply that a price induced water conservation policy for the Ogallala is not economically justified.

Ellis, John R.; Lacewell, Ronald D.; Cornforth, G. C.; Teague, P. W.

1983-10-01T23:59:59.000Z

74

Irrigation Training Program For Texas Agricultural Producers  

E-Print Network (OSTI)

The Irrigation Training Program, funded by the Texas Water Development Board (TWDB) through an Agricultural Water Conservation Grant, began in 2006. Administered by the Texas Water Resources Institute (TWRI), the Texas State Soil and Water Conservation Board (TSSWCB), the local Soil and Water Conservation Districts (SWCDs), United States Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS), Texas AgriLife Extension Service (Extension) and Texas AgriLife Research (Research) worked together to build a multi-disciplinary Irrigation Training Program (ITP) that included development of a core manual and training conferences that were designed to meet regional needs. The three year project was divided into four main tasks with separate objectives and deliverables. Under Task 1, the TSSWCB, SWCDs and USDA-NRCS supported the development and implementation of the Irrigation Training Program. Task 2 required TWRI, Extension and Research, in cooperation with the TSSWCB and USDA-NRCS to identify primary agency personnel to provide training and the key conference sites. To meet the objective of Task 3, TWRI, Extension and Research, in cooperation with the TSSWCB and USDA-NRCS developed the Irrigation Training Program manual and promoted irrigation training conferences. And finally, TWRI, Extension and Research, in cooperation with the TSSWCB and USDA-NRCS implemented the Irrigation Training Program through the delivery of six irrigation conferences to meet the task 4 goals.

Harris, B.L.

2010-02-01T23:59:59.000Z

75

Norris Public Power District | Open Energy Information  

Open Energy Info (EERE)

Norris Public Power District Norris Public Power District Place Nebraska Utility Id 13664 Utility Location Yes Ownership P NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png IRRIGATION SERVICE: RATE 10 - FULL SERVICE Commercial IRRIGATION SERVICE: RATE 12 - STANDBY Commercial IRRIGATION SERVICE: RATE 13 - ANYTIME INTERRUPTIBLE Commercial IRRIGATION SERVICE: RATE 14 - THREE DAYS ON/FOUR DAY INTERRUPTIBLE Commercial SCHEDULE 1 - FARM AND RURAL RESIDENTIAL Residential SCHEDULE 15 - LARGE POWER - BETWEEN 2,500 - 7,500 kW Industrial

76

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

77

Harquahala Valley Pwr District | Open Energy Information  

Open Energy Info (EERE)

Harquahala Valley Pwr District Harquahala Valley Pwr District Jump to: navigation, search Name Harquahala Valley Pwr District Place Arizona Utility Id 8139 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Gin Commercial Irrigation Pumping Commercial Non-Irrigation Agriculture Commercial Average Rates Industrial: $0.0565/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Harquahala_Valley_Pwr_District&oldid=410799

78

Analysis of the tradeoff between irrigated agriculure and hydroelectric power in the Pacific Northwest. [Base-line estimate of the effects of agricultural irrigation on the hydroelectric power generating potential projected for the year 2020  

DOE Green Energy (OSTI)

Hydrogeneration and irrigated agriculture are major competing users of the waters of the Columbia River and its tributaries. Irrigated agriculture requires the diversion of large amounts of water from the rivers, only part of which returns. As a result, streamflow is reduced and the generation potential of dams located downstream from points of irrigation diversion is reduced. In addition, irrigated agriculture involves the direct consumption of electricity to pump irrigation water and to apply it to crops in the field. The purpose of this report is to make a baseline estimate of the impact on the electrical generation system in the region of the level of irrigation development projected for year 2020 by the states of Oregon, Washington, and Idaho. This baseline estimate reflects the assumption that current conditions will prevail in the future. The results, therefore, provide a standard against which the impacts of changes in current conditions can be measured. It is estimated that the projected development level of 11.4 million acres of irrigated agriculture in Oregon, Washington, and Idaho by year 2020 would result in foregone hydroelectric generation potential of approximately 17.8 million megawatt-hours (MWh) annually and direct consumption of electric power for pumping and application of approximately 10.3 million MWh's annually. Thus, a total of 28.1 million MWh's of electric power generation will have to be traded off each year if irrigated agriculture is to be conducted on the projected scale. (ERB)

Davis, A. E.

1979-01-01T23:59:59.000Z

79

Southern Public Power District | Open Energy Information  

Open Energy Info (EERE)

Southern Public Power District Southern Public Power District Place Nebraska Utility Id 17642 Utility Location Yes Ownership P NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL SERVICE Commercial GENERAL SERVICE - TOTAL ELECTRIC Commercial INTERRUPTIBLE IRRIGATION SERVICE ANYTIME PLUS SUNDAY Commercial INTERRUPTIBLE IRRIGATION SERVICE FOUR DAY PLUS SUNDAY Commercial INTERRUPTIBLE IRRIGATION SERVICE MULTIPLE PLUS SUNDAY Commercial

80

Impacts on irrigated agriculture of changes in electricity costs resulting from Western Area Power Administration`s power marketing alternatives  

DOE Green Energy (OSTI)

Irrigation is a major factor in the growth of US agricultural productivity, especially in western states, which account for more than 85% of the nation`s irrigated acreage. In some of these states, almost all cropland is irrigated, and nearly 50% of the irrigation is done with electrically powered pumps. Therefore, even small increases in the cost of electricity could have a disproportionate impact on irrigated agriculture. This technical memorandum examines the impacts that could result from proposed changes in the power marketing programs of the Western Area Power Administration`s Salt Lake City Area Office. The changes could increase the cost of power to all Western customers, including rural municipalities and irrigation districts that rely on inexpensive federal power to pump water. The impacts are assessed by translating changes in Western`s wholesale power rate into changes in the cost of pumping water as an input for agricultural production. Farmers can adapt to higher electricity prices in many ways, such as (1) using different pumping fuels, (2) adding workers and increasing management to irrigate more efficiently, and (3) growing more drought-tolerant crops. This study projects several responses, including using less groundwater and planting fewer waterintensive crops. The study finds that when dependence on Western`s power is high, the cost of power can have a major effect on energy use, agricultural practices, and the distribution of planted acreage. The biggest percentage changes in farm income would occur (1) in Nevada and Utah (however, all projected changes are less than 2% of the baseline) and (2) under the marketing alternatives that represent the lowest capacity and energy offer considered in Western`s Electric Power Marketing Environmental Impact Statement. The aggregate impact on farm incomes and the value of total farm production would be much smaller than that suggested by the changes in water use and planted acreage.

Edwards, B.K.; Flaim, S.J.; Howitt, R.E. [Argonne National Lab., IL (United States); Palmer, S.C. [Western Area Power Administration, Salt Lake City, UT (United States)

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Effect of irrigation water salinity and sodicity and water table position on water table chemistry beneath Atriplex lentiformis and Hordeum marinum  

SciTech Connect

Coal bed methane (CBM) extraction in Montana and Wyoming's Powder River Basin (PRB) produces large quantities of modestly saline-sodic water. This study assessed effects of irrigation water quality and water table position on water chemistry of closed columns, simulating a perched or a shallow water table. The experiment assessed the potential salt loading in areas where shallow or perched water tables prevent leaching or where artificial drainage is not possible. Water tables were established in sand filled PVC columns at 0.38, 0.76, and1.14 m below the surface, after which columns were planted to one of three species, two halophytic Atriplex spp. and Hordeum marinum Huds. (maritime barley), a glycophyte. As results for the two Atriplex ssp. did not differ much, only results from Atriplex lentiformis (Torn) S. Wats. (big saltbush) and H. marinum are presented. Irrigation water representing one of two irrigation sources was used: Powder River (PR) (electrolytic conductivity (EC) = 0.19 Sm{sup -1}, sodium adsorption ratio (SAR) = 3.5) or CBM water (EC = 0.35 Sm-1, SAR = 10.5). Continuous irrigation with CBM and PR water led to salt loading over time, the extent being proportional to the salinity and sodicity of applied water. Water in columns planted to A. lentiformis with water tables maintained at 0.38 m depth had greater EC and SAR values than those with 0.76 and 1.14 m water table positions. Elevated EC and SAR values most likely reflect the shallow rooted nature of A. lentiformis, which resulted in enhanced ET with the water table close to the soil surface.

Browning, L.S.; Bauder, J.W.; Phelps, S.D. [Montana State University, Bozeman, MT (United States)

2006-04-15T23:59:59.000Z

82

Columbia Rural Electric Association - Irrigation Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Irrigation Energy Efficiency Irrigation Energy Efficiency Rebate Program Columbia Rural Electric Association - Irrigation Energy Efficiency Rebate Program < Back Eligibility Agricultural Savings Category Other Maximum Rebate 70% of cost Program Info Expiration Date 9/31/2013 State District of Columbia Program Type Utility Rebate Program Rebate Amount Nozzle: $1.50 - $4.00 Sprinkler: $1 - $4 Gasket: $2.75 Regulator: $5 Drain: $1 Hub: $14.50 Goose Neck Elbows: $1.65 Drop Tube: $3 Pivot: $175 Pipe Section: $10 Leveler: $0.75 Provider Columbia REA Columbia REA, through the Bonneville Power Administration, offers an irrigation energy efficiency program for its agricultural customers. Stationary systems are not eligible for this program due to the number of sprinklers per acre. Replacement sprinklers are eligible for retrofits

83

Evaluation of Irrigation Efficiency Strategies for Far West Texas: Feasibility, Water Savings And Cost Considerations  

E-Print Network (OSTI)

ABSTRACT Texas recently completed its second round of nationally recognized water planning. The Water Plan for the state addresses how each of 16 regions will supply projected water demands for the next 50 years. Water availability in these plans is based on supply conditions experienced during the drought of record, that is, the severe drought conditions in the 1950's. In arid Far West Texas, Region E in the State Plan, agriculture is projected to have the largest unmet demand for water during drought. This situation is similar to many other irrigated agricultural production regions in the U.S. and world that rely upon limited and variable water supplies. In the Far West Texas (Region E) 50-year Water Plan, the primary strategy proposed to mitigate the impact of insufficient water supplies for agriculture is implementation of water conservation best management practices. However, the conservation practices identified were generic and gave a wide range of potential water savings compiled from many other sources and for other locations and conditions. The feasibility and amount of water saved by any given conservation practice varies substantially across regions, specific location, type and quality of water supplies, delivery systems and operational considerations, crops produced, irrigation technologies in use, and location specific costs and returns of implementation. The applicability to and actual water savings of the proposed practices in Far West Texas were generally unknown. This report evaluates the applicability, water savings potential, implementation feasibility and cost effectiveness of seventeen irrigated agriculture water conservation practices in Far West Texas during both drought and full water supply conditions. Agricultural, hydrologic, engineering, economic, and institutional conditions are identified and examined for the three largest irrigated agricultural areas which account for over 90% of total irrigated agricultural acreage in Far West Texas. Factors considered in evaluating conservation strategies included water sources, use, water quality, cropping patterns, current irrigation practices, delivery systems, technological alternatives, market conditions and operational constraints. The overall conclusion is that very limited opportunities exist for significant additional water conservation in Far West Texas irrigated agriculture. The primary reasons can be summarized by: the most effective conservation practices have already been implemented and associated water savings realized throughout the region; reduced water quality and the physical nature of gravity flow delivery limit or prohibit implementation of higher efficiency pressurized irrigation systems; increased water use efficiency upstream has the net effect of reducing water supplies and production of downstream irrigators; and, water conservation implementation costs for a number of practices exceed the agricultural value and benefits of any water saved. Those practices that suggest economic efficient additional water conservation included lining or pipelining district canals and the very small potential for additional irrigation scheduling and tail water recovery systems. In nearly all cases, these practices have been adopted to a large extent if applicable, further emphasizing the very limited opportunities for additional conservation. If all of these strategies were implemented, the water conserved would satisfy less than 25% of the projected unmet agricultural water demand in 2060 during drought-of-record conditions Overall, there are no silver bullets for agricultural water conservation in Far West Texas short of taking irrigated land out of production when water supplies are limited.

Michelsen, Ari; Chavez, Marissa; Lacewell, Ron; Gilley, James; Sheng, Zhuping

2009-06-01T23:59:59.000Z

84

Garrison Diversion Conservancy District (North Dakota) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Garrison Diversion Conservancy District (North Dakota) Garrison Diversion Conservancy District (North Dakota) Garrison Diversion Conservancy District (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State North Dakota Program Type Siting and Permitting The Garrison Conservancy District is a state agency established to provide for land irrigation, to establish and restore depleted lakes and stabilize

85

PAD District  

U.S. Energy Information Administration (EIA) Indexed Site

District District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) a 91,429 10,111 26,500 110,165 21,045 21,120 74 1,127 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 Georgia 0 0 24,000 0 0 0 0 0 New Jersey 37,200 0 63,500 4,000 12,000 7,500 31 290 Pennsylvania 42,500 4,920 22,065 16,500 2,945 0 0 240 West Virginia 0 0 600 0 6,100 0 3 1 268,106 95,300 159,000 260,414 9,100 158,868 584 7,104 PAD District II Illinois 83,900 19,900 38,100 16,000 0 70,495 202 2,397 Indiana 27,200 16,800 33,700 27,100 0 10,000 0 653

86

Custer Public Power District | Open Energy Information  

Open Energy Info (EERE)

Custer Public Power District Custer Public Power District Place Nebraska Utility Id 4671 Utility Location Yes Ownership P NERC Location MRO NERC SPP Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ANNUAL AGRICULTURAL SERVICE /VACANT HOUSE - RATE CLASS 12 Commercial ANNUAL RURAL MISCELLANEOUS SERVICE - RATE CLASS 14 Commercial ANNUAL SINGLE PHASE GRAIN DRYING SERVICE - RATE CLASS 13 Commercial ANNUAL THREE PHASE GRAIN DRYING SERVICE - RATE CLASS 45 Commercial IRRIGATION - RATE CLASS 33 Commercial IRRIGATION - RATE CLASS 30 Commercial

87

Buckeye Water C&D District | Open Energy Information  

Open Energy Info (EERE)

Irrigation District) Irrigation District) Jump to: navigation, search Name Buckeye Water C&D District Place Arizona Utility Id 2469 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1010/kWh Commercial: $0.0784/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Buckeye_Water_C%26D_District&oldid=412227"

88

Geothermal district heating systems  

DOE Green Energy (OSTI)

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

89

Increased Water Use Efficeincy Through Trickle Irrigation  

E-Print Network (OSTI)

The gap between supply and demand of water for agricultural and municipal uses is rapidly closing at a time when world food requirements are increasing at an alarming rate. To meet the demand for agricultural products, new lands must be brought into production or higher yields must be realized from existing lands. In either case, more efficient use of water is prerequisite. Trickle irrigation is an approach to obtain increased water use efficiencies (ratio of weight of grain harvested to weight of total crop water use) and therefore a way to increase food production with our limited water resources. The ultimate goal of this investigation was the development of required crop inputs for selected crops to optimize the design of trickle irrigation systems and obtain an optimum water balance for living plants. Specific objectives were as follows: 1. To quantitatively determine optimum irrigation timing and necessary water application amounts for selected crops when using trickle irrigation; and 2. To develop a general method for the hydraulic design of trickle irrigation systems using inputs from the first objective for optimizing the system. To achieve these objectives, experiments were conducted in field lysimeters and in a well-instrumented field plot installation for evaluating the crop inputs. Complete control of the soil water balance can be achieved by the use of these facilities. By knowing the required crop inputs and utilizing known principles of fluid mechanics proper design procedures were developed to provide optimum design for trickle irrigation systems. To achieve the first objective, three research experiments were conducted at the research lysimeters of the Department of Agricultural Engineering at Texas A&M University for which grain sorghum was selected as the experimental crop. The first two experiments were designed to study the response of grain sorghum to trickle and subsurface irrigation. A comparison of water use efficiencies under well-watered conditions using both intensified and conventional water application methods and the evaluation of water use efficiencies with trickle irrigation applications designed to limit the availability of water were the specific objectives. The results indicated higher water use efficiencies and better crop response when the trickle method of application was used. Also, the results showed that higher water use efficiencies can be obtained by applying sparing amounts. An additional investigation carried out under a different research project of the Texas Water Resources Institute (TWRI Project No. A024TEX) was designed to develop a computer model to simulate grain sorghum yield and water use under high frequency irrigation. The simulation methods used in this study can be used to simulate a complete irrigation experiment greatly reducing research costs and allowing the determination of water requirements for many crops under many different soil and climatic conditions. The objective of the third research experiment conducted in 1974 was to determine if different irrigation frequencies would influence the growth and water use efficiency of grain sorghum when irrigated at optimum levels. Results indicated that frequency of application had no significant effect on the water use efficiency of grain sorghum for irrigation intervals up to 7 days. To attain the second goal of this investigation two trickle irrigation lateral design methods were developed. With the first method the pressure loss and emitter flow ratio for trickle irrigation laterals can be determined. The design method is based upon known principles of fluid mechanics. A computer program was written to determine the lateral pressure loss and emitter flow ratio at a given design length as function of pipe size, tree spacing, number of emitters per tree, emitter spacing, downstream lateral pressure and lateral slope. For a given set of design inputs, the program can be used to determine if the given pipe size will be adequate to li

Hiler, E. A.

1975-06-01T23:59:59.000Z

90

Short-term dynamics of soil carbon, microbial biomass, and soil enzyme activities as compared to longer-term effects of tillage in irrigated row crops  

E-Print Network (OSTI)

rates by tillage and crop rotation: a global data analysis.of tillage in irrigated row crops Daniel Geisseler & Williamthe cropping season in all crop sequences D. Geisseler (*) :

Geisseler, Daniel; Horwath, William R.

2009-01-01T23:59:59.000Z

91

Investigation on a summer operation effect of a district energy system at Kitakyushu science research city  

DOE Green Energy (OSTI)

In Kitakyushu Science and Research Park, a new district energy system has been introduced. In this study, we chose this system as a case study and have carried out an analysis on the efficiency of the power generation and heat release utilization of the fuel cell and gas engine in summer by using the recorded data. The results can be summarized as follows; (1) Although the power generation efficiencies of the gas engine and fuel cell are a little bit lower than the standard designated value, they are almost running at stable condition. (2) The collected heat energy is lower than the designated value. The heat release utilization, which is used for cooling and hot water, is fairly low. Considering the efficient use of energy, it is a key to have a good use of heat release when we introduce a district energy system. (3) The discarded heat energy of the system is very big in this investigation when evaluating the system as a whole. It is fundamental to the future of energy conservation to use primary energy more efficiently.

Gao, Weijun; Zhou, Nan; Nishida, Masaru; Sagara, Noriyasu; Ryu, Yuji; Ojima, Toshio

2004-05-24T23:59:59.000Z

92

Irrigation data base for Arizona  

DOE Green Energy (OSTI)

Determining the locations in the U.S. where solar energy might be used for irrigation was proposed. One of the first steps in determining these locations is to establish a data base for the agricultural states that extensively use irrigation. The data base must include information on the crops grown, the irrigation wells, and the irrigation pumps. The results of an effort to establish such a data base for the state of Arizona are presented.

Hall, I.J.; Vandevender, S.G.

1978-01-01T23:59:59.000Z

93

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

94

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

95

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

96

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low Temperature...

97

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

98

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal...

99

Elko County School District District Heating Low Temperature...  

Open Energy Info (EERE)

County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature Geothermal...

100

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature...

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Warm Springs Water District District Heating Low Temperature...  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

102

Butler Public Power District | Open Energy Information  

Open Energy Info (EERE)

Butler Public Power District Butler Public Power District Jump to: navigation, search Name Butler Public Power District Place Nebraska Utility Id 2643 Utility Location Yes Ownership P NERC Location MRO Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial/Industrial Rate 04 Three Phase Commercial Commercial/Industrial Single/Three Phase Rate 06 Industrial Commercial/Industrial with demand Rate 07 Three Phase Industrial Grain Bin Single Phase Rate 08 Commercial Grain Bin Three Phase Rate 09 Commercial Irrigation Services Rate 40 Wheels only Single Phase

103

Empirical evidence for a recent slowdown in irrigation-induced cooling  

SciTech Connect

Understanding the influence of past land use changes on climate is needed to improve regional projections of future climate change and inform debates about the tradeoffs associated with land use decisions. The effects of rapid expansion of irrigated area in the 20th century has remained unclear relative to other land use changes, such as urbanization, that affected a similar total land area. Using spatial and temporal variations in temperature and irrigation extent observed in California, we show that irrigation expansion has had a large cooling effect on summertime average daily daytime temperatures (-0.15 to -0.25 C.decade{sup -1}), which corresponds to a cooling estimated at -2.0 - -3.3 C since the introduction of irrigation practice. Irrigation has negligible effects on nighttime temperatures, leading to a net cooling effect of irrigation on climate (-0.06 to -0.19 C.decade{sup -1}). Stabilization of irrigated area has occurred in California since 1980 and is expected in the near future for most irrigated regions. The suppression of past human-induced greenhouse warming by increased irrigation is therefore likely to slow in the future, and a potential decrease in irrigation may even contribute to a more rapid warming. Changes in irrigation alone are not expected to influence broadscale temperatures, but they may introduce large uncertainties in climate projections for irrigated agricultural regions, which provide roughly 40% of global food production.

Bonfils, C; Lobell, D

2007-01-19T23:59:59.000Z

104

Evaluations of emitter clogging in drip irrigation by two-phase flow simulations and laboratory experiments  

Science Conference Proceedings (OSTI)

Emitter clogging will affect greatly the irrigation efficiency and the running cost of a drip irrigation system. If there is an effective method to predict the emitter clogging, the lost will be reduced to a minimum. A solid-liquid two-phase turbulent ... Keywords: Clogging, Computational fluid dynamics, Drip emitters, Drip irrigation, Two-phase flow

Wei Qingsong; Lu Gang; Liu Jie; Shi Yusheng; Dong Wenchu; Huang Shuhuai

2008-10-01T23:59:59.000Z

105

UNIVERSITY OF THE DISTRICT OF  

E-Print Network (OSTI)

UNIVERSITY OF THE DISTRICT OF COLUMBIA 1 Removal of Eutrophic Nutrients from Wastewater-Supplemented Digester Elutriate in the Fermentor 2. The Effect of Differential- Heating of Digester Elutriate on its

District of Columbia, University of the

106

Assessment of District Cooling Systems  

Science Conference Proceedings (OSTI)

District energy technologies are now regarded as an effective means to implement electric load management opportunities. Increasingly, electric utilities are adopting rate structures that provide incentives for more energy-efficient technologies and for shifting loads to off-peak.

1993-06-03T23:59:59.000Z

107

District of Columbia Profile  

U.S. Energy Information Administration (EIA)

District of Columbia Quick Facts. In 2010, the average price of total energy in the District of Columbia was the highest in the contiguous United ...

108

MHK Projects/Western Irrigation District | Open Energy Information  

Open Energy Info (EERE)

< MHK Projects < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.0841,"lon":-113.784,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

109

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with respect to shade and insulation, as well as its mitigating effects to the impacts of climate change. October 16, 2013 Flood Zone Building Permits (District of Columbia)...

110

Sustainability of irrigated farming systems in a Tunisian region: A recursive stochastic programming analysis  

Science Conference Proceedings (OSTI)

The aim of this study was to evaluate the sustainability of farm irrigation systems in the Cebalat district in northern Tunisia. It addressed the challenging topic of sustainable agriculture through a bio-economic approach linking a biophysical model ... Keywords: Bio-economic modeling, Farmers' decisions, Farming system, Recursive stochastic programming, Sustainable agriculture

H. Belhouchette; M. Blanco; J. Wery; G. Flichman

2012-08-01T23:59:59.000Z

111

Increasing water holding capacity for irrigation  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing water holding capacity for irrigation Reseachers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine...

112

Overton Power District No 5 | Open Energy Information  

Open Energy Info (EERE)

Power District No 5 Power District No 5 Jump to: navigation, search Name Overton Power District No 5 Place Nevada Utility Id 14245 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Demand Industrial General Service Non- Demand Commercial Irrigation Commercial Residential Residential Average Rates Residential: $0.0994/kWh Commercial: $0.0925/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Overton_Power_District_No_5&oldid=411289"

113

Effect of water stress on growth, water consumption and yield of silage maize under flood irrigation in a semiarid climate of Tadla (Morocco)  

E-Print Network (OSTI)

. Capillary rise was considered as negligeable because water table is deep. Author-produced version of irrigation water applied and ETa values were 619.3 and 477.7 mm in 2009 and 535.0 and 463.0 mm in 2010 Author-produced regions. Oktem et al. (2003) showed that Ky value increases with water stress. Author-produced version

114

Simulating the Effects of Irrigation over the United States in a Land Surface Model Based on Satellite-Derived Agricultural Data  

Science Conference Proceedings (OSTI)

A novel method is introduced for integrating satellite-derived irrigation data and high-resolution crop-type information into a land surface model (LSM). The objective is to improve the simulation of land surface states and fluxes through better ...

Mutlu Ozdogan; Matthew Rodell; Hiroko Kato Beaudoing; David L. Toll

2010-02-01T23:59:59.000Z

115

Category:Congressional Districts | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts Congressional Districts Jump to: navigation, search This category contains all congressional districts in the United States of America. Pages in category "Congressional Districts" The following 200 pages are in this category, out of 437 total. (previous 200) (next 200) A Alabama's 1st congressional district Alabama's 2nd congressional district Alabama's 3rd congressional district Alabama's 4th congressional district Alabama's 5th congressional district Alabama's 6th congressional district Alabama's 7th congressional district Alaska's At-large congressional district Arizona's 1st congressional district Arizona's 2nd congressional district Arizona's 3rd congressional district Arizona's 4th congressional district Arizona's 5th congressional district Arizona's 6th congressional district

116

Irrigation Depletions 1928-1989 : 1990 Level of Irrigation, Snake Yakima and Deschutes River Basins.  

DOE Green Energy (OSTI)

The vast amount of irrigation in relation to the available water and extensive system of reservoirs located in the Snake River Basin above Brownlee reservoir precludes this area from using methods such as Blaney-Criddle for estimating irrigation depletions. Also the hydrology, irrigation growth patterns, and water supply problems are unique and complex. Therefore regulation studies were utilized to reflect the net effect on streamflow of the changes in irrigated acreage in terms of corresponding changes in storage regulation and in the amount of water depleted and diverted from and returned to the river system. The regulation study for 1990 conditions was conducted by the Idaho Department of Water Resources. The end product of the basin simulation is 61 years of regulated flows at various points in the river system that are based on 1990 conditions. Data used by the Idaho Department of Water Resources is presented in this section and includes natural gains to the river system and diversions from the river system based on a 1990 level of development and operation criteria. Additional information can be obtained for an Idaho Department of Water Resources Open-File Report ``Stream Flows in the Snake River Basin 1989 Conditions of Use and Management`` dated June 1991. Similar considerations apply to the Yakima and Deschutes river basins.

United States. Bonneville Power Administation; A.G. Crook Company

1993-07-01T23:59:59.000Z

117

Remote Sensing of Irrigated Agriculture: Opportunities and Challenges  

E-Print Network (OSTI)

Abstract: Over the last several decades, remote sensing has emerged as an effective tool to monitor irrigated lands over a variety of climatic conditions and locations. The objective of this review, which summarizes the methods and the results of existing remote sensing studies, is to synthesize principle findings and assess the state of the art. We take a taxonomic approach to group studies based on location, scale, inputs, and methods, in an effort to categorize different approaches within a logical framework. We seek to evaluate the ability of remote sensing to provide synoptic and timely coverage of irrigated lands in several spectral regions. We also investigate the value of archived data that enable comparison of images through time. This overview of the studies to date indicates that remote sensing-based monitoring of irrigation is at an intermediate stage of development at local scales. For instance, there is overwhelming consensus on the efficacy of vegetation indices in identifying irrigated fields. Also, single date imagery, acquired at peak growing season, may suffice to identify irrigated lands, although to multi-date image data are necessary for improved classification and to distinguish different crop types. At local scales, the mapping of irrigated lands with remote sensing is also strongly affected by the

Mutlu Ozdogan; Yang Yang; George Allez; Chelsea Cervantes

2010-01-01T23:59:59.000Z

118

New Forestry Commission District Office The new Forestry Commission  

E-Print Network (OSTI)

New Forestry Commission District Office The new Forestry Commission District office at Smithton in construction The Forestry Commission's District office at Smithton in Inverness, Scotland, covers the national fuel heating system has proved effective during the winter of 2009/10, one of the harshest in 40 years

119

Irrigation pumping using geothermal energy  

DOE Green Energy (OSTI)

The potential of using geothermal energy in an isobutane binary system to drive directly a cluster of irrigation pumps was evaluated. This three well geothermal system, based at 150{sup 0}C (302{sup 0}F) resource at 2000 m (6560 ft), would cost an estimated $7,800,000 in capital investment to provide 6000 gpm of irrigation water from 12 water wells. It would serve approximately 4.5 square miles of irrigated agricultural land, with the delivered water costing $106.76 per acre-foot. This compares with an estimated cost of $60.78 per acre-foot for a conventional irrigation system driven by natural gas at the current price (1980 dollars) of $2.72/mm Btu. It is obvious that if natural gas prices continue to rise, or if geothermal resources can be found at depths less than 2000 meters, then the geothermal irrigation pumping system would be attractive economically. The importance of water to the economy and growth of Arizona was summarized. Total water consumption in Arizona is about 7,600,000 acre-feet annually of which about 87% is used for agriculture. Total supply from the Colorado River and water runoff is only 2,600,000 acre-feet per year, resulting in a net potable groundwater depletion of about 4,000,000 acre-feet per year assuming a recharge rate of about 1,000,000 acre-feet per year.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

120

Waterway Management Districts (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

Waterway management districts are established to manage and supervise the use and development of waterways in municipalities with populations between 29,600 and 29,900.

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Municipal Utility Districts (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

Municipal Utility Districts, regulated by the Texas Commission on Environmental Quality, may be created for the following purposes: (1) the control, storage, preservation, and distribution of its...

122

Efficient Irrigation for Water Conservation in the Rio Grande Basin: 2010/2011 Progress and Accomplishments  

E-Print Network (OSTI)

Since 2001, the Efficient Irrigation for Water Conservation in the Rio Grande Basin Federal Initiative-known as the Rio Grande Basin Initiative (RGBI)-has saved more than 5 million acre-feet of water. Researchers, Extension specialists, and county Extension agents from Texas AgriLife Research, the Texas AgriLife Extension Service, and the New Mexico State University Agricultural Experiment Station and Cooperative Extension Service work with local irrigation districts, agricultural producers, homeowners, and regional agencies to meet present and future water demand through water conservation and efficient irrigation measures. This project is funded through the U.S. Department of Agriculture National Institute of Food and Agriculture and is administered by the Texas Water Resources Institute and the New Mexico State University Water Task Force.

Kalisek, D.; Harris, B. L.; Runyan, C.; DeMouche, L.

2011-06-01T23:59:59.000Z

123

Efficient Irrigation for Water conservation in the Rio Grande Basin: 2010-2011 Progress and Accomplishments  

E-Print Network (OSTI)

Since 2001, the Efficient Irrigation for Water Conservation in the Rio Grande Basin Federal Initiative known as the Rio Grande Basin Initiative (RGBI)has saved more than 5 million acre-feet of water. Researchers, Extension specialists, and county Extension agents from Texas AgriLife Research, the Texas AgriLife Extension Service, and the New Mexico State University Agricultural Experiment Station and Cooperative Extension Service work with local irrigation districts, agricultural producers, homeowners, and regional agencies to meet present and future water demand through water conservation and efficient irrigation measures. This project is funded through the U.S. Department of Agriculture National Institute of Food and Agriculture and is administered by the Texas Water Resources Institute and the New Mexico State University Water Task Force.

Kalisek, D.; Harris, B.L.; Runyan, C.; DeMouche, L.

2011-06-21T23:59:59.000Z

124

Solar irrigation program plan. Revision  

DOE Green Energy (OSTI)

This report describes the ERDA solar irrigation program plan through fiscal year 1979. It is an update of the original program plan as outlined in Sandia Report SAND--76-0594. The updated goals of the plan are listed, the participants named, and their responsibilities outlined. ERDA has the program responsibility, ERDA field offices the contractural responsibility, and Sandia Laboratories the technical direction responsibilities. Three solar irrigation experiments planned, system analyses to be conducted, and the participants of the program are described. This document is intended to be used as a program guide for accomplishing the program goals.

Alvis, R.L.; Vandevender, S.G.

1977-06-01T23:59:59.000Z

125

CATEGORICAL EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES, EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES, 300 AREA, HANFORD SITE, RICHLAND, WASHINGTON Proposed Action: The U.S. Department of Energy (DOE), Pacific Northwest Site Office (PNSO) proposes to upgrade a landscaping irrigation system in the 300 Area. Location of Action: In the landscaped area around the 331 Building, Hanford Site Description of the Proposed Action: The proposed action is to upgrade the existing 331 Building landscaping irrigation system by using nearby aquaculture effluent instead of

126

The Perceived Impact of the Curriculum Administrator in Facilitating a Vision of Learning in Small, Rural Pennsylvania School Districts.  

E-Print Network (OSTI)

??One important element of school district reform involves quality district leadership. Researchers have shown that effective school leadership requires numerous responsibilities including knowledge of curriculum, (more)

Wolf, Mary A.

2010-01-01T23:59:59.000Z

127

Fuel cell powered irrigation system  

SciTech Connect

Set out herein is a fuel cell power plant for use with irrigation systems wherein the fuel cell is utilized to generate electric current to drive a pump motor. This pump motor drives a first water pump which receives water for distribution through a traveling irrigation system, the output of the first pump first conveyed into a condenser heat exchanger connected to a steam engine or turbine cycle. The fuel cell itself is contained within a boiler assembly and the heat of production of the electric power is used to generate steam which is sent to the steam engine. In the course of cooling the condenser gases of the steam engine the irrigating water is passed through a second pump driven by the steam engine and it is through this second pump that the pressure is raised sufficiently to allow for the necessary spraying fans. To improve the condenser efficiency part of the condensate or the ullage thereof is connected to one of the spray heads on the irrigation system in a venturi nozzle which thereby lowers the back pressure thereof. The lower portion of the condenser or the liquid part thereof is fed back through yet another condenser pump to the boiler to be regenerated into steam.

Jacobi, E.F.; Madden, M.R.

1982-01-12T23:59:59.000Z

128

Potential bias of model projected greenhouse warming in irrigated regions  

SciTech Connect

Atmospheric general circulation models (GCMs) used to project climate responses to increased CO{sub 2} generally omit irrigation of agricultural land. Using the NCAR CAM3 GCM coupled to a slab-ocean model, we find that inclusion of an extreme irrigation scenario has a small effect on the simulated temperature and precipitation response to doubled CO{sub 2} in most regions, but reduced warming by as much as 1 C in some agricultural regions, such as Europe and India. This interaction between CO{sub 2} and irrigation occurs in cases where agriculture is a major fraction of the land surface and where, in the absence of irrigation, soil moisture declines are projected to provide a positive feedback to temperature change. The reduction of warming is less than 25% of the temperature increase modeled for doubled CO{sub 2} in most regions; thus greenhouse warming will still be dominant. However, the results indicate that land use interactions may be an important component of climate change uncertainty in some agricultural regions. While irrigated lands comprise only {approx}2% of the land surface, they contribute over 40% of global food production. Climate changes in these regions are therefore particularly important to society despite their relatively small contribution to average global climate.

Lobell, D; Bala, G; Bonfils, C; Duffy, P

2006-04-27T23:59:59.000Z

129

Retail Unbundling - District of Columbia - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

District of Columbia: Legislative and Regulatory Actions on Retail Unbundling Summary: ... Washington Gas Light tariff GT97-3 effective 10/22/99.

130

The Honolulu Engineer District Introduction  

E-Print Network (OSTI)

with jurisdiction over the Honolulu, Far East, and Okinawa districts.' Several histories of the engineer wartime

US Army Corps of Engineers

131

ELECTRICAL DISTRICT No.  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRICAL ELECTRICAL DISTRICT No. 4 PINAL COUNTY POST OFFICE BOX 605- ELOY, ARIZONA 85131 Telephone: (520) 468-7338 BOARD OF DIRECTORS: DISTRICT MANAGER: MARK HAMILTON, CHAIRMAN RON McEACHERN CHARLES BUSH ThOMAS W. SCM JAMES F. SHEDD WILLIAM WARREN VIA ELECTRONIC MAIL TO: DSWFPP~2wapa.gov July 19, 2010 Mr. Darrick Moe Desert Southwest Regional Manager Western Area Power Authority P.O. Box 6457 Phoenix, AZ 85005-6457 Re: SPPR Proposed ED5 to Palo Verde Transmission Project Electrical District Number Four of Pinal County ("ED4") and Electrical District Number Five of Pinal County ("ED5") are members of the Southwest Public Power Resource ("SPPR") Group and support the ED5 to Palo Verde Project Statement of Interest ("SOT") submitted by the SPPR Group. ED4 is also a participant in the Southeast Valley C'SEV") Project and has offered to

132

Drainage Districts (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

A Drainage District may be created by petition of landowners who desire to construct one or more drains, ditches, levees, waste ditches, or other works across the lands of others or to straighten,...

133

DISTRICT TECHNOLOGY PLAN  

E-Print Network (OSTI)

If you dont know where you are going, you will probably end up somewhere else. Lawrence J. Peter Ypsilanti School District established its school improvement process with the

Contact Person; Bob Wilkinson

2006-01-01T23:59:59.000Z

134

The Forest Preserve District  

NLE Websites -- All DOE Office Websites (Extended Search)

Forest Preserve District Forest Preserve District Nature Bulletin No. 109 March 29, 1947 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation THE FOREST PRESERVE DISTRICT Forest Preserve Districts, in Illinois, are separate municipal bodies governed by a Board of Forest Preserve Commissioners consisting of the elected county commissioners, as in Cook County, or by a committee of the county board of supervisors, as in 7 other counties. The legislative act which provided for such a district, if authorized by referendum vote of the people, became a law on July 1, 1914. Under that act, the commissioners are empowered to levy taxes, issue bonds, and to acquire lands containing forests "for the purpose of protecting and preserving the flora, fauna and scenic beauties.... and to restore, restock, protect and preserve the natural forests and said lands with their flora and fauna, as nearly as may be in their natural state and condition for the purpose of the education, pleasure and recreation of the public". A limit of 35,000 acres was set; later increased to 39,000.

135

Columbia Rural Electric Association - Irrigation Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Administration, offers an irrigation energy efficiency program for its agricultural customers. Stationary systems are not eligible for this program due to the number of...

136

Columbia Rural Electric Association - Irrigation Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0.75 Columbia REA, through the Bonneville Power Administration, offers an irrigation energy efficiency program for its agricultural customers. Stationary systems are not...

137

Metering Secondary Water in Residential Irrigation Systems.  

E-Print Network (OSTI)

??The use of residential secondary or dual water systems for irrigation purposes is common in the western United States where water supplies are scarce. While (more)

Richards, Gregory L.

2009-01-01T23:59:59.000Z

138

Use of Irrigation to Extend the Seeding Window for Final Reclamation at Yucca Mountain, Nevada  

SciTech Connect

The U.S. Department of Energy has implemented a program to investigate the feasibility of various techniques for reclaiming lands disturbed during site characterization at Yucca Mountain. As part of this program, two studies were conducted in 1997 to assess the effects of combinations of seeding date (date that seeds are planted) and supplemental irrigation on densities of native plant species at Yucca Mountain. Study objectives were to (1) determine whether the traditional seeding window (October-December) could be extended through combinations of seeding date and irrigation date, (2) determine which combination of seeding date and irrigation was most successful, and (3) assess the effects of irrigation versus natural precipitation on seedling establishment. In the first study, a multi-species seed mix of 16 native species was sown into plots on four dates (12/96, 2/97, 3/97, and 4/97). Irrigation treatments were control (no irrigation) or addition of 80 mm of supplemental water applied over a one month period. Plant densities were sampled in August and again in October, 1997. In the second study, Larrea tridentata and Lycium andersonii, two species that are common at Yucca Mountain, but difficult to establish from seed, were sown together into plots in January and August, 1997. Half the plots were irrigated with approximately 250 mm of water between August 18 and September 11, while the remaining plots received no irrigation (control). Plant densities were sampled in October, 1997. The August census for the multi-species mix study showed irrigated plots that were sown in February, March and April had higher plant densities and more species than plots that were not irrigated. Irrigation had no effect on plant densities on plots that were seeded in December. Plots were used again in October following 18 mm of precipitation in September. Densities of three species, Ambrosia dumosa, Hymenoclea salsola, and L. tridentata, (warm-season species) were lower on irrigated plots sown in December, February, and March, and showed no response to irrigation on plots sown in April. Therefore, early spring irrigation did not facilitate establishment of warm-season species. These results suggest that these species are dependent upon precipitation while temperatures are warm in late summer or fall. However, control plots that were seeded in December had acceptable densities of these species. A more practical approach might be to avoid irrigation costs by seeding in December and waiting for fall precipitation. The remaining species (cool-season species) showed an opposite response to supplemental water with greater densities on irrigated plots sown in February, March, and April, and no response to irrigation on plots sown in December. While these results show that irrigation can extend the seeding window for cool-season species should it be necessary, it was also apparent that if seeds are sown by late December, irrigation is not necessary to achieve acceptable plant densities.

TRW Environmental Safety

2000-08-01T23:59:59.000Z

139

BLM Vale District Office | Open Energy Information  

Open Energy Info (EERE)

Vale District Office Jump to: navigation, search Name BLM Vale District Office Parent Organization BLM Place Vale, Oregon References BLM Vale District Office Directory1 This...

140

BLM Prineville District Office | Open Energy Information  

Open Energy Info (EERE)

Prineville District Office Jump to: navigation, search Name BLM Prineville District Office Place Prineville, Oregon References BLM Prineville District Office Directory1 This...

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Westlands Water District | Open Energy Information  

Open Energy Info (EERE)

Westlands Water District Jump to: navigation, search Name Westlands Water District Place California Sector Solar Product Water district in central California which administers a...

142

Public Utility District No 2 | Open Energy Information  

Open Energy Info (EERE)

District No 2 District No 2 Jump to: navigation, search Name PUD No 2 of Pacific County Place Washington Utility Id 14324 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting 100 Watt H.P.S Lighting Area Lighting 200 Watt H.P.S Lighting Irrigation and Crop Pumping Service Rate Large Commercial Single Phase Commercial Large Commercial Three Phase Commercial Large Industrial Industrial Primary Metered Commercial Single Phase Commercial Primary Metered Commercial Three Phase Commercial

143

Boise City Geothermal District Heating District Heating Low Temperature  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Facility Boise City Geothermal District Heating Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

144

Philip District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal Facility Facility Philip District Heating Sector Geothermal energy Type District Heating Location Philip, South Dakota Coordinates 44.0394329°, -101.6651441° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

145

Pagosa Springs District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Facility Pagosa Springs District Heating Sector Geothermal energy Type District Heating Location Pagosa Springs, Colorado Coordinates 37.26945°, -107.0097617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

146

Elko County School District District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

County School District District Heating Low Temperature Geothermal County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature Geothermal Facility Facility Elko County School District Sector Geothermal energy Type District Heating Location Elko, Nevada Coordinates 40.8324211°, -115.7631232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

147

Inland Navigation Districts and Florida Inland Navigation District Law  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inland Navigation Districts and Florida Inland Navigation District Inland Navigation Districts and Florida Inland Navigation District Law (Florida) Inland Navigation Districts and Florida Inland Navigation District Law (Florida) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Florida Program Type Siting and Permitting Provider Florida Inland Navigation District (FIND) The first part of this legislation establishes Inland Navigation Districts,

148

Warm Springs Water District District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal Facility Facility Warm Springs Water District Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

149

City of Klamath Falls District Heating District Heating Low Temperature  

Open Energy Info (EERE)

District Heating District Heating Low Temperature District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath Falls District Heating Sector Geothermal energy Type District Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

150

Kethcum District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal Facility Facility Kethcum District Heating Sector Geothermal energy Type District Heating Location Ketchum, Idaho Coordinates 43.6807402°, -114.3636619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

151

San Bernardino District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Bernardino District Heating District Heating Low Temperature Geothermal Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating Location San Bernardino, California Coordinates 34.1083449°, -117.2897652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

152

Midland District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland, South Dakota Coordinates 44.0716539°, -101.1554178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

153

Susanville District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature Geothermal Facility Facility Susanville District Heating Sector Geothermal energy Type District Heating Location Susanville, California Coordinates 40.4162842°, -120.6530063° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

154

Impact of potential large-scale irrigation on the West African Monsoon and its dependence on location of irrigated area  

Science Conference Proceedings (OSTI)

This study investigates the impact of potential large-scale irrigation on the West African Monsoon using the MIT Regional Climate Model (MRCM). A new irrigation module is implemented to assess the impact of location and scheduling of irrigation on ...

Eun-Soon Im; Marc P. Marcella; Elfatih A. B. Eltahir

155

Irrigation Monitoring with Soil Water Sensors  

E-Print Network (OSTI)

Monitoring soil water content is essential if growers want to optimize production, conserve water, reduce environmental impacts and save money. This publication illustrates how soil moisture monitoring can improve irrigation decisions and how it also can prevent irrigating the crop too much or too little.

Enciso, Juan; Porter, Dana; Peries, Xavier

2007-01-19T23:59:59.000Z

156

Forestry Policies (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

Forest policy and guidelines in Washington D.C. are focused on urban forestry, and are managed by the District Department of Transportation's Urban Forestry Administration. In 2010 The District...

157

ELECTRICAL DISTRICT NUMBER EIGHT  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRICAL DISTRICT NUMBER EIGHT ELECTRICAL DISTRICT NUMBER EIGHT Board of Directors Reply to: Ronald Rayner C. W. Adams James D. Downing, P.E. Chairman Billy Hickman 66768 Hwy 60 Brian Turner Marvin John P.O. Box 99 Vice-Chairman Jason Pierce Salome, AZ 85348 Denton Ross Jerry Rovey Secretary James N. Warkomski ED8@HARCUVARCO.COM John Utz Gary Wood PHONE:(928) 859-3647 Treasurer FAX: (928) 859-3145 Sent via e-mail Mr. Darrick Moe, Regional Manager Western Area Power Administration Desert Southwest Region P. O. Box 6457 Phoenix, AZ 85005-6457 moe@wapa.gov; dswpwrmrk@wapa.gov Re: ED5-Palo Verde Hub Project Dear Mr. Moe, In response to the request for comments issued at the October 6 Parker-Davis Project customer th meeting, and in conjunction with comments previously submitted by the Southwest Public Power

158

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turlock Irrigation District - PV Rebate California Commercial Residential Solar Buying & Making Electricity Turlock Irrigation District 12312016 Turlock Irrigation District -...

159

Modified Streamflows 1990 Level of Irrigation : Columbia River and Coastal Basins, 1928-1989.  

DOE Green Energy (OSTI)

The annual operation plans described in the following sections require detailed system regulation computer model studies. These system regulation studies are necessary to evaluate potential new projects and to develop operational rule curves for the existing system of projects. The objective is to provide a basis for evaluating alternative system regulation scenarios. This provides essential input for optimizing the management of existing projects and planning future projects for the most beneficial use of the water supply and resources in the entire region. Historical streamflows per se are inadequate for system regulation studies because the pattern of observed flow has continually changed with each successive stage of irrigation and e development. The problem, therefore, is to adjust for past operation of storage projects and to determine the necessary adjustments that should be made to recorded flows to reflect current stages of irrigation development. Historical flows which have been adjusted to a common level of irrigation development by correcting for the effects of diversion demand, return flow, and change-of-contents and evaporation in upstream reservoirs and lakes are referred to as modified flows. This report describes the development of irrigation depletion adjustments and modified flows for the 1990 level of development for the 61-year period 1928--1989. incremental depletion adjustments were computed in this report for each month of the 61-year period to adjust the effects of actual irrigation in each year up to that which would have been experienced with the irrigation as practiced in 1990.

United States. Bonneville Power Administration; A.G. Crook Company

1993-04-01T23:59:59.000Z

160

Elko District Heat District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Heat District Heating Low Temperature Geothermal Facility Heat District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko District Heat District Heating Low Temperature Geothermal Facility Facility Elko District Heat Sector Geothermal energy Type District Heating Location Elko, Nevada Coordinates 40.8324211°, -115.7631232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Remote Sensing and Control for Establishing and Maintaining Digital Irrigation  

E-Print Network (OSTI)

The remotely sensed data from an unknown location is transmitted in real time through internet and gathered in a PC. The data is collected for a considerable period of time and analyzed in PC as to assess the suitability and fertility of the land for establishing an electronic plantation in that area. The analysis also helps deciding the plantation of appropriate plants in the location identified. The system performing this task with appropriate transducers installed in remote area, the methodologies involved in transmission and data gathering are reported.. The second part of the project deals with data gathering from remote site and issuing control signals to remote appliances in the site; all performed through internet. Therefore, this control scheme is a duplex system monitoring the irrigation activities by collecting data in one direction and issuing commands on the opposite direction. This scheme maintains the digital irrigation systems effectively and efficiently as to utilize the resources optimally f...

cellatoglu, Akin

2012-01-01T23:59:59.000Z

162

New York's 28th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

8th congressional district: Energy Resources 8th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in New York. Registered Policy Organizations in New York's 28th congressional district Western New York Sustainable Energy Association Registered Energy Companies in New York's 28th congressional district Blue Sky Optimum Energy Canrom Photovoltaics Inc Cerion Energy Inc Connected Energy Corp Conserval Systems Inc. EBidenergy Inc ENrG Inc Electrosynthesis Company Inc Energetix Inc Energy Cooperative of New York, Inc. Energy Curtailment Specialists ECS LFG Technologies Lake Effect Energy LLC NYSEG Solutions Precision Designs RNY Solar Renewable Energy Network of Entrepreneurs in Western New York RENEW

163

Compare All CBECS Activities: District Heat Use  

U.S. Energy Information Administration (EIA) Indexed Site

District Heat Use District Heat Use Compare Activities by ... District Heat Use Total District Heat Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 433 trillion Btu of district heat (district steam or district hot water) in 1999. There were only five building types with statistically significant district heat consumption; education buildings used the most total district heat. Figure showing total district heat consumption by building type. If you need assistance viewing this page, please call 202-586-8800. District Heat Consumption per Building by Building Type Health care buildings used the most district heat per building. Figure showing district heat consumption per building by building type. If you need assistance viewing this page, please call 202-586-8800.

164

Los Angeles Unified School District  

Science Conference Proceedings (OSTI)

Los Angeles Unified School District. NVLAP Lab Code: 101505-0. Address and Contact Information: BSC Annex, Facility Services Div. Lab. 1449 So ...

2013-12-06T23:59:59.000Z

165

Research District Seeing Growth  

Science Conference Proceedings (OSTI)

Monthly economic diversity column for the Tri-City Herald (May 2012) - excerpt follows: Its been a while since Ive updated you on the Tri-Cities Research District, most certainly not for lack of new activity over the past several months. In fact, much has happened, and theres more to come. I think many of us see new land development and construction as indicative of current or impending economic growth. So those of you who have ventured into North Richland either via Stevens Drive or George Washington Way lately have probably begun sensing and anticipating that such growth is afoot.

Madison, Alison L.

2012-05-13T23:59:59.000Z

166

BLM Burns District Office | Open Energy Information  

Open Energy Info (EERE)

Burns District Office Jump to: navigation, search Name BLM Burns District Office Place Hines, Oregon References BLM Burns District Office1 This article is a stub. You can help...

167

BLM Elko District Office | Open Energy Information  

Open Energy Info (EERE)

Elko District Office Jump to: navigation, search Name BLM Elko District Office Place Elko, Nevada References BLM Elko District Office Website1 This article is a stub. You can...

168

Process adequacy : successful school districts model  

E-Print Network (OSTI)

Probe: Does your district: follow a multiyear strategic planDoes your district: follow a multiyear strategic plan thatDoes your district: follow a multiyear strategic plan that

Estrada, Isaac

2010-01-01T23:59:59.000Z

169

Value of Probabilistic Weather Forecasts: Assessment by Real-Time Optimization of Irrigation Scheduling  

SciTech Connect

This paper presents a modeling framework for real-time decision support for irrigation scheduling using the National Oceanic and Atmospheric Administration's (NOAA's) probabilistic rainfall forecasts. The forecasts and their probability distributions are incorporated into a simulation-optimization modeling framework. In this study, modeling irrigation is determined by a stochastic optimization program based on the simulated soil moisture and crop water-stress status and the forecasted rainfall for the next 1-7 days. The modeling framework is applied to irrigated corn in Mason County, Illinois. It is found that there is ample potential to improve current farmers practices by simply using the proposed simulation-optimization framework, which uses the present soil moisture and crop evapotranspiration information even without any forecasts. It is found that the values of the forecasts vary across dry, normal, and wet years. More significant economic gains are found in normal and wet years than in dry years under the various forecast horizons. To mitigate drought effect on crop yield through irrigation, medium- or long-term climate predictions likely play a more important role than short-term forecasts. NOAA's imperfect 1-week forecast is still valuable in terms of both profit gain and water saving. Compared with the no-rain forecast case, the short-term imperfect forecasts could lead to additional 2.4-8.5% gain in profit and 11.0-26.9% water saving. However, the performance of the imperfect forecast is only slightly better than the ensemble weather forecast based on historical data and slightly inferior to the perfect forecast. It seems that the 1-week forecast horizon is too limited to evaluate the role of the various forecast scenarios for irrigation scheduling, which is actually a seasonal decision issue. For irrigation scheduling, both the forecast quality and the length of forecast time horizon matter. Thus, longer forecasts might be necessary to evaluate the role of forecasts for irrigation scheduling in a more effective way.

Cai, Ximing; Hejazi, Mohamad I.; Wang, Dingbao

2011-09-29T23:59:59.000Z

170

Butler Public Power District | Open Energy Information  

Open Energy Info (EERE)

Public Power District (Redirected from Butler County Rural P P D) Jump to: navigation, search Name Butler Public Power District Place Nebraska Utility Id 2643 Utility Location Yes...

171

Litchfield Correctional Center District Heating Low Temperature...  

Open Energy Info (EERE)

Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature Geothermal...

172

California's 42nd congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. US Recovery Act Smart Grid Projects in California's 42nd congressional district...

173

California's 11th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 11th congressional district Catalytic...

174

California's 44th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 44th congressional district Access Fund...

175

California's 38th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 38th congressional district California...

176

California's 40th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. US Recovery Act Smart Grid Projects in California's 40th congressional district...

177

California's 45th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 45th congressional district Chuckawalla...

178

California's 10th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Research Institutions in California's 10th congressional district...

179

California's 18th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 18th congressional district 1st Light...

180

California's 21st congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 21st congressional district Agrimass...

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

California's 24th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 24th congressional district Advanced...

182

California's 41st congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 41st congressional district BCL...

183

California's 43rd congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 43rd congressional district Ecosystem...

184

California's 19th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 19th congressional district 1st Light...

185

Community Renewable Energy Success Stories Webinar: District...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

District Heating with Renewable Energy (text version) Community Renewable Energy Success Stories Webinar: District Heating with Renewable Energy (text version) Below is the text...

186

Regional Districts (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Districts (Texas) Regional Districts (Texas) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction...

187

Best Management Practice: Water-Efficient Irrigation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Irrigation Irrigation Best Management Practice: Water-Efficient Irrigation October 7, 2013 - 3:10pm Addthis Water efficiency must be considered from the initial irrigation system design phase through installation to ensure optimal performance. Consistent management and maintenance is also essential. Failure to do so can result in losing more than 50% of irrigation water due to evaporation, wind, poor management, and/or improper system design, installation, or maintenance. With the irrigation system hardware operating efficiently, it is important to consider the irrigation schedule, which dictates the amount and timing of the water applied. Water changes with the seasons as should your irrigation schedule. Many landscapes are watered at the same level all year, adding unnecessary water for months at a time. Over-watering can

188

Kansas school district leaders' handbook for maximizing nontraditional donations and grant funding.  

E-Print Network (OSTI)

??The purpose of this study was to research, develop, and validate a handbook of effective strategies that Kansas school district leaders can use to increase (more)

Pekarek, Brian D.

2013-01-01T23:59:59.000Z

189

A web application for cotton irrigation management on the U.S. Southern High Plains. Part I: Crop yield modeling and profit analysis  

Science Conference Proceedings (OSTI)

Irrigated cotton (Gossypium Hirsutum L.) production is a central part of west Texas agriculture that depends on the essentially non-renewable water resource of the Ogallala aquifer. Web-based decision support tools that estimate the profit effects of ... Keywords: Cotton, Decision support tools, Irrigation, Ogallala aquifer, Profit estimation

Steven Mauget, Gary Leiker, Shyam Nair

2013-11-01T23:59:59.000Z

190

Irrigation customer survey procedures and results  

SciTech Connect

This report describes the statistical procedures, administrative procedures, and results of a telephone survey designed to collect primary data from individuals in the Pacific Northwest region who use electricity in irrigating agricultural crops. The project was intended to collect data useful for a variety of purposes, including conservation planning, load forecasting, and rate design.

Harrer, B.J.; Johnston, J.W.; Dase, J.E.; Hattrup, M.P.; Reed, G.

1987-03-01T23:59:59.000Z

191

Data Mining Applied to Irrigation Water Management  

Science Conference Proceedings (OSTI)

This work addresses the application of data mining to obtain artificial neural network based models for the application in water management during crops irrigation. This problem is very important in the zone of the South-East of Spain, as there is an ...

Juan A. Bota; Antonio F. Gmez-Skarmeta; Mercedes Valds; Antonio Padilla

2001-06-01T23:59:59.000Z

192

Oklahoma, Kansas, Missouri Refinery District API Gravity ...  

U.S. Energy Information Administration (EIA)

Oklahoma, Kansas, Missouri Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

193

Indiana, Illinois, and Kentucky Refining District Percent ...  

U.S. Energy Information Administration (EIA)

Indiana, Illinois, and Kentucky Refining District Percent Utilization of Refinery Operable Capacity (Percent)

194

Global irrigation demand - A holistic approach  

Science Conference Proceedings (OSTI)

To develop a research track on global irrigation demand and the use of future water resources to help feed the world, we need to adopt a holistic approach to understand inter-dependencies and the main drivers of the global water system and unravel positive (reinforcing) and negative (balancing) feedback loops that can lead to cascading consequences. Thus, there needs to be more research dedicated to 1) the modeling of the agricultural and water systems as components within an integrated assessment human-Earth modeling framework, 2) the understanding of the linkages between the physical processes and the human system, and to integrate them in an economic framework to capture the dynamics of market price, and institutional regulations. This editorial discusses the importance of tackling the global irrigation problem in an integrated assessment modeling framework.

Hejazi, Mohamad I.; Edmonds, James A.; Chaturvedi, Vaibhav

2012-09-30T23:59:59.000Z

195

BLM Battle Mountain District Office | Open Energy Information  

Open Energy Info (EERE)

Battle Mountain District Office Jump to: navigation, search Logo: BLM Battle Mountain District Office Name BLM Battle Mountain District Office Short Name Battle Mountain Parent...

196

DC Hazardous Waste Management (District of Columbia) | Open Energy...  

Open Energy Info (EERE)

District of Columbia Applies to Municipality District of Columbia Name DC Hazardous Waste Management (District of Columbia) Policy Type Environmental Regulations Affected...

197

International District Energy Association | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International District Energy Association International District Energy Association International District Energy Association November 1, 2013 - 11:40am Addthis International District Energy Association logo Since its formation in 1909, the International District Energy Association (IDEA) has served as a principal industry advocate and management resource for owners, operators, developers, and suppliers of district heating and cooling systems in cities, campuses, bases, and healthcare facilities. Today, with over 1,400 members in 26 countries, IDEA continues to organize high-quality technical conferences that inform, connect, and advance the industry toward higher energy efficiency and lower carbon emissions through innovation and investment in scalable sustainable solutions. With the support of DOE, IDEA

198

Drainage, Sanitation, and Public Facilities Districts (Virginia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drainage, Sanitation, and Public Facilities Districts (Virginia) Drainage, Sanitation, and Public Facilities Districts (Virginia) Drainage, Sanitation, and Public Facilities Districts (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Siting and Permitting Provider Local Governments and Districts This legislation provides for the establishment of sanitary, sanitation, drainage, and public facilities districts in Virginia. Designated districts are public bodies, and have the authority to regulate the construction and development of sanitation and waste disposal projects in their

199

Embedded Agents for District Heating Management  

Science Conference Proceedings (OSTI)

We investigate the applicability of multi-agent systems as a control approach for district heating systems. The consumers, i.e., the heat exchange systems, in current district heating systems are purely reactive devices without communication capabilities. ...

Paul Davidsson; Fredrik Wernstedt

2004-07-01T23:59:59.000Z

200

Twin Falls District | Open Energy Information  

Open Energy Info (EERE)

Falls District Jump to: navigation, search Name BML Twin Falls District Office Address 2536 Kimberly Road Place Twin Falls, ID Zip 83301 Phone number 208-736-2350 Website http:...

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Economic Development Project Districts (Indiana) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

may petition legislative bodies to designate economic development project districts in cities with populations between 80,500 and 500,000. Such districts may be established if it...

202

Columbia Rural Electric Association- Irrigation Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Columbia REA, through the Bonneville Power Administration, offers an irrigation energy efficiency program for its agricultural customers. Stationary systems are not eligible for this program due to...

203

South Coast Air Quality Management District  

Science Conference Proceedings (OSTI)

South Coast Air Quality Management District. NVLAP Lab Code: 101567-0. Address and Contact Information: 21865 Copley ...

2013-08-09T23:59:59.000Z

204

Energy Crossroads: Utility Energy Efficiency Programs District...  

NLE Websites -- All DOE Office Websites (Extended Search)

District of Columbia Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Pepco Information for Businesses Washington Gas...

205

Local Option - County Energy District Authority | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - County Energy District Authority Local Option - County Energy District Authority Local Option - County Energy District Authority < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Residential Program Info State Oklahoma Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. [http://www.dsireusa.org/documents/Incentives/OK18F.htm S.B. 102] amended the law to make PACE loans junior and inferior to other liens. Effective November 1, 2011, this law should allow local governments to adopt PACE programs that are within the acceptable parameters established by the FHFA.''''' Property-Assessed Clean Energy (PACE) financing effectively allows property

206

Empire District Electric - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Commercial and Industrial Energy Efficiency Rebates Empire District Electric - Commercial and Industrial Energy Efficiency Rebates < Back Eligibility...

207

Groundwater and geothermal: urban district heating applications  

DOE Green Energy (OSTI)

This report describes how several cities use groundwater and geothermal energy in district heating systems. It begins with groundwater, introducing the basic technology and techniques of development, and describing two case studies of cities with groundwater-based district heating systems. The second half of the report consists of three case studies of cities with district heating systems using higher temperature geothermal resources.

Mounts, R.; Frazier, A.; Wood, E.; Pyles, O.

1982-01-01T23:59:59.000Z

208

ABSORPTION HEAT PUMP IN THE DISTRICT HEATING  

E-Print Network (OSTI)

#12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation #12;JSC RGAS SILTUMS · the biggest District Heating company in Latvia and in the Baltic states

Oak Ridge National Laboratory

209

Estimated Farm Level Benefits of Improved Irrigation Efficiency  

E-Print Network (OSTI)

There are about 15 million acres of cropland in the U.S. that are irrigated from aquifers which are incurring declining water levels (sloggett). This is primarily in the Great Plains Region where irrigation water is pumped from the Ogallala Aquifer. Mining from the aquifer is estimated at 14 million acre feet per year (Frederick and Hanson). The declining groundwater supply increases pumping lift and reduces well yields. Concurrently, there has been a dramatic increase in the cost of energy for pumping since 1973. For example, in the Trans Pecos Region of Texas, natural gas prices increased 450% from 1972 to 1975. Energy has become one of the most important factors in irrigated crop production. A 1975 study showed that 53% of the total variable costs of producing corn in the Great Plains was energy related (Skold). The sensitivity of irrigated agriculture to increased fuel costs and declining groundwater levels has provided incentives for irrigated farmers to investigate alternative crop rotations and opportunities to improve irrigation water pumping and distributional efficiencies. The emphasis of this report is to estimate the value to an irrigated farmer on the Texas High Plains of improving irrigation water distribution efficiency. One means of improving the water use efficiency is to implement water conserving techniques. The main purpose of these techniques is to maximize crop production by minimizing the amount of water lost through the production systems. The major sources of water loss in a crop production system are runoff, percolation, and evaporation. Examples of water conserving techniques include terracing, furrow dams, reduced tillage, and crop rotations. In addition, improved irrigation application techniques can enhance the efficiency of water used for irrigation in the region. On-farm irrigation efficiency statewide for Texas has been estimated between 60 and 708 (Wyatt,1981). The implementation of advanced irrigation application techniques could potentially increase this efficiency up to 98% (Lyle & Bordovsky,1980). Furrow irrigation and sprinkler irrigation are the two major irrigation systems currently in use. Techniques designed to improve furrow efficiency include alternate furrow irrigation, furrow diking, and surge flow. Alternate furrow irrigation improves the timeliness of irrigation applications and increases lateral water movement thereby reducing deep percolation losses. Alternate furrow irrigation can be used with furrow diking or row dams on non-irrigated furrows to reduce rainfall runoff and soil erosion. The surge flow technique delivers large surges of water into the furrow on an intermittent cycle to reduce percolation losses at the upper end of the field. Sprinkler irrigation is the second major distribution system used for crop production primarily on mixed and sandy soils in the region. The use of these systems have increased tremendously over the past 25 years. This growth in the use of sprinkler irrigation systems is reflected in the increase for Texas from 668 thousand acres in 1958 to 2.2 million acres in 1979 (Texas Department of Water Resources). With the rapid rise in the relative price of energy during the 1970's, the emphasis of improving sprinkler efficiency has focused on both reducing their energy requirements and decreasing the amount of water lost through evaporation. One system which has been developed to meet these needs is the LEPA system or Low Energy Precision Application system (Lyle and Bordovsky,1980). This system operates by distributing water through drop tubes and low pressure emitters directly into the furrow as opposed to high pressure systems which utilize overhead sprinklers to distribute the water. In field trials of the LEPA system, measured application and distribution efficiencies averaged 98% and 96% respectively (Lyle et al., 1981).

Lee, John G.; Lacewell, Ronald D.; Ellis, John R.; Reneau, Duane R.

1984-06-10T23:59:59.000Z

210

District of Columbia County, District of Columbia: Energy Resources | Open  

Open Energy Info (EERE)

Columbia County, District of Columbia: Energy Resources Columbia County, District of Columbia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9059849°, -77.0334179° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9059849,"lon":-77.0334179,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Empire District Electric - Residential Energy Efficiency Rebate |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Other Ventilation Water Heating Windows, Doors, & Skylights Program Info State Missouri Program Type Utility Rebate Program Rebate Amount ENERGY STAR Home Performance Retrofit: 400 ENERGY STAR Qualified Home Designation: 800 Air Conditioner: 400 - 500; varies depending on SEER rating Provider Empire District Electric Company The Empire District Electric Company offers rebates for customers who

212

Economic Improvement Districts (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improvement Districts (Indiana) Improvement Districts (Indiana) Economic Improvement Districts (Indiana) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Bond Program Industry Recruitment/Support Provider Indiana Economic Development Corporation A legislative body may adopt an ordinance establishing an economic improvement district and an Economic Improvement Board to manage development in a respective district. The Board can choose to issue revenue

213

BLM Winnemucca District Office | Open Energy Information  

Open Energy Info (EERE)

BLM Winnemucca District Office BLM Winnemucca District Office Jump to: navigation, search Name BLM Winnemucca District Office Short Name Winnemucca Parent Organization BLM Nevada State Office Address 5100 E. Winnemucca Blvd. Place Winnemucca, Nevada Zip 89445 Phone number 775-623-1500 Website http://www.blm.gov/nv/st/en/fo References Winnemucca District Office website[1] Divisions Place BLM Humboldt River Field Office Winnemucca, Nevada This article is a stub. You can help OpenEI by expanding it. BLM Winnemucca District Office is an organization based in Winnemucca, Nevada. References ↑ "Winnemucca District Office website" Retrieved from "http://en.openei.org/w/index.php?title=BLM_Winnemucca_District_Office&oldid=640908" Categories: Government Agencies Stubs

214

Kenston School District | Open Energy Information  

Open Energy Info (EERE)

Kenston School District Kenston School District Jump to: navigation, search Name Kenston School District Facility Kenston School District Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Kenston School District Developer Kenston School District Energy Purchaser Kenston School District Location Chagrin Falls OH Coordinates 41.39386574°, -81.30529761° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.39386574,"lon":-81.30529761,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Development of Clemson variable-rate lateral irrigation system  

Science Conference Proceedings (OSTI)

Crops in the Southern United States are generally produced in fields which are known to have a high degree of variability in soil type, water holding capacity, infiltration rates, and other major factors which affect crop production. In these fields, ... Keywords: Instrumentation, Irrigation, Lateral-move, Precision agriculture, Variable-rate irrigation

Young J. Han; Ahmad Khalilian; Tom O. Owino; Hamid J. Farahani; Sam Moore

2009-08-01T23:59:59.000Z

216

Stratified random sampling plan for an irrigation customer telephone survey  

SciTech Connect

This report describes the procedures used to design and select a sample for a telephone survey of individuals who use electricity in irrigating agricultural cropland in the Pacific Northwest. The survey is intended to gather information on the irrigated agricultural sector that will be useful for conservation assessment, load forecasting, rate design, and other regional power planning activities.

Johnston, J.W.; Davis, L.J.

1986-05-01T23:59:59.000Z

217

Irrigation-Induced Rainfall and the Great Plains  

Science Conference Proceedings (OSTI)

The postWorld War II increase in irrigation in the Great Plains represents the largest human-induced hydrologic impact in North America. Drawn primarily from the High Plains aquifer, water applied as irrigation in the region amounts to billions ...

Nathan Moore; Stuart Rojstaczer

2001-08-01T23:59:59.000Z

218

Local Option - Special Improvement Districts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Improvement Districts Special Improvement Districts Local Option - Special Improvement Districts < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Bioenergy Buying & Making Electricity Water Solar Home Weatherization Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Program Info Start Date 5/28/2009 State Nevada Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been suspended until further clarification is provided. ''''' Property-Assessed Clean Energy (PACE) financing effectively allows property

219

Local Option - Municipal Energy Districts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Municipal Energy Districts Local Option - Municipal Energy Districts Local Option - Municipal Energy Districts < Back Program Info State California Program Type PACE Financing ''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been suspended until further clarification is provided.'''' Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period of years. California has authorized local governments to establish such

220

Local Option - Local Improvement Districts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Local Improvement Districts Local Option - Local Improvement Districts Local Option - Local Improvement Districts < Back Eligibility Commercial Industrial Multi-Family Residential Residential Program Info State Oregon Program Type PACE Financing Provider Oregon Department of Energy '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been suspended until further clarification is provided. ''''' Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Local Option - Special Energy Improvement Districts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Special Energy Improvement Districts Local Option - Special Energy Improvement Districts Local Option - Special Energy Improvement Districts < Back Eligibility Agricultural Commercial Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Bioenergy Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Water Heating Wind Program Info Start Date 10/16/2009 State Ohio Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been suspended until further clarification is provided. ''''' Property-Assessed Clean Energy (PACE) financing effectively allows property

222

Crops reap benefits of Pantex irrigation system | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Crops reap benefits of Pantex irrigation system | National Nuclear Security Crops reap benefits of Pantex irrigation system | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Crops reap benefits of Pantex irrigation system Home > content > Crops reap benefits of Pantex irrigation system Crops reap benefits of Pantex irrigation system

223

California's 39th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 39th congressional district 3 Registered Policy Organizations in California's 39th congressional district 4 Registered Energy Companies in California's 39th congressional district 5 Registered Financial Organizations in California's 39th congressional district US Recovery Act Smart Grid Projects in California's 39th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 39th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 39th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 39th congressional district

224

California's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

district district 2 Registered Policy Organizations in California's 5th congressional district 3 Registered Energy Companies in California's 5th congressional district 4 Energy Generation Facilities in California's 5th congressional district 5 Utility Companies in California's 5th congressional district US Recovery Act Smart Grid Projects in California's 5th congressional district Sacramento Municipal Utility District Smart Grid Project Registered Policy Organizations in California's 5th congressional district California Energy Commission Registered Energy Companies in California's 5th congressional district Aerojet American Energy Power Systems Inc AEPS Anuvu Inc Ardent Energy Group Inc Atlantis Energy Systems Inc Aztec Solar California State Assembly Clean Energy Systems

225

California's 27th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 27th congressional district 3 Registered Policy Organizations in California's 27th congressional district 4 Registered Energy Companies in California's 27th congressional district 5 Registered Financial Organizations in California's 27th congressional district 6 Utility Companies in California's 27th congressional district US Recovery Act Smart Grid Projects in California's 27th congressional district Burbank Water and Power Smart Grid Project Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 27th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 27th congressional district

226

California's 34th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

4th congressional district 4th congressional district 2 Registered Research Institutions in California's 34th congressional district 3 Registered Policy Organizations in California's 34th congressional district 4 Registered Energy Companies in California's 34th congressional district 5 Registered Financial Organizations in California's 34th congressional district US Recovery Act Smart Grid Projects in California's 34th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 34th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 34th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 34th congressional district

227

California's 33rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

3rd congressional district 3rd congressional district 2 Registered Research Institutions in California's 33rd congressional district 3 Registered Policy Organizations in California's 33rd congressional district 4 Registered Energy Companies in California's 33rd congressional district 5 Registered Financial Organizations in California's 33rd congressional district US Recovery Act Smart Grid Projects in California's 33rd congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 33rd congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 33rd congressional district Clean Tech Los Angeles Registered Energy Companies in California's 33rd congressional district

228

North Carolina's 4th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

4th congressional district 4th congressional district 2 Registered Research Institutions in North Carolina's 4th congressional district 3 Registered Policy Organizations in North Carolina's 4th congressional district 4 Registered Energy Companies in North Carolina's 4th congressional district 5 Registered Financial Organizations in North Carolina's 4th congressional district US Recovery Act Smart Grid Projects in North Carolina's 4th congressional district Progress Energy Service Company, LLC Smart Grid Project Registered Research Institutions in North Carolina's 4th congressional district N.C. Solar Center Registered Policy Organizations in North Carolina's 4th congressional district NC Sustainable Energy Association Registered Energy Companies in North Carolina's 4th congressional district

229

Oregon's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Oregon. Oregon. Contents 1 US Recovery Act Smart Grid Projects in Oregon's 5th congressional district 2 Registered Research Institutions in Oregon's 5th congressional district 3 Registered Policy Organizations in Oregon's 5th congressional district 4 Registered Energy Companies in Oregon's 5th congressional district 5 Registered Financial Organizations in Oregon's 5th congressional district 6 Utility Companies in Oregon's 5th congressional district US Recovery Act Smart Grid Projects in Oregon's 5th congressional district Central Lincoln People's Utility District Smart Grid Project Pacific Northwest Generating Cooperative Smart Grid Project Registered Research Institutions in Oregon's 5th congressional district Clean Edge Inc Registered Policy Organizations in Oregon's 5th congressional district

230

California's 46th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 46th congressional district 3 Registered Policy Organizations in California's 46th congressional district 4 Registered Energy Companies in California's 46th congressional district 5 Registered Financial Organizations in California's 46th congressional district US Recovery Act Smart Grid Projects in California's 46th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 46th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 46th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 46th congressional district

231

California's 31st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

1st congressional district 1st congressional district 2 Registered Research Institutions in California's 31st congressional district 3 Registered Policy Organizations in California's 31st congressional district 4 Registered Energy Companies in California's 31st congressional district 5 Registered Financial Organizations in California's 31st congressional district US Recovery Act Smart Grid Projects in California's 31st congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 31st congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 31st congressional district Clean Tech Los Angeles Registered Energy Companies in California's 31st congressional district

232

California's 35th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 35th congressional district 3 Registered Policy Organizations in California's 35th congressional district 4 Registered Energy Companies in California's 35th congressional district 5 Registered Financial Organizations in California's 35th congressional district US Recovery Act Smart Grid Projects in California's 35th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 35th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 35th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 35th congressional district

233

California's 36th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 36th congressional district 3 Registered Policy Organizations in California's 36th congressional district 4 Registered Energy Companies in California's 36th congressional district 5 Registered Financial Organizations in California's 36th congressional district US Recovery Act Smart Grid Projects in California's 36th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 36th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 36th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 36th congressional district

234

California's 15th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

5th congressional district 5th congressional district 2 Registered Networking Organizations in California's 15th congressional district 3 Registered Policy Organizations in California's 15th congressional district 4 Registered Energy Companies in California's 15th congressional district 5 Registered Financial Organizations in California's 15th congressional district Registered Research Institutions in California's 15th congressional district Environmental Business Cluster Registered Networking Organizations in California's 15th congressional district MetaMatrix Groupe Registered Policy Organizations in California's 15th congressional district Silicon Valley Clean Tech Alliance Solar San Jose Registered Energy Companies in California's 15th congressional district AE Biofuels Inc formerly American Ethanol Inc

235

California's 25th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 25th congressional district 3 Registered Policy Organizations in California's 25th congressional district 4 Registered Energy Companies in California's 25th congressional district 5 Registered Financial Organizations in California's 25th congressional district 6 Energy Generation Facilities in California's 25th congressional district US Recovery Act Smart Grid Projects in California's 25th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 25th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 25th congressional district

236

California's 37th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 37th congressional district 3 Registered Policy Organizations in California's 37th congressional district 4 Registered Energy Companies in California's 37th congressional district 5 Registered Financial Organizations in California's 37th congressional district US Recovery Act Smart Grid Projects in California's 37th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 37th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 37th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 37th congressional district

237

Geothermal district piping - A primer  

DOE Green Energy (OSTI)

Transmission and distribution piping constitutes approximately 40 -60% of the capital costs of typical geothermal district heating systems. Selections of economical piping suitable for the fluid chemistry is critical. Presently, most piping (56%) in geothermal systems is of asbestos cement construction. Some fiberglass (19%) and steel (19%) is also in use. Identification of an economical material to replace asbestos cement is important to future project development. By providing information on relative costs, purchase considerations, existing material performance and new products, this report seeks to provide a background of information to the potential pipe purchaser. A brief discussion of the use of uninsulated piping in geothermal district heating systems is also provided. 5 refs., 19 figs., 1 tab.

Rafferty, K.

1989-11-01T23:59:59.000Z

238

Nebraska Public Power District - Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump: 20 x (EER - 14) + 180 x tons Variable Frequency Drives: 30 per HP HVAC Optimization: 0.01 per kWh (or 0.02 per kWh for the summer months only) Irrigation...

239

Original paper: An integrated model for simulation of border-check irrigated dairy pasture production systems  

Science Conference Proceedings (OSTI)

Border-check irrigation is the predominant method of applying water to dairy pastures in Australia. Dairy pastures consume 40% of total irrigation water in Australia and, with irrigation water security in Australia under threat from climate variability/change ... Keywords: Dairy pasture systems, Integrated modeling tools, Surface irrigation hydraulics

P. Douglas; K. B. Dassanayake; D. F. Chapman; I. R. Johnson; M. Khanna; H. Malano

2010-10-01T23:59:59.000Z

240

Engineering quality control of solar-powered intelligent water-saving irrigation  

Science Conference Proceedings (OSTI)

The development tendency of the agricultural irrigation technology is Automatic water-saving irrigation, powered by solar energy and achieved control purposes by moisture content monitoring techniques and the variable irrigation technology. In this paper, ... Keywords: intelligent, quality control, solar power, water-saving irrigation

Liu Xiaochu; Wu Hualong; Ling Jingpeng; Tao Jianhua; Yao Li

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

California's 53rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

This page represents a congressional district in California. Contents 1 US Recovery Act Smart Grid Projects in California's 53rd congressional district 2 Registered Research Institutions in California's 53rd congressional district 3 Registered Policy Organizations in California's 53rd congressional district 4 Registered Energy Companies in California's 53rd congressional district 5 Registered Financial Organizations in California's 53rd congressional district 6 Utility Companies in California's 53rd congressional district US Recovery Act Smart Grid Projects in California's 53rd congressional district San Diego Gas and Electric Company Smart Grid Project Registered Research Institutions in California's 53rd congressional district Global Energy Network Institute

242

California's 32nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

2nd congressional district 2nd congressional district 2 Registered Research Institutions in California's 32nd congressional district 3 Registered Policy Organizations in California's 32nd congressional district 4 Registered Energy Companies in California's 32nd congressional district 5 Registered Financial Organizations in California's 32nd congressional district US Recovery Act Smart Grid Projects in California's 32nd congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Southern California Edison Company Smart Grid Demonstration Project Southern California Edison Company Smart Grid Demonstration Project (2) Registered Research Institutions in California's 32nd congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 32nd congressional district

243

North Carolina's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

2nd congressional district 2nd congressional district 2 Registered Research Institutions in North Carolina's 2nd congressional district 3 Registered Policy Organizations in North Carolina's 2nd congressional district 4 Registered Energy Companies in North Carolina's 2nd congressional district US Recovery Act Smart Grid Projects in North Carolina's 2nd congressional district Progress Energy Service Company, LLC Smart Grid Project Registered Research Institutions in North Carolina's 2nd congressional district N.C. Solar Center Registered Policy Organizations in North Carolina's 2nd congressional district NC Sustainable Energy Association Registered Energy Companies in North Carolina's 2nd congressional district Advanced Vehicle Research Center of North Carolina Agri Ethanol Products LLC AEPNC

244

Massachusetts's 8th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Massachusetts's 8th congressional district: Energy Resources Massachusetts's 8th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Massachusetts. Contents 1 Registered Research Institutions in Massachusetts's 8th congressional district 2 Registered Networking Organizations in Massachusetts's 8th congressional district 3 Registered Policy Organizations in Massachusetts's 8th congressional district 4 Registered Energy Companies in Massachusetts's 8th congressional district 5 Registered Financial Organizations in Massachusetts's 8th congressional district Registered Research Institutions in Massachusetts's 8th congressional district Fraunhofer Center for Sustainable Energy Systems

245

California's 30th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

0th congressional district 0th congressional district 2 Registered Research Institutions in California's 30th congressional district 3 Registered Networking Organizations in California's 30th congressional district 4 Registered Policy Organizations in California's 30th congressional district 5 Registered Energy Companies in California's 30th congressional district 6 Registered Financial Organizations in California's 30th congressional district US Recovery Act Smart Grid Projects in California's 30th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 30th congressional district University of Southern California-Energy Institute Registered Networking Organizations in California's 30th congressional

246

California's 16th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

6th congressional district 6th congressional district 2 Registered Networking Organizations in California's 16th congressional district 3 Registered Policy Organizations in California's 16th congressional district 4 Registered Energy Companies in California's 16th congressional district Registered Research Institutions in California's 16th congressional district Environmental Business Cluster Registered Networking Organizations in California's 16th congressional district MetaMatrix Groupe Registered Policy Organizations in California's 16th congressional district Solar San Jose Registered Energy Companies in California's 16th congressional district BioFuelBox Corporation Chromasun Clean Tech Institute Cupertino Electric Inc EIQ Energy Inc formerly Sympagis Echelon Corporation Electric Vehicle Infrastructure Network, Inc.

247

California's 50th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

California. California. Contents 1 US Recovery Act Smart Grid Projects in California's 50th congressional district 2 Registered Research Institutions in California's 50th congressional district 3 Registered Policy Organizations in California's 50th congressional district 4 Registered Energy Companies in California's 50th congressional district 5 Registered Financial Organizations in California's 50th congressional district 6 Utility Companies in California's 50th congressional district US Recovery Act Smart Grid Projects in California's 50th congressional district San Diego Gas and Electric Company Smart Grid Project Registered Research Institutions in California's 50th congressional district EcoElectron Ventures Inc Global Energy Network Institute Registered Policy Organizations in California's 50th congressional district

248

California's 29th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 29th congressional district 3 Registered Networking Organizations in California's 29th congressional district 4 Registered Policy Organizations in California's 29th congressional district 5 Registered Energy Companies in California's 29th congressional district 6 Registered Financial Organizations in California's 29th congressional district 7 Utility Companies in California's 29th congressional district US Recovery Act Smart Grid Projects in California's 29th congressional district Burbank Water and Power Smart Grid Project City of Glendale Water and Power Smart Grid Project Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 29th congressional

249

Washington's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Contents Contents 1 US Recovery Act Smart Grid Projects in Washington's 5th congressional district 2 Registered Research Institutions in Washington's 5th congressional district 3 Registered Energy Companies in Washington's 5th congressional district 4 Energy Generation Facilities in Washington's 5th congressional district 5 Utility Companies in Washington's 5th congressional district US Recovery Act Smart Grid Projects in Washington's 5th congressional district Avista Utilities Smart Grid Project Registered Research Institutions in Washington's 5th congressional district Washington State University Registered Energy Companies in Washington's 5th congressional district Itron ReliOn Energy Generation Facilities in Washington's 5th congressional district Kettle Falls Biomass Facility

250

Pennsylvania's 15th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Energy Companies in Pennsylvania's 15th congressional district 3 Registered Financial Organizations in Pennsylvania's 15th congressional district 4 Utility Companies in Pennsylvania's 15th congressional district US Recovery Act Smart Grid Projects in Pennsylvania's 15th congressional district PPL Electric Utilities Corp. Smart Grid Project Registered Energy Companies in Pennsylvania's 15th congressional district Air Products Chemicals Inc Akrion Inc Minerals Technologies PPL Energy Services Holdings LLC PPL EnergyPlus LLC PPT Research Inc Protium Energy Technologies Registered Financial Organizations in Pennsylvania's 15th congressional district Sustainable Energy Fund of Central Eastern Pennsylvania Utility Companies in Pennsylvania's 15th congressional district

251

California's 51st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

California. California. Contents 1 US Recovery Act Smart Grid Projects in California's 51st congressional district 2 Registered Research Institutions in California's 51st congressional district 3 Registered Policy Organizations in California's 51st congressional district 4 Registered Energy Companies in California's 51st congressional district 5 Registered Financial Organizations in California's 51st congressional district 6 Energy Generation Facilities in California's 51st congressional district 7 Utility Companies in California's 51st congressional district US Recovery Act Smart Grid Projects in California's 51st congressional district San Diego Gas and Electric Company Smart Grid Project Registered Research Institutions in California's 51st congressional district

252

Washington's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

7th congressional district: Energy Resources 7th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Washington. Contents 1 Registered Research Institutions in Washington's 7th congressional district 2 Registered Networking Organizations in Washington's 7th congressional district 3 Registered Policy Organizations in Washington's 7th congressional district 4 Registered Energy Companies in Washington's 7th congressional district 5 Registered Financial Organizations in Washington's 7th congressional district Registered Research Institutions in Washington's 7th congressional district ARCH Venture Partners (Washington) Northwest National Marine Renewable Energy Center

253

Alternative Fuels Data Center: School District Emissions Reduction Policies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School District School District Emissions Reduction Policies to someone by E-mail Share Alternative Fuels Data Center: School District Emissions Reduction Policies on Facebook Tweet about Alternative Fuels Data Center: School District Emissions Reduction Policies on Twitter Bookmark Alternative Fuels Data Center: School District Emissions Reduction Policies on Google Bookmark Alternative Fuels Data Center: School District Emissions Reduction Policies on Delicious Rank Alternative Fuels Data Center: School District Emissions Reduction Policies on Digg Find More places to share Alternative Fuels Data Center: School District Emissions Reduction Policies on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School District Emissions Reduction Policies

254

Nebraska's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Nebraska. Nebraska. Contents 1 US Recovery Act Smart Grid Projects in Nebraska's 1st congressional district 2 Registered Research Institutions in Nebraska's 1st congressional district 3 Registered Energy Companies in Nebraska's 1st congressional district 4 Utility Companies in Nebraska's 1st congressional district US Recovery Act Smart Grid Projects in Nebraska's 1st congressional district Cuming County Public Power District Smart Grid Project Stanton County Public Power District Smart Grid Project Registered Research Institutions in Nebraska's 1st congressional district University of Nebraska-Lincoln and University of Florida (Building Energy Efficient Homes for America) Registered Energy Companies in Nebraska's 1st congressional district Axis Technologies Group Inc

255

California's 52nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

California. California. Contents 1 US Recovery Act Smart Grid Projects in California's 52nd congressional district 2 Registered Research Institutions in California's 52nd congressional district 3 Registered Policy Organizations in California's 52nd congressional district 4 Registered Energy Companies in California's 52nd congressional district 5 Registered Financial Organizations in California's 52nd congressional district 6 Utility Companies in California's 52nd congressional district US Recovery Act Smart Grid Projects in California's 52nd congressional district San Diego Gas and Electric Company Smart Grid Project Registered Research Institutions in California's 52nd congressional district Global Energy Network Institute Registered Policy Organizations in California's 52nd congressional district

256

Oregon's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Oregon. Oregon. Contents 1 US Recovery Act Smart Grid Projects in Oregon's 3rd congressional district 2 Registered Research Institutions in Oregon's 3rd congressional district 3 Registered Policy Organizations in Oregon's 3rd congressional district 4 Registered Energy Companies in Oregon's 3rd congressional district 5 Registered Financial Organizations in Oregon's 3rd congressional district 6 Utility Companies in Oregon's 3rd congressional district US Recovery Act Smart Grid Projects in Oregon's 3rd congressional district Pacific Northwest Generating Cooperative Smart Grid Project Registered Research Institutions in Oregon's 3rd congressional district Clean Edge Inc Registered Policy Organizations in Oregon's 3rd congressional district Bonneville Environmental Foundation

257

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Energy Utility - Residential Energy Efficiency Program Sustainable Energy Utility - Residential Energy Efficiency Program (District of Columbia) The District of Columbia Sustainable Energy Utility currently offers the Residential Energy Efficiency Program. The program provides incentives to residents who complete qualifying home energy upgrades. Qualifying items include refrigerators, clothes washers, LED lighting and CFL lighting upgrades. Appliances and lighting equipment must be Energy Star rated. More information on program requirements can be found on the program website. October 16, 2013 Sustainable Energy Utility - D.C. Home Performance (District of Columbia) The District of Columbia Sustainable Energy Utility currently offers the D.C. Home Performance program (DCHP). DCHP provides a $500 incentive to

258

Regional Districts, Commissions, and Authorities (South Carolina) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Districts, Commissions, and Authorities (South Carolina) Regional Districts, Commissions, and Authorities (South Carolina) Regional Districts, Commissions, and Authorities (South Carolina) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Siting and Permitting Provider Regional Districts, Commissions, and Authorities

259

Conservation Districts (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conservation Districts (Montana) Conservation Districts (Montana) Conservation Districts (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Natural Resources and Conservation Local Conservation Districts in the state of Montana may be formed by

260

Natural Resources Districts (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Districts (Nebraska) Districts (Nebraska) Natural Resources Districts (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type Siting and Permitting Provider Natural Resources This statute establishes Natural Resources District, encompassing all of

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Massachusetts's 10th congressional district: Energy Resources...  

Open Energy Info (EERE)

10th congressional district AXI LLC BioEnergy International LLC Bluestone Energy Services Ltd Eco Power Solutions Heliotronics Heliotronics Inc Patriot Renewables LLC SiEnergy...

262

Groundwater Conservation Districts (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conservation Districts (Texas) Conservation Districts (Texas) Groundwater Conservation Districts (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Environmental Regulations Provider Texas Commission on Environmental Quality Groundwater Conservation Districts, as created following procedures described in Water Code 36, are designed to provide for the conservation, preservation, protection, recharging, and prevention of waste of groundwater, and of groundwater reservoirs or their subdivisions, and to

263

California's 47th congressional district: Energy Resources |...  

Open Energy Info (EERE)

Companies in California's 47th congressional district BioCentric Energy Inc formerly Nano Chemical Systems Holdings Cosmos Energy Corporation Fuel Systems Solutions Inc...

264

California's 22nd congressional district: Energy Resources |...  

Open Energy Info (EERE)

Facilities in California's 22nd congressional district Alpine SunTower Solar Power Plant Solar Millenium Ridgecrest Solar Power Plant Retrieved from "http:en.openei.org...

265

Modeling Satellite District Heating and Cooling Networks.  

E-Print Network (OSTI)

??Satellite District Heating and Cooling (DHC) systems offer an alternative structure to conventional, centralized DHC networks. Both use a piping network carrying steam or water (more)

Rulff, David

2011-01-01T23:59:59.000Z

266

Pennsylvania's 6th congressional district: Energy Resources ...  

Open Energy Info (EERE)

Inc Registered Financial Organizations in Pennsylvania's 6th congressional district EnerTech Capital Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania%27s6thc...

267

Pennsylvania's 4th congressional district: Energy Resources ...  

Open Energy Info (EERE)

Registered Energy Companies in Pennsylvania's 4th congressional district Axion Power International Inc formerly Tamboril Retrieved from "http:en.openei.orgw...

268

Connecticut's 1st congressional district: Energy Resources |...  

Open Energy Info (EERE)

district Aztech Engineers Connecticut Light and Power Infinity Fuel Cell and Hydrogen Inc LiquidPiston Inc Nxegen SmartPower United Technologies Corp Registered Financial...

269

Pennsylvania's 18th congressional district: Energy Resources...  

Open Energy Info (EERE)

Energy Companies in Pennsylvania's 18th congressional district Allegheny Power HydroGen Corporation formerly Chiste Corp KeyTex Energy LLC Westinghouse Plasma Corporation...

270

Pennsylvania's 17th congressional district: Energy Resources...  

Open Energy Info (EERE)

Pennsylvania. Registered Energy Companies in Pennsylvania's 17th congressional district Agra Bio Fuels Independence Biofuels Inc Pennsylvania Department of Environmental Protection...

271

Massachusetts's 2nd congressional district: Energy Resources...  

Open Energy Info (EERE)

Massachusetts. Registered Energy Companies in Massachusetts's 2nd congressional district Alyra Renewable Energy Kosmo Solar Sanderson Engine Development LLC Retrieved from "http:...

272

Pennsylvania's 16th congressional district: Energy Resources...  

Open Energy Info (EERE)

Registered Energy Companies in Pennsylvania's 16th congressional district Enerwise Global Technologies Inc Jeannie Leggett Sikora Retrieved from "http:en.openei.orgw...

273

Connecticut's 3rd congressional district: Energy Resources |...  

Open Energy Info (EERE)

Connecticut. Registered Energy Companies in Connecticut's 3rd congressional district Avalence LLC Lite Trough LLC Nxegen Opel International Inc Poulsen Hybrid, LLC Sunlight Solar...

274

Special Improvement Districts (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or town council may create a special improvement district for the purchase, installation, maintenance, and management of alternative energy production facilities. Under certain...

275

Conservation Districts (South Dakota) | Open Energy Information  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon Conservation Districts (South Dakota) This is the approved revision of this page, as well as being the most...

276

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2011 6, 2011 16 R&D Projects Across 11 States to Advance Hydropower in U.S. Today, Secretary Chu announced that the Energy Department is funding 16 projects that will make hydropower production even more efficient, cost-effective and environmentally friendly. September 2, 2011 Response to Hurricane Irene - Restoring Power on the East Coast Hurricane Irene struck the East coast last Friday, making landfall in North Carolina. Over the weekend, the storm traveled up the East Coast and into the mid-Atlantic and New England areas of the U.S. In response to Irene, Connecticut, Delaware, District of Columbia, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, North Carolina, Pennsylvania, Rhode Island, Vermont, and Virginia declared a State of

277

Solar technology applications: a survey of solar powered irrigation systems  

DOE Green Energy (OSTI)

Published information on solar powered irrigation systems is presented. Thermal solar systems, thermoelectric solar systems, and photovoltaic solar systems are included. A bibliography and survey of on-going work is presented. (WHK)

Newkirk, H.W.

1978-04-17T23:59:59.000Z

278

Energy savings potential from energy-conserving irrigation systems  

SciTech Connect

This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

1982-11-01T23:59:59.000Z

279

Outlook for Energy and Implications for Irrigated Agriculture  

E-Print Network (OSTI)

Agriculture uses large quantities of energy to pump groundwater for irrigation. This means the cost of energy has important implications for the industry in terms of costs and profitability. Increases in the prices of energy sources such as natural gas, electricity, liquid petroleum gas and diesel can cause economic hardship for irrigators, particularly if those increases are unanticipated. The purpose of this paper is to briefly summarize important trends in the current domestic energy situation that could have significant impacts on the future cost and availability of energy, and to show what the implications of those trends are for irrigated agriculture. The primary focus of this study will be on trends in natural gas, since natural gas is the major fuel used for irrigation in the Great Plains states.

Patton, W. P.; Lacewell, R. D.

1977-09-01T23:59:59.000Z

280

A Historical View of the Magnolia Independent School District, Magnolia, Texas, 1900-2009  

E-Print Network (OSTI)

For individuals and organizations, the events of the past shape and affect the decisions made in the present, to the benefit or detriment of the person or group. Historical research can make available information about the past that aids understanding of the future. This qualitative explanatory historical study of the schools of Magnolia, Texas creates a record of the Magnolia Independent School District by focusing on the political climate, growth patterns, and ethnic influences from 1900 to 2009. The methods of data collection consist of personal interviews, oral histories, school district documents, school board minutes, and newspaper articles. The research questions that guide the study are: (1) What is the history of Magnolia Public Schools and what influential people and events have shaped the district? (2) What were the causes of growth periods in the Magnolia Independent School District, and what were the effects of such growth? and, (3) How did the districts ethnic and socioeconomic groups affect its growth and instruction? This explanatory historical study identifies the connection between the development of the schools in Magnolia, Texas and the surrounding community that has grown due to urban expansion. By recording the perceptions of the key people who have witnessed the districts history, noting the influential events that have occurred, and documenting the districts periods of growth, this study will help preserve the history of the schools in Magnolia for current and future leaders and researchers. By assisting with an understanding of the causes of decisions and actions taken in the past, this study has the potential to become an important resource for school administration and staff, community members, and other stakeholders as they seek to positively impact the present and the future.

Clark, Robert M.

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Denitrification rates in a wastewater-irrigated forest soil in New Zealand  

SciTech Connect

Denitrification is considered to be an important N removal process in land-based wastewater treatment systems, although in situ denitrification rates have rarely been reported. The authors investigated the contribution of denitrification to N removal in a land treatment system by measuring in situ denitrification rates for 12 mo in a Monterey pine (Pinus radiata D. Don) forest irrigated with tertiary-treated wastewater. The variability of denitrification rates was investigated using a nested field design that divided the land treatment system into four spatial components (irrigation block, topographic position, field site, and sample plot) and two temporal components (sample period, sample day). Denitrification was measured using undisturbed soil cores collected daily, for six consecutive days on 21 occasions throughout the year. Soil moisture content, NO{sub 3} concentration, available C, denitrifying enzyme activity, and temperature also were measured. The annual denitrification rate in the irrigated soil was 2.4 kg N ha{sup {minus}1} yr{sup {minus}1}, and only slightly higher than the unirrigated soil. Temporal effects contributed more than spatial effects to the overall variation in denitrification rates. Multiple regression analysis showed that soil factors could only explain 29% of the variation in denitrification rates. Soil water-filled porosity was low in the land treatment system, and less than the critical threshold value determined in a laboratory study. The authors concluded that denitrification in this land treatment system studied was limited by excessive aeration in the free-draining soils.

Barton, L.; McLay, C.D.A.; Schipper, L.A.; Smith, C.T.

1999-12-01T23:59:59.000Z

282

Microsoft Word - district_of_columbia.doc  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia District of Columbia NERC Region(s) ....................................................................................................... RFC Primary Energy Source........................................................................................... Petroleum Net Summer Capacity (megawatts) ....................................................................... 790 51 Independent Power Producers & Combined Heat and Power ................................ 790 46 Net Generation (megawatthours) ........................................................................... 199,858 51 Independent Power Producers & Combined Heat and Power ................................ 199,858 51 Emissions (thousand metric tons) ..........................................................................

283

Microsoft Word - district_of_columbia.doc  

Gasoline and Diesel Fuel Update (EIA)

District of Columbia District of Columbia NERC Region(s) ....................................................................................................... RFC Primary Energy Source........................................................................................... Petroleum Net Summer Capacity (megawatts) ....................................................................... 790 51 Independent Power Producers & Combined Heat and Power ................................ 790 46 Net Generation (megawatthours) ........................................................................... 199,858 51 Independent Power Producers & Combined Heat and Power ................................ 199,858 51 Emissions (thousand metric tons) ..........................................................................

284

Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA  

Science Conference Proceedings (OSTI)

Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather ...

Jiangfeng Wei; Paul A. Dirmeyer; Dominik Wisser; Michael G. Bosilovich; David M. Mocko

2013-02-01T23:59:59.000Z

285

Potential for Photovoltaic Solar Installation in Non-Irrigated Corners of Center Pivot Irrigation Fields in the State of Colorado  

DOE Green Energy (OSTI)

The State of Colorado expressed an interest in assessing the potential for photovoltaic (PV) solar installations on non-irrigated corners of center-pivot irrigation (CPI) fields throughout the state. Using aerial imagery and irrigated land data available from the Colorado Water Conservation Board, an assessment of potentially suitable sites was produced. Productivity estimates were calculated from that assessment. The total area of non-irrigated corners of CPI fields in Colorado was estimated to be 314,674 acres, which could yield 223,418 acres of installed PV panels assuming 71% coverage in triangular plots. The total potential annual electricity production for the state was estimated to be 56,821 gigawatt hours (GWH), with an average of 1.3 GWH per available plot.

Roberts, B.

2011-07-01T23:59:59.000Z

286

Impact of Alternative Energy Prices, Tenure Arrangements and Irrigation Technologies on a Typical Texas High Plains Farm  

E-Print Network (OSTI)

Irrigation is a major contributing factor in crop production on the Texas High Plains. It is responsible for greatly increasing crop production and farm income for the region. Two factors, a declining groundwater supply and increasing production costs, are of primary concern because they impact on farm operations and producer economic viability. A recursive linear programming model for a typical Texas High Plains irrigated farm was developed to evaluate expected impact of price changes, tenure and new technology. The model includes a Fortran sub-routine that adjusts irrigation factors each year based on the linear programming solution of the previous year. After calculating new pumping energy requirements, well yield, and pumping lift, the Fortran component updates the linear programming model. This procedure continues automatically to the end of a specified planning period or to economic exhaustion of the groundwater, whichever occurs first. Static applications of the model, in a deep water situation, showed that a natural gas price increase from $1.50 to $2.20 per thousand cubic feet (mcf) would result in reductions in irrigation levels. Irrigation was terminated when the price of natural gas reached about $7.00 per mcf. In a shallow water situation, much higher natural gas prices were reached ($3.60 per mcf) before short-run adjustments in farm organization began to occur. Under furrow irrigation, irrigation was terminated when the natural gas price reached $7.00 per mcf. Increased natural gas prices impact heavily on returns above variable costs (up to 15 percent reductions) for a 60 percent natural gas price increase. The effects of rising natural gas prices over a longer period of time were more significant. Annual returns (above variable and fixed costs) were reduced by as much as 30 percent, and the present value of returns to water was reduced by as much as 80 percent as the natural gas price was increased annually by $0.25 per mcf (from $1.50 per mcf). The economic life of deep groundwater was shortened by as much as 18 years. Renter-operators are even more vulnerable to rising natural gas prices than are owner-operators. With rising natural gas prices, profitability over time for the renter is low. As natural gas prices continue to increase, the greater will be the incentives for renter-operators to seek more favorable rental terms such as a sharing of irrigation costs. With the problem of a declining groundwater supply and rising natural gas prices, an economic incentive exists for producers to find new technologies that will enable them to make more efficient use of remaining groundwater and of natural gas. Substantial economic gains appear feasible through improved pump efficiency. Increasing pump efficiency from 50 to 75 percent will not increase the economic life of the water supply, but can improve farm profits over time; e.g., the present value of groundwater was increased 33 percent for a typical farm with an aquifer containing 250 feet of saturated thickness and 15 percent for 75 feet of saturated thickness. Improved irrigation distribution systems can help conserve water and reduce irrigation costs. Results indicate that irrigation can be extended by 11 or more years with 50 percent improved distribution efficiency. In addition, the increase in present value of groundwater on the 1.69 million irrigated acres of the Texas High Plains was estimated to be $995 million with 50 percent improved efficiency. Limitations in borrowing can substantially reduce annual net returns. This analysis suggests that the farmer can economically justify very high costs of borrowing rather than a limitation of funds available for operating expenses.

Petty, J. A.; Lacewell, R. D.; Hardin, D. C.; Whitson, R. E.

1980-05-01T23:59:59.000Z

287

Definition: District heat | Open Energy Information  

Open Energy Info (EERE)

District heat District heat Jump to: navigation, search Dictionary.png District heat A heating system that uses steam or hot water produced outside of a building (usually in a central plant) and piped into the building as an energy source for space heating, hot water or another end use.[1][2][3] View on Wikipedia Wikipedia Definition District heating (less commonly called teleheating) is a system for distributing heat generated in a centralized location for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels but increasingly biomass, although heat-only boiler stations, geothermal heating and central solar heating are also used, as well as nuclear power. District heating plants can provide higher efficiencies and better

288

California's 14th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

4th congressional district 4th congressional district 2 Registered Networking Organizations in California's 14th congressional district 3 Registered Policy Organizations in California's 14th congressional district 4 Registered Energy Companies in California's 14th congressional district 5 Registered Financial Organizations in California's 14th congressional district 6 Energy Incentives for California's 14th congressional district Registered Research Institutions in California's 14th congressional district Environmental Business Cluster Global Climate and Energy Project Google.org Stanford - Woods Institute for the Environment Stanford- Global Climate and Energy Project Stanford- Precourt Energy Efficiency Center Technology Ventures Corporation Registered Networking Organizations in California's 14th congressional

289

California's 9th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

district district 2 Registered Research Institutions in California's 9th congressional district 3 Registered Networking Organizations in California's 9th congressional district 4 Registered Policy Organizations in California's 9th congressional district 5 Registered Energy Companies in California's 9th congressional district US Recovery Act Smart Grid Projects in California's 9th congressional district Seeo, Inc Smart Grid Demonstration Project Registered Research Institutions in California's 9th congressional district Energy BioSciences Institute Lawrence Berkeley National Laboratory (LBNL) UC Berkeley- Energy Institute UC Berkeley-Renewable and Appropriate Energy Laboratory UC Berkeley-Transportation Sustainability Research Center UC Center for Information Technology Research in the Interest of

290

The Future of Pastoralism in Turkana District, Kenya  

E-Print Network (OSTI)

Development and Famine Risk in Kenya Maasai Land. Doctoralin Turkana District, Kenya by J. Michael Halderman Responsein Turkana District, Kenya. Response to a request for

Halderman, John Michael

2005-01-01T23:59:59.000Z

291

Fort Boise Veteran's Hospital District Heating Low Temperature...  

Open Energy Info (EERE)

Boise Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature...

292

New Mexico State University District Heating Low Temperature...  

Open Energy Info (EERE)

State University District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name New Mexico State University District Heating Low Temperature Geothermal...

293

Oregon Institute of Technology District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology District Heating Low Temperature Geothermal Facility Facility...

294

Ohio's 4th congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

a congressional district in Ohio. Registered Energy Companies in Ohio's 4th congressional district American Tower Company Energy Technologies, Inc. Fetz Plumbing, Heating & Air...

295

New Jersey's 2nd congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

district in New Jersey. Registered Energy Companies in New Jersey's 2nd congressional district Bartholomew Heating and Cooling Fishermen s Energy Fishermen s Energy of New...

296

Colorado's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

7th congressional district 7th congressional district 2 Registered Policy Organizations in Colorado's 7th congressional district 3 Registered Energy Companies in Colorado's 7th congressional district 4 Energy Generation Facilities in Colorado's 7th congressional district Registered Research Institutions in Colorado's 7th congressional district Colorado School of Mines - Colorado Energy Research Institute National Renewable Energy Laboratory Registered Policy Organizations in Colorado's 7th congressional district Colorado Renewable Energy Society Registered Energy Companies in Colorado's 7th congressional district Abengoa Solar Ampulse Ampulse Corporation Ascent Solar Blue Sun Biodiesel LLC CCBI, Inc. Colorado Fuel Cell Center CFCC Coors Ceramics Distributed Generation Systems Inc Distributed Generation Systems Inc DISGEN

297

Colorado's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Colorado. Colorado. Contents 1 Registered Research Institutions in Colorado's 2nd congressional district 2 Registered Networking Organizations in Colorado's 2nd congressional district 3 Registered Policy Organizations in Colorado's 2nd congressional district 4 Registered Energy Companies in Colorado's 2nd congressional district 5 Registered Financial Organizations in Colorado's 2nd congressional district 6 Energy Incentives for Colorado's 2nd congressional district Registered Research Institutions in Colorado's 2nd congressional district National Wind Technology Center Rocky Mountain Institute University of Colorado at Boulder Renewable and Sustainable Energy Institute Registered Networking Organizations in Colorado's 2nd congressional district American Solar Energy Society

298

Texas's 22nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas. Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 22nd congressional district 2 Registered Research Institutions in Texas's 22nd congressional district 3 Registered Energy Companies in Texas's 22nd congressional district 4 Registered Financial Organizations in Texas's 22nd congressional district 5 Utility Companies in Texas's 22nd congressional district US Recovery Act Smart Grid Projects in Texas's 22nd congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 22nd congressional district Institute for Energy Research Registered Energy Companies in Texas's 22nd congressional district Air and Liquid Advisors ALA American Electric Technologies Inc

299

Illinois' 6th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Illinois. Illinois. Contents 1 US Recovery Act Smart Grid Projects in Illinois' 6th congressional district 2 Registered Networking Organizations in Illinois' 6th congressional district 3 Registered Energy Companies in Illinois' 6th congressional district 4 Registered Financial Organizations in Illinois' 6th congressional district 5 Utility Companies in Illinois' 6th congressional district US Recovery Act Smart Grid Projects in Illinois' 6th congressional district City of Naperville, Illinois Smart Grid Project Registered Networking Organizations in Illinois' 6th congressional district Chicago Clean Energy Alliance Registered Energy Companies in Illinois' 6th congressional district Acciona Wind Energy USA LLC Aerotecture International Inc American Bar Association Section on Environment

300

Massachusetts's 9th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

9th congressional district: Energy Resources 9th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Massachusetts. Contents 1 US Recovery Act Smart Grid Projects in Massachusetts's 9th congressional district 2 Registered Networking Organizations in Massachusetts's 9th congressional district 3 Registered Energy Companies in Massachusetts's 9th congressional district 4 Registered Financial Organizations in Massachusetts's 9th congressional district US Recovery Act Smart Grid Projects in Massachusetts's 9th congressional district NSTAR Electric & Gas Corporation Smart Grid Demonstration Project NSTAR Electric & Gas Corporation Smart Grid Demonstration Project

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Arizona's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Contents Contents 1 Registered Research Institutions in Arizona's 1st congressional district 2 Registered Networking Organizations in Arizona's 1st congressional district 3 Registered Energy Companies in Arizona's 1st congressional district 4 Energy Generation Facilities in Arizona's 1st congressional district Registered Research Institutions in Arizona's 1st congressional district Northern Arizona University Registered Networking Organizations in Arizona's 1st congressional district Distributed Wind Energy Association Registered Energy Companies in Arizona's 1st congressional district Coolidge Petrosun Optimum Biodiesel Plant EV Solar Products Pacific Blue Energy Southwest Wind Power Southwest Windpower Inc Sunshine Arizona Wind Energy LLC Energy Generation Facilities in Arizona's 1st congressional district

302

California's 23rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Networking Organizations in California's 23rd congressional district Networking Organizations in California's 23rd congressional district 2 Registered Policy Organizations in California's 23rd congressional district 3 Registered Energy Companies in California's 23rd congressional district 4 Registered Financial Organizations in California's 23rd congressional district Registered Networking Organizations in California's 23rd congressional district California Coast Venture Forum Solar Action Network Registered Policy Organizations in California's 23rd congressional district Community Environmental Council Registered Energy Companies in California's 23rd congressional district Ashman Technologies Biodiesel Industries Inc Biodiesel of Las Vegas Inc Catalytic Solutions Inc CSI Clairvoyant Energy Clipper Windpower Clipper Windpower Inc

303

Virginia's 8th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

US Recovery Act Smart Grid Projects in Virginia's 8th congressional district US Recovery Act Smart Grid Projects in Virginia's 8th congressional district 2 Registered Policy Organizations in Virginia's 8th congressional district 3 Registered Energy Companies in Virginia's 8th congressional district 4 Registered Financial Organizations in Virginia's 8th congressional district US Recovery Act Smart Grid Projects in Virginia's 8th congressional district National Rural Electric Cooperative Association Smart Grid Demonstration Project Registered Policy Organizations in Virginia's 8th congressional district Bordeaux International Energy Consulting, LLC Conservation International Millennium Institute The Nature Conservancy Tropical Forest Foundation Registered Energy Companies in Virginia's 8th congressional district AES Corporation AES Solar

304

California's 7th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Policy Organizations in California's 7th congressional district Rahus...

305

BLM California Desert District Office | Open Energy Information  

Open Energy Info (EERE)

California Desert District Office Jump to: navigation, search Name California Desert District Office Address 22835 Calle San Juan De Los Lagos Place Moreno Valley, CA Zip 92553...

306

California's 2nd congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 2nd congressional district Blue Lake...

307

BLM Color Country District Office | Open Energy Information  

Open Energy Info (EERE)

Color Country District Office Jump to: navigation, search Name BLM Color Country District Office Parent Organization BLM Place Cedar City, Utah References BLM Color Country...

308

BLM West Desert District Office | Open Energy Information  

Open Energy Info (EERE)

West Desert District Office Jump to: navigation, search Name BLM West Desert District Office Parent Organization BLM Place Salt Lake City, Utah Phone number (801) 977-4300...

309

Ohio's 8th congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Ohio. Registered Research Institutions in Ohio's 8th congressional district University of...

310

Ohio's 9th congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Ohio. Registered Energy Companies in Ohio's 9th congressional district Advanced Distributed...

311

Microsoft PowerPoint - Vicksburg District Federal Power Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vicksburg District Federal Power Projects Vicksburg District Federal Power Projects Blakely Mountain Hydro DeGray Hydro DeGray Hydro Narrows Hydro Blakely Mountain Rewind Unit 1...

312

Washington Gas Energy Services (District of Columbia) | Open...  

Open Energy Info (EERE)

District of Columbia) Jump to: navigation, search Name Washington Gas Energy Services Place District of Columbia Utility Id 20659 References EIA Form EIA-861 Final Data File for...

313

Texas's 1st congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Texas. Registered Energy Companies in Texas's 1st congressional district Eisenbach...

314

Texas's 6th congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Texas. Registered Energy Companies in Texas's 6th congressional district Corsicana Chemical...

315

Colorado's 6th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Colorado. Registered Research Institutions in Colorado's 6th congressional district ITN Energy Systems, Inc. Registered Energy Companies in Colorado's 6th congressional district...

316

Illinois' 16th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Illinois. Registered Research Institutions in Illinois' 16th congressional district Freedom Field Registered Energy Companies in Illinois' 16th congressional district Blackhawk...

317

Michigan's 4th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Michigan. Registered Research Institutions in Michigan's 4th congressional district Ferris State University Registered Energy Companies in Michigan's 4th congressional district...

318

Michigan's 8th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Michigan. Registered Research Institutions in Michigan's 8th congressional district Michigan...

319

Regional Water, Sewage, and Solid Waste Districts (Indiana) ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water, Sewage, and Solid Waste Districts (Indiana) Regional Water, Sewage, and Solid Waste Districts (Indiana) Eligibility Agricultural Construction Fuel Distributor Industrial...

320

111th Congressional Districts and Counties | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Districts and Counties Dataset Summary Description This dataset contains a nationwide inventory of all congressional districts and the counties or pieces of counties associated...

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Florida's 10th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

district in Florida. Registered Energy Companies in Florida's 10th congressional district Fuel Cells Technology Transit Idea One Inc Jabil Circuit Inc SolarPower Restoration...

322

Maryland's 7th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

district Baltimore Gas and Electric Company Smart Grid Project Registered Energy Companies in Maryland's 7th congressional district Alten Industries Inc Constellation Energy...

323

Maryland's 3rd congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

district Baltimore Gas and Electric Company Smart Grid Project Registered Energy Companies in Maryland's 3rd congressional district Alten Industries Inc Constellation Energy...

324

Florida's 12th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

12th congressional district Lakeland Electric Smart Grid Project Registered Energy Companies in Florida's 12th congressional district ECr Technologies Inc formerly GeoSolar...

325

Georgia's 6th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

district Cobb Electric Membership Corporation Smart Grid Project Registered Energy Companies in Georgia's 6th congressional district Cellnet Legacy Environmental Solutions...

326

Illinois' 13th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

district City of Naperville, Illinois Smart Grid Project Registered Energy Companies in Illinois' 13th congressional district BP America CECO Abatement Systems Inc...

327

Georgia's 13th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

district Cobb Electric Membership Corporation Smart Grid Project Registered Energy Companies in Georgia's 13th congressional district Prenova Inc formerly Service Resources Inc...

328

Alternative Fuels Data Center: Utility District Natural Gas Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utility District Utility District Natural Gas Fueling Station Regulation to someone by E-mail Share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Facebook Tweet about Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Twitter Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Google Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Delicious Rank Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Digg Find More places to share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on AddThis.com... More in this section... Federal

329

Alternative Fuels Data Center: School District Alternative Fuel Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School District School District Alternative Fuel Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on

330

Massachusetts's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Massachusetts. Massachusetts. Contents 1 Registered Research Institutions in Massachusetts's 7th congressional district 2 Registered Networking Organizations in Massachusetts's 7th congressional district 3 Registered Energy Companies in Massachusetts's 7th congressional district 4 Registered Financial Organizations in Massachusetts's 7th congressional district 5 Utility Companies in Massachusetts's 7th congressional district Registered Research Institutions in Massachusetts's 7th congressional district IDC Energy Insights Registered Networking Organizations in Massachusetts's 7th congressional district Northeast Energy Efficiency Partnerships, Inc Registered Energy Companies in Massachusetts's 7th congressional district A123 Systems A123Systems Ameresco, Inc. Analytic Power LLC

331

California's 28th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Contents Contents 1 US Recovery Act Smart Grid Projects in California's 28th congressional district 2 Registered Research Institutions in California's 28th congressional district 3 Registered Policy Organizations in California's 28th congressional district 4 Registered Energy Companies in California's 28th congressional district 5 Registered Financial Organizations in California's 28th congressional district US Recovery Act Smart Grid Projects in California's 28th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 28th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 28th congressional district Clean Tech Los Angeles

332

Illinois' 14th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Illinois. Registered Energy Companies in Illinois' 14th congressional district BP America...

333

Illinois' 15th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Illinois. Registered Research Institutions in Illinois' 15th congressional district The...

334

Illinois' 17th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Illinois. Registered Energy Companies in Illinois' 17th congressional district Archer Daniels...

335

South Carolina's 1st congressional district: Energy Resources...  

Open Energy Info (EERE)

Policy Organizations in South Carolina's 1st congressional district Coastal Conservation League Registered Energy Companies in South Carolina's 1st congressional district...

336

District of Columbia Natural Gas % of Total Residential - Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) District of Columbia Natural Gas % of Total Residential - Sales (Percent) District of Columbia Natural Gas % of Total...

337

Emergency Petition and Complaint of District of Columbia Public...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Petition and Complaint of District of Columbia Public Service Commission Emergency Petition and Complaint of District of Columbia Public Service Commission Docket No....

338

Texas's 12th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Texas. Registered Energy Companies in Texas's 12th congressional district Aecom Government...

339

Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and...

340

Texas's 10th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district: Energy Resources th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 10th congressional district 2 Registered Research Institutions in Texas's 10th congressional district 3 Registered Networking Organizations in Texas's 10th congressional district 4 Registered Policy Organizations in Texas's 10th congressional district 5 Registered Energy Companies in Texas's 10th congressional district 6 Registered Financial Organizations in Texas's 10th congressional district 7 Utility Companies in Texas's 10th congressional district US Recovery Act Smart Grid Projects in Texas's 10th congressional district

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Colorado's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

3rd congressional district 3rd congressional district 2 Registered Networking Organizations in Colorado's 3rd congressional district 3 Registered Policy Organizations in Colorado's 3rd congressional district 4 Registered Energy Companies in Colorado's 3rd congressional district 5 Energy Incentives for Colorado's 3rd congressional district 6 Utility Companies in Colorado's 3rd congressional district US Recovery Act Smart Grid Projects in Colorado's 3rd congressional district Black Hills/Colorado Electric Utility Co. Smart Grid Project Registered Networking Organizations in Colorado's 3rd congressional district Haiti Repowered Peak Oil Awareness Network Peak Oil Food Network Registered Policy Organizations in Colorado's 3rd congressional district Sustainability Center of the Rockies Registered Energy Companies in Colorado's 3rd congressional district

342

Colorado's 4th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

4th congressional district 4th congressional district 2 Registered Research Institutions in Colorado's 4th congressional district 3 Registered Networking Organizations in Colorado's 4th congressional district 4 Registered Energy Companies in Colorado's 4th congressional district 5 Energy Incentives for Colorado's 4th congressional district 6 Utility Companies in Colorado's 4th congressional district US Recovery Act Smart Grid Projects in Colorado's 4th congressional district City of Fort Collins Utilities Smart Grid Project Registered Research Institutions in Colorado's 4th congressional district CSU - Institute for the Built Environment Renewable Energy Tech School Registered Networking Organizations in Colorado's 4th congressional district Northern Colorado Clean Cities Registered Energy Companies in Colorado's 4th congressional district

343

Sacramento Municipal Utility District Smart Grid Host Site Progress Report  

Science Conference Proceedings (OSTI)

This report is a progress update on the Sacramento Municipal Utility District (SMUD) Smart Grid Demonstration Project. This project is part of the Electric Power Research Institute's (EPRI's) five-year smart grid demonstration initiative. The project is focused on integrating large-scale distributed energy resources (DER), including demand response, storage, distributed generation, and distributed renewable generation, into a "virtual power plant" to advance widespread, efficient, and cost-effective depl...

2011-12-09T23:59:59.000Z

344

An AHP approach for evaluating geothermal district energy systems[Analytical Hierarchy Process  

SciTech Connect

In the rating and design of the geothermal district energy (DE) systems the technology, cost, benefits, and environmental effects of the alternatives need to be carefully compared. This study deals with the evaluation of several alternatives of district energy systems for the city of Denizli. These alternatives vary from the existing geothermal plant to the hybrid cycle, totally integrated geothermal energy system. In the comparative evaluation of the alternative projects, Analytical Hierarchy Process (AHP) was utilized.

Eltez, A.; Kilkis, I.B.; Eltez, M.

1999-07-01T23:59:59.000Z

345

Conservation Districts (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Dakota) South Dakota) Conservation Districts (South Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Association of Conservation Districts A Conservation District can be established by petition of registered voters

346

District-heating system, La Grande, Oregon  

DOE Green Energy (OSTI)

The area suggested for district heating feasibility study encompassed slightly over 400 acres extending north and south from the geographic center of the city. This district was subdivided into 8 areas, which include the Grande Ronde Hospital, Eastern Oregon State College, La Grande school district, one institutional area, one commercial area and three residential areas. Basic space heating loads developed for the various areas after a survey by county personnel and computation using a computer program form the basis for this economic feasibility study.

Not Available

1982-01-01T23:59:59.000Z

347

Local Option - Special Districts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Special Districts Local Option - Special Districts Local Option - Special Districts < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Sealing Your Home Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Bioenergy Solar Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating Wind Program Info State Florida Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been

348

Texas Gulf Coast Refinery District API Gravity (Weighted Average ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

349

Minnesota, Wisconsin, North and South Dakota Refining District ...  

U.S. Energy Information Administration (EIA)

Minnesota, Wisconsin, North and South Dakota Refining District Percent Utilization of Refinery Operable Capacity (Percent)

350

Texas Gulf Coast Refinery District API Gravity (Weighted ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

351

Appalachian No. 1 Refinery District Sulfur Content (Weighted ...  

U.S. Energy Information Administration (EIA)

Appalachian No. 1 Refinery District Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)

352

Refining District New Mexico Gross Inputs to Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

Refining District New Mexico Gross Inputs to Atmospheric Crude Oil Distillation Units (Thousand Barrels per Day)

353

Texas Inland Refining District Operable Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Texas Inland Refining District Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)

354

East Coast Refining District Operable Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

East Coast Refining District Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)

355

Refining District Minnesota-Wisconsin-North Dakota-South ...  

U.S. Energy Information Administration (EIA)

Refining District Minnesota-Wisconsin-North Dakota-South Dakota Refinery Yield of Petroleum Coke (Percent)

356

NETL: Gasification Systems - Projects by State with Congressional District  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects by State Projects by State Gasification Systems Projects by State with Congressional District State Performer Congressional District Alabama National Carbon Capture Center at the Power Systems Development Facility-Project List Modification of the Developmental Pressure Decoupled Advanced Coal (PDAC) Feeder Long-Term Refractory Durability Tests (Transport Gasifier) Long-Term Candle Filter Tests (Transport Gasifier) Water-Gas Shift Tests to Reduce Steam Use Southern Company Services, Inc. AL07 High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids Production Southern Research Institute AL07 California Dry Solids Pump Coal Feed Technology Aerojet Rocketdyne CA30 Colorado A Cost-Effective Oxygen Separation System Based on Open Gradient Magnetic Field by Polymer Beads ITN Energy Systems CO01

357

Underground Storage Tank Management (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

The installation, upgrade and operation of any petroleum UST (>110 gallons) or hazardous substance UST System, including heating oil tanks over 1,100 gallons capacity in the District requires a...

358

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 17, 2010 March 17, 2010 Deputy Secretary Daniel Poneman's Remarks to the Washington Institute for Near East Policy March 17, 2010 March 15, 2010 District of Columbia Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in the District of Columbia reflect a broad range of clean energy projects, from energy efficiency and the smart grid to renewable energy and advanced battery manufacturing. Through these investments, the District of Columbia's businesses, non-profits, and local governments are creating quality jobs today and positioning the District of Columbia to play an important role in the new energy economy of the future. March 1, 2010

359

Climate Action Plan (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

To lead by example, and to capitalize on the many benefits of energy efficiency and climate protection, the District Government is committed to reducing its greenhouse gas emissions by 20% (below...

360

BLM Boise District Office | Open Energy Information  

Open Energy Info (EERE)

Boise District Office Short Name Boise Parent Organization BLM Idaho State Office Place Boise, Idaho References Idaho BLM page1 This article is a stub. You can help OpenEI by...

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Solidere : the battle for Beirut's Central District  

E-Print Network (OSTI)

The Beirut Central District was destroyed during the Lebanese Civil War which extended from 1975 to 1990. Unable to reconstruct the center itself, the Lebanese government turned to a private Real Estate Holding Company ...

Mango, Tamam, 1981-

2004-01-01T23:59:59.000Z

362

Industrial Revenue Bond Program (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

The District provides below market bond financing to lower the costs of borrowing for qualified capital construction and renovation projects. The program is available to non-profits, institutions,...

363

BIDDING ON URBANITY WITH BUSINESS IMPROVEMENT DISTRICTS: .  

E-Print Network (OSTI)

??BIDDING ON URBANITY WITH BUSINESS IMPROVEMENT DISTRICTS: RE-MAKING URBAN PLACES IN WASHINGTON, DC Susanna Francesca Schaller, Ph.D. Cornell University 2007 ?The livable city,? one that (more)

Schaller, Susanna

2007-01-01T23:59:59.000Z

364

California's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

California. California. Contents 1 Registered Research Institutions in California's 1st congressional district 2 Registered Policy Organizations in California's 1st congressional district 3 Registered Energy Companies in California's 1st congressional district 4 Energy Generation Facilities in California's 1st congressional district Registered Research Institutions in California's 1st congressional district California Lighting Technology Center (University of California, Davis) Western Cooling Efficiency Center Registered Policy Organizations in California's 1st congressional district California Fuel Cell Partnership Solar Living Institute Registered Energy Companies in California's 1st congressional district AMG Energy Advanced Energy Products Advanced Energy Products Corp AEP

365

Alternative Fuels Data Center: Metropolitan Utilities District Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Metropolitan Utilities Metropolitan Utilities District Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Delicious Rank Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on

366

District of Columbia Energy and Cost Savings for New Single- and Multifamily Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

DC ENERGY CONSERVATION CODE DC ENERGY CONSERVATION CODE District of Columbia Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the DC Energy Conservation Code BUILDING TECHNOLOGIES PROGRAM 2 2012 IECC AS COMPARED TO THE DC ENERGY CONSERVATION CODE District of Columbia Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the DC Energy Conservation Code The 2012 International Energy Conservation Code (IECC) yields positive benefits for District of Columbia homeowners. Moving to the 2012 IECC from the current DC Energy Conservation Code is cost-effective over a 30-year life cycle. On average, District of Columbia homeowners will save $3,196 with the 2012 IECC. Each year, the reduction to energy bills will significantly

367

Midland, South Dakota geothermal district heating  

SciTech Connect

This article describes historical aspects and present usage of geothermal district heating systems in the town of Midland, South Dakota. The use of geothermal resources exists due to a joint venture between the school district and the city back in the early 1960`s. A total of approximately 30,000 square feet (2800 square meters) of floor space is heated using geothermal energy in Midland. This provides an estimated annual saving in propane cost of $15,000 to the community.

Lund, J.W.

1997-12-01T23:59:59.000Z

368

Idaho Power - Irrigation Efficiency Rewards Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Irrigation Efficiency Rewards Rebate Program Irrigation Efficiency Rewards Rebate Program Idaho Power - Irrigation Efficiency Rewards Rebate Program < Back Eligibility Agricultural Commercial Savings Category Other Maximum Rebate Custom Incentive for Existing System Replacement: 75% of the total project cost Custom Incentive for a New System: 10% of the total project cost Sprinkler Equipment Incentives: 50% of equipment cost Program Info Funding Source Conservation Program Funding Charge collected by Idaho Power as approved by the state Public Utilities Commission. State Oregon Program Type Utility Rebate Program Rebate Amount Custom Incentive for Existing System Replacement: $0.25/annual kWh saved or $450/kW Custom Incentive for a New System: $0.25/annual kWh saved New Flow-Control Nozzles: $1.50/unit

369

Texas's 9th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

9th congressional district: Energy Resources 9th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 9th congressional district 2 Registered Research Institutions in Texas's 9th congressional district 3 Registered Energy Companies in Texas's 9th congressional district 4 Registered Financial Organizations in Texas's 9th congressional district 5 Utility Companies in Texas's 9th congressional district US Recovery Act Smart Grid Projects in Texas's 9th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 9th congressional district

370

Arizona's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Arizona's 5th congressional district: Energy Resources Arizona's 5th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Arizona. Contents 1 US Recovery Act Smart Grid Projects in Arizona's 5th congressional district 2 Registered Research Institutions in Arizona's 5th congressional district 3 Registered Networking Organizations in Arizona's 5th congressional district 4 Registered Energy Companies in Arizona's 5th congressional district 5 Utility Companies in Arizona's 5th congressional district US Recovery Act Smart Grid Projects in Arizona's 5th congressional district Salt River Project Smart Grid Project Registered Research Institutions in Arizona's 5th congressional district

371

California's 12th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

California's 12th congressional district: Energy Resources California's 12th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in California. Contents 1 US Recovery Act Smart Grid Projects in California's 12th congressional district 2 Registered Research Institutions in California's 12th congressional district 3 Registered Networking Organizations in California's 12th congressional district 4 Registered Policy Organizations in California's 12th congressional district 5 Registered Energy Companies in California's 12th congressional district 6 Registered Financial Organizations in California's 12th congressional district 7 Energy Generation Facilities in California's 12th congressional district

372

Washington's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Washington's 2nd congressional district: Energy Resources Washington's 2nd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Washington. Contents 1 US Recovery Act Smart Grid Projects in Washington's 2nd congressional district 2 Registered Energy Companies in Washington's 2nd congressional district 3 Energy Generation Facilities in Washington's 2nd congressional district 4 Utility Companies in Washington's 2nd congressional district US Recovery Act Smart Grid Projects in Washington's 2nd congressional district Snohomish County Public Utilities District Smart Grid Project Registered Energy Companies in Washington's 2nd congressional district Mercurius Biofuels LLC

373

Florida's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

3rd congressional district: Energy Resources 3rd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Florida. Contents 1 US Recovery Act Smart Grid Projects in Florida's 3rd congressional district 2 Registered Networking Organizations in Florida's 3rd congressional district 3 Registered Energy Companies in Florida's 3rd congressional district 4 Energy Generation Facilities in Florida's 3rd congressional district 5 Utility Companies in Florida's 3rd congressional district US Recovery Act Smart Grid Projects in Florida's 3rd congressional district Intellon Corporation Smart Grid Project JEA Smart Grid Project Registered Networking Organizations in Florida's 3rd congressional district

374

Tennessee's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Tennessee's 2nd congressional district: Energy Resources Tennessee's 2nd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Tennessee. Contents 1 US Recovery Act Smart Grid Projects in Tennessee's 2nd congressional district 2 Registered Research Institutions in Tennessee's 2nd congressional district 3 Registered Policy Organizations in Tennessee's 2nd congressional district 4 Registered Energy Companies in Tennessee's 2nd congressional district 5 Utility Companies in Tennessee's 2nd congressional district US Recovery Act Smart Grid Projects in Tennessee's 2nd congressional district Knoxville Utilities Board Smart Grid Project Registered Research Institutions in Tennessee's 2nd congressional district

375

Washington's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

1st congressional district: Energy Resources 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Washington. Contents 1 US Recovery Act Smart Grid Projects in Washington's 1st congressional district 2 Registered Networking Organizations in Washington's 1st congressional district 3 Registered Energy Companies in Washington's 1st congressional district 4 Registered Financial Organizations in Washington's 1st congressional district 5 Utility Companies in Washington's 1st congressional district US Recovery Act Smart Grid Projects in Washington's 1st congressional district Snohomish County Public Utilities District Smart Grid Project Registered Networking Organizations in Washington's 1st congressional

376

Ohio's 15th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

5th congressional district: Energy Resources 5th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Ohio. Contents 1 US Recovery Act Smart Grid Projects in Ohio's 15th congressional district 2 Registered Networking Organizations in Ohio's 15th congressional district 3 Registered Policy Organizations in Ohio's 15th congressional district 4 Registered Energy Companies in Ohio's 15th congressional district 5 Utility Companies in Ohio's 15th congressional district US Recovery Act Smart Grid Projects in Ohio's 15th congressional district Columbus Southern Power Company (doing business as AEP Ohio) Smart Grid Demonstration Project Registered Networking Organizations in Ohio's 15th congressional district

377

New York's 11th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district: Energy Resources th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in New York. Contents 1 US Recovery Act Smart Grid Projects in New York's 11th congressional district 2 Registered Research Institutions in New York's 11th congressional district 3 Registered Policy Organizations in New York's 11th congressional district 4 Registered Energy Companies in New York's 11th congressional district 5 Registered Financial Organizations in New York's 11th congressional district 6 Utility Companies in New York's 11th congressional district US Recovery Act Smart Grid Projects in New York's 11th congressional district Consolidated Edison Company of New York, Inc. Smart Grid

378

Ohio's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

7th congressional district: Energy Resources 7th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Ohio. Contents 1 US Recovery Act Smart Grid Projects in Ohio's 7th congressional district 2 Registered Networking Organizations in Ohio's 7th congressional district 3 Registered Policy Organizations in Ohio's 7th congressional district 4 Registered Energy Companies in Ohio's 7th congressional district 5 Utility Companies in Ohio's 7th congressional district US Recovery Act Smart Grid Projects in Ohio's 7th congressional district Columbus Southern Power Company (doing business as AEP Ohio) Smart Grid Demonstration Project Registered Networking Organizations in Ohio's 7th congressional district

379

Oregon's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Oregon's 1st congressional district: Energy Resources Oregon's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Oregon. Contents 1 US Recovery Act Smart Grid Projects in Oregon's 1st congressional district 2 Registered Research Institutions in Oregon's 1st congressional district 3 Registered Policy Organizations in Oregon's 1st congressional district 4 Registered Energy Companies in Oregon's 1st congressional district 5 Registered Financial Organizations in Oregon's 1st congressional district 6 Utility Companies in Oregon's 1st congressional district US Recovery Act Smart Grid Projects in Oregon's 1st congressional district Pacific Northwest Generating Cooperative Smart Grid Project

380

California's 8th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

8th congressional district: Energy Resources 8th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in California. Contents 1 US Recovery Act Smart Grid Projects in California's 8th congressional district 2 Registered Research Institutions in California's 8th congressional district 3 Registered Networking Organizations in California's 8th congressional district 4 Registered Policy Organizations in California's 8th congressional district 5 Registered Energy Companies in California's 8th congressional district 6 Registered Financial Organizations in California's 8th congressional district 7 Energy Generation Facilities in California's 8th congressional district

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Property:ManagingDistrictOffice | Open Energy Information  

Open Energy Info (EERE)

ManagingDistrictOffice ManagingDistrictOffice Jump to: navigation, search Property Name ManagingDistrictOffice Property Type Page Pages using the property "ManagingDistrictOffice" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01 + BLM Winnemucca District Office + C CA-017-05-051 + BLM Bishop Field Office + CA-170-02-15 + BLM Central California District Office + CA-650-2005-086 + BLM California Desert District Office + CA-670-2010-107 + BLM California Desert District Office + CA-670-2010-CX + BLM California Desert District Office + D DOE-EA-1116 + DOE Golden Field Office + DOE-EA-1621 + DOE Golden Field Office + DOE-EA-1733 + DOE Golden Field Office + DOE-EA-1759 + DOE Golden Field Office + DOI-BLM-CA-C050-2009-0005-EA + BLM Central California District Office +

382

New York's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

7th congressional district: Energy Resources 7th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in New York. Contents 1 US Recovery Act Smart Grid Projects in New York's 7th congressional district 2 Registered Research Institutions in New York's 7th congressional district 3 Registered Policy Organizations in New York's 7th congressional district 4 Registered Energy Companies in New York's 7th congressional district 5 Registered Financial Organizations in New York's 7th congressional district 6 Utility Companies in New York's 7th congressional district US Recovery Act Smart Grid Projects in New York's 7th congressional district Consolidated Edison Company of New York, Inc. Smart Grid

383

Idaho's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Idaho's 1st congressional district: Energy Resources Idaho's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Idaho. Contents 1 US Recovery Act Smart Grid Projects in Idaho's 1st congressional district 2 Registered Research Institutions in Idaho's 1st congressional district 3 Registered Energy Companies in Idaho's 1st congressional district 4 Energy Generation Facilities in Idaho's 1st congressional district 5 Utility Companies in Idaho's 1st congressional district US Recovery Act Smart Grid Projects in Idaho's 1st congressional district Idaho Power Company Smart Grid Project M2M Communications Smart Grid Project Registered Research Institutions in Idaho's 1st congressional district

384

California's 49th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district: Energy Resources th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in California. Contents 1 US Recovery Act Smart Grid Projects in California's 49th congressional district 2 Registered Research Institutions in California's 49th congressional district 3 Registered Policy Organizations in California's 49th congressional district 4 Registered Energy Companies in California's 49th congressional district 5 Registered Financial Organizations in California's 49th congressional district 6 Utility Companies in California's 49th congressional district US Recovery Act Smart Grid Projects in California's 49th congressional district

385

New York's 21st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

1st congressional district: Energy Resources 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in New York. Contents 1 US Recovery Act Smart Grid Projects in New York's 21st congressional district 2 Registered Research Institutions in New York's 21st congressional district 3 Registered Networking Organizations in New York's 21st congressional district 4 Registered Policy Organizations in New York's 21st congressional district 5 Registered Energy Companies in New York's 21st congressional district 6 Registered Financial Organizations in New York's 21st congressional district US Recovery Act Smart Grid Projects in New York's 21st congressional district

386

Texas's 18th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

8th congressional district: Energy Resources 8th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 18th congressional district 2 Registered Research Institutions in Texas's 18th congressional district 3 Registered Energy Companies in Texas's 18th congressional district 4 Registered Financial Organizations in Texas's 18th congressional district 5 Utility Companies in Texas's 18th congressional district US Recovery Act Smart Grid Projects in Texas's 18th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 18th congressional district

387

Colorado's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Colorado's 1st congressional district: Energy Resources Colorado's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Colorado. Contents 1 Registered Research Institutions in Colorado's 1st congressional district 2 Registered Networking Organizations in Colorado's 1st congressional district 3 Registered Policy Organizations in Colorado's 1st congressional district 4 Registered Energy Companies in Colorado's 1st congressional district 5 Registered Financial Organizations in Colorado's 1st congressional district 6 Energy Incentives for Colorado's 1st congressional district Registered Research Institutions in Colorado's 1st congressional district Colorado Renewable Energy Collaboratory

388

Texas's 13th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas's 13th congressional district: Energy Resources Texas's 13th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 13th congressional district 2 Registered Research Institutions in Texas's 13th congressional district 3 Registered Energy Companies in Texas's 13th congressional district 4 Utility Companies in Texas's 13th congressional district US Recovery Act Smart Grid Projects in Texas's 13th congressional district Golden Spread Electric Cooperative, Inc. Smart Grid Project Registered Research Institutions in Texas's 13th congressional district Alternative Energy Institute Registered Energy Companies in Texas's 13th congressional district

389

Texas's 14th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district: Energy Resources th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 14th congressional district 2 Registered Research Institutions in Texas's 14th congressional district 3 Registered Policy Organizations in Texas's 14th congressional district 4 Registered Energy Companies in Texas's 14th congressional district 5 Registered Financial Organizations in Texas's 14th congressional district 6 Utility Companies in Texas's 14th congressional district US Recovery Act Smart Grid Projects in Texas's 14th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project

390

Texas's 29th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

9th congressional district: Energy Resources 9th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 29th congressional district 2 Registered Research Institutions in Texas's 29th congressional district 3 Registered Energy Companies in Texas's 29th congressional district 4 Registered Financial Organizations in Texas's 29th congressional district 5 Utility Companies in Texas's 29th congressional district US Recovery Act Smart Grid Projects in Texas's 29th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 29th congressional district

391

Modeling Irrigated Area to Increase Water, Energy, and Food Security in Semiarid India  

Science Conference Proceedings (OSTI)

Because of declining public investments in irrigation projects in India, the growth of irrigated agricultural production has increasingly become reliant on unsustainable allocation of groundwater. As a result, groundwater resources are ...

Tobias Siegfried; Stefan Sobolowski; Pradeep Raj; Ram Fishman; Victor Vasquez; Kapil Narula; Upmanu Lall; Vijay Modi

2010-10-01T23:59:59.000Z

392

Large-Scale Utilization of Saline Groundwater for Irrigation of Pistachios Interplanted with Cotton  

E-Print Network (OSTI)

in the better areas. The Belridge Water District in westernof drip tape SDI with typical Belridge Water District cottonlarge-scale grower in the Belridge Water District of NW Kern

Sanden, Blake; Ferguson, Louise; Kallsen, Craig E.; Marsh, Brian; Hutmacher, Robert B.; Corwin, Dennis

2009-01-01T23:59:59.000Z

393

Calculating Horsepower Requirements and Sizing Supply Pipelines for Irrigation  

E-Print Network (OSTI)

Pumping costs are often one of the largest single expenses in irrigated agriculture. This publication explains how to lower pumping costs by calculating horsepower requirements and sizing supply pipelines correctly. Examples take the reader through a step-by-step process. A special section deals with selecting PVC pipe.

Fipps, Guy

1995-09-05T23:59:59.000Z

394

Irrigation market for solar-thermal parabolic-dish systems  

Science Conference Proceedings (OSTI)

The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. A model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. Results indicate that the near-term market for such systems depends not only on the type of crop and method of irrigation, but also on the optimal utilization of each added module, which in turn depends on the price of conventional fuel, real discount rate, marginal cost of the solar thermal power system, local insolation level and parabolic dish system efficiency. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14% real discount rate is assumed to 220,000 modules when the real discount rate drops to 8%. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98% of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71%) of the total market.

Habib-agahi, H.; Jones, S.C.

1981-09-01T23:59:59.000Z

395

New York's 16th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

New York's 16th congressional district New York's 16th congressional district 2 Registered Research Institutions in New York's 16th congressional district 3 Registered Policy Organizations in New York's 16th congressional district 4 Registered Energy Companies in New York's 16th congressional district 5 Registered Financial Organizations in New York's 16th congressional district 6 Utility Companies in New York's 16th congressional district US Recovery Act Smart Grid Projects in New York's 16th congressional district Consolidated Edison Company of New York, Inc. Smart Grid Demonstration Project Consolidated Edison Company of New York, Inc. Smart Grid Project Registered Research Institutions in New York's 16th congressional district Endeavor Global GlobalData United Nations Development Programme (UNDP)

396

California's 26th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

26th congressional district: Energy Resources 26th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in California. Contents 1 US Recovery Act Smart Grid Projects in California's 26th congressional district 2 Registered Research Institutions in California's 26th congressional district 3 Registered Policy Organizations in California's 26th congressional district 4 Registered Energy Companies in California's 26th congressional district 5 Registered Financial Organizations in California's 26th congressional district US Recovery Act Smart Grid Projects in California's 26th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration

397

Maine's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Maine's 1st congressional district: Energy Resources Maine's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Maine. Contents 1 US Recovery Act Smart Grid Projects in Maine's 1st congressional district 2 Registered Energy Companies in Maine's 1st congressional district 3 Registered Financial Organizations in Maine's 1st congressional district 4 Utility Companies in Maine's 1st congressional district US Recovery Act Smart Grid Projects in Maine's 1st congressional district Central Maine Power Company Smart Grid Project Registered Energy Companies in Maine's 1st congressional district Ascendant Energy Company Inc Criterium Engineers International WoodFuels LLC

398

Tennessee's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

3rd congressional district: Energy Resources 3rd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Tennessee. Contents 1 US Recovery Act Smart Grid Projects in Tennessee's 3rd congressional district 2 Registered Research Institutions in Tennessee's 3rd congressional district 3 Registered Energy Companies in Tennessee's 3rd congressional district 4 Utility Companies in Tennessee's 3rd congressional district US Recovery Act Smart Grid Projects in Tennessee's 3rd congressional district Electric Power Board of Chattanooga Smart Grid Project Registered Research Institutions in Tennessee's 3rd congressional district Energy Technology Data Exchange Oak Ridge National Laboratory

399

Massachusetts's 4th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

4th congressional district: Energy Resources 4th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Massachusetts. Contents 1 US Recovery Act Smart Grid Projects in Massachusetts's 4th congressional district 2 Registered Energy Companies in Massachusetts's 4th congressional district 3 Registered Financial Organizations in Massachusetts's 4th congressional district 4 Utility Companies in Massachusetts's 4th congressional district US Recovery Act Smart Grid Projects in Massachusetts's 4th congressional district NSTAR Electric Company Smart Grid Project Registered Energy Companies in Massachusetts's 4th congressional district Acela Energy Group Inc Aclara Software

400

Idaho's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

2nd congressional district: Energy Resources 2nd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Idaho. Contents 1 US Recovery Act Smart Grid Projects in Idaho's 2nd congressional district 2 Registered Research Institutions in Idaho's 2nd congressional district 3 Registered Energy Companies in Idaho's 2nd congressional district 4 Utility Companies in Idaho's 2nd congressional district US Recovery Act Smart Grid Projects in Idaho's 2nd congressional district Idaho Power Company Smart Grid Project M2M Communications Smart Grid Project Registered Research Institutions in Idaho's 2nd congressional district Boise State University, CAES Energy Efficiency Research Institute

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Texas's 25th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Contents Contents 1 US Recovery Act Smart Grid Projects in Texas's 25th congressional district 2 Registered Research Institutions in Texas's 25th congressional district 3 Registered Networking Organizations in Texas's 25th congressional district 4 Registered Policy Organizations in Texas's 25th congressional district 5 Registered Energy Companies in Texas's 25th congressional district 6 Registered Financial Organizations in Texas's 25th congressional district 7 Utility Companies in Texas's 25th congressional district US Recovery Act Smart Grid Projects in Texas's 25th congressional district Center for the Commercialization of Electric Technologies Smart Grid Demonstration Project Pecan Street Project, Inc. Smart Grid Demonstration Project Registered Research Institutions in Texas's 25th congressional district

402

Vermont's At-large congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Vermont's At-large congressional district: Energy Resources Vermont's At-large congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Vermont. Contents 1 US Recovery Act Smart Grid Projects in Vermont's At-large congressional district 2 Registered Policy Organizations in Vermont's At-large congressional district 3 Registered Energy Companies in Vermont's At-large congressional district 4 Energy Generation Facilities in Vermont's At-large congressional district US Recovery Act Smart Grid Projects in Vermont's At-large congressional district Vermont Transco, LLC Smart Grid Project Registered Policy Organizations in Vermont's At-large congressional district Clean Energy States Alliance

403

Wisconsin's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Wisconsin's 2nd congressional district: Energy Resources Wisconsin's 2nd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Wisconsin. Contents 1 US Recovery Act Smart Grid Projects in Wisconsin's 2nd congressional district 2 Registered Research Institutions in Wisconsin's 2nd congressional district 3 Registered Energy Companies in Wisconsin's 2nd congressional district 4 Registered Financial Organizations in Wisconsin's 2nd congressional district 5 Utility Companies in Wisconsin's 2nd congressional district US Recovery Act Smart Grid Projects in Wisconsin's 2nd congressional district Madison Gas and Electric Company Smart Grid Project Wisconsin Power and Light Company Smart Grid Project

404

New Mexico's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Mexico's 1st congressional district: Energy Resources Mexico's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in New Mexico. Contents 1 US Recovery Act Smart Grid Projects in New Mexico's 1st congressional district 2 Registered Research Institutions in New Mexico's 1st congressional district 3 Registered Energy Companies in New Mexico's 1st congressional district 4 Energy Generation Facilities in New Mexico's 1st congressional district US Recovery Act Smart Grid Projects in New Mexico's 1st congressional district Ktech Corporation Smart Grid Demonstration Project Public Service Company of New Mexico Smart Grid Demonstration Project Registered Research Institutions in New Mexico's 1st congressional district

405

New Jersey's 12th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

12th congressional district: Energy Resources 12th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in New Jersey. Contents 1 Registered Research Institutions in New Jersey's 12th congressional district 2 Registered Networking Organizations in New Jersey's 12th congressional district 3 Registered Energy Companies in New Jersey's 12th congressional district 4 Registered Financial Organizations in New Jersey's 12th congressional district Registered Research Institutions in New Jersey's 12th congressional district Stone & McCarthy Research Associates Registered Networking Organizations in New Jersey's 12th congressional district New Jersey's Clean Energy Program

406

New York's 13th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

3th congressional district 3th congressional district 2 Registered Research Institutions in New York's 13th congressional district 3 Registered Policy Organizations in New York's 13th congressional district 4 Registered Energy Companies in New York's 13th congressional district 5 Registered Financial Organizations in New York's 13th congressional district 6 Utility Companies in New York's 13th congressional district US Recovery Act Smart Grid Projects in New York's 13th congressional district Consolidated Edison Company of New York, Inc. Smart Grid Demonstration Project Consolidated Edison Company of New York, Inc. Smart Grid Project Registered Research Institutions in New York's 13th congressional district Endeavor Global GlobalData United Nations Development Programme (UNDP) Vencon Management, Inc

407

Ohio's 12th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

2th congressional district: Energy Resources 2th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Ohio. Contents 1 US Recovery Act Smart Grid Projects in Ohio's 12th congressional district 2 Registered Networking Organizations in Ohio's 12th congressional district 3 Registered Policy Organizations in Ohio's 12th congressional district 4 Registered Energy Companies in Ohio's 12th congressional district 5 Utility Companies in Ohio's 12th congressional district US Recovery Act Smart Grid Projects in Ohio's 12th congressional district City of Westerville, OH Smart Grid Project Columbus Southern Power Company (doing business as AEP Ohio) Smart Grid Demonstration Project

408

Massachusetts's 6th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

6th congressional district: Energy Resources 6th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Massachusetts. Contents 1 US Recovery Act Smart Grid Projects in Massachusetts's 6th congressional district 2 Registered Networking Organizations in Massachusetts's 6th congressional district 3 Registered Energy Companies in Massachusetts's 6th congressional district 4 Registered Financial Organizations in Massachusetts's 6th congressional district 5 Utility Companies in Massachusetts's 6th congressional district US Recovery Act Smart Grid Projects in Massachusetts's 6th congressional district Honeywell International, Inc Smart Grid Project Marblehead Municipal Light Department Smart Grid Project

409

Texas's 21st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas. Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 21st congressional district 2 Registered Research Institutions in Texas's 21st congressional district 3 Registered Networking Organizations in Texas's 21st congressional district 4 Registered Policy Organizations in Texas's 21st congressional district 5 Registered Energy Companies in Texas's 21st congressional district 6 Registered Financial Organizations in Texas's 21st congressional district 7 Utility Companies in Texas's 21st congressional district US Recovery Act Smart Grid Projects in Texas's 21st congressional district Center for the Commercialization of Electric Technologies Smart Grid Demonstration Project Pecan Street Project, Inc. Smart Grid Demonstration Project Registered Research Institutions in Texas's 21st congressional district

410

South Dakota's At-large congressional district: Energy Resources | Open  

Open Energy Info (EERE)

Dakota's At-large congressional district: Energy Resources Dakota's At-large congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in South Dakota. Contents 1 US Recovery Act Smart Grid Projects in South Dakota's At-large congressional district 2 Registered Research Institutions in South Dakota's At-large congressional district 3 Registered Policy Organizations in South Dakota's At-large congressional district 4 Registered Energy Companies in South Dakota's At-large congressional district 5 Utility Companies in South Dakota's At-large congressional district US Recovery Act Smart Grid Projects in South Dakota's At-large congressional district Black Hills Power, Inc. Smart Grid Project

411

Pennsylvania's 13th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Pennsylvania's 13th congressional district: Energy Resources Pennsylvania's 13th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Pennsylvania. Contents 1 US Recovery Act Smart Grid Projects in Pennsylvania's 13th congressional district 2 Registered Energy Companies in Pennsylvania's 13th congressional district 3 Registered Financial Organizations in Pennsylvania's 13th congressional district 4 Utility Companies in Pennsylvania's 13th congressional district US Recovery Act Smart Grid Projects in Pennsylvania's 13th congressional district PECO Energy Company Smart Grid Project Registered Energy Companies in Pennsylvania's 13th congressional district Advanced Renewables LLC

412

New York's 10th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

0th congressional district 0th congressional district 2 Registered Research Institutions in New York's 10th congressional district 3 Registered Policy Organizations in New York's 10th congressional district 4 Registered Energy Companies in New York's 10th congressional district 5 Registered Financial Organizations in New York's 10th congressional district 6 Utility Companies in New York's 10th congressional district US Recovery Act Smart Grid Projects in New York's 10th congressional district Consolidated Edison Company of New York, Inc. Smart Grid Demonstration Project Consolidated Edison Company of New York, Inc. Smart Grid Project Registered Research Institutions in New York's 10th congressional district Endeavor Global GlobalData United Nations Development Programme (UNDP) Vencon Management, Inc

413

Virginia's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Registered Research Institutions in Virginia's 5th congressional district Registered Research Institutions in Virginia's 5th congressional district 2 Registered Networking Organizations in Virginia's 5th congressional district 3 Registered Energy Companies in Virginia's 5th congressional district 4 Energy Generation Facilities in Virginia's 5th congressional district Registered Research Institutions in Virginia's 5th congressional district The Global Innovation Commons Registered Networking Organizations in Virginia's 5th congressional district Virginia Energy Project Registered Energy Companies in Virginia's 5th congressional district Aker Wade Power Technologies LLC Apex Wind Energy Inc Fiberight LLC Greenlight Biofuels Greenlight Energy Resources Inc GER Multitrade Biomass Holdings LLC Sol Sage Energy Energy Generation Facilities in Virginia's 5th congressional district

414

District of Columbia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Columbia: Energy Resources Columbia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 4138106 This article is a stub. You can help OpenEI by expanding it. The District of Columbia is the capital of the United States of America. Contents 1 State Energy Program Funding 2 Related Information 2.1 US Recovery Act Smart Grid Projects in District of Columbia 2.2 Registered Research Institutions in District of Columbia 2.3 Registered Networking Organizations in District of Columbia 2.4 Registered Policy Organizations in District of Columbia 2.5 Registered Energy Companies in District of Columbia 2.6 Registered Financial Organizations in District of Columbia 2.7 Energy Incentives for District of Columbia 2.8 Utility Companies in District of Columbia 3 References

415

Ozone (o3) efficacy on reduction of phytophthora capsici in recirculated horticultural irrigation water  

E-Print Network (OSTI)

Microorganisms that cause plant disease have been isolated in recirculated irrigation water and increase the risks of disease incidence in horticultural operations. Ozone is an effective oxidizer used to disinfect drinking water supplies and treat industrial wastewater. The objective of this research was to investigate using ozone gas as part of a strategy to reduce the incidence of Phytophthora deBary in recirculated irrigation water. An isolate of Phytophthora capsici Leonian was cultured to induce sporulation. Spore dilutions were placed in aliquots of reverse osmosis water and bubbled with ozone gas (O3) to concentrations of 0 to 1.5 mgL-1. Ozonated samples were plated and observed for colony forming units. Increasing ozone concentrations reduced the number of colony forming units to 0 at 1.5 mg L-1 03. Turbidity effects on efficacy on Phytophthora capsici were tested using bentonite clay at 0 to 2.0 nephelometric turbidity units and ozone concentrations of 0 to 1.5 mg L-1. Increasing bentonite did not affect the efficacy of increasing ozone concentrations on reducing colony formation to 0 at 1.5 mgL-1 O3. Bioassays using Phytophthora capsici on Capsicum annuum L. seedlings confirmed apparent pathogenicity. Reverse osmosis water, containing a soluble fertilizer at 0 to 300 mg L-1 N, was ozonated to concentrations of 0 to 1.5 mgL-1 O3 and used to irrigate Chrysanthemum x morifolium T. de Romatuelle. Increasing ozone concentrations did not interact with increasing fertilizer levels to affect the final growth parameters. Chrysanthemum exposed to ozone gas concentrations of 0.5 to 1.5 mgL-1 showed symptomatic ozone damage. Complete soluble fertilizer solutions with micronutrients were ozonated from 0 to 1.5 mgL-1 O3 and analysed for nutrient content. Increasing ozone levels did not interact with fertilizers to affect macronutrients. Increasing ozone interacted with iron at a high fertilizer level. Ozone did not affect the efficacy of paclobutralzol in controlling growth in Viola x wittrockiana. Ozone was effective in controlling Phytophthora capsici in recirculated irrigation water with minimum impact on plant growth. Adjustments in fertility regiemes may be needed to counteract the oxidizing affect of ozone on micronutrients.

McDonald, Garry Vernon

2007-05-01T23:59:59.000Z

416

Definitions for PADD: Petroleum Administration for Defense Districts  

Gasoline and Diesel Fuel Update (EIA)

PADD Definitions PADD Definitions PADD: Petroleum Administration for Defense Districts PAD District 1 (East Coast) is composed of the following three subdistricts: Subdistrict 1A (New England): Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont. Subdistrict 1B (Central Atlantic): Delaware, District of Columbia, Maryland, New Jersey, New York, Pennsylvania. Subdistrict 1C (Lower Atlantic): Florida, Georgia, North Carolina, South Carolina, Virginia, West Virginia. PAD District 2 (Midwest): Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, Missouri, Nebraska, North Dakota, South Dakota, Ohio, Oklahoma, Tennessee, Wisconsin. PAD District 3 (Gulf Coast): Alabama, Arkansas, Louisiana, Mississippi, New Mexico, Texas. PAD District 4 (Rocky Mountain): Colorado, Idaho, Montana, Utah, Wyoming.

417

Property Assessed Clean Energy Financing (District of Columbia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Assessed Clean Energy Financing (District of Columbia) Property Assessed Clean Energy Financing (District of Columbia) Property Assessed Clean Energy Financing (District of Columbia) < Back Eligibility Commercial Industrial Local Government Multi-Family Residential Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Other Design & Remodeling Windows, Doors, & Skylights Construction Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Solar Program Info State District of Columbia Program Type PACE Financing Provider District Department of the Environment The District of Columbia offers a commercial Property Assessed Clean Energy (PACE) program. In order to receive financing through the commercial PACE

418

Pennsylvania's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Pennsylvania. Pennsylvania. Contents 1 US Recovery Act Smart Grid Projects in Pennsylvania's 1st congressional district 2 Registered Energy Companies in Pennsylvania's 1st congressional district 3 Registered Financial Organizations in Pennsylvania's 1st congressional district 4 Utility Companies in Pennsylvania's 1st congressional district US Recovery Act Smart Grid Projects in Pennsylvania's 1st congressional district PECO Energy Company Smart Grid Project Registered Energy Companies in Pennsylvania's 1st congressional district Advanced Renewables LLC Aircuity Inc AlumiFuel Power Inc Biofuel Advanced Research and Development LLC BARD BlackGold Biofuels Blue Hill Investment Partners LLC CDI Corporation Chameleon Optics Inc Clean Markets Energy Cooperative Association of Pennsylvania

419

Major Source Permits (District of Columbia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Source Permits (District of Columbia) Major Source Permits (District of Columbia) Major Source Permits (District of Columbia) < Back Eligibility Utility Commercial Industrial Program Info State District of Columbia Program Type Environmental Regulations Provider District Department of the Environment The District reviews designs for new pollution sources and design modifications for existing sources. Permits are issued to allow sources to emit limited and specified amounts of pollution as allowed by air quality laws and regulations. Major sources include power plants, heating plants, and large printing facilities. Three types of permits are issued: pre-construction review permits; new source review permits; and operating permits. These permits include conditions intended to minimize emissions of

420

Clean Cities: Capital District Clean Communities (Albany) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Capital District Clean Communities (Albany) Coalition Capital District Clean Communities (Albany) Coalition The Capital District Clean Communities (Albany) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Capital District Clean Communities (Albany) coalition Contact Information Jennifer Ceponis 518-458-2161 jceponis@cdtcmpo.org Coalition Website Clean Cities Coordinator Jennifer Ceponis Photo of Jennifer Ceponis Jennifer Ceponis has been the coordinator of Capital District Clean Communities Coalition since 2012. Ceponis is a Senior Transportation Planner at the Capital District Transportation Committee (CDTC), where she worked since 2008 on bicycle and pedestrian planning, transportation demand management programs and community planning. The Clean Communities Coalition

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Norwalk Third Taxing District | Open Energy Information  

Open Energy Info (EERE)

Norwalk Third Taxing District Norwalk Third Taxing District Jump to: navigation, search Name Norwalk Third Taxing District Place Connecticut Utility Id 13825 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL SERVICE Commercial GREEN ENERGY OPTION RESIDENCE Residential SECURITY LIGHTING, HPS 100 Lighting SECURITY LIGHTING, HPS 250 Lighting SECURITY LIGHTING, HPS 400 Lighting SECURITY LIGHTING, HPS 70 Lighting SECURITY LIGHTING, LPS 135 Lighting SECURITY LIGHTING, LPS 180 Lighting SECURITY LIGHTING, LPS 35 Lighting

422

Lassen Municipal Utility District | Open Energy Information  

Open Energy Info (EERE)

Municipal Utility District Municipal Utility District Jump to: navigation, search Name Lassen Municipal Utility District Place California Utility Id 10724 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agricultural Pumping Commercial Domestic Residential General Service (Non-Demand) Commercial General Service Metered Demand Commercial Industrial Industrial Outdoor Area Lighting 100W Lighting Outdoor Area Lighting 200W Lighting Standby Reactive Rate Commercial Average Rates

423

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States » District of Columbia United States » District of Columbia District of Columbia October 16, 2013 Pacific Power - FinAnswer Express Pacific Power's FinAnswer Express Program includes incentives and technical assistance for lighting, HVAC and other equipment upgrades that increase energy efficiency and exceed code requirements in commercial and industrial facilities. Both retrofits of existing equipment and new construction projects are eligible for incentives. For retrofits, the utility may need to verify existing equipment. Prescriptive rebates and custom incentives calculated from energy savings are available. October 16, 2013 Pacific Power - Energy FinAnswer Pacific Power's Energy FinAnswer program provides cash incentives to help its commercial and industrial customers improve their heating, cooling,

424

Planning analyses for geothermal district heating  

DOE Green Energy (OSTI)

Methodology and data bases are described which can provide a comprehensive planning assessment of the potential for geothermal district heating in any US market. This economic systems model encompasses life-cycle costing over a period of rising competitive fuel prices, it addresses the expansion and financing of a district system over time, and it includes an overall optimization of system design. The elemental area for all analyses is the census tract, for which published data allow estimation of residential and commercial heating demands, building retrofit requirements, and competitive fuel consumption and cost. A system type design, an appropriate hot water district piping system, and costing of heat supply is performed for groups of contiguous tracts in any urban market. Groups are aggregated, in decreasing benefit to cost order, to achieve optimal systems. A specific application for Salt Lake City, Utah, is also described.

Tessmer, R.G. Jr.; Karkheck, J.

1979-12-01T23:59:59.000Z

425

Sacramento Municipal Utility District | Open Energy Information  

Open Energy Info (EERE)

Municipal Utility District Municipal Utility District (Redirected from Sacramento Municipal Utility District (SMUD)) Jump to: navigation, search Name Sacramento Municipal Util Dist Place Sacramento, California Website www.smud.org Utility Id 16534 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration

426

Pascoag Utility District | Open Energy Information  

Open Energy Info (EERE)

Pascoag Utility District Pascoag Utility District Jump to: navigation, search Name Pascoag Utility District Place Rhode Island Utility Id 14537 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial and Industrial (unbundled service) Large Commercial and Industrial - Standard Offer (bundled) Large Commercial and Industrial Seasonal (unbundled) Large Commercial and Industrial Seasonal Standard Offer (bundled) Public and Private Lighting - Mercury - 175 watt Lighting

427

Dawson Power District | Open Energy Information  

Open Energy Info (EERE)

Power District Power District Jump to: navigation, search Name Dawson Power District Place Nebraska Utility Id 4911 Utility Location Yes Ownership P NERC Location MRO NERC MRO Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A-Rate General Service (RATE CODE 01, 11) Commercial A-Rate General Service-Seasonal Commercial AREA LIGHTING SERVICE: 100 watt HPS 15 - Metered Rate Lighting AREA LIGHTING SERVICE: 100 watt HPS 15 - Unmetered Rate Lighting AREA LIGHTING SERVICE: 175 watt MV 5 - Metered Lighting

428

Definition: District chilled water | Open Energy Information  

Open Energy Info (EERE)

chilled water chilled water Jump to: navigation, search Dictionary.png District chilled water Water chilled outside of a building in a central plant and piped into the building as an energy source for cooling. Chilled water may be purchased from a utility or provided by a central physical plant in a separate building that is part of the same multibuilding facility (e.g. a hospital complex or university).[1][2] View on Wikipedia Wikipedia Definition Related Terms District heat References ↑ http://205.254.135.24/tools/glossary/index.cfm?id=D ↑ http://buildingsdatabook.eren.doe.gov/Glossary.aspx#Tech Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:District_chilled_water&oldid=423381"

429

Omaha Public Power District | Open Energy Information  

Open Energy Info (EERE)

Omaha Public Power District Omaha Public Power District Jump to: navigation, search Name Omaha Public Power District Place Nebraska Utility Id 14127 Utility Location Yes Ownership P NERC Location MRO NERC MRO Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile

430

Water and energy conservation through efficient irrigation management. Project completion report, January 1, 1975-December 1976  

SciTech Connect

An evaluation was made of corn (Zea mays L.) and grain sorghum (Sorghum bicolor (L) Moench) yield and water use efficiency as influenced by irrigation timing. The study was located at Tribune (mean annual rainfall of 17.0 inches) and Manhattan, (mean annual rainfall of 33.5 inches) Kansas. Treatments consisted of no in-season irrigation, a single in-season irrigation at one of three different growth stages, and irrigating at each of the three selected growth stages. Selected growth stages in corn were pre-tassel, silk emergence, and blister; in grain sorghum they were boot, half-bloom, and soft-dough. Each irrigation was 4 inches at Manhattan and 6 inches at Tribune. All Tribune plots received a pre-plant irrigation in April of each year. Water was applied to basin plots using gated pipe. With no in-season irrigation, the 3-year mean grain sorghum yields were greater than corn yields at both Manhattan and Tribune. The largest 3-year mean yield for corn receiving a single in-season irrigation was obtained with the irrigation during silk emergence at both Manhattan and Tribune. Grain sorghum yields from the single in-season irrigation treatments were similar and presented no single time that tended to be superior during the three study years. Corn responded well to the three in-season irrigations. The grain sorghum yield increase for plots receiving three in-season irrigations as opposed to those receiving only one in-season irrigation is insufficient to justify the two additional irrigations.

Stone, L.R.

1977-08-01T23:59:59.000Z

431

Geothermal district heating: basics to success  

DOE Green Energy (OSTI)

A district heating system using geothermal energy is a viable and economic option in many locations. A successful system, however, is dependent upon a variety of factors, and it is the purpose of this presentation to accent those items that are proving to have significant impact upon the successful operation of geothermal district heating systems. (These lessons can also apply to other sources of energy.) The six major basics to success that are discussed in this paper are economic viability, an adequate geothermal resource, simplicity of design, a closed loop system, a local champion, and good public relations.

Lunis, B.C.

1985-01-01T23:59:59.000Z

432

Texas's 8th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas. Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 8th congressional district 2 Registered Research Institutions in Texas's 8th congressional district 3 Registered Energy Companies in Texas's 8th congressional district 4 Registered Financial Organizations in Texas's 8th congressional district 5 Utility Companies in Texas's 8th congressional district US Recovery Act Smart Grid Projects in Texas's 8th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 8th congressional district Institute for Energy Research Registered Energy Companies in Texas's 8th congressional district Air and Liquid Advisors ALA American Electric Technologies Inc American Photovoltaics

433

New York's 14th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

New York. New York. Contents 1 US Recovery Act Smart Grid Projects in New York's 14th congressional district 2 Registered Research Institutions in New York's 14th congressional district 3 Registered Policy Organizations in New York's 14th congressional district 4 Registered Energy Companies in New York's 14th congressional district 5 Registered Financial Organizations in New York's 14th congressional district 6 Utility Companies in New York's 14th congressional district US Recovery Act Smart Grid Projects in New York's 14th congressional district Consolidated Edison Company of New York, Inc. Smart Grid Demonstration Project Consolidated Edison Company of New York, Inc. Smart Grid Project Registered Research Institutions in New York's 14th congressional district Endeavor Global

434

Louisiana's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

2nd congressional district 2nd congressional district 2 Registered Energy Companies in Louisiana's 2nd congressional district 3 Energy Incentives for Louisiana's 2nd congressional district 4 Utility Companies in Louisiana's 2nd congressional district US Recovery Act Smart Grid Projects in Louisiana's 2nd congressional district Entergy New Orleans, Inc. Smart Grid Project Entergy Services, Inc. Smart Grid Project Registered Energy Companies in Louisiana's 2nd congressional district GT Energy Green Coast Enterprises New Orleans Preservation Research Center Sun Energy Group LLC Wayne Troyer & Associates Energy Incentives for Louisiana's 2nd congressional district Climate Action Plan (New Orleans) JOB1 Workforce Development and Business Support (New Orleans, Louisiana) Net Metering (New Orleans, Louisiana)

435

Utah's 1st congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Utah. US Recovery Act Smart Grid Projects in Utah's 1st congressional district Western...

436

Florida's 6th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Florida's 6th congressional district Florida's 6th congressional district 2 Registered Networking Organizations in Florida's 6th congressional district 3 Registered Energy Companies in Florida's 6th congressional district 4 Utility Companies in Florida's 6th congressional district US Recovery Act Smart Grid Projects in Florida's 6th congressional district City of Leesburg, Florida Smart Grid Project JEA Smart Grid Project Registered Networking Organizations in Florida's 6th congressional district North Florida Global Warming Study Group Registered Energy Companies in Florida's 6th congressional district American Solar Energy Barry Rutenberg and Associates Battery Park Industries Inc formerly Moltech Power Systems Inc Florida Home Energy and Resources Organization (Florida H.E.R.O.) G.W. Robinson Homes

437

North Carolina's 13th congressional district: Energy Resources | Open  

Open Energy Info (EERE)

th congressional district: Energy Resources th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in North Carolina. Contents 1 US Recovery Act Smart Grid Projects in North Carolina's 13th congressional district 2 Registered Research Institutions in North Carolina's 13th congressional district 3 Registered Policy Organizations in North Carolina's 13th congressional district 4 Registered Energy Companies in North Carolina's 13th congressional district US Recovery Act Smart Grid Projects in North Carolina's 13th congressional district Progress Energy Service Company, LLC Smart Grid Project Registered Research Institutions in North Carolina's 13th congressional

438

Missouri School District Charges Up | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missouri School District Charges Up Missouri School District Charges Up Missouri School District Charges Up September 8, 2010 - 11:30am Addthis Lindsay Gsell What are the key facts? Lee's Summit R-7 School District gets four electric vehicles (EV) District was spending $2.25 per gallon of diesel, EV charging equal 15 to 20 cents per gallon $330,000 Recovery Act award helps District improve schools' air quality Missouri's Lee's Summit R-7 school district's distribution fleet was tired. Many of the vehicles had racked up more than 300,000 miles and made frequent trips to the shop to repair the 20 plus-year-old parts. However this August, with $330,000 in Recovery Act funding from the Clean Cities program, the district sold their old trucks and welcomed a new fleet of four all-electric medium-duty delivery trucks. The EV distribution fleet

439

Louisiana's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

1st congressional district 1st congressional district 2 Registered Energy Companies in Louisiana's 1st congressional district 3 Energy Incentives for Louisiana's 1st congressional district 4 Utility Companies in Louisiana's 1st congressional district US Recovery Act Smart Grid Projects in Louisiana's 1st congressional district Entergy New Orleans, Inc. Smart Grid Project Entergy Services, Inc. Smart Grid Project Registered Energy Companies in Louisiana's 1st congressional district GT Energy Green Coast Enterprises New Orleans Preservation Research Center Sun Energy Group LLC Wayne Troyer & Associates Energy Incentives for Louisiana's 1st congressional district Climate Action Plan (New Orleans) JOB1 Workforce Development and Business Support (New Orleans, Louisiana) Net Metering (New Orleans, Louisiana)

440

New York's 15th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

York. York. Contents 1 US Recovery Act Smart Grid Projects in New York's 15th congressional district 2 Registered Research Institutions in New York's 15th congressional district 3 Registered Policy Organizations in New York's 15th congressional district 4 Registered Energy Companies in New York's 15th congressional district 5 Registered Financial Organizations in New York's 15th congressional district 6 Utility Companies in New York's 15th congressional district US Recovery Act Smart Grid Projects in New York's 15th congressional district Consolidated Edison Company of New York, Inc. Smart Grid Demonstration Project Consolidated Edison Company of New York, Inc. Smart Grid Project Registered Research Institutions in New York's 15th congressional district Endeavor Global

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Texas's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas. Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 7th congressional district 2 Registered Research Institutions in Texas's 7th congressional district 3 Registered Energy Companies in Texas's 7th congressional district 4 Registered Financial Organizations in Texas's 7th congressional district 5 Utility Companies in Texas's 7th congressional district US Recovery Act Smart Grid Projects in Texas's 7th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 7th congressional district Institute for Energy Research Registered Energy Companies in Texas's 7th congressional district Air and Liquid Advisors ALA American Electric Technologies Inc American Photovoltaics

442

North Carolina's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

st congressional district: Energy Resources st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in North Carolina. Registered Policy Organizations in North Carolina's 1st congressional district The Biofuels Center of North Carolina Registered Energy Companies in North Carolina's 1st congressional district Biofuels Center of North Carolina Field Controls Torpedo Speciality Wire Inc Energy Generation Facilities in North Carolina's 1st congressional district Craven County Biomass Facility Retrieved from "http://en.openei.org/w/index.php?title=North_Carolina%27s_1st_congressional_district&oldid=196349" Categories: Places Stubs Congressional Districts

443

Florida's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Florida. Florida. Contents 1 US Recovery Act Smart Grid Projects in Florida's 2nd congressional district 2 Registered Research Institutions in Florida's 2nd congressional district 3 Registered Energy Companies in Florida's 2nd congressional district 4 Energy Generation Facilities in Florida's 2nd congressional district 5 Utility Companies in Florida's 2nd congressional district US Recovery Act Smart Grid Projects in Florida's 2nd congressional district City of Quincy, FL Smart Grid Project City of Tallahassee Smart Grid Project Talquin Electric Cooperative, Inc. Smart Grid Project Registered Research Institutions in Florida's 2nd congressional district SunCity Registered Energy Companies in Florida's 2nd congressional district Center for Advanced Power Systems CAPS

444

BLM Twin Falls District Office | Open Energy Information  

Open Energy Info (EERE)

Twin Falls District Office Jump to: navigation, search Name BLM Twin Falls District Office Address 2536 Kimberly Road Place Twin Falls, ID Zip 83301 Phone number 208-735-2060...

445

Ohio's 17th congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Ohio. US Recovery Act Smart Grid Projects in Ohio's 17th congressional district FirstEnergy...

446

Ohio's 1st congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Ohio. Registered Energy Companies in Ohio's 1st congressional district AHL-TECH Ameridian...

447

Texas's 31st congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Texas. Registered Energy Companies in Texas's 31st congressional district EEStor Global Flex...

448

Texas's 23rd congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Texas. Registered Energy Companies in Texas's 23rd congressional district GCK Technology Inc...

449

Texas's 28th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Texas. Registered Energy Companies in Texas's 28th congressional district GCK Technology Inc...

450

Hess Retail Natural Gas and Elec. Acctg. (District of Columbia...  

Open Energy Info (EERE)

District of Columbia) Jump to: navigation, search Name Hess Retail Natural Gas and Elec. Acctg. Place District of Columbia Utility Id 22509 References EIA Form EIA-861 Final Data...

451

Michigan's 2nd congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Michigan. Registered Energy Companies in Michigan's 2nd congressional district E Village LLC...

452

Michigan's 13th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Michigan. US Recovery Act Smart Grid Projects in Michigan's 13th congressional district...

453

Texas--RRC District 8 Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 8 Shale Production (Billion Cubic Feet) Texas--RRC District 8 Shale Production (Billion Cubic Feet) Decade Year-0...

454

Texas--RRC District 6 Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 6 Shale Production (Billion Cubic Feet) Texas--RRC District 6 Shale Production (Billion Cubic Feet) Decade Year-0...

455

Texas--RRC District 9 Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 9 Shale Production (Billion Cubic Feet) Texas--RRC District 9 Shale Production (Billion Cubic Feet) Decade Year-0...

456

Texas--RRC District 1 Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 1 Shale Production (Billion Cubic Feet) Texas--RRC District 1 Shale Production (Billion Cubic Feet) Decade Year-0...

457

Texas--RRC District 5 Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 5 Shale Production (Billion Cubic Feet) Texas--RRC District 5 Shale Production (Billion Cubic Feet) Decade Year-0...

458

Table 13. U.S. Coal Exports by Customs District  

Annual Energy Outlook 2012 (EIA)

Coal Exports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 13. U.S. Coal Exports by Customs District...

459

Metropolitan Water District of S CA | Open Energy Information  

Open Energy Info (EERE)

Water District of S CA Jump to: navigation, search Name Metropolitan Water District of S CA Place California Utility Id 12397 Utility Location Yes Ownership S NERC Location WECC...

460

Texas's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas. Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 2nd congressional district 2 Registered Research Institutions in Texas's 2nd congressional district 3 Registered Energy Companies in Texas's 2nd congressional district 4 Registered Financial Organizations in Texas's 2nd congressional district 5 Utility Companies in Texas's 2nd congressional district US Recovery Act Smart Grid Projects in Texas's 2nd congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 2nd congressional district Institute for Energy Research Registered Energy Companies in Texas's 2nd congressional district Agribiofuels LLC Air and Liquid Advisors ALA American Electric Technologies Inc

Note: This page contains sample records for the topic "irrigation district effective" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

New York's 17th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

York. York. Contents 1 US Recovery Act Smart Grid Projects in New York's 17th congressional district 2 Registered Research Institutions in New York's 17th congressional district 3 Registered Policy Organizations in New York's 17th congressional district 4 Registered Energy Companies in New York's 17th congressional district 5 Registered Financial Organizations in New York's 17th congressional district 6 Utility Companies in New York's 17th congressional district US Recovery Act Smart Grid Projects in New York's 17th congressional district Consolidated Edison Company of New York, Inc. Smart Grid Demonstration Project Consolidated Edison Company of New York, Inc. Smart Grid Project Registered Research Institutions in New York's 17th congressional district Endeavor Global

462

New York's 8th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

New York. New York. Contents 1 US Recovery Act Smart Grid Projects in New York's 8th congressional district 2 Registered Research Institutions in New York's 8th congressional district 3 Registered Policy Organizations in New York's 8th congressional district 4 Registered Energy Companies in New York's 8th congressional district 5 Registered Financial Organizations in New York's 8th congressional district 6 Utility Companies in New York's 8th congressional district US Recovery Act Smart Grid Projects in New York's 8th congressional district Consolidated Edison Company of New York, Inc. Smart Grid Demonstration Project Consolidated Edison Company of New York, Inc. Smart Grid Project Registered Research Institutions in New York's 8th congressional district Endeavor Global

463

Tennessee's 4th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Tennessee. Tennessee. Contents 1 US Recovery Act Smart Grid Projects in Tennessee's 4th congressional district 2 Registered Research Institutions in Tennessee's 4th congressional district 3 Registered Energy Companies in Tennessee's 4th congressional district 4 Utility Companies in Tennessee's 4th congressional district US Recovery Act Smart Grid Projects in Tennessee's 4th congressional district Electric Power Board of Chattanooga Smart Grid Project Registered Research Institutions in Tennessee's 4th congressional district Energy Technology Data Exchange Oak Ridge National Laboratory Registered Energy Companies in Tennessee's 4th congressional district Big Biodiesel LLC Dogwood Energy LLC Eco Energy Inc Oak Ridge Micro Energy Inc SIAG Aerisyn LLC UtiliFlex Utility Companies in Tennessee's 4th congressional district

464

Illinois' 19th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Illinois. Registered Energy Companies in Illinois' 19th congressional district DarkStar VI...

465

Texas's 16th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Texas. US Recovery Act Smart Grid Projects in Texas's 16th congressional district El Paso...

466

Texas's 19th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Texas. Registered Energy Companies in Texas's 19th congressional district Big Daddy s...

467

Retail Unbundling - District of Columbia  

U.S. Energy Information Administration (EIA)

These three alternative suppliers are: ECONergy Energy Company, Pepco Energy Services, ... Washington Gas Light tariff GT97-3 effective 10/22/99.

468

Table 5b. Relative Standard Errors for Total District Heat Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

b. Relative Standard Errors for Total District Heat Consumption per b. Relative Standard Errors for Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption (trillion Btu) District Heat Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 11 16 16 16 Building Floorspace (Square Feet) 1,001 to 5,000 27 78 76 76 5,001 to 10,000 38 60 51 51 10,001 to 25,000 18 43 36 35 25,001 to 50,000 24 68 51 51 50,001 to 100,000 18 40 30 30 100,001 to 200,000 27 33 35 36 200,001 to 500,000 22 31 26 27 Over 500,000 42 26 14 10 Principal Building Activity Education 17 29 22 23 Food Sales and Service 67 93 207 150 Health Care 35 26 25 14 Lodging 30 40 30 29 Mercantile and Service 40 74 59 58 Office 23 28 26 27 Public Assembly 25 33 25 26 Public Order and Safety

469

Local Option - Renewable Energy Financing District/Solar Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Improvement Special Assessments Local Option - Renewable Energy Financing DistrictSolar Energy Improvement Special Assessments < Back Eligibility Commercial...

470

Washington's 6th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Registered Energy Companies in Washington's 6th congressional district Inventure Chemical Technology Structural Insulated Panel Association (SIPA) Energy Generation Facilities...

471

Refining District Minnesota-Wisconsin-North Dakota-South Dakota ...  

U.S. Energy Information Administration (EIA)

Refining District Minnesota-Wisconsin-North Dakota-South Dakota Gas Plant Production of Propane and Propylene (Thousand Barrels)

472

Refining District Minnesota-Wisconsin-North Dakota-South Dakota ...  

U.S. Energy Information Administration (EIA)

Refining District Minnesota-Wisconsin-North Dakota-South Dakota Pentanes Plus Stocks at Natural Gas Processing Plants (Thousand Barrels)

473

Refining District Oklahoma-Kansas-Missouri Refinery and ...  

U.S. Energy Information Administration (EIA)

Refining District Oklahoma-Kansas-Missouri Refinery and Blender Net Input of Fuel Ethanol (Thousand Barrels per Day)

474

Refining District Oklahoma-Kansas-Missouri Ethane-Ethylene ...  

U.S. Energy Information Administration (EIA)

Refining District Oklahoma-Kansas-Missouri Ethane-Ethylene Stocks at Natural Gas Processing Plants (Thousand Barrels)

475

Texas - RRC District 5 Natural Gas, Wet After Lease Separation ...  

U.S. Energy Information Administration (EIA)

Texas - RRC District 5 Natural Gas, Wet After Lease Separation Reserves New Field Discoveries (Billion Cubic Feet)

476

Texas - RRC District 4 Onshore Natural Gas, Wet After Lease ...  

U.S. Energy Information Administration (EIA)

Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation New Reservoir Discoveries in Old Fields (Billion Cubic Feet)

477

Economic Analysis of Alternative Irrigation Technologies: Texas Lower Rio Grande Valley  

E-Print Network (OSTI)

The focus of this study is the economic feasibility of drip irrigation adoption using capital budgeting and quadratic programming techniques. The capital budgeting techniques used in the study are net present value (NPV) and returns above specified costs (RASC). Modified crop enterprise budgets incorporating drip irrigation are developed based on data from Texas AgriLife Extension Service crop enterprise budgets and published literature focusing on costs and returns of drip irrigation. The quadratic programming technique considers risk and incorporates the modified crop enterprise budgets to estimate a cropping pattern that maximizes the net income above specified costs for the region. The RASC per acre for drip-irrigated crops ranged from $56.34 to $1,909.03, while the RASC per acre for flood-irrigated crops ranged from $142.51 to $1,488.12. Flood-irrigated onions, cotton, and sugarcane had higher RASCs per acre, while the RASCs were greater for drip-irrigated grapefruit and oranges. Evaluating the NPV of the crops resulted in similar results; only grapefruit and oranges were economically-feasible drip-irrigated crops. The baseline results identified levels of drip irrigation adoption ranging from 52,000 acres to 64,497 acres as levels of risk were varied. The level of water available at the reservoir suggested minimal impacts on the level of drip-irrigation adoption, but serious implications for the agriculture economy. Several sensitivity scenarios concentrated on the implications of yield response and water savings that result from the adoption of drip irrigation. The greatest amounts of drip-irrigated crops were present when the yield responses were 130% of the flood-irrigated crops with a 20% water savings. As the amount of water available was reduced, the amount of drip-irrigated crops ranged from 46,111 acres to 59,724 acres. Drip irrigation appears to be an economically-viable alternative in the LRGV due to the presence of drip-irrigated crops in the entire myriad of scenarios investigated in this research. If producers are only concerned with the bottom line as provided by the RASC analysis and no other variables such as water availability, risk, and crop rotations affecting the decision making process, only drip-irrigated grapefruit and oranges are economically competitive with conventional irrigation systems.

Wilbourn, Brant 1987-

2012-12-01T23:59:59.000Z

478

Table 20. Coal Imports by Customs District  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Imports by Customs District Coal Imports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 20. Coal Imports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Customs District April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Eastern Total 469,878 331,008 156,004 800,886 350,124 128.7 Baltimore, MD - - 106,118 - 154,318 - Boston, MA 373,985 154,438 - 528,423 51,185 NM Buffalo, NY 44 - - 44 - - New York City, NY 1,373 1,402 487 2,775 507 447.3 Norfolk, VA - 68,891 - 68,891 35,856 92.1 Ogdensburg, NY - 1 12 1 12 -91.7 Portland, ME 42,428 44,547 - 86,975 - - Providence, RI 52,028 61,729 49,387 113,757 108,226 5.1 St. Albans, VT 20

479

Uranium Exploration Report 2007 Cottonwood District, Utah  

E-Print Network (OSTI)

, undertook several field trips to determine the state of the uranium mining industry in Colorado and Utah. These field trips included active mines, abandoned mines, and active mills. Samples from some of the minesMNGN 599 Uranium Exploration Report 2007 Cottonwood District, Utah Erik Hunter Colorado School

480

PAD District / Refinery Location Total Atmospheric Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

Operable Date of Last Operation Date Shutdown Table 11. New, Shutdown and Reactivated Refineries During 2012 a b REACTIVATED PAD District I 185,000 366,700 Monroe Energy LLC Trainer, PA 185,000 366,700 09/12 c SHUTDOWN PAD District I 80,000 47,000 ChevronUSA Inc Perth Amboy, NJ 80,000 47,000 03/08 07/12 PAD District III 16,800 19,500 Western Refining Southwest Inc Bloomfield, NM 16,800 19,500 12/09 11/12 PAD District VI 500,000 1,086,000 Hovensa LLC Kingshill, VI 500,000 1,086,000 02/12 02/12 a b bbl/cd=Barrels per calendar day. bbl/sd=Barrels per stream day. Sources: Energy Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and Form EIA-820, "Annual Refinery Report." c Formerly owned by ConocoPhillips Company.

First Page Previous Page 1 2 3 4 5 6 7 8