National Library of Energy BETA

Sample records for irradiance atmospheric water

  1. Apparatus and method to control atmospheric water vapor composition and concentration during dynamic cooling of biological tissues in conjunction with laser irradiations

    DOE Patents [OSTI]

    Nelson, J. Stuart; Anvari, Bahman; Tanenbaum, B. Samuel; Milner, Thomas E.

    1999-01-01

    Cryogen spray cooling of skin surface with millisecond cryogen spurts is an effective method for establishing a controlled temperature distribution in tissue and protecting the epidermis from nonspecific thermal injury during laser mediated dermatological procedures. Control of humidity level, spraying distance and cryogen boiling point is material to the resulting surface temperature. Decreasing the ambient humidity level results in less ice formation on the skin surface without altering the surface temperature during the cryogen spurt. For a particular delivery nozzle, increasing the spraying distance to 85 millimeters lowers the surface temperature. The methodology comprises establishing a controlled humidity level in the theater of operation of the irradiation site of the biological tissues before and/or during the cryogenic spray cooling of the biological tissue. At cold temperatures calibration was achieved by mounting a thermistor on a thermoelectric cooler. The thermal electric cooler was cooled from from 20.degree. C. to about -20.degree. C. while measuring its infrared emission.

  2. Perspective: Water cluster mediated atmospheric chemistry

    SciTech Connect (OSTI)

    Vaida, Veronica

    2011-07-14

    The importance of water in atmospheric and environmental chemistry initiated recent studies with results documenting catalysis, suppression and anti-catalysis of thermal and photochemical reactions due to hydrogen bonding of reagents with water. Water, even one water molecule in binary complexes, has been shown by quantum chemistry to stabilize the transition state and lower its energy. However, new results underscore the need to evaluate the relative competing rates between reaction and dissipation to elucidate the role of water in chemistry. Water clusters have been used successfully as models for reactions in gas-phase, in aqueous condensed phases and at aqueous surfaces. Opportunities for experimental and theoretical chemical physics to make fundamental new discoveries abound. Work in this field is timely given the importance of water in atmospheric and environmental chemistry.

  3. Inhalation radiotoxicity of irradiated thorium as a heavy water...

    Office of Scientific and Technical Information (OSTI)

    thorium as a heavy water reactor fuel Citation Details In-Document Search Title: Inhalation radiotoxicity of irradiated thorium as a heavy water reactor fuel The online ...

  4. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    SciTech Connect (OSTI)

    Heng, Kevin; Workman, Jared E-mail: jworkman@coloradomesa.edu

    2014-08-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

  5. Calibrating Pyrgeometers Outdoors Independent from the Reference Value of the Atmospheric Longwave Irradiance

    SciTech Connect (OSTI)

    Reda, I.; Hickey, J. R.; Grobner, J.; Andreas, A.; Stoffel, T.

    2006-08-01

    In this article, we describe a method for the calibration of thermopile pyrgeometers in the absence of a reference for measurement of atmospheric longwave irradiance. This is referred to as the incoming longwave irradiance in this article. The method is based on an indoor calibration using a low-temperature blackbody source to obtain the calibration coefficients that determine the pyrgeometer's radiation characteristics. From these coefficients the outgoing irradiance of the pyrgeometer can be calculated. The pyrgeometer is then installed outdoors on an aluminum plate that is connected to a circulating temperature bath. By adjusting the temperature bath to the approximate value of the effective sky temperature, the pyrgeometer's body temperature is lowered changing the pyrgeometer's thermopile output. If the incoming longwave irradiance is stable, the slope of the outgoing irradiance versus the pyrgeometer's thermopile output is the outdoor net irradiance responsivity (RSnet), independent of the absolute value of the atmospheric longwave irradiance. The indoor calibration coefficients and the outdoor RSnet are then used in the pyrgeometer equation to calculate the incoming longwave irradiance. To evaluate this method, the calculated irradiance using the derived coefficients was compared to the irradiance measured using a pyrgeometer with direct traceability to the World Infrared Standard Group (WISG). This is maintained at the Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Switzerland. Based on results from four pyrgeometers calibrations, this method suggests measurement agreement with the WISG to within +/- 3 W/m2 for all sky conditions.

  6. Introducing an Absolute Cavity Pyrgeometer for Improving the Atmospheric Longwave Irradiance Measurement (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Hansen, L.; Zeng, J.

    2012-08-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG. A total of 408 readings was collected over three different clear nights. The calculated irradiance measured by the ACP was 1.5 W/m2 lower than that measured by the two pyrgeometers that are traceable to WISG. Further development and characterization of the ACP might contribute to the effort of improving the uncertainty and traceability of WISG to SI.

  7. Introducing an Absolute Cavity Pyrgeometer (ACP) for Improving the Atmospheric Longwave Irradiance Measurement (Poster)

    SciTech Connect (OSTI)

    Reda, I.; Stoffel, T.

    2012-03-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG.

  8. Effect of long duration UV irradiation on diamondlike carbon surfaces in the presence of a hydrocarbon gaseous atmosphere

    SciTech Connect (OSTI)

    Riedo, A.; Wahlstroem, P.; Scheer, J. A.; Wurz, P.; Tulej, M.

    2010-12-01

    Measurements of the effect of long duration UV irradiation (up to 2905 min) of flight quality diamondlike carbon charge state conversion surfaces for application in space research in the presence of a hydrocarbon atmosphere were done. An isopropanol atmosphere was used for simulating the hydrocarbon gaseous environment for an instrument on a satellite in space. Charge state conversion surfaces are used in neutral particle sensing instruments where neutral atoms have to be ionized prior to the analysis. A narrow-band (126{+-}5 nm) discharge lamp and a broad-band deuterium lamp (112-370 nm) were used as sources of UV radiation. The UV irradiation of a surface results in the desorption of some volatiles present on the surface and the decomposition of others. Desorption of volatiles, mostly water, is observed for both UV sources. The decomposition of the hydrocarbons and the subsequent build-up of a hydrocarbonaceous layer is only observed for the broad-band UV lamp, which is more representative for the space environment. Unfortunately, the hydrocarbonaceous layer cannot be removed thermally, i.e., it is permanent, and causes a degradation of the performance of the charge state conversion surfaces. With the present measurements we can quantify the UV influence at which the degradation of the conversion surfaces becomes noticeable.

  9. Replacement of tritiated water from irradiated fuel storage bay

    SciTech Connect (OSTI)

    Castillo, I.; Boniface, H.; Suppiah, S.; Kennedy, B.; Minichilli, A.; Mitchell, T.

    2015-03-15

    Recently, AECL developed a novel method to reduce tritium emissions (to groundwater) and personnel doses at the NRU (National Research Universal) reactor irradiated fuel storage bay (also known as rod or spent fuel bay) through a water swap process. The light water in the fuel bay had built up tritium that had been transferred from the heavy water moderator through normal fuel transfers. The major advantage of the thermal stratification method was that a very effective tritium reduction could be achieved by swapping a minimal volume of bay water and warm tritiated water would be skimmed off the bay surface. A demonstration of the method was done that involved Computational Fluid Dynamics (CFD) modeling of the swap process and a test program that showed excellent agreement with model prediction for the effective removal of almost all the tritium with a minimal water volume. Building on the successful demonstration, AECL fabricated, installed, commissioned and operated a full-scale system to perform a water swap. This full-scale water swap operation achieved a tritium removal efficiency of about 96%.

  10. Response of the upper atmosphere to variations in the solar soft x-ray irradiance. Ph.D. Thesis

    SciTech Connect (OSTI)

    Bailey, S.M.

    1995-01-01

    Terrestrial far ultraviolet (FUV) airglow emissions have been suggested as a means for remote sensing the structure of the upper atmosphere. The energy which leads to the excitation of FUV airglow emissions is solar irradiance at extreme ultraviolet (EUV) and soft x-ray wavelengths. Solar irradiance at these wavelengths is known to be highly variable; studies of nitric oxide (NO) in the lower thermosphere have suggested a variability of more than an order of magnitude in the solar soft x-ray irradiance. To properly interpret the FUV airglow, the magnitude of the solar energy deposition must be known. Previous analyses have used the electron impact excited Lyman-Birge-Hopfield (LBH) bands of N2 to infer the flux of photoelectrons in the atmosphere and thus to infer the magnitude of the solar irradiance. This dissertation presents the first simultaneous measurements of the FUV airglow, the major atmospheric constituent densities, and the solar EUV and soft x-ray irradiances. The measurements were made on three flights of an identical sounding rocket payload at different levels of solar activity. The linear response in brightness of the LBH bands to variations in solar irradiance is demonstrated. In addition to the N2 LBH bands, atomic oxygen lines at 135.6 and 130.4 nm are also studied. Unlike the LBH bands, these emissions undergo radiative transfer effects in the atmosphere. The OI emission at 135.6 nm is found to be well modeled using a radiative transfer calculation and the known excitation processes. Unfortunately, the assumed processes leading to OI 130.4 nm excitation are found to be insufficient to reproduce the observed variability of this emission. Production of NO in the atmosphere is examined; it is shown that a lower than previously reported variability in the solar soft x-ray irradiance is required to explain the variability of NO.

  11. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    SciTech Connect (OSTI)

    Warneford, Emma S. Dellar, Paul J.

    2014-01-15

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [Equatorial superrotation in shallow atmospheres, Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune

  12. Thermal, tensile and rheological properties of high density polyethylene (HDPE) processed and irradiated by gamma-ray in different atmospheres

    SciTech Connect (OSTI)

    Ferreto, H. F. R. E-mail: ana-feitoza@yahoo.com.br; Oliveira, A. C. F. E-mail: ana-feitoza@yahoo.com.br; Parra, D. F. E-mail: ablugao@ipen.br; Lugo, A. B. E-mail: ablugao@ipen.br; Gaia, R.

    2014-05-15

    The aim of this paper is to investigate structural changes of high density polyethylene (HDPE) modified by ionizing radiation (gamma rays) in different atmospheres. The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. This polymer was irradiated with gamma source of {sup 60}Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h. The changes in molecular structure of HDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere.

  13. Latitudinal survey of middle atmospheric water vapor revealed by shipboard microwave spectroscopy. Master's thesis

    SciTech Connect (OSTI)

    Schrader, M.L.

    1994-05-01

    Water vapor is one of the most important greenhouse gases and is an important tracer of atmospheric motions in the middle atmosphere. It also plays an important role in the chemistry of the middle atmosphere and through its photodissociation by solar radiation, it is the major source of hydrogen escaping to space. Ground-based microwave measurements conducted in the 1980s have provided a fair understanding of the seasonal variation of mesospheric water vapor in the northern hemisphere mid-latitudes, but the global distribution of water vapor in the middle atmosphere is only beginning to be revealed by space-based measurements.

  14. Luminescence imaging of water during proton-beam irradiation for range estimation

    SciTech Connect (OSTI)

    Yamamoto, Seiichi Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2015-11-15

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.

  15. Mechanism of Irradiation Assisted Cracking of Core Components in Light Water Reactors

    SciTech Connect (OSTI)

    Gary S. Was; Michael Atzmon; Lumin Wang

    2003-04-28

    The overall goal of the project is to determine the mechanism of irradiation assisted stress corrosion cracking (IASCC). IASCC has been linked to hardening, microstructural and microchemical changes during irradiation. Unfortunately, all of these changes occur simultaneously and at similar rates during irradiation, making attribution of IASCC to any one of these features nearly impossible to determine. The strategy set forth in this project is to develop means to separate microstructural from microchemical changes to evaluate each separately for their effect on IASCC. In the first part, post irradiation annealing (PIA) treatments are used to anneal the irradiated microstructure, leaving only radiation induced segregation (RIS) for evaluation for its contribution to IASCC. The second part of the strategy is to use low temperature irradiation to produce a radiation damage dislocation loop microstructure without radiation induced segregation in order to evaluate the effect of the dislocation microstructure alone. A radiation annealing model was developed based on the elimination of dislocation loops by vacancy absorption. Results showed that there were indeed, time-temperature annealing combinations that leave the radiation induced segregation profile largely unaltered while the dislocation microstructure is significantly reduced. Proton irradiation of 304 stainless steel irradiated with 3.2 MeV protons to 1.0 or 2.5 dpa resulted in grain boundary depletion of chromium and enrichment of nickel and a radiation damaged microstructure. Post irradiation annealing at temperatures of 500 ? 600C for times of up to 45 min. removed the dislocation microstructure to a greater degree with increasing temperatures, or times at temperature, while leaving the radiation induced segregation profile relatively unaltered. Constant extension rate tensile (CERT) experiments in 288C water containing 2 ppm O2 and with a conductivity of 0.2 mS/cm and at a strain rate of 3 x 10-7 s-1 showed

  16. Posters Scanning Raman Lidar Measurements of Atmospheric Water Vapor and Aerosols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Posters Scanning Raman Lidar Measurements of Atmospheric Water Vapor and Aerosols R. A. Ferrare and K. D. Evans (a) Hughes STX Corporation Lanham, Maryland S. H. Melfi and D. N. Whiteman NASA/Goddard Space Flight Center Greenbelt, Maryland The principal objective of the Department of Energy's (DOE) Atmospheric Radiation Measurement Program (ARM) is to develop a better understanding of the atmospheric radiative balance in order to improve the parameterization of radiative processes in general

  17. Ultrasonic irradiation of deuterium-loaded palladium particles suspended in heavy water

    SciTech Connect (OSTI)

    Jorne, J.

    1996-01-01

    Ultrasonic irradiation of a slurry of deuterium-loaded palladium powder (1 {mu}m) suspended in heavy water causes cavitation and high-speed collisions between the palladium particles. High local temperatures, estimated at above the melting point of palladium (1828 K), cause melting and interparticle fusion. The expectation that such collisions can induce high stresses within the palladium particles and lead to favorable conditions for nuclear cold fusion of the deuterium atoms within the palladium lattice is checked by measuring the neutron rates during ultrasonic irradiation. Several bursts of neutron counting are observed and can be accounted for as background anomalism, although the highest observed neutron rate is about four times the background and cannot be explained as background. The X-ray photoelectron spectroscopy analysis of the deuterium-loaded palladium powders reveals that after ultrasonic irradiation in heavy water, the palladium powder becomes partially oxidized and undergoes some compositional changes. 18 refs., 7 figs., 1 tab.

  18. Mesos-scale modeling of irradiation in pressurized water reactor concrete biological shields

    SciTech Connect (OSTI)

    Le Pape, Yann; Huang, Hai

    2016-01-01

    Neutron irradiation exposure causes aggregate expansion, namely radiation-induced volumetric expansion (RIVE). The structural significance of RIVE on a portion of a prototypical pressurized water reactor (PWR) concrete biological shield (CBS) is investigated by using a meso- scale nonlinear concrete model with inputs from an irradiation transport code and a coupled moisture transport-heat transfer code. RIVE-induced severe cracking onset appears to be triggered by the ini- tial shrinkage-induced cracking and propagates to a depth of > 10 cm at extended operation of 80 years. Relaxation of the cement paste stresses results in delaying the crack propagation by about 10 years.

  19. Continuous Water Vapor Profiles for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Troyan, D

    2006-01-09

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the first quarter of Fiscal Year 2006 to complete a continuous time series of the vertical profile of water vapor for selected 30-day periods from each of the fixed ARM sites. In order to accomplish this metric, a new technique devised to incorporate radiosonde data, microwave radiometer data and analysis information from numerical weather forecast models has been developed. The product of this analysis, referred to as the merged sounding value-added product, includes vertical profiles of atmospheric water vapor concentration and several other important thermodynamic state variables at 1-minute time intervals and 266 vertical levels.

  20. Electron density measurements of atmospheric-pressure non-thermal N{sub 2} plasma jet by Stark broadening and irradiance intensity methods

    SciTech Connect (OSTI)

    Xiao, Dezhi; Shen, Jie; Lan, Yan; Xie, Hongbing; Shu, Xingsheng; Meng, Yuedong; Li, Jiangang; Cheng, Cheng E-mail: paul.chu@cityu.edu.hk; Chu, Paul K. E-mail: paul.chu@cityu.edu.hk

    2014-05-15

    An atmospheric-pressure non-thermal plasma jet excited by high frequency alternating current using nitrogen is developed and the electron density in the active region of this plasma jet is investigated by two different methods using optical emission spectroscopy, Stark broadening, and irradiance intensity method. The irradiance intensity method shows that the average electron density is about 10{sup 20}/m{sup 3} which is slightly smaller than that by the Stark broadening method. However, the trend of the change in the electron density with input power obtained by these two methods is consistent.

  1. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling

    SciTech Connect (OSTI)

    Boone, Eric J.; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B.; Stirm, Brian H.; Pratt, Kerri A.

    2015-07-21

    Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.

  2. Critical analysis of atmospheric turbidity and precipitable water at five Canadian stations

    SciTech Connect (OSTI)

    Garrison, J.; Gueymard, C.

    1997-12-31

    Global and diffuse radiation and surface meteorological measurements at Edmonton, Montreal, Port Hardy, Toronto and Winnipeg for the years 1977--1984 are analyzed to yield estimates of atmospheric precipitable water and turbidity. Three methods of estimating the precipitable water and two methods of estimating the turbidity are used and compared. Measurements of pyranometer response as a function of zenith angle are used to correct the global radiation measurements. Turbidity is corrected for the effect of circumsolar radiation included in the direct radiation obtained from the global and diffuse radiation measurements. A comparison with earlier precipitable water and turbidity results is included.

  3. Inhalation radiotoxicity of irradiated thorium as a heavy water reactor fuel

    SciTech Connect (OSTI)

    Edwards, G.W.R.; Priest, N.D.; Richardson, R.B.

    2013-07-01

    The online refueling capability of Heavy Water Reactors (HWRs), and their good neutron economy, allows a relatively high amount of neutron absorption in breeding materials to occur during normal fuel irradiation. This characteristic makes HWRs uniquely suited to the extraction of energy from thorium. In Canada, the toxicity and radiological protection methods dealing with personnel exposure to natural uranium (NU) spent fuel (SF) are well-established, but the corresponding methods for irradiated thorium fuel are not well known. This study uses software to compare the activity and toxicity of irradiated thorium fuel ('thorium SF') against those of NU. Thorium elements, contained in the inner eight elements of a heterogeneous high-burnup bundle having LEU (Low-enriched uranium) in the outer 35 elements, achieve a similar burnup to NU SF during its residence in a reactor, and the radiotoxicity due to fission products was found to be similar. However, due to the creation of such inhalation hazards as U-232 and Th-228, the radiotoxicity of thorium SF was almost double that of NU SF after sufficient time has passed for the decay of shorter-lived fission products. Current radio-protection methods for NU SF exposure are likely inadequate to estimate the internal dose to personnel to thorium SF, and an analysis of thorium in fecal samples is recommended to assess the internal dose from exposure to this fuel. (authors)

  4. Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation

    SciTech Connect (OSTI)

    Liu, Hailong; She, Guangwei; Mu, Lixuan; Shi, Wensheng

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Arrays of porous SiC nanowires prepared by a facile in situ carbonizing method. Black-Right-Pointing-Pointer Utilizing the SiC nanowire arrays as photocatalysis for water splitting. Black-Right-Pointing-Pointer Excellent photocatalytic performance under the UV irradiation. Black-Right-Pointing-Pointer Very high stability of the SiC nanowire photocatalyst. -- Abstract: In this study, we report the fabrication and photocatalytic properties of the oriented arrays of SiC nanowires on the Si substrate. The SiC nanowire arrays were prepared by carbonizing the Si nanowire arrays with the graphite powder at 1250 Degree-Sign C. The as-prepared SiC nanowires are highly porous, which endows them with a high surface-to-volume ratio. Considering the large surface areas and the high stability, the porous SiC nanowire arrays were used as photocatalyst for water splitting under UV irradiation. It was found that such porous SiC structure exhibited an enhanced and extremely stable photocatalytic performance.

  5. Dose rate estimates from irradiated light-water-reactor fuel assemblies in air

    SciTech Connect (OSTI)

    Lloyd, W.R.; Sheaffer, M.K.; Sutcliffe, W.G.

    1994-01-31

    It is generally considered that irradiated spent fuel is so radioactive (self-protecting) that it can only be moved and processed with specialized equipment and facilities. However, a small, possibly subnational, group acting in secret with no concern for the environment (other than the reduction of signatures) and willing to incur substantial but not lethal radiation doses, could obtain plutonium by stealing and processing irradiated spent fuel that has cooled for several years. In this paper, we estimate the dose rate at various distances and directions from typical pressurized-water reactor (PWR) and boiling-water reactor (BWR) spent-fuel assemblies as a function of cooling time. Our results show that the dose rate is reduced rapidly for the first ten years after exposure in the reactor, and that it is reduced by a factor of {approx}10 (from the one year dose rate) after 15 years. Even for fuel that has cooled for 15 years, a lethal dose (LD50) of 450 rem would be received at 1 m from the center of the fuel assembly after several minutes. However, moving from 1 to 5 m reduces the dose rate by over a factor of 10, and moving from 1 to 10 m reduces the dose rate by about a factor of 50. The dose rates 1 m from the top or bottom of the assembly are considerably less (about 10 and 22%, respectively) than 1 m from the center of the assembly, which is the direction of the maximum dose rate.

  6. Photoproduction of carbonyl sulfide in south Pacific Ocean waters as a function of irradiation wavelength

    SciTech Connect (OSTI)

    Weiss, P.S. [Univ. of Washington, Seattle, WA (United States)] [Univ. of Washington, Seattle, WA (United States); [Pacific Marine Environmental Lab., Seattle, WA (United States); Johnson, J.E. [Pacific Marine Environmental Lab., Seattle, WA (United States)] [Pacific Marine Environmental Lab., Seattle, WA (United States); [Univ. of Washington, Seattle, WA (United States); Andrews, S.S.; Zafiriou, O.C. [Woods Hole Oceanographic Institute, MA (United States)] [Woods Hole Oceanographic Institute, MA (United States)

    1995-02-01

    Carbonyl sulfide (OCS) photoproduction rates were measured at selected wavelengths of ultraviolet light between 297 and 405 nm in sea water samples from the southern Pacific Ocean. Near-surface and column production rate spectra for natural sunlit waters were calculated using sea-surface sunlight data measured near the austral summer solstice. These plots show that photoproduction rates are at a maximum at 313 nm in tropical waters and at 336 nm in Antarctic waters. Tropical surface and column rates were found to be 68 pM/day and 360 nmol/m{sup 2}/day, respectively, and Antarctic surface and column rates were found to be 101 pM/day and 620 nmol/m{sup 2}/day, respectively. A high degree of variability was observed between photoproduction rates from different ocean regions, with coastal rates being the highest, suggesting that natural environmental variability is an important factor. Photoproduction rates at 297 nm were found to be constant at individual locations with increasing irradiation time. Relative photoproduction rates from this work are compared to previously measured rates from coastal sea water. 19 refs., 4 figs., 1 tab.

  7. Materials, methods and devices to detect and quantify water vapor concentrations in an atmosphere

    DOE Patents [OSTI]

    Allendorf, Mark D; Robinson, Alex L

    2014-12-09

    We have demonstrated that a surface acoustic wave (SAW) sensor coated with a nanoporous framework material (NFM) film can perform ultrasensitive water vapor detection at concentrations in air from 0.05 to 12,000 ppmv at 1 atmosphere pressure. The method is extendable to other MEMS-based sensors, such as microcantilevers, or to quartz crystal microbalance sensors. We identify a specific NFM that provides high sensitivity and selectivity to water vapor. However, our approach is generalizable to detection of other species using NFM to provide sensitivity and selectivity.

  8. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    SciTech Connect (OSTI)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias R.; Gilles, Marry K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-25

    Atmospheric ice formation induced by particles with complex chemical and physical properties through heterogeneous nucleation is not well understood. Heterogeneous ice nucleation and water uptake by ambient particles collected from urban environments in Los Angeles and Mexico City are presented. Using a vapour controlled cooling system equipped with an optical microscopy, the range of onset conditions for ice nucleation and water uptake by the collected particles was determined as a function of temperature (200{273 K) and relative humidity with respect to ice (RHice) up to water saturation. Three distinctly different types of authentic atmospheric particles were investigated including soot particles associated with organics/inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn containing inorganic particles apportioned to anthropogenic emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption ne structure spectroscopy (STXM/NEXAFS). Above 230 K, signicant differences in water uptake and immersion freezing effciencies of the different particle types were observed. Below 230 K, the particles exhibited high deposition ice nucleation effciencies and formed ice at RHice values well below homogeneous ice nucleation limits. The data show that the chemical composition of these eld{collected particles plays an important role in determining water uptake and immersion freezing. Heterogeneous ice nucleation rate coeffcients, cumulative ice nuclei (IN) spectrum, and IN activated fraction for deposition ice nucleation are derived. The presented ice nucleation data demonstrate that anthropogenic and marine particles comprising of various chemical and physical properties exhibit distinctly different ice

  9. Response of the regional water cycle to an increase of atmosphere moisture related to global warming

    SciTech Connect (OSTI)

    Frei, C.; Widmann, M.; Luethi, D.

    1997-11-01

    This study examines the sensitivity of the mid-latitude regional hydrological cycle to an imposed warming. Mesoscale limited-area climate simulations over Europe are performed. The modelling study is complemented with a detailed analysis of the observed precipitation and circulation trends in the same region. It is demonstrated that an increase of the moisture content leads to an enhancement of the model`s water cycle during the synoptically active seasons. The simulations suggest that this mechanism may contribute towards an increase in mean precipitation and more frequency occurrence of heavy precipitation events. Observational analysis results illustrate that the relationship between precipitation and atmospheric moisture seen in the climate simulations constitutes a possible physical mechanism relevant for the interpretation of the observed trends. A key feature of the model results is the pronounced increase in the frequency of strong precipitation events associated with the intensification of the water cycle. This large sensitivity highlights the vulnerability of the precipitation climate with respect to global climate change. 19 refs., 2 figs., 1 tab.

  10. Status of the Norwegian thorium light water reactor (LWR) fuel development and irradiation test program

    SciTech Connect (OSTI)

    Drera, S.S.; Bjork, K.I.; Kelly, J.F.; Asphjell, O.

    2013-07-01

    Thorium based fuels offer several benefits compared to uranium based fuels and should thus be an attractive alternative to conventional fuel types. In order for thorium based fuel to be licensed for use in current LWRs, material properties must be well known for fresh as well as irradiated fuel, and accurate prediction of fuel behavior must be possible to make for both normal operation and transient scenarios. Important parameters are known for fresh material but the behaviour of the fuel under irradiation is unknown particularly for low Th content. The irradiation campaign aims to widen the experience base to irradiated (Th,Pu)O{sub 2} fuel and (Th,U)O{sub 2} with low Th content and to confirm existing data for fresh fuel. The assumptions with respect to improved in-core fuel performance are confirmed by our preliminary irradiation test results, and our fuel manufacture trials so far indicate that both (Th,U)O{sub 2} and (Th,Pu)O{sub 2} fuels can be fabricated with existing technologies, which are possible to upscale to commercial volumes.

  11. Global energy and water balance: Characteristics from finite-volume atmospheric model of the IAP/LASG (FAMIL1)

    SciTech Connect (OSTI)

    Zhou, Linjiong; Bao, Qing; Liu, Yimin; Wu, Guoxiong; Wang, Wei-Chyung; Wang, Xiaocong; He, Bian; Yu, Haiyang; Li, Jiandong

    2015-03-01

    This paper documents version 1 of the Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1), which has a flexible horizontal resolution up to a quarter of 1°. The model, currently running on the ‘‘Tianhe 1A’’ supercomputer, is the atmospheric component of the third-generation Flexible Global Ocean-Atmosphere-Land climate System model (FGOALS3) which will participate in the Coupled Model Intercomparison Project Phase 6 (CMIP6). In addition to describing the dynamical core and physical parameterizations of FAMIL1, this paper describes the simulated characteristics of energy and water balances and compares them with observational/reanalysis data. The comparisons indicate that the model simulates well the seasonal and geographical distributions of radiative fluxes at the top of the atmosphere and at the surface, as well as the surface latent and sensible heat fluxes. A major weakness in the energy balance is identified in the regions where extensive and persistent marine stratocumulus is present. Analysis of the global water balance also indicates realistic seasonal and geographical distributions with the global annual mean of evaporation minus precipitation being approximately 10⁻⁵ mm d⁻¹. We also examine the connections between the global energy and water balance and discuss the possible link between the two within the context of the findings from the reanalysis data. Finally, the model biases as well as possible solutions are discussed.

  12. Global energy and water balance: Characteristics from finite-volume atmospheric model of the IAP/LASG (FAMIL1)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Linjiong; Bao, Qing; Liu, Yimin; Wu, Guoxiong; Wang, Wei-Chyung; Wang, Xiaocong; He, Bian; Yu, Haiyang; Li, Jiandong

    2015-03-01

    This paper documents version 1 of the Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1), which has a flexible horizontal resolution up to a quarter of 1°. The model, currently running on the ‘‘Tianhe 1A’’ supercomputer, is the atmospheric component of the third-generation Flexible Global Ocean-Atmosphere-Land climate System model (FGOALS3) which will participate in the Coupled Model Intercomparison Project Phase 6 (CMIP6). In addition to describing the dynamical core and physical parameterizations of FAMIL1, this paper describes the simulated characteristics of energy and water balances and compares them with observational/reanalysis data. The comparisons indicate that the model simulates well the seasonalmore » and geographical distributions of radiative fluxes at the top of the atmosphere and at the surface, as well as the surface latent and sensible heat fluxes. A major weakness in the energy balance is identified in the regions where extensive and persistent marine stratocumulus is present. Analysis of the global water balance also indicates realistic seasonal and geographical distributions with the global annual mean of evaporation minus precipitation being approximately 10⁻⁵ mm d⁻¹. We also examine the connections between the global energy and water balance and discuss the possible link between the two within the context of the findings from the reanalysis data. Finally, the model biases as well as possible solutions are discussed.« less

  13. Method and apparatus for simulating atmospheric absorption of solar energy due to water vapor and CO{sub 2}

    DOE Patents [OSTI]

    Sopori, B.L.

    1995-06-20

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.

  14. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Smith, C.; Brigmon, R.

    2009-10-20

    Legionnaires disease is a pneumonia caused by the inhalation of the bacterium Legionella pneumophila. The majority of illnesses have been associated with cooling towers since these devices can harbor and disseminate the bacterium in the aerosolized mist generated by these systems. Historically, Savannah River Site (SRS) cooling towers have had occurrences of elevated levels of Legionella in all seasons of the year and in patterns that are difficult to predict. Since elevated Legionella in cooling tower water are a potential health concern a question has been raised as to the best control methodology. In this work we analyze available chemical, biological, and atmospheric data to determine the best method or key parameter for control. The SRS 4Q Industrial Hygiene Manual, 4Q-1203, 1 - G Cooling Tower Operation and the SRNL Legionella Sampling Program, states that 'Participation in the SRNL Legionella Sampling Program is MANDATORY for all operating cooling towers'. The resulting reports include L. pneumophila concentration information in cells/L. L. pneumophila concentrations >10{sup 7} cells/L are considered elevated and unsafe so action must be taken to reduce these densities. These remedial actions typically include increase biocide addition or 'shocking'. Sometimes additional actions are required if the problem persists including increase tower maintenance (e.g. cleaning). Evaluation of 14 SRS cooling towers, seven water quality parameters, and five Legionella serogroups over a three-plus year time frame demonstrated that cooling tower water Legionella densities varied widely though out this time period. In fact there was no one common consistent significant variable across all towers. The significant factors that did show up most frequently were related to suspended particulates, conductivity, pH, and dissolved oxygen, not chlorine or bromine as might be expected. Analyses of atmospheric data showed that there were more frequent significant elevated Legionella

  15. Effects of microstructure and water on the electrical potentials in bone induced by ultrasound irradiation

    SciTech Connect (OSTI)

    Tsuneda, H.; Matsukawa, S.; Takayanagi, S.; Matsukawa, M.; Mizuno, K.; Yanagitani, T.

    2015-02-16

    The healing mechanism of bone fractures by low intensity pulse ultrasound is yet to be fully understood. There have been many discussions regarding how the high frequency dynamic stress can stimulate numerous cell types through various pathways. As one possible initial process of this mechanism, we focus on the piezoelectricity of bone and demonstrate that bone can generate electrical potentials by ultrasound irradiation in the MHz range. We have fabricated ultrasonic bone transducers using bovine cortical bone as the piezoelectric device. The ultrasonically induced electrical potentials in the transducers change as a function of time during immersed ultrasonic pulse measurements and become stable when the bone is fully wet. In addition, the magnitude of the induced electrical potentials changes owing to the microstructure in the cortical bone. The potentials of transducers with haversian structure bone are higher than those of plexiform structure bone, which informs about the effects of bone microstructure on the piezoelectricity.

  16. Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dekker, Stefan C.; Groenendijk, Margriet; Booth, Ben B. B.; Huntingford, Chris; Cox, Peter M.

    2016-06-28

    Plant water-use efficiency (WUE), which is the ratio of the uptake of carbon dioxide through photosynthesis to the loss of water through transpiration, is a very useful metric of the functioning of the land biosphere. WUE is expected to increase with atmospheric CO2, but to decline with increasing atmospheric evaporative demand – which can arise from increases in near-surface temperature or decreases in relative humidity. We have used Δ13C measurements from tree rings, along with eddy covariance measurements from Fluxnet sites, to estimate the sensitivities of WUE to changes in CO2 and atmospheric humidity deficit. This enables us to reconstructmore » fractional changes in WUE, based on changes in atmospheric climate and CO2, for the entire period of the instrumental global climate record. We estimate that overall WUE increased from 1900 to 2010 by 48 ± 22 %, which is more than double that simulated by the latest Earth System Models. This long-term trend is largely driven by increases in CO2, but significant inter-annual variability and regional differences are evident due to variations in temperature and relative humidity. Here, there are several highly populated regions, such as western Europe and East Asia, where the rate of increase of WUE has declined sharply in the last 2 decades. Our data-based analysis indicates increases in WUE that typically exceed those simulated by Earth System Models – implying that these models are either underestimating increases in photosynthesis or underestimating reductions in transpiration.« less

  17. UV-Vis, infrared, and mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide mixtures with water

    SciTech Connect (OSTI)

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-02-01

    Ozone has been detected on the surface of Ganymede via observation of the Hartley band through the use of ultraviolet spectroscopy and is largely agreed upon to be formed by radiolytic processing via interaction of magnetospheric energetic ions and/or electrons with oxygen-bearing ices on Ganymede's surface. Interestingly, a clearly distinct band near 300 nm within the shoulder of the UV-Vis spectrum of Ganymede was also observed, but currently lacks an acceptable physical or chemical explanation. Consequently, the primary motivation behind this work was the collection of UV-Vis absorption spectroscopy of ozone formation by energetic electron bombardment of a variety of oxygen-bearing ices (oxygen, carbon dioxide, water) relevant to this moon as well as other solar system. Ozone was indeed synthesized in pure ices of molecular oxygen, carbon dioxide and a mixture of water and oxygen, in agreement with previous studies. The Hartley band of the ozone synthesized in these ice mixtures was observed in the UV-Vis spectra and compared with the spectrum of Ganymede. In addition, a solid state ozone absorption cross section of 6.0 0.6 10{sup 17} cm{sup 2} molecule{sup 1} was obtained from the UV-Vis spectral data. Ozone was not produced in the irradiated carbon dioxide-water mixtures; however, a spectrally 'red' UV continuum is observed and appears to reproduce well what is observed in a large number of icy moons such as Europa.

  18. Spatial correlation of energy deposition events in irradiated...

    Office of Scientific and Technical Information (OSTI)

    events in irradiated liquid water Citation Details In-Document Search Title: Spatial correlation of energy deposition events in irradiated liquid water You are accessing a ...

  19. Spatial correlation of energy deposition events in irradiated...

    Office of Scientific and Technical Information (OSTI)

    events in irradiated liquid water Citation Details In-Document Search Title: Spatial correlation of energy deposition events in irradiated liquid water Monte Carlo electron ...

  20. Solids irradiator

    DOE Patents [OSTI]

    Morris, Marvin E.; Pierce, Jim D.; Whitfield, Willis J.

    1979-01-01

    A novel facility for irradiation of solids embodying pathogens wherein solids are conveyed through an irradiation chamber in individual containers of an endless conveyor.

  1. Multimodal probing of oxygen and water interaction with metallic and semiconducting carbon nanotube networks under ultraviolet irradiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Anthony J.; Ivanov, Ilia N.; Muckley, Eric S.; Jacobs, Christopher B.

    2016-06-01

    In this study, carbon nanotube (CNT) networks composed of semiconducting single wall nanotubes (s-SWNTs), metallic single wall nanotubes (m-SWNTs), and multiwall nanotubes (MWNTs) were exposed to O2 and H2O vapor in the dark and under UV irradiation. Changes in film resistance and mass were measured in situ. In the dark, resistance of metallic nanotube networks increases in the presence of O2 and H2O, whereas resistance of s-SWNT networks decreases. We find that UV irradiation increases the sensitivity of CNT networks to O2 and H2O by more than an order of magnitude. Under UV irradiation, the resistance of metallic nanotube networksmore » decreases in the presence of O2 and H2O likely through the generation of free charge carriers. UV irradiation increases the gas/vapor sensitivity of s-SWNT networks by nearly a factor of 2 compared to metallic nanotube networks. Networks of s-SWNTs show evidence of delamination from the gold-plated QCM crystal, possibly due to preferential adsorption of O2 and H2O on gold.« less

  2. Portable instrument for inspecting irradiated nuclear-fuel assemblies in a water-filled storage pond by measurement of induced Cerenkov radiation

    DOE Patents [OSTI]

    Nicholson, N.; Dowdy, E.J.; Holt, D.M.; Stump, C.J. Jr.

    1982-05-13

    A portable instrument for measuring induced Cerenkov radiation associated with irradiated nuclear fuel assemblies in a water-filled storage pond is disclosed. The instrument includes a photomultiplier tube and an image intensifier which are operable in parallel and simultaneously by means of a field lens assembly and an associated beam splitter. The image intensifier permits an operator to aim and focus the apparatus on a submerged fuel assembly. Once the instrument is aimed and focused, an illumination reading can be obtained with the photomultiplier tube. The instrument includes a lens cap with a carbon-14/phosphor light source for calibrating the apparatus in the field.

  3. Effect of global warming and increases in atmospheric [CO{sub 2}] on water stress in soybeans during critical reproductive stages: A regional study of Iowa

    SciTech Connect (OSTI)

    Haskett, J.D.; Pachepsky, Y.A.; Acock, B.

    1997-12-31

    The anthropogenic increase in radiatively active gases in the atmosphere has been well documented. Recently the impact of this increase on the earth`s climate has been confirmed. Agriculture is vulnerable to climatic change, and estimating the likely response to such changes is critical. Many studies of these responses have included soybeans both because they are an important commodity and because they are sensitive to changes in atmospheric CO, concentration. Such studies have generally focused on yield response. While this is critical it does not provide information on the underlying causal link between climate and atmospheric change and changes in soybean yield. The current work examines the impact of climatic change on water stress during the critical periods of soybean reproductive development.

  4. Adsorption of atmospheric gases at the air-water interface. 2: C{sub 1}-C{sub 4} alcohols, acids, and acetone

    SciTech Connect (OSTI)

    Donaldson, D.J.; Anderson, D.

    1999-02-18

    Measurements of the temperature- and concentration-dependent surface tensions of aqueous solutions of methanol, 1- and 2-propanol, 1- and 2-butanol, acetic, propionic, and butanoic acids, and acetone were used to determine the standard free energies, enthalpies, and entropies of adsorption from the vapor phase onto a water surface. The saturated surface coverage of all these species is approximately 10{sup 14} molecules cm{sup {minus}2}. The standard enthalpies of adsorption are correlated to the enthalpies of solution, suggesting that these molecules are partially solvated in the adsorbed state. These results further suggest that atmospheric water droplets could be coated with an organic layer.

  5. Enhanced water window x-ray emission from in situ formed carbon clusters irradiated by intense ultra-short laser pulses

    SciTech Connect (OSTI)

    Chakravarty, U.; Rao, B. S.; Arora, V.; Upadhyay, A.; Singhal, H.; Naik, P. A.; Chakera, J. A.; Mukherjee, C.; Gupta, P. D.

    2013-07-29

    Enhanced water window x-ray emission (23–44 Å) from carbon clusters, formed in situ using a pre-pulse, irradiated by intense (I > 10{sup 17} W/cm{sup 2}) ultra-short laser pulse, is demonstrated. An order of magnitude x-ray enhancement over planar graphite target is observed in carbon clusters, formed by a sub-ns pre-pulse, interacting with intense main pulse after a delay. The effect of the delay and the duration of the main pulse is studied for optimizing the x-ray emission in the water window region. This x-ray source has added advantages of being an efficient, high repetition rate, and low debris x-ray source.

  6. Atmospheric transmittance model for photosynthetically active radiation

    SciTech Connect (OSTI)

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana; Pop, Nicolina; Calinoiu, Delia

    2013-11-13

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

  7. Atmospheric Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemistry Atmospheric Chemistry Atmospheric Chemistry is the study of the composition of the atmosphere, the sources and fates of gases and particles in air, and changes induced by ...

  8. Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990

    SciTech Connect (OSTI)

    Weiss, R.F.; Van Woy, F.A.; Salameh, P.K.; Sepanski, R.J.

    1992-12-01

    This document presents the results of surface water and atmospheric carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) measurements carried out by shipboard gas chromatography over the period 1977--1990. These data include results from 11 different oceanic surveys for a total of 41 expedition legs. Collectively, they represent a globally distributed sampling that includes locations in the Atlantic, Pacific, Indian, and Southern Oceans, as well as the Mediterranean and Red Seas. The measurements were made by an automated high-precision shipboard gas chromatographic system developed during the late 1970s and used extensively over the intervening years. This instrument measures CO{sub 2} by flame ionization after quantitative reaction to methane in a stream of hydrogen. Nitrous oxide is measured by a separate electron capture detector. The chromatographic system measures 196 dry-gas samples a day, divided equally among the atmosphere, gas equilibrated with surface water, a low-range gas standard, and a high-range gas standard.

  9. Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990

    SciTech Connect (OSTI)

    Weiss, R.F.; Van Woy, F.A.; Salameh, P.K. ); Sepanski, R.J. . Energy, Environment and Resources Center)

    1992-12-01

    This document presents the results of surface water and atmospheric carbon dioxide (CO[sub 2]) and nitrous oxide (N[sub 2]O) measurements carried out by shipboard gas chromatography over the period 1977--1990. These data include results from 11 different oceanic surveys for a total of 41 expedition legs. Collectively, they represent a globally distributed sampling that includes locations in the Atlantic, Pacific, Indian, and Southern Oceans, as well as the Mediterranean and Red Seas. The measurements were made by an automated high-precision shipboard gas chromatographic system developed during the late 1970s and used extensively over the intervening years. This instrument measures CO[sub 2] by flame ionization after quantitative reaction to methane in a stream of hydrogen. Nitrous oxide is measured by a separate electron capture detector. The chromatographic system measures 196 dry-gas samples a day, divided equally among the atmosphere, gas equilibrated with surface water, a low-range gas standard, and a high-range gas standard.

  10. Ecosystem-Atmosphere Exchange of Carbon, Water and Energy over a Mixed Deciduous Forest in the Midwest

    SciTech Connect (OSTI)

    Danilo Dragoni; Hans Peter Schmid; C.S.B. Grimmond; J.C. Randolph; J.R. White

    2012-12-17

    During the project period we continued to conduct long-term (multi-year) measurements, analysis, and modeling of energy and mass exchange in and over a deciduous forest in the Midwestern United States, to enhance the understanding of soil-vegetation-atmosphere exchange of carbon. At the time when this report was prepared, results from nine years of measurements (1998 - 2006) of above canopy CO2 and energy fluxes at the AmeriFlux site in the Morgan-Monroe State Forest, Indiana, USA (see Table 1), were available on the Fluxnet database, and the hourly CO2 fluxes for 2007 are presented here (see Figure 1). The annual sequestration of atmospheric carbon by the forest is determined to be between 240 and 420 g C m-2 a-1 for the first ten years. These estimates are based on eddy covariance measurements above the forest, with a gap-filling scheme based on soil temperature and photosynthetically active radiation. Data gaps result from missing data or measurements that were rejected in qua)lity control (e.g., during calm nights). Complementary measurements of ecological variables (i.e. inventory method), provided an alternative method to quantify net carbon uptake by the forest, partition carbon allocation in each ecosystem components, and reduce uncertainty on annual net ecosystem productivity (NEP). Biometric datasets are available on the Fluxnext database since 1998 (with the exclusion of 2006). Analysis for year 2007 is under completion.

  11. 3D mapping of water in oolithic limestone at atmospheric and vacuum saturation using X-ray micro-CT differential imaging

    SciTech Connect (OSTI)

    Boone, M.A.; De Kock, T.; Bultreys, T.; De Schutter, G.; Vontobel, P.; Van Hoorebeke, L.; Cnudde, V.

    2014-11-15

    Determining the distribution of fluids in porous sedimentary rocks is of great importance in many geological fields. However, this is not straightforward, especially in the case of complex sedimentary rocks like limestone, where a multidisciplinary approach is often needed to capture its broad, multimodal pore size distribution and complex pore geometries. This paper focuses on the porosity and fluid distribution in two varieties of Massangis limestone, a widely used natural building stone from the southeast part of the Paris basin (France). The Massangis limestone shows locally varying post-depositional alterations, resulting in different types of pore networks and very different water distributions within the limestone. Traditional techniques for characterizing the porosity and pore size distribution are compared with state-of-the-art neutron radiography and X-ray computed microtomography to visualize the distribution of water inside the limestone at different imbibition conditions. X-ray computed microtomography images have the great advantage to non-destructively visualize and analyze the pore space inside of a rock, but are often limited to the larger macropores in the rock due to resolution limitations. In this paper, differential imaging is successfully applied to the X-ray computed microtomography images to obtain sub-resolution information about fluid occupancy and to map the fluid distribution in three dimensions inside the scanned limestone samples. The detailed study of the pore space with differential imaging allows understanding the difference in the water uptake behavior of the limestone, a primary factor that affects the weathering of the rock. - Highlights: • The water distribution in a limestone was visualized in 3D with micro-CT. • Differential imaging allowed to map both macro and microporous zones in the rock. • The 3D study of the pore space clarified the difference in water uptake behavior. • Trapped air is visualized in the moldic

  12. Surface water and atmospheric underway carbon data obtained during the World Ocean Circulation Experiment Indian Ocean survey cruises (R/V Knorr, December 1998--January 1996)

    SciTech Connect (OSTI)

    Kozyr, A.; Allison, L.

    1997-11-01

    This data documentation presents the results of the surface water and atmospheric underway measurements of mole fraction of carbon dioxide (xCO{sub 2}), sea surface salinity, and sea surface temperature, obtained during the World Ocean Circulation Experiment (WOCE) Indian Ocean survey cruises (December 1994--January 1996). Discrete and underway carbon measurements were made by members of the CO{sub 2} survey team. The survey team is a part of the Joint Global Ocean Flux Study supported by the US Department of Energy to make carbon-related measurements on the WOCE global survey cruises. Approximately 200,000 surface seawater and 50,000 marine air xCO{sub 2} measurements were recorded.

  13. The influence of mixed and phase clouds on surface shortwave irradiance during the Arctic spring

    SciTech Connect (OSTI)

    Lubin D.; Vogelmann A.

    2011-10-13

    The influence of mixed-phase stratiform clouds on the surface shortwave irradiance is examined using unique spectral shortwave irradiance measurements made during the Indirect and Semi-Direct Aerosol Campaign (ISDAC), supported by the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. An Analytical Spectral Devices (ASD, Inc.) spectroradiometer measured downwelling spectral irradiance from 350 to 2200 nm in one-minute averages throughout April-May 2008 from the ARM Climate Research Facility's North Slope of Alaska (NSA) site at Barrow. This study examines spectral irradiance measurements made under single-layer, overcast cloud decks having geometric thickness < 3000 m. Cloud optical depth is retrieved from irradiance in the interval 1022-1033 nm. The contrasting surface radiative influences of mixed-phase clouds and liquid-water clouds are discerned using irradiances in the 1.6-{micro}m window. Compared with liquid-water clouds, mixed-phase clouds during the Arctic spring cause a greater reduction of shortwave irradiance at the surface. At fixed conservative-scattering optical depth (constant optical depth for wavelengths {lambda} < 1100 nm), the presence of ice water in cloud reduces the near-IR surface irradiance by an additional several watts-per-meter-squared. This additional reduction, or supplemental ice absorption, is typically {approx}5 W m{sup -2} near solar noon over Barrow, and decreases with increasing solar zenith angle. However, for some cloud decks this additional absorption can be as large as 8-10 W m{sup -2}.

  14. Tissue irradiator

    DOE Patents [OSTI]

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-12-16

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in- vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood- carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170.

  15. Measurement of the Muon Atmospheric Production Depth with the Water Cherenkov Detectors of the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Molina Bueno, Laura

    2015-09-01

    Ultra-high-energy cosmic rays (UHECR) are particles of uncertain origin and composition, with energies above 1 EeV (1018 eV or 0.16 J). The measured flux of UHECR is a steeply decreasing function of energy. The largest and most sensitive apparatus built to date to record and study cosmic ray Extensive Air Showers (EAS) is the Pierre Auger Observatory. The Pierre Auger Observatory has produced the largest and finest amount of data ever collected for UHECR. A broad physics program is being carried out covering all relevant topics of the field. Among them, one of the most interesting is the problem related to the estimation of the mass composition of cosmic rays in this energy range. Currently the best measurements of mass are those obtained by studying the longitudinal development of the electromagnetic part of the EAS with the Fluorescence Detector. However, the collected statistics is small, specially at energies above several tens of EeV. Although less precise, the volume of data gathered with the Surface Detector is nearly a factor ten larger than the fluorescence data. So new ways to study composition with data collected at the ground are under investigation. The subject of this thesis follows one of those new lines of research. Using preferentially the time information associated with the muons that reach the ground, we try to build observables related to the composition of the primaries that initiated the EAS. A simple phenomenological model relates the arrival times with the depths in the atmosphere where muons are produced. The experimental confirmation that the distributions of muon production depths (MPD) correlate with the mass of the primary particle has opened the way to a variety of studies, of which this thesis is a continuation, with the aim of enlarging and improving its range of applicability. We revisit the phenomenological model which is at the root of the analysis and discuss a new way to improve some aspects of the model. We carry

  16. Irradiation subassembly

    DOE Patents [OSTI]

    Seim, O.S.; Filewicz, E.C.; Hutter, E.

    1973-10-23

    An irradiation subassembly for use in a nuclear reactor is described which includes a bundle of slender elongated irradiation -capsules or fuel elements enclosed by a coolant tube and having yieldable retaining liner between the irradiation capsules and the coolant tube. For a hexagonal bundle surrounded by a hexagonal tube the yieldable retaining liner may consist either of six segments corresponding to the six sides of the tube or three angular segments each corresponding in two adjacent sides of the tube. The sides of adjacent segments abut and are so cut that metal-tometal contact is retained when the volume enclosed by the retaining liner is varied and Springs are provided for urging the segments toward the center of the tube to hold the capsules in a closely packed configuration. (Official Gazette)

  17. Safety evaluation report related to the Department of Energy`s proposal for the irradiation of lead test assemblies containing tritium-producing burnable absorber rods in commercial light-water reactors. Project Number 697

    SciTech Connect (OSTI)

    1997-05-01

    The NRC staff has reviewed a report, submitted by DOE to determine whether the use of a commercial light-water reactor (CLWR) to irradiate a limited number of tritium-producing burnable absorber rods (TPBARs) in lead test assemblies (LTAs) raises generic issues involving an unreviewed safety question. The staff has prepared this safety evaluation to address the acceptability of these LTAs in accordance with the provision of 10 CFR 50.59 without NRC licensing action. As summarized in Section 10 of this safety evaluation, the staff has identified issues that require NRC review. The staff has also identified a number of areas in which an individual licensee undertaking irradiation of TPBAR LTAs will have to supplement the information in the DOE report before the staff can determine whether the proposed irradiation is acceptable at a particular facility. The staff concludes that a licensee undertaking irradiation of TPBAR LTAs in a CLWR will have to submit an application for amendment to its facility operating license before inserting the LTAs into the reactor.

  18. Search for: "atmospheric radiation measurement" | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    velocity (162) radar doppler (150) general circulation models (149) atmospheric chemistry (146) remote sensing (143) water vapor (134) earth atmosphere (133) radiometers (130) ...

  19. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  20. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L.; Cannon, Theodore W.

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  1. ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hodges, Gary

    1993-07-04

    The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

  2. ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hodges, Gary

    The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

  3. ARM - Measurement - Shortwave narrowband diffuse downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband diffuse downwelling irradiance The rate at which radiant energy in narrow bands of wavelengths shorter than approximately 4 {mu}m, that has been scattered in the atmosphere at least once, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is

  4. ARM - Measurement - Shortwave narrowband diffuse upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband diffuse upwelling irradiance The rate at which radiant energy in narrow bands of wavelengths shorter than approximately 4 {mu}m, that has been scattered in the atmosphere at least once, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is

  5. ARM - Measurement - Shortwave spectral diffuse downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffuse downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral diffuse downwelling irradiance The rate at which spectrally resolved radiant energy at wavelengths shorter than approximately 4 {mu}m, that has been scattered in the atmosphere at least once, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above

  6. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, Otto A.; Stencel, Joseph R.

    1990-01-01

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  7. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, O.A.; Stencel, J.R.

    1987-10-02

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  8. Analysis of clear hour solar irradiation for seven Canadian stations

    SciTech Connect (OSTI)

    Garrison, J.; Sahami, K.

    1995-12-31

    Hourly global and diffuse irradiation and corresponding surface meteorological data have been analyzed for the seven Canadian stations at Edmonton, Goose Bay, Montreal, Port Hardy, Resolute, Toronto, and Winnipeg. The variation of the most probable clear hour values of clearness index k{sub t}, diffuse index k{sub d}, direct beam index k{sub b}, and Angstrom turbidity coefficient {beta} with solar elevation, atmospheric precipitable water, and snow depth are obtained. Values of these quantities are presented which are consistent with the attenuation and scattering of solar radiation by the atmosphere which is expected. The most probable values of {beta} tend to be lower than the average values of {beta} recently reported by Gueymard. The data indicate a drift in the calibration of the instruments used for measurements of the irradiation data for the stations at Goose Bay and Resolute. The data for the other five stations indicate that the instrument calibration is maintained over the years of the data. 4 refs., 8 figs., 5 tabs.

  9. Global horizontal irradiance clear sky models : implementation and analysis.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.

    2012-03-01

    Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 different sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.

  10. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 6. Summary

    SciTech Connect (OSTI)

    Peterson, S

    2007-09-05

    Throughout fifty-three years of operations, an estimated 792,000 Ci (29,300 TBq) of tritium have been released to the atmosphere at the Livermore site of Lawrence Livermore National Laboratory (LLNL); about 75% was tritium gas (HT) primarily from the accidental releases of 1965 and 1970. Routine emissions contributed slightly more than 100,000 Ci (3,700 TBq) HT and about 75,000 Ci (2,800 TBq) tritiated water vapor (HTO) to the total. A Tritium Dose Reconstruction was undertaken to estimate both the annual doses to the public for each year of LLNL operations and the doses from the few accidental releases. Some of the dose calculations were new, and the others could be compared with those calculated by LLNL. Annual doses (means and 95% confidence intervals) to the potentially most exposed member of the public were calculated for all years using the same model and the same assumptions. Predicted tritium concentrations in air were compared with observed mean annual concentrations at one location from 1973 onwards. Doses predicted from annual emissions were compared with those reported in the past by LLNL. The highest annual mean dose predicted from routine emissions was 34 {micro}Sv (3.4 mrem) in 1957; its upper confidence limit, based on very conservative assumptions about the speciation of the release, was 370 {micro}Sv (37 mrem). The upper confidence limits for most annual doses were well below the current regulatory limit of 100 {micro}Sv (10 mrem) for dose to the public from release to the atmosphere; the few doses that exceeded this were well below the regulatory limits of the time. Lacking the hourly meteorological data needed to calculate doses from historical accidental releases, ingestion/inhalation dose ratios were derived from a time-dependent accident consequence model that accounts for the complex behavior of tritium in the environment. Ratios were modified to account for only those foods growing at the time of the releases. The highest dose from an

  11. Comparison of Diffuse Shortwave Irradiance Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diffuse Shortwave Irradiance Measurements J. J. Michalsky and J. Schlemmer Atmospheric Sciences Research Center State University of New York Albany, New York B. C. Bush, S. Leitner, D. Marsden, and F. P. J. Valero Scripps Institution of Oceanography University of California, San Diego La Jolla, California R. Dolce and A. Los Kipp & Zonen, Inc. Bohemia, New York and Delft The Netherlands E. G. Dutton Climate Monitoring and Diagnostics Laboratory National Oceanic and Atmospheric Administration

  12. Water Vapor Experiment Concludes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Water Vapor Experiment Concludes The AIRS (atmospheric infrared sounder) Water Vapor Experiment - Ground (AWEX-G) intensive operations period (IOP) at the SGP central facility ...

  13. (Irradiation embrittlement of reactor pressure vessels)

    SciTech Connect (OSTI)

    Corwin, W.R.

    1990-09-24

    The traveler served as a member of the two-man US Nuclear Regulatory Commission sponsored team who visited the Prometey Complex in Leningrad to assess the potential for expanded cooperative research concerning integrity of the primary pressure boundary in commercial light-water reactors. The emphasis was on irradiation embrittlement, structural analysis, and fracture mechanics research for reactor pressure vessels. At the irradiation seminar in Cologne, presentations were made by German, French, Finnish, Russian, and US delegations concerning many aspects of irradiation of pressure vessel steels. The traveler made presentations on mechanisms of irradiation embrittlement and on important aspects of the Heavy-Section Steel Irradiation Program results of irradiated fracture mechanics tests.

  14. PROCESS FOR CONTINUOUSLY SEPARATING IRRADIATION PRODUCTS OF THORIUM

    DOE Patents [OSTI]

    Hatch, L.P.; Miles, F.T.; Sheehan, T.V.; Wiswall, R.H.; Heus, R.J.

    1959-07-01

    A method is presented for separating uranium-233 and protactinium from thorium-232 containing compositions which comprises irradiating finely divided particles of said thorium with a neutron flux to form uranium-233 and protactinium, heating the neutron-irradiated composition in a fluorine and hydrogen atmosphere to form volatile fluorides of uranium and protactinium and thereafter separating said volatile fluorides from the thorium.

  15. Determination of Uranium Metal Concentration in Irradiated Fuel Storage Basin Sludge Using Selective Dissolution

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Sinkov, Sergey I.; Chenault, Jeffrey W.; Schmidt, Andrew J.; Welsh, Terri L.; Pool, Karl N.

    2014-03-01

    Uranium metal corroding in water-saturated sludges now held in the US Department of Energy Hanford Site K West irradiated fuel storage basin can create hazardous hydrogen atmospheres during handling, immobilization, or subsequent transport and storage. Knowledge of uranium metal concentration in sludge thus is essential to safe sludge management and process design, requiring an expeditious routine analytical method to detect uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of 30 wt% or higher total uranium concentrations.

  16. Environmental and societal consequences of a possible CO/sub 2/-induced climate change. Volume II, Part 8. Impacts of rising atmospheric carbon dioxide levels on agricultural growing seasons and crop water use efficiencies

    SciTech Connect (OSTI)

    Newman, J. E.

    1982-09-01

    The researchable areas addressed relate to the possible impacts of climate change on agricultural growing seasons and crop adaptation responses on a global basis. The research activities proposed are divided into the following two main areas of investigation: anticipated climate change impacts on the physical environmental characteristics of the agricultural growing seasons and, the most probable food crop responses to the possible changes in atmospheric CO/sub 2/ levels in plant environments. The main physical environmental impacts considered are the changes in temperature, or more directly, thermal energy levels and the growing season evapotranspiration-precipitation balances. The resulting food crop, commercial forest and rangeland species response impacts addressed relate to potential geographical shifts in agricultural growing seasons as determined by the length in days of the frost free period, thermal energy changes and water balance changes. In addition, the interaction of possible changes in plant water use efficiencies during the growing season in relationship to changing atmospheric CO/sub 2/ concentrations, is also considered under the scenario of global warming due to increases in atmospheric CO/sub 2/ concentration. These proposed research investigations are followed by adaptive response evaluations.

  17. Raman lidar measurements of water vapor and aerosols during the atmospheric radiation measurement (ARM) remote clouds sensing (RCS) intensive observation period (IOP)

    SciTech Connect (OSTI)

    Melfi, S.H.; Starr, D.O`C.; Whiteman, D.

    1996-04-01

    The first Atmospheric Radiation Measurement (ARM) remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) site. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program.

  18. Radar range measurements in the atmosphere.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-02-01

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  19. Research Update: Photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe{sub 2}O{sub 4}) under visible light irradiation

    SciTech Connect (OSTI)

    Dillert, Ralf; Taffa, Dereje H.; Wark, Michael; Bredow, Thomas; Bahnemann, Detlef W.

    2015-10-01

    The utilization of solar light for the photoelectrochemical and photocatalytic production of molecular hydrogen from water is a scientific and technical challenge. Semiconductors with suitable properties to promote solar-driven water splitting are a desideratum. A hitherto rarely investigated group of semiconductors are ferrites with the empirical formula MFe{sub 2}O{sub 4} and related compounds. This contribution summarizes the published results of the experimental investigations on the photoelectrochemical and photocatalytic properties of these compounds. It will be shown that the potential of this group of compounds in regard to the production of solar hydrogen has not been fully explored yet.

  20. Atmospheric Emitted Radiance Interferometer

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gero, Jonathan; Ermold, Brian; Gaustad, Krista; Koontz, Annette; Hackel, Denny; Garcia, Raymond

    2005-01-01

    The atmospheric emitted radiance interferometer (AERI) is a ground-based instrument that measures the downwelling infrared radiance from the Earth’s atmosphere. The observations have broad spectral content and sufficient spectral resolution to discriminate among gaseous emitters (e.g., carbon dioxide and water vapor) and suspended matter (e.g., aerosols, water droplets, and ice crystals). These upward-looking surface observations can be used to obtain vertical profiles of tropospheric temperature and water vapor, as well as measurements of trace gases (e.g., ozone, carbon monoxide, and methane) and downwelling infrared spectral signatures of clouds and aerosols. The AERI is a passive remote sounding instrument, employing a Fourier transform spectrometer operating in the spectral range 3.3–19.2 μm (520–3020 cm-1) at an unapodized resolution of 0.5 cm-1 (max optical path difference of 1 cm). The extended-range AERI (ER-AERI) deployed in dry climates, like in Alaska, have a spectral range of 3.3–25.0 μm (400–3020 cm-1) that allow measurements in the far-infrared region. Typically, the AERI averages views of the sky over a 16-second interval and operates continuously.

  1. ARM - Measurement - Shortwave broadband direct normal irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    normal irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband direct normal irradiance The rate at which radiant energy in broad bands of wavelengths shorter than approximately 4{mu}m, that comes directly from the Sun without being scattered or absorbed in the atmosphere, passes through a unit area perpendicular to the direction from the Sun. Categories Radiometric Instruments

  2. ARM - Measurement - Shortwave narrowband direct normal irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    normal irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband direct normal irradiance The rate at which radiant energy in narrow bands of wavelengths shorter than approximately 4{mu}m, that comes directly from the Sun without being scattered or absorbed in the atmosphere, passes through a unit area perpendicular to the direction from the Sun. Categories Radiometric Instruments

  3. Monthly average clear-sky broadband irradiance database for worldwide solar heat gain and building cooling load calculations

    SciTech Connect (OSTI)

    Gueymard, Christian A.; Thevenard, Didier

    2009-11-15

    This paper establishes the formulation of a new clear-sky solar radiation model appropriate for algorithms calculating cooling loads in buildings. The aim is to replace the ASHRAE clear-sky model of 1967, whose limitations are well known and are reviewed. The new model is derived in two steps. The first step consists of obtaining a reference irradiance dataset from the REST2 model, which uses a high-performance, validated, two-band clear-sky algorithm. REST2 requires detailed inputs about atmospheric conditions such as aerosols, water vapor, ozone, and ground albedo. The development of global atmospheric datasets used as inputs to REST2 is reviewed. For the most part, these datasets are derived from space observations to guarantee universality and accuracy. In the case of aerosols, point-source terrestrial measurements were also used as ground truthing of the satellite data. The second step of the model consists of fits derived from a REST2-based reference irradiance dataset. These fits enable the derivation of compact, but relatively accurate expressions, for beam and diffuse clear-sky irradiance. The fitted expressions require the tabulation of only two pseudo-optical depths for each month of the year. The resulting model, and its tabulated data, are expected to be incorporated in the 2009 edition of the ASHRAE Handbook of Fundamentals. (author)

  4. INFRARED ECLIPSES OF THE STRONGLY IRRADIATED PLANET WASP-33b, AND OSCILLATIONS OF ITS HOST STAR

    SciTech Connect (OSTI)

    Deming, Drake; Fraine, Jonathan D.; Sada, Pedro V.; Madhusudhan, Nikku; Knutson, Heather A.; Harrington, Joseph; Blecic, Jasmina; Nymeyer, Sarah; Smith, Alexis M. S.; Jackson, Brian

    2012-08-01

    We observe two secondary eclipses of the strongly irradiated transiting planet WASP-33b, in the K{sub s} band at 2.15 {mu}m, and one secondary eclipse each at 3.6 {mu}m and 4.5 {mu}m using Warm Spitzer. This planet orbits an A5V {delta}-Scuti star that is known to exhibit low-amplitude non-radial p-mode oscillations at about 0.1% semi-amplitude. We detect stellar oscillations in all of our infrared eclipse data, and also in one night of observations at J band (1.25 {mu}m) out of eclipse. The oscillation amplitude, in all infrared bands except K{sub s} , is about the same as in the optical. However, the stellar oscillations in K{sub s} band (2.15 {mu}m) have about twice the amplitude (0.2%) as seen in the optical, possibly because the Brackett-{gamma} line falls in this bandpass. As regards the exoplanetary eclipse, we use our best-fit values for the eclipse depth, as well as the 0.9 {mu}m eclipse observed by Smith et al., to explore possible states of the exoplanetary atmosphere, based on the method of Madhusudhan and Seager. On this basis we find two possible states for the atmospheric structure of WASP-33b. One possibility is a non-inverted temperature structure in spite of the strong irradiance, but this model requires an enhanced carbon abundance (C/O > 1). The alternative model has solar composition, but an inverted temperature structure. Spectroscopy of the planet at secondary eclipse, using a spectral resolution that can resolve the water vapor band structure, should be able to break the degeneracy between these very different possible states of the exoplanetary atmosphere. However, both of those model atmospheres absorb nearly all of the stellar irradiance with minimal longitudinal re-distribution of energy, strengthening the hypothesis of Cowan and Agol that the most strongly irradiated planets circulate energy poorly. Our measurement of the central phase of the eclipse yields ecos {omega} = 0.0003 {+-} 0.00013, which we regard as being consistent with a

  5. Good Is Not Enough: Improving Measurements of Atmospheric Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scatter sunlight, with other particle properties. These properties include particle size, chemical composition, and ability to soak up atmospheric water. By linking these...

  6. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases

    SciTech Connect (OSTI)

    Peterson, S

    2007-08-15

    Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based on expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.

  7. Comminuting irradiated ferritic steel

    DOE Patents [OSTI]

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  8. MASSIVE LEAKAGE IRRADIATOR

    DOE Patents [OSTI]

    Wigner, E.P.; Szilard, L.; Christy, R.F.; Friedman, F.L.

    1961-05-30

    An irradiator designed to utilize the neutrons that leak out of a reactor around its periphery is described. It avoids wasting neutron energy and reduces interference with the core flux to a minimum. This is done by surrounding all or most of the core with removable segments of the material to be irradiated within a matrix of reflecting material.

  9. Irradiation Creep in Graphite

    SciTech Connect (OSTI)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  10. Photocatalytic splitting of water under visible-light irradiation over the NiOx-loaded Sm{sub 2}InTaO{sub 7} with 4f-d{sup 10}-d{sup 0} configuration

    SciTech Connect (OSTI)

    Tang Xinde; Ye Hongqi; Liu Hui; Ma Chenxia; Zhao Zhi

    2010-01-15

    A new visible-light-response photocatalyst Sm{sub 2}InTaO{sub 7} with 4f-d{sup 10}-d{sup 0} configuration crystallized in a cubic system with the space group Fd3m was synthesized by a solid-state reaction method. NiOx-loaded Sm{sub 2}InTaO{sub 7} showed high photocatalytic activities for H{sub 2} evolution from pure water under visible light irradiation (lambda>400 nm). Changes in the photocatalytic activity with the calcination temperature of Sm{sub 2}InTaO{sub 7} and the amount of NiOx loaded indicated that the combination of highly crystallized Sm{sub 2}InTaO{sub 7} and a high dispersion of NiOx particles led to high photocatalytic activity. The high photocatalytic performance of NiOx-loaded Sm{sub 2}InTaO{sub 7} supported the existing view that the photocatalytic activity correlated with the lattice distortion. Density functional theory calculation indicated that strong dispersion from the hybridized In 5s 5p orbitals at the bottom of the conduction band was responsible for the high activity of photocatalyst Sm{sub 2}InTaO{sub 7}. - Graphical abstract: A new visible-light-response photocatalyst Sm{sub 2}InTaO{sub 7} with 4f-d{sup 10}-d{sup 0} configuration was developed. DFT calculation indicated that strong dispersion from the hybridized In 5s 5p orbitals was responsible for the high photocatalytic activity.

  11. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels and Alloy 690 from Halden Phase-II Irradiations

    SciTech Connect (OSTI)

    Chen, Y.; Chopra, O. K.; Soppet, W. K.; Dietz Rago, Nancy L.; Shack, W. J.

    2008-09-01

    This work is an ongoing effort at Argonne National Laboratory on the mechanistic study of irradiation-assisted stress corrosion cracking (IASCC) in the core internals of light water reactors.

  12. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Atmospheric Heat Budget shows where the atmospheric heat energy comes from and where it goes. Practically all this energy ultimately comes from the sun in the form of the ...

  13. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan -

  14. Carderock Circulating Water Channel | Open Energy Information

    Open Energy Info (EERE)

    Features The Circulating Water Channel is a vertical plane, open to the atmosphere test section with a free surface in a closed recirculating water circuit, variable speed,...

  15. Emulation of reactor irradiation damage using ion beams

    SciTech Connect (OSTI)

    Was, G. S.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A. M.; Maloy, S. A.; Anderoglu, O.; Sencer, B. H.; Hackett, M.

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.

  16. Emulation of reactor irradiation damage using ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Was, G. S.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A. M.; Maloy, S. A.; Anderoglu, O.; Sencer, B. H.; Hackett, M.

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less

  17. Emulation of reactor irradiation damage using ion beams

    SciTech Connect (OSTI)

    G. S. Was; Z. Jiao; E. Beckett; A. M. Monterrosa; O. Anderoglu; B. H. Sencer; M. Hackett

    2014-10-01

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiations and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiations establishes the capability of tailoring ion irradiations to emulate the reactor-irradiated microstructure.

  18. DECONTAMINATION OF NEUTRON-IRRADIATED REACTOR FUEL

    DOE Patents [OSTI]

    Buyers, A.G.; Rosen, F.D.; Motta, E.E.

    1959-12-22

    A pyrometallurgical method of decontaminating neutronirradiated reactor fuel is presented. In accordance with the invention, neutron-irradiated reactor fuel may be decontaminated by countercurrently contacting the fuel with a bed of alkali and alkaine fluorides under an inert gas atmosphere and inductively melting the fuel and tracking the resulting descending molten fuel with induction heating as it passes through the bed. By this method, a large, continually fresh surface of salt is exposed to the descending molten fuel which enhances the efficiency of the scrubbing operation.

  19. STM Images of Atomic-Scale Carbon Nanotube Defects Produced by Ar+ Irradiation

    SciTech Connect (OSTI)

    Osvath, Z.; Vertesy, G.; Tapaszto, L.; Weber, F.; Horvath, Z.E.; Gyulai, J.; Biro, L.P.

    2005-09-27

    Multi-wall carbon nanotubes (MWCNTs) dispersed on graphite (HOPG) substrate were irradiated with Ar+ ions of 30 keV, using a low-dose of D 5x1011 ions/cm2. The irradiated samples were investigated by scanning tunneling microscopy (STM) under ambient conditions. Atomic resolution STM images reveal individual nanotube defects, which appear as hillocks of 1-2 angstroms in height, due to the locally changed electronic structure. After annealing at 450 deg. C in nitrogen atmosphere, the irradiated MWCNTs were investigated again by STM. The effect of the heat treatment on the irradiation-induced nanotube defects is also discussed.

  20. Community Atmosphere Model

    Energy Science and Technology Software Center (OSTI)

    2004-10-18

    The Community Atmosphere Model (CAM) is an atmospheric general circulation model that solves equations for atmospheric dynamics and physics. CAM is an outgrowth of the Community Climate Model at the National Center for Atmospheric Research (NCAR) and was developed as a joint collaborative effort between NCAR and several DOE laboratories, including LLNL. CAM contains several alternative approaches for advancing the atmospheric dynamics. One of these approaches uses a finite-volume method originally developed by personnel atmore » NASNGSFC, We have developed a scalable version of the finite-volume solver for massively parallel computing systems. FV-CAM is meant to be used in conjunction with the Community Atmosphere Model. It is not stand-alone.« less

  1. Measuring Broadband IR Irradiance in the Direct Solar Beam (Presentation)

    SciTech Connect (OSTI)

    Reda, I.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 um and 50 um, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and are calibrated with traceability to consensus reference, yet are calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degrees to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  2. Measuring Broadband IR Irradiance in the Direct Solar Beam (Poster)

    SciTech Connect (OSTI)

    Reda, I.; Konings, J.; Xie, Y.; Dooraghi, M.; Sengupta, M.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 micrometers and 50 micrometers, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 micrometers to 3 micrcometers, while the present photovoltaic cells are limited to approximately 0.3 micrometers to 1 micrometers. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus reference, yet calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 micrometers to 50 micrometers, as first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degres to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  3. FOOD IRRADIATION REACTOR

    DOE Patents [OSTI]

    Leyse, C.F.; Putnam, G.E.

    1961-05-01

    An irradiation apparatus is described. It comprises a pressure vessel, a neutronic reactor active portion having a substantially greater height than diameter in the pressure vessel, an annular tank surrounding and spaced from the pressure vessel containing an aqueous indium/sup 1//sup 1//sup 5/ sulfate solution of approximately 600 grams per liter concentration, means for circulating separate coolants through the active portion and the space between the annular tank and the pressure vessel, radiator means adapted to receive the materials to be irradiated, and means for flowing the indium/sup 1//sup 1//sup 5/ sulfate solution through the radiator means.

  4. Fuel or irradiation subassembly

    DOE Patents [OSTI]

    Seim, O.S.; Hutter, E.

    1975-12-23

    A subassembly for use in a nuclear reactor is described which incorporates a loose bundle of fuel or irradiation pins enclosed within an inner tube which in turn is enclosed within an outer coolant tube and includes a locking comb consisting of a head extending through one side of the inner sleeve and a plurality of teeth which extend through the other side of the inner sleeve while engaging annular undercut portions in the bottom portion of the fuel or irradiation pins to prevent movement of the pins.

  5. Atmosphere to Electrons

    Broader source: Energy.gov (indexed) [DOE]

    ... Wind Forecast Improvement Project The Wind Forecast Improvement Project (WFIP) is a public private partnership consortium including DOE, the National Oceanic and Atmospheric ...

  6. Technical progress report: Completion of spectral rotating shadowband radiometers and analysis of atmospheric radiation measurement spectral shortwave data

    SciTech Connect (OSTI)

    Michalsky, J.; Harrison, L.

    1996-04-01

    Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.

  7. NSUF Irradiated Materials Library

    SciTech Connect (OSTI)

    Cole, James Irvin

    2015-09-01

    The Nuclear Science User Facilities has been in the process of establishing an innovative Irradiated Materials Library concept for maximizing the value of previous and on-going materials and nuclear fuels irradiation test campaigns, including utilization of real-world components retrieved from current and decommissioned reactors. When the ATR national scientific user facility was established in 2007 one of the goals of the program was to establish a library of irradiated samples for users to access and conduct research through competitively reviewed proposal process. As part of the initial effort, staff at the user facility identified legacy materials from previous programs that are still being stored in laboratories and hot-cell facilities at the INL. In addition other materials of interest were identified that are being stored outside the INL that the current owners have volunteered to enter into the library. Finally, over the course of the last several years, the ATR NSUF has irradiated more than 3500 specimens as part of NSUF competitively awarded research projects. The Logistics of managing this large inventory of highly radioactive poses unique challenges. This document will describe materials in the library, outline the policy for accessing these materials and put forth a strategy for making new additions to the library as well as establishing guidelines for minimum pedigree needed to be included in the library to limit the amount of material stored indefinitely without identified value.

  8. SWiFT Site Atmospheric Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Atmospheric Characterization - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  9. Atmospheric Science: Solving Challenges of Climate Change

    SciTech Connect (OSTI)

    Geffen, Charlette

    2015-08-05

    PNNL’s atmospheric science research provides data required to make decisions about challenges presented by climate change: Where to site power plants, how to manage water resources, how to prepare for severe weather events and more. Our expertise in fundamental observations and modeling is recognized among the national labs and the world.

  10. National Oceanic and Atmospheric Administration, Honolulu, Hawaii

    Broader source: Energy.gov [DOE]

    The staff residences at the Pacific Tsunami Warning Center in Hawaii now have solar water heating systems funded by the Federal Energy Management Program (FEMP). The Center is part of the Department of Commerce's National Oceanic and Atmospheric Administration (DOC-NOAA).

  11. Irradiation Programs and Test Plans to Assess High-Fluence Irradiation Assisted Stress Corrosion Cracking Susceptibility.

    SciTech Connect (OSTI)

    Teysseyre, Sebastien

    2015-03-01

    . Irradiation assisted stress corrosion cracking (IASCC) is a known issue in current reactors. In a 60 year lifetime, reactor core internals may experience fluence levels up to 15 dpa for boiling water reactors (BWR) and 100+ dpa for pressurized water reactors (PWR). To support a safe operation of our fleet of reactors and maintain their economic viability it is important to be able to predict any evolution of material behaviors as reactors age and therefore fluence accumulated by reactor core component increases. For PWR reactors, the difficulty to predict high fluence behavior comes from the fact that there is not a consensus of the mechanism of IASCC and that little data is available. It is however possible to use the current state of knowledge on the evolution of irradiated microstructure and on the processes that influences IASCC to emit hypotheses. This report identifies several potential changes in microstructure and proposes to identify their potential impact of IASCC. The susceptibility of a component to high fluence IASCC is considered to not only depends on the intrinsic IASCC susceptibility of the component due to radiation effects on the material but to also be related to the evolution of the loading history of the material and interaction with the environment as total fluence increases. Single variation type experiments are proposed to be performed with materials that are representative of PWR condition and with materials irradiated in other conditions. To address the lack of IASCC propagation and initiation data generated with material irradiated in PWR condition, it is proposed to investigate the effect of spectrum and flux rate on the evolution of microstructure. A long term irradiation, aimed to generate a well-controlled irradiation history on a set on selected materials is also proposed for consideration. For BWR, the study of available data permitted to identify an area of concern for long term performance of component. The efficiency of

  12. ELECTRON IRRADIATION OF SOLIDS

    DOE Patents [OSTI]

    Damask, A.C.

    1959-11-01

    A method is presented for altering physical properties of certain solids, such as enhancing the usefulness of solids, in which atomic interchange occurs through a vacancy mechanism, electron irradiation, and temperature control. In a centain class of metals, alloys, and semiconductors, diffusion or displacement of atoms occurs through a vacancy mechanism, i.e., an atom can only move when there exists a vacant atomic or lattice site in an adjacent position. In the process of the invention highenergy electron irradiation produces additional vacancies in a solid over those normally occurring at a given temperature and allows diffusion of the component atoms of the solid to proceed at temperatures at which it would not occur under thermal means alone in any reasonable length of time. The invention offers a precise way to increase the number of vacancies and thereby, to a controlled degree, change the physical properties of some materials, such as resistivity or hardness.

  13. Ensemble Atmospheric Dispersion Modeling

    SciTech Connect (OSTI)

    Addis, R.P.

    2002-06-24

    Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.

  14. BIOLOGICAL IRRADIATION FACILITY

    DOE Patents [OSTI]

    McCorkle, W.H.; Cern, H.S.

    1962-04-24

    A facility for irradiating biological specimens with neutrons is described. It includes a reactor wherein the core is off center in a reflector. A high-exposure room is located outside the reactor on the side nearest the core while a low-exposure room is located on the opposite side. Means for converting thermal neutrons to fast neutrons are movably disposed between the reactor core and the high and low-exposure rooms. (AEC)

  15. Method for selective recovery of PET-usable quantities of [.sup.18 F] fluoride and [.sup.13 N] nitrate/nitrite from a single irradiation of low-enriched [.sup.18 O] water

    DOE Patents [OSTI]

    Ferrieri, Richard A.; Schlyer, David J.; Shea, Colleen

    1995-06-13

    A process for simultaneously producing PET-usable quantities of [.sup.13 N]NH.sub.3 and [.sup.18 F]F.sup.- for radiotracer synthesis is disclosed. The process includes producing [.sup.13 N]NO.sub.2.sup.- /NO.sub.3.sup.- and [.sup.18 F]F.sup.- simultaneously by exposing a low-enriched (20%-30%) [.sup.18 O]H.sub.2 O target to proton irradiation, sequentially isolating the [.sup.13 N]NO.sub.2.sup.- /NO.sub.3.sup.- and [.sup.18 F]F.sup.- from the [.sup.18 O]H.sub.2 O target, and reducing the [.sup.13 N]NO.sub.2.sup.- /NO.sub.3.sup.- to [.sup.13 N]NH.sub.3. The [.sup.13 N]NH.sub.3 and [.sup.18 F]F.sup.- products are then conveyed to a laboratory for radiotracer applications. The process employs an anion exchange resin for isolation of the isotopes from the [.sup.18 O]H.sub.2 O, and sequential elution of [.sup.13 N]NO.sub.2.sup.- /NO.sub.3.sup.- and [ .sup.18 F]F.sup.- fractions. Also the apparatus is disclosed for simultaneously producing PET-usable quantities of [.sup.13 N]NH.sub.3 and [.sup.18 F]F.sup.- from a single irradiation of a single low-enriched [.sup.18 O]H.sub.2 O target.

  16. Photochemistry in terrestrial exoplanet atmospheres. III. Photochemistry and thermochemistry in thick atmospheres on super Earths and mini Neptunes

    SciTech Connect (OSTI)

    Hu, Renyu; Seager, Sara

    2014-03-20

    Some super Earths and mini Neptunes will likely have thick atmospheres that are not H{sub 2}-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H{sub 2}-dominated atmospheres and non-H{sub 2}-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO{sub 2} rather than CH{sub 4} or CO in a H{sub 2}-depleted water-dominated thick atmosphere and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to the formation of unsaturated hydrocarbons (C{sub 2}H{sub 2} and C{sub 2}H{sub 4}). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1214 b, we find that (1) C{sub 2}H{sub 2} features at 1.0 and 1.5 ?m in transmission and C{sub 2}H{sub 2} and C{sub 2}H{sub 4} features at 9-14 ?m in thermal emission are diagnostic for hydrocarbon-rich atmospheres; (2) a detection of water-vapor features and a confirmation of the nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Water-dominated atmospheres only exist for carbon to oxygen ratios much lower than the solar ratio, suggesting that this kind of atmospheres could be rare.

  17. UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS

    SciTech Connect (OSTI)

    Heng, Kevin; Demory, Brice-Olivier E-mail: demory@mit.edu

    2013-11-10

    Unlike previously explored relationships between the properties of hot Jovian atmospheres, the geometric albedo and the incident stellar flux do not exhibit a clear correlation, as revealed by our re-analysis of Q0-Q14 Kepler data. If the albedo is primarily associated with the presence of clouds in these irradiated atmospheres, a holistic modeling approach needs to relate the following properties: the strength of stellar irradiation (and hence the strength and depth of atmospheric circulation), the geometric albedo (which controls both the fraction of starlight absorbed and the pressure level at which it is predominantly absorbed), and the properties of the embedded cloud particles (which determine the albedo). The anticipated diversity in cloud properties renders any correlation between the geometric albedo and the stellar flux weak and characterized by considerable scatter. In the limit of vertically uniform populations of scatterers and absorbers, we use an analytical model and scaling relations to relate the temperature-pressure profile of an irradiated atmosphere and the photon deposition layer and to estimate whether a cloud particle will be lofted by atmospheric circulation. We derive an analytical formula for computing the albedo spectrum in terms of the cloud properties, which we compare to the measured albedo spectrum of HD 189733b by Evans et al. Furthermore, we show that whether an optical phase curve is flat or sinusoidal depends on whether the particles are small or large as defined by the Knudsen number. This may be an explanation for why Kepler-7b exhibits evidence for the longitudinal variation in abundance of condensates, while Kepler-12b shows no evidence for the presence of condensates despite the incident stellar flux being similar for both exoplanets. We include an 'observer's cookbook' for deciphering various scenarios associated with the optical phase curve, the peak offset of the infrared phase curve, and the geometric albedo.

  18. Monitoring of Precipitable Water Vapor and Cloud Liquid Path...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring of Precipitable Water Vapor and Cloud Liquid Path from Scanning Microwave ... used to measure atmospheric precipitable water vapor (PWV) and cloud liquid path (CLP). ...

  19. GPS Water Vapor Projects Within the ARM Southern Great Plains...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GPS Water Vapor Projects Within the ARM Southern Great Plains Region J. Braun, T. Van ... and characterize the four-dimensional distribution of water vapor within the atmosphere. ...

  20. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS (REVISION 1)

    SciTech Connect (OSTI)

    Clark, E.

    2013-09-13

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Revision 1 adds a comparison with results of a study of tritium exposed EPDM. The amount of gas produced by the gamma irradiation was found to be equivalent to about 280 days exposure to initially pure tritium gas at one atmosphere. The glass transition temperature of the tritium exposed EPDM rose about 10 ?C. over 280 days, while no glass transition temperature change was observed for gamma irradiated EPDM. This means that gamma irradiation in deuterium cannot be used as a surrogate for tritium exposure.

  1. Atmospheric corrosion of lithium electrodes

    SciTech Connect (OSTI)

    Johnson, C.J.

    1981-10-01

    Atmospheric corrosion of lithium during lithium-cell assembly and the dry storage of cells prior to electrolyte fill has been found to initiate lithium corrosion pits and to form corrosion products. Scanning Electron Microscopy (SEM) was used to investigate lithium pitting and the white floccullent corrosion products. Electron Spectroscopy for Chemical Analysis (ESCA) and Auger spectroscopy in combination with X-ray diffraction were used to characterize lithium surfaces. Lithium surfaces with corrosion products were found to be high in carbonate content indicating the presence of lithium carbonate. Lithium electrodes dry stored in unfilled batteries were found to contain high concentration of lithium flouride a possible corrosion product from gaseous materials from the carbon monofluoride cathode. Future investigations of the corrosion phenomena will emphasize the effect of the corrosion products on the electrolyte and ultimate battery performance. The need to protect lithium electrodes from atmospheric exposure is commonly recognized to minimize corrosion induced by reaction with water, oxygen, carbon dioxide or nitrogen (1). Manufacturing facilities customarily limit the relative humidity to less than two percent. Electrodes that have been manufactured for use in lithium cells are typically stored in dry-argon containers. In spite of these precautions, lithium has been found to corrode over a long time period due to residual gases or slow diffusion of the same into storage containers. The purpose of this investigation was to determine the nature of the lithium corrosion.

  2. Method for selective recovery of PET-usable quantities of [{sup 18}F] fluoride and [{sup 13}N] nitrate/nitrite from a single irradiation of low-enriched [{sup 18}O] water

    DOE Patents [OSTI]

    Ferrieri, R.A.; Schlyer, D.J.; Shea, C.

    1995-06-13

    A process for simultaneously producing PET-usable quantities of [{sup 13}N]NH{sub 3} and [{sup 18}F]F{sup {minus}} for radiotracer synthesis is disclosed. The process includes producing [{sup 13}N]NO{sub 2}{sup {minus}}/NO{sub 3}{sup {minus}}and [{sup 18}F]F{sup {minus}} simultaneously by exposing a low-enriched (20%-30%) [{sup 18}O]H{sub 2}O target to proton irradiation, sequentially isolating the [{sup 13}N]NO{sub 2}{sup {minus}}/NO{sub 3}{sup {minus}} and [{sup 18}F]F{sup {minus}} from the [{sup 18}O]H{sub 2}O target, and reducing the [{sup 13}N]NO{sub 2}{sup {minus}}/NO{sub 3}{sup {minus}} to [{sup 13}N]NH{sub 3}. The [{sup 13}N]NH{sub 3} and [{sup 18}F]F{sup {minus}} products are then conveyed to a laboratory for radiotracer applications. The process employs an anion exchange resin for isolation of the isotopes from the [{sup 18}O]H{sub 2}O, and sequential elution of [{sup 13}N]NO{sub 2}{sup {minus}}/NO{sub 3}{sup {minus}} and [{sup 18}F]F{sup {minus}} fractions. Also the apparatus is disclosed for simultaneously producing PET-usable quantities of [{sup 13}N]NH{sub 3} and [{sup 18}F]F{sup {minus}} from a single irradiation of a single low-enriched [{sup 18}O]H{sub 2}O target. 2 figs.

  3. The atmospheric circulation of the super Earth GJ 1214b: Dependence on composition and metallicity

    SciTech Connect (OSTI)

    Kataria, T.; Showman, A. P.; Fortney, J. J.; Marley, M. S.; Freedman, R. S.

    2014-04-20

    We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean molecular weight (MMW; i.e., H{sub 2}-dominated) and a high MMW (i.e., water- and CO{sub 2}-dominated). We find that atmospheres with a low MMW have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperature variations, and hence stronger superrotation. In comparison, atmospheres with a high MMW have larger day-night and equator-to-pole temperature variations than low MMW atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. The circulation of a water-dominated atmosphere is dominated by equatorial superrotation, while the circulation of a CO{sub 2}-dominated atmosphere is instead dominated by high-latitude jets. By comparing emergent flux spectra and light curves for 50× solar and water-dominated compositions, we show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. The variation in opacity with wavelength for the water-dominated atmosphere leads to large phase variations within water bands and small phase variations outside of water bands. The 50× solar atmosphere, however, yields small variations within water bands and large phase variations at other characteristic wavelengths. These observations would be much less sensitive to clouds, condensates, and hazes than transit observations.

  4. Strategic Environmental Research and Development Program: Atmospheric Remote Sensing and Assessment Program -- Final Report. Part 1: The lower atmosphere

    SciTech Connect (OSTI)

    Tooman, T.P.

    1997-01-01

    This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns were undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.

  5. Combined Effects of Temperature and Irradiation on Concrete Damage

    SciTech Connect (OSTI)

    Le Pape, Yann; Giorla, Alain; Sanahuja, Julien

    2016-01-01

    Aggregate radiation-induced volumetric expansion (RIVE) is a predominant mechanism in the formation of mechanical damage in the hardened cement paste (hcp) of irradiated concrete under fast-neutron flux (Giorla et al. 2015). Among the operating conditions difference between test reactors and light water reactors (LWRs), the difference of irradiation flux and temperature is significant. While a temperature increase is quite generally associated with a direct, or indirect (e.g., by dehydration) loss of mechanical properties (Maruyama et al. 2014), we found that it causes a partial annealing of irradiation amorphization of α-quartz, hence, reducing RIVE rate. Based on data collected by Bykov et al. (1981), an incremental RIVE model coupling neutron fluence and temperature is developed. The elastic properties and coefficient of thermal expansion (CTE) of irradiated polycrystalline quartz are interpreted through analytical homogenization of experimental data on irradiated α-quartz published by Mayer and Lecomte (1960). Moreover, the proposed model, implemented in the meso-scale simulation code AMIE, is compared to experimental data obtained on ordinary concrete made of quartz/quartzite aggregate (Dubrovskii et al. 1967). Substantial discrepancy, in terms of damage and volumetric expansion developments, is found when comparing irradiation scenarios assuming constant flux and temperature, as opposed to more realistic test reactor operation conditions.

  6. Meso-scale modeling of irradiated concrete in test reactor

    SciTech Connect (OSTI)

    Giorla, Alain B.; Vaitová, M.; Le Pape, Yann; Štemberk, P.

    2015-10-18

    In this paper, we detail a numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale. Irradiation experiments in test reactor (Elleuch et al.,1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al.,2015). In conclusion, the proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.

  7. Combined Effects of Temperature and Irradiation on Concrete Damage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le Pape, Yann; Giorla, Alain; Sanahuja, Julien

    2016-01-01

    Aggregate radiation-induced volumetric expansion (RIVE) is a predominant mechanism in the formation of mechanical damage in the hardened cement paste (hcp) of irradiated concrete under fast-neutron flux (Giorla et al. 2015). Among the operating conditions difference between test reactors and light water reactors (LWRs), the difference of irradiation flux and temperature is significant. While a temperature increase is quite generally associated with a direct, or indirect (e.g., by dehydration) loss of mechanical properties (Maruyama et al. 2014), we found that it causes a partial annealing of irradiation amorphization of α-quartz, hence, reducing RIVE rate. Based on data collected by Bykovmore » et al. (1981), an incremental RIVE model coupling neutron fluence and temperature is developed. The elastic properties and coefficient of thermal expansion (CTE) of irradiated polycrystalline quartz are interpreted through analytical homogenization of experimental data on irradiated α-quartz published by Mayer and Lecomte (1960). Moreover, the proposed model, implemented in the meso-scale simulation code AMIE, is compared to experimental data obtained on ordinary concrete made of quartz/quartzite aggregate (Dubrovskii et al. 1967). Substantial discrepancy, in terms of damage and volumetric expansion developments, is found when comparing irradiation scenarios assuming constant flux and temperature, as opposed to more realistic test reactor operation conditions.« less

  8. Meso-scale modeling of irradiated concrete in test reactor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Giorla, Alain B.; Vaitová, M.; Le Pape, Yann; Štemberk, P.

    2015-10-18

    In this paper, we detail a numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale. Irradiation experiments in test reactor (Elleuch et al.,1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damagemore » around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al.,2015). In conclusion, the proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.« less

  9. Atmosphere Component in Community Earth System Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atiq Warraich About Us Atiq Warraich - Technical Lead/Project Manager Atiq Warraich Most Recent Digital Strategy May

    Atmosphere Component in Community Earth System Model - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy

  10. Mechanism for atmosphere dependence of laser damage morphology in HfO{sub 2}/SiO{sub 2} high reflective films

    SciTech Connect (OSTI)

    Pu Yunti; Ma Ping; Chen Songlin; Wang Gang; Pan Feng; Zhu Jiliang; Sun Ping; Zhu Xiaohong; Zhu Jianguo; Xiao Dingquan

    2012-07-15

    We show in this paper single-shot and multi-shot laser-induced damage thresholds (LIDTs) of HfO{sub 2}/SiO{sub 2} high reflective films (the reflectance = 99.9%) are affected by the presence of a water layer absorbed on the surface of the porous films. When the water layer was removed with the process of pumping, the single-shot LIDT measured in vacuum dropped to {approx}48% of that measured in air, while the multi-shot LIDT in vacuum dropped to {approx}47% of its atmospheric value for the high reflective films. Typical damage micrographs of the films in air and in vacuum were obtained, showing distinct damage morphologies. Such atmosphere dependence of the laser damage morphology was found to originate from that formation of a water layer on the surface of porous films could cause an increase of horizontal thermal conductivity and a reduction of vertical thermal conductivity. Moreover, laser-induced periodic ripple damages in air were found in the SiO{sub 2} layer from the micrographs. A model of deformation kinematics was used to illustrate the occurrence of the periodic ripple damage, showing that it could be attributed to a contraction of the HfO{sub 2} layer under irradiation by the 5-ns laser pulses in air.

  11. LWRS ATR Irradiation Testing Readiness Status

    SciTech Connect (OSTI)

    Kristine Barrett

    2012-09-01

    The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

  12. Atmosphere to Electrons program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... variable-pitch Vestas V27 turbines and two 60 m anemometer ...

  13. Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2012-10-01

    The United States Department of Energys Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

  14. Status of the NGNP fuel experiment AGR-2 irradiated in the advanced test reactor

    SciTech Connect (OSTI)

    S. Blaine Grover; David A. Petti

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also undergo on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and sup

  15. Status of the NGNP Graphite Creep Experiments AGC-1 and AGC-2 Irradiated in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six peripheral stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six peripheral stacks will have different compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during irradiation of the experiment. The first experiment, AGC-1, started its irradiation in September 2009, and the irradiation was completed in January 2011. The second experiment, AGC-2, started its irradiation in April 2011 and completed its irradiation in May 2012. This paper will briefly discuss the design of the experiment and control systems, and then present the irradiation results for each experiment to date.

  16. Slag recycling of irradiated vanadium

    SciTech Connect (OSTI)

    Gorman, P.K.

    1995-04-05

    An experimental inductoslag apparatus to recycle irradiated vanadium was fabricated and tested. An experimental electroslag apparatus was also used to test possible slags. The testing was carried out with slag materials that were fabricated along with impurity bearing vanadium samples. Results obtained include computer simulated thermochemical calculations and experimentally determined removal efficiencies of the transmutation impurities. Analyses of the samples before and after testing were carried out to determine if the slag did indeed remove the transmutation impurities from the irradiated vanadium.

  17. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    SciTech Connect (OSTI)

    Chen, Y.; Chopra, O. K.; Gruber, Eugene E.; Shack, William J.

    2010-06-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (?3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC

  18. Optimal measurement of surface shortwave irradiance using current instrumentation -- the ARM experience

    SciTech Connect (OSTI)

    Michalsky, J.; Rubes, M.; Stoffel, T.; Wesley, M.; Splitt, M.; DeLuisi, J.

    1997-03-01

    Shortwave (solar) measurements of surface irradiance for clear sky conditions disagree with a number of different models. Betts used the European Center for Medium-range Forecasts (ECMWF) shortwave model to calculate surface irradiance that were 5-10 percent higher than measurements. Wild used a different formulation of the ECMWF shortwave model, but found that the model overpredicted clear-sky shortwave and average of 3 percent. Ding and Wang used data from the Atmospheric Radiation Measurement (ARM) program and found that the GENESIS GCM shortwave model, likewise, overpredicted clear-sky irradiance by about 4 percent. To help resolve the measurement dilemma, reference instruments were deployed in April 1996 at the Southern Great Plains ARM site central facility very near the shortwave measurements. The rest of the paper describes the experiment undertaken to ascertain total horizontal shortwave irradiance at the surface, including a separation of the direct normal and diffuse horizontal components. Results and a discussion of same concludes the paper.

  19. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    SciTech Connect (OSTI)

    Jiao, Zhujie; Was, Gary; Bartels, David

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that the effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.

  20. Development of Water Radiolysis Code for the JMTR IASCC Test Loop

    SciTech Connect (OSTI)

    Satoshi Hanawa; Tomonori Sato; Yuichiro Mori; Jin Oogiyanagi; Yoshiyuki Kaji; Shunsuke Uchida

    2006-07-01

    In order to evaluate the water chemistry in the irradiation field during IASCC irradiation test, a water radiolysis code for IASCC irradiation loop system was developed. In the water radiolysis code, a multiple node model was introduced since the irradiation loop system has a wide rage temperature distribution as well as the dose distribution. To investigate the applicability of developed water radiolysis code, water chemistry at the water sampling point of the irradiation loop system was measured and compared with analytical results under several water chemistry conditions. Further, water chemistry distribution in the in-pile region as well as in the out-pile region was calculated by the developed water radiolysis code. (authors)

  1. Analyzing Atmospheric Neutrino Oscillations

    SciTech Connect (OSTI)

    Escamilla, J.; Ernst, D. J.; Latimer, D. C.

    2007-10-26

    We provide a pedagogic derivation of the formula needed to analyze atmospheric data and then derive, for the subset of the data that are fully-contained events, an analysis tool that is quantitative and numerically efficient. Results for the full set of neutrino oscillation data are then presented. We find the following preliminary results: 1.) the sub-dominant approximation provides reasonable values for the best fit parameters for {delta}{sub 32}, {theta}{sub 23}, and {theta}{sub 13} but does not quantitatively provide the errors for these three parameters; 2.) the size of the MSW effect is suppressed in the sub-dominant approximation; 3.) the MSW effect reduces somewhat the extracted error for {delta}{sub 32}, more so for {theta}{sub 23} and {theta}{sub 13}; 4.) atmospheric data alone constrains the allowed values of {theta}{sub 13} only in the sub-dominant approximation, the full three neutrino calculations requires CHOOZ to get a clean constraint; 5.) the linear in {theta}{sub 13} terms are not negligible; and 6.) the minimum value of {theta}{sub 13} is found to be negative, but at a statistically insignificant level.

  2. Status of the NGNP graphite creep experiments AGC-1 and AGC-2 irradiated in the advanced test reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the next generation nuclear plant (NGNP) very high temperature gas reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six peripheral stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six peripheral stacks will have three different compressive loads applied to the top half of three diametrically opposite pairs of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during irradiation of the experiment.

  3. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2010-10-01

    The United States Department of Energys Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energys lead laboratory for nuclear energy development. The ATR is one of the worlds premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the

  4. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites ...

  5. Atmospheric Emitted Radiance Interferometer (AERI) Handbook

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gero, Jonathan; Hackel, Denny; Garcia, Raymond

    2005-01-01

    The atmospheric emitted radiance interferometer (AERI) is a ground-based instrument that measures the downwelling infrared radiance from the Earth’s atmosphere. The observations have broad spectral content and sufficient spectral resolution to discriminate among gaseous emitters (e.g., carbon dioxide and water vapor) and suspended matter (e.g., aerosols, water droplets, and ice crystals). These upward-looking surface observations can be used to obtain vertical profiles of tropospheric temperature and water vapor, as well as measurements of trace gases (e.g., ozone, carbon monoxide, and methane) and downwelling infrared spectral signatures of clouds and aerosols.The AERI is a passive remote sounding instrument, employing a Fourier transform spectrometer operating in the spectral range 3.3–19.2 μm (520–3020 cm-1) at an unapodized resolution of 0.5 cm-1 (max optical path difference of 1 cm). The extended-range AERI (ER-AERI) deployed in dry climates, like in Alaska, have a spectral range of 3.3–25.0 μm (400–3020 cm-1) that allow measurements in the far-infrared region. Typically, the AERI averages views of the sky over a 16-second interval and operates continuously.

  6. Cracking behavior and microstructure of austenitic stainless steels and alloy 690 irradiated in BOR-60 reactor, phase I.

    SciTech Connect (OSTI)

    Chen, Y.; Chopra, O. K.; Soppet, W. K.; Shack, W. J.; Yang, Y.; Allen, T. R.; Univ. of Wisconsin at Madison

    2010-02-16

    Cracking behavior of stainless steels specimens irradiated in the BOR-60 at about 320 C is studied. The primary objective of this research is to improve the mechanistic understanding of irradiation-assisted stress corrosion cracking (IASCC) of core internal components under conditions relevant to pressurized water reactors. The current report covers several baseline tests in air, a comparison study in high-dissolved-oxygen environment, and TEM characterization of irradiation defect structure. Slow strain rate tensile (SSRT) tests were conducted in air and in high-dissolved-oxygen (DO) water with selected 5- and 10-dpa specimens. The results in high-DO water were compared with those from earlier tests with identical materials irradiated in the Halden reactor to a similar dose. The SSRT tests produced similar results among different materials irradiated in the Halden and BOR-60 reactors. However, the post-irradiation strength for the BOR-60 specimens was consistently lower than that of the corresponding Halden specimens. The elongation of the BOR-60 specimens was also greater than that of their Halden specimens. Intergranular cracking in high-DO water was consistent for most of the tested materials in the Halden and BOR-60 irradiations. Nonetheless, the BOR-60 irradiation was somewhat less effective in stimulating IG fracture among the tested materials. Microstructural characterization was also carried out using transmission electron microscopy on selected BOR-60 specimens irradiated to {approx}25 dpa. No voids were observed in irradiated austenitic stainless steels and cast stainless steels, while a few voids were found in base and grain-boundary-engineered Alloy 690. All the irradiated microstructures were dominated by a high density of Frank loops, which varied in mean size and density for different alloys.

  7. ORISE: Climate and Atmospheric Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge Institute for Science Education Climate and Atmospheric Research Conducting climate research focused on issues of national and global importance is one of the primary objectives of the Atmospheric Turbulence and Diffusion Division (ATDD)-a field division of the National Oceanic and Atmospheric Administration. ORAU partners with ATDD-and in collaboration with scientists and engineers from Oak Ridge National Laboratory (ORNL) as well as government agencies, universities, and private

  8. ARM - Sources of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources of Atmospheric Carbon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Sources of Atmospheric Carbon Atmospheric carbon represented a steady state system, where influx equaled outflow, before the Industrial Revolution. Currently, it is no longer a steady state system because the

  9. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    SciTech Connect (OSTI)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

  10. Tritium Related Material Research -Irradiation Effect on Isotropic...

    Office of Environmental Management (EM)

    Related Material Research -Irradiation Effect on Isotropic Graphite Utilizing Heavy Ion-Irradiation- Tritium Related Material Research -Irradiation Effect on Isotropic Graphite...

  11. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (HFIR). Irradiation of the capsules was conducted for post-irradiation examination (PIE) metallography. PDF icon Neutron Irradiation of Hydrided Cladding Material in HFIR...

  12. The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exhanges

    SciTech Connect (OSTI)

    Still, C.J.; Riley, W.J.; Biraud, S.C.; Noone, D.C.; Buenning, N.H.; Randerson, J.T.; Torn, M.S.; Welker, J.; White, J.W.C.; Vachon, R.; Farquhar, G.D.; Berry, J.A.

    2009-05-01

    This study evaluates the potential impact of clouds on ecosystem CO{sub 2} and CO{sub 2} isotope fluxes ('isofluxes') in two contrasting ecosystems (a broadleaf deciduous forest and a C{sub 4} grassland), in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model, ISOLSM. Our model results indicate a large impact of clouds on ecosystem CO{sub 2} fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day. This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C{sub 4} grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean {delta}{sup 18}O of CO{sub 2} may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.

  13. Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations S. Kato Center for Atmospheric Sciences Hampton University Hampton, Virginia Introduction Recent development of remote sensing instruments by Atmospheric Radiation Measurement (ARM?) Program provides information of spatial and temporal variability of cloud structures. However it is not clear what cloud properties are required to express complicated cloud

  14. Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect (OSTI)

    A. Joseph Palmer; David A. Petti; S. Blaine Grover

    2014-04-01

    The United States Department of Energys Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

  15. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    SciTech Connect (OSTI)

    Suryani, Puput Eka; Purnama, Herry; Susanto, Heru

    2015-12-29

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance.

  16. Polyport atmospheric gas sampler

    DOE Patents [OSTI]

    Guggenheim, S. Frederic

    1995-01-01

    An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

  17. Statistical criteria for characterizing irradiance time series.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2010-10-01

    We propose and examine several statistical criteria for characterizing time series of solar irradiance. Time series of irradiance are used in analyses that seek to quantify the performance of photovoltaic (PV) power systems over time. Time series of irradiance are either measured or are simulated using models. Simulations of irradiance are often calibrated to or generated from statistics for observed irradiance and simulations are validated by comparing the simulation output to the observed irradiance. Criteria used in this comparison should derive from the context of the analyses in which the simulated irradiance is to be used. We examine three statistics that characterize time series and their use as criteria for comparing time series. We demonstrate these statistics using observed irradiance data recorded in August 2007 in Las Vegas, Nevada, and in June 2009 in Albuquerque, New Mexico.

  18. Containment atmosphere response to external sprays

    SciTech Connect (OSTI)

    Green, J.; Almenas, K.

    1995-09-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J{sub 2}/He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated.

  19. Ultrasonic Transducer Irradiation Test Results

    SciTech Connect (OSTI)

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert; Chien, Hual-Te; Kohse, Gordon; Tittmann, Bernhard; Reinhardt, Brian; Rempe, Joy

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  20. Method for monitoring irradiated fuel using Cerenkov radiation

    DOE Patents [OSTI]

    Dowdy, E.J.; Nicholson, N.; Caldwell, J.T.

    1980-05-21

    A method is provided for monitoring irradiated nuclear fuel inventories located in a water-filled storage pond wherein the intensity of the Cerenkov radiation emitted from the water in the vicinity of the nuclear fuel is measured. This intensity is then compared with the expected intensity for nuclear fuel having a corresponding degree of irradiation exposure and time period after removal from a reactor core. Where the nuclear fuel inventory is located in an assembly having fuel pins or rods with intervening voids, the Cerenkov light intensity measurement is taken at selected bright sports corresponding to the water-filled interstices of the assembly in the water storage, the water-filled interstices acting as Cerenkov light channels so as to reduce cross-talk. On-line digital analysis of an analog video signal is possible, or video tapes may be used for later measurement using a video editor and an electrometer. Direct measurement of the Cerenkov radiation intensity also is possible using spot photometers pointed at the assembly.

  1. Satellite data sets for the atmospheric radiation measurement (ARM) program

    SciTech Connect (OSTI)

    Shi, L.; Bernstein, R.L.

    1996-04-01

    This abstract describes the type of data obtained from satellite measurements in the Atmospheric Radiation Measurement (ARM) program. The data sets have been widely used by the ARM team to derive cloud-top altitude, cloud cover, snow and ice cover, surface temperature, water vapor, and wind, vertical profiles of temperature, and continuoous observations of weather needed to track and predict severe weather.

  2. Atmospheric Radiation Measurement Radiative Atmospheric Divergence using ARM Mobile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Atmospheric Divergence using ARM Mobile Facility, GERB, and AMMA Stations (RADAGAST) Beginning in January 2006, the ARM Mobile Facility (AMF) began supporting RADAGAST to provide the first well-sampled direct esti- mates of the energy balance across the atmosphere. The experiment is part of an ongoing international study of the West African monsoon system and Saharan dust storms. Stationed outside the Niger Meteo- rological Office at the Niamey International Airport, the AMF is located

  3. Nondestructive post-irradiation examination of Loop-1, S1 and B1 rods

    SciTech Connect (OSTI)

    Bratton, R.L.

    1997-05-01

    As a part of the Pacific Northwest National Laboratory`s Tritium Target Development Program, eleven tritium target rods were irradiated in the Advanced Test Reactor located at the Idaho National Engineering and Environmental Laboratory during 1991. Both nondestructive and destructive post-irradiation examination on all eleven rods was planned under the Tritium Target Development Program. Funding for the program was reduced in 1991 resulting in the early removal of the program experiments before reaching their irradiation goals. Post-irradiation examination was only performed on one of the irradiated rods at the Pacific Northwest National Laboratory before the program was terminated in 1992. On December 6, 1995, the Secretary of Energy announced the pursuit of the Commercial Light-Water Reactor option for producing tritium establishing the Tritium Target Qualification Program at the Pacific Northwest National Laboratory. This program decided to pursue nondestructive and destructive post-irradiation examination of the ten remaining rods from the previous program. The ten rods comprise three experiments. The Loop-1 experiment irradiated eight target rods in a loop configuration for 217 irradiation days. The other two rods were irradiated in two separate irradiation experiments, designated as S1 and B1 for 143 effective full-power days, but at different power levels. After the ten rods were transferred from the ATR Canal to the Hot Fuels Examination Facility, the following examinations were performed: (1) visual examination and photography; (2) neutron radiography; (3) axial gamma scanning; (4) contact profilometry measurement; (5) bow and length measurements; (6) rod puncture and plenum gas analysis/measurement of plenum gas quantity; (7) void volume determination; and (8) internal pressure determination. This report presents the data collected during these examinations.

  4. WATER-TRAPPED WORLDS

    SciTech Connect (OSTI)

    Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2013-09-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO{sub 2} as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe.

  5. RERTR-13 Irradiation Summary Report

    SciTech Connect (OSTI)

    D. M. Perez; M. A. Lillo; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

    2012-09-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-13 was designed to assess performance of different types of neutron absorbers that can be potentially used as burnable poisons in the low enriched uranium-molybdenum based dispersion and monolithic fuels.1 The following report summarizes the life of the RERTR-13 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

  6. Terrain-Responsive Atmospheric Code

    Energy Science and Technology Software Center (OSTI)

    1991-11-20

    The Terrain-Responsive Atmospheric Code (TRAC) is a real-time emergency response modeling capability designed to advise Emergency Managers of the path, timing, and projected impacts from an atmospheric release. TRAC evaluates the effects of both radiological and non-radiological hazardous substances, gases and particulates. Using available surface and upper air meteorological information, TRAC realistically treats complex sources and atmospheric conditions, such as those found in mountainous terrain. TRAC calculates atmospheric concentration, deposition, and dose for more thanmore » 25,000 receptor locations within 80 km of the release point. Human-engineered output products support critical decisions on the type, location, and timing of protective actions for workers and the public during an emergency.« less

  7. (Chemistry of the global atmosphere)

    SciTech Connect (OSTI)

    Marland, G.

    1990-09-27

    The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

  8. LIGHT WATER REACTOR ACCIDENT TOLERANT FUELS IRRADIATION TESTING

    SciTech Connect (OSTI)

    Carmack, William Jonathan; Barrett, Kristine Eloise; Chichester, Heather Jean MacLean

    2015-09-01

    The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R&D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirements for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL’s Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.

  9. Atmospheric science and power production

    SciTech Connect (OSTI)

    Randerson, D.

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  10. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect (OSTI)

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ≤ 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  11. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    SciTech Connect (OSTI)

    Katoh, Yutai; Koyanagi, Takaaki; Kiggans, Jim; Cetiner, Nesrin; McDuffee, Joel

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  12. Science Plan for the Atmospheric Radiation Measurement Program (ARM)

    SciTech Connect (OSTI)

    1996-02-01

    The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE`s programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols.

  13. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-027 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  14. AUDIT REPORT Atmospheric Radiation Measurement Climate Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atmospheric Radiation Measurement Climate Research Facility OAI-M-16-10 May 2016 U.S. ... Audit Report on the "Atmospheric Radiation Measurement Climate Research Facility" ...

  15. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-037 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  16. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  17. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-069 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  18. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion...

  19. National Oceanic and Atmospheric Administration (NOAA) | Open...

    Open Energy Info (EERE)

    National Oceanic and Atmospheric Administration (NOAA) Jump to: navigation, search Logo: National Oceanic and Atmospheric Administration (NOAA) Name: National Oceanic and...

  20. Atmospheric Radiation Measurement (ARM) Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER ...

  1. Search for: "atmospheric radiation measurement" | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search DOE Data Explorer Search Results Page 1 of 70 Search for: "atmospheric radiation measurement" 697 results for: "atmospheric radiation ...

  2. Atmospheric Radiation Measurement Climate Research Facility Annual...

    Office of Scientific and Technical Information (OSTI)

    Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research ...

  3. Post-irradiation Examination Plan for ORNL and University of California Santa Barbara Assessment of UCSB ATR-2 Irradiation Experiment

    SciTech Connect (OSTI)

    Nanstad, R. K.; Yamamoto, T.; Sokolov, M. A.

    2014-01-25

    New and existing databases will be combined to support development of physically based models of transition temperature shifts (TTS) for high fluence-low flux (φ < 10{sup 11}n/cm{sup 2}-s) conditions, beyond the existing surveillance database, to neutron fluences of at least 1×10{sup 20} n/cm{sup 2} (>1 MeV). All references to neutron flux and fluence in this report are for fast neutrons (>1 MeV). The reactor pressure vessel (RPV) task of the Light Water Reactor Sustainability (LWRS) Program is working with various organizations to obtain archival surveillance materials from commercial nuclear power plants to allow for comparisons of the irradiation-induced microstructural features from reactor surveillance materials with those from similar materials irradiated under high flux conditions in test reactors

  4. Direct normal irradiance related definitions and applications: The circumsolar issue

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blanc, P.; Espinar, B.; Geuder, N.; Gueymard, C.; Meyer, R.; Pitz-Paal, R.; Reinhardt, B.; Renne, D.; Segupta, M.; Wald, L.; et al

    2014-10-21

    The direct irradiance received on a plane normal to the sun, called direct normal irradiance (DNI), is of particular relevance to concentrated solar technologies, including concentrating solar thermal plants and concentrated photovoltaic systems. Following various standards from the International Organization for Standardization (ISO), the DNI definition is related to the irradiance from a small solid angle of the sky, centered on the position of the sun. Half-angle apertures of pyrheliometers measuring DNI have varied over time, up to ≈10°. The current recommendation of the World Meteorological Organization (WMO) for this half-angle is 2.5°. Solar concentrating collectors have an angular acceptancemore » function that can be significantly narrower, especially for technologies with high concentration ratios. The disagreement between the various interpretations of DNI, from the theoretical definition used in atmospheric physics and radiative transfer modeling to practical definitions corresponding to specific measurements or conversion technologies is significant, especially in the presence of cirrus clouds or large concentration of aerosols. Under such sky conditions, the circumsolar radiation—i.e. the diffuse radiation coming from the vicinity of the sun—contributes significantly to the DNI ground measurement, although some concentrating collectors cannot utilize the bulk of it. These issues have been identified in the EU-funded projects MACC-II (Monitoring Atmospheric Composition and Climate-Interim Implementation) and SFERA (Solar Facilities for the European Research Area), and have been discussed within a panel of international experts in the framework of the Solar Heating and Cooling (SHC) program of the International Energy Agency’s (IEA’s) Task 46 “Solar Resource Assessment and Forecasting”. In accordance with these discussions, the terms of reference related to DNI are specified here. The important role of circumsolar radiation is

  5. Direct normal irradiance related definitions and applications: The circumsolar issue

    SciTech Connect (OSTI)

    Blanc, P.; Espinar, B.; Geuder, N.; Gueymard, C.; Meyer, R.; Pitz-Paal, R.; Reinhardt, B.; Renne, D.; Segupta, M.; Wald, L.; Wilbert, S.

    2014-10-21

    The direct irradiance received on a plane normal to the sun, called direct normal irradiance (DNI), is of particular relevance to concentrated solar technologies, including concentrating solar thermal plants and concentrated photovoltaic systems. Following various standards from the International Organization for Standardization (ISO), the DNI definition is related to the irradiance from a small solid angle of the sky, centered on the position of the sun. Half-angle apertures of pyrheliometers measuring DNI have varied over time, up to ≈10°. The current recommendation of the World Meteorological Organization (WMO) for this half-angle is 2.5°. Solar concentrating collectors have an angular acceptance function that can be significantly narrower, especially for technologies with high concentration ratios. The disagreement between the various interpretations of DNI, from the theoretical definition used in atmospheric physics and radiative transfer modeling to practical definitions corresponding to specific measurements or conversion technologies is significant, especially in the presence of cirrus clouds or large concentration of aerosols. Under such sky conditions, the circumsolar radiation—i.e. the diffuse radiation coming from the vicinity of the sun—contributes significantly to the DNI ground measurement, although some concentrating collectors cannot utilize the bulk of it. These issues have been identified in the EU-funded projects MACC-II (Monitoring Atmospheric Composition and Climate-Interim Implementation) and SFERA (Solar Facilities for the European Research Area), and have been discussed within a panel of international experts in the framework of the Solar Heating and Cooling (SHC) program of the International Energy Agency’s (IEA’s) Task 46 “Solar Resource Assessment and Forecasting”. In accordance with these discussions, the terms of reference related to DNI are specified here. The important role of circumsolar radiation is evidenced

  6. Spitzer and z' secondary eclipse observations of the highly irradiated transiting brown dwarf KELT-1b

    SciTech Connect (OSTI)

    Beatty, Thomas G.; Gaudi, B. Scott; Collins, Karen A.; Kielkopf, John F.; Fortney, Jonathan; Knutson, Heather; Bruns, Jacob M.; Showman, Adam P.; Eastman, Jason; Pepper, Joshua; Siverd, Robert J.; Stassun, Keivan G.

    2014-03-10

    We present secondary eclipse observations of the highly irradiated transiting brown dwarf KELT-1b. These observations represent the first constraints on the atmospheric dynamics of a highly irradiated brown dwarf, the atmospheres of irradiated giant planets at high surface gravity, and the atmospheres of brown dwarfs that are dominated by external, rather than internal, energy. Using the Spitzer Space Telescope, we measure secondary eclipse depths of 0.195% ± 0.010% at 3.6 μm and 0.200% ± 0.012% at 4.5 μm. We also find tentative evidence for the secondary eclipse in the z' band with a depth of 0.049% ± 0.023%. These measured eclipse depths are most consistent with an atmosphere model in which there is a strong substellar hotspot, implying that heat redistribution in the atmosphere of KELT-1b is low. While models with a more mild hotspot or even with dayside heat redistribution are only marginally disfavored, models with complete heat redistribution are strongly ruled out. The eclipse depths also prefer an atmosphere with no TiO inversion layer, although a model with TiO inversion is permitted in the dayside heat redistribution case, and we consider the possibility of a day-night TiO cold trap in this object. For the first time, we compare the IRAC colors of brown dwarfs and hot Jupiters as a function of effective temperature. Importantly, our measurements reveal that KELT-1b has a [3.6] – [4.5] color of 0.07 ± 0.11, identical to that of isolated brown dwarfs of similarly high temperature. In contrast, hot Jupiters generally show redder [3.6] – [4.5] colors of ∼0.4, with a very large range from ∼0 to ∼1. Evidently, despite being more similar to hot Jupiters than to isolated brown dwarfs in terms of external forcing of the atmosphere by stellar insolation, KELT-1b appears to have an atmosphere most like that of other brown dwarfs. This suggests that surface gravity is very important in controlling the atmospheric systems of substellar mass bodies.

  7. Status of the Combined Third and Fourth NGNP Fuel Irradiations In the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover; David A. Petti; Michael E. Davenport

    2013-07-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in September 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. Since the purpose of this combined experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is

  8. Irradiation preservation of seafood: Literature review

    SciTech Connect (OSTI)

    Molton, P.M.

    1987-10-01

    The application of gamma-irradiation for extending the shelf life of seafood has been of interest for many years. This report reviews a number of studies on seafood irradiation conducted over the past several years. Topics covered include seafood irradiation techniques and dosages, species applicability and differences, the effects of packaging on seafood preservation, and changes in organoleptic acceptability as a result of irradiation. Particular attention is given to radiation effects (likely and unlikely) of concern to the public. These include the potential for generation of toxic chemical products, botulinum toxin production, and other health concerns. No scientifically defensible evidence of any kind was found for any harmful effect of irradiation of seafoods at the doses being considered (less than 300 krad), and all indications are that irradiation is an acceptable and needed additional tool for seafood preservation. 49 refs., 14 figs., 14 tabs.

  9. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect (OSTI)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2013-12-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  10. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect (OSTI)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  11. A New Solar Irradiance Reference Spectrum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Solar Irradiance Reference Spectrum Pilewskie, Peter University of Colorado ... We describe the development of a new solar reference spectrum for radiation and climate ...

  12. Enterprise Assessments, Oak Ridge National Laboratory Irradiated...

    Office of Environmental Management (EM)

    Fuels Examination Laboratory - April 2015 April 2015 Review of the Safety-Significant Ventilation Systems at the Irradiated Fuels Examination Laboratory Operated by UT-Battelle...

  13. STUDIES OF MILLIMETER-WAVE ATMOSPHERIC NOISE ABOVE MAUNA KEA

    SciTech Connect (OSTI)

    Sayers, J.; Bock, J. J.; Goldin, A.; Nguyen, H. T.; Golwala, S. R.; Edgington, S. F.; Lange, A. E.; Rossinot, P.; Ade, P. A. R.; Aguirre, J. E.; Haig, D.; Mauskopf, P. D.; Glenn, J.; Laurent, G. T.; Schlaerth, J.

    2010-01-10

    We report measurements of the fluctuations in atmospheric emission (atmospheric noise) above Mauna Kea recorded with Bolocam at 143 and 268 GHz from the Caltech Submillimeter Observatory. The 143 GHz data were collected during a 40 night observing run in late 2003, and the 268 GHz observations were made in early 2004 and early 2005 over a total of 60 nights. Below approx =0.5 Hz, the data time-streams are dominated by atmospheric noise in all observing conditions. The atmospheric noise data are consistent with a Kolmogorov-Taylor turbulence model for a thin wind-driven screen, and the median amplitude of the fluctuations is 280 mK{sup 2} rad{sup -5/3} at 143 GHz and 4000 mK{sup 2} rad{sup -5/3} at 268 GHz. Comparing our results with previous ACBAR data, we find that the normalization of the power spectrum of the atmospheric noise fluctuations is a factor of approx =80 larger above Mauna Kea than above the South Pole at millimeter wavelengths. Most of this difference is due to the fact that the atmosphere above the South Pole is much drier than the atmosphere above Mauna Kea. However, the atmosphere above the South Pole is slightly more stable as well: the fractional fluctuations in the column depth of precipitable water vapor are a factor of approx =sq root2 smaller at the South Pole compared to Mauna Kea. Based on our atmospheric modeling, we developed several algorithms to remove the atmospheric noise, and the best results were achieved when we described the fluctuations using a low-order polynomial in detector position over the 8' field of view. However, even with these algorithms, we were not able to reach photon-background-limited instrument photometer performance at frequencies below approx =0.5 Hz in any observing conditions. We also observed an excess low-frequency noise that is highly correlated between detectors separated by approx<(f/number sign)lambda; this noise appears to be caused by atmospheric fluctuations, but we do not have an adequate model to

  14. Aeras: A next generation global atmosphere model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore » of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less

  15. Aeras: A next generation global atmosphere model

    SciTech Connect (OSTI)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not components of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.

  16. PROCESSING OF NEUTRON-IRRADIATED URANIUM

    DOE Patents [OSTI]

    Hopkins, H.H. Jr.

    1960-09-01

    An improved "Purex" process for separating uranium, plutonium, and fission products from nitric acid solutions of neutron-irradiated uranium is offered. Uranium is first extracted into tributyl phosphate (TBP) away from plutonium and fission products after adjustment of the acidity from 0.3 to 0.5 M and heating from 60 to 70 deg C. Coextracted plutonium, ruthenium, and fission products are fractionally removed from the TBP by three scrubbing steps with a 0.5 M nitric acid solution of ferrous sulfamate (FSA), from 3.5 to 5 M nitric acid, and water, respectively, and the purified uranium is finally recovered from the TBP by precipitation with an aqueous solution of oxalic acid. The plutonium in the 0.3 to 0.5 M acid solution is oxidized to the tetravalent state with sodium nitrite and extracted into TBP containing a small amount of dibutyl phosphate (DBP). Plutonium is then back-extracted from the TBP-DBP mixture with a nitric acid solution of FSA, reoxidized with sodium nitrite in the aqueous strip solution obtained, and once more extracted with TBP alone. Finally the plutonium is stripped from the TBP with dilute acid, and a portion of the strip solution thus obtained is recycled into the TBPDBP for further purification.

  17. Comparison of irradiation creep and swelling of an austenitic alloy irradiated in FFTF and PFR

    SciTech Connect (OSTI)

    Garner, F.A.; Toloczko, M.B.; Munro, B.; Adaway, S.; Standring, J.

    1999-10-01

    comparative irradiation of identically constructed creep tubes in the Fast Flux Test Facility (FFTF) and the Prototypic Fast Reactor (PFR) shows that differences in irradiation conditions arising from both reactor operation and the design of the irradiation vehicle can have a significant impact on the void swelling and irradiation creep of austenitic stainless steels. In spite of these differences, the derived creep coefficients fall within the range of previously observed values for 316 SS.

  18. Portable instrument for inspecting irradiated nuclear fuel assemblies

    DOE Patents [OSTI]

    Nicholson, Nicholas; Dowdy, Edward J.; Holt, David M.; Stump, Jr., Charles J.

    1985-01-01

    A portable instrument for measuring induced Cerenkov radiation associated with irradiated nuclear fuel assemblies in a water-filled storage pond is disclosed. The instrument includes a photomultiplier tube and an image intensifier which are operable in parallel and simultaneously by means of a field lens assembly and an associated beam splitter. The image intensifier permits an operator to aim and focus the apparatus on a submerged fuel assembly. Once the instrument is aimed and focused, an illumination reading can be obtained with the photomultiplier tube. The instrument includes a lens cap with a carbon-14/phosphor light source for calibrating the apparatus in the field.

  19. A New Model for Liquid Water Absorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model for Liquid Water Absorption For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Liquid water path (LWP) is a critical measurement for a wide range of atmospheric studies, as the amount of liquid in a cloud is critical to understanding many cloud processes. For example, the radiative impact of the cloud (in both the longwave and shortwave portions of the spectrum) depends heavily on the LWP. Thus, the Atmospheric

  20. ARESE (ARM Enhanced Shortwave Experiment) Science Plan [Atmospheric Radiation Program

    SciTech Connect (OSTI)

    Valero, F.P.J.; Schwartz, S.E.; Cess, R.D.; Ramanathan, V.; Collins, W.D.; Minnis, P.; Ackerman, T.P.; Vitko, J.; Tooman, T.P.

    1995-09-27

    Several recent studies have indicated that cloudy atmospheres may absorb significantly more solar radiation than currently predicted by models. The magnitude of this excess atmospheric absorption, is about 50% more than currently predicted and would have major impact on our understanding of atmospheric heating. Incorporation of this excess heating into existing general circulation models also appears to ameliorate some significant shortcomings of these models, most notably a tendency to overpredict the amount of radiant energy going into the oceans and to underpredict the tropopause temperature. However, some earlier studies do not show this excess absorption and an underlying physical mechanism that would give rise to such absorption has yet to be defined. Given the importance of this issue, the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program is sponsoring the ARM Enhanced Shortwave Experiment (ARESE) to study the absorption of solar radiation by clear and cloudy atmospheres. The experimental results will be compared with model calculations. Measurements will be conducted using three aircraft platforms (ARM-UAV Egrett, NASA ER-2, and an instrumented Twin Otter), as well as satellites and the ARM central and extended facilities in North Central Oklahoma. The project will occur over a four week period beginning in late September, 1995. Spectral broadband, partial bandpass, and narrow bandpass (10nm) solar radiative fluxes will be measured at different altitudes and at the surface with the objective to determine directly the magnitude and spectral characteristics of the absorption of shortwave radiation by the atmosphere (clear and cloudy). Narrow spectral channels selected to coincide with absorption by liquid water and ice will help in identifying the process of absorption of radiation. Additionally, information such as water vapor profiles, aerosol optical depths, cloud structure and ozone profiles, needed to use as input in radiative

  1. ATMOSPHERIC CIRCULATION OF BROWN DWARFS: JETS, VORTICES, AND TIME VARIABILITY

    SciTech Connect (OSTI)

    Zhang, Xi; Showman, Adam P.

    2014-06-10

    A variety of observational evidence demonstrates that brown dwarfs exhibit active atmospheric circulations. In this study we use a shallow-water model to investigate the global atmospheric dynamics in the stratified layer overlying the convective zone on these rapidly rotating objects. We show that the existence and properties of the atmospheric circulation crucially depend on key parameters including the energy injection rate and radiative timescale. Under conditions of strong internal heat flux and weak radiative dissipation, a banded flow pattern comprised of east-west jet streams spontaneously emerges from the interaction of atmospheric turbulence with the planetary rotation. In contrast, when the internal heat flux is weak and/or radiative dissipation is strong, turbulence injected into the atmosphere damps before it can self-organize into jets, leading to a flow dominated by transient eddies and isotropic turbulence instead. The simulation results are not very sensitive to the form of the forcing. Based on the location of the transition between jet-dominated and eddy-dominated regimes, we suggest that many brown dwarfs may exhibit atmospheric circulations dominated by eddies and turbulence (rather than jets) due to the strong radiative damping on these worlds, but a jet structure is also possible under some realistic conditions. Our simulated light curves capture important features from observed infrared light curves of brown dwarfs, including amplitude variations of a few percent and shapes that fluctuate between single-peak and multi-peak structures. More broadly, our work shows that the shallow-water system provides a useful tool to illuminate fundamental aspects of the dynamics on these worlds.

  2. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface ...

  3. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  4. Liquid chromatographic determination of water

    DOE Patents [OSTI]

    Fortier, Nancy E.; Fritz, James S.

    1990-11-13

    A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present.

  5. Liquid chromatographic determination of water

    DOE Patents [OSTI]

    Fortier, N.E.; Fritz, J.S.

    1990-11-13

    A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present. 1 fig.

  6. Atmospheric sensing for the H.E.S.S. array

    SciTech Connect (OSTI)

    Aye, K.-M.; Brown, A.M.; Chadwick, P.M.; Hadjichristidis, C.; Latham, I.J.; Le Gallou, R.; McComb, T.J.L.; Nolan, S.J.; Noutsos, A.; Orford, K.J.; Osborne, J.L.; Rayner, S.M.

    2005-02-21

    Several atmospheric monitoring instruments have been installed at the H.E.S.S. gamma-ray observatory in Namibia. Firstly, Heitronics KT19 infrared radiometers, aligned paraxially with the H.E.S.S. telescopes, measure the infrared radiation of the water molecules. These allow us to detect clouds crossing the telescopes' field of view and to estimate the humidity present in the atmosphere. For a general estimate of the atmosphere's transmittance, i.e. the detection of any light-attenuating aerosols, a ceilometer, which is a LIDAR with built-in atmospheric data reduction code, is being used. It will be complemented soon by an instrument which will measure the transmissivity of the atmosphere at different wavelengths up to 500m above the ground. The overall status of the weather is monitored by a fully automated weatherstation. This paper describes the setup, the data analysis and how this will be used in order to improve the knowledge of the telescopes' effective collection area.

  7. Schedule and status of irradiation experiments

    SciTech Connect (OSTI)

    Rowcliffe, A.F.; Grossbeck, M.L.; Robertson, J.P.

    1998-09-01

    The current status of reactor irradiation experiments is presented in tables summarizing the experimental objectives, conditions, and schedule. Currently, the program has one irradiation experiment in reactor and five experiments in the design or construction stages. Postirradiation examination and testing is in progress on ten experiments.

  8. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    SciTech Connect (OSTI)

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; Pakarinen, Janne; Wu, Yaqiao; Allen, Todd; Yang, Yong

    2015-08-08

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 1019 n/cm2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10-9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.

  9. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; Pakarinen, Janne; Wu, Yaqiao; Allen, Todd; Yang, Yong

    2015-08-08

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 1019more » n/cm2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10-9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.« less

  10. AGR-1 Post Irradiation Examination Final Report

    SciTech Connect (OSTI)

    Demkowicz, Paul Andrew

    2015-08-01

    The post-irradiation examination (PIE) of the Advanced Gas Reactor (AGR)-1 experiment was a multi-year, collaborative effort between Idaho National Laboratory (INL) and Oak Ridge National Laboratory (ORNL) to study the performance of UCO (uranium carbide, uranium oxide) tristructural isotropic (TRISO) coated particle fuel fabricated in the U.S. and irradiated at the Advanced Test Reactor at INL to a peak burnup of 19.6% fissions per initial metal atom. This work involved a broad array of experiments and analyses to evaluate the level of fission product retention by the fuel particles and compacts (both during irradiation and during post-irradiation heating tests to simulate reactor accident conditions), investigate the kernel and coating layer morphology evolution and the causes of coating failure, and explore the migration of fission products through the coating layers. The results have generally confirmed the excellent performance of the AGR-1 fuel, first indicated during the irradiation by the observation of zero TRISO coated particle failures out of 298,000 particles in the experiment. Overall release of fission products was determined by PIE to have been relatively low during the irradiation. A significant finding was the extremely low levels of cesium released through intact coatings. This was true both during the irradiation and during post-irradiation heating tests to temperatures as high as 1800°C. Post-irradiation safety test fuel performance was generally excellent. Silver release from the particles and compacts during irradiation was often very high. Extensive microanalysis of fuel particles was performed after irradiation and after high-temperature safety testing. The results of particle microanalysis indicate that the UCO fuel is effective at controlling the oxygen partial pressure within the particle and limiting kernel migration. Post-irradiation examination has provided the final body of data that speaks to the quality of the AGR-1 fuel, building

  11. Technical Letter Report on the Cracking of Irradiated Cast Stainless Steels with Low Ferrite Content

    SciTech Connect (OSTI)

    Chen, Y.; Alexandreanu, B.; Natesan, K.

    2014-11-01

    Crack growth rate and fracture toughness J-R curve tests were performed on CF-3 and CF-8 cast austenite stainless steels (CASS) with 13-14% of ferrite. The tests were conducted at ~320°C in either high-purity water with low dissolved oxygen or in simulated PWR water. The cyclic crack growth rates of CF-8 were higher than that of CF-3, and the differences between the aged and unaged specimens were small. No elevated SCC susceptibility was observed among these samples, and the SCC CGRs of these materials were comparable to those of CASS alloys with >23% ferrite. The fracture toughness values of unirradiated CF-3 were similar between unaged and aged specimens, and neutron irradiation decreased the fracture toughness significantly. The fracture toughness of CF-8 was reduced after thermal aging, and declined further after irradiation. It appears that while lowering ferrite content may help reduce the tendency of thermal aging embrittlement, it is not very effective to mitigate irradiation-induced embrittlement. Under a combined condition of thermal aging and irradiation, neutron irradiation plays a dominant role in causing embrittlement in CASS alloys.

  12. RERTR-7 Irradiation Summary Report

    SciTech Connect (OSTI)

    D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2011-12-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-7A, was designed to test several modified fuel designs to target fission densities representative of a peak low enriched uranium (LEU) burnup in excess of 90% U-235 at peak experiment power sufficient to generate a peak surface heat flux of approximately 300 W/cm2. The RERTR-7B experiment was designed as a high power test of 'second generation' dispersion fuels at peak experiment power sufficient to generate a surface heat flux on the order of 230 W/cm2.1 The following report summarizes the life of the RERTR-7A and RERTR-7B experiments through end of irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.

  13. RERTR-10 Irradiation Summary Report

    SciTech Connect (OSTI)

    D. M. Perez

    2011-05-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-10 was designed to further test the effectiveness of modified fuel/clad interfaces in monolithic fuel plates. The experiment was conducted in two campaigns: RERTR-10A and RERTR-10B. The fuel plates tested in RERTR-10A were all fabricated by Hot Isostatic Pressing (HIP) and were designed to evaluate the effect of various Si levels in the interlayer and the thickness of the Zr interlayer (0.001”) using 0.010” and 0.020” nominal foil thicknesses. The fuel plates in RERTR-10B were fabricated by Friction Bonding (FB) with two different thickness Si layers and Nb and Zr diffusion barriers.1 The following report summarizes the life of the RERTR-10A/B experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

  14. AFIP-3 Irradiation Summary Report

    SciTech Connect (OSTI)

    Danielle M Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2011-05-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-3 was designed to evaluate the performance of monolithic fuels at a prototypic scale of 2.25 inches x 21.5 inches x 0.050 inches (5.75 cm x 54.6 cm x 0.13cm). The AFIP-3 experiment was fabricated by hot isostatic pressing (HIP) and consists of two plates, one with a zirconium (Zr) diffusion barrier and one with a silicon (Si) enhanced fuel/clad interface1,2. The following report summarizes the life of the AFIP-3 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  15. AFIP-3 Irradiation Summary Report

    SciTech Connect (OSTI)

    Danielle M Perez

    2011-04-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-3 was designed to evaluate the performance of monolithic fuels at a prototypic scale of 2.25 inches x 21.5 inches x 0.050 inches (5.75 cm x 54.6 cm x 0.13cm). The AFIP-3 experiment was fabricated by hot isostatic pressing (HIP) and consists of two plates, one with a zirconium (Zr) diffusion barrier and one with a silicon (Si) enhanced fuel/clad interface1,2. The following report summarizes the life of the AFIP-3 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  16. AFIP-3 Irradiation Summary Report

    SciTech Connect (OSTI)

    Danielle M Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2012-03-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-3 was designed to evaluate the performance of monolithic fuels at a prototypic scale of 2.25 inches x 21.5 inches x 0.050 inches (5.75 cm x 54.6 cm x 0.13cm). The AFIP-3 experiment was fabricated by hot isostatic pressing (HIP) and consists of two plates, one with a zirconium (Zr) diffusion barrier and one with a silicon (Si) enhanced fuel/clad interface1,2. The following report summarizes the life of the AFIP-3 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  17. Improving the Ni I atomic model for solar and stellar atmospheric models

    SciTech Connect (OSTI)

    Vieytes, M. C.; Fontenla, J. M. E-mail: johnf@digidyna.com

    2013-06-01

    Neutral nickel (Ni I) is abundant in the solar atmosphere and is one of the important elements that contribute to the emission and absorption of radiation in the spectral range between 1900 and 3900 Å. Previously, the Solar Radiation Physical Modeling (SRPM) models of the solar atmosphere only considered a few levels of this species. Here, we improve the Ni I atomic model by taking into account 61 levels and 490 spectral lines. We compute the populations of these levels in full NLTE using the SRPM code and compare the resulting emerging spectrum with observations. The present atomic model significantly improves the calculation of the solar spectral irradiance at near-UV wavelengths, which is important for Earth atmospheric studies, and particularly for ozone chemistry.

  18. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    SciTech Connect (OSTI)

    Kempton, Eliza M.-R.; Perna, Rosalba; Heng, Kevin

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup 1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  19. ARM - Measurement - Ice water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ice water content The concentration (mass/vol) of ice water particles in a cloud. Categories Cloud Properties, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  20. ARM: Baseline Solar Radiation Network (BSRN): solar irradiances...

    Office of Scientific and Technical Information (OSTI)

    Baseline Solar Radiation Network (BSRN): solar irradiances Title: ARM: Baseline Solar Radiation Network (BSRN): solar irradiances Baseline Solar Radiation Network (BSRN): solar ...

  1. PLUTONIUM-238 RECOVERY FROM IRRADIATED NEPTUNIUM TARGETS USING...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: PLUTONIUM-238 RECOVERY FROM IRRADIATED ... and purifying 238Pu and unconverted 237Np post irradiation is by anion exchange (IX). ...

  2. Design of a Compact Fatigue Tester for Testing Irradiated Materials...

    Office of Scientific and Technical Information (OSTI)

    a hot cell for characterization of irradiated materials is beneficial to help determine relative fatigue performance differences between new and irradiated material. Hot cell use ...

  3. ARM: Multi-Filter Radiometer (MFR): upwelling irradiance at 3...

    Office of Scientific and Technical Information (OSTI)

    Multi-Filter Radiometer (MFR): upwelling irradiance at 3-meter height Title: ARM: Multi-Filter Radiometer (MFR): upwelling irradiance at 3-meter height Multi-Filter Radiometer ...

  4. Methods for Post Irradiation Examination of Tritium Producing...

    Office of Environmental Management (EM)

    Methods for Post Irradiation Examination of Tritium Producing Burnable Absorber Rods Methods for Post Irradiation Examination of Tritium Producing Burnable Absorber Rods...

  5. Post Irradiation Examination of Stainless Steel Cladding from...

    Office of Environmental Management (EM)

    Post Irradiation Examination of Stainless Steel Cladding from In-Reactor Permeation Experiment Post Irradiation Examination of Stainless Steel Cladding from In-Reactor Permeation ...

  6. Radiochemistry Results from the IER-163 COMET Irradiation (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Radiochemistry Results from the IER-163 COMET Irradiation Citation Details In-Document Search Title: Radiochemistry Results from the IER-163 COMET Irradiation The ...

  7. Working with SRNL - Our Facilities- Gamma Irradiation Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for irradiating solid and liquid samples, allowing a wide range of tests to determine the effects of radiation on materials. Typically, the Gamma Irradiation Facility is used to...

  8. Production of high Resoulution Irradiance Data for Central America...

    Open Energy Info (EERE)

    irradiance (GHI) and direct irradiance (DNI) data sets for the countries of Cuba, El Salvador, Guatemala, Honduras and Nicaragua. Much of our initial effort focused on building up...

  9. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Irradiation Effects on Human Cortical Bone Fracture Behavior Print Wednesday, 28 July 2010 00:00 Human bone is strong ...

  10. Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

    SciTech Connect (OSTI)

    Busby, Jeremy T; Gussev, Maxim N

    2011-04-01

    Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today s nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. . Despite 30 years of experience, the underlying mechanisms of IASCC are unknown. Extended service conditions will increase the exposure to irradiation, stress, and corrosive environment for all core internal components. The objective of this effort within the Light Water Reactor Sustainability program is to evaluate the response and mechanisms of IASCC in austenitic stainless steels with single variable experiments. A series of high-value irradiated specimens has been acquired from the past international research programs, providing a valuable opportunity to examine the mechanisms of IASCC. This batch of irradiated specimens has been received and inventoried. In addition, visual examination and sample cleaning has been completed. Microhardness testing has been performed on these specimens. All samples show evidence of hardening, as expected, although the degree of hardening has saturated and no trend with dose is observed. Further, the change in hardening can be converted to changes in mechanical properties. The calculated yield stress is consistent with previous data from light water reactor conditions. In addition, some evidence of changes in deformation mode was identified via examination of the microhardness indents. This analysis may provide further insights into the deformation mode under larger scale tests. Finally, swelling analysis was performed using immersion density methods. Most alloys showed some evidence of swelling, consistent with the expected trends for this class of alloy. The Hf-doped alloy showed densification rather than swelling. This observation may be

  11. Long-Term Effects of {sup 56}Fe Irradiation on Spatial Memory of Mice: Role of Sex and Apolipoprotein E Isoform

    SciTech Connect (OSTI)

    Villasana, Laura E.; Benice, Theodore S.; Raber, Jacob

    2011-06-01

    Purpose: To assess whether the effects of cranial {sup 56}Fe irradiation on the spatial memory of mice in the water maze are sex and apolipoprotein E (apoE) isoform dependent and whether radiation-induced changes in spatial memory are associated with changes in the dendritic marker microtubule-associated protein 2 (MAP-2) and the presynaptic marker synaptophysin. Methods and Materials: Two-month-old male and female mice expressing human apoE3 or apoE4 received either a 3-Gy dose of cranial {sup 56}Fe irradiation (600 MeV/amu) or sham irradiation. Mice were tested in a water maze task 13 months later to assess effects of irradiation on spatial memory retention. After behavioral testing, the brain tissues of these mice were analyzed for synaptophysin and MAP-2 immunoreactivity. Results: After irradiation, spatial memory retention of apoE3 female, but not male, mice was impaired. A general genotype deficit in spatial memory was observed in sham-irradiated apoE4 mice. Strikingly, irradiation prevented this genotype deficit in apoE4 male mice. A similar but nonsignificant trend was observed in apoE4 female mice. Although there was no change in MAP-2 immunoreactivity after irradiation, synaptophysin immunoreactivity was increased in irradiated female mice, independent of genotype. Conclusions: The effects of {sup 56}Fe irradiation on the spatial memory retention of mice are critically influenced by sex, and the direction of these effects is influenced by apoE isoform. Although in female mice synaptophysin immunoreactivity provides a sensitive marker for effects of irradiation, it cannot explain the apoE genotype-dependent effects of irradiation on the spatial memory retention of the mice.

  12. Iodine-131 in irradiated fuel at time of processing from December 1944 through December 1947

    SciTech Connect (OSTI)

    Heeb, C.M.; Morgan, L.G.

    1991-03-01

    The purpose of this document is to provide a record of the iodine-131 releases that were used as source terms in calculating the Phase 1 air pathway doses. The following table provides estimates of monthly iodine-131 releases to the atmosphere from the irradiated fuel processing plants for the time period December 1944 (the first month of dissolution of irradiated fuel from the Hanford Site) through December 1947. The estimated values of iodine-131 contained in the irradiated fuel at the time of processing were calculated using the best available information. Details of the calculations, including the assumptions required to obtain the values and the inherent uncertainties in the values, will be addressed in a Phase 2 HEDR report. The quantity of iodine-131 is released to the atmosphere is obtained by multiplying the calculated iodine-131 content of the fuel being dissolved by a release fraction. The actual release fraction value is uncertain. The release fractions assumed for iodine-131 were based on values that are expected to bound the actual release of iodine-131. The Phase 1 dose estimates from iodine-131 were based on a most probable release factor of 75% with an upward uncertainty bound of 85% and a lower uncertainty bound of 50%. The values shown in the table were input to the Phase 1 Modular Dose Calculation Model, which provided the air pathway doses. 1 tab.

  13. Method to Calculate Uncertainty Estimate of Measuring Shortwave Solar Irradiance using Thermopile and Semiconductor Solar Radiometers

    SciTech Connect (OSTI)

    Reda, I.

    2011-07-01

    The uncertainty of measuring solar irradiance is fundamentally important for solar energy and atmospheric science applications. Without an uncertainty statement, the quality of a result, model, or testing method cannot be quantified, the chain of traceability is broken, and confidence cannot be maintained in the measurement. Measurement results are incomplete and meaningless without a statement of the estimated uncertainty with traceability to the International System of Units (SI) or to another internationally recognized standard. This report explains how to use International Guidelines of Uncertainty in Measurement (GUM) to calculate such uncertainty. The report also shows that without appropriate corrections to solar measuring instruments (solar radiometers), the uncertainty of measuring shortwave solar irradiance can exceed 4% using present state-of-the-art pyranometers and 2.7% using present state-of-the-art pyrheliometers. Finally, the report demonstrates that by applying the appropriate corrections, uncertainties may be reduced by at least 50%. The uncertainties, with or without the appropriate corrections might not be compatible with the needs of solar energy and atmospheric science applications; yet, this report may shed some light on the sources of uncertainties and the means to reduce overall uncertainty in measuring solar irradiance.

  14. Atmospheric Chemistry and Air Pollution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  15. Light extinction in the atmosphere

    SciTech Connect (OSTI)

    Laulainen, N.

    1992-06-01

    Atmospheric aerosol particles originating from natural sources, such as volcanos and sulfur-bearing gas emissions from the oceans, and from human sources, such as sulfur emissions from fossil fuel combustion and biomass burning, strongly affect visual air quality and are suspected to significantly affect radiative climate forcing of the planet. During the daytime, aerosols obscure scenic vistas, while at night they diminish our ability to observe stellar objects. Scattering of light is the main means by which aerosols attenuate and redistribute light in the atmosphere and by which aerosols can alter and reduce visibility and potentially modify the energy balance of the planet. Trends and seasonal variability of atmospheric aerosol loading, such as column-integrated light extinction or optical depth, and how they may affect potential climate change have been difficult to quantify because there have been few observations made of important aerosol optical parameters, such as optical depth, over the globe and over time and often these are of uneven quality. To address questions related to possible climate change, there is a pressing need to acquire more high-quality aerosol optical depth data. Extensive deployment of improved solar radiometers over the next few years will provide higher-quality extinction data over a wider variety of locations worldwide. An often overlooked source of turbidity data, however, is available from astronomical observations, particularly stellar photoelectric photometry observations. With the exception of the Project ASTRA articles published almost 20 years ago, few of these data ever appear in the published literature. This paper will review the current status of atmospheric extinction observations, as highlighted by the ASTRA work and augmented by more recent solar radiometry measurements.

  16. Atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S.

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  17. ARM - Measurement - Shortwave broadband diffuse downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffuse downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband diffuse downwelling irradiance All of the solar radiation, across the wavelength range of 0.4 and 4 {mu}m, coming directly from the sky except for solar radiation coming directly from the sun and the circumsolar irradiance within approximately three degrees of the sun. Categories Radiometric Instruments

  18. Infrared spectroscopy study of irradiated PVDF

    SciTech Connect (OSTI)

    Chappa, Veronica; Grosso, Mariela del; Garcia Bermudez, Gerardo; Behar, Moni

    2007-10-26

    The effects induced by 1 MeV/amu ion irradiations were compared to those induced by 4-12 MeV/amu irradiations. Structural analysis with infrared spectroscopy (FTIR) was carried out on PVDF irradiated using C and He beams with different fluences. From these spectra it was observed, as a function of fluence, an overall destruction of the polymer, amorphization of the crystalline regions and the creation of in-chain unsaturations. The track dimensions were determined using a previously developed Monte Carlo simulation code and these results were compared to a semiempirical model.

  19. Measuring Degradation Rates Without Irradiance Data

    SciTech Connect (OSTI)

    Pulver, S.; Cormode, D.; Cronin, A.; Jordan, D.; Kurtz, S.; Smith, R.

    2011-02-01

    A method to report PV system degradation rates without using irradiance data is demonstrated. First, a set of relative degradation rates are determined by comparing daily AC final yields from a group of PV systems relative to the average final yield of all the PV systems. Then, the difference between relative and absolute degradation rates is found from a statistical analysis. This approach is verified by comparing to methods that utilize irradiance data. This approach is significant because PV systems are often deployed without irradiance sensors, so the analysis method described here may enable measurements of degradation using data that were previously thought to be unsuitable for degradation studies.

  20. Gamma-ray irradiated polymer optical waveguides

    SciTech Connect (OSTI)

    Lai, C.-C.; Wei, T.-Y.; Chang, C.-Y.; Wang, W.-S.; Wei, Y.-Y.

    2008-01-14

    Optical waveguides fabricated by gamma-ray irradiation on polymer through a gold mask are presented. The gamma-ray induced index change is found almost linearly dependent on the dose of the irradiation. And the measured propagation losses are low enough for practical application. Due to the high penetrability of gamma ray, uniform refractive index change in depth can be easily achieved. Moreover, due to large-area printing, the uniformity of waveguide made by gamma-ray irradiation is much better than that by e-beam direct writing.

  1. DEFRA Global Atmosphere Dept | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: SW1E 6DE Product: Atmosphere research department of the UK Department of Food and Rural Affairs. References: DEFRA - Global Atmosphere Dept.1 This article is a...

  2. Our Dusty Atmosphere | Department of Energy

    Energy Savers [EERE]

    Dusty Atmosphere Our Dusty Atmosphere September 6, 2011 - 4:26pm Addthis A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. ...

  3. Evaluation of FSV-1 cask for the transport of LWR irradiated fuel assemblies

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The Model FSV-1 spent fuel shipping cask was designed by General Atomic Company (GA) to service the Fort St. Vrain (FSV) nuclear generating station, a High Temperature Gas Reactor (HTGR) owned and operated by Public Service Company of Colorado (PSC). This report presents an evaluation of the suitability of the FSV-1 cask for the transport of irradiated Light Water Reactor (LWR) fuel assemblies from both Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). The FSV-1 cask evaluation parameters covered a wide spectrum of LWR fuel assemblies, based on burnup in Megawatt Days/Metric Ton of Heavy Metal (MWD/MTHM) and years of decay since irradiation. The criteria for suitability included allowable radiation dose rates, cask surface and interior temperatures and the Gross Vehicle Weight (GVW) of the complete shipping system.

  4. Design and Status of the NGNP Fuel Experiment AGR-3/4 Irradiated in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in November 2013. Since the purpose of this experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is

  5. Quantitative determination of atmospheric hydroperoxyl radical

    DOE Patents [OSTI]

    Springston, Stephen R.; Lloyd, Judith; Zheng, Jun

    2007-10-23

    A method for the quantitative determination of atmospheric hydroperoxyl radical comprising: (a) contacting a liquid phase atmospheric sample with a chemiluminescent compound which luminesces on contact with hydroperoxyl radical; (b) determining luminescence intensity from the liquid phase atmospheric sample; and (c) comparing said luminescence intensity from the liquid phase atmospheric sample to a standard luminescence intensity for hydroperoxyl radical. An apparatus for automating the method is also included.

  6. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  7. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  8. Atmospheric Dispersion Modeling in Safety Analyses; GENII

    Office of Environmental Management (EM)

    Atmosphere to Electrons Enabling the Wind Plant of Tomorrow 2 Atmosphere to Electrons Enabling the Wind Plant of Tomorrow The U.S. Department of Energy's (DOE's) Atmosphere to Electrons (A2e) research initiative is focused on improving the performance and reliability of wind plants by establishing an unprecedented under- standing of how the Earth's atmosphere interacts with the wind plants and developing innovative technologies to maximize energy extraction from the wind. The A2e initiative

  9. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  10. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  11. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  12. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Composition and Reactions of Atmospheric Aerosol Particles Print Wednesday, 29 June 2005 00:00 Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the

  13. Sandia National Laboratories: Research: Facilities: Gamma Irradiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    second. The neutron irradiation system consisting of the AmBe source and a large polyethylene chamber provides neutron dose rates from 10-6 radsecond to 10-5 radsecond....

  14. Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Water Security HomeTag:Water Security Electricity use by water service sector and county. Shown are electricity use by (a) ...

  15. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary PowerEnergy Conversion EfficiencyWater Power Water Power Tara Camacho-Lopez 2016-06-01T22:32:54+00:00 Enabling a successful water power industry. Hydropower ...

  16. Gamma irradiation effects in W films

    SciTech Connect (OSTI)

    Claro, Luiz H.; Santos, Ingrid A.; Silva, Cassia F.

    2013-05-06

    Using the van Der Pauw methodology, the surface resistivity of irradiated tungsten films deposited on Silicon substrate was measured. The films were exposed to {gamma} radiation using a isotopic {sup 60}Co source in three irradiation stages attaining 40.35 kGy in total dose. The obtained results for superficial resistivity display a time annealing features and their values are proportional to the total dose.

  17. Neutron Irradiation Resistance of RAFM Steels

    SciTech Connect (OSTI)

    Gaganidze, Ermile; Dafferner, Bernhard; Aktaa, Jarir

    2008-07-01

    The neutron irradiation resistance of the reduced-activation ferritic/martensitic (RAFM) steel EUROFER97 and international reference steels (F82H-mod, OPTIFER-Ia, GA3X and MANET-I) have been investigated after irradiation in the Petten High Flux Reactor up to 16.3 dpa at different irradiation temperatures (250-450 deg. C). The embrittlement behavior and hardening are investigated by instrumented Charpy-V tests with sub-size specimens. Neutron irradiation-induced embrittlement and hardening of EUROFER97 was studied under different heat treatment conditions. Embrittlement and hardening of as-delivered EUROFER97 steel are comparable to those of reference steels. Heat treatment of EUROFER97 at a higher austenitizing temperature substantially improves the embrittlement behaviour at low irradiation temperatures. Analysis of embrittlement vs. hardening behavior of RAFM steels within a proper model in terms of the parameter C={delta}DBTT/{delta}{sigma} indicates hardening-dominated embrittlement at irradiation temperatures below 350 deg. C with 0.17 {<=} C {<=} 0.53 deg. C/MPa. Scattering of C at irradiation temperatures above 400 deg. C indicates non hardening embrittlement. A role of He in a process of embrittlement is investigated in EUROFER97 based steels, that are doped with different contents of natural B and the separated {sup 10}B-isotope (0.008-0.112 wt.%). Testing on small scale fracture mechanical specimens for determination of quasi-static fracture toughness will be also presented in a view of future irradiation campaigns. (authors)

  18. ARM - Measurement - Longwave broadband downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave broadband downwelling irradiance The total diffuse and direct radiant energy, at wavelengths longer than approximately 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file

  19. ARM - Measurement - Longwave broadband net irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    net irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave broadband net irradiance The difference between upwelling and downwelling broadband longwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  20. ARM - Measurement - Longwave broadband upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave broadband upwelling irradiance The rate at which radiant energy, at a wavelength longer than approximately 4 {mu}m, is being emitted upwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments The above measurement is considered

  1. ARM - Measurement - Longwave narrowband upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    narrowband upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave narrowband upwelling irradiance The total radiant energy, in a narrow band of wavelengths longer than approximately 4 {mu}m, passing through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments.

  2. ARM - Measurement - Net broadband total irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  3. ARM - Measurement - Shortwave broadband direct downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    direct downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband direct downwelling irradiance Radiant energy, across the wavelength range of 0.4 and 4 {mu}m, that is transferred directly from the sun to the receiver. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream

  4. ARM - Measurement - Shortwave broadband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  5. ARM - Measurement - Shortwave broadband total net irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    net irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total net irradiance The difference between upwelling and downwelling broadband shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  6. ARM - Measurement - Shortwave narrowband direct downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband direct downwelling irradiance The direct unscattered radiant energy from the Sun, in a narrow band of wavelengths shorter than approximately 4 {mu}m, passing through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for

  7. ARM - Measurement - Shortwave narrowband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  8. ARM - Measurement - Shortwave narrowband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments.

  9. ARM - Measurement - Shortwave spectral direct normal irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    direct normal irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral direct normal irradiance The narrow spectral range of measurements coming directly from the sun whose wavelength falls within the solar range of 0.4 and 4 {mu}m. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream

  10. water scarcity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  11. water savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  12. water infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  13. Water Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  14. drinking water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drinking water - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  15. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power Sandia's 117-scale WEC device with being tested in the maneuvering and ... EC, News, Renewable Energy, Water Power Sandia National Laboratories Uses Its Wave Energy ...

  16. Water Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5-6, 2014 Cape Canaveral, Florida WATER EFFICIENCY Federal Utility Partnership ...ate.mcmordie@pnnl.gov * Francis Wheeler - Water Savers, LLC * fwheeler@watersaversllc.com ...

  17. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  18. Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Security - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  19. Atmospheric Science Program (ASP) Data Archive () | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Atmospheric Science Program (ASP) Data Archive Title: Atmospheric Science Program (ASP) Data Archive The Department of Energy's Atmospheric Science Program (ASP) originally ...

  20. INFLUENCE OF SPECIMEN SIZE/TYPE ON THE FRACTURE TOUGHNESS OF FIVE IRRADIATED RPV MATERIALS

    SciTech Connect (OSTI)

    Sokolov, Mikhail A; Lucon, Enrico

    2015-01-01

    The Heavy-Section Steel Irradiation (HSSI) Program had previously irradiated five reactor pressure vessel (RPV) steels/welds at fast neutron fluxes of about 4 to 8 1011 n/cm2/s (>1 MeV) to fluences from 0.5 to 3.4 1019 n/cm2 and at 288 C. The unirradiated fracture toughness tests were performed by Oak Ridge National Laboratory with 12.7-mm and 25.4-mm thick (0.5T and 1T) compact specimens, while the HSSI Program provided tensile and 5 10-mm three-point bend specimens to SCK CEN for irradiation in the in-pile section of the Belgian Reactor BR2 at fluxes >1013 n/cm2/s and subsequent testing by SCK CEN. The BR2 irradiations were conducted at about 2 and 4 1013 n/cm2/s with irradiation temperature between 295 C and 300 C (water temperature), and to fluences between 6 and10 1019 n/cm2. The irradiation-induced shifts of the Master Curve reference temperatures, T0, for most of the materials deviated from the embrittlement correlations much more than expected, motivating the testing of 5 10-mm three-point bend specimens of all five materials in the unirradiated condition to eliminate specimen size and geometry as a variable. Tests of the unirradiated small bend specimens resulted in Master Curve reference temperatures, T0, 25 C to 53 C lower than those from the larger compact specimens, meaning that the irradiation-induced reference temperature shifts, T0, were larger than the initial measurements, resulting in much improved agreement between the measured and predicted fracture toughness shifts.

  1. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    SciTech Connect (OSTI)

    Davis, K.J.; Richardson, S.J.; Miles, N.L.

    2007-03-07

    Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2?3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute are

  2. Anisotropic swelling and microcracking of neutron irradiated Ti3AlC2-Ti5Al2C3 materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ang, Caen K.; Silva, Chinthaka M.; Shih, Chunghao Phillip; Koyanagi, Takaaki; Katoh, Yutai; Zinkle, Steven J.

    2015-12-17

    Mn + 1AXn (MAX) phase materials based on Ti–Al–C have been irradiated at 400 °C (673 K) with fission neutrons to a fluence of 2 × 1025 n/m2 (E > 0.1 MeV), corresponding to ~ 2 displacements per atom (dpa). We report preliminary results of microcracking in the Al-containing MAX phase, which contained the phases Ti3AlC2 and Ti5Al2C3. Equibiaxial ring-on-ring tests of irradiated coupons showed that samples retained 10% of pre-irradiated strength. Volumetric swelling of up to 4% was observed. Phase analysis and microscopy suggest that anisotropic lattice parameter swelling caused microcracking. Lastly, variants of titanium aluminum carbide may bemore » unsuitable materials for irradiation at light water reactor-relevant temperatures.« less

  3. Monte Carlo Simulation of the Irradiation of Alanine Coated Film Dosimeters with Accelerated Electrons

    SciTech Connect (OSTI)

    Uribe, R. M.; Salvat, F.; Cleland, M. R.; Berejka, A.

    2009-03-10

    The Monte Carlo code PENELOPE was used to simulate the irradiation of alanine coated film dosimeters with electron beams of energies from 1 to 5 MeV being produced by a high-current industrial electron accelerator. This code includes a geometry package that defines complex quadratic geometries, such as those of the irradiation of products in an irradiation processing facility. In the present case the energy deposited on a water film at the surface of a wood parallelepiped was calculated using the program PENMAIN, which is a generic main program included in the PENELOPE distribution package. The results from the simulation were then compared with measurements performed by irradiating alanine film dosimeters with electrons using a 150 kW Dynamitron electron accelerator. The alanine films were placed on top of a set of wooden planks using the same geometrical arrangement as the one used for the simulation. The way the results from the simulation can be correlated with the actual measurements, taking into account the irradiation parameters, is described. An estimation of the percentage difference between measurements and calculations is also presented.

  4. New hydrogen-isotope measurements refine the picture of water on Mars

    SciTech Connect (OSTI)

    Wilson, R. Mark

    2015-05-15

    Atmospheric maps and in situ spectrometry of clay minerals constrain climate models and the prevalence of water in the planet’s ancient past.

  5. Absolute Cavity Pyrgeometer to Measure the Absolute Outdoor Longwave Irradiance with Traceability to International System of Units, SI

    SciTech Connect (OSTI)

    Reda, I.; Zeng, J.; Scheuch, J.; Hanssen, L.; Wilthan, B.; Myers, D.; Stoffel, T.

    2012-03-01

    This article describes a method of measuring the absolute outdoor longwave irradiance using an absolute cavity pyrgeometer (ACP), U.S. Patent application no. 13/049, 275. The ACP consists of domeless thermopile pyrgeometer, gold-plated concentrator, temperature controller, and data acquisition. The dome was removed from the pyrgeometer to remove errors associated with dome transmittance and the dome correction factor. To avoid thermal convection and wind effect errors resulting from using a domeless thermopile, the gold-plated concentrator was placed above the thermopile. The concentrator is a dual compound parabolic concentrator (CPC) with 180{sup o} view angle to measure the outdoor incoming longwave irradiance from the atmosphere. The incoming irradiance is reflected from the specular gold surface of the CPC and concentrated on the 11 mm diameter of the pyrgeometer's blackened thermopile. The CPC's interior surface design and the resulting cavitation result in a throughput value that was characterized by the National Institute of Standards and Technology. The ACP was installed horizontally outdoor on an aluminum plate connected to the temperature controller to control the pyrgeometer's case temperature. The responsivity of the pyrgeometer's thermopile detector was determined by lowering the case temperature and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The responsivity is then used to calculate the absolute atmospheric longwave irradiance with an uncertainty estimate (U{sub 95}) of {+-}3.96 W m{sup 02} with traceability to the International System of Units, SI. The measured irradiance was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the Interim World Infrared Standard Group, WISG. A total of 408 readings were collected over three different nights. The calculated irradiance measured by the ACP was 1.5 W/m{sup 2} lower than that

  6. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  7. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, Frederick E.; Smolensky, Leo A.; Doyle, Edward F.; DiBella, Francis A.

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  8. Measurement of Diameter Changes during Irradiation Testing

    SciTech Connect (OSTI)

    Davis, K. L.; Knudson, D. L.; Crepeau, J. C.; Solstad, S.

    2015-03-01

    New materials are being considered for fuel, cladding, and structures in advanced and existing nuclear reactors. Such materials can experience significant dimensional and physical changes during irradiation. Currently in the US, such changes are measured by repeatedly irradiating a specimen for a specified period of time and then removing it from the reactor for evaluation. The time and labor to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and handling may disturb the phenomena of interest. In-pile detection of changes in geometry is sorely needed to understand real-time behavior during irradiation testing of fuels and materials in high flux US Material and Test Reactors (MTRs). This paper presents development results of an advanced Linear Variable Differential Transformer-based test rig capable of detecting real-time changes in diameter of fuel rods or material samples during irradiation in US MTRs. This test rig is being developed at the Idaho National Laboratory and will provide experimenters with a unique capability to measure diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  9. Review of recent irradiation-creep results

    SciTech Connect (OSTI)

    Coghlan, W.A.

    1982-05-01

    Materials deform faster under stress in the presence of irradiation by a process known as irradiation creep. This phenomenon is important to reactor design and has been the subject of a large number of experimental and theoretical investigations. The purpose of this work is to review the recent experimental results to obtain a summary of these results and to determine those research areas that require additional information. The investigations have been classified into four subgroups based on the different experimental methods used. These four are: (1) irradiation creep using stress relaxation methods, (2) creep measurements using pressurized tubes, (3) irradiation creep from constant applied load, and (4) irradiation creep experiments using accelerated particles. The similarity and the differences of the results from these methods are discussed and a summary of important results and suggested areas for research is presented. In brief, the important results relate to the dependence of creep on swelling, temperature, stress state and alloying additions. In each of these areas new results have been presented and new questions have arisen which require further research to answer. 65 references.

  10. New and Improved Data Logging and Collection System for Atmospheric...

    Office of Scientific and Technical Information (OSTI)

    for Atmospheric Radiation Measurement Climate Research Facility, Tropical Western ... for Atmospheric Radiation Measurement Climate Research Facility, Tropical Western ...

  11. ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology...

    Office of Scientific and Technical Information (OSTI)

    engineering data Title: ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): engineering data Atmospheric Sounder Spectrometer for Infrared Spectral ...

  12. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    SciTech Connect (OSTI)

    Hu, J. P.; Holden, N. E.; Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  13. Atmospheric Radiation Measurement Climate Research Facility Operations

    Office of Scientific and Technical Information (OSTI)

    Quarterly Report October 1-December 31, 2012 (Program Document) | SciTech Connect Program Document: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility

  14. Atmospheric Neutrino Oscillations Professor Takaaki Kajita

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmosphere to Electrons Atmosphere to Electrons Addthis Description Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing electricity generation by wind plants. The goal of A2e is to ensure future wind plants are sited, built, and operated in a way that produces the most cost-effective, usable electric power. Text Version

  15. Laboratory for Characterization of Irradiated Graphite

    SciTech Connect (OSTI)

    Karen A. Moore

    2010-03-01

    The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Labs C19 and C20 of the Idaho National Laboratory Research Center (IRC). The CCL was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite and ceramic composite research and development activities. The research is in support of the Advanced Graphite Creep (AGC) experiment — a major material irradiation experiment within the NGNP Graphite program. The CCL is designed to characterize and test low activated irradiated materials such as high purity graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully capable of characterizing material properties for both irradiated and nonirradiated materials.

  16. Horizontal modular dry irradiated fuel storage system

    DOE Patents [OSTI]

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  17. Atmospheric Radiation Measurement Program Science Plan. Current...

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program Citation Details In-Document Search Title: Atmospheric Radiation ...

  18. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  19. Atmospheric Radiation Measurement Program Climate Research Facility...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Program Climate Research Facility Operations ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  20. Correcting radar range measurements for atmospheric propagation...

    Office of Scientific and Technical Information (OSTI)

    Title: Correcting radar range measurements for atmospheric propagation effects. Abstract not provided. Authors: Doerry, Armin Walter Publication Date: 2013-12-01 OSTI Identifier: ...

  1. Atmospheric Radiation Measurement Program Science Plan. Current...

    Office of Scientific and Technical Information (OSTI)

    Program Science Plan. Current Status and Future Directions of the ARM Science Program Citation Details In-Document Search Title: Atmospheric Radiation Measurement Program Science ...

  2. Atmospheric Ionization Mass Spectrometry Capabilities at Sandia...

    Office of Scientific and Technical Information (OSTI)

    Mass Spectrometry Capabilities at Sandia National Labs. Citation Details In-Document Search Title: Atmospheric Ionization Mass Spectrometry Capabilities at Sandia National Labs. ...

  3. ARM - Publications: Science Team Meeting Documents: Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Modes of Drizzling Stratus at the ARM SGP Site Kollias, Pavlos RSMASUniversity of Miami Albrecht, Bruce University of Miami The representation of boundary layer clouds ...

  4. PRECISION DETERMINATION OF ATMOSPHERIC EXTINCTION AT OPTICAL...

    Office of Scientific and Technical Information (OSTI)

    State-of-the-art models of atmospheric radiation transport and modern codes are used to ... Country of Publication: United States Language: English Subject: 79 ASTROPHYSICS, ...

  5. Assessment of radionuclides (uranium and thorium) atmospheric...

    Office of Scientific and Technical Information (OSTI)

    Title: Assessment of radionuclides (uranium and thorium) atmospheric pollution around Manjung district, Perak using moss as bio-indicator Bio-monitoring method using mosses have ...

  6. Search for: "atmospheric radiation measurement" | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    ... Atmospheric Radiation Measurement (ARM) Data from Shouxian, China for the Study of Aerosol Indirect Effects in China In a complex ARM Mobile Facility (AMF) deployment, monitoring ...

  7. Evaluation of Routine Atmospheric Sounding Measurements using...

    Office of Scientific and Technical Information (OSTI)

    using Unmanned Systems (ERASMUS) Science Plan Citation Details In-Document Search Title: Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems ...

  8. Retrieving 4-dimensional atmospheric boundary layer structure...

    Office of Scientific and Technical Information (OSTI)

    (BER) (SC-23) Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES Atmospheric System Research Word Cloud More Like This Full Text preview ...

  9. Atmosphere to Electrons | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atmosphere to Electrons Atmosphere to Electrons Atmosphere to Electrons Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing electricity generation by wind plants. The goal of A2e is to ensure future wind plants are sited, built, and operated in a way that produces the most cost-effective, usable electric power. To achieve

  10. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while...

  11. Search for: "atmospheric radiation measurement" | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    measurement" 50 results for: "atmospheric radiation measurement" Full Text and Citations Filters Filter Search Results Everything (Citations and Full Text) (50 results) ...

  12. Sea ice - atmosphere interaction: Application of multispectral...

    Office of Scientific and Technical Information (OSTI)

    Application of multispectral satellite data in polar surface energy flux estimates. ... Title: Sea ice - atmosphere interaction: Application of multispectral satellite data in ...

  13. Separation of sodium-22 from irradiated targets

    DOE Patents [OSTI]

    Taylor, Wayne A.; Jamriska, David

    1996-01-01

    A process for selective separation of sodium-22 from an irradiated target including dissolving an irradiated target to form a first solution, contacting the first solution with hydrated antimony pentoxide to selectively separate sodium-22 from the first solution, separating the hydrated antimony pentoxide including the separated sodium-22 from the first solution, dissolving the hydrated antimony pentoxide including the separated sodium-22 in a mineral acid to form a second solution, and, separating the antimony from the sodium-22 in the second solution.

  14. Fission gas retention in irradiated metallic fuel

    SciTech Connect (OSTI)

    Fenske, G.R.; Gruber, E.E.; Kramer, J.M.

    1987-01-01

    Theoretical calculations and experimental measurements of the quantity of retained fission gas in irradiated metallic fuel (U-5Fs) are presented. The calculations utilize the Booth method to model the steady-state release of gases from fuel grains and a simplified grain-boundary gas model to predict the gas release from intergranular regions. The quantity of gas retained in as-irradiated fuel was determined by collecting the gases released from short segments of EBR-II driver fuel that were melted in a gas-tight furnace. Comparison of the calculations to the measurements shows quantitative agreement with both the magnitude and the axial variation of the retained gas content.

  15. ARM - Measurement - Shortwave broadband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total upwelling irradiance The rate at which radiant energy, at a wavelength between 0.4 and 4 {mu}m, is being emitted upwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments The above measurement is considered

  16. ARM - Measurement - Shortwave spectral total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral total downwelling irradiance The rate at which radiant energy, at specrally-resolved wavelengths between 0.4 and 4 {mu}m, is being emitted upwards and downwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments

  17. Neutron Spectrum Measurements from Irradiations at NCERC

    SciTech Connect (OSTI)

    Jackman, Kevin Richard; Mosby, Michelle A.; Bredeweg, Todd Allen; Hutchens, Gregory Joe; White, Morgan Curtis

    2015-04-15

    Several irradiations have been conducted on assemblies (COMET/ZEUS and Flattop) at the National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS). Configurations of the assemblies and irradiated materials changed between experiments. Different metallic foils were analyzed using the radioactivation method by gamma-ray spectrometry to understand/characterize the neutron spectra. Results of MCNP calculations are shown. It was concluded that MCNP simulated spectra agree with experimental measurements, with the caveats that some data are limited by statistics at low-energies and some activation foils have low activities.

  18. Impact of Aerosols on Atmospheric Attenuation Loss in Central Receiver Systems: Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Wagner, M. J.

    2011-08-01

    Atmospheric attenuation loss between the heliostat field and receiver has been recognized as a significant source of loss in Central Receiver Systems. In clear sky situations, extinction of Direct Normal Irradiance (DNI) is primarily by aerosols in the atmosphere. When aerosol loading is high close to the surface the attenuation loss between heliostat and receivers is significantly influenced by the amount of aerosols present on a particular day. This study relates measured DNI to aerosol optical depths close to the surface of the earth. The model developed in the paper uses only measured DNI to estimate the attenuation between heliostat and receiver in a central receiver system. The requirement that only a DNI measurement is available potentially makes the model a candidate for widespread use.

  19. Shortwave, Clear-sky Diffuse Irradiance in the 350 to 1050 nm Range: Comparison of Models with RSS Measurements at the Southern Great Plains ARM Site in September/October 2001

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shortwave, Clear-Sky Diffuse Irradiance in the 350 to 1050 nm Range: Comparison of Models with RSS Measurements at the Southern Great Plains ARM Site in September/October 2001 J. J. Michalsky, P. W. Kiedron, Q.-L. Min, and L. C. Harrison Atmospheric Sciences Research Center State University of New York Albany, New York J. J. Michalsky Surface Radiation Research Branch Air Resources Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado Abstract A rotating shadowband

  20. Reusing Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into ...

  1. Water Summit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    host Water Summit March 21, 2016 Los Alamos watershed research among featured projects LOS ALAMOS, N.M., March 21, 2016-On Tuesday, March 22, 2016-World Water Day-the ...

  2. Reusing Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into...

  3. Understanding the Irradiation Behavior of Zirconium Carbide

    SciTech Connect (OSTI)

    Motta, Arthur; Sridharan, Kumar; Morgan, Dane; Szlufarska, Izabela

    2013-10-11

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC- based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response (ZrC) by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  4. Microstructure chemistry and mechanical properties of Ni-based superalloy Rene N4 under irradiation at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, C.; Kirk, M.; Li, M.; Hattar, Khalid Mikhiel; Wang, Y.; Anderoglu, O.; Valdez, J.; Uberuaga, B. P.; Dickerson, R.; Maloy, S. A.

    2015-06-14

    Nickel superalloys with cubic L12 structured γ' (Ni3(Al, Ti)) precipitates exhibit high strength at high temperatures and excellent corrosion resistance when exposed to water. Unlike prior studies on irradiation damage of other Ni-based superalloys, our study on Rene N4 involves much larger γ' precipitates, ~450 nm in size, a size regime where the irradiation-induced disordering and dissolution kinetics and the corresponding mechanical property evolution are unknown. Under heavy ion irradiation at room temperature, the submicron-sized γ' precipitates were fully disordered at ~0.3 dpa and only later partially dissolved after 75 dpa irradiation. Nanoindentation experiments indicate that the mechanical properties ofmore » the alloy change significantly, with a dramatic decrease in hardness, with irradiation dose. Three contributions to the change in hardness were examined: defect clusters, disordering and dissolution. Moreover, the generation of defect clusters in the matrix and precipitates slightly increased the indentation hardness, while disordering of the submicron-sized γ' precipitates resulted in a dramatic decrease in the total hardness, which decreased further during the early stages of the intermixing between γ' precipitates and matrix (<18 dpa). As a result, controlling the long-range-ordering and chemical intermixing can be used to tailor the mechanical properties of Ni-based superalloys under irradiation.« less

  5. Irradiation effects on Charpy impact and tensile properties of low upper-shelf welds, HSSI series 2 and 3

    SciTech Connect (OSTI)

    Nanstad, R.K.; Berggren, R.G. )

    1991-08-01

    When reactor pressure vessel steels exhibit Charpy V-notch impact upper-shelf energy levels of less than 68 J (50 ft-lb), the requirements of Title 10, Code of Federal Regulations, Part 50, Appendix G, are not met. The regulations require, as an option, that a fracture mechanics analysis be performed that conservatively demonstrates adequate safety margins for continued operation. Under conditions where large prefracture crack-tip plastic zones are present, linear-elastic fracture mechanics concepts are not applicable, and the use of elastic-plastic fracture mechanics concepts has been recommended by the US Nuclear Regulatory Commission. A number of Babcock and Wilcox Company-fabricated reactor vessels in commercial pressurized water reactor plants include welds with both relatively low initial Charpy upper-shelf energies and high copper concentrations, which make them highly sensitive to neutron irradiation. As a result, the Charpy upper-shelf energies of many welds are expected to fall below 68 J (50 ft-lb) prior to reaching design life. The Heavy-Section Steel Irradiation Program conducted the Second and Third Irradiation Series to investigate the effects of irradiation on the ductile fracture toughness of seven commercially fabricated, low upper-shelf welds. This report represents analyses of the Charpy impact and tensile test data, including adjustments for irradiation temperature and fluence normalization, which make possible comparison of the irradiation sensitivity the different welds.

  6. Microstructure chemistry and mechanical properties of Ni-based superalloy Rene N4 under irradiation at room temperature

    SciTech Connect (OSTI)

    Sun, C.; Kirk, M.; Li, M.; Hattar, Khalid Mikhiel; Wang, Y.; Anderoglu, O.; Valdez, J.; Uberuaga, B. P.; Dickerson, R.; Maloy, S. A.

    2015-06-14

    Nickel superalloys with cubic L12 structured γ' (Ni3(Al, Ti)) precipitates exhibit high strength at high temperatures and excellent corrosion resistance when exposed to water. Unlike prior studies on irradiation damage of other Ni-based superalloys, our study on Rene N4 involves much larger γ' precipitates, ~450 nm in size, a size regime where the irradiation-induced disordering and dissolution kinetics and the corresponding mechanical property evolution are unknown. Under heavy ion irradiation at room temperature, the submicron-sized γ' precipitates were fully disordered at ~0.3 dpa and only later partially dissolved after 75 dpa irradiation. Nanoindentation experiments indicate that the mechanical properties of the alloy change significantly, with a dramatic decrease in hardness, with irradiation dose. Three contributions to the change in hardness were examined: defect clusters, disordering and dissolution. Moreover, the generation of defect clusters in the matrix and precipitates slightly increased the indentation hardness, while disordering of the submicron-sized γ' precipitates resulted in a dramatic decrease in the total hardness, which decreased further during the early stages of the intermixing between γ' precipitates and matrix (<18 dpa). As a result, controlling the long-range-ordering and chemical intermixing can be used to tailor the mechanical properties of Ni-based superalloys under irradiation.

  7. NREL: Process Development and Integration Laboratory - Atmospheric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing Platform Capabilities Research Process Development and Integration Laboratory Printable Version Atmospheric Processing Platform Capabilities The Atmospheric Processing platform in the Process Development and Integration Laboratory offers powerful capabilities with integrated tools for depositing, processing, and characterizing photovoltaic materials and devices. In particular, this platform focuses on different methods to deposit ("write") materials onto a variety of

  8. Laboratory investigations of irradiated acetonitrile-containing ices on an interstellar dust analog

    SciTech Connect (OSTI)

    Abdulgalil, Ali G. M.; Marchione, Demian; Rosu-Finsen, Alexander; Collings, Mark P.; McCoustra, Martin R. S.

    2012-07-15

    Reflection-absorption infrared spectroscopy is used to study the impact of low-energy electron irradiation of acetonitrile-containing ices, under conditions close to those in the dense star-forming regions in the interstellar medium. Both the incident electron energy and the surface coverage were varied. The experiments reveal that solid acetonitrile is desorbed from its ultrathin solid films with a cross section of the order of 10{sup -17} cm{sup 2}. Evidence is presented for a significantly larger desorption cross section for acetonitrile molecules at the water-ice interface, similar to that previously observed for the benzene-water system.

  9. Diffuse Irradiance Study Planned for October

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Contact: James C. Liljegren Phone: 630-252-9540 Email: jcliljegren@anl.gov ... facility in an effort to validate a satellite-based atmospheric moisture sensor called ...

  10. Continuous wave laser irradiation of explosives

    SciTech Connect (OSTI)

    McGrane, Shawn D.; Moore, David S.

    2010-12-01

    Quantitative measurements of the levels of continuous wave (CW) laser light that can be safely applied to bare explosives during contact operations were obtained at 532 nm, 785 nm, and 1550 nm wavelengths. A thermal camera was used to record the temperature of explosive pressed pellets and single crystals while they were irradiated using a measured laser power and laser spot size. A visible light image of the sample surface was obtained before and after the laser irradiation. Laser irradiation thresholds were obtained for the onset of any visible change to the explosive sample and for the onset of any visible chemical reaction. Deflagration to detonation transitions were not observed using any of these CW laser wavelengths on single crystals or pressed pellets in the unconfined geometry tested. Except for the photochemistry of DAAF, TATB and PBX 9502, all reactions appeared to be thermal using a 532 nm wavelength laser. For a 1550 nm wavelength laser, no photochemistry was evident, but the laser power thresholds for thermal damage in some of the materials were significantly lower than for the 532 nm laser wavelength. No reactions were observed in any of the studied explosives using the available 300 mW laser at 785 nm wavelength. Tables of laser irradiance damage and reaction thresholds are presented for pressed pellets of PBX9501, PBX9502, Composition B, HMX, TATB, RDX, DAAF, PETN, and TNT and single crystals of RDX, HMX, and PETN for each of the laser wavelengths.

  11. Strain engineering in graphene by laser irradiation

    SciTech Connect (OSTI)

    Papasimakis, N.; Mailis, S.; Huang, C. C.; Al-Saab, F.; Hewak, D. W.; Luo, Z.; Shen, Z. X.

    2015-02-09

    We demonstrate that the Raman spectrum of graphene on lithium niobate can be controlled locally by continuous exposure to laser irradiation. We interpret our results in terms of changes to doping and mechanical strain and show that our observations are consistent with light-induced gradual strain relaxation in the graphene layer.

  12. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  13. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, Scott A. (Oak Ridge, TN); Glish, Gary L. (Oak Ridge, TN)

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  14. New analysis indicates no thermal inversion in the atmosphere of HD 209458b

    SciTech Connect (OSTI)

    Diamond-Lowe, Hannah; Stevenson, Kevin B.; Bean, Jacob L.; Line, Michael R.; Fortney, Jonathan J.

    2014-11-20

    An important focus of exoplanet research is the determination of the atmospheric temperature structure of strongly irradiated gas giant planets, or hot Jupiters. HD 209458b is the prototypical exoplanet for atmospheric thermal inversions, but this assertion does not take into account recently obtained data or newer data reduction techniques. We reexamine this claim by investigating all publicly available Spitzer Space Telescope secondary-eclipse photometric data of HD 209458b and performing a self-consistent analysis. We employ data reduction techniques that minimize stellar centroid variations, apply sophisticated models to known Spitzer systematics, and account for time-correlated noise in the data. We derive new secondary-eclipse depths of 0.119% 0.007%, 0.123% 0.006%, 0.134% 0.035%, and 0.215% 0.008% in the 3.6, 4.5, 5.8, and 8.0 ?m bandpasses, respectively. We feed these results into a Bayesian atmospheric retrieval analysis and determine that it is unnecessary to invoke a thermal inversion to explain our secondary-eclipse depths. The data are well fitted by a temperature model that decreases monotonically between pressure levels of 1 and 0.01 bars. We conclude that there is no evidence for a thermal inversion in the atmosphere of HD 209458b.

  15. ARM - Measurement - Liquid water path

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    path ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Liquid water path A measure of the weight of the liquid water droplets in the atmosphere above a unit surface area on the earth, given in units of kg m-2. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument

  16. Lanai high-density irradiance sensor network for characterizing...

    Office of Scientific and Technical Information (OSTI)

    deployment of an autonomous irradiance monitoring system based on wireless mesh ... SYSTEMS; DESIGN; FORECASTING; HAWAII; MONITORING; PERFORMANCE; PYRANOMETERS; RADIANT ...

  17. EFFECT OF FAST NEUTRON IRRADIATION ON SINTERED ALUMINA AND MAGNESIA...

    Office of Scientific and Technical Information (OSTI)

    IRRADIATION; LATTICES; MAGNESIUM OXIDES; MONOCRYSTALS; NEUTRON FLUX; RADIATION DOSES; RADIATION EFFECTS; SINTERED MATERIALS; TEMPERATURE; THERMAL CONDUCTIVITY ALUMINUM OXIDES

  18. Low Dose Irradiation Facility | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Dose Irradiation Facility (LoDIF) The LoDIF is a unique facility designed to evaluate the impact of chronic, low-level radiation exposure on aquatic organisms. The facility is an array of 40 outdoor mesocosms equipped with cesium-137 irradiation sources or unexposed controls. Irradiation sources provide three biologically relevant levels of exposure: 2, 20, and 200 mGy/d mean exposure. Mesocosms are arranged into eight blocks, with five mesocosms per block (three levels of irradiation and

  19. Implementation Plan for the Irradiated Materials Characterization Laboratory (IMCL)

    SciTech Connect (OSTI)

    Not Listed

    2013-04-01

    This document contains details regarding the planned implementation of the Irradiated Materials Characterization Laboratory at the INL.

  20. Irradiation creep of various ferritic alloys irradiated {approximately}400 C in the PFR and FFTF reactors

    SciTech Connect (OSTI)

    Toloczko, M.B.; Garner, F.A.; Eiholzer, C.R.

    1998-03-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400 C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400 C. Depending on the alloy starting condition, these steels develop a variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 {times} 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.

  1. Sensitivity of ultrasonic nonlinearity to irradiated, annealed, and re-irradiated microstructure changes in RPV steels

    SciTech Connect (OSTI)

    Matlack, Katie; Kim, J-Y.; Wall, J.J.; Jacobs, L.J.; Sokolov, Mikhail A

    2014-05-01

    The planned life extension of nuclear reactors throughout the US and abroad will cause reactor vessel and internals materials to be exposed to more neutron irradiation than was originally intended. A nondestructive evaluation (NDE) method to monitor radiation damage would enable safe and cost-effective continued operation of nuclear reactors. Radiation damage in reactor pressure vessel (RPV) steels causes microstructural changes that leave the material in an embrittled state. Nonlinear ultrasound is an NDE technique quantified by the measurable acoustic nonlinearity parameter, which is sensitive to microstructural changes in metallic materials such as dislocations, precipitates and their combinations. Recent research has demonstrated the sensitivity of the acoustic nonlinearity parameter to increasing neutron fluence in representative RPV steels. The current work considers nonlinear ultrasonic experiments conducted on similar RPV steel samples that had a combination of irradiation, annealing, re-irradiation, and/or re-annealing to a total neutron fluence of 0.5 5 1019 n/cm2 (E > 1 MeV) at an irradiation temperature of 290 C. The acoustic nonlinearity parameter generally increased with increasing neutron fluence, and consistently decreased from the irradiated to the annealed state over different levels of neutron fluence. Results of the measured acoustic nonlinearity parameter are compared with those from previous measurements on other RPV steel samples. This comprehensive set of results illustrates the dependence of the measured acoustic nonlinearity parameter on neutron fluence, material composition, irradiation temperature and annealing.

  2. The field experiments on the HTO washout from the atmosphere

    SciTech Connect (OSTI)

    Golubev, A.V.; Mavrin, S.V.; Golubeva, V.N.; Stengach, A.V.; Balashov, Y.S.; Kovalenko, V.P.; Solomatin, I.I.

    2015-03-15

    HTO (tritiated water) wash-out from the atmosphere is one of the key processes governing the HTO transport from the atmosphere into soil and plants. Experimental studies of the HTO interaction with water drops were carried out both in laboratories and in the field. In the course of experiments, the following rain characteristics were recorded: rain intensity, size distribution of drops, and falling velocities and their dependence on drop diameter. A laser optical device was designed and used to measure the distribution of the drop radius and velocities during the period of experiment. The tritium source was placed at a height of 30 m. Rainwater samples were collected in plastic bottles and their HTO activity was determined by liquid scintillation techniques. The data obtained for the experimental values of the scavenging rate are within the range from 4.12*10{sup -5} to 1.57*10{sup -4} s{sup -1} and correspond to the precipitation intensity from 0.3 to 1.26 mm/hour. These results are in sufficiently good agreement with the results of earlier papers.

  3. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect (OSTI)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  4. SWiFT site atmospheric characterization

    SciTech Connect (OSTI)

    Kelley, Christopher Lee; Ennis, Brandon Lee

    2016-01-01

    Historical meteorological tall tower data are analyzed from the Texas Tech University 200 m tower to characterize the atmospheric trends of the Scaled Wind Farm Technologies (SWiFT) site. In this report the data are analyzed to reveal bulk atmospheric trends, temporal trends and correlations of atmospheric variables. Through this analysis for the SWiFT turbines the site International Electrotechnical Commission (IEC) classification is determined to be class III-C. Averages and distributions of atmospheric variables are shown, revealing large fluctuations and the importance of understanding the actual site trends as opposed to simply using averages. The site is significantly directional with the average wind speed from the south, and particularly so in summer and fall. Site temporal trends are analyzed from both seasonal (time of the year) to daily (hour of the day) perspectives. Atmospheric stability is seen to vary most with time of day and less with time of year. Turbulence intensity is highly correlated with stability, and typical daytime unstable conditions see double the level of turbulence intensity versus that experienced during the average stable night. Shear, veer and atmospheric stability correlations are shown, where shear and veer are both highest for stable atmospheric conditions. An analysis of the Texas Tech University tower anemometer measurements is performed which reveals the extent of the tower shadow effects and sonic tilt misalignment.

  5. Advanced Numerical Model for Irradiated Concrete

    SciTech Connect (OSTI)

    Giorla, Alain B.

    2015-03-01

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some

  6. Search for: "atmospheric radiation measurement" | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    ... Specifically, the vertical structure of droplet size and water content of both cloud and ... under stratocumulus, where cloud water path is retrieved with an error of 31 g ...

  7. Water pollution

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    Ballast water, which is sea water that is carried in oil tankers to provide stability, can become contaminated with oil. Alyeska Pipeline Service Company runs a water treatment plant at its pipeline terminal at Prot Valdez, Alaska, to treat ballast water before it is discharged into the sea. GAO reviewed EPA's recently reissued National Pollution Discharge Elimination System permit for the Port Valdez facility. In this report, GAO compares the effluent limits and other requirements under the reissued permit with those of the old permit, determines the reasons for changes in the reissued permit, and examines Alyeska's initial efforts to comply with the reissued permit's effluent limits and reporting requirements.

  8. Ion Irradiation of Carbon Nanotubes: a STM Study

    SciTech Connect (OSTI)

    Osvath, Z.; Vertesy, G.; Horvath, Z. E.; Gyulai, J.; Biro, L. P.

    2009-03-10

    Multi-walled carbon nanotubes irradiated with Ar{sup +} ions of low (5x10{sup 11} ions/cm{sup 2}) and high (10{sup 15} ions/cm{sup 2}) fluences were investigated by STM. Contrary to the case of low fluence irradiation, the defects produced during the high fluence irradiation could not be observed individually, and the surface of nanotubes became rough. Irradiated nanotubes could be easily bent by the STM tip. However, some nanotubes parts could not be moved, which suggest that these parts were bound to the substrate during irradiation.

  9. Alpha Radiolysis of Sorbed Water on Uranium Oxides and Uranium Oxyfluorides

    SciTech Connect (OSTI)

    Icenhour, A.S.

    2003-09-10

    The radiolysis of sorbed water and other impurities contained in actinide oxides has been the focus of a number of studies related to the establishment of criteria for the safe storage and transport of these materials. Gamma radiolysis studies have previously been performed on uranium oxides and oxyfluorides (UO{sub 3}, U{sub 3}O{sub 8}, and UO{sub 2}F{sub 2}) to evaluate the long-term storage characteristics of {sup 233}U. This report describes a similar study for alpha radiolysis. Uranium oxides and oxyfluorides (with {sup 238}U as the surrogate for {sup 233}U) were subjected to relatively high alpha radiation doses (235 to 634 MGy) by doping with {sup 244}Cm. The typical irradiation time for these samples was about 1.5 years, which would be equivalent to more than 50 years irradiation by a {sup 233}U sample. Both dry and wet (up to 10 wt % water) samples were examined in an effort to identify the gas pressure and composition changes that occurred as a result of radiolysis. This study shows that several competing reactions occur during radiolysis, with the net effect that only very low pressures of hydrogen, nitrogen, and carbon dioxide are generated from the water, nitrate, and carbon impurities, respectively, associated with the oxides. In the absence of nitrate impurities, no pressures greater than 1000 torr are generated. Usually, however, the oxygen in the air atmosphere over the oxides is consumed with the corresponding oxidation of the uranium oxide. In the presence of up to 10 wt % water, the oxides first show a small pressure rise followed by a net decrease due to the oxygen consumption and the attainment of a steady-state pressure where the rate of generation of gaseous components is balanced by their recombination and/or consumption in the oxide phase. These results clearly demonstrate that alpha radiolysis of either wet or dry {sup 233}U oxides will not produce deleterious pressures or gaseous components that could compromise the long-term storage of

  10. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    SciTech Connect (OSTI)

    Xu, S. F.; Zhong, X. X.

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.

  11. Fractionated total body irradiation for metastatic neuroblastoma

    SciTech Connect (OSTI)

    Kun, L.E.; Casper, J.T.; Kline, R.W.; Piaskowski, V.D.

    1981-11-01

    Twelve patients over one year old with neuroblastoma (NBL) metastatic to bone and bone marrow entered a study of adjuvant low-dose, fractionated total body irradiation (TBI). Six children who achieved a ''complete clinical response'' following chemotherapy (cyclophosphamide and adriamycin) and surgical resection of the abdominal primary received TBI (10 rad/fraction to totals of 100-120 rad/10-12 fx/12-25 days). Two children received concurrent local irradiation for residual abdominal tumor. The intervals from cessation of chemotherapy to documented progression ranged from 2-16 months, not substatially different from patients receiving similar chemotherapy and surgery without TBI. Three additional children with progressive NBL received similar TBI (80-120 rad/8-12 fx) without objective response.

  12. Neutron irradiation induced amorphization of silicon carbide

    SciTech Connect (OSTI)

    Snead, L.L.; Hay, J.C.

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  13. Forward and reverse characteristics of irradiated MOSFETs

    SciTech Connect (OSTI)

    Paccagnella, A.; Ceschia, M.; Verzellesi, G.; Dalla Betta, G.F.; Soncini, G.; Bellutti, P.; Fuochi, P.G.

    1996-06-01

    pMOSFETs biased with V{sub gs} < V{sub gd} during Co{sup 60} {gamma} irradiation have shown substantial differences between the forward and reverse subthreshold characteristics, induced by a non-uniform charge distribution in the gate oxide. Correspondingly, modest differences have been observed in the over-threshold I-V characteristics. After irradiation, the forward subthreshold curves can shift at higher or lower gate voltages than the reverse ones. The former behavior has been observed in long-channel devices, in agreement with the classical MOS theory and numerical simulations. The latter result has been obtained in short-channel devices, and it has been correlated to a parasitic punch-through conduction mechanism.

  14. Nanodot formation induced by femtosecond laser irradiation

    SciTech Connect (OSTI)

    Abere, M. J.; Kang, M.; Goldman, R. S.; Yalisove, S. M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Chen, C. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Rittman, D. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Phillips, J. D. [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, B. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-10-20

    The femtosecond laser generation of ZnSe nanoscale features on ZnSe surfaces was studied. Irradiation with multiple exposures produces 10100?nm agglomerations of nanocrystalline ZnSe while retaining the original single crystal structure of the underlying material. The structure of these nanodots was verified using a combination of scanning transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. The nanodots continue to grow hours after irradiation through a combination of bulk and surface diffusion. We suggest that in nanodot formation the result of ultrafast laser induced point defect formation is more than an order of magnitude below the ZnSe ultrafast melt threshold fluence. This unique mechanism of point defect injection will be discussed.

  15. Operating Experience Level 3, Atmospheric Dispersion Parameter...

    Broader source: Energy.gov (indexed) [DOE]

    5 OE-3 2015-02: Atmospheric Dispersion Parameter (xQ) for Calculation of Co-located Worker Dose This Operating Experience Level 3 (OE-3) document informs the complex of the...

  16. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A large portion of the microscopic particles floating in the air originate from incomplete combustion of coal and oil and from dust storms. Once in the atmosphere, they can have ...

  17. Reducing the atmospheric impact of wet slaking

    SciTech Connect (OSTI)

    B.D. Zubitskii; G.V. Ushakov; B.G. Tryasunov; A.G.Ushakov

    2009-05-15

    Means of reducing the atmospheric emissions due to the wet slaking of coke are considered. One option, investigated here, is to remove residual active silt and organic compounds from the biologically purified wastewater sent for slaking, by coagulation and flocculation.

  18. Free Floating Atmospheric Pressure Ball Plasmas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Floating Atmospheric Pressure Ball Plasmas G. A. Wurden, Z. Wang, C. Ticos Los Alamos National Laboratory L Al NM 87545 USA Los Alamos, NM 87545 USA C. J. v. Wurden Los Alamos...

  19. Total lymphoid irradiation for multiple sclerosis

    SciTech Connect (OSTI)

    Devereux, C.K.; Vidaver, R.; Hafstein, M.P.; Zito, G.; Troiano, R.; Dowling, P.C.; Cook, S.D.

    1988-01-01

    Although chemical immunosuppression has been shown to benefit patients with chronic progressive multiple sclerosis (MS), it appears that chemotherapy has an appreciable oncogenic potential in patients with multiple sclerosis. Accordingly, we developed a modified total lymphoid irradiation (TLI) regimen designed to reduce toxicity and applied it to a randomized double blind trial of TLI or sham irradiation in MS. Standard TLI regimens were modified to reduce dose to 1,980 rad, lowering the superior mantle margin to midway between the thyroid cartilage and angle of the mandible (to avert xerostomia) and the lower margin of the mantle field to the inferior margin of L1 (to reduce gastrointestinal toxicity by dividing abdominal radiation between mantle and inverted Y), limiting spinal cord dose to 1,000 rad by custom-made spine blocks in the mantle and upper 2 cm of inverted Y fields, and also protecting the left kidney even if part of the spleen were shielded. Clinical efficacy was documented by the less frequent functional scale deterioration of 20 TLI treated patients with chronic progressive MS compared to to 20 sham-irradiated progressive MS patients after 12 months (16% versus 55%, p less than 0.03), 18 months (28% versus 63%, p less than 0.03), and 24 months (44% versus 74%, N.S.). Therapeutic benefit during 3 years follow-up was related to the reduction in lymphocyte count 3 months post-irradiation (p less than 0.02). Toxicity was generally mild and transient, with no instance of xerostomia, pericarditis, herpes zoster, or need to terminate treatment in TLI patients. However, menopause was induced in 2 patients and staphylococcal pneumonia in one.

  20. Climatic change due to solar irradiance changes

    SciTech Connect (OSTI)

    Wigley, T.M.L.; Raper, S.C.B. )

    1990-11-01

    Solar irradiance reconstructions back to 1874 are used to estimate the effect of the Sun on global-mean temperature. The importance of the history effect of the Sun on global-mean temperature. The importance of the history effect, whereby recent temperature changes may be influenced significantly by past forcing changes, is evaluated. Modelled temperature changes are shown to be relatively insensitive to model uncertainties. The overall range of modelled temperature variations is extremely small, 0.05C.

  1. WATER TREATMENT

    DOE Patents [OSTI]

    Pitman, R.W.; Conley, W.R. Jr.

    1962-12-01

    An automated system for adding clarifying chemicals to water in a water treatment plant is described. To a sample of the floc suspension polyacrylamide or similar filter aid chemicals are added, and the sample is then put through a fast filter. The resulting filtrate has the requisite properties for monitoring in an optical turbidimeter to control the automated system. (AEC)

  2. Technology evaluation for space station atmospheric leakage

    SciTech Connect (OSTI)

    Lemon, D.K.; Friesel, M.A.; Griffin, J.W.; Skorpik, J.R.; Shepard, C.L.; Antoniak, Z.I.; Kurtz, R.J.

    1990-02-01

    A concern in operation of a space station is leakage of atmosphere through seal points and through the walls as a result of damage from particle (space debris and micrometeoroid) impacts. This report describes a concept for a monitoring system to detect atmosphere leakage and locate the leak point. The concept is based on analysis and testing of two basic methods selected from an initial technology survey of potential approaches. 18 refs., 58 figs., 5 tabs.

  3. Air Activation Following an Atmospheric Explosion

    SciTech Connect (OSTI)

    Lowrey, Justin D.; McIntyre, Justin I.; Prichard, Andrew W.; Gesh, Christopher J.

    2013-03-13

    In addition to thermal radiation and fission products, nuclear explosions result in a very high flux of unfissioned neutrons. Within an atmospheric nuclear explosion, these neutrons can activate the various elemental components of natural air, potentially adding to the radioactive signature of the event as a whole. The goal of this work is to make an order-of-magnitude estimate of the total amount of air activation products that can result from an atmospheric nuclear explosion.

  4. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  5. Atmospheric Radiation Measurement Climate Research Facility | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study climate change 1 of 22 Argonne scientists study climate change The U.S. Department of Energy's Office of Science provided $60 million in ARRA funding for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a DOE national user facility that has been operating climate observing sites around the world for nearly two decades. These sites help scientists

  6. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  7. Atmospheric and Climate Science | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric and Climate Science Argonne research in aerosols, micro-meteorology, remote sensing, and atmospheric chemistry combined with our scalable, portable, high-performance climate and weather applications offer a unique look at the complexities of a dynamic planet. Changes in climate can affect biodiversity, the cost of food, our health, and even whole economies. Argonne is developing computational models and tools designed to shed light on complex biological processes and their economic,

  8. VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study () | Data...

    Office of Scientific and Technical Information (OSTI)

    VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study Title: VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) is an international ...

  9. Water Wars

    Energy Science and Technology Software Center (OSTI)

    2012-09-11

    Sandia National Laboratories and Intel Corporation are cooperating on a project aimed at developing serious games to assist in resource planners in conducting open and participatory projects. Water Wars serves as a prototype game focused on water issues. Water Wars is a multi-player, online role-playing "serious game" combining large-scale simulation (e.g. SimCity), with strategy and interpersonal interaction (e.g. Diplomacy). The game is about water use set in present-day New Mexico. Players enact various stakeholder rolesmore » and compete for water while simultaneously cooperating to prevent environmental collapse. The gamespace utilizes immersive 3D graphics to bring the problem alive. The game integrates Intel's OpenSim visualization engine with Sandia developed agent-based and system dynamics models.« less

  10. Irradiation Environment of the Materials Test Station

    SciTech Connect (OSTI)

    Pitcher, Eric John

    2012-06-21

    Conceptual design of the proposed Materials Test Station (MTS) at the Los Alamos Neutron Science Center (LANSCE) is now complete. The principal mission is the irradiation testing of advanced fuels and materials for fast-spectrum nuclear reactor applications. The neutron spectrum in the fuel irradiation region of MTS is sufficiently close to that of fast reactor that MTS can match the fast reactor fuel centerline temperature and temperature profile across a fuel pellet. This is an important characteristic since temperature and temperature gradients drive many phenomena related to fuel performance, such as phase stability, stoichiometry, and fission product transport. The MTS irradiation environment is also suitable in many respects for fusion materials testing. In particular, the rate of helium production relative to atomic displacements at the peak flux position in MTS matches well that of fusion reactor first wall. Nuclear transmutation of the elemental composition of the fusion alloy EUROFER97 in MTS is similar to that expected in the first wall of a fusion reactor.

  11. Fabrication Control Plan for ORNL RH-LOCA ATF Test Specimens to be Irradiated in the ATR

    SciTech Connect (OSTI)

    Kevin G. Field; Richard Howard; Michael Teague

    2014-06-01

    The purpose of this fabrication plan is (1) to summarize the design of a set of rodlets that will be fabricated and then irradiated in the Advanced Test Reactor (ATR) and (2) provide requirements for fabrication and acceptance criteria for inspections of the Light Water Reactor (LWR) – Accident Tolerant Fuels (ATF) rodlet components. The functional and operational (F&OR) requirements for the ATF program are identified in the ATF Test Plan. The scope of this document only covers fabrication and inspections of rodlet components detailed in drawings 604496 and 604497. It does not cover the assembly of these items to form a completed test irradiation assembly or the inspection of the final assembly, which will be included in a separate INL final test assembly specification/inspection document. The controls support the requirements that the test irradiations must be performed safely and that subsequent examinations must provide valid results.

  12. Atmospheric Neutrinos in the MINOS Far Detector

    SciTech Connect (OSTI)

    Howcroft, Caius L.F.

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  13. Analyzing the Contribution of Aerosols to an Observed Increase in Direct Normal Irradiance in Oregon

    SciTech Connect (OSTI)

    Riihimaki, Laura D.; Vignola, F.; Long, Charles N.

    2009-01-22

    Annual average total irradiance increases by 1-2% per decade at three mon- itoring stations in Oregon over the period from 1980 to 2007. Direct normal irradiance measurements increase by 5% per decade over the same time pe- riod. The measurements show no sign of a dimming before 1990. The impact of high concentrations of stratospheric aerosols following the volcanic erup- tions of El Chichon and Mt. Pinatubo are clearly seen in the measurements. Removing these years from the annual average all-sky time series reduces the trends in both total and direct normal irradiance. Clear-sky periods from this long direct normal time series are used in conjunction with radiative trans- fer calculations to test whether part of the increase could be caused by an- thropogenic aerosols. All three sites show relatively low clear-sky measure- ments before the eruption of El Chichon in 1982, suggesting higher aerosol loads during this period. After removing the periods most strongly impacted by volcanic eruptions, two of the sites show statistically signicant increases in clear-sky direct normal irradiance from 1987 to 2007. Radiative transfer calculations of the impact of volcanic aerosols and tropospheric water vapor indicate that only about 20% of that clear-sky increase between background aerosol periods before and after the eruption of Mt. Pinatubo can be explained by these two factors. Thus, a statistically signicant clear-sky trend remains between 1987 and 2007 that is consistent with the hypothesis that at least some of the increase in surface irradiance could be caused by a reduction of anthropogenic aerosols. D

  14. Atmospheric Radiation Measurement Climate Research Facility (ARM) | U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum

  15. Microstructural evolution of type 304 and 316 stainless steels under neutron irradiation at LWR relevant conditions

    SciTech Connect (OSTI)

    Tan, Lizhen; Stoller, Roger E.; Field, Kevin G.; Yang, Ying; Morgan, Dane; Wirth, Brian D.; Gussev, Maxim N.; Busby, Jeremy T.; Nam, H.

    2015-12-11

    Extension of light water reactors' useful life will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), which will lead to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants, were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6–120 dpa at 275–375°C were either generated from this work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher radiation doses.

  16. Measurement of free ammonia produced by X irradiation of glycylglycine in aqueous solution

    SciTech Connect (OSTI)

    Yoshida, H.; Bolch, W.E.; Jacobson, K.B.; Turner, J.E. )

    1990-03-01

    This research was initiated to test the validity of predictions based on Monte Carlo calculations of the effect of ionizing radiation on a simple dipeptide. The mechanism for the formation of ammonia, proposed by Garrison, Sokol, and Bennett-Corniea, was reevaluated by measuring the yields under deoxygenated and oxygenated conditions. Although free ammonia was formed under both conditions, the yields were different, depending on the concentrations of solute and molecular oxygen. The reaction probabilities of the specific interactions of free radicals formed in pure water with solute and oxygen are discussed to account for the observed difference. Our results obtained after low-dose-rate X irradiation are compared with those obtained by Garrison et al. after high-dose-rate 60Co gamma irradiation.

  17. Multiscale Simulation of Moist Global Atmospheric Flows

    SciTech Connect (OSTI)

    Grabowski, Wojciech W.; Smolarkiewicz, P. K.

    2015-04-13

    The overarching goal of this award was to include phase changes of the water substance and accompanying latent heating and precipitation processes into the all-scale nonhydrostatic atmospheric dynamics EUlerian/LAGrangian (EULAG) model. The model includes fluid flow solver that is based on either an unabbreviated set of the governing equations (i.e., compressible dynamics) or a simplified set of equations without sound waves (i.e., sound-proof, either anelastic or pseudo-incompressible). The latter set has been used in small-scale dynamics for decades, but its application to the all-scale dynamics (from small-scale to planetary) has never been studied in practical implementations. The highlight of the project is the development of the moist implicit compressible model that can be run by applying time steps, as long as the anelastic model is limited only by the computational stability of the fluid flow and not by the speed of sound waves that limit the stability of explicit compressible models. Applying various versions of the EULAG model within the same numerical framework allows for an unprecedented comparison of solutions obtained with various sets of the governing equations and straightforward evaluation of the impact of various physical parameterizations on the model solutions. The main outcomes of this study are reported in three papers, two published and one currently under review. These papers include comparisons between model solutions for idealized moist problems across the range of scales from small to planetary. These tests include: moist thermals rising in the stable-stratified environment (following Grabowski and Clark, J. Atmos. Sci. 1991) and in the moist-neutral environment (after Bryan and Fritsch, Mon. Wea. Rev. 2002), moist flows over a mesoscale topography (as in Grabowski and Smolarkiewicz, Mon. Wea. Rev. 2002), deep convection in a sheared environment (following Weisman and Klemp, Mon. Wea. Rev. 1982), moist extension of the baroclinic wave on

  18. The spectral irradiance traceability chain at PTB

    SciTech Connect (OSTI)

    Sperfeld, P.; Pape, S.; Nevas, S.

    2013-05-10

    Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Systeme international d'unites, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck's radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties confirmed by

  19. Style Guide Atmospheric Radiation Measurement (ARM) Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility March 2013 Style Guide Atmospheric Radiation Measurement Climate Research Facility March 2013 Work ...

  20. Validation of the ARchived CERES Surface and Atmosphere Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archived CERES Surface and Atmosphere Radiation Budget at SGP T. P. Charlock National ... System (CERES) Surface and Atmosphere Radiation Budget (SARB) product (Charlock et al. ...

  1. Radar range measurements in the atmosphere. (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models. Authors: Doerry, Armin Walter ...

  2. Model-Observation "Data Cubes" for the DOE Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model-Observation "Data Cubes" for the DOE Atmospheric Radiation Measurement Facility's ... Program through its Atmospheric Radiation Measurement Facility. 2. Data Cube ...

  3. DOE/SC-ARM-020 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-020 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  4. About Effective? Height of the Aerosol Atmosphere in Visible...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, and S. M. Sakerin Institute of Atmospheric Optics Tomsk, Russia Introduction Aerosol component of the atmosphere is one of the important...

  5. Aerosol specification in single-column Community Atmosphere Model...

    Office of Scientific and Technical Information (OSTI)

    Aerosol specification in single-column Community Atmosphere Model version 5 Prev Next Title: Aerosol specification in single-column Community Atmosphere Model version 5 ...

  6. Global Atmospheric Pollution Forum Air Pollutant Emission Inventory...

    Open Energy Info (EERE)

    Atmospheric Pollution Forum Air Pollutant Emission Inventory Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Atmospheric Pollution (GAP) Forum Air Pollutant...

  7. An active atmospheric methane sink in high Arctic mineral cryosols...

    Office of Scientific and Technical Information (OSTI)

    conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH-oxidizing bacteria; (2) the atmospheric CH uptake ...

  8. ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology...

    Office of Scientific and Technical Information (OSTI)

    1 data Title: ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): channel 1 data Atmospheric Sounder Spectrometer for Infrared Spectral Technology ...

  9. ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology...

    Office of Scientific and Technical Information (OSTI)

    summary data Title: ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): summary data Atmospheric Sounder Spectrometer for Infrared Spectral Technology ...

  10. Simulated response of the atmosphere-ocean system to deforestation...

    Office of Scientific and Technical Information (OSTI)

    the atmosphere-ocean system to deforestation in the Indonesian Archipelago Citation Details In-Document Search Title: Simulated response of the atmosphere-ocean system to ...

  11. Simulation and Theory of Ions at Atmospherically Relevant Aqueous...

    Office of Scientific and Technical Information (OSTI)

    Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces Citation Details In-Document Search Title: Simulation and Theory of Ions at Atmospherically...

  12. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial...

    Office of Scientific and Technical Information (OSTI)

    the ARM Aerial Facility Title: Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility The Atmospheric Radiation Measurement (ARM) Program is the largest global ...

  13. A comparison between characteristics of atmospheric-pressure...

    Office of Scientific and Technical Information (OSTI)

    A comparison between characteristics of atmospheric-pressure plasma jets sustained by ... Title: A comparison between characteristics of atmospheric-pressure plasma jets sustained ...

  14. Atmospheric Radiation Measurement (ARM) Data from the North Slope...

    Office of Scientific and Technical Information (OSTI)

    North Slope Alaska (NSA) Site Title: Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site The Atmospheric Radiation Measurement (ARM) Program is the ...

  15. Magnetospheric structure and atmospheric Joule heating of habitable planets orbiting M-dwarf stars

    SciTech Connect (OSTI)

    Cohen, O.; Drake, J. J.; Garraffo, C.; Poppenhaeger, K.; Glocer, A.; Ridley, A. J.; Gombosi, T. I.

    2014-07-20

    We study the magnetospheric structure and the ionospheric Joule Heating of planets orbiting M-dwarf stars in the habitable zone using a set of magnetohydrodynamic models. The stellar wind solution is used to drive a model for the planetary magnetosphere, which is coupled with a model for the planetary ionosphere. Our simulations reveal that the space environment around close-in habitable planets is extreme, and the stellar wind plasma conditions change from sub- to super-Alfvnic along the planetary orbit. As a result, the magnetospheric structure changes dramatically with a bow shock forming in the super-Alfvnic sectors, while no bow shock forms in the sub-Alfvnic sectors. The planets reside most of the time in the sub-Alfvnic sectors with poor atmospheric protection. A significant amount of Joule Heating is provided at the top of the atmosphere as a result of the intense stellar wind. For the steady-state solution, the heating is about 0.1%-3% of the total incoming stellar irradiation, and it is enhanced by 50% for the time-dependent case. The significant Joule Heating obtained here should be considered in models for the atmospheres of habitable planets in terms of the thickness of the atmosphere, the top-side temperature and density, the boundary conditions for the atmospheric pressure, and particle radiation and transport. Here we assume constant ionospheric Pedersen conductance similar to that of the Earth. The conductance could be greater due to the intense EUV radiation leading to smaller heating rates. We plan to quantify the ionospheric conductance in future study.

  16. LABORATORY STUDIES ON THE IRRADIATION OF SOLID ETHANE ANALOG ICES AND IMPLICATIONS TO TITAN'S CHEMISTRY

    SciTech Connect (OSTI)

    Kim, Y. S.; Bennett, C. J.; Chen, L-H; Kaiser, R. I.; O'Brien, K.

    2010-03-10

    Pure ethane ices (C{sub 2}H{sub 6}) were irradiated at 10, 30, and 50 K under contamination-free, ultrahigh vacuum conditions with energetic electrons generated in the track of galactic cosmic-ray (GCR) particles to simulate the interaction of GCRs with ethane ices in the outer solar system. The chemical processing of the samples was monitored by a Fourier transform infrared spectrometer and a quadrupole mass spectrometer during the irradiation phase and subsequent warm-up phases on line and in situ in order to extract qualitative (products) and quantitative (rate constants and yields) information on the newly synthesized molecules. Six hydrocarbons, methane (CH{sub 4}), acetylene (C{sub 2}H{sub 2}), ethylene (C{sub 2}H{sub 4}), and the ethyl radical (C{sub 2}H{sub 5}), together with n-butane (C{sub 4}H{sub 10}) and butene (C{sub 4}H{sub 8}), were found to form at the radiation dose reaching 1.4 eV per molecule. The column densities of these species were quantified in the irradiated ices at each temperature, permitting us to elucidate the temperature and phase-dependent production rates of individual molecules. A kinetic reaction scheme was developed to fit column densities of those species produced during irradiation of amorphous/crystalline ethane held at 10, 30, or 50 K. In general, the yield of the newly formed molecules dropped consistently for all species as the temperature was raised from 10 K to 50 K. Second, the yield in the amorphous samples was found to be systematically higher than in the crystalline samples at constant temperature. A closer look at the branching ratios indicates that ethane decomposes predominantly to ethylene and molecular hydrogen, which may compete with the formation of n-butane inside the ethane matrix. Among the higher molecular products, n-butane dominates. Of particular relevance to the atmosphere of Saturn's moon Titan is the radiation-induced methane production from ethane-an alternative source of replenishing methane into the

  17. Evaluation of Neutron Irradiated Silicon Carbide and Silicon Carbide Composites

    SciTech Connect (OSTI)

    Newsome G, Snead L, Hinoki T, Katoh Y, Peters D

    2007-03-26

    The effects of fast neutron irradiation on SiC and SiC composites have been studied. The materials used were chemical vapor deposition (CVD) SiC and SiC/SiC composites reinforced with either Hi-Nicalon{trademark} Type-S, Hi-Nicalon{trademark} or Sylramic{trademark} fibers fabricated by chemical vapor infiltration. Statistically significant numbers of flexural samples were irradiated up to 4.6 x 10{sup 25} n/m{sup 2} (E>0.1 MeV) at 300, 500 and 800 C in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Dimensions and weights of the flexural bars were measured before and after the neutron irradiation. Mechanical properties were evaluated by four point flexural testing. Volume increase was seen for all bend bars following neutron irradiation. Magnitude of swelling depended on irradiation temperature and material, while it was nearly independent of irradiation fluence over the fluence range studied. Flexural strength of CVD SiC increased following irradiation depending on irradiation temperature. Over the temperature range studied, no significant degradation in mechanical properties was seen for composites fabricated with Hi-Nicalon{trademark} Type-S, while composites reinforced with Hi-Nicalon{trademark} or Sylramic fibers showed significant degradation. The effects of irradiation on the Weibull failure statistics are also presented suggesting a reduction in the Weibull modulus upon irradiation. The cause of this potential reduction is not known.

  18. Post-irradiation-examination of irradiated fuel outside the hot cell

    SciTech Connect (OSTI)

    Dawn E. Janney; Adam B. Robinson; Thomas P. O'Holleran; R. Paul Lind; Marc Babcock; Laurence C. Brower; Julie Jacobs; Pamela K. Hoggan

    2007-09-01

    Because of their high radioactivity, irradiated fuels are commonly examined in a hot cell. However, the Idaho National Laboratory (INL) has recently investigated irradiated U-Mo-Al metallic fuel from the Reduced Enrichment for Research and Test Reactors (RERTR) project using a conventional unshielded scanning electron microscope outside a hot cell. This examination was possible because of a two-step sample-preparation approach in which a small volume of fuel was isolated in a hot cell and shielding was introduced during later stages of sample preparation. The resulting sample contained numerous sample-preparation artifacts but allowed analysis of microstructures from selected areas.

  19. Multi-scale Atmospheric Modeling of Green House Gas Dispersion in Complex Terrain. Atmospheric Methane at Four Corners

    SciTech Connect (OSTI)

    Costigan, Keeley Rochelle; Dubey, Manvendra Krishna

    2015-07-10

    Atmospheric models are compared in collaboration with LANL and the University of Michigan to understand emissions and the condition of the atmosphere from a model perspective.

  20. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...016-03-01T17:12:00+00:00 March 1st, 2016|News, News & Events, Water Power, Workshops|0 Comments Read More Wave energy distribution example Permalink Gallery Sandia releases 2nd ...

  1. Screening reactor steam/water piping systems for water hammer

    SciTech Connect (OSTI)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made.

  2. High-Heat-Flux Testing of Irradiated Tungsten-Based Materials for Fusion Applications Using Infrared Plasma Arc Lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36-× 36-× 18-cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.

  3. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design andmore » implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less

  4. Coal Fly Ash as a Source of Iron in Atmospheric Dust

    SciTech Connect (OSTI)

    Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A.; Scherer, Michelle; Grassian, Vicki H.

    2012-01-18

    Anthropogenic coal fly ash aerosols may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made to compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report an investigation of the iron dissolution of three fly ash samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust, a reference material of mineral dust. The effects of pH, cloud processing, and solar irradiation on Fe solubility were explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provide predominant dissolved iron compared with iron in oxides. Iron solubility of fly ash is higher than Arizona test dust, especially at the higher pH conditions investigated. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology aluminosilicate glass, a dominantly material in fly ash particle. Iron continuously releases into the aqueous solution as fly ash particles break up into smaller fragments. The assessment of dissolved atmospheric iron deposition fluxes, and their effect on the biogeochemistry at ocean surface should be constrained by taking into account the source, environment pH, Fe speciation, and solar radiation.

  5. Graphitization of polymer surfaces by scanning ion irradiation

    SciTech Connect (OSTI)

    Koval, Yuri [Department of Physics, Universitt Erlangen-Nrnberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2014-10-20

    Graphitization of polymer surfaces was performed by low-energy Ar{sup +} and He{sup +} ion irradiation. A method of scanning irradiation was implemented. It was found that by scanning ion irradiation, a significantly higher electrical conductivity in the graphitized layers can be achieved in comparison with a conventional broad-beam irradiation. The enhancement of the conductance becomes more pronounced for narrower and better collimated ion beams. In order to analyze these results in more detail, the temperature dependence of conductance of the irradiated samples was investigated. The results of measurements are discussed in terms of weak localization corrections to conductance in disordered metals. The observed effects can be explained by enlargement of graphitic patches, which was achieved with the scanning ion irradiation method.

  6. Characterization of extreme precipitation within atmospheric river events over California

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeon, S.; Prabhat,; Byna, S.; Gu, J.; Collins, W. D.; Wehner, M. F.

    2015-11-17

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  7. The effects of atmosphere and additives on coal slag viscosity

    SciTech Connect (OSTI)

    Hurley, J.P.; Strobel, T.M.; Nowok, J.W.

    1996-10-01

    With the advent of advanced coal-fired power systems operating at higher working fluid temperatures, slag corrosion, erosion, and fouling of heat exchanger surfaces will become even more of a problem than in today`s systems. Laboratory experiments have shown excessive corrosion of candidate alloy and ceramic heat exchanger materials by both calcium-rich subbituminous and iron-rich bituminous coal slags. The viscosity of the slag greatly affects the corrosion rate since it determines the rate of transfer of corrosive species to the materials and corrosion product away from the materials. Slag viscosity is controlled by the composition of the slag and surrounding atmosphere as well as its temperature. In this paper we report the results of investigations of the viscosities and critical temperatures of three coal slags in three atmospheres: air, air plus water vapor, and reducing gas. In addition, the effects of additions of alumina, magnesia, and copper oxide on viscosity, crystallization, and critical temperature of the slags are reported. Conclusions are drawn about appropriate test conditions for determining slag corrosion rates and about ways of modifying slag viscosity to reduce corrosion rates.

  8. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Irradiation Effects on Human Cortical Bone Fracture Behavior Print Wednesday, 28 July 2010 00:00 Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or

  9. Atmospheric Radiation Measurement Program facilities newsletter, May 2000.

    SciTech Connect (OSTI)

    Sisterson, D.L.

    2000-06-01

    This month the authors will visit an ARM CART site with a pleasant climate: the Tropical Western Pacific (TWP) CART site, along the equator in the western Pacific Ocean. The TWP locale lies between 10 degrees North latitude and 10 degrees South latitude and extends from Indonesia east-ward beyond the international date line. This area was selected because it is in and around the Pacific warm pool, the area of warm sea-surface temperatures that determine El Nino/La Nina episodes. The warm pool also adds heat and moisture to the atmosphere and thus fuels cloud formation. Understanding the way tropical clouds and water vapor affect the solar radiation budget is a focus of the ARM Program. The two current island-based CART sites in the TWP are in Manus Province in Papua New Guinea and on Nauru Island.

  10. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect (OSTI)

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  11. Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum

    SciTech Connect (OSTI)

    Sarantopoulou, E. Stefi, A.; Kollia, Z.; Palles, D.; Cefalas, A. C.; Petrou, P. S.; Bourkoula, A.; Koukouvinos, G.; Kakabakos, S.; Velentzas, A. D.

    2014-09-14

    Ultraviolet photons can damage microorganisms, which rarely survive prolonged irradiation. In addition to the need for intact DNA, cell viability is directly linked to the functionality of the cell wall and membrane. In this work, Cladosporium herbarum spore monolayers exhibit high viability (7%) when exposed to 157 nm laser irradiation (412 kJm⁻²) or vacuum-ultraviolet irradiation (110–180 nm) under standard pressure and temperature in a nitrogen atmosphere. Spore viability can be determined by atomic-force microscopy, nano-indentation, mass, μ-Raman and attenuated reflectance Fourier-transform far-infrared spectroscopies and DNA electrophoresis. Vacuum ultraviolet photons cause molecular damage to the cell wall, but radiation resistance in spores arises from the activation of a photon-triggered signaling reaction, expressed via the exudation of intracellular substances, which, in combination with the low penetration depth of vacuum-ultraviolet photons, shields DNA from radiation. Resistance to phototoxicity under standard conditions was assessed, as was resistance to additional environmental stresses, including exposure in a vacuum, under different rates of change of pressure during pumping time and low (10 K) temperatures. Vacuum conditions were far more destructive to spores than vacuum-ultraviolet irradiation, and UV-B photons were two orders of magnitude more damaging than vacuum-ultraviolet photons. The viability of irradiated spores was also enhanced at 10 K. This work, in addition to contributing to the photonic control of the viability of microorganisms exposed under extreme conditions, including decontamination of biological warfare agents, outlines the basis for identifying bio-signaling in vivo using physical methodologies.

  12. Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries

    SciTech Connect (OSTI)

    Y. Huang; B.R. Maier; T.R. Allen

    2014-10-01

    Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for hightemperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 ?C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carried out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 ?C up to doses of 3 dpa were performed on ZrCx (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.

  13. Working with SRNL - Our Facilities - Atmospheric Technologies Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Technologies Center Working with SRNL Our Facilities - Atmospheric Technologies Center The SRNL Atmospheric Technologies Center has extensive capabilities for world-wide meteorological forecasts and real-time atmospheric transport modeling and assessment. Meteorological monitoring through this facility includes the collection, archival, and application of SRS meteorological data, and the technology to predict the transport and consequence of accidental hazardous material release to

  14. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Specifically, at the nanoscale, irradiation leads to a marked increase in collagen cross-linking and molecular damage (assessed using Raman spectroscopy), resulting in a loss in ...

  15. Solar spectral irradiance changes during cycle 24 (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Title: Solar spectral irradiance changes during cycle 24 We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow ...

  16. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Cu 10 nm nanocrystalline sample being uni-axial compressed to strain of 20% and then stress released. Irradiation Extremes Thrust Traditional structural materials degrade and...

  17. CRYSTAL STRUCTURE OF OXIDES AND THEIR NEUTRON IRRADIATION BEHAVIOR...

    Office of Scientific and Technical Information (OSTI)

    CRYSTAL STRUCTURE OF OXIDES AND THEIR NEUTRON IRRADIATION BEHAVIOR AT 80 DEG C Citation ... Country of Publication: Country unknownCode not available Language: French Subject: ...

  18. PRODUCING SATELLITE-DERIVED IRRADIANCES IN COMPLEX ARID TERRAIN

    Open Energy Info (EERE)

    the corrected monthly maps (see Fig. 3). 4. DISCUSSION We have presented a robust, straightforward two-step approach to correct irradiance estimated from weather satellites'...

  19. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic...

  20. FY 2013 Summary Report: Post-Irradiation Examination of Zircaloy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of hydrogen-doped zircaloy cladding in High Flux Isotope Reactor (HFIR); 2) mechanical properties of first batch of cladding irradiated in HFIR; and, 3) initiation of ...

  1. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CINT), Physical Synthesis Lab: J. Kevin Baldwin LANL Technologist Ion Beam Materials Lab: Yongqiang Wang LANL Scientist Irradiation Thrust Electron Microscopy Lab: Rob...

  2. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic ...

  3. Controlled atmosphere for fabrication of cermet electrodes

    DOE Patents [OSTI]

    Ray, S.P.; Woods, R.W.

    1998-08-11

    A process is disclosed for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750 C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5--3000 ppm in order to obtain a desired composition in the resulting composite. 2 figs.

  4. Controlled atmosphere for fabrication of cermet electrodes

    DOE Patents [OSTI]

    Ray, Siba P.; Woods, Robert W.

    1998-01-01

    A process for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750.degree. C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5-3000 ppm in order to obtain a desired composition in the resulting composite.

  5. Enhancement of Zirconolite Dissolution Due to Water Radiolysis

    SciTech Connect (OSTI)

    Tribet, Magaly; Moncoffre, Nathalie

    2007-07-01

    Zirconolite is a candidate host material for conditioning minor tri- and tetra-valent actinides arising from enhanced nuclear spent fuel reprocessing and partitioning, in the case of disposal of the nuclear waste. Its chemical durability has been studied here under charged particle-induced radiolysis (He{sup 2+} and proton external beams) to identify the possible effects of water radiolysis on the dissolution rates in pure water and to describe the alteration mechanisms. Two experimental geometries have been used in order to evaluate the influence of the following parameters: solid irradiation, water radiolysis. In the first geometry the beam gets through the sample before stopping at the surface/water interface. In the second one the beam stops before the surface/water interface. Results on the elemental releases due to the enhanced dissolution of the zirconolite surface during charged particle-induced irradiation of water are presented. Under radiolysis, an increase of one order of magnitude is observed in the Ti, Zr and Nd elemental releases. No difference in the total elemental releases can be noticed when the solid is also irradiated. (authors)

  6. Method using laser irradiation for the production of atomically clean crystalline silicon and germanium surfaces

    DOE Patents [OSTI]

    Ownby, Gary W.; White, Clark W.; Zehner, David M.

    1981-01-01

    This invention relates to a new method for removing surface impurities from crystalline silicon or germanium articles, such as off-the-shelf p- or n-type wafers to be doped for use as junction devices. The principal contaminants on such wafers are oxygen and carbon. The new method comprises laser-irradiating the contaminated surface in a non-reactive atmosphere, using one or more of Q-switched laser pulses whose parameters are selected to effect melting of the surface without substantial vaporization thereof. In a typical application, a plurality of pulses is used to convert a surface region of an off-the-shelf silicon wafer to an automatically clean region. This can be accomplished in a system at a pressure below 10.sup.-8 Torr, using Q-switched ruby-laser pulses having an energy density in the range of from about 60 to 190 MW/cm.sup.2.

  7. Method using laser irradiation for the production of atomically clean crystalline silicon and germanium surfaces

    DOE Patents [OSTI]

    Ownby, G.W.; White, C.W.; Zehner, D.M.

    1979-12-28

    This invention relates to a new method for removing surface impurities from crystalline silicon or germanium articles, such as off-the-shelf p- or n-type wafers to be doped for use as junction devices. The principal contaminants on such wafers are oxygen and carbon. The new method comprises laser-irradiating the contaminated surface in a non-reactive atmosphere, using one or more of Q-switched laser pulses whose parameters are selected to effect melting of the surface without substantial vaporization thereof. In a typical application, a plurality of pulses is used to convert a surface region of an off-the-shelf silicon wafer to an atomically clean region. This can be accomplished in a system at a pressure below 10-/sup 8/ Torr, using Q-switched ruber-laser pulses having an energy density in the range of from about 60 to 190 MW/cm/sup 2/.

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........9 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Static Water Level Data ...

  9. High temperature annealing of ion irradiated tungsten

    SciTech Connect (OSTI)

    Ferroni, Francesco; Yi, Xiaoou; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source and were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.

  10. Hafnium radioisotope recovery from irradiated tantalum

    DOE Patents [OSTI]

    Taylor, Wayne A.; Jamriska, David J.

    2001-01-01

    Hafnium is recovered from irradiated tantalum by: (a) contacting the irradiated tantalum with at least one acid to obtain a solution of dissolved tantalum; (b) combining an aqueous solution of a calcium compound with the solution of dissolved tantalum to obtain a third combined solution; (c) precipitating hafnium, lanthanide, and insoluble calcium complexes from the third combined solution to obtain a first precipitate; (d) contacting the first precipitate of hafnium, lanthanide and calcium complexes with at least one fluoride ion complexing agent to form a fourth solution; (e) selectively adsorbing lanthanides and calcium from the fourth solution by cationic exchange; (f) separating fluoride ion complexing agent product from hafnium in the fourth solution by adding an aqueous solution of ferric chloride to obtain a second precipitate containing the hafnium and iron; (g) dissolving the second precipitate containing the hafnium and iron in acid to obtain an acid solution of hafnium and iron; (h) selectively adsorbing the iron from the acid solution of hafnium and iron by anionic exchange; (i) drying the ion exchanged hafnium solution to obtain hafnium isotopes. Additionally, if needed to remove residue remaining after the product is dried, dissolution in acid followed by cation exchange, then anion exchange, is performed.

  11. Optimisation of buildings' solar irradiation availability

    SciTech Connect (OSTI)

    Kaempf, Jerome Henri; Montavon, Marylene; Bunyesc, Josep; Robinson, Darren; Bolliger, Raffaele

    2010-04-15

    In order to improve the sustainability of new and existing urban settlements it is desirable to maximise the utilisation of the solar energy incident on the building envelope, whether by passive or active means. To this end we have coupled a multi-objective optimisation algorithm with the backwards ray tracing program RADIANCE which itself uses a cumulative sky model for the computation of incident irradiation (W h/m{sup 2}) in a single simulation. The parameters to optimise are geometric (the height of buildings up to their facade and the height and orientation of roofs), but with the constraint of maintaining an overall built volume, and the objective function is heating season solar irradiation offset by envelope heat losses. This methodology has been applied to a range of urban typologies and produces readily interpretable results. The focus of this work is on the design of new urban forms but the method could equally be applied to examine the relative efficiency of existing urban settlements, by comparison of existing forms with the calculated optima derived from relevant specifications of the building envelope. (author)

  12. High temperature annealing of ion irradiated tungsten

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ferroni, Francesco; Yi, Xiaoou; Arakawa, Kazuto; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source andmore » were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.« less

  13. Lead test assembly irradiation and analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    1997-07-01

    The U.S. Department of Energy (DOE) needs to confirm the viability of using a commercial light water reactor (CLWR) as a potential source for maintaining the nation`s supply of tritium. The Proposed Action discussed in this environmental assessment is a limited scale confirmatory test that would provide DOE with information needed to assess that option. This document contains the environmental assessment results for the Lead test assembly irradiation and analysis for the Watts Bar Nuclear Plant, Tennessee, and the Hanford Site in Richland, Washington.

  14. Atmosphere to Electrons Program Overview Presentation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Atmosphere to Electrons Program Overview Presentation Atmosphere to Electrons Program Overview Presentation Atmosphere to Electrons (A2e) is a new, multi-year, multi-stakeholder DOE research and development initiative tasked with improving wind plant performance and mitigating risk and uncertainty to achieve substantial reductions in the cost of wind energy. Atmosphere to Electrons Overview.pdf (762.31 KB) More Documents & Publications External Merit Review for the Atmosphere to

  15. WATER CONSERVATION PLAN

    National Nuclear Security Administration (NNSA)

    ... Average water consumers can save thousands of gallons of water per year by being aware of ... program on the water distribution systems to include water saving replacement parts. ...

  16. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    SciTech Connect (OSTI)

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    2015-06-21

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.

  17. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    2015-06-21

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinationsmore » that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.« less

  18. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    SciTech Connect (OSTI)

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    2015-06-21

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 0.06 g/cm3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.

  19. ARM - Measurement - Ice water path

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    path ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ice water path A measure of the weight of the ice particles in the atmosphere above a unit surface area in kg m-2. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements,

  20. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  1. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  2. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo; Rodriguez, Sebastien; Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe; Clark, Roger; Nicholson, Phil; Jaumann, Ralf

    2009-09-10

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  3. Connectivity To Atmospheric Release Advisory Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-02-26

    To establish DOE and NNSA connectivity to Atmospheric Release Advisory Capability (ARAC) for sites and facilities that have the potential for releasing hazardous materials sufficient to generate certain emergency declarations and to promote efficient use of resources for consequence assessment activities at DOE sites, facilities, operations, and activities in planning for and responding to emergency events. No cancellations.

  4. Application of lidar to current atmospheric topics

    SciTech Connect (OSTI)

    Sedlacek, A.J. III

    1996-12-31

    The goal of the conference was to address the various applications of lidar to topics of interest in the atmospheric community. Specifically, with the development of frequency-agile, all solid state laser systems, high-quantum-efficiency detectors, increased computational power along with new and more powerful algorithms, and novel detection schemes, the application of lidar to both old and new problems has expanded. This expansion is evidenced by the contributions to the proceedings, which demonstrate the progress made on a variety of atmospheric remote sensing problems, both theoretically and experimentally. The first session focused on aerosol, ozone, and temperature profile measurements from ground-based units. The second session, Chemical Detection, provided applications of lidar to the detection of atmospheric pollutants. Papers in the third session, Wind and Turbulence Measurements, described the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiments, Doppler techniques for ground-based wind profiling and mesopause radial wind and temperature measurements utilizing a frequency-agile lidar system. The papers in the last two sessions, Recent Advanced in Lidar Technology and Techniques and Advanced Operational Lidars, provided insights into novel approaches, materials, and techniques that would be of value to the lidar community. Papers have been processed separately for inclusion on the data base.

  5. Final Report on MEGAPIE Target Irradiation and Post-Irradiation Examination

    SciTech Connect (OSTI)

    Yong, Dai

    2015-06-30

    Megawatt pilot experiment (MEGAPIE) was successfully performed in 2006. One of the important goals of MEGAPIE is to understand the behaviour of structural materials of the target components exposed to high fluxes of high-energy protons and spallation neutrons in flowing LBE (liquid lead-bismuth eutectic) environment by conducting post-irradiation examination (PIE). The PIE includes four major parts: non-destructive test, radiochemical analysis of production and distribution of radionuclides produced by spallation reaction in LBE, analysis of LBE corrosion effects on structural materials, T91 and SS 316L steels, and mechanical testing of the T91 and SS 316L steels irradiated in the lower part of the target. The non-destructive test (NDT) including visual inspection and ultrasonic measurement was performed in the proton beam window area of the T91 calotte of the LBE container, the most intensively irradiated part of the MEGAPIE target. The visual inspection showed no visible failure and the ultrasonic measurement demonstrated no detectable change in thickness in the beam window area. Gamma mapping was also performed in the proton beam window area of the AlMg3 safety-container. The gamma mapping results were used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. Radiochemical analysis of radionuclides produced by spallation reaction in LBE is to improve the understanding of the production and distribution of radionuclides in the target. The results demonstrate that the radionuclides of noble metals, 207Bi, 194Hg/Au are rather homogeneously distributed within the target, while radionuclides of electropositive elements are found to be deposited on the steel-LBE interface. The corrosion effect of LBE on the structural components under intensive irradiation was investigated by metallography. The results show that no evident corrosion damages. However, unexpected deep

  6. Role of ambient dielectric in propagation of Ar atmospheric pressure nonequilibrium plasma jets

    SciTech Connect (OSTI)

    Song, Jian; Wang, Youyin; Yu, Daren; Tang, Jingfeng Wei, Liqiu; Ren, Chunsheng

    2015-05-15

    A single-electrode atmospheric pressure nonequilibrium plasma jet surrounded with different ambient dielectrics is investigated driven by AC power supply. Another three ambient dielectrics, distilled water, ethanol, and carbon tetrachloride, are adopted to compare with air. By examining electrical and optical characteristics, it was found that the molecular polarity of ambient dielectrics had its significant effect on the propagation of atmospheric pressure nonequilibrium plasma jets. When the polarization of molecules was enhanced, the discharge current and the bullet velocity were also increased. For nonpolar dielectric of carbon tetrachloride, this was mainly resulted from the electron polarization in the built-in electric field. For polar dielectrics of ethanol and distilled water, in addition to the electron polarization, orientation polarization was the main cause for the further increase in discharge current and bullet velocity.

  7. Dynamical and thermodynamical modulations of future changes in landfalling atmospheric rivers over North America

    SciTech Connect (OSTI)

    Gao, Yang; Lu, Jian; Leung, Lai-Yung R.; Yang, Qing; Hagos, Samson M.; Qian, Yun

    2015-09-12

    This study examines the changes of landfalling atmospheric rivers (ARs) over the west coast of North America in response to future warming using model outputs from the Coupled Model Intercomparison Project phase 5 (CMIP5). The result reveals a strikingly large magnitude of increase of AR days by the end of the 21st century in the RCP8.5 climate change scenario, with fractional increases ranging between ~50% and 600%, depending on the seasons and the landfall locations. These increases are predominantly controlled by the super-Clausius-Clapeyron rate of increase of atmospheric water vapor with warming, while changes of winds that transport moisture in the ARs, or dynamical effect, mostly counter the thermodynamical effect of increasing water vapor, limiting the increase of AR events in the future. The consistent negative effect of wind changes on AR days during spring and fall can be further linked to the robust poleward shift of the subtropical jet in the North Pacific basin.

  8. Atmospheric Science Program (ASP) Data Archive

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Department of Energy's Atmospheric Science Program (ASP) originally consisted of an atmospheric chemistry program, an environmental meteorology program, a tropospheric aerosol program, and NARSTO activities. In 2004, the ASP was reconfigured to focus on aerosol radiative forcing of climate change: aerosol formation and evolution and aerosol properties that affect direct and indirect influences on climate and climate change. This included developing a comprehensive understanding of the atmospheric processes that control the transport, transformation, and fate of energy related trace chemicals and particulate matter. The current focus of the program is aerosol radiative forcing of climate. Effective October 1, 2009, The ASP merged with the Atmospheric Radiation Measurement Program (ARM), with the overall program now called Atmospheric System Research. The overall research goal is one that was shared in common, i.e. to further the understanding of how the climate, as a system works, and to represent the understanding in computer models. The Office of Science and Brookhaven announced, ôA major benefit of the merge is expected to be a strengthening of the aerosol- and cloud-related research components of the programs by bringing together the ARM capabilities of continuous remote sensing measurements of cloud properties and aerosol influences on radiation with the ASP capabilities for in-situ characterization of aerosol properties, evolution, and cloud interactions.ö [http://www.asp.bnl.gov/#New] The ASP data archive has now been moved to a new location in order to be maintained with ARM data. The new url is http://iop.archive.arm.gov/arm-iop/0special-data/ASP_Campaigns_past/. BNL continues to maintain an excellent list of ASP-publications at http://www.asp.bnl.gov/asp_pubs.html

  9. Final Report for ARM Project Measuring 4-D Water Vapor Fields with GPS

    SciTech Connect (OSTI)

    Braun, John

    2006-02-06

    Water vapor is a primary element in the Earth’s climate system. Atmospheric water vapor is central to cloud processes, radiation transfer, and the hydrological cycle. Using funding from Department of Energy (DOE) grant DE-FG03-02ER63327, the University Corporation for Atmospheric Research (UCAR) developed new observational techniques to measure atmospheric water vapor and applied these techniques to measure four dimensional water vapor fields throughout the United States Southern Great Plains region. This report summarizes the development of a new observation from ground based Global Positioning System (GPS) stations called Slant Water Vapor (SW) and it’s utilization in retrieving four dimensional water vapor fields. The SW observation represents the integrated amount of water vapor between a GPS station and a transmitting satellite. SW observations provide improved temporal and spatial sampling of the atmosphere when compared to column-integrated quantities such as preciptitable water vapor (PW). Under funding from the DOE Atmospheric Radiation Measurement (ARM) program, GPS networks in the Southern Great Plains (SGP) region were deployed to retrieve SW to improve the characterization of water vapor throughout the region. These observations were used to estimate four dimensional water vapor fields using tomographic approaches and through assimilation into the MM5 numerical weather model.

  10. Comparison of Cirrus Cloud Radiative Properties and Dynamical Processes at Two Atmospheric Radiation Measurement (ARM) Si...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cirrus Cloud Radiative Properties and Dynamical Processes at Two Atmospheric Radiation Measurement Sites in the Tropical Western Pacific J. M. Comstock, J. H. Mather, and T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington Introduction Upper tropospheric humidity plays an important role in the formation and maintenance of tropical cirrus clouds. Deep convection is crucial for the transport of water vapor from the boundary layer to the upper troposphere and is

  11. Fowler-Nordheim characteristics of electron irradiated MOS capacitors

    SciTech Connect (OSTI)

    Candelori, A.; Paccagnella, A.; Cammarata, M.; Ghidini, G.; Fuochi, P.G.

    1998-12-01

    MOS capacitors with 8 nm thick oxides have been irradiated by an 8 MeV LINAC electron beam. C-V and I-V measurements have shown a positive trapped charge, higher for irradiation performed under negative gate bias, as a consequence of preferential charge recombination at the cathodic interface. No saturation of the positive trapped charge is measured up to 20 Mrad(Si). Neutral defects induced by irradiation have been studied, by performing positive and negative Fowler-Nordheim injection. The distribution of neutral defects is similar to that of trapped holes, indicating a correlation between trapped holes and neutral defects. Electrical stresses performed after irradiation have shown that the accumulation kinetics of oxide defects is similar in both unirradiated and irradiated devices.

  12. Surface modification of multilayer graphene using Ga ion irradiation

    SciTech Connect (OSTI)

    Wang, Quan; Shao, Ying; Ge, Daohan; Ren, Naifei; Yang, Qizhi

    2015-04-28

    The effect of Ga ion irradiation intensity on the surface of multilayer graphene was examined. Using Raman spectroscopy, we determined that the irradiation caused defects in the crystal structure of graphene. The density of defects increased with the increase in dwell times. Furthermore, the strain induced by the irradiation changed the crystallite size and the distance between defects. These defects had the effect of doping the multilayer graphene and increasing its work function. The increase in work function was determined using contact potential difference measurements. The surface morphology of the multilayer graphene changed following irradiation as determined by atomic force microscopy. Additionally, the adhesion between the atomic force microscopy tip and sample increased further indicating that the irradiation had caused surface modification, important for devices that incorporate graphene.

  13. Identifying irradiated flours by photo-stimulated luminescence technique

    SciTech Connect (OSTI)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-02-12

    Photo-stimulated luminescence (PSL) technique was used in this study to detect gamma irradiation treatment of five types of flours (corn, rice, tapioca, wheat and glutinous rice) at four different doses 0, 0.2, .05 and 1kGy. The signal level was compared with two threshold values (700 and 5000). With the exception of glutinous rice, all irradiated samples produced a strong signal above the upper threshold (5000 counts/60s). All control samples produced negative result with the signals below the lower threshold (700 counts/60s) suggesting that the samples have not been irradiated. Irradiated glutinous rice samples produced intermediate signals (700 - 5000 counts/60s) which were subsequently confirmed using calibrated PSL. The PSL signals remained stable after 90 days of storage. The findings of this study will be useful to facilitate control of food irradiation application in Malaysia.

  14. Recovery of niobium from irradiated targets

    DOE Patents [OSTI]

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1994-01-01

    A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.

  15. Breakdown properties of irradiated MOS capacitors

    SciTech Connect (OSTI)

    Paccagnella, A.; Candelori, A.; Milani, A.; Formigoni, E.; Ghidini, G.; Drera, D.; Pellizzer, F.; Fuochi, P.G.; Lavale, M.

    1996-12-01

    The authors have studied the effects of ionizing and non-ionizing radiation on the breakdown properties of different types of MOS capacitors, with thick (200 nm) and thin (down to 8 nm) oxides. In general, no large variations of the average breakdown field, time-to-breakdown at constant voltage, or charge-to-breakdown at constant voltage, or charge-to-breakdown values have been observed after high dose irradiation (20 Mrad(Si) 9 MeV electrons on thin and thick oxides, 17(Si) Mrad Co{sup 60} gamma and 10{sup 14} neutrons/cm{sup 2} only on thick oxides). However, some modifications of the cumulative failure distributions have been observed in few of the oxides tested.

  16. Instrumentation to Enhance Advanced Test Reactor Irradiations

    SciTech Connect (OSTI)

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  17. The role of moisture transport between ground and atmosphere in global change

    SciTech Connect (OSTI)

    Rind, D.; Rosenzweig, C.; Stieglitz, M.

    1997-12-31

    Projections of the effect of climate change on future water availability are examined by reviewing the formulations used to calculate moisture transport between the ground and the atmosphere. General circulation models and climate change impact models have substantially different formulations for evapotranspiration, so their projections of future water availability often disagree, even though they use the same temperature and precipitation forecasts. General circulation models forecast little change in tropical and subtropical water availability, while impact models show severe water and agricultural shortages. A comparison of observations and modeling techniques shows that the parameterizations in general circulation models likely lead to an underestimate of the impacts of global warming on soil moisture and vegetation. Such errors would crucially affect the temperature and precipitation forecasts used in impact models. Some impact model evaporation formulations are probably more appropriate than those in general circulation models, but important questions remain. More observations are needed, especially in the vicinity of forests, to determine appropriate parameterizations.

  18. Search for: "atmospheric radiation measurement" | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    ... heating in the latter deep convective cases was much ... systems require further engineering to become operational in ... of surface air temperaturemore and water vapor pressure. ...

  19. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Salmon, Mississippi, Site, Water Sampling Location Map .........5 Water Sampling Field Activities Verification ...

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Equipment Blank Data ...

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........1 Water Sampling Locations at the Rulison, .........3 Water Sampling Field Activities Verification ...

  2. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    SciTech Connect (OSTI)

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 C twice at the ion fluence of 510? m? to reach a total ion fluence of 110? m? in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Final thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 m depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 m depth for 0.025 dpa and 35 m depth for 0.025 dpa) at 500 C case even in the relatively low ion fluence of 10? m?.

  3. Surface effects and phase stability in metal oxides nanoparticles under visible irradiation

    SciTech Connect (OSTI)

    Ricci, Pier Carlo Carbonaro, C. M. Corpino, R. Chiriu, D. Stagi, L.

    2014-10-21

    The light induced phase transformation between stable phases of metal oxides nanoparticles is analyzed. The surrounding atmosphere as well as the defect density at the surface play a fundamental role. It has been found that in oxygen poor chamber atmosphere the phase transformation is favored, while the phase transition cannot be achieved if the defects at the surface are properly passivated. The phase transition is activated by intragap irradiation, able to activate the F- center at the surface connected to oxygen vacancies, and promoting the activation of the surface and the nucleation of neighboring crystallites. The phase transition was studied in Titanium oxide (TiO{sub 2}) and in Iron oxide (Fe{sub 2}O{sub 3}): Maghemite is subjected to a phase transformation to α−Fe{sub 2}O{sub 3} (hematite), Anatase nanoparticles converts to Rutile. The general mechanism of the phase transition and, more in general, the possibility to optically control the surface activity of metal oxides is discussed.

  4. Evaluation of global horizontal irradiance to plane-of-array irradiance models at locations across the United States

    SciTech Connect (OSTI)

    Lave, Matthew; Hayes, William; Pohl, Andrew; Hansen, Clifford W.

    2015-02-02

    We report an evaluation of the accuracy of combinations of models that estimate plane-of-array (POA) irradiance from measured global horizontal irradiance (GHI). This estimation involves two steps: 1) decomposition of GHI into direct and diffuse horizontal components and 2) transposition of direct and diffuse horizontal irradiance (DHI) to POA irradiance. Measured GHI and coincident measured POA irradiance from a variety of climates within the United States were used to evaluate combinations of decomposition and transposition models. A few locations also had DHI measurements, allowing for decoupled analysis of either the decomposition or the transposition models alone. Results suggest that decomposition models had mean bias differences (modeled versus measured) that vary with climate. Transposition model mean bias differences depended more on the model than the location. Lastly, when only GHI measurements were available and combinations of decomposition and transposition models were considered, the smallest mean bias differences were typically found for combinations which included the Hay/Davies transposition model.

  5. Progress Report on Disassembly and Post-Irradiation Experiments for UCSB ATR-2 Experiment

    SciTech Connect (OSTI)

    Nanstad, Randy K; Odette, G. R.; Robertson, Janet Pawel; Yamamoto, T

    2015-09-01

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely degraded, with the degree of toughness loss dependent on the radiation sensitivity of the materials. As stated in previous progress reports, the available embrittlement predictive models, e.g. [1], and our present understanding of radiation damage are not fully quantitative, and do not treat all potentially significant variables and issues, particularly considering extension of operation to 80y.

  6. Diagnostics from a 1-D atmospheric column

    SciTech Connect (OSTI)

    Flatley, J.M.; Mace, G.

    1996-04-01

    Various diagnostics were computed from an array of radiosondes during an intensive field operation arranged by the Atmospheric Radiation Measurement Program. The network data was centered around the site at Lamont, Oklahoma. The apparent heat source and apparent moisture sink were computed and compared to the kinematic vertical velocity for both real data and the mesoscale analysis and prediction system. Three different case studies of various weathe regimes were examined.

  7. Pulsed atmospheric fluidized bed combustor apparatus

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  8. Atmospheric Radiation Measurement Convective and Orographically Induced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Convective and Orographically Induced Precipitation Study The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM Mobile Facility (AMF) to support a long-term precipitation study in the Black Forest region of Germany. Requested by researchers from the University of Hohenheim, the AMF will be deployed as one of four heav- ily instrumented supersites established for the Convective and Orographically Induced Precipita- tion Study

  9. Water vapor distribution in protoplanetary disks

    SciTech Connect (OSTI)

    Du, Fujun; Bergin, Edwin A.

    2014-09-01

    Water vapor has been detected in protoplanetary disks. In this work, we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyα photons, since the Lyα line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more extended distribution of warm water vapor, while dust growth and settling tends to reduce the amount of warm water vapor. Based on typical assumptions regarding the elemental oxygen abundance and the water chemistry, the column density of warm water vapor can be as high as 10{sup 22} cm{sup –2}. A small amount of hot water vapor with temperature higher than ∼300 K exists in a more extended region in the upper atmosphere of the disk. Cold water vapor with temperature lower than 100 K is distributed over the entire disk, produced by photodesorption of the water ice.

  10. Predicted irradiation behavior of U sub 3 O sub 8 -Al dispersion fuels for production reactor applications

    SciTech Connect (OSTI)

    Cronenberg, A.W. ); Rest, J. ); Hyder, M.L.; Morin, J.P.; Peacock, H.B. )

    1990-01-01

    Candidate fuels for the new heavy-water production reactor include uranium/aluminum alloy and U{sub 3}O{sub 8}--Al dispersion fuels. The U{sub 3}O{sub 8}--Al dispersion fuel would make possible higher uranium loadings and would facilitate uranium recycle. Research efforts on U{sub 3}O{sub 8}--Al fuel include in-pile irradiation studies and development of analytical tools to characterize the behavior of dispersion fuels at high-burnup. In this paper the irradiation performance of U{sub 3}O{sub 8}--Al is assessed using the mechanistic Dispersion Analysis Research Tool (DART) code. Predictions of fuel swelling and alteration of thermal conductivity are presented and compared with experimental data. Calculational results indicate good agreement with available data where the effects of as-fabricated porosity and U{sub 3}O{sub 8}--Al oxygen exchange reactions are shown to exert a controlling influence on irradiation behavior. The DART code is judged to be a useful tool for assessing U{sub 3}O{sub 8}--Al performance over a wide range of irradiation conditions. 8 refs., 8 figs., 1 tab.

  11. Large area atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S.; Henins, Ivars; Babayan, Steve E.; Hicks, Robert F.

    2001-01-01

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  12. Atmospheric and combustion chemistry of dimethyl ether

    SciTech Connect (OSTI)

    Nielsen, O.J.; Egsgaard, H.; Larsen, E.; Sehested, J.; Wallington, T.J.

    1997-12-31

    It has been demonstrated that dimethyl ether (DME) is an ideal diesel fuel alternative. DME, CH{sub 3}OCH{sub 3}, combines good fuel properties with low exhaust emissions and low combustion noise. Large scale production of this fuel can take place using a single step catalytic process converting CH{sub 4} to DME. The fate of DME in the atmosphere has previously been studied. The atmospheric degradation is initiated by the reaction with hydroxyl radicals, which is also a common feature of combustion processes. Spectrokinetic investigations and product analysis were used to demonstrate that the intermediate oxy radical, CH{sub 3}OCH{sub 2}O, exhibits a novel reaction pathway of hydrogen atom ejection. The application of tandem mass spectrometry to chemi-ions based on supersonic molecular beam sampling has recently been demonstrated. The highly reactive ionic intermediates are sampled directly from the flame and identified by collision activation mass spectrometry and ion-molecule reactions. The mass spectrum reflects the distribution of the intermediates in the flame. The atmospheric degradation of DME as well as the unique fuel properties of a oxygen containing compound will be discussed.

  13. Irradiation-assisted stress corrosion cracking of austenitic stainless steels: Recent progress and new approaches

    SciTech Connect (OSTI)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Hins, A.; Zaluzec, N.J.; Kassner, T.F.

    1996-09-01

    Irradiation-assisted stress corrosion cracking (IASCC) of several types of BWR field components fabricated from solution-annealed austenitic stainless steels (SSs), including a core internal weld, were investigated by means of slow-strain-rate test (SSRT), scanning electron microscopy (SEM), Auger electron spectroscopy (AES), and field-emission-gun advanced analytical electron microscopy (FEG-AAEM). Based on the results of the tests and analyses, separate effects of neutron fluence, tensile properties, alloying elements and major impurities identified in the American Society for Testing and Materials (ASTM) specifications, minor impurities, water chemistry, and fabrication-related variables were determined. The results indicate strongly that minor impurities not specified by the ASTM-specifications play important roles, probably through a complex synergism with grain-boundary Cr depletion. These impurities, typically associated with steelmaking and component fabrication processes, are very low or negligible in solubility in steels and are the same impurities that have been known to promote intergranular SCC significantly when they are present in water as ions or soluble compounds. It seems obvious that IASCC is a complex integral problem which involves many variables that are influenced strongly by not only irradiation conditions, water chemistry, and stress but also iron and steelmaking processes, fabrication of the component, and joining and welding. Therefore, for high-stress components in particular, it would be difficult to mitigate IASCC problems at high fluence based on the consideration of water chemistry alone, and other considerations based on material composition and fabrication procedure would be necessary as well.

  14. Atmospheric Radiation Measurement Program Science Plan

    SciTech Connect (OSTI)

    Ackerman, T

    2004-10-31

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at

  15. Radon Measurements of Atmospheric Mixing (RAMIX) 2006-2014 Final...

    Office of Scientific and Technical Information (OSTI)

    troposphere leads to large uncertainty in "top-down" estimates of regional land-atmosphere carbon exchange (i.e., estimates based on measurements of atmospheric CO2 mixing ratios. ...

  16. National Atmospheric Release Advisory Center | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) National Atmospheric Release Advisory Center NARAC Logo NNSA's Atmospheric Release Advisory Capability's (ARAC) role in an emergency begins when hazardous material is released into the atmosphere by a radiological dispersal device, improvised nuclear weapon, or nuclear radiological accident. ARAC is hosted in a facility called the National Atmospheric Release Advisory Center (NARAC), operated by Lawrence Livermore National Laboratory. The NARAC's centralized,

  17. DOE - NNSA/NFO -- Photo Library Atmospheric Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Photo Library - Atmospheric Testing A total of 100 atmospheric tests were conducted at the Nevada Test Site. These tests were conducted to provide information on weapons effects, effects of the height of burst on overpressure, and information on nuclear phenomena to improve the design of nuclear weapons. Atmospheric testing ceased for good in 1963, after which nuclear testing moved underground. Instructions: Click the

  18. SOAR Data: Data from Shipboard Oceanographic and Atmospheric...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Availability: Special Interface Available Language: ... interrelations; NOAA's Scientific Computer System (SCS); ARM; Atmospheric Radiation ...

  19. Overview of the United States Department of Energy's ARM (Atmospheric

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement) Program (Conference) | SciTech Connect Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program Citation Details In-Document Search Title: Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program The Department of Energy (DOE) is initiating a major atmospheric research effort, the Atmospheric Radiation Measurement Program (ARM). The program is a key component of DOE's research

  20. Concurrent in situ ion irradiation transmission electron microscope

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hattar, K.; Bufford, D. C.; Buller, D. L.

    2014-08-29

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  1. Ion irradiation tolerance of graphene as studied by atomistic simulations

    SciTech Connect (OSTI)

    Ahlgren, E. H.; Lehtinen, O.; Kotakoski, J.; Krasheninnikov, A. V.

    2012-06-04

    As impermeable to gas molecules and at the same time transparent to high-energy ions, graphene has been suggested as a window material for separating a high-vacuum ion beam system from targets kept at ambient conditions. However, accumulation of irradiation-induced damage in the graphene membrane may give rise to its mechanical failure. Using atomistic simulations, we demonstrate that irradiated graphene even with a high vacancy concentration does not show signs of such instability, indicating a considerable robustness of graphene windows. We further show that upper and lower estimates for the irradiation damage in graphene can be set using a simple model.

  2. Indoor and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance Measurement

    SciTech Connect (OSTI)

    Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, R.; Kobashi, T.; Akiyama, A.; Takagi, S.

    2014-05-01

    This report details the global spectral irradiance intercomparison using spectroradiometers that was organized by the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. The intercomparison was performed both indoors and outdoors on September 17, 2013. Five laboratories participated in the intercomparison using 10 spectroradiometers, and a coordinated measurement setup and a common platform were employed to compare spectral irradiances under both indoor and outdoor conditions. The intercomparison aimed to understand the performance of the different spectroradiometers and to share knowledge in making spectral irradiance measurements. This intercomparison was the first of its kind in the United States.

  3. Early Damage Mechanisms in Nuclear Grade Graphite under Irradiation

    SciTech Connect (OSTI)

    Eapen, Dr. Jacob [North Carolina State University] [North Carolina State University; Krishna, Dr Ram [North Carolina State University] [North Carolina State University; Burchell, Timothy D [ORNL] [ORNL; Murty, Prof K.L. [North Carolina State University] [North Carolina State University

    2014-01-01

    Using Raman and X-ray photoelectron spectroscopy,we delineate the bond and defect structures in nuclear block graphite (NBG-18) under neutron and ion irradiation. The strengthening of the defect (D) peak in the Raman spectra under irradiation is attributed to an increase in the topological, sp2-hybridized defects. Using transmission electron microscopy, we provide evidence for prismatic dislocations as well as a number of basal dislocations dissociating into Shockley partials. The non-vanishing D peak in the Raman spectra, together with a generous number of dislocations, even at low irradiation doses, indicates a dislocation-mediated amorphization process in graphite.

  4. Measurement of thermal conductivity in proton irradiated silicon

    SciTech Connect (OSTI)

    Marat Khafizov; Clarissa Yablinsky; Todd Allen; David Hurley

    2014-04-01

    We investigate the influence of proton irradiation on thermal conductivity in single crystal silicon. We apply laser based modulated thermoreflectance technique to extract the change in conductivity of the thin layer damaged by proton irradiation. Unlike time domain thermoreflectance techniques that require application of a metal film, we perform our measurement on uncoated samples. This provides greater sensitivity to the change in conductivity of the thin damaged layer. Using sample temperature as a parameter provides a means to deduce the primary defect structures that limit thermal transport. We find that under high temperature irradiation the degradation of thermal conductivity is caused primarily by extended defects.

  5. AGC-2 Irradiation Data Qualification Final Report

    SciTech Connect (OSTI)

    Laurence C. Hull

    2012-07-01

    The Graphite Technology Development Program will run a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The second Advanced Graphite Creep (AGC) experiment (AGC-2) began with Advanced Test Reactor (ATR) Cycle 149A on April 12, 2011, and ended with ATR Cycle 151B on May 5, 2012. The purpose of this report is to qualify AGC-2 irradiation monitoring data following INL Management and Control Procedure 2691, Data Qualification. Data that are Qualified meet the requirements for data collection and use as described in the experiment planning and quality assurance documents. Data that do not meet the requirements are Failed. Some data may not quite meet the requirements, but may still provide some useable information. These data are labeled as Trend. No Trend data were identified for the AGC-2 experiment. All thermocouples functioned throughout the AGC-2 experiment. There was one instance where spurious signals or instrument power interruption resulted in a recorded temperature value being well outside physical reality. This value was identified and labeled as Failed data. All other temperature data are Qualified. All helium and argon gas flow data are within expected ranges. Total gas flow was approximately 50 sccm through the capsule. Helium gas flow was briefly increased to 100 sccm during reactor shutdown. All gas flow data are Qualified. At the start of the experiment, moisture in the outflow gas line increased to 200 ppmv then declined to less than 10 ppmv over a period of 5 days. This increase in moisture coincides with the initial heating of the experiment and drying of the system. Moisture slightly exceeded 10 ppmv three other times during the experiment. While these moisture values exceed the 10 ppmv threshold value, the reported measurements are considered accurate and to reflect moisture conditions in the capsule. All moisture data are Qualified. Graphite creep specimens are subjected to one of three loads, 393 lbf

  6. Atmosphere purification of radon and radon daughter elements

    DOE Patents [OSTI]

    Stein, L.

    1973-12-11

    A method for purifying an atmosphere of radon and radon daughter elements which may be contained therein by contacting the atmosphere with a fluorinating solution, whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. The fluorides dissolve in the fluorinating solutlon and are removed from the atmosphere, which may then be recirculated. (Official Gazette)

  7. Small-scale irradiated fuel electrorefining

    SciTech Connect (OSTI)

    Benedict, R.W.; Krsul, J.R.; Mariani, R.D.; Park, K.; Teske, G.M.

    1993-09-01

    In support of the metallic fuel cycle development for the Integral Fast Reactor (IFR), a small scale electrorefiner was built and operated in the Hot Fuel Examination Facility (HFEF) at Argonne National Laboratory-West. The initial purpose of this apparatus was to test the single segment dissolution of irradiated metallic fuel via either direct dissolution in cadmium or anodic dissolution. These tests showed that 99.95% of the uranium and 99.99% of the plutonium was dissolved and separated from the fuel cladding material. The fate of various fission products was also measured. After the dissolution experiments, the apparatus was upgraded to stady fission product behavior during uranium electrotransport. Preliminary decontamination factors were estimated for different fission products under different processing conditions. Later modifications have added the following capabilities: Dissolution of multiple fuel segments simultaneously, electrotransport to a solid cathode or liquid cathode and actinide recovery with a chemical reduction crucible. These capabilities have been tested with unirradiated uranium-zirconium fuel and will support the Fuel Cycle Demonstration program.

  8. Recovery of germanium-68 from irradiated targets

    DOE Patents [OSTI]

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1993-01-01

    A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

  9. Irradiation Assisted Grain Boundary Segregation in Steels

    SciTech Connect (OSTI)

    Lu, Zheng; Faulkner, Roy G.

    2008-07-01

    The understanding of radiation-induced grain boundary segregation (RIS) has considerably improved over the past decade. New models have been introduced and much effort has been devoted to obtaining comprehensive information on segregation from the literature. Analytical techniques have also improved so that chemical analysis of layers 1 nm thick is almost routine. This invited paper will review the major methods used currently for RIS prediction: namely, Rate Theory, Inverse Kirkendall, and Solute Drag approaches. A summary is made of the available data on phosphorus RIS in reactor pressure vessel (RPV) steels. This will be discussed in the light of the predictions of the various models in an effort to show which models are the most reliable and easy to use for forecasting P segregation behaviour in steels. A consequence of RIS in RPV steels is a radiation induced shift in the ductile to brittle transition temperature (DBTT). It will be shown how it is possible to relate radiation-induced P segregation levels to DBTT shift. Examples of this exercise will be given for RPV steels and for ferritic steels being considered for first wall fusion applications. Cr RIS in high alloy stainless steels and associated irradiation-assisted stress corrosion cracking (IASCC) will be briefly discussed. (authors)

  10. Forecasting Water Quality & Biodiversity

    Broader source: Energy.gov (indexed) [DOE]

    Forecasting Water Quality & Biodiversity March 25, 2015 Cross-cutting Sustainability ... that measure feedstock production, water quality, water quantity, and biodiversity. ...

  11. Efficient Water Use & Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Use Goal 4: Efficient Water Use & Management Aware of the arid climate of northern New Mexico, water reduction and conservation remains a primary concern at LANL. Energy ...

  12. Efficient Water Use & Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Use Goal 4: Efficient Water Use & Management Aware of the arid climate of northern New Mexico, water reduction and conservation remains a primary concern at LANL. Energy...

  13. Photosynthetic water oxidation versus photovoltaic water electrolysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center News Research Highlights Center Research News Media about Center Center Video Library Bisfuel Picture Gallery Photosynthetic water oxidation versus photovoltaic water ...

  14. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70°C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5×10²⁵ m⁻² to reach a total ion fluence of 1×10²⁶ m⁻² in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Finalmore » thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 µm depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.025 dpa) at 500 °C case even in the relatively low ion fluence of 10²⁶ m⁻².« less

  15. A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b

    SciTech Connect (OSTI)

    Kreidberg, Laura; Bean, Jacob L.; Stevenson, Kevin B.; Désert, Jean-Michel; Line, Michael R.; Fortney, Jonathan J.; Madhusudhan, Nikku; Showman, Adam P.; Kataria, Tiffany; Charbonneau, David; McCullough, Peter R.; Seager, Sara; Burrows, Adam; Henry, Gregory W.; Williamson, Michael; Homeier, Derek

    2014-10-01

    The water abundance in a planetary atmosphere provides a key constraint on the planet's primordial origins because water ice is expected to play an important role in the core accretion model of planet formation. However, the water content of the solar system giant planets is not well known because water is sequestered in clouds deep in their atmospheres. By contrast, short-period exoplanets have such high temperatures that their atmospheres have water in the gas phase, making it possible to measure the water abundance for these objects. We present a precise determination of the water abundance in the atmosphere of the 2 M {sub Jup} short-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope. We find the water content is consistent with the value expected in a solar composition gas at planetary temperatures (0.4-3.5 × solar at 1σ confidence). The metallicity of WASP-43b's atmosphere suggested by this result extends the trend observed in the solar system of lower metal enrichment for higher planet masses.

  16. FATIGUE LIFE PREDICTION FOR STEELS IN PULSATING IRRADIATED SYSTEMS...

    Office of Scientific and Technical Information (OSTI)

    Title: FATIGUE LIFE PREDICTION FOR STEELS IN PULSATING IRRADIATED SYSTEMS Authors: Farmer, J C ; Kramer, K J ; Williams, D J Publication Date: 2012-04-29 OSTI Identifier: 1082417 ...

  17. Enhanced structural stability of nanoporous zirconia under irradiation of He

    SciTech Connect (OSTI)

    Yang, Tengfei; Huang, Xuejun; Wang, Chenxu; Zhang, Yanwen; Xue, Jianming; Yan, Sha; Wang, Yuguang

    2012-01-01

    This work reports a greatly enhanced tolerance for He irradiation-induced swelling in nanocrystalline zirconia film with interconnected nanoporous structure (hereinafter referred as to NC-C). Compared to bulk yttria-stabilized zirconia (YSZ) and another nanocrystalline zirconia film only with discrete nano voids (hereinafter referred as to NC-V), the NC-C film reveals good tolerance for irradiation of high-fluence He. No appreciable surface blistering can be found even at the highest fluence of 6 1017 cm2 in NCC film. From TEM analysis of as-irradiated samples, the enhanced tolerance for volume swelling in NCC film is attributed to the enhanced diffusion mechanism of deposited He via widely distributed nano channels. Furthermore, the growth of grain size is quite small for both nanocrystalline zirconia films after irradiation, which is ascribed to the decreasing of area of grain boundary due to loose structure and low energy of primary knock-on atoms for He ions.

  18. Method for mounting laser fusion targets for irradiation

    DOE Patents [OSTI]

    Fries, R. Jay; Farnum, Eugene H.; McCall, Gene H.

    1977-07-26

    Methods for preparing laser fusion targets of the ball-and-disk type are disclosed. Such targets are suitable for irradiation with one or two laser beams to produce the requisite uniform compression of the fuel material.

  19. Carbon Characterization Laboratory Readiness to Receive Irradiated Graphite Samples

    SciTech Connect (OSTI)

    Karen A. Moore

    2011-05-01

    The Carbon Characterization Laboratory (CCL) is located in Labs C19 and C20 of the Idaho National Laboratory Research Center. The CCL was established under the Next Generation Nuclear Plant Project to support graphite and ceramic composite research and development activities. The research conducted in this laboratory will support the Advanced Graphite Creep experiments—a major series of material irradiation experiments within the Next Generation Nuclear Plant Graphite program. The CCL is designed to characterize and test low activated irradiated materials such as high purity graphite, carbon-carbon composites, silicon-carbide composite, and ceramic materials. The laboratory is fully capable of characterizing material properties for both irradiated and nonirradiated materials. Major infrastructural modifications were undertaken to support this new radiological facility at Idaho National Laboratory. Facility modifications are complete, equipment has been installed, radiological controls and operating procedures have been established and work management documents have been created to place the CCL in readiness to receive irradiated graphite samples.

  20. Flat Ge-doped optical fibres for food irradiation dosimetry

    SciTech Connect (OSTI)

    Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.

    2015-04-24

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.